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Phenol‑ and resorcinol‑appended 
metallocorroles and their 
derivatization with fluorous tags
Abraham B. Alemayehu & Abhik Ghosh*

Boron tribromide‑mediated demethylation of rhenium‑oxo and gold meso‑tris(4‑methoxyphenyl)
corrole and meso‑tris(3,5‑dimethoxyphenylcorrole), M[TpOMePC] and M[T(3,5‑OMe)PC] 
(M = ReO, Au), have yielded the corresponding phenol‑ and resorcinol‑appended metallocorroles, 
M[TpOHPC] and M[T(3,5‑OH)PC], in good yields. The latter compounds proved insoluble in 
dichloromethane and chloroform but soluble in THF. The M[T(3,5‑OH)PC] derivatives also proved 
moderately soluble in 0.05 M aqueous KOH. Unlike oxidation‑prone aminophenyl‑substituted 
corroles, the phenol‑ and resorcinol‑appended metallocorroles could be readily handled in 
air without special precautions. The phenolic metallocorroles could be readily alkylated with 
4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11‑heptadecafluoroundecyl iodide (“FtI”) to afford the fluorous‑
tagged metallocorroles M[TpOFtPC] and M[T(3,5‑OFt)PC] in > 90% yields. The simplicity of the 
synthetic protocols promise a wide range of phenolic and fluorous‑tagged porphyrin analogues with 
potential applications to diverse fields such as sensors, catalysis, and photodynamic therapy, among 
others.

Corroles, which were mere curiosities just 25 years  ago1–5, are now a major class of macrocyclic ligands with appli-
cations rivaling those of  porphyrins6,7. Besides key photophysical  properties8–15, biomedical applications such as 
photodynamic therapy (PDT)16–19 require water-soluble and amphiphilic ligands for effective  biodelivery20–28. An 
attractive approach to effective biodelivery in PDT involves nanodroplets of locally-perfluorinated  (fluorous29–35) 
porphyrin analogues dissolved in a fluorocarbon solvent with high oxygen-carrying capacity. Finally, new strate-
gies for functionalization are a key first step for novel bio- and nanoconjugation of porphyrin  analogues36–42. 
Against this backdrop, we present here simple synthetic routes to amphiphilic phenol- and resorcinol-appended 
 metallocorroles43 (analogous to other similarly functionalized porphyrin  analogues44–47) and their elaboration 
to highly fluorophilic fluorous-tagged derivatives (Fig. 1).

Results and discussion
Synthesis of phenol‑ and resorcinol‑appended metallocorroles. Rhenium-oxo48–53 and  gold54–63 
tris(4-methoxyphenyl)corrole, M[TpOMePC] (M = ReO, Au), and tris(3,5-dimethoxyphenyl)corrole, M[T(3,5-
OMe)PC] (M = ReO, Au), which rank among the most readily accessible 5d  metallocorroles64–69, were used as 
starting materials. The choice of the two metals was dictated by the fact that they yield rugged, electronically 
innocent complexes that have been shown to act as triplet photosensitizers in oxygen sensing and in vitro pho-
todynamic therapy experiments. The complexes underwent smooth  demethylation70–73 with boron tribromide 
in dichloromethane at – 78 °C, affording phenol- and resorcinol-appended metallocorroles M[TpOHPC] and 
M[T(3,5-OH)PC] in 55 to > 90% yields, with the higher yields observed for M = ReO. The products were purified 
via silica-gel column chromatography, followed by recrystallization, and characterized by UV–vis spectroscopy, 
1H NMR spectroscopy, and high-resolution electrospray ionization mass spectrometry. 1H NMR spectra of the 
new compounds indicated complete disappearance of the methoxy protons at around 4 ppm and the appearance 
of two new singlets between 8.46 and 8.80 ascribable to hydroxy protons (Figs. 2, 3). HRMS proved consistent 
with the expected structural assignments and also indicated the absence of partially demethylated products and 
also of higher-mass byproducts.

