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In this work, we argue that the search for Artificial General Intelligence should

start from amuch lower level than human-level intelligence. The circumstances

of intelligent behavior in nature resulted from an organism interacting with its

surrounding environment, which could change over time and exert pressure on

the organism to allow for learning of new behaviors or environment models.

Our hypothesis is that learning occurs through interpreting sensory feedback

when an agent acts in an environment. For that to happen, a body and a reactive

environment are needed. We evaluate a method to evolve a biologically-

inspired artificial neural network that learns from environment reactions

named Neuroevolution of Artificial General Intelligence, a framework for

low-level artificial general intelligence. This method allows the evolutionary

complexification of a randomly-initialized spiking neural network with adaptive

synapses, which controls agents instantiated in mutable environments. Such a

configuration allows us to benchmark the adaptivity and generality of the

controllers. The chosen tasks in the mutable environments are food

foraging, emulation of logic gates, and cart-pole balancing. The three tasks

are successfully solved with rather small network topologies and therefore it

opens up the possibility of experimenting with more complex tasks and

scenarios where curriculum learning is beneficial.
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1 Introduction

Artificial General Intelligence (AGI) or strong Artificial Intelligence (AI) is commonly

discussed among AI researchers. It is often defined as human-level AI. However, the

generality of an AI does not need to be considered at such a level of complexity. Even an

artificial neural network that performs lots of different tasks as a collection of specialized
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or weak AI (Reed et al., 2022) may not provide the level of

generality observed in simple biological systems. In fact, our

current artificial intelligent systems cannot emulate the

adaptability to unknown conditions and learning capabilities

of an animal with a simple nervous system, such as a worm

(Ardiel and Rankin, 2010; Randi and Leifer, 2020). An alternative

approach is to start the quest for the generality of AI from the

simplest tasks that animals can do, but machines cannot, like

behaving intelligently even in new environments (Crosby et al.,

2019), i.e., out-of-distribution generalization (Shen et al., 2021).

Moreover, AGI systems should be tested in tasks that require self-

learning on the fly from sensory feedback, as it is often done in

meta-learning and continual learning (Najarro and Risi, 2020;

Zohora et al., 2021).

We argue that a radical paradigm change is needed in order

to reach general intelligence (Lake et al., 2017; Crosby et al.,

2019). Our hypothesis is that such a new paradigm requires

learning systems with self-organizing properties, as discussed by

Risi, (2021). In this work, our goal is to achieve the learning

capabilities of a primitive brain. Therefore, we aim at a low-level

AGI, i.e., a system that can learn a map function through sensory

experience. Interpreting and understanding sensory inputs are

achieved through evolution, particularly supervised evolution

(Zador, 2019) of agents interacting with their environment.

The brain is the organ that interprets the encoded signals

from our sensory organs, thanks to the ability to distinguish

between positive and negative sensory experiences depending on

what is considered to be good or harmful, e.g., pleasure and pain.

The experiences of pleasure and pain serve as reward and penalty

mechanisms that may affect our behavior by conditioning

associative positive and negative cues with specific memories.

In this work, we evaluate the Neuroevolution of Artificial

General Intelligence (NAGI) framework (Pontes-Filho and

Nichele, 2019). NAGI is a low-level biologically-inspired AGI

framework. NAGI consists of an evolvable spiking neural

network with adaptive synapses and randomly-initialized

weights. The network is evolved by an extension of the

method NeuroEvolution of Augmenting Topologies (NEAT)

(Stanley and Miikkulainen, 2002). The source code of NAGI

is available at https://github.com/SocratesNFR/neat-nagi-

python.

The evolved spiking neural network controls an agent placed

in a mutable environment. Its chances of reproduction are

proportional to how long it can survive in an environment

that is constantly changing, sometimes abruptly. Evolution

optimizes how the neurons are connected in the network,

their type of neurotransmitters (excitatory or inhibitory), their

susceptibility to background electrical current noise (analogous

to bias), and their neuroplasticity. With such degrees of freedom

in the optimization process, we attempt to approximately

recapitulate the evolutionary process of the simplest brains.

The mutable environment and random weight initialization

propitiate a benchmark for generality and adaptivity of the agent.

We test NAGI in three mutable environments. The first one

is a simple food foraging task, in which the agent has one

photoreceptor (or light intensity sensor) used to identify food.

The food type (color) is either black or white. Food can be edible

or poisonous and this feature changes over time. The agent can

also taste the food as its sensory feedback for good and bad

actions. The second environment is a logic gate task. The spiking

neural network needs to emulate different logic gates in series

where the only reward and penalty sensory signals are the

supporting mechanisms to identify the correct output. The

third environment is a cart-pole balancing task. In this

environment, the goal of the agent is to control the forces

applied to the cart in order to maintain the pole above itself

upright. The mutable component of this environment is the pole

length, which changes during the lifetime of the agent. Because

this environment has sensory feedback for the agent’s actions,

there is no need to add reward and penalty sensory signals.

The article is organized as follows: Section 2 explains the

theoretical basis for understanding NAGI. Section 3 discusses the

related work to our approach. Section 4 describes the details of

the method and experiments. Section 5 presents the experimental

results. Section 6 concludes the article including a discussion of

the results and plans for future work.

