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Abstract: Cowpox virus (CPXV; genus Orthopoxvirus; family Poxviridae) is the causative agent of
cowpox, a self-limiting zoonotic infection. CPXV is endemic in Eurasia, and human CPXV infections
are associated with exposure to infected animals. In the Fennoscandian region, five CPXVs isolated
from cats and humans were collected and used in this study. We report the complete sequence of
their genomes, which ranged in size from 220–222 kbp, containing between 215 and 219 open reading
frames. The phylogenetic analysis of 87 orthopoxvirus strains, including the Fennoscandian CPXV
isolates, confirmed the division of CPXV strains into at least five distinct major clusters (CPXV-like 1,
CPXV-like 2, VACV-like, VARV-like and ECTV-Abatino-like) and can be further divided into eighteen
sub-species based on the genetic and patristic distances. Bayesian time-scaled evolutionary history of
CPXV was reconstructed employing concatenated 62 non-recombinant conserved genes of 55 CPXV.
The CPXV evolution rate was calculated to be 1.65 × 10−5 substitution/site/year. Our findings
confirmed that CPXV is not a single species but a polyphyletic assemblage of several species and
thus, a reclassification is warranted.

Keywords: phylogenetic; orthopoxvirus; poxviridae; molecular clock; Fennoscandian; phylodynamics;
cowpox virus

1. Introduction

Cowpox virus (CPXV) is an orthopoxvirus species, belonging to the subfamily Chor-
dopoxvirinae of the family Poxviridae [1]. Orthopoxvirus (OPXV) comprises several species
from the New World and Old World. The most representative species from the New
World are raccoonpox virus (RCNV), volepox virus (VPXV) and skunkpox virus (SKPV) [2].
Within Old World OPXV, there are several species: ectromelia virus (ECTV), vaccinia
virus (VACV), monkeypox virus (MPXV), variola virus (VARV), taterapox virus (TATV),
camelpox virus (CMLV) and CPXV [3–5]. In the last decade, new OPXV species were
discovered in the United States (alaskapox virus, AKPV), Italy (abatino macacapox virus,
Abatino) and Georgia (akhmeta virus, AKMV) [6–8].

The most notable member of OPXV genus is VARV, the etiologic agent of small-
pox. However, after a large, massive vaccination campaign, smallpox was eradicated in
1980 [9]. The last natural cases of smallpox in humans were in Somalia in 1977 [10]. OPXV
species, such as CPXV and MPXV, can cause zoonotic diseases [11–14]. MPXV and CPXV
are the causative agents of monkeypox and cowpox, respectively, and have a wide host
range [13,15]. Recently, a multi-country human monkeypox outbreak in 50 countries has
been reported [16]. Compared to MPXV that occurs in Central and Western Africa [17],
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CPXV is endemic of Eurasia, mainly present in Europe [12,18–23]. The natural reservoirs of
CPXV are wild rodents [18,24]. Nevertheless, CPXV is also able to infect felines, monkeys,
dogs, alpacas, rats, horses and humans [12,25–29]. The first zoonotic case was reported in
the Netherlands in 1985, where CPXV was transmitted from a domestic cat to a woman [30].
In Fennoscandian, human cases of CPXV infections have been reported (CPXV-No-H1,
CPXV-No-H2, CPXV-Swe-H1 and CPXV-Swe-H2) as well as feline cases (CPXV-No-F1 and
CPXV-No-F2) [27,31–35]. CPXV has been classified as a single species; however, it has been
proposed that CPXV should be considered as a polyphyletic species [33,35–40]. Based on
phylogenetic studies, CPXV was divided into at least five clades: CPXV-like 1, CPXV-like 2,
ECTV-Abatino-like, VACV-like and VARV-like [38,40–42]. Among OPXV, CPXV has the
largest genome [43] and contains the highest number of orthopoxviral genes [42,44]. It was
suggested that CPXV-like virus was the ancestor of Old World OPXV, except for AKPV and
AKMV [39,44,45]. Until now, the evolutionary history of CPXV is still unclear. Most studies
have focused on the molecular evolution of VARV, but few studies were focused on OPXV
and, specially, on CPXV [39,45–49].

In this study, we present the whole genome sequence of five Fennoscandian CPXV
isolates. We determined the phylogenetic relationship of CPXV, including the Fennoscandian
isolates, with other OPXV and studied the evolutionary history of CPXV based on the con-
catenated 62 non-recombinant conserved genes of several representatives CPXV isolates from
the different CPXV clades. Furthermore, we propose a new classification of CPXV.

2. Materials and Methods
2.1. Cell, Virus Culture and DNA Isolation

Five Fennoscandian isolates were used in this study: CPXV-No-H1, CPXV-No-F1,
CPXV-No-F2, CPXV-Swe-H1 and CPXV-Swe-H2. The isolates were cultured on a monolayer
of Vero cells (ATCC No. CCL-81), and the viral DNA was extracted from semi-purified
virions, as previously described [34,40]. The origin of the five CPXV isolates has been
described elsewhere [27,31–34].