The phenolic metallocorroles proved insoluble in dichloromethane and chloroform so UV–vis (Table 1 and 
Fig. 4) and 1H NMR spectra were acquired in THF and THF-d8, respectively. As far as UV–vis spectra are con-
cerned, the phenolic metallocorroles were found to exhibit very similar peak positions relative to their methoxy 
precursors. In contrast, modest differences in peak positions were observed between the 4-methoxy/hydroxy 
and 3,5-dimethoxy/dihydroxy derivatives. Interestingly, the resorcinol-appended complexes M[T(3,5-OH)PC] 
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Figure 1.  Schematic illustration of the synthesis of phenol- and resorcinol-appended metallocorroles and their 
derivatization with a fluorous tag.

Figure 2.  1H NMR spectra of M[TpOHPC] in THF-d8: M = ReO (above) and Au (below).
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Figure 3.  1H NMR spectra of M[T(3,5-OH)PC] in THF-d8: M = ReO (above) and Au (below).

Table 1.  UV–vis absorption maxima (λ, nm) and extinction cofficients [ε ×  10–4  (M−1  cm−1)]. a Poor solubility 
did not allow a determination of spectral data, in part or in whole. b Spectra were acquired in  CH2Cl2 
containing a small amount of hexafluorobenzene  (C6F6).

Complex Solvent B Q

Re[TpOMePC](O) CH2Cl2 441 (10.84) 556 (1.79) 592 (2.29)

Re[TpOHPC](O) THF 441 (14.35) 556 (1.95), 591 (2.98)

Re[TpOHPC](O)a KOH/H2O 452 556, 607

Re[TpOFtPC](O)b CH2Cl2/C6F6 442 (8.78) 556 (1.14), 590 (1.64)

Au[TpOMePC] CH2Cl2 420 (8.34) 560 (1.76), 580 (1.92)

Au[TpOHPC] THF 420 (11.70) 559 (1.88), 580 (2.95)

Au[TpOHPC]a KOH/H2O – –

Au[TpOFtPC]b CH2Cl2/C6F6 420 (9.35) 560 (1.42), 580 (2.20)

Re[T(3,5-OMe)PC](O) CH2Cl2 441 (9.82) 553 (1.65), 585 (2.24)

Re[T(3,5-OH)PC](O) THF 440 (10.96) 556 (1.65), 587 (2.24)

Re[T(3,5-OH)PC](O) KOH/H2O 447 (2.68) 565 (0.59), 591 (0.75)

Re[T(3,5-OFt)PC](O)b CH2Cl2/C6F6 440 (9.17) 555 (1.39), 585 (1.89)

Au[T(3,5-OMe)PC] CH2Cl2 418 (12.81) 561 2.42), 572 (2.63)

Au[T(3,5-OH)PC] THF 419 (9.65) 576 (2.64)

Au[T(3,5-OH)PC] KOH/H2O 423 (5.08) 581 (1.68)

Au[T(3,5-OFt)PC]c CH2Cl2/C6F6 419 (10.48) 562 (2.13), 572 (2.35)
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(M = ReO, Au) were found to exhibit moderate solubility and modest spectral redshifts in 0.05 M aqueous KOH, 
consistent with (partial) deprotonation of the phenolic OH  groups74–78.

