

Arne Lakså

Blending	techniques
in	Curve	and

Surface	constructions

Arne Lakså

Blending techniques in
Curve and Surface constructions

ISBN 978-82-693065-1-4

Copyright c© 2022 Arne Lakså CCBY

Anyone has the right to freely use images and other material from
the book as long as it appears where it was taken from.

The geometry publishing house

GEOFO

supported by

Narvik 2022

ii

Arne Lakså
Department of Computer Science and Computational Engineering,
Faculty of Engineering Science and Technology,
UiT The Arctic University of Norway,
mailbox 385, N-8505 Narvik, Norway.

The geometry publishing house is an ideal publisher for geometry/mathematics/program-
ming, and which works to make digital books freely available. Paper editions can in some
cases be purchased at cost price, mainly printing costs and shipping.

The geometry publishing house is supported by UiT The Arctic University of Norway.

Website: www.geofo.no
Email: post@geofo.no

www.geofo.no
post@geofo.no

Preface

Geometry – from Ancient Greek, earth measurement – has been an important ingredient
of the development of science and later also industry, design and production.

In modern time, the Geometric modeling community was established, and now has a
more than 50-year-old history. The first pioneers were motivated by the introduction of
computers for use in design, construction and manufacturing. The goal was initially to
provide methods and algorithms for curve and surface representations and calculations,
and to combine curve and surface methods in computer graphics and simulations. Thus,
they started the development of the new discipline called geometric modeling, including
computer aided geometric design, solid modeling, algebraic geometry, and computational
geometry. Computer aided geometric design (CAGD) is the central part of the field. It
started with the development of methods and algorithms for CAD/CAM. Today, however,
support for virtual reality, virtual design, computer games, simulators and animations in
movies and TV productions are equally important areas.

Curves and surfaces for computer aided geometric design started with classical geometric
objects as line, arc, plane, sphere, cylinder etc. The next step in the development of free-
form geometry was Bézier, Hermite, B-spline, rational variants as rational Bézier and
NURBS, and subdivision surfaces. The development began in earnest in the 1960s and
went with full force until 2000s. It is, however, still an ongoing development that includes
T-splines, LR-splines and other improvement as Multivariate splines. New results also
includes the introduction of generalized B-splines and thus it is still a way to go. This
way of constructing curves and surface is the most important today and will probably be
it for a long time. It is the defacto industrial standard. What we can call a 2nd generation
curve and surface construction started after the year 2000, and it is omly in its initial
phase. It includes different types of curves and surfaces constructed by blending technics.

For me, the work with blending technics accelerated in the summer of 2003. I was in
the office of my colleague Børre Bang to discuss improvements to a C++ programming
library for geometric modeling (see [107]). Lubomir Dechevsky then came and asked
if we could look at a function he meant was the limit of a polynomial B-spline when
the degree (and thus the number of knots) tends to infinite (described in [44]). Since
we were then working on the graphical part of a programming library, we implemented
this new basis function and tried it for curves in R3. The result was a piecewise linear
curve just like 1st-degree B-spline curves, but there was a big difference; this new curve
was C∞-smooth but obviously only G0, i.e. piecewise linear. After a short discussion

iii

iv

we replaced the coefficients of the curve with something we called “local curves”, and
a G∞ curve appeared. Lubomir suggested the name Expo-Rational B-splines (ERBS). A
couple of years later, Beta-function B-splines was introduced by Lubomir and ERBS was
expanded to a more general concept which we called Generalized Expo-Rational B-spline
(GERBS).

Some years later, the concept of B-functions was developed, other rational and expo-
rational types that previously had been published by different authors, and new classes
of B-functions were included, among them the Fabius function and general trigonometric
B-functions. With this, expo-rational B-functions became just a class of many and it was
therefore natural to refer to the technique as blending splines. At the same time, it is
important to show that it is built up as a B-spline and is a B-spline of 2nd order, with all
the properties that follows from being a B-spline.

This manuscript was originally intended to be exclusively about blending technics. How-
ever, due to input and questions from students, and that this manuscript is also influenced
by the fact that parts of it have been used as compendiums in courses in a master’s pro-
gram in computer science at UiT The Arctic University of Norway, I decided to expand it
to include some material about splines and basic geometry. However, the manuscript has
a long history and has for a long time been available to students who have followed my
courses. A first draft already existed in 2009.

Acknowledgements
First I will express my gratitude to my colleagues Lubomir T. Dechevsky and Børre Bang.
They have been absolutely crucial for the initial development of ERBS. Then all PhD stu-
dents that has been involved in the work, both during their PhD period and after; Joakim
Gundersen, Arnt Kristoffersen, Peter Zanaty, Rune Dalmo, Jostein Bratlie, Hans Olofsen,
Tatiana Kravetc, Tanita Fossli Brustad and Aleksander Pedersen. Next I am also grateful
to Tom Lyche and Knut Mørken for very valuable discussions, and to Malcolm Sabin who
was opponent of my doctoral defense and there asked some important questions.

Finally, I would like to give big thanks to my wife Marit, for bearing with me through this
work.

May 2021 Arne Lakså

Contents

Preface iii

1 Introduction 1
1.1 Industrial geometry . 3
1.2 Geometric modeling . 4
1.3 Algorithmic language . 6
1.4 Overview of this book . 7

2 Mathematical spaces and notations 9
2.1 Euclidean spaces, cartesian coordinates and vector spaces 10
2.2 Homeomorphism, diffeomorphism and manifolds 11

2.2.1 Local/global parametrization, charts and atlas 12
2.3 Compact spaces . 13
2.4 Affine space . 14
2.5 Projective space and Grassmannien . 17
2.6 Homogeneous coordinates . 18
2.7 Simplexes . 20
2.8 Homogeneous Barycentric coordinates for simplexes 20

3 Implementing geometry in C++ 23
3.1 Mathematical spaces for geometric programming 23
3.2 Homogeneous coordinates and programming 24
3.3 Tools for interactive design . 26
3.4 Implementation, about curves and surfaces 27

I Curves 29

4 Parametric Curves 31
4.1 Differentiations . 34

4.1.1 Regular curves - arc length parametrization 35
4.1.2 Reparameterization . 35
4.1.3 Curvature . 36

4.2 Function spaces and Basis functions . 37
4.3 Hermite Curves . 38

v

vi CONTENTS

4.4 Bézier Curves . 43
4.4.1 Bernstein polynomial . 47
4.4.2 Factorization and de Casteljau’s Corner cutting algorithm 50
4.4.3 The Bernstein/Hermite matrix 52
4.4.4 Degree Elevation of Bézier Curves 54

4.5 Converting between Hermite- and Bézier- format 57
4.6 Implementation and Tessellation . 58

5 Classical interpolation theory 59
5.1 Divided differences . 59
5.2 Newton polynomial . 61
5.3 Lagrange polynomials . 63

5.3.1 Neville’s Algorithm . 64
5.4 Hermite interpolation . 65
5.5 Taylor expansions . 68
5.6 Hermite spline . 68
5.7 Cubic spline interpolation . 69
5.8 Circle Splines . 72