2 Background

The components of the NAGI framework are inspired by the

overlapping research fields of artificial life (Langton, 2019),

evolutionary robotics (Doncieux et al., 2015), and

computational neuroscience (Trappenberg, 2009). In

particular, the controller for the agents is a Spiking Neural

Network (SNN) (Izhikevich, 2003), which is a more

biologically-plausible artificial neural network. The neurons in

an SNN communicate through spikes, i.e., binary values in time

series. Therefore, an SNN adds a temporal dimension to binary

data. A neuron propagates such data depending on whether its

membrane potential crossed a threshold value or not. If the

threshold is crossed, the neuron propagates a signal represented

as neurotransmitters to its connected neurons; otherwise, the

action potential is not propagated. When neurotransmitters are

released by a neuron, they can be of two types: excitatory, which

increases the membrane potential and the likelihood of

producing an action potential; or inhibitory, which has the

opposite effect by decreasing the membrane potential.

Efficient optimization of an SNN cannot happen through

gradient descent as spike trains are not differentiable

(Tavanaei et al., 2019). Instead, spiking neurons have

biologically inspired local learning rules, such as Hebbian

learning and Spike-Timing-Dependent Plasticity (STDP)

(Hebb, 1949; Li et al., 2014). Those neuroplasticity rules are

unsupervised, and their functionality in the brain is still not fully

understood. However, it is inferred that the supervision comes
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from a certain network configuration acquired through

evolution. Therefore, in this work, we use a modification of

NeuroEvolution of Augmenting Topologies (NEAT) (Stanley

and Miikkulainen, 2002). NEAT uses a Genetic Algorithm

(GA) (Holland, 1992) to optimize the weights and the

topology of a growing neural network that is initialized with a

minimal and functional size. NEAT is typically used to search for

a network configuration that improves a fitness score while

maintaining population diversity (speciation) and avoiding

loss of genes during crossover (historical marking). For an

accessible and extensive explanation of NEAT, please refer to

Ref. (Welleck, 2019).

A distinction from NEAT is that the weights in the NAGI

framework are randomly initialized, and they change (adapt)

after deployment. The adaptation is coordinated by a realistic

Hebbian learning rule, i.e., STDP. This neuroplasticity adjusts the

synaptic strength of a neuron’s dendrites (i.e., input connections)

when it fires an action potential (or spike) that goes through its

axon (i.e., output connection). The weights are modified

according to the difference in time between incoming spikes

and the generated action potential. More detailed information

about SNN and STDP is available in Ref. (Camuñas-Mesa et al.,

2019).

The body and brain interaction (sensors and actuators vs.

controller) is often described as “chicken and egg” problem

(Funes and Pollack, 1998). The natural evolution of body and

brain happens together with the evolution of the environment.

They evolve in cooperation and response to each other (Mautner

and Belew, 2000). The application of supervised evolution of

agents interacting with the environment is defined as embodied

evolution (Watson et al., 1999). As such, an agent needs a body to

learn from the reaction of its environment. We hypothesize that

low-level general intelligence in nature emerged through the

evolution of a sensory feedback learning method.

3 Related work

Neuroevolution with adaptive synapses was introduced in

2003 by Stanley et al. (2003). Such a method is a version of NEAT

where the synaptic strength of the connections changes with

Hebbian local learning rules. In their work, they used a food

foraging task where an agent moves around a field surrounded by

edible and poisonous food. The type of food did not change over

time, but it was initialized differently at every new run. The

agents needed to try the food first before identifying it. Therefore,

the agents possess reward and penalty sensory signals as in

NAGI. This method is rather similar to ours. However, NAGI

is more biologically plausible, weight agnostic, and is tested in a

mutable environment. Risi and Stanley, (2010) proposed an

extended version by replacing the direct encoding of the

network in NEAT with an indirect encoding.

Additional related methods are described in Refs. (Gaier and

Ha, 2019) and (Najarro and Risi, 2020) where randomly-

initialized artificial neural networks are used. The work of

Gaier and Ha, (2019) uses a version of NEAT where each

neuron can have one activation function out of several types.

While in the method of Najarro and Risi, (2020), the network

topology is fixed and each connection evolves to optimize the

parameters of its Hebbian learning rule.

In a recent review on neuroevolution (Stanley et al., 2019),

NEAT and its extensions are comparable to deep neural networks

trained with gradient-based methods for reinforcement learning

tasks. Such methods allow evolving artificial neural networks

with indirect encoding for scalability, novelty search for diversity,

meta-learning for learning how to learn, and architecture search

for deep learning models. Moreover, neuroevolution is described

as a key factor for reaching AGI, particularly in relation to meta-

learning and open-ended evolution. Meta-learning encompasses

the training of a model with certain datasets and testing it with

others. The goal of the model is therefore to learn any given

dataset by itself from experience (Thrun and Pratt, 1998). Open-

ended evolution is the ability to endlessly generate a variety of

solutions of increasing complexity (Taylor, 2019). In NAGI,

meta-learning is an implicit target in the mutable

environments and is implemented as neuroplasticity in the

spiking neural network.