2.2. Whole Genome Sequencing, Genome Assembly and Genome Annotation

The genomes of the five Fennoscandian isolates (CPXV-No-H1, CPXV-No-F1, CPXV-No-
F2, CPXV-Swe-H1 and CPXV-Swe-H2) were sequenced using Oxford Nanopore Technology
GridION (ONT; Oxford, UK) and Illumina MiSeq using reagent kit v3 with 2 × 300 bp
paired-end reads, as previously described [40]. Illumina sequencing was performed at
the Norwegian Sequencing Centre, Oslo, and Nanopore sequencing was performed at the
Genomics Support Centre Tromsø at UiT—The Arctic University of Norway. The genomes
were assembled using SPAdes v3.15.3 [50] and annotated with Genome Annotation Transfer
Utility (GATU) [51], as previously reported [40].

2.3. Gene Content Comparison

The five Fennoscandian CPXV genomes were compared to CPXV-Br genome. Pre-
dicted CDS from five CPXV isolates were extracted, translated into amino acid sequences
and compared to the CPXV-Br proteins using BLASTp (ncbi-blast+ v2.11.0) [52].

2.4. Phylogenetic Analysis, Patristic and Genetic Distances

A total of 87 OPXV genomes, including the five Fennoscandian genomes, were used
in this study (Table S1). Eighty-two OPXV genomes were retrieved from the Viral Or-
thologous Clusters (VOCs) database [53], with the exception of CPXV_GerMygEK938_17
(retrieved from GenBank). The genes and genomes were aligned using MAFFT v7.450
(with default parameters) [54], as implemented in Geneious Prime 2022.0.2. Four differ-
ent alignments were used to build the phylogenetic trees: (1) 87 OPXV whole genome
alignment, (2) 87 OPXV core genome alignment, (3) OPXV orthologous gene alignment
(Table S2) and (4) 62 conserved genes alignment (Table S3), as previously described [40].
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Recombination detection program 4 (RDP4) [55] was used to detect genome-wide
recombination in the datasets. Recombination events identified by 5 of 7 methods (RDP [56],
GENECONV [57], Bootscan [58], MaxChi [59], Chimaera [60], SiScan [61] and 3Seq [62])
with significant p-values (p ≤ 0.01) were considered credible evidences of recombination.
Whole genome, core genome and orthologous gene alignments were generated without
removing the putative recombinant regions.

The conserved gene alignment was generated by examining the 90 Chordopoxvirus
(ChPV) conserved genes for recombination using RDP4 [55], as described above. The 62
conserved genes identified as non-recombinant were aligned singly and the 62 single gene
alignments were concatenated to generate the conserved gene dataset.

Gblocks 0.91b was used to remove poorly aligned positions from 87 OPXV whole
and core genome alignments [63]. The presence of phylogenetic signal of the datasets
was assessed by likelihood mapping analysis with the evaluation of 2000 random quartets
using IQ-TREE v.2.0.3. [64] (Figure S1). The best-fit nucleotide substitution model for the
alignment data was selected using the modelTest-NG v.0.1.6 [65]. Two inference methods,
maximum likelihood (ML) and Bayesian inference (BI), were conducted with RAxML
v8.2.12 [66] using a rapid bootstrap algorithm [67] and MrBayes v3.2.7 [68], respectively,
as previously described [40]. The Markov Chain Monte Carlo (MCMC) analysis was run
until reaching convergence. The phylogenetic trees were visualized applying FigTree
v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/, accessed on 19 February 2021). The BI
phylogenetic tree based on the OPXV orthologous genes was not built because MCMC
analysis did not reach convergence after 50,000,000 generations.

Patristic distances between different groups were calculated from the ML/BI trees
of concatenated 62 conserved non-recombinant genes using the program Patristic version
1.0 [69]. The genetic distances between the different groups were estimated by p-distances,
as implemented in MEGA version 11 [70]. For patristic and genetic distances, the distances
were averaged across taxa to produce a single value. The genetic and patristic distances
between TATV and CMLV were used as threshold values since they are closest and distinct
OPXV species. These threshold values were used to compare the distance between CPXV
clusters and OPXV species and separate them in different sub-species if they were equal or
greater than TATV-CMLV threshold values.

2.5. Phylodynamic Evolutionary Analysis of CPXV

A Bayesian MCMC inference method implemented in BEAST 1.10.4 [71] was used to
estimate evolutionary rates and the divergence times. Evolutionary analysis was carried
out on alignment of concatenated 62 conserved non-recombinant genes of 55 CPXV strains
(listed in Table S4). The temporal signal was assessed from the ML tree of 62 conserved
genes of 55 CPXV by regression of genetic divergence (root-to-tip genetic distance) and
the sampling date using TempEst v.1.5.3 [72] (Figure S2). In the analysis, we did not
include other OPXV species because the dataset did not contain temporal signal (correlation
coefficient = −0.15, value of R2 = 0.02). The presence of phylogenetic signal of the dataset
was evaluated using IQ-TREE v.2.0.3. [64], as described above (Figure S2).

The Bayesian phylodynamic analysis was calibrated using the following parameters:
log-normal relaxed clock, coalescent Bayesian skyline population, HKY substitution model
and four gamma categories. MCMC chain was run for 1 billion generations. The effective
sampling size (ESS) values were checked in Tracer v1.7.2 [73]. Only the Effective Sampling
Size (ESS) values > 200 (after burn-in) were accepted. The maximum clade credibility
(MCC) tree was generated using TreeAnnotator v1.10.4, visualized using FigTree v1.4.4 and
edited graphically using the ggtree package available in R [74].