6 B-spline Curves 75
6.1 History of B-splines . 76
6.2 Modern B-splines . 80

6.2.1 The knot vector . 82
6.2.2 B-spline curves - Open, Clamped or Closed 83
6.2.3 The B-spline factor matrix T (t) 87
6.2.4 B-splines on Matrix notations 88
6.2.5 An example of B-splines and de Casteljau’s algorithm 89
6.2.6 B-splines and knot insertion . 90
6.2.7 Degree elevation of B-splines 92
6.2.8 Blossoming - Polar form . 95
6.2.9 Algorithms for B-splines . 96

6.3 Hermite spline interpolation on B-spline form 98
6.4 Cubic spline interpolation on B-spline form 100
6.5 B-spline approximation and least squares 102
6.6 NURBS . 104
6.7 Uniform B-splines and subdivision . 106

6.7.1 Catmull-Rom Subdivision Splines 106
6.7.2 Chaikin’s algorithms, 2nd-degree subdivision B-splines 108
6.7.3 Lane-Riesenfeld subdivision algorithm 111

7 Blending 115
7.1 B-functions . 115
7.2 Blending of two functions . 117

7.2.1 Examples, blending of order zero and order one 120
7.2.2 Examples, connecting two curves by using a B-function 122

7.3 Beta-functions, the group of polynomial B-functions 124

CONTENTS vii

7.3.1 Beta-functions, differentiation 126
7.4 The group of rational B-functions . 127

7.4.1 RB-functions, differentiation . 129
7.4.2 RB-functions with a balance parameter 130

7.5 Fabius function, the complete B-function 131
7.6 The group of trigonometric B-functions 133
7.7 The group of Expo-Rational B-functions 136

7.7.1 The slope parameter γ . 140
7.7.2 The balance parameter µ . 141
7.7.3 The asymmetric tightening parameters α and β 141
7.7.4 ERB-functions, differentiation 143

7.8 Point-, Order- and Balance-symmetry of B-functions 144
7.9 Implementing B-functions . 145

8 Blending splines 147
8.1 B-splines with B-function . 148

8.1.1 2nd order B-splines with B-function 150
8.2 2nd order B-splines as blending splines 152

8.2.1 Affine transformations of local curves 154
8.2.2 Bézier-curves as local curves . 156
8.2.3 Making a blending spline approximation of a curve 157
8.2.4 Examples . 158

8.3 The sub-curve construction . 163

II Surfaces 167

9 Parametric Surfaces 169
9.1 Differentiation . 171

9.1.1 The differential dSp . 172
9.1.2 Curves on surfaces . 172
9.1.3 The tangent plane Tq(S) . 174
9.1.4 First fundamental form . 175
9.1.5 Second fundamental form . 177

9.2 Surface of revolution . 178
9.3 Surface by sweeping . 179
9.4 Surfaces from blending curves . 182
9.5 Tensor product surfaces . 183

9.5.1 Tensor product Hermite surfaces 184
9.5.2 Tensor product Bézier surfaces 185
9.5.3 Tensor product B-spline surfaces 186

9.6 Boolean sum surface . 188
9.6.1 Coons patch, bilinear blending 188
9.6.2 Coons patch, bicubic blending 190
9.6.3 Gordon surface . 192
9.6.4 Example, Coons patch . 194

viii CONTENTS

10 Subdivision Surfaces 197
10.1 A selection of subdivision schemes . 198

10.1.1 Catmull-Clark . 200
10.1.2 Doo-Sabin and Mid-Edge . 201
10.1.3 Loop and

√
3 . 203

10.1.4 Butterfly . 206
10.1.5 Interpolatory Quad - Kobbelt . 208

11 Two surface blending 213
11.1 2-parameter B-function . 213
11.2 Hermite 2-p blending surface . 216

12 Tensor Product Blending spline Surface 217
12.1 Implementation of Blending spline Surfaces 218
12.2 Evaluation - computing value and derivatives 221
12.3 Bézier surfaces as local surfaces . 226

12.3.1 Local Bézier surfaces and Hermite interpolation 227
12.3.2 Examples of Hermite interpolations 229

12.4 The sub-surface construction . 235
12.5 Examples, free form sculpturing using tensor product blending splines . . 236
12.6 T-junction and Star-junction . 237

12.6.1 Dependencies on vertices and “internal edges” 238
12.6.2 Tensor product Surfaces and irregular grids 240
12.6.3 T-junctions . 240
12.6.4 Star-junctions . 244

13 Triangular Surfaces 247
13.1 Bézier triangles . 248
13.2 B-function in homogeneous barycentric coordinates 250
13.3 Blending triangles . 255
13.4 Local Bézier triangles and Hermite interpolation 256
13.5 Sub-triangles from any parametric surface 263
13.6 Surface approximation by triangulation. 265

14 A Dual Surface Construction 273
14.1 Curves and vector fields on triangular surfaces 274
14.2 The fill-in patch . 276

Appendices 279

A Computing ERB-function type 1 281
A.1 Reliability in computations . 282
A.2 ERB-evaluation, computing value and derivatives 285
A.3 Using Romberg integration in evaluation 287
A.4 Fast ERB-evaluator based on approximations 290

CONTENTS ix

B Programming libraries 299
B.1 Basic Linear Algebra Subprograms - BLAS 299
B.2 Heterogeneous computing and parallelization 301

C Miscellaneous proofs 303
C.1 Newton and Lagrange polynomials, proof Lemma 5.1 303
C.2 Commutativity relations between T (t) and its derivatives 304
C.3 Beta-functions, proof Lemma 7.1 . 305
C.4 Rational B-functions, proof Theorem 7.4 307
C.5 ERB-functions, proof Theorem 7.5 . 307
C.6 Order symmetry of a B-function, proof Theorem 7.6 308
C.7 Balance symmetry of a B-function, proof Theorem 7.7 309
C.8 Simultaneous order and balance symmetry, proof Theorem 7.8 310
C.9 Properties of 2-p B-functions B(u,v) . 311
C.10 Two-surface blending and continuity 314

Bibliography 317

List of Acronyms 329

Index 330

x CONTENTS

Chapter 1

Introduction

Development of geometry can be traced back to early Egyptian, Babylonian and Vedic
India period. In this early period, the focus was on circles, triangles, length, area, volume,
etc. This was mainly connected to empirically discovered principles and was for use in
practical applications to meet needs in surveying, construction, astronomy and various
crafts. The more mature period, however, began with the Greeks. Therefore, the devel-
opment of geometry as we know it can be traced along a line that roughly divides history
into the following five periods:

1. The synthetic geometry of the Greeks (600BC to 200BC). Greek geometry ended
mainly by Archimedes. Beside or after the Greek area, geometry was in some sense
developed in parallel or followed by Indian, Chinese and Arabic geometry. Greek
geometry, however, was the direct predecessor of the analytical geometry of point
2, because Euclides 13 books on geometry, titled “The Elements of Geometry” [60]
was the direct predecessor.

2. The birth of analytic geometry (1600 to 1650), in which the synthetic geometry of
Guldin, Desargues, Kepler and Roberval merged into the coordinate geometry of
Descartes [48] and Fermat.

3. Application of the calculus to geometry (1650 to 1800), including the names of New-
ton, Leibnitz, the Bernoullis, Clairaut, Maclaurin, Euler, and Lagrange (each an
analyst rather than a geometer).