Synthesis of fluorous‑tagged metallocorroles. The phenol- and resorcinol-appended metallocor-
roles could be readily derivatized with the fluorous-tagging reagent 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-hep-
tadecafluoroundecyl iodide (“FtI”) and  K2CO3 in refluxing acetone over 24 h, whereupon the fluorous-tagged 
products M[TpOFtPC] and M[T(3,5-OFt)PC] (M = ReO, Au) were obtained in > 90% yields. Upon removal of 
the solvent from the reaction mixture, the residues were dissolved in a small quantity of hexafluorobenzene and 
purified via column chromatography on a silica gel column with dichloromethane as eluent (i.e., the mobile 
phase was effectively dichloromethane with a small quantity of hexafluorobenzene). The products were found to 
be freely soluble in hexafluorobenzene but sparingly so in nonfluorinated solvents including dichloromethane 
and chloroform. Evidence for exhaustive fluorous tagging came from both 1H and 19F NMR spectroscopy (in 
 CDCl3 with a drop of hexafluorobenzene) and HRMS (Fig. 5). 1H NMR spectral analyses showed the complete 
disappearance of the OH singlets between 8.46 and 8.80 ppm and the appearance of new alkyl proton signals 
between 2.08 and 4.39 ppm and with an intensity (relative to corrole protons) that exactly matched the expected 
structure. Clean 19F NMR spectra further confirmed this conclusion. Electrospray ionization HRMS also did not 
reveal any evidence of incompletely fluorous-tagged products. For UV–vis spectroscopy, the fluorous-tagged 
metallocorroles were dissolved in a minimum volume of hexafluorobenzene followed by dilution with dichlo-
romethane to the required volume. The spectra, unsurprisingly, proved similar to those of simple 5d metallocor-
roles, with Soret maxima at ~ 420 nm for M = Au and at ~ 440 nm for M = ReO and the usual double-humped Q 
bands.

Figure 4.  UV–vis spectra of new compounds prepared in this study. Phenolic and fluorous-tagged 
metallocorroles were analyzed in THF and dichloromethane (with a drop of hexafluorobenzene), respectively. 
Sample concentrations were in the 10–20 μM range.
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Concluding remarks
In summary, we have described simple routes to amphiphilic phenol- and resorcinol-appended rhenium-oxo and 
gold corroles, which could be readily derivatized to highly fluorophilic fluorous-tagged derivatives. Although 
straightforward in retrospect, the successful synthesis of phenolic metallocorroles was a priori somewhat 
uncertain; corroles are more electron-rich than analogous porphyrins and it was unclear whether appending 
electron-rich phenol and resorcinol moieties would lead to fragile, air-sensitive products. Thus, compared with 
aminophenyl-substituted  porphyrins79–82, aminophenyl-substituted corroles are far more susceptible to aerial 
oxidation and accordingly far trickier to  handle83–86. These fears proved unfounded for our compounds, which 
could be readily manipulated in air without special precautions.

The simple access to fluorous-tagged metallocorroles promises a wide range of related products in the near 
future. These include (a) fluorous-tagged complexes with other metals, including electroactive metals such as 
manganese and  iron87–89, (b) light fluorous-tagged complexes with one or two fluorous tags based on so-called 

Figure 5.  1H and 19F NMR spectra of M[TpOFtPC] and M[T(3,5-OFt)PC] (M = ReO, Au).
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 A2B  triarylcorroles90,91, and (c) environmentally friendlier (i.e., more biodegradable) complexes with shorter 
fluorinated  chains92–95.

The above products and their logical successors promise a plethora of applications, in fields as diverse as 
 sensors89,96 photodynamic and related  therapies97,98, and  catalysis99–101, among others.

Experimental section
Materials. All chemicals were purchased from Sigma Aldrich (Merck). Silica gel 60 (0.04–0.063 mm particle 
size, 230–400 mesh) was employed for flash chromatography. Metallocorrole starting materials were prepared 
as previously  described48,56,60.

Re[T(3,5‑OCH3)PC](O). This previously unreported complex was prepared from  H3[T(3,5-OMe)PC], dirhe-
nium decacarbonyl  (Re2(CO)10, 2 equiv), and  K2CO3 (100 mg) using the standard method for Re  insertion48. 
Yield 90.12  mg (70.23%). UV–vis  (CH2Cl2) λmax (nm) and ε ×  10–4  (M−1   cm−1): 441 (11.40), 554 (1.77), 
586(2.28). 1H NMR (400 MHz, 25 °C,  CDCl3): δ 9.60 (d, 2H, 3JHH = 4.4 Hz, β-H); 9.41 (d, 2H, 3JHH = 4.4 Hz, β-
H); 9.40 (d, 2H, 3JHH = 4.9 Hz, β-H); 9.20 (d, 2H, 3JHH = 4.9 Hz, β-H); 7.77 (s, 2H, 5,15(3,5-o1Ph)); 7.71 (s, 1H, 
10(3,5-o1Ph)a); 7.27 (s, 2H, 5,15(3,5-o2Ph)); 7.08 (s, 1H, 10(3,5-o2Ph)); 6.93 (m, 3H, 5,10,15-pPh); 4.07 (brs, 6H, 
5,15(3,5-OCH3)a; 4.04 (s, 3H, 10(3,5-OCH3)a); 3.95 (brs, 6H, 5,15(3,5-OCH3)b); 3.90 (s, 3H, 10(3,5-OCH3)b). 
HRMS (ESI):  [M−] = 906.2126 (expt), 906.2133 (calcd for  C37H23N4O7Re, major isotopomer).