In 2020, Nadji-Tehrani and Eslami, (2020) introduced the

framework for evolutionary artificial general intelligence

(FEAGI). This method uses an indirect encoding technique

for a spiking neural network that resembles the growth of the

biological brain, which is called “neuroembryogenesis.” As a

proof of concept, FEAGI demonstrates successful handwritten

digits classification by learning through association and being

able to recall digits from different image samples in real-time.

4 Neuroevolution of Artificial General
Intelligence

The NAGI framework aims at providing a simplified model

of the initial stages of the evolution of biological general

intelligence (Pontes-Filho and Nichele, 2019). The evolving

agents in NAGI consist of randomly-initialized spiking neural

networks. Thus, a genome in NAGI does not require the

definition of synaptic weights of the connections between

neurons, as it is done in NEAT. Therefore, the synaptic

weights in the genome are replaced by an STDP rule and its

parameters for each neuron. Since biological neurons may

provide one of the two main neurotransmitters, NAGI’s

genome defines such a feature in the neurons’ genes. As such,

a neuron can be either excitatory or inhibitory. To imitate the

function of bias in artificial neural networks, neurons may be also

susceptible to a “background electrical current noise.”
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The environment changes during the lifetime of the agent.

This forces the agent to learn new environmental conditions.

Therefore, the agent is encouraged to generalize and learn how to

learn. The aforementioned random initialization and mutable

environment aim at benchmarking the basic properties needed

for low-level AGI.

4.1 Spiking neural network

The spiking neural network has a fixed number of input and

output neurons depending on the task to be solved. The

neuroevolution process defines the number of hidden neurons

that will be available. Hidden neurons can be either excitatory or

inhibitory, while input and output neurons are always excitatory.

Self-loops and cycles are permitted while duplicate connections

between two neurons in the same direction are prohibited. The

SNN is stimulated from the input neurons, as such units are spike

generators. The spikes are uniformly generated in an assigned

frequency or firing rate.

As a spiking neuron model, we use a simplification of the

leaky integrate-and-fire model (Liu andWang, 2001). A neuron’s

membrane potential v is increased directly by its inputs and

decays over time by a factor λdecay. We can then express the

change in membrane potential Δv with regards to a time step

Δt by

Δv Δt( ) � ∑n
i�1

wixi − Δtλdecayv, (1)

where xi is the input value 0 (no spike) or 1 (spike) from the

presynaptic neuron i, the dendrite for this connection has the

synaptic strength defined as wi, and n is the total number of

presynaptic neurons that the dendrites are connecting. If the

membrane potential v is greater than the membrane threshold

vth, a spike is released and the membrane potential returns to the

resting membrane potential vrest, which is 0. The time step Δt we
use in the experiments is 0.1 ms, and decay factor λdecay is 0.01Δt.
An action performed by the SNN is calculated by the number of

spikes in a time window. Such an actuator time window covers

250 ms or 2,500 time steps. In NAGI, the weights of the SNN are

randomly initialized with a normal distribution. The mean is

equal to 1 and the standard deviation is equal to 0.2. The weights

are always positive. As mentioned, the excitation and inhibition

of a neuron are defined by the neurotransmitter of the

presynaptic neuron.

4.1.1 Homeostasis
Biological neurons have a plasticity mechanism that

maintains a steady equilibrium of the firing rate, which is

called homeostasis (Betts et al., 2013; Kulik et al., 2019). In

our method, the spiking neurons can have non-homogeneous

inputs, which could lead to very different firing rates. It is

desirable that all neurons have approximately equal firing

rates (Diehl and Cook, 2015). In order to homogenize the

firing rates of the neurons in a network, the membrane

threshold vth is given by

vth � min vpth + Θ,∑n
i�1

wi
⎛⎝ ⎞⎠, (2)

where vth* is the “resting” membrane threshold equals to 1; and Θ
starts with value 0, increases 0.2 every time a neuron fires, and decays

exponentially with a rate of 0.01Δt. Each neuron has an individualΘ.
Therefore, a neuron firing more often will get a larger membrane

threshold and consequently a lower firing rate. To compensate for a

neuron with weak incoming weights, which causes a low firing rate;

we instead use the sum of the incoming weights as the threshold.

4.1.2 Spike-Timing-Dependent Plasticity
The adjustment of the weights of the connections entering into a

neuron happens on every input and output spike to and from a

neuron. This is performed by STDP. It is done by keeping track of

the time elapsed since the last output spike and each input spike

from incoming connections within a time frame. Such a time frame

is called the STDP time window and is set to be ±40 ms. The

difference between presynaptic and postsynaptic spikes, or the

relative timing between them, denoted by Δtr is given by

Δtr tout, tin( ) � tout − tin, (3)

where tout is the timing of the output spike and tin is the timing of

the input spike.