4. The beginning of modern geometry, (19th-Century). That is, Lobachevskian geometry,
projective geometry, analytical geometry, non-Euclidean geometry, and differential
geometry. In addition, it is worth mentioning some specific areas, Riemannian
geometry, Klein’s Erlangen program for classification, Lie groups, homogeneous
coordinates, Hilbert’s axioms.

5. New advanced geometry and applied geometry. This includes modern algebraic topol-
ogy/geometry and new developments in differential geometry. For these we find
application in, for example, modern physics. Other areas are fractal geometry, dis-
crete geometry and new applied geometry. The development here is linked to needs
in the industry and is the theme further in this book.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Euclid of Alexandria, the “Father of Geometry”. A statue at Oxford Uni-
versity Museum of Natural History.

In the 1950s, the automation process in industry accelerated. At the same time, the com-
puter was introduced. Together, this led to a strong need for the development of applied
geometry. Therefor, the community of geometry began to expand. A new branch of ge-
ometry is beginning to develop, industrial geometry. The pioneers of this period were
often associated with ship, airplane or automotive industry and where motivated by the
introduction of computers in design, construction and manufacturing. The aim was to
provide methods and algorithms for curve and surface representations and calculations
on these, and to apply curve and surface methods in computer graphics and simulations.
By doing this, they started the development of a new discipline called geometric model-
ing, including computer aided geometric design, solid modeling, computational geometry,
digital geometry and space partitioning. It started with the development of methods and
algorithms for CAD/CAM and was followed by modeling of oil and mining-field, hu-
man bodies etc for simulation purpose. Today, however, support for the development of
virtual reality, virtual design, virtual prototyping, virtual engineering, computer games,
simulations and animations in movies and TV productions is an equally important area
for geometric modeling.

This book attempts to link today’s industrial standard, B-spline, with its precursors and
offshoots, with new blending techniques for curves and surfaces constructed. Occasion-
ally we will go back to historical notes about geometry development.

In Figure 1.1, there is a statue of the father of geometry, Euclid. The 13 books of geometry
“The Elements of Geometry” has been and is still important to give insight in geometry.

1.1. INDUSTRIAL GEOMETRY 3

Figure 1.2: On left hand side is a rotational surface made by rotating a curve, on right
hand side is there a monkey saddle computed directly from a formula.

1.1 Industrial geometry
It is geometry for industrial purpose. one part is design, another part is calculations on
geometry. Applications are today important for areas such as:

X Computer graphics

X Computer Aided Design - CAD (product design)

X Computer Aided Manufacturing - CAM (productions)

X Virtual and Augmented reality VR and AR.

X Virtual art (virtual sculptures, mathematical sculptures, ...)

X Simulations and animations (movies, games, scientific simulations, ...)

X Map-related applications, geodesic

X Self-driving cars / busses / lorries / boats / airplanes / drones / spacecrafts

X Computations in general, for example strength calculations, thermodynamics, fluid
mechanics, kinematics, vibration, resonance etc.

X Artificial Intelligence, object recognition, face recognition, ...

Industrial/Applied geometry is mainly for implementation on computers. In Figure 1.2
we see some examples. On left hand side is a surface of revolution (made by rotating a
curve, see section 9.2) and on right hand side is a monkey saddle made directly from a
formula, ie (9.1).

Curves, surfaces, volume, ... can be described implicitly or parametrical. Parametric de-
scription is most commonly used. One important type of parametric geometry is splines.
Today the spline family is quite big. We will later look at classical cubic splines, Hermite
splines, B-splines, NURBS, uniform splines and subdivision, circle splines and blending
splines. We will also briefly look at “patchwork”, especially with triangles. This is a type
of surface that is composed of many sub-surfaces/triangles in a more or less smooth way.

4 CHAPTER 1. INTRODUCTION

Figure 1.3: On left hand side is a surface that initially was a sphere, on right hand side
was the surface initially a torus. Both surfaces have been changed by interpolation and
interactive editing.

There are different uses for geometry, ie

- High quality static geometry.
- Geometry that makes precision calculation possible.
- Geometry that can be easily shaped, copied or reshaped.
- Geometry that can dynamically change shape in “real time”.

Here different types of geometry have different properties, B-splines are for high quality
and calculations, subdivision surfaces are best for graphics, images, computer games ...
and blending splines are good for difficult shaping and dynamic change of shapes. In
Figure 1.3 two surfaces are shown. To the left is an initially sphere that has been copied
and then edited to become a duck face, to the right is an initially torus that has been copied
and then changed to look more like a duck foot.

1.2 Geometric modeling
The term geometric modeling first came into use in the late 1960s, a time of rapidly devel-
oping in computer graphics and computer aided design and manufacturing technologies.
The discipline of geometric modeling is an interrelated, although somewhat loosely inte-
grated, collection of mathematical methods that we use to describe the shape of an object
or to express some physical process in terms of an appropriate geometric metaphor. These
methods include;

X Computer aided geometric design (CAGD) applies the mathematics of curves and sur-
faces to modeling, primarily using the parametric equations of differential geometry,
supported by interpolation and approximation theory. It is here that we find the roots
of contemporary geometric modeling.

X Solid modeling usually encountered as constructive solid geometry (CSG), allows us
to combine simple shapes to create complex solid models.

X Algebraic geometry is the contemporary extension of classical analytic geometry, in-
cluding differential geometry.

1.2. GEOMETRIC MODELING 5

X Computational geometry is concerned with design and analysis of algorithms, and is
related to numerical methods, computation theory and complexity analysis.

However, geometric modeling is constantly expanding and now also includes fractal and
digital geometry and space partitioning.

It has been most common to study geometric objects that are two- or three-dimensional,
although many of the tools and principles can be applied to sets of any limited dimension.
Today, however, the models are mostly three- or four-dimensional in computer-aided de-
sign and production, CAD / CAM (3D and time). The same applies to applied technical
fields such as civil and mechanical engineering, architecture, geology, health and a large
field we can call virtual world systems, computer games, VR systems and simulators.
Geometric modeling is the basis for applications such as animation and special effects for
advanced modeling software for industrial design and architecture and for 3D printers.
Geometric models represent shapes and spatial relationships to the environment being
studied, which enables a much deeper analysis than would otherwise be possible. How
these models are coded, and how the algorithms that use them are, include the field of
computer-aided geometric design (CAGD).

For Computer Aided Geometric Design, an important event was a conference held at
the University of Utah in 1974 organized by Barnhill and Riesenfeld [7]. Before this
conference, we can say that the field was in its embryonic stage, after this conference, we
can say that CAGD (Computer Aided Geometric Design) was born as a discipline. Today
CAGD is a mature discipline, where B-spline and spline methods are industrial standards
and implemented in thousands of applications. However, the field is even a more exciting
field than ever, because the field’s significance is expanding since the introduction of
virtual and augmented worlds, computer games, animated movies, social worlds, artificial
intelligence against recognition and track choices. The primary objects of interest are
curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces
as well as algorithms to generate, analyze, and manipulate them. This book will give
an overview of the field and look on new developments in CAGD and its applications,
including but not restricted to the following:

- To collect and disseminate information on computer aided design.
- To provide the community with methods/algorithms for representing curves/surfaces.
- To illustrate computer aided geometric design by means of interesting applications.
- To combine curve and surface methods with computer graphics.
- To explain scientific phenomena by means of computer graphics.
- To concentrate on the interaction between theory and application.
- To expose unsolved problems of the practice.
- To develop new methods in computer aided geometry.