3. Results
3.1. Genome Assembly, Genome Annotation and Gene Content

The whole genomes of five Fennoscandian CPXV isolates (CPXV-No-H1, CPXV-No-F1,
CPXV-No-F2, CPXV-Swe-H1 and CPXV-Swe-H2) were assembled, and the coverage of the

http://tree.bio.ed.ac.uk/software/figtree/
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assembled genomes varied from 300X to 2400X, as shown in Table 1. The genome size
of the Fennoscandian CPXV isolates ranges from 220,808 to 222,178 bp and the length of
inverted terminal repeats (ITRs) were approximately 8 kbp (Table 1). The whole genome
sequences of these isolates are available in GenBank, with Accession Number: OP125537,
OP125538, OP125539, OP125540, OP125541.

Table 1. Genome size, number of predicted coding sequences (CDS) and genome coverage of the
Fennoscandian CPXV isolates sequenced in this study.

Name Genome Size (bp) CDS
Genome Coverage

Illumina Nanopore

CPXV-No-
H1 221,926 215 300X 600X

CPXV-No-F1 221,334 217 820X 1519X

CPXV-No-F2 222,178 217 940X 1480X

CPXV-Swe-
H1 220,981 217 700X 2500X

CPXV-Swe-
H2 220,808 217 990X 2400X

Gene annotation of the five Fennoscandian CPXV genomes (CPXV-No-H1, CPXV-No-
F1, CPXV-No-F2, CPXV-Swe-H1 and CPXV-Swe-H2) revealed 212, 219, 217, 217 and 217
predicted coding sequences (CDS), respectively. A comparison of the predicted CDS of the
five Fennoscandian CPXV isolates with the CPXV-Br genome is shown in Table S5. The
genome content of the five Fennoscandian CXPV isolates was similar to CXPV-Br genome.
The majority of predicted CDS of the five CXPV strains were found to have homologs
in CPXV-Br, except for few predicted CDS. NoF1-009, NoF2-009 and NoH1-008, present
in the Norwegian isolates, were homologs of EVM004 that encodes a BTB Kelch-domain
containing protein. The Swedish isolates contain a CDS (SweH1-210 and SweH2-210) that
was homolog of CPXV-GRI-K3R (codes for CrmE protein). The five Fennoscandian isolates
contain a homolog of VACV-Cop O3L, encoding a virus entry/fusion complex component.

The five Fennoscandian CPXV strains lacked homologs of CPXV001 and CPXV216.
Furthermore, CPXV002 and CPXV191 (CrmC) were absent in CPXV-No-H1 and CPXV-No-
F1 genomes, respectively.

3.2. Phylogenetic Analysis

The recombination analysis evidenced the extensive recombination in OPXV core
genomes (Figure S3) as well as in the datasets of OPXV whole genomes and orthologous
genes (data not shown). Recombination regions were not removed from the alignments
used to generate the phylogenetic trees for the whole genome, core genome and orthologous
genes. To examine if the recombinant regions in the three datasets biased the phylogenetic
signal, we generated some fourth data, in which 62 OPXV conserved genes without any
evidence of recombination were used in phylogenetic reconstruction, as described in
methods. The ML and BI phylogenetic trees built from concatenated 62 conserved genes
without recombination is shown in Figure 1 and Figure S4, respectively.

The topology of the phylogenetic trees based on 87 OPXV core genomes (Figure 2 and
Figure S5) was identical to that of trees generated from 87 OPXV whole genomes (Figures
S6 and S7) and similar to that of the phylogenetic tree built based on OPXV orthologous
genes (Figure S8). Whereas the topology of phylogenetic trees based on 62 conserved genes
(Figure 1 and Figure S4) slightly differed from that of the phylogenetic trees generated from
87 OPXV core genomes (Figure 2 and Figure S5).
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Figure 1. Maximum likelihood phylogenetic tree of 62 conserved genes from 87 orthopoxviruses.
Bootstrap values were inferred from 1000 rapid bootstrap replicates. Diamonds at the nodes indicate
bootstrap values > 80%. The scale indicates substitution per site. The main five cowpox virus (CPXV)
clusters were highlighted in different colors: pink (Ectromelia-Abatino-like CPXV), blue (CPXV-like 1),
green (CPXV-like 2), turquoise blue (Vaccinia-like CPXV) and orange (Variola-like CPXV).
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Figure 2. Maximum likelihood phylogenetic tree of 87 orthopoxvirus core genome. Bootstrap values
were inferred from 1000 rapid bootstrap replicates. Diamonds at the nodes indicate bootstrap values
> 80%. The scale indicates substitution per site. The main five cowpox virus (CPXV) clusters were
highlighted in different colors: pink (Ectromelia-Abatino-like CPXV), blue (CPXV-like 1), green
(CPXV-like 2), turquoise blue (Vaccinia-like CPXV) and orange (Variola-like CPXV).