The synaptic weight change Δw is calculated in accordance

with one of the four Hebbian learning rules. The functions for

each of the four learning rules are given by

Δw Δtr( ) �
A+e

−Δtr
τ+ Δtr > 0,

−A−e
Δtr
τ− Δtr < 0,

0 Δtr � 0;

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Asymmetric Hebbian (4)

Δw Δtr( ) �
−A+e

−Δtr
τ+ Δtr > 0,

A−e
Δtr
τ− Δtr < 0,

0 Δtr � 0;

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Asymmetric Anti −Hebbian

(5)

Δw Δtr( ) �
A+g Δtr( ) g Δtr( )> 0,
A−g Δtr( ) g Δtr( )< 0,
0 g Δtr( ) � 0;

⎧⎪⎨⎪⎩ SymmetricHebbian

(6)

Δw Δtr( ) �
−A+g Δtr( ) g Δtr( )> 0,
−A−g Δtr( ) g Δtr( )< 0,
0 g Δtr( ) � 0;

⎧⎪⎨⎪⎩ Symmetric Anti −Hebbian

(7)

where g (Δtr) is a Difference of Gaussian function given by

g Δtr( ) � 1
σ+

���
2π

√ e−
1
2

Δtr
σ+( )2 − 1

σ−
���
2π

√ e−
1
2

Δtr
σ−( )2 , (8)
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A+ and A− are the parameters that affect the height of the curve,

τ+ and τ+ are the parameters that affect the width or steepness of the

curve of the Asymmetric Hebbian functions, and σ+ and σ− are the

standard deviations for the Gaussian functions used in the

Symmetric Hebbian functions. It is also required that σ− > σ+.

We experimentally found fitting ranges for each of these parameters,

which are A+ = [0.1, 1.0], A− = [0.1, 1.0], τ+ = [1.0, 10.0], and τ− =

[1.0, 10.0] for the asymmetric STDP functions; and A+ = [1.0, 10.6],

A− = [1.0, 44.0], σ+ = [3.5, 10.0], and σ− = [13.5, 20.0] for the

symmetric ones. The STDP curves with themaximumvalue of those

parameters are illustrated in Figure 1.

Weights can take values in a range [wmin, wmax], and every

neuron has a weight budget wbudget it must follow. What this

means is that if the sum of a neuron’s incoming weights exceed

wbudget after initialization or STDP has been applied, they are

normalized to wbudget, given by

if ∑n
i�1

wi >wbudget, thenwi � wiwbudget∑n
i�1wi

. (9)

The parameters used during our experiments are wmin = 0,

wmax = 1, and wbudget = 5. In case of a SNN without

homeostasis, if a connection i has wi = wmax, then wi = vth.

Therefore, an action potential coming from i will always produce

a spike. This is the reason why wmax = vth.

4.2 Genome

The genome in NAGI is rather similar to the one in NEAT.

Its node genes have three types: input, hidden, and output.

Depending on the type of the node gene, there is a different

collection of loci1. The input node is a spike generator and

provides excitation to the neurons it is connected to. The

gene of an input node is the same as in NEAT. The hidden

and output nodes represent adaptable and mutable spiking

neurons. They have three additional loci: the type of the

learning rule, the set of the learning rule parameters, and a

bias. The connection gene in NAGI has no weight locus as in

NEAT. The reason for its removal is that the weights of the SNN

are defined by a normal distribution.

The learning rule is one of the four STDPs. The set of learning

rule parameters consists of four parameters that adjust the intensity

of the weight change. They are different for symmetric and

asymmetric learning rules. The symmetric parameters are A+{ ,

A−, σ+, σ−} and the asymmetric parameters are A+{ , A−, τ+, τ−}.
The bias is a Boolean value that determines if the neuron has a

constant input of 0.001 being added toΔv, which is analogous to the
background noise of the neuron.

FIGURE 1
Spike-timing-dependent plasticity rules.

FIGURE 2
Genotype and phenotype in NAGI. Image taken from Ref.
(Olsen, 2020).

1 In the terminology of genetic algorithms, a value within a gene is also
called a locus (plural loci).
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The hidden node genes have a unique locus, which is a

Boolean value that determines whether it represents an inhibitory

or excitatory neuron. This locus is not included in the output

node genes because they are always excitatory. As a result of

combining all the descriptions of the genome in NAGI, the

genotype and the phenotype are illustrated in Figure 2.

The initialization of the additional loci in the node genes can

be conditional and non-uniform. The initialization of the

neurotransmitter type of a neuron follows a similar

proportion of excitatory and inhibitory neurons in the brain

(Sukenik et al., 2021). The probability of a neuron being added as

excitatory is 70%. The probability of having a bias is 20%.

Depending on the neurotransmitter, excitatory neurons have a

70% chance of initializing with Hebbian plasticity, and inhibitory

neurons have the same chance but for anti-Hebbian plasticity.

The learning rule parameters are initialized by sampling from a

uniform distribution within the STDP parameter ranges.

The mutations of the additional loci happen in 10% of chance

to switch the neurotransmitter type, bias, learning rule, and

learning rule parameters. Those parameters have 2% chance

of a fully re-initialization. When the parameters are assigned

to be mutated, a random value sampled from a normal

distribution with μ = 0 and σ2 = m(p) is added to the

parameter p. The equation of m(p) is

m p( ) � 0.2 pmax − pmin( ), (10)

where pmax and pmin are the maximum and minimum values the

parameter can have, given by the STDP parameter ranges.

During the neuroevolution, 10% of the genotypes with the

best fitness scores will be passed to the next generation

unchanged, i.e., elitism.