In this book we also introduce a new generation of curve/surface construction based on
blending technics. Historical is this not new technics. Both Coons patch [26] and different
types of fillet constructions are using blending technics, and Circle splines [163] is very
close to the construction presented in different articles about what first was called GERBS
(Generalized Expo-rational B-splines), see [104, 44, 45, 102, 43, 105, 106].

6 CHAPTER 1. INTRODUCTION

1.3 Algorithmic language
By “algorithmic language” we mean the language used to describe the algorithms that
are presented. All programming is done in C++ . This is naturally also reflected in the
algorithmic language. One important factor in the definition of the syntax is that it should
be compact and at the same time clear and easy to understand. The items that describe
the algorithmic language are:

X The notation in the algorithm is a simplification and essentially a mix of C++ and a
mathematical notation.

X C++ template notation is used. Also the C++ standard template library (stl) are used -
example, vector<double>, a vector of numbers in double precision.

X To make the notation more compact, “{” and “}” are only marked by indentation.
X A routine might only be notated as a set, as example vector〈T〉 C = {D jc(t)}n

j=0.
But it will always be followed by an explaining comment.

X Ordinary C++ standard is used for comments.

Below is an example, an implementation of a function bspline defined in Section 6.2.9.
The C++ code is first shown, then the algorithm using the algorithmic language.

1 v e c t o r<double> b s p l i n e (v e c t o r<double> k , i n t d , i n t i i , d ou b l e t) {
2 v e c t o r<double> b (d +1) ;
3 v e c t o r<double> w(d) ;
4 b [1] = (t − k [i i]) / (k [i i +1] − k [i i]) ;
5 b [0] = 1 − b [1] ;
6 f o r (i n t i =2 ; i<=d ; i ++) {
7 f o r (i n t j =0 ; j<i ; j ++)
8 w[j] = (t − k [i i + j]) / (k [i i−j + i] − k [i i −j]) ;
9 b [i] = (1−w[0]) ∗b [i −1];

10 f o r (i n t j = i −1; j >0; j−−)
11 b [j] = w[i−j]∗ b [j −1] + (1−w[i−j −1])∗b [j] ;
12 b [0] ∗= w[i −1];
13 }
14 r e t u r n b ;
15 }

vector〈double〉 bspline(vector〈double〉 τ , int d, int ς , double t)
vector〈double〉 b(d+1); // The return vector, dimension d +1.
vector〈double〉 w(d);
b1 =W1,ς (t;τ); // see (6.11)
b0 = 1−b1; // The general Cox/deBoor algorithm for
for (int i = 2; i≤ d; i++) // - B-splines, computing the set

for (int j = 0; j < i; j++) // - of all B-spline values of degree d at t
w j =Wi,ς− j(t;τ); // - when τς ≤ t < τς+1.

bi = (1−w0) bi−1;
for (int j = i−1; j > 0; j−−)

b j = wi− j b j−1 +(1−wi− j−1) b j;
b0 = wi−1 b0;

return b;

1.4. OVERVIEW OF THIS BOOK 7

This example can be found on page 96, algorithm 3. The C++ code in this example is
used in the evaluator for B-splines. Normally the derivatives are also computed, code for
that can be found in Algorithm 4 on page 97.

1.4 Overview of this book
The book is divided into 4 parts and 14 chapters. The parts are:

X Introductions

X Curves

X Surfaces

X Appendix

The three introductory chapters are:

Chapter 1 gives the reader an historical background, first in general about geometry, then
more specifically about industrial geometry and geometric modeling. The chapter
also provides a description of the algorithm language used in the book, as well as
this summary.

Chapter 2 is about mathematical spaces, different types of coordinates and notations.
In order for the reader to better understand applied geometry, the formulas, the
algorithms and implementation of geometry, this chapter is important.

Chapter 3 is about computer programming of geometry, what affine and projective spaces
mean for programming, why inner product is the most central function and how lo-
cal coordinate systems work. In addition, some tools for interactive design and
simulations are provided.

The five chapters about curves are:

Chapter 4 is about parametrisation of curves in general, and a little deeper about poly-
nomial based curves of different formats and some basic algorithms for computing
position and derivatives on these curves.

Chapter 5 is about classical interpolation theory. It deals with divided differences, about
differen forms of interpolation and Hermite interpolation. Finally, we look at piece-
wise polynomial-based curves that are more convenient to use for interpolation.

Chapter 6 is about B-splines and B-spline curves of different types, cubic spline inter-
polation, history of B-splines, modern B-splines and uniform B-splines and subdi-
vision curves.

Chapter 7 is about blending, ie blending functions and how to use them. B-functions,
short for blending functions exist in a great variety, and this chapter will show some
of the most important ones.

Chapter 8 is about B-splines with B-functions, and also where we replace control points
with control curves. Thus, this chapter introduce the concept of blending spline.
Gives a lot of examples also about dynamic change of form. Finally a sub-curve

8 CHAPTER 1. INTRODUCTION

construction is given, where and formula for any parametric curve can be expanded
with a knot vector so that the curve can change shape.

The six chapters about surfaces are:

Chapter 9 introduces parametric surfaces. Both definitions and aspects concerning im-
plementation are discussed. In addition, different surface construction are shown.

Chapter 10 is about sub-division surfaces, ie uniform discrete B-splines where we start
with a set of points organized in polygons, and end up with a much denser set of
points and polygons.

Chapter 11 is about a blending surface construction where only two surfaces blend, and
where the edges are given, both position and cross derivative. Ie a competitor to
Coons patch.

Chapter 12 introduces tensor product blending surfaces. Both definitions and aspects
concerning implementation are discussed. In addition, complete evaluators are in-
troduced, as are Bézier surfaces as local surfaces. Hermite interpolation is dis-
cussed, and free form sculpturing using affine transformation of local surfaces is
also discussed. Finally a sub surface concept is given, where formulas for any para-
metric surface can be expanded with two knot vectors so that the surface can change
shape.

Chapter 13 deals with triangular surfaces. First there is a short repetition/definition of
homogeneous barycentric coordinates and Bézier triangles. Then B-functions in
homogeneous barycentric coordinates are introduced, and the basic properties are
discussed. Then the blending-triangle is introduced, based on two types of local tri-
angles, the Bézier triangle and the sub-triangle in general parameterized surfaces.
The last one leads to surface approximations on triangulations. Finally, many ex-
amples are shown.

Chapter 14 is about surfaces that are a patchwork of triangles. Each triangle is the result
of blending triangular pieces of local surfaces that are connected to their respective
vertices. The surface is continuous and smooth at the vertices, but not necessarily
smooth over the edges. However, there is a dual set of square patches that provide
a completely smooth surface.

And finally we have three appendices:

Appendix A deals with the implementation of an evaluator for ERB-functions of type 1.
We want a reliable, precise and efficient evaluator for the ERB-function. Reliabil-
ity based on the IEEE standard for binary floating arithmetic is discussed. It also
introduces algorithms for evaluation, including the derivatives. Tests are performed
both in terms of precision and efficiency. Finally, a reliable and very fast evaluator
is introduced, wrapped in a C++ class.