As expected, in all phylogenetic trees, the New World and Old World OPXV were
separated and AKPV and AKMV clades were placed between them (Figure 1, Figure 2 and
Figures S4–S8). Within the Old OPXV, the strains from the same species formed distinct
clades, except for CPXV strains. They formed separated clusters with different OPXV
species such as VACV, VARV, ECTV and Abatino. CPXV isolates were separated in five
clusters: ECTV-Abatino-like CPXV, CPXV-like 1, CPXV-like 2, VACV-like CPXV and VARV-
like CPXV. Even though CPXV strains from VACV-like did not form a cluster, they were
closely related to VACV clade. ECTV/Abatino group was clustered with ECTV-Abatino-
like clade, which includes one Fennoscandian isolate (CXPV-No-H2) and two German
isolates. ECTV/Abatino/ECTV-Abatino-like CPXV clade clustered with a major clade that
contains: CPXV-like 2, CPXV-like 1, VACV-like, VACV, MPXV, VARV-like, VARV, TATV
and CMLV clusters (PP = 1.0 and bootstrap values = 100%). In the phylogenetic trees based
on 87 OPXV core genomes (Figure 2 and Figure S5), CPXV-like 2 was separated from the
other CPXV clusters and OPXV. Furthermore, CPXV-like 1 clade was sister to a major clade
that comprised VACV-like, VACV, MPXV, VARV-like, TATV, CMLV and VARV (PP = 1.0
and bootstrap values = 100%). Within this major clade VACV-like/VACV/MPXV cluster
was separated from VARV-like, TATV, CMLV and VARV. Whereas the phylogenetic trees
generated from 62 conserved genes (Figure 2 and Figure S6) showed that CPXV-like 1 and
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CPXV-like 2 were sister clades (PP = 1 and bootstrap values = 70%) and these clustered
together with a clade that contains VACV-like, VACV, MPXV, VARV-like, VARV, TATV
and CMLV, but with low bootstrap support (48%) and PP of 0.93. In comparison to a
phylogenetic tree built from 87 OPXV core genomes, VACV-like/VACV/MPXV did not
form separate from VARV-like.

All Fennoscandian CPXV isolates except CPXV-No-H2 were grouped into CPXV-like
2 clade (Figure 1, Figure 2 and Figures S4–S8). This clade also contains CPXV strains from
Germany, Denmark, Russia, The United Kingdom (UK) and France. Within CPXV-like 2,
CPXV-Ger1998_2 formed a deeper single branch and the remaining CPXV isolates were
divided in two main sub-clusters. In the phylogenetic trees built from 87 OPXV core
genomes (Figure 2 and Figure S5), the sub-cluster one contained three German isolates
(CPXV_Ger91, CPXV_Ger2007_Vole and CPXV_FM2292) and sub-cluster two comprised
16 CPXV isolates, including the five Fennoscandian CPXV isolates reported in this study
(CPXV_Ger2014_Human, CPXV_Ger2015_cat1, CPXV_Ger1990_2, CPXV_HumLue09_1,
CPXV_CheNova_DK_2014, CPXV-Swe-H1, CPXV-Swe-H2, CPXV-Fra2001-Nancy, CPXV-
FraAmiens_2016, CPXV-Catpox5-wv1, CPXV-Br, CPXV-No-F1, CPXV-Norwayfeline, CPXV-
No-F2, CPXV-No-H1 and CPXV-Nor1994_Man). Whereas sub-cluster one of the phyloge-
netic tree based on 62 conserved genes contained an additional CPXV strain, CPXV_Ger0214
_Human (Figure 1 and Figure S4). In all phylogenetic trees, the Norwegian isolates were
closely related to the UK isolates (CPXV-Br and CPXV- Catpox5_wv1), while Swedish
isolates were closer to the Danish isolate. CPXV-like 1 clade was the largest CPXV clade
and comprises only German CPXV isolates as well as VARV-like clade. This clade was sister
group of VARV/CMLV/TATV. VACV-like contains CPXV strains from Austria, Russia,
Finland and Lithuania. These strains were closely related to VACV and MPXV. Compared
to VACV-like, VARV-like and ECTV-Abatino-like, CPXV-like 1 and CPXV-like 2 did not
cluster together with other OPXV species (Figure 1, Figure 2 and Figures S4–S8). Overall,
all phylogenetic trees (based on 87 OPXV whole genomes, core genomes, orthologous
genes and conserved genes) showed the five major CPXV clusters and the clustering of the
CPXV-like 2 strains were similar. Thus, although recombination among CPXV is extensive,
tree topology from datasets with recombinant regions and datasets without evidence of
recombination were very similar.