Instrumental methods. The instrumentation used was essentially the same as in our earlier  work50–53. 
UV–visible spectra were recorded on an HP 8453 spectrophotometer. 1H NMR spectra were recorded on a 
400 MHz Bruker Avance III HD spectrometer equipped with a 5 mm BB/1H SmartProbe in either  CDCl3 (refer-
enced to residual  CHCl3 at 7.26 ppm) or THF-d8 (referenced to residual  C4H8O at 3.58 and 1.73 ppm. 19F NMR 
spectra were acquired on the same spectrometer and referenced to hexaflurobenzene  (C6F6, – 164.9 ppm). High-
resolution electrospray-ionization mass spectra were recorded on methanolic solutions on an Orbitrap Exploris 
120 (Thermo Fisher Scientific) spectrometer.

General synthetic procedure for metallotris(4‑hydroxyphenyl)corrole complexes, M[TpOHPC] (M = ReO, Au). To 
a solution of boron tribromide (1.51  mmol) in dry dichloromethane (10  mL) cooled to − 78  °C was added 
M[TpOMePC] (M = ReO, Au; 0.121 mmol), also dissolved in dry dichloromethane (10 mL), over a period of 
20 min. The mixture was stirred for 2 h at − 78 °C and then for an additional 12 h at 25 °C. The solution was then 
cooled to 0 °C in an ice bath and methanol was added to quench any remaining boron tribromide. The reaction 
mixture was rotary-evaporated to dryness and the solid residue obtained was chromatographed on a silica gel 
column with 95:5 v/v dichloromethane/methanol as eluent. The final product was recrystallized from 5:1 v/v 
chloroform/methanol. Yields and spectroscopic data are given below.

Synthesis of metallotris(3,5‑dihydroxyphenyl)corrole complexes, M[T(3,5‑OH)PC] (M = ReO, Au). To a solution 
of boron tribromide (3.02 mmol) in dry dichloromethane (10 mL) cooled to − 78 °C was added M[T(3,5-OMe)
PC] (M = ReO, Au; 0.121 mmol), also dissolved in dry dichloromethane (10 mL), over a period of 20 min. The 
mixture was stirred for 2 h at − 78 °C and then for an additional 12 h at 25 °C. The solution was then cooled to 
0 °C in an ice bath and methanol was added to quench any remaining boron tribromide. The reaction mixture 
was rotary-evaporated to dryness and the solid residue obtained was chromatographed on a silica gel column 
with 9:1 v/v dichloromethane/methanol as eluent. The final product was recrystallized from 3:1 v/v chloroform/
methanol. Yields and spectroscopic data are given below.

General synthesis of M[TpOFtPC] (M = ReO, Au). A 250-mL round-bottom flask equipped with a stir-bar and 
a reflux condenser was charged with M[TpOHPC] (0.026 mmol), 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptade-
cafluoroundecyl iodide (49 mg, 3.2 equiv, 0.083 mmol), and potassium carbonate (100 mg dissolved in 50 mL 
acetone). The reaction mixture was then refluxed for 24 h, followed by removal of the solvent under reduced 
pressure. The crude product was dissolved in a minimum amount of hexafluorobenzene and loaded onto a silica 
gel column and eluted with dichloromethane, affording the desired fluorous-tagged metallocorroles.