Appendix B is about external programming libraries to solve linear algebra, and to make
better use of computer resources, ie heterogeneous computing and parallelization.

Appendix C Here, a number of proofs from different chapters are collected.

Chapter 2

Mathematical spaces and notations

Throughout the ages, “space” has been a geometric abstraction of the three-dimensional
space observed in real life. In mathematics, Euclidean space is the two or three-dimensional
space of Euclidean geometry, as well as the generalizations of these notions to higher di-
mensions. The term ”Euclidean” distinguishes these spaces from the curved spaces of
non-Euclidean geometry, and is named for the Greek mathematician Euclid of Alexan-
dria (300 bc). It is common to define Euclidean spaces using Cartesian coordinates that
we find in the real coordinate space and which are typically described by a center point
called the origin and n unit vectors (coordinate axes) that are orthogonal to each other. It
is common to denote the spaces En if we wish to emphasize its Euclidean nature, but Rn

is used as well since the latter is assumed to have the standard Euclidean structure.

In modern mathematics, spaces are defined as sets with some added structure. They can
also be described as different types of manifolds, which are spaces that is locally equiv-
alent to Euclidean space, and where the properties are defined largely on local connect-
edness of points that lie on the manifold. Curves and Surfaces are manifolds if they are
regular and not self intersecting.

There are however, many diverse mathematical objects that are called spaces. For ex-
ample, vector spaces such as function spaces may have infinite numbers of independent
dimensions and a notion of distance very different to Euclidean space, and topological
spaces replace the concept of distance with a more abstract idea of nearness.

Mathematical spaces often form a hierarchy, i.e., one space may inherit all the charac-
teristics of a parent space. For instance, all inner product spaces are also normed vector
spaces, because the inner product induces a norm on the inner product space such that

‖s‖=
√
〈s,s〉.

Beside Euclidean spaces, vector spaces and finite dimensional function spaces we shall
in the following look at Compact spaces, Affine spaces, Projective spaces and Grassman-
nien, and we will look at some maps (functions) between spaces.

9

10 CHAPTER 2. MATHEMATICAL SPACES AND NOTATIONS

2.1 Euclidean spaces, cartesian coordinates and vector
spaces

The notation in this book is following standard commonly used. Because geometry is
in most used embedded in the plane or in the three dimensional space the functions are
commonly vector valued or point valued (affine space will be described in section 2.4).
A vector space is a mathematical structure formed by a collection of elements called
vectors, which may be added together and multiplied /scaled by numbers, called scalars
in this context. Scalars are often taken to be real numbers, but they can also be something
else.

A list explaining notations is:

X We denotes Euclidean spaces Ed or Rd , where d is the dimension of the space, R2 is
the plane and R3 is the 3D space.

X Cartesian coordinate system, is typical used for Euclidean spaces. It specifies each
point uniquely in an Euclidean space by a set of numerical coordinates, which are the
signed distances from the point to fixed perpendicular directed lines, measured in the
same unit of length, i.e. p = (x,y,z).

X Each reference line of a Cartesian coordinate system is called a coordinate axis or just
axis of the system, and the point where they meet is called its origin, O = (0,0,0).
The coordinates can also be defined as the positions of the perpendicular projections
of the point onto the axes, expressed as a signed distances from the origin.

X A vector or point is notated with a letter, Latin or Greek. A vector can be expressed as
either a row-vector or a column-vector,

r = (r1,r2,r3) =

 r1
r2
r3

 ∈ R3.

X An inner product between two vectors r and s ∈ Rd, d > 1 is denoted

〈r,s〉= (r1, · · · ,rd)

 s1
...

sd

= (r1s1 + r2s2 + ...+ rdsd) ∈ R.

Note that if 〈r,s〉 = 0, then r and s are othogonale, ie the angle between them is 90◦.
An inner product in an Euclidean space is the same as the scalar and dot product.

X A vector product in R3 (related to wedge product) is, given the vectors r = (r1,r2,r3)
and s = (s1,s2,s3):

r∧ s =
(∣∣∣∣ r2 r3

s2 s3

∣∣∣∣ , ∣∣∣∣ r1 r3
s1 s3

∣∣∣∣ , ∣∣∣∣ r1 r2
s1 s2

∣∣∣∣)= (r2s3− s2r3, r1s3− s1r3, r1s2− s1r2)

It can be shown that the vector product is orthogonal to both of its vectors, i.e.

〈r∧ s,r〉= 〈r∧ s,s〉= 0.

2.2. HOMEOMORPHISM, DIFFEOMORPHISM AND MANIFOLDS 11

X A wedge product in R2 is, given the vectors r = (r1,r2) and s = (s1,s2). A wedge
product is

r∧ s =
∣∣∣∣ r1 r2

s1 s2

∣∣∣∣= r1s2− s1r2

A wedge product in R2 is the same as the “rotated” inner product

〈r,sL〉= r∧ s,

where the vector sL is vector s rotated 90◦ counter clockwise.

2.2 Homeomorphism, diffeomorphism and manifolds
We will short (and superficial seen from a mathematical point of view) look at the math-
ematical foundation of parametric curves and surfaces. To those readers who wish to
study this more thoroughly and more seriously, we recommend reading Spivak [150] or
DoCarmo [49, 50].

We start by explaining homomorphism. From Greek, meaning something like “similar
shape”, and in a geometric context it can be compared to a sheet of clay that is deformed
by stretching, bending, ... but where we can not cut and glue. Neighboring elements must
remain neighboring elements. A more formal explanation is

Definition 2.1. A homeomorphism, ie a continuous transformation, is an equivalence
relation and one-to-one correspondence between points in two geometric objects or topo-
logical spaces, that is continuous in both directions. It is a map which preserve all the
topological properties of a given space. Two objects/spaces with a homeomorphism be-
tween them are called homeomorphic, and from a topological viewpoint they are the same.
A transformation / map / function is a homeomorphism if it:
• is a bijection, i.e. one to one and onto,
• is continuous,
• the inverse function is continuous.

A homeomorphism which also preserves distances is called an isometry. Affine transfor-
mations as rotation, scaling, translation, sharing are another type of common geometric
homeomorphism. An isometry is like bending a sheet of paper to become part of a cylin-
der.

A related expression is diffeomorphism,
Definition 2.2. A diffeomorphism is a one-to-one continuously-differentiable mapping. It
is an invertible function that maps one differentiable manifold to another, such that both
the function and its inverse are smooth. A function is a diffeomorphism if:

• the function is differentiable,
• the inverse function is differentiable,

A manifold is an object / space that locally resembles Euclidean space around each point,
ie there is a homeomorphism between an open set around each point and an Euclidean

12 CHAPTER 2. MATHEMATICAL SPACES AND NOTATIONS

x

z

y

s3

s1

s5

s6

s2

s4

Figure 2.1: Example of Sphere that is covered by an atlas that has six charts/maps. The
six maps are denoted S1, S2, S3, S4, S5 and S6.

space. One-dimensional manifolds are typically curves. Two-dimensional manifolds are
also called surfaces.

2.2.1 Local/global parametrization, charts and atlas
We first look at what we can call local curves and surfaces and their parametric form.