4.3 Mutable environments

The benchmark tasks for NAGI are meant to evaluate the

agent’s ability to generalize and self-adapt. Therefore, they

consist of environments that change during the lifetime of the

agent. Two types of tasks are provided, binary classification (two

tasks of this kind are provided) and control (one task of this kind

is provided). The first type (binary classification) is the simplest

one, however, it provides the most abrupt changes in the

environment. The binary classification tasks are food foraging

with one input, and logic gates with two inputs. The control task

in a simulated physical environment is the cart-pole balancing

from OpenAI Gym (Brockman et al., 2016). The changes are less

abrupt in this last task as they consist in modifying the pole size.

The fitness scores are calculated using the number of time steps t

that the agent survived in these environments, normalized to the

range [0, 1] using the maximum possible lifetime Lmax and

minimum possible lifetime Lmin. Therefore, the fitness

function f is given by

f t( ) � t − Lmin

Lmax − Lmin
. (11)

In the binary classification tasks, the agents have an initial

amount of health points that is reduced every time step as

continuous damage. If a correct action is chosen, the health

point amount is reduced by dc health point. Otherwise, it is

reduced by di. The input sample is given to the agent for 1 s or

10,000 time steps, then it is changed to a new one. The mutation

of the environment condition happens when the agent has seen

four samples. The order of the input samples and the

environment conditions is fixed and cyclic.

We noticed that the number of spikes within the actuator

time window can be the same for the output neurons and

therefore allowing for a tie in many cases. Our solution to

avoid spiking neural networks with this behavior is to include

a “confidence” factor in the fitness score calculation. Therefore,

the higher the difference between the spike count, the more

confident the action is. If the action is correct and highly

confident, the damage is dc or closer. If the action is incorrect

but highly confident, the damage is di or closer. The lack of

confidence would make the damage lie between the values dc and

di. The spike count for the correct action sc and incorrect one si
are used to calculate the participation of the spikes for deciding

the correct action pc and the participation for the incorrect action

pi. In the iterations without spikes of the output neurons,

normally the initial ones; the agent takes di as damage.

Otherwise, the damage is calculated by

pc sc , si( ) �
max 0, min sc , st( )( ) −max 0, min sc , st( )( ) + st

2st
sc + si ≤ 2st

sc
sc + si

sc + si > 2st

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

pi sc, si( ) � 1 − pc sc − pi( ) (13)

where st is the minimum “target” number of spikes. The purpose

of st is to avoid assigning a too high or low fitness to agents that

fire few spikes through their outputs. The agent takes damage at

every time step and is given by

d sc, si( ) � dcpc sc, si( ) + dipi sc, si( ) (14)

Damaging is performed until the agent runs out of health

points and ‘dies’. Subsequently, the fitness score of the agent is

calculated from the fitness function expressed in Eq. 11. The

damage to the health points in a correct action dc is 1, in an

incorrect one di is 2. Therefore, correct actions result in a longer

lifetime. The value for the minimum ‘target’ number of spikes st is

3 spikes.

In the control task of cart-pole balancing, the behavior of the

mutable environment is different. A new environment is

presented to the agent either after its failure or after the

maximum number of environment iterations is reached.

Moreover, the agents do not have health points. The fitness

score is the normalization of the number of iterations that the

agent survived after all environment conditions were executed.
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4.3.1 Food foraging
The agent in the food foraging environment possesses just one

light sensor for identifying the food “in front of it.” There are two

types of food: edible and poisonous. As such, food is represented in

two colors: black and white. The environment changes by randomly

defining which food color is edible or poisonous. In this

environment, the agent can act in two ways: eating or avoiding

the food. The sample has a predefined time of exposure to the agent.

An action is performed after the first spike and it continues for every

time step in the environment simulation. After this exposure time,

the food is replaced by a new one. The agent can only discover

whether it is exposed to an edible or poisonous food by interacting

with it. An incorrect action is defined as eating poisonous food, or

avoiding edible food, while a correct action is defined as eating edible

food or avoiding poisonous one. If the agent makes an incorrect

action, it receives a penalty signal, fromwhich the agent should learn

over the generations that it represents pain, revulsion, or hunger. If

the agent makes a correct action, it receives a reward signal, from

which it should learn that it represents the pleasure of eating

delicious food or recognizing that the food is poisonous. In

Figure 3, the food foraging environment is illustrated, how the

environment changes and provides new food samples. In our

experiment, the change of the environment occurs after

presenting four food samples to the agent. The first food sample

type is chosen randomly and alternates in every sample change. In

Table 1, the four combinations of edible and poisonous food for the

white and black ones are shown. To evolve the spiking neural

network for the food foraging task, the parameters of the genetic

algorithm are the following: the population size is set to

100 individuals, and the number of generations is set to 1,000.

This task was chosen because of its simplicity. In particular, it allows

a virtual wheeled robot to forage for food using proximity sensors,

such as in the related work of Stanley et al. (2003).

4.3.2 Logic gates
In this environment, the mutable environmental state is a

two-input logic gate. The environment provides the agent with

two binary inputs, i.e., 0’s and 1’s. The agent’s task is to predict

the correct output for the current logic gate given the current

input. Similar to the food foraging environment, it receives a

reward signal if it is currently predicting the correct output, and a

penalty signal if it is currently predicting the wrong output.

In order to measure the generalizing properties of agents, we

use two different sets of environments: a training environment,

which is used in calculating the fitness score while running the

evolutionary algorithm, and a test environment which has a fully

disjoint set of possible environmental states. A full overview of

the logic gates found in both the training and the test

environments, as well as the truth values for all input and

output combinations, are found in Table 2 and Table 3. The

evolution of the spiking neural network is performed by a

population of 100 individuals through 1,000 generations.