General synthesis of M[T(3,5‑OFt)PC] (M = ReO, Au). A 250-mL round-bottom flask equipped with a stir-bar and 
reflux condenser was charged with M[T(3,5-OH)PC] (0.026 mmol), 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-hepta-
decafluoroundecyl iodide (98 mg, 6.4 equiv, 0.167 mmol), and potassium carbonate (200 mg dissolved in 50 mL 
acetone). The reaction mixture was then refluxed for 24 h, followed by removal of the solvent under reduced 
pressure. The crude product was dissolved in a minimum amount of hexafluorobenzene and loaded onto a silica 
gel column and eluted with dichloromethane, affording the desired fluorous-tagged metallocorroles.

Re[TpOHPC](O). Yield 88.5  mg (87.2%). UV–vis (THF) λmax (nm) and ε ×  10–4  (M−1   cm−1): 441 (14.35), 
556(1.95), 591(2.98). 1H NMR (400  MHz, 25  °C, THF-d8): δ 9.64 (d, 2H, 3JHH = 4.4  Hz, β-H); 9.34 (d, 2H, 
3JHH = 4.8 Hz, β-H); 9.32 (d, 2H, 3JHH = 4.4 Hz, β-H); 9.14 (d, 2H, 3JHH = 4.8 Hz, β-H); 8.80 (s, 2H, 5,15-pOHPh); 
8.76 (s, 1H, 10-pOHPh); 8.39 (br s, 2H, 5,15-o1Ph); 8.32 (dd, 1H, 3JHH = 8.0, 2.32 Hz, 10-o1Ph); 7.90 (br s, 2H, 
5,15-o2Ph); 7.74 (dd, 1H, 3JHH = 8.2, 2.32  Hz, 10-o2Ph); 7.27 (m, 5H, 10-m1Ph & 5,15-mPh); 7.13 (dd, 1H, 
3JHH = 8.3, 2.72 Hz, 10-m2Ph). HRMS (ESI):  [M+] = 774.1274 (expt), 774.1273 (calcd for  C37H23N4O4Re, major 
isotopomer).
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Au[TpOHPC]. Yield 70.7  mg (70.2%). UV–vis (THF) λmax (nm) and ε ×  10–4  (M−1   cm−1): 420 (11.70), 559 
(1.88), 580 (2.95). 1H NMR (400 MHz, 25 °C, THF-d8): δ 9.16 (m, 2H, β-H); 9.03 (d, 2H, 3JHH = 4.8 Hz, β-H); 8.82 
(d, 2H, 3JHH = 4.4 Hz, β-H); 8.80 (d, 2H, 3JHH = 4.8 Hz, β-H); 8.72(s, 2H, 5,15-pOHPh); 8.68 (s, 1H, 10-pOHPh); 
8.07 (d, 4H, 3JHH = 8.3 Hz, 5,15-oPh); 7.95 (d, 2H, 3JHH = 8.4 Hz, 10-oPh); 7.21 (d, 4H, 3JHH = 8.6 Hz, 5,15-mPh); 
7.16 (d, 2H, 3JHH = 8.4 Hz, 10-mPh). HRMS (ESI)  [M−] = 767.1367 (expt), 767.1363 (calcd for  C37H23N4O3Au, 
major isotopomer).

Re[T(3,5‑OH)PC](O). Yield 99.6 mg (90.1%). UV–vis (THF) λmax (nm) and ε ×  10–4  (M−1  cm−1): 440 (10.96), 556 
(1.65), 587(2.24). 1H NMR (400 MHz, 25 °C, THF-d8): δ 9.64 (d, 2H, 3JHH = 4.4 Hz, β-H); 9.44 (d, 2H, 3JHH = 5.0 Hz, 
β-H); 9.42 (d, 2H, 3JHH = 4.4 Hz, β-H); 9.24 (d, 2H, 3JHH = 4.8 Hz, β-H); 8.67 (br s, 2H, 5,15(3,5-OHPh)a); 6.63 
[s, 1H, 10(3,5-OH)a]; 8.47 [br s, 2H, 5,15(3,5-OHPh)b]; 8.42 [s, 1H, 10(3,5-OHPh)b]; 7.50 (br s, 2H, 5,15-o1Ph); 
7.44 (s, 1H, 10-o1Ph); 6.92 (br s, 2H, 5,15-o2Ph); 6.77 (s, 1H, 10-o2Ph); 6.66 (m, 3H, 5,10,15-pPh). HRMS (ESI): 
 [M−] = 821.1046 (expt), 821.1053 (calcd for  C37H23N4O7Re, major isotopomer).