1. A local parametric curve is a curve defined by a parametric equation, involving one
parameter, most commonly s or t. Typically they will be curves in R2 or R3 (and
commonly denoted c(t)). More precisely, a parameterized differentiable curve is a
differentiable map

c : I ⊂ R→ Rn, n ∈ (Z+ but usually {2,3}),

i.e. from an open interval I = (a,b) of the real line R into Rn,n = 2,3.

2. A local parametric surface is a surface defined by a parametric equation, involving
two parameters, most commonly (u,v) or (s, t). Typically they will be surfaces in
R3 (and commonly denoted s(u,v)). More precisely, a parameterized differentiable
local surface is a differentiable map

s : U ⊂ R2→ Rn, n ∈ (Z+ but generally {3}).

i.e. from an open set U ⊂ R2 into R3.

Both curves and surfaces are usually defined on closed or half open domains I or U that
are subsets of the open domains used in the definition.

2.3. COMPACT SPACES 13

Every curve can be described with one parametrization. This might not always be practi-
cal and it is actually possible to use several intersecting intervals (with nonempty intersec-
tions) as domains for several different parameterizations which together cover the whole
curve.

For surfaces, it is not always possible to parameterize a surface using one parametrization.
This especially applies to parameterized, bounded, compact and connected surfaces of
different topological genus g (number of holes/handles). One classical example is the
sphere. There is no homeomorphism (Definition 2.1) between a sphere and R2. But if a
sphere is being punctured, ie one point is taken away, then the rest of the sphere and R2

is homeomorphic.

In Figure 2.1 there are six parametrization that together cover a sphere,

s1(u,v) =
(

u, v,
√

1− (u2 + v2)
)
,

s2(u,v) =
(

u, v, −
√

1− (u2 + v2)
)
,

s3(u,v) =
(

u,
√

1− (u2 + v2), v
)
,

s4(u,v) =
(

u, −
√

1− (u2 + v2), v
)
,

s5(u,v) =
(√

1− (u2 + v2), u, v
)
,

s6(u,v) =
(
−
√

1− (u2 + v2), u, v
)
,

where for all six maps, {si}6
i=1, the domain is the open disk u2 + v2 < 1.

If a curve or a surface is regular and not self intersecting, it can be considered as a man-
ifold. This is a topological space that is locally homeomorphic to Euclidean space1 by
a collection (called an atlas) of homeomorphisms called charts. The composition of one
chart with the inverse of another chart is a function called a transition map, and defines
a homeomorphism of an open subset of Euclidean space onto another open subset of
Euclidean space.2

Remark 1. As will be shown later, in the construction of blending splines both local and
global maps are used (in local and global geometry). This can be seen in both curves
and tensor product surfaces. Surfaces that is a patchwork of triangles are even more
in accordance with the definition of manifolds, thus, there is no global parametrization.
This opens for consistent constructions of bounded, compact and connected surfaces of
all possible topological genus.

2.3 Compact spaces
Curves and surfaces or geometric objects in general are usually geometrically bounded or
”geometrically not infinite”, and in general they also includes their endpoints or edges.

They are denoted as compact objects (manifolds or spaces). These are curves including
the start and end point, rectangles including the four edges, surfaces in general including
their edges, or a sphere, a torus, etc.

1That is, around every point, there is a neighborhood that is topologically the same as the open unit ball
in R2 or respective R3, and in fact the whole of R2 or R3 itself.

2A closer study of manifolds can be found in [150] or [50].

14 CHAPTER 2. MATHEMATICAL SPACES AND NOTATIONS

a b

c d

a
b

c d

Figure 2.2: Four examples of 2D compact objects (sets), cylinder, torus, Möbius band
and Klein bottle. A cylinder has two edges, a Möbius band has only one edge, and a torus
and a Klein bottle have none edges.

Formally, a topological space X is called compact if each of its open covers (an infinite
set of open sets covering the space totaly) has a finite subcover (can be reduced to a finite
set open sets covering the space totaly) . Otherwise it is called non-compact.

In Figure 2.2 is there four examples of compact objects.

a) The rectangle a is bent so that two edges can be glued together. The result is a cylinder.

b) The rectangle b is first bent and glued to a cylinder, then the cylinder is bent and the
other two edges are also glued together. The result is a torus.

c) The rectangle c is bent but now the two edges are turned before they are glued together.
The result is a Möbius band.

d) The rectangle d is bent but now the two edges are turned before they are glued together,
then it is also bent in the other direction and the other two edges are then glued
together. The result is Klein bottle.

The Euclidean space and the Affine space described in the next section are not compact
spaces (they do not include points at infinite), but the Projective and Grassmann spaces
are compact spaces as we will se in section 2.5.

2.4 Affine space
A vector space is a set of elements we call vectors. A vector space is closed under finite
vector addition and scalar multiplication. This means that a sum of two vectors also is
a vector and to scale a vector by scalar multiplication also give a vector. This gives the
following legal operations,

v = k1 v1 + k2 v2

where v, v1 and v2 are vectors and k1 and k2 are scalars (real numbers). It follows that you
can sum many vectors into one if the number of vectors to sum is finite. In the previous

2.4. AFFINE SPACE 15

section we recognized that we not only have vectors but that we often have points instead.
Points behave differently than, but are also dependent on vectors.

We therefor introduce a new structure on Euclidean Spaces.

The affine space
is a space of points p, and associated vectors v. The following two operations de-
scribes the connection between points and vectors and operations on vectors:

p = p1 + k v, connection between points and vectors,

v = k1 v1 + k2 v2, operations on vectors only,
(2.1)

where the k’s are scalars, i.e. real numbers.

� In addition there is one more legal operation. It is an operation on points only, and
it is called the affine combination and will be further described below.

From the first line in (2.1), turning the expression we get

v = k̃ (p− p1), where k̃ =
1
k
. (2.2)

Further, from a combination of all three expressions above (2.1 and 2.2) we get:

The affine combination
also called the barycentric combination. This is the only legal operations on points
only and is formulated as follows (where pi are points and ki, i = 0, ...,n, are scalars)

p =
n

∑
i=0

ki pi, where
n

∑
i=0

ki = 1. (2.3)

� The name indicate to compute the barycenter. It is to sum up weighted points
where the weights sum up to 1.

� If all weights ki, i = 0, . . . ,n, are nonnegative, ki ≥ 0, i = 0,1, ...,n, we call (2.3)
for a convex affine combination.

The affine combination follows because (2.3) can be rewritten to fit the expression in
(2.1),

p = p0 + v, where v =
n

∑
i=1

ki (pi− p0),

and it therefore follows that

k0 = 1−
n

∑
i=1

ki.

Note from the Hermite basis functions (page 40) that the two basis functions blending
points was summing up to 1. Also note that the basis functions for Bézier curves, the
set of Bernstein polynomials that are only blending points sums up to 1 for all degrees
(lemma 4.2 on page 49).

16 CHAPTER 2. MATHEMATICAL SPACES AND NOTATIONS

Later we will show that this is the case also for B-splines and NURBS.

The reason why this is so important is that to fulfill an affine combination are invariant
under affine maps. These are the most used maps in computer graphics, CAD/CAM etc.

affine maps
are translation, scaling, rotation, shear and parallel projections, and are in general
taken on the familiar form

Θp = A p+ v (2.4)

where p is a point and v is an associated vector in an affine space. If this is as usual
R3, then A is a 3×3 matrix.