4.3.3 Cart-pole balancing
The cart-pole balancing is a well-known control task used as

a benchmark problem in reinforcement learning. In this

environment, there is a cart that moves when a force is

applied to the left or to the right every time step. In the

middle of the cart, there is a vertical pole connected to a non-

actuated joint. The goal of this environment is to maintain the

pole balanced upright by controlling the forces that move the

cart. Moreover, the cart cannot move beyond the limits of the

track. The observations available to the controller are the cart

position, the cart velocity, the pole angle, and the pole angular

velocity.

For training, we use poles of different sizes, which are 0.5

(default), 0.3, and 0.7. For testing, the sizes are 0.4, and 0.6.

Those pole sizes are depicted in the Supplementary Material.

Each size can run up to 200 environment iterations and it is

repeated three times during training for promoting stable

controllers. If there are no more environment iterations or

the pole falls, the cart-pole environment restarts with the next

pole size while using the same SNN or finishes when all pole

sizes were executed. The fitness score is calculated using the

number of iterations the pole kept balanced. Subsequently, it

is normalized to values between 0 and 1. The evolution for this

task occurs with a population size of 256 during

500 generations.

FIGURE 3
Example of the food foraging environment and how it
progresses through the lifetime of the agent in a generation. The
eight food samples per environment are illustrative. Our
experiment uses four.

TABLE 1 Correct actions for all combinations of input food color and
edible food in the food foraging task.

Food foraging environment conditions

Edible Black White None Both

Input

Black Eat Avoid Avoid Eat

White Avoid Eat Avoid Eat
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4.4 Data representation

The data type in a spiking neural network is a binary time series

or a spike train. Because the agent senses and acts in the

environment, such data must be converted from the sensors and

to the actuators. The flow of spikes over time can be quantified as

firing rate, which corresponds to a frequency, or the number of

spikes per second. The firing rate is the data representation that is

converted as inputs and outputs for the SNN. However, the input

firing rate must be within aminimum and amaximum value. In our

experiments, we use the value range [5Hz, 50Hz]. The minimum

andmaximum value of the firing rate are simplified to a real number

range [0, 1]. It is preferable that the data from the sensors has also a

minimum and a maximum value. Otherwise, it will be necessary to

clip sensory values or map the values to a desirable range.

In the binary classification tasks, all inputs and outputs are

binary. Therefore, the minimum and maximum values for the

input firing rate stand for, respectively, 0 and 1, or False and True.

To avoid having a predefined threshold firing rate for the output

neurons, we opt to have two output neurons for one binary value.

The neuron with the highest firing rate within the actuator time

window is the one defining the binary output value. If these two

output neurons have the same firing rate, then the last one with

TABLE 2 Truth table showing the correct output for each training logic gate.

Training logic gates

Input A B NOT A NOT B Only 0 Only 1 XOR XNOR

A B

0 0 0 0 1 1 0 1 0 1

0 1 0 1 1 0 0 1 1 0

1 0 1 0 0 1 0 1 1 0

1 1 1 1 0 0 0 1 0 1

TABLE 3 Truth table showing the correct output for each testing logic
gate.

Test logic gates

Input AND NAND OR NOR

A B

0 0 0 1 0 1

0 1 0 1 1 0

1 0 0 1 1 0

1 1 1 0 1 0

FIGURE 4
Evolution history of food foraging environment showing the average, minimum and maximum per generation.

Frontiers in Robotics and AI frontiersin.org08

Pontes-Filho et al. 10.3389/frobt.2022.1007547

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1007547


the highest value is selected. We also decided to have the same

“two neurons-one binary value” strategy with the inputs, which

consists of 0 or False being 01 in one-hot encoding, then (low,

high) in firing rate, while 1 or True is 10 in one-hot encoding, so

the firing rate is (high, low).

For the cart-pole control task, the inputs are real numbers, and

the left and right actions are represented as two output neurons,

similar to the outputs of the binary classification tasks. In this

environment, the inputs are the cart position, cart velocity, pole

angle, and pole angular velocity. Because we infer that real numbers

converted to the firing rate of one neuron can be difficult to deal with

in an adaptive spiking neural network (as also mentioned in Ref.

(Pontes-Filho and Liwicki, 2019)), we decided to have three neurons

for each input. The firing rate of the three neurons is similar to the

sensitivity for the light spectrum of the three cone cells in the human

eye (Bowmaker and Dartnall, 1980). We use the sigmoid function

(Han and Moraga, 1995) for neurons #1 and #3 and a normalized

version of the Gaussian function (Patel and Read, 1996) for neuron

#2. The sigmoid equation is

F sigmoid x | ω, z, h, l( ) � h

1 + e−ω x−z( ) + l, (15)

where x is the observation value from the environment, ω is the

weight that adjusts the smoothness of the interval between 0 and

FIGURE 5
Illustration of the network topology and behavior of the highest accuracy agent in the food foraging task. The one-hot encoded input sample
goes into nodes 0 and 1, the reward signal in node 2, and the penalty signal goes into node 3. Node 4 is the output for the “eat” actuator and node 5 is
the output for the “avoid” actuator.
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1, z is the shift coefficient to adjust the function on the horizontal

axis, h is the highest firing rate possible applied to an input

neuron, and l is the lowest firing rate possible. The Gaussian

function for converting observation value to firing rate is

expressed by

FGaussian x | μ, σ, h, l( ) � he
− x−μ( )2( )

2σ2 + l, (16)

where μ is the mean and σ is the standard deviation. We replace
1

σ
��
2π

√ in the original Gaussian function to h because, in this way,

we can define the highest firing rate when the observation value is

the mean. Neurons #1 and #3 use F sigmoid, while neuron #2 uses

FGaussian. The parameters and the figures with the illustration of

those equations are included in the Supplementary Material.