Au[T(3,5‑OH)PC]. Yield 60.4  mg (55.0%). UV–vis (THF) λmax (nm) and ε ×  10–4  (M−1   cm−1): 419(9.65), 
576(2.64). 1H NMR (400 MHz, 25 °C, THF-d8): δ 9.22 (d, 2H, 3JHH = 4.4 Hz, β-H); 9.19 (d, 2H, 3JHH = 4.9 Hz, β-H); 
8.98 (d, 2H, 3JHH = 4.5 Hz, β-H); 8.94 (d, 2H, 3JHH = 5.0 Hz, β-H); 8.50(s, 4H, 5,15(3,5-OHPh); 8.47 (s, 2H, 10(3,5-
OHPh); 7.18 (d, 4H, 4JHH = 2.2 Hz, 5,15-oPh); 7.09 (d, 2H, 4JHH = 2.2 Hz, 10-oPh); 6.61 (m, 3H, 3JHH = 8.6 Hz, 
5,10,15-pPh). HRMS (ESI):  [M−] = 815.1206 (expt), 815.1210 (calcd for  C37H23N4O6Au, major isotopomer).

Re[TpOFtPC](O). Yield 53.8  mg (96.1%). UV–vis ((CH2Cl2/C6F6) λmax (nm) and ε ×  10–4  (M−1   cm−1): 
442(8.78), 556(1.14), 590(1.64). 1H NMR (400 MHz, 25 °C,  CDCl3): δ 9.58 (d, 2H, 3JHH = 4.4 Hz, β-H); 9.31 (d, 
4H, 3JHH = 5 Hz, β-H); 9.11 (d, 2H, 3JHH = 5 Hz, β-H); 8.50 (br s, 2H, 5,15-o1Ph); 8.43 (d, 1H, 10-o1Ph); 8.00 (br 
s, 2H, 5,15-o2Ph); 7.82 (d, 1H, 10-o2Ph); 7.47–7.29 (m, 5H, 10-m1Ph & 5,15-mPh); 7.24 (d, 1H, 3JHH = 8.4 Hz, 
10-m2Ph); 4.35 (m, 6H, 5,10,15–OCH2–); 2.59 (m, 6H, 5,10,15-CH2-CF2-); 2.32 (m, 6H, 5,10,15–CH2–CH2O–); 
19F NMR  (C6F6): δ − 83.81, m 9F,  CF3-); − 117.29, m, 6F, –CF2–; − 124.68, m, 6F, –CF2–; − 124.92, m 12F, –CF2–; 
− 125.71, m 6F, –CF2–; − 126.38, m 6F, –CF2–; − 129.22, m, 6F, –CF2–. HRMS (ESI):  [M+] = 2154.1637 (expt), 
2154.1636 (calcd for  C70H38F51N4O4Re, major isotopomer).

Re[T(3,5‑OFt)PC](O). Yield 88.1  mg (94.6%). UV–vis  (CH2Cl2/C6F6) λmax (nm) and ε ×  10–4  (M−1   cm−1): 
440(9.17), 555(1.39), 585(1.89). 1H NMR (400 MHz, 25 °C,  CDCl3): δ 9.59 (d, 2H, 3JHH = 4.5 Hz, β-H); 9.38 (d, 
4H, 3JHH = 4.6 Hz, β-H); 9.18 (d, 2H, 3JHH = 5.0 Hz, β-H); 7.77 (s, 2H, 5,15-o1Ph); 7.72 (s, 1H, 10-o1Ph); 7.25 (s, 
2H, 5,15-o2Ph); 7.08 (s, 1H, 10-o2Ph); 6.92 (s, 3H, 5,10,15-pPh) 4.39–4.09 (m, 12H, 5,10,15–OCH2–); 2.55–2.08 
(m, 24H, 5,10,15–CH2–CH2–CF2–); 19F NMR  (C6F6): δ − 83.98, m 18F,  CF3–); − 117.40, m, 12F, –CF2–; − 124.78, 
m, 12F, –CF2–; − 125.07, m 24F, –CF2–; − 125.85, m 12F, –CF2–; − 126.52, m 12F, –CF2–; − 129.26, m, 12F, –CF2–. 
MS (ESI):  [M+] = 3582.14 (expt), 3582.18 (calcd for  C103H53F102N4O7Re, major isotopomer). Elemental analysis 
found C 34.58, H 1.47, N 1.52; calcd C 34.53, H 1.49, N 1.56.