Geometrically, an affine map (affine transformation) in an Euclidean space is one that
preserves:

1. The collinearity relation between points; ie three points which lie on a line continue
to be collinear after the transformation.

2. The ratio of distances along a line; ie for distinct collinear points p1, p2, p3, the
ratio |p2−p1|

|p3−p2| is preserved.

An affine map is invertible if and only if the matrix A is invertible. This is typically scal-
ing, rotation, share and translation. Parallel projection is not invertible. A scaling matrix
is a diagonal matrix where the inverse is a matrix where each number on the diagonal is
inverted. This matrix is scaling a vector different in each coordinate.

As =

 α 0 0

0 β 0

0 0 γ

 , and where A−1 =


1
α

0 0

0 1
β

0

0 0 1
γ

 .

A rotational matrix is an orthonormal matrix where the transposed matrix is the inverse.
Rotating with the angle α counter clockwise around the z-axis

Aα,x =

 1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)

 , and where A−1 = AT .

Rotating with the angle α counter clockwise around the y-axis

Aα,y =

 cos(α) 0 sin(α)
0 1 0

−sin(α) 0 cos(α)

 , and where A−1 = AT .

Rotating with the angle α counter clockwise around the z-axis

Aα,z =

 cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1

 , and where A−1 = AT .

2.5. PROJECTIVE SPACE AND GRASSMANNIEN 17

e

Figure 2.3: An illustration of a projective plane P2. We start with a plane with four
edges. Two and two edges are glued together, one edge and the edge on the opposite side
are glued after one of them are turned. The plane is then deformed to a circular plate
where the antipodal point on the boundary are the same point. The plate is then deformed
to a hemisphere where the boundary is still in the xy-plane. There is now a one to one
map (homeomorphism) to the set of all infinite straight lines through origin in R3.

If we want to rotate around an arbitrary vector, we must do the following. First we restrict
the rotation vector r to be a unit vector,

r =

 x
y
z

 , where |r|= 1.

We then introduce the matrices (⊗ is notation for outer product)

T = r⊗ rT =

 x2 xy xz
xy y2 yz
xz yz z2

 and S =

 0 −z y
z 0 −x
−y x 0

 .
And finally the rotation matrix is

Rα,r = T + cosα (I−T)+ sinα S, (2.5)

and where R−1 = RT

2.5 Projective space and Grassmannien
A projective space is the space of one-dimensional vector subspaces of a given vector
space. Pn denotes a projective space of dimension n. In general we assume it to be a
projective space on real numbers. A more precise notation is RPn for real projective
spaces, and CPn for complex projective spaces and so on.

P
n can also be viewed as the set consisting of Rn together with its points at infinity (in

Figure 2.3 is this the edges glued with each other).

18 CHAPTER 2. MATHEMATICAL SPACES AND NOTATIONS

In Figure 2.3 is there an illustration of the projective plane, P2. We start with a plane
where the edges are glued together, one edge is glued with the edge on the opposite side,
but turned before they are glued together. The figure shows us the maps/homeomorphism
from the initial plane via a plate where the antipodal points are the same point and then an
hemisphere including the edge circle in the xy-plane, to the set of all infinite lines through
origin. This follows because there is a one to one map between the hemisphere and the
set of lines. This is obvious for all points on the hemisphere except for the edge, but it
is also true for the lines in the xy-plane because the antipodal points are the same point
because of the initial gluing.

It follows that P2 is the set of all lines through origin in R3, ie. a one-dimensional vector
subspace. From the example in Figure 2.3 it is also clear that the projective plane P2 is
compact.

A point in Pn can be described by n+1 cartesian coordinates but these coordinates can be
scaled by any nonzero scalar. As an example, using this description it follows that q ∈P3

can be expressed by
q = (kx,ky,kz,kw),

where q is independent of k, i.e. k can be any nonzero real.

There is a canonical injection of Rn into Pn. This means that an affine space Rn can be
embedded isomorphically in Pn by the standard injection

(x1, . . . ,xn) 7→ (x1, . . . ,xn,1). (2.6)

Affine points can be recovered from projective ones with the mapping

(x1, . . . ,xn,xn+1)∼
(

x1

xn+1
, . . . ,

xn

xn+1
,1
)
7→
(

x1

xn+1
, . . . ,

xn

xn+1

)
. (2.7)

In general can Pn be seen as the set of all lines through origin in Rn+1. Contrary to
Euclidean spaces Rn is the projective spaces Pn compact, as clearly can be seen in Figure
2.3. The points at infinite in Rn is the same as the horizontal lines in Pn, so the projective
space also includes the points at infinite and is therefor compact.

Grassmannian is a generalization of the Projective spaces; it is the space of d-dimensional
vector subspaces of a given n-dimensional vector space, 0< d < n, and is denoted Gr(n,d).
It follows that a projective space Pn = Gr(n,1).

For example, Gr(n,2) can be the space of all planes through origin in an Euclidean space
Rn.

2.6 Homogeneous coordinates
Homogeneous coordinates, introduced by August Ferdinand Möbius in 1827 (Der barycen-
trische Calcül), is a system of coordinates used in projective geometry much like Cartesian
coordinates are used in Euclidean geometry. They have the advantage that the coordinates

2.6. HOMOGENEOUS COORDINATES 19

of points, including points at infinity, can be represented using finite coordinates. This
because the projective space is compact and thus includes the points at infinity. Formu-
las involving homogeneous coordinates are often simpler and more symmetric than their
Cartesian counterparts. Homogeneous coordinates have a range of applications, including
computer graphics and 3D computer vision, where they allow affine transformations and,
in general, projective transformations to be easily represented by a matrix.

Homogeneous coordinates have one coordinate more than the dimension of the space. It
follows that if the last coordinate is not 0, then any scaled version of the element are the
same element, so to compare we chose a common value for the last coordinate. If the
dimension is 3, then we have

Point p = (px, py, pz,1), ie the last coordinate is 1.

Vector v = (vx,vy,vz,0), ie the last coordinate is 0.

Thus, in homogeneous coordinates, scaling of a point is impossible because if a point
is multiplied by a non-zero scalar, the resulting coordinates represent the same point.
However, a vector can be scaled because the last coordinate is still 0 after the scaling.

We see that to follow this scheme makes operation in affine space more complete, sum-
ming points give no meaning, but summing weighted point , where the weighted sum up
to 1 gives a point, adding a vector to a point give a point (last coordinate is 1) and so on.

Especially affine maps get a much simpler expression because we now only get one matrix
for all operations. Remember that an affine map (2.4) is on the form Ap+ v. There is a
point p that is processed by, a matrix A which is a combination of scaling, rotation and
sharing, and a translation vector v, ie

A =

 xx yx zx
xy yy zy
xz yz zz

 and v =

 vx
vy
vz


Putting this into one matrix will be on the form

H =

[
A v
0 1

]
=


xx yx zx vx
xy yy zy vy
xz yz zz vz
0 0 0 1

 , (2.8)

and the inverse is

H−1 =

[
A−1 −A−1v

0 1

]
=


xx xy xz −〈x,v〉
yx yy yz −〈y,v〉
zx zy zz −〈z,v〉
0 0 0 1

 . (2.9)

Only rotation makes A orthonormal (orthogonal and det = 1) and A−1 = AT . If scaling
is used, and if column number i is scaled by a then row number i in the inverse matrix is
scaled by 1

a .