3.3. Patristic and Genetic Distances

Based on the genetic and patristic distances, CPXV strains can be classified into 18
sub-species (Figure 3). The genetic and patristic distances between CPXV clusters and
OPXV species were higher than the TATV-CMLV genetic and patristic distance threshold
(Tables S6 and S7). Furthermore, the genetic and patristic distances within some CPXV clus-
ters, such as CPXV-like 2, were higher than the threshold values (Table S8). According to the
genetic and patristic distances between CPXV-like 2 strains, CPXV-like 2 was further divided
into ten sub-species: group one (CPXV-Ger1998_2), group two (CPXV_Ger2014_Human,
CPXV_Ger91, CPXV_Ger2007_Vole and CPXV_FM2292), group three (CPXV_HumLue09_1),
group four (CPXV_Ger1990_2), group five (CPXV_Ger2015_cat1), group six (CPXV-Fra2001-
Nancy), group seven (CPXV-FraAmiens_2016), group eight (CPXV_CheNova_DK_2014,
CPXV-Swe-H1 and CPXV-Swe-H2), group nine (CPXV-Catpox5-wv1 and CPXV-Br) and group
ten (CPXV-No-F1, CPXV-Norwayfeline, CPXV-No-F2, CPXV-No-H1 and CPXV-Nor1994_Man)
(Tables S9 and S10). The isolates were grouped together according to their origin, ex-
cept for the German and French isolates that were separated into five and two distinct
sub-species, respectively.
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Figure 3. New classification of cowpox virus (CPXV) based on phylogenetic tree inference from 62
conserved genes without evidence of recombination, patristic and genetic distances. Diamonds at the
nodes indicate bootstrap values > 80%. The main five CPXV clusters were highlighted in different
colors: pink (Ectromelia-Abatino-like CPXV), blue (CPXV-like 1), green (CPXV-like 2), turquoise blue
(Vaccinia-like CPXV) and orange (Variola-like CPXV).

Similarly, in the ECTV-Abatino-like clade, the genetic and patristic distances between the
Norwegian human isolate, CPXV-No-H2, and the German isolates (CPXV_GerMygEk938_17
and CPXV_Ger201_MKY) exceeded the distances between TATV and CMLV (Table S11). Within
VACV-like, the distances between the CPXV strains were higher than the threshold values, ex-
cept for the distances between CXPV-Gri and CPXV-Fin2000-Man (Tables S12 and S13). VACV-
like strains were divided into three different sub-species: sub-species one, CPXV_HumLit08_1;
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sub-species two, CPXV_Aus_1999; sub-species three, CPXV_Gri and CPXV_Fin2000_Man
(Figure 3). In CPXV-like 1, CPXV_Ger_1971_EP1 was classified as one sub-species and the
remaining CPXV-like 1 strains as another sub-species, according to the genetic and patristic dis-
tances (Table S14). However, the patristic distances between CPXV_Ger2010_Alpaca and other
CPXV-like 1 strains were higher than the threshold value, but some genetic distances were lower
than the threshold values (Tables S15 and S16). VARV-like strains remained together as one
sub-species based on the genetic and patristic distances and phylogeny. Curiously, these strains
contain a genomic region of approximately 5860 bp that was also identified in some CPXV-
like 2 strains (CPXV_Ger91, CPXV_2007_vole, CPXV_FM2291 and CPXV_Fra2001_Nancy),
VARV and CMLV.

3.4. Evolutionary Analysis of CPXV

The phylodynamic analysis was performed based on the 62 conserved genes of CPXV
genomes. The dataset exhibited a positive correlation between the genetic divergence and
the sampling time, which indicates the presence of temporal signal in the sequence dataset
(correlation efficient = 0.48; R2 = 0.23). The mean evolution rate of CPXV was estimated to
be 1.65 × 10−5 substitutions per site per year (subs/site/year), with 95% high posterior
density interval (HPD) of 4.36 × 10−7 − 4.32 × 10−5 subs/site/year.

The MCC tree showed that CPXV strains were divided into two main clusters (Figure S9).
The minor cluster contained CPXV-like 2 clade (PP = 0.88) and the major cluster comprised
ECTV-Abatino-like, VACV-like, VARV-like and CXPV-like 1 clades (PP = 0.89) (Figure S9).
However, the emergence date of CPXV as well as major CPXV clusters could not be accu-
rately estimated since the 95% HPD intervals were wide, especially in the deepest nodes. As
compared to the 95% HPD intervals tMRCA for recent nodes, tMRCA for deeper internal
nodes were quite broad and showed some degree of overlap.

4. Discussion

CPXV strains examined in this study were isolated from different countries in Eurasia,
with most of CPXV isolates from Germany. We included five CPXV isolates collected
from Fennoscandian as well as our previously published CPXV isolate, CPXV-No-H2 [40].
These five Fennoscandian isolates were previously classified as CPXV based on Hind III
restriction map of virus DNA, phylogenetic analysis of multiple conserved genes and the
possession of two copies of the intact cytokine response modifier B (CrmB) gene [33–35].

CPXV is classified as one species, but this has been debated in many studies due to
its genetic heterogeneity and polyphyletic character [33,35–40]. The genetic heterogeneity
among CPXV strains could be due to recombination processes [34,35,41] since it is part of
the evolution of OPXV [8,34,40,41,43,75–79]. It has been suggested that recombination can
affect the accuracy of the phylogenetic inferences [80]. Since the extensive recombination in
OPXV genomes has been reported by others [41], we included in our study a dataset of 62
non-recombinant conserved genes to avoid inaccuracy of phylogenetic estimation due the
presence of recombination in 87 OPXV whole genomes, core genomes and orthologous genes.