Au[TpOFtPC]. Yield 53.0 mg (95.0%). UV–vis  (CH2Cl2/C6F6) λmax (nm) and ε ×  10–4  (M−1  cm−1): 420 (9.35), 
560(1.42), 580(2.20). 1H NMR (400  MHz, 25  °C,  CDCl3): δ 9.19 (d, 2H, 3JHH = 4.4  Hz, β-H); 9.03 (d, 2H, 
3JHH = 4.9 Hz, β-H); 8.86 (d, 2H, 3JHH = 4.4 Hz, β-H); 8.80 (d, 2H, 3JHH = 4.8 Hz, β-H); 8.21 (d, 4H, 5,15-oPh); 
8.10 (d, 2H, 10-oPh); 7.34 (d, 4H, 3JHH = 8.7 Hz, 5,15-mPh); 7.29 (d, 2H, 3JHH = 8.7 Hz, 10-mPh); 4.34 (m, 6H, 
5,10,15–OCH2–); 2.50 (m, 6H, 5,10,15–CH2–CF2–); 2.30 (m, 6H, 5,10,15–CH2–CH2O–); 19F NMR  (C6F6): δ 
− 83.87, m 9F,  CF3–); − 117.31, m, 6F, –CF2–; − 124.72, m, 6F, –CF2–; − 124.98, m 12F, –CF2–; − 125.78, m 6F, 
–CF2–; − 126.37, m 6F, –CF2–; − 129.17, m, 6F, –CF2–. HRMS (ESI):  [M+] = 2148.1795 (expt), 2148.1790 (calcd 
for  C70H38F51N4O3Au, major isotopomer).

Au[T(3,5‑OFt)PC]. Yield 86.5  mg (93.1%). UV–vis  (CH2Cl2/C6F6) λmax (nm) and ε ×  10–4  (M−1   cm−1): 
419(10.48), 562(2.13), 572(2.35). 1H NMR (400 MHz, 25 °C,  CDCl3): δ 9.22 (d, 2H, 3JHH = 4.4 Hz, β-H); 9.11 (d, 
2H, 3JHH = 4.9 Hz, β-H); 8.95 (d, 2H, 3JHH = 4.4 Hz, β-H); 8.88 (d, 2H, 3JHH = 5.0 Hz, β-H); 7.47 (d, 4H, 4JHH = 2.4 Hz, 
5,15-oPh); 7.38 (d, 2H, 4JHH = 2.3 Hz, 10-oPh); 6.87 (m, 3H, 5,10,15-pPh); 4.24 (m, 12H, 5,10,15-OCH2–); 2.38 
(m, 12H, 5,10,15-CH2–CF2–); 2.20 (m, 12H, 5,10,15-CH2–CH2O–); 19F NMR  (C6F6): δ − 83.98, m 18F,  CF3–); 
− 117.56, m, 12F, –CF2–; − 124.83, m, 12F, –CF2–; − 125.08, m 24F, –CF2–; − 125.88, m 12F, –CF2–; − 126.54, m 
12F, –CF2–; − 129.30, m, 12F, –CF2–. MS (ESI):  [M+] = 3577.2 (expt), 3577.2 (calcd for  C103H53F102N4O6Au, major 
isotopomer) (Supplementary Information S1).

Data availability
All data generated or analyzed in this study are included in this published article and its supplementary 
information.
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