5 Results

The evolution of the spiking neural networks in NAGI is

evaluated with fitness score, accuracy, and end-of-sample

accuracy for the binary classification tasks, which are food

foraging and logic gate. The accuracy is measured at every

time step of the simulation. The end-of-sample accuracy

stands for the accuracy measured in the last time step of a

TABLE 4 Test simulations of the highest accuracy agent in the food foraging experiment. “Acc.” stands for accuracy and “EOS Acc.” for end-of-sample
accuracy.

Food foraging test simulations

# Acc. (%) EOS Acc. (%) Input order Environment order

1 88.0 92.6 black, white white, both, black, none

2 90.6 100 white, black white, none, both, black

3 91.3 100 black, white white, both, none, black

4 85.4 92.3 white, black white, black, both, none

5 89.5 96.3 white, black both, none, white, black

6 89.2 100.0 black, white both, white, black, none

7 87.7 92.6 black, white white, black, none, both

8 84.9 92.6 black, white black, both, white, none

9 89.8 100 black, white white, black, both, none

10 88.4 92.6 white, black black, none, white, both

Avg 88.4 95.9 n/a

FIGURE 6
Evolution history of logic gate environment showing the average, minimum and maximum per generation.
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sample. The assessment performed for the control task with cart-

pole balancing is done with the fitness score. We test the best

performing agent in a task with ten simulations where their

details are also provided.

Figure 4 shows the evolution history of the food foraging task.

The average fitness score has a slight increase, but the maximum

fitness score does not follow this trend. The accuracy and end-of-

sample accuracy have high variation with their maximum values,

but they consist of high accuracies. Moreover, some early

generations register 100% end-of-sample accuracy. The three

measurements do not improve through the generations.

However, good solutions are already found in the first

generation. Therefore, this is an easy task that requires a small

SNN. For test simulations, we select the individual with the

highest accuracy, which is found in generation number 34 and

has an accuracy of 89.8%. Its fitness score is 0.541395 and its end-

of-sample accuracy is 100%. Its topology is shown in Figure 5.

Paying attention to this topology, the hidden nodes are not

FIGURE 7
Illustration of the network topology and behavior of the highest training accuracy agent in the logic gate task. The one-hot encoded input
sample “(A)” goes into nodes 0 and 1, the one-hot encoded input sample “(B)” goes into nodes 2 and 3, the reward signal goes into node 4, and the
penalty signal into node 5. Node 6 is the output for the “0” actuator and node 7 is the output for the “1” actuator.
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needed. They form a loop that does not connect with the output

nodes. The topology summarizes in one of the one-hot encoded

input nodes (node 1) connecting to the two output nodes. Then,

the node with the penalty signal (node 3) connects only with the

node for the “eat” actuator (node 4). The behavior of the network

is illustrated in Figure 5C. The topology of the network indicates

that the two output neurons have the same data input from node

1, but the neuron for “avoid” action has a bias, which gives it a

small excitatory current. If “avoid” is the wrong action, the

penalty input signal from node 3 excites the output neuron

for the “eat” action. This is how the spiking neural network

decides the actions from “understanding” the feedback of the

environment given by the penalty input signal. The result of the

ten test simulations is presented in Table 4.

Figure 6 shows the training results of the logic gate task and it

includes the test of the maximum individual of the measurement

in every generation. The fitness score, accuracy, and end-of-

sample accuracy maintain average values with high variation.

However, the evolution of the agents in the logic gate task is

similar to the one in the food foraging. The early generations

already contain good spiking neural networks for the task. The

best-performing agent is selected from the accuracy

measurement. This individual is in generation 48 and has an

accuracy of 85.0%. Its fitness score is 0.4421625 and its end-of-

sample accuracy is 100%. The topology of this spiking neural

TABLE 5 Test simulations of the highest training accuracy agent in the logic gate experiment. “Acc.” stands for accuracy and “EOS Acc.” for end-of-
sample accuracy.