Our phylogenetic analysis using different datasets always showed that CPXV isolates
were divided into at least five clusters: CPXV-like 1, CPXV-like 2, VACV-like CPXV, VARV-
like CPXV and ECTV-Abatino-like CPXV (Figure 1, Figure 2 and Figures S3–S7). Similar
phylogenetic clustering of CPXV has been reported in other studies [40,81]. Three of the
five CPXV clusters were closely related to other OPXV species, such as ECTV, Abatino,
VARV and VACV. Previous studies have also showed this phylogenetic relationship of
CPXV with other OPXV [35,37,38,40,41,43,81].

The German isolates were present in all CPXV clusters, except for VACV-like, while
the Fennoscandian CPXV isolates clustered into CPXV-like 2 and grouped into separate
clusters according to their country of origin (Norway, Sweden and Denmark), except for
CPXV-No-H2. These results are in agreement with the phylogenetic analysis based on
single genes (atip, p4c, CrmB, HA, complete CHOhr or partial CHOhr) reported in our
previous studies [33,35]. However, not all Fennoscandian isolates were closely related. The
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Norwegian isolates were closely related to the UK strains, whereas the Swedish CPXV
isolates were closer to the Danish CPXV isolate. The phylogenetic relationship of the
Norwegian and UK isolates has been previously reported [38,41]. In our previous studies
the relationship of the Fennoscandian isolates with other CPXV isolates varied depending
on the single gene used in the phylogenetic analysis [33,35]. However, in the present
study, the phylogenetic relationship between the Norwegian and UK isolates as well as the
Swedish and Danish isolates were consistent, regardless of the alignment used (87 OPXV
whole genomes, core genomes, orthologous genes or 62 conserved genes).

Genetic and patristic distances have been previously used to examine the diversity of
CPXV [35,36,38]. We used the genetic and patristic distances between TATV and CMLV to
classify OPXV into the same or different species because they are the closest and recognized
OPXV species. Our examination of the genetic and patristic distances between and within
CPXV clusters revealed that the five CPXV clusters can be considered distinct CPXV sub-
species and that even the CPXV strains can be separated into 18 sub-species (Figure 3). The
heterogeneity of CPXV was not only demonstrated between CPXV clusters, but it was also
present within some clusters. Among them, CPXV-like 2 was the most heterogeneous. Their
isolates were classified into ten sub-species based on the genetic and patristic distances.
This clade comprised isolates of diverse geographic origins (Norway, Sweden, Denmark,
UK, Germany and France) and its classification followed their geographical origin. Only
German and French isolates were separated into more than one sub-species.

Large genetic variation was also found within VACV-like strains, which were closely
related to VACV and MPXV, as previously described [38,40,41]. These strains split into three
different sub-species based on the genetic and patristic distances. This division is in agreement
with phylogenetic work reported in other previous studies [38,40,41]. Among VACV-like
strains, it has been reported that CPXV-HumLit08/1 is a recombinant virus that contains
genomic regions related to VACV, VACV-like and VARV-like [41]. However, our findings
based on 62 non-recombinant conserved genes evidenced that CPXV-HumLit08/1 can be
considered as one sub-species. Similarly, within ECTV-Abatino-like clade, CPXV-No-H2 has
undergone recombination with other OPXV [40] and our data supported the separation of
CPXV-No-H2 and the other ECTV-Abatino-like strains into different sub-species.

The most genetically homogeneous CPXV cluster was the VARV-like group. The origin
of these strains was associated with infected pet rats, probably imported from the Czech
Republic [37,82]. Overall, our findings are in concordance with the results of Mauldin
et al. [38]. They reported that CPXV-like 1 strains were split into more than one cluster
(referred in the study as E1, E2, E3, E4 and E5), VACV-like strains were divided into three
groups (referred in the study as A, B and C) and VARV-like strains were clustered into a
single group.