20 CHAPTER 2. MATHEMATICAL SPACES AND NOTATIONS

Figure 2.4: We see examples of the first four simplexes. From the left we see a point -
∆1, a line segment - ∆2, a triangle - ∆3 and a tetrahedron - ∆4.

2.7 Simplexes
In section 2.2.1, curves were defined as 1-dimensional object, surfaces as 2-dimensional.
This is related to the coupling/homeomorphism with a Euclidean space and it mani-
fests itself in the number of parameters in a parametrization. It follows that a point is
0-dimensional and a volume 3-dimensional, etc.

A polygon is thus a 2-dimensional object, i.e. a 2-dimensional polytope. We will look at
the simplest polytopes of given dimensions, these call simplexes, ∆n. The first 5 simplexes
are:

- punkt er en 1-simplex - ∆1 - and has 1 point the dimension is 0
- line segment er en 2-simplex - ∆2 - and has 2 points the dimension is 1
- triangle er en 3-simplex - ∆3 - and has 3 points the dimension is 2
- tetrahedron er en 4-simplex - ∆4 - and has 4 points the dimension is 3
- 5-cell er en 5-simplex - ∆5 - and has 5 points the dimension is 4

Note that the edges of an n-simplex are n pieces of (n-1)-simplexes. For example, a
triangle has 3 edges (line segments). If we insert a point inside an n-simplex, we divide
the simplex into n pieces of n-simplexes. A final observation that is easy to see for low
dimensions is that for any point there exists a straight line (edge) between the point and
all the other points. In figure 2.4 the four first simplexes are plotted.

2.8 Homogeneous Barycentric coordinates for simplexes

Barycentric coordinates were introduced by Möbius in 1827, see [65]. These can be
used either to express a point inside a simplex ∆n as a convex combination of the n+ 1
points in the simplex or to linearly interpolate data given in the points. The coordinates
correspond to masses placed in the vertices and that the point itself is then the center of
mass (barycentre). Much work has been done regarding the behavior and applications of
the barycentric coordinates. Among others Warren, in [161] and later publications.

First, some facts about homogeneous barycentric coordinates. Note that unlike barycen-
tric coordinates in general, homogeneous barycentric coordinates are normalized and thus

2.8. HOMOGENEOUS BARYCENTRIC COORDINATES FOR SIMPLEXES 21

u

v
w

(0,0,0)

(0,0,1)

(0,1,0)

(1,0,0)

Figure 2.5: A parametric unit cube described by the coordinates u, v, and w. “The main
diagonal” is marked with red lines, and can be seen as a triangle in the figure.

unique.3 We start with triangles. We start with a surface Ω ⊂ R2, with a Cartesian coor-
dinate system (u,v). We then let this be a unit square. In figure 2.5, we have expanded
the unit square to a unit cube where we have a coordinate w that is orthogonal to the other
two coordinates. If we cut this cube with a plane passing through the three corners where
one of the coordinates is 1 and the other two are 0, we get the main diagonal. In figure
2.5, the main diagonal is plotted as a triangle marked with red lines. This triangle (the ∆2
simplex) is then a domain described in homogeneous barycentric coordinates. Note that
the plane in which the triangle lies has the following implicit formula,

u+ v+w = 1.

At the same time, it is natural to restrict the domain to be in the triangle in figure 2.5,
which then means the following restriction on the parameters,

u,v,w≥ 0.

the name “barycenter” is Latin for center of gravity. It refers to the coordinates of the
“mass center” which are determined via a convex combination of the points of a material
system of points. Here follows the definition of homogeneous barycentric coordinates for
points:

Definition 2.3. The convex set of points forming the main diagonal of an (n+1)-dimensional
unit hypercube is the domain of an n-dimensional simplex denoted ∆n. In homogeneous
barycentric coordinates, a point p ∈ ∆n is defined by

p = {ui}n
i=0, where

n

∑
i=0

ui = 1,

3Note the similarities between homogeneous barycentric coordinates vs. homogeneous coordinates in
the projective space. Points sum to 1, vectors to 0 vs. last coordinate is 1 or 0 in the projective space.

22 CHAPTER 2. MATHEMATICAL SPACES AND NOTATIONS

p4 p3

p2p1

Figure 2.6: We see a rectangle with corners p1, p2, p3 and p4. The two dashed lines
(diagonals) are also plotted. Where these two lines intersect, one expects the same coor-
dinates regardless of which line we follow.

which fulfill the convexity property when
ui ≥ 0, i = 0,1,2, ...,n.

A point p ∈ ∆2 (point in the triangle in figure 2.5) is defined as follows

p = (u,v,w), where u+ v+w = 1 og u,v,w≥ 0.

We then extend the definition of homogeneous barycentric coordinates to include vectors.
In figure 2.5, we insert a new plane, which is parallel to the “main diagonal” triangle we
created earlier, but which now passes through the origin. This new plane can be thought
of as a 2D vector space in barycentric coordinates. The implicit formula for this plane is

u+ v+w = 0

The definition of homogeneous barycentric coordinates for vectors is:

Definition 2.4. We denote the n-dimensional vector space that passes through the origin
and is parallel to the “main diagonal” of an (n+1)-dimensional unit hypercube for ϒn. In
homogeneous barycentric coordinates, a vector d ∈ ϒn is defined by

d = p2−p1 = {ri}n
i=0, hvor

n

∑
i=0

ri = 0 and p1,p2 ∈ Ξn.

For a triangle (2-dimensional simplex), a vector d ∈ ϒ2 is defined as follows;

d = (r,s, t), where r+ s+ t = 0.

It can be shown that it is only for simplexes that homogeneous Barycentric coordinates
are unique. For dimension 2 — surfaces, this can be shown easily. We start from a square
convex polygon, for example a rectangle. We create the following formula

s(u1,u2,u3,u4) = u1 p1 +u2 p2 +u3 p3 +u4 p4, hvor u1 +u2 +u3 +u4 = 1.

We then create the curves that connect the two opposite corners. We create them by setting
the other two weights to 0, i.e. c1(t) = s(t,0,1− t,0) and c2(r) = s(0,r,0,1− r). These
two curves will intersect at a certain t and r value. This is illustrated in figure 2.6. This
shows that two different sets of coordinates give the same point.

However, there are “adjustments” that provide unique coordinates for convex polygons
and also 3-dimensional polytopes. Michael Floater et al. launched mean values with
barycentric coordinates in 2D in [67] and [68], and in 3D in [69].

Chapter 3

Implementing geometry in C++

All the theory and algorithms described in this book are implemented and tested, and
all tables and figures, except Figure 1.1 and Figure 6.3, are thus made using these test
programs. The implementations are done in C++ and are mainly based on an in-house
open source programming library called GMlib .

Some operations are very resource intensive and can take a relatively large amount of
time on a computer. These are operations that other people have spent a lot of time
optimizing. This applies, for example, to matrix vector calculations with large matrices
that are necessary for some algorithms described later. Here BLAS compatible program
libraries can help. BLAS is an abbreviation for‘ Basic Linear Algebra Subprograms.
In Appendix B.1 there is a description, as well as a list of BLAS compatible program
libraries. To be able to use all available resources on the computer, there