Logic gate test simulations

# Acc. (%) EOS Acc. (%) Input order (A, B) Environment order

1 89.8 100 (1, 0), (0, 0), (1, 1), (0, 1) NOR, OR, AND, NAND

2 85.2 95.2 (1, 1), (1, 0), (0, 0), (0, 1) OR, NOR, NAND, AND

3 86.0 100 (1, 0), (1, 1), (0, 1), (0, 0) NOR, OR, AND, NAND

4 85.9 95.2 (0, 0), (1, 1), (0, 1), (1, 0) NAND, AND, OR, NOR

5 79.9 85.7 (0, 0), (0, 1), (1, 0), (1, 1) NAND, AND, NOR, OR

6 88.8 100 (1, 0), (0, 0), (1, 1), (0, 1) AND, NAND, OR, NOR

7 85.1 90.5 (0, 0), (1, 1), (1, 0), (0, 1) OR, NOR, NAND, AND

8 84.8 90.5 (1, 1), (0, 1), (0, 0), (1, 0) NOR, NAND, OR, AND

9 83.7 85.7 (0, 0), (1, 0), (0, 1), (1, 1) NAND, NOR, OR, AND

10 88.5 100 (1, 1), (1, 0), (0, 0), (0, 1) NOR, AND, OR, NAND

Avg 85.7 94.2 n/a

FIGURE 8
Fitness history of cart-pole balancing environment showing
the average, minimum and maximum per generation.

TABLE 6 Test simulations of the highest fitness agent in the cart-pole
balancing experiment.

Cart-pole balancing test simulations

# Fitness # Steps 0.4 # Steps 0.6 Environment order

1 1.000 200 200 0.4, 0.6

2 1.000 200 200 0.4, 0.6

3 1.000 200 200 0.6, 0.4

4 0.943 200 177 0.4, 0.6

5 0.800 154 166 0.6, 0.4

6 0.792 179 138 0.4, 0.6

7 0.835 200 134 0.6, 0.4

8 0.845 200 138 0.4, 0.6

9 0.873 200 149 0.6, 0.4

10 0.720 88 200 0.6, 0.4

Avg 0.874 178.3 171.5 n/a
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network is shown in Figure 7. Its behavior is shown in Figure 7C.

Even though we have trained with a “confidence” factor in the

fitness function, the spike counts are still with almost the same

values. Table 5 contains the accuracy and end-of-sample

accuracy of ten test simulations, which indicates that the SNN

can be general to reproduce the behavior of logic gates without

being trained to them.

Figure 8 shows the fitness score history through the

evolution for the cart-pole balancing task. This task is the

one with the highest difficulty to find a good genome for the

adaptive spiking neural network. It can be noted that the

fitness score improves through the generations. The

maximum fitness score in a generation goes from around

0.16 in the first generation to 0.99944 in generation number

399. Such an individual is the one selected for the test

simulations. Its topology is illustrated in Figure 9 and the

spike counts of the actuators for “left” and “right” actions are

shown in Figure 9C. The spiking neural network has no

FIGURE 9
Illustration of the network topology and behavior of the highest training fitness agent in the cart-pole balancing experiment. The 3-tuple of
input nodes (0, 1, 2) gets the converted firing rate from the observation of the cart position, (3, 4, 5) from the cart velocity, (6, 7, 8) from the pole angle,
and (9, 10, 11) from the pole angular velocity. Node 12 is the output for the ‘left’ action and node 13 is the output for the “right” action.
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hidden neurons. Therefore, the SNN works as an input

selection for the output neurons. The result of the ten test

simulations is presented in Table 6. When the pole is balanced

for more than 100 iterations, the controller is considered

successful.

6 Discussion and conclusion

We successfully solved all three presented tasks with the

NAGI framework. The spiking neural networks found showed

generality to the binary classification tasks, even to unseen

conditions in the case of the emulation of logic gates. The

neuroevolution produced rather simple topologies for the

SNNs. We infer that binary classification is easy due to the

binary performance feedback. For further research, multi-class

classification is considered.

The cart-pole balancing task was successfully solved without

any hidden neurons. The conversion of one observation into

three input neurons is used to avoid the requirement of weight

fine-tuning due to small differences in firing rate and also to the

assumption that Hebbian plasticity works better with binary data

(active and inactive) (Pontes-Filho and Liwicki, 2019). With such

a conversion, the SNN became an input selection.

The topologies for the three tasks caught our attention

because almost all output excitatory neurons were anti-

Hebbian, and the two inhibitory hidden neurons in the logic

gate solution have Hebbian neuroplasticity. Our initial

hypotheses were that excitatory neurons mainly have Hebbian

learning rules, and inhibitory neurons are anti-Hebbian. That

was the reason for having different probabilities for anti-Hebbian

and Hebbian learning rules depending on the type of the

neurotransmitter when adding a new neuron through mutation.

Even though there is elitism, the performance measurements

are unstable through generations. This is a demonstration of the

randomness in the initialization of the weights, and input and

environment order. This can be perceived in the results of the ten

test simulations of the three tasks.

For future work, we plan to attempt more challenging tasks.

If there is a failure in executing the task, the constraints imposed

on NAGI can be eased. A major constraint is that one neuron has

one plasticity rule for all dendrites. Maybe its removal can

simplify issues in difficult tasks. This constraint was intended

to reduce the dimensionality of the search space in the

neuroevolution and an assumption that the dendrites in the

same neuron adapt under one learning rule. This modification is

also aligned with the work of Najarro and Risi, (2020), which has

meta-learning properties for more difficult control tasks than the

cart-pole balancing, such as top-down car racing and quadruped

walk. Another opportunity is the addition of curriculum learning

(Bengio et al., 2009; Narvekar et al., 2020) for increasing the

complexity of the task while the agent becomes better over the

generations.
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