Despite the evidence of recombination in the datasets of 87 OPXV whole genomes, core
genomes and orthologous genes, their phylogeny, genetic and patristic distances agreed
with and are very similar to the phylogeny, patristic and genetic distances reconstructed
from the dataset of 62 conserved genes without evidence of recombination. All four datasets
suggested that CPXV strains can be divided into at least 18 sub-species (Figure 3, Figure S10
and Tables S6–S16). However, biological characterization of CPXV is required to accurately
infer the taxonomic level to which these 18 sub-species of CPXV belong. Furthermore,
our phylogenetic analysis evidenced that recombination did not change the phylogenetic
relationship between CPXV strains and OPXV despite the extensive recombination between
OPXV genomes. Taking into cognizance the extensive recombination present in CPXV
genomes, it is rather surprising that recombination appears not to alter the clustering
pattern in OPXV phylogeny. Plausible reasons may be that recombination among CPXVs
occurred very early in CPXV/OPXV evolution, recombination regions occurred in small
batch sizes compared to the whole genomes and the phylogenetic signals from recombinant
regions were small and was diluted out by larger phylogenetic signals from other parts of
the genome.
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We estimated the evolution rate of CPXV based on 62 conserved genes of 55 CPXV to
be 1.65 × 10−5 substitution/site/year (95% HPD, 4.36 × 10−7–4.32 × 10−5 subs/site/year).
The 95% HPD of our estimate overlapped the reported substitution rates of Chordopoxvirinae,
0.5–8.8 ×10−6 substitutions/site/year, and OPXV, 1.7–6.5 × 10−6 substitutions/site/year
[45–47,49]. The divergence times of CPXV could not be accurately estimated using 62
conserved genes of 55 CPXV genomes (Figure S9), even using conserved central region
(F4L-A24L) of CPXV genomes (data not shown), since the broad 95% HPD intervals of
the divergence time were quite broad. It could be due to the high heterogeneity of CXPV
strains and the limited number of samples in terms of location, host and sample age.
The majority of CPXV strains were isolated in Germany and from infections in humans.
Furthermore, most CPXV strains were isolated in the last decades, there were no ancient
CPXV isolates. Therefore, the low genetic information and the high genetic distances
between the current CPXV strains increase the uncertainty of the node ages. In our opinion,
our result strengthens the proposed idea that lineages of CPXV are highly divergent and
a reclassification is needed, rather than showing a lack of a good calibration (tempest
indicated presence of temporal signal). It has been proposed that the CXPV-like virus was
the ancestor of Old World OPXV, excluding AKPV and AKMV, [39,44,45,83] due to its large
genome, broadest host range and the presence of the most orthopoxviral genes [42,43,83,84].
Thus, despite the exclusion of other OPXV in our analysis due to the lack of temporal signal
in the dataset, the evolutionary analysis of only CPXV may reflect the genomic history of
all OPXV taking into account the high genetic heterogeneity among CPXV, the suggestion
that CPXV or cowpox-like virus may be the ancestor to Old World OPXV species and the
phylogenetic evidence of CPXV being the only OPXV that clusters with all Old World OPXV.
However, the phylodynamic analysis of only CPXV has limitations because of oversampling
of CPXV strains from Germany, from human zoonotic events and lack of ancient isolates.
To improve the reconstruction of the evolutionary history of CPXV, increased genomic
surveillance of CPXV across different regions of Eurasia and in multiple species or by
the acquisition of ancient CPXV strains are required. These will result in a more accurate
estimation of the time-scale of CPXV evolution.

5. Conclusions

In conclusion, the present study demonstrated the high genetic heterogeneity among
CPXV isolates and the polyphyletic character of CPXV. Furthermore, our findings confirmed
that CPXV was not a single species but a polyphyletic assemblage of several (up to 18)
sub-species. Therefore, the current classification of CPXV as one single species should be
re-evaluated. We also provided the first reconstruction of the evolutionary history of only
CPXV. Overall, this study has shed significant insight on the evolution, phylogeny and
classification of CPXV.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14102134/s1, Figure S1. Presence of phylogenetic signal was
evaluated by likelihood mapping checking for alternative topologies (tips), unresolved quartets (cen-
ter) and partly resolved quartets (edges) for 87 OPXV whole genomes (a), core genomes (b), OPXV
orthologous genes (c) and 62 conserved genes. Figure S2. Phylogenetic and temporal signal analyses.
(a) Presence of phylogenetic signal was evaluated by likelihood mapping checking for alternative
topologies (tips), unresolved quartets (center) and partly resolved quartets (edges) for 62 conserved
genes of 55 CPXV strains. (b) Linear regression of root-to-tip genetic distance in a maximum like-
lihood phylogeny against sampling time for 62 conserved genes of 55 CPXV strains. Figure S3.
Recombination analysis of 87 orthopoxvirus (OPXV) core genomes with RPD4. Schematic sequence
display depicting color-coded representations of the analyzed sequences and the locations of de-
tected recombination events in the 87 OPXV core genomes. The detected recombination events were
detected for at least 5 of 7 methods (RDP, GENECONV, Bootscan, MaxChi, Chimaera, SiScan and
3Seq) with significant p-values (p ≤ 0.01). Figure S4. Bayesian inference phylogenetic tree of 62 con-
served genes from 87 orthopoxviruses. Diamonds at the nodes indicate posterior probabilities > 0.9.
The scale bar represents expected substitutions per site. The main five cowpox virus (CPXV) clus-

https://www.mdpi.com/article/10.3390/v14102134/s1
https://www.mdpi.com/article/10.3390/v14102134/s1
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ters were highlighted in different colors: pink (Ectromelia-Abatino-like CPXV), blue (CPXV-like 1),
green (CPXV-like 2), turquoise blue (Vaccinia-like CPXV) and orange (Variola-like CPXV). Figure S5.
Bayesian inference phylogenetic tree of 87 OPXV core genomes. Posterior probabilities are shown on
the right side of each node and only posterior probabilities above 0.9 are shown. The scale bar repre-
sents expected substitutions per site. The main five cowpox virus (CPXV) clusters were highlighted
in different colors: pink (Ectromelia-Abatino-like CPXV), blue (CPXV-like 1), green (CPXV-like 2),
turquoise blue (Vaccinia-like CPXV) and orange (Variola-like CPXV). Figure S6. Maximum likelihood
phylogenetic tree of 87 orthopoxvirus whole genome. Bootstrap values were inferred from 1000 rapid
bootstrap replicates. Diamonds at the nodes indicate bootstrap values > 80%. The scale bar indicates
substitution per site. The main five cowpox virus (CPXV) clusters were highlighted in different
colors: pink (Ectromelia-Abatino-like CPXV), blue (CPXV-like 1), green (CPXV-like 2), turquoise blue
(Vaccinia-like CPXV) and orange (Variola-like CPXV). Figure S7. Bayesian inference phylogenetic
tree of 87 OPXV whole genomes. Diamonds at the nodes indicate posterior probabilities > 0.9. The
scale bar represents expected substitutions per site. The main five cowpox virus (CPXV) clusters
were highlighted in different colors: pink (Ectromelia-Abatino-like CPXV), blue (CPXV-like 1), green
(CPXV-like 2), turquoise blue (Vaccinia-like CPXV) and orange (Variola-like CPXV). Figure S8. Maxi-
mum likelihood phylogenetic tree based on orthopoxvirus orthologous genes. Bootstrap values were
inferred from 1000 rapid bootstrap replicates. Diamonds at the nodes indicate bootstrap values > 80%.
The scale indicates substitution per site. The main five cowpox virus (CPXV) clusters were highlighted
in different colors: pink (Ectromelia-Abatino-like CPXV), blue (CPXV-like 1), green (CPXV-like 2),
turquoise blue (Vaccinia-like CPXV) and orange (Variola-like CPXV). Figure S9. Bayesian maximum
clade credibility (MCC) tree of 62 non-recombinant conserved genes of 55 CPXV genomes. The MCC
tree was generated using BEAST 1, using a log-normal relaxed clock, coalescent Bayesian skyline
population, HKY substitution model and four gamma categories. The numbers on the nodes indicate
the time of the most recent common ancestor of the clades. Diamonds at the nodes indicate posterior
probability values > 0.9. The main five CPXV clusters were highlighted in different colors: pink
(Ectromelia-Abatino-like CPXV), blue (CPXV-like 1), green (CPXV-like 2), turquoise blue (Vaccinia-
like CPXV) and orange (Variola-like CPXV). Figure S10. New classification of Cowpox virus (CPXV)
based on phylogenetic inference (from 87 OPXV whole genomes, core genomes and orthologous
genes), patristic and genetic distances. Diamonds at the nodes indicate bootstrap values > 80%.
The main five CPXV clusters were highlighted in different colors: pink (Ectromelia-Abatino-like
CPXV), blue (CPXV-like 1), green (CPXV-like 2), turquoise blue (Vaccinia-like CPXV) and orange
(Variola-like CPXV). Table S1: List of strains used in the phylogenetic analysis. Table S2: List of
orthologous genes from 87 orthopoxviruses used in this study. Table S3: List of 62 conserved genes
from 87 orthopoxviruses used in this study. Table S4: List of strains used in the evolution molecular
analysis. Table S5. Predicted genes in CPXV-No-F1, CPXV-No-F2, CPXV-No-H1, CPXV-Swe-H1
and CPXV-Swe-H2 compared to reference genomes CPXV-Brighton (CPXV_BR). Table S6. Patristic
distances between CPXV clusters and OPXV species calculated from the Maximum likelihood (ML)
and Bayesian inference (BI) trees of 62 conserved genes, 87 OPXV whole genomes, core genomes and
orthologous genes. Table S7. Genetic distances between CPXV clusters and OPXV species estimated
by p-distances from the alignment of 62 conserved genes (A), 87 OPXV whole genomes (B), core
genomes (C) and orthologous genes (D). Table S8. Patristic and genetic distances within CPXV
clusters calculated from the Maximum likelihood (ML) and Bayesian inference (BI) trees of 62 con-
served genes, 87 OPXV core genomes, whole genomes and orthologous genes and their alignments,
respectively. Table S9. Patristic distances within CPXV-like 2 calculated from the Maximum likelihood
(ML) and Bayesian inference (BI) trees of 62 conserved genes, 87 OPXV whole genomes, core genomes
and orthologous genes. Table S10. Genetic distances within CPXV-like 2 estimated by p-distances
from the alignment of 62 conserved genes (A), 87 OPXV whole genomes (B), core genomes (C) and
orthologous genes (D). Table S11. Patristic and genetic distances within ECTV-Abatino-like calculated
from the Maximum likelihood (ML) and Bayesian inference (BI) trees of 62 conserved genes, 87
OPXV whole genomes, core genomes and orthologous genes and their alignments, respectively.
Table S12. Patristic distances within VACV-like calculated from the Maximum likelihood (ML) and
Bayesian inference (BI) trees of 62 conserved genes, 87 OPXV whole genomes, core genomes and
orthologous genes. Table S13. Genetic distances within VACV-like clade estimated by p-distances
from the alignment of 62 conserved genes (A), 87 OPXV whole genomes (B), core genomes (C) and
orthologous genes (D). Table S14. Patristic and genetic distances within CPXV-like 1 calculated from
the Maximum likelihood (ML) and Bayesian inference (BI) trees of 87 OPXV whole genomes, core
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genomes and orthologous genes and their alignments, respectively. Table S15. Patristic distances
within CPXV-like 1 calculated from the Maximum likelihood (ML) and Bayesian inference (BI) trees
of 62 conserved genes, 87 OPXV whole genomes, core genomes and orthologous genes. Table S16.
Genetic distances within CPXV-like 1 estimated by p-distances from the alignment of 62 conserved
genes (A), 87 OPXV whole genomes (B), core genomes (C) and orthologous genes (D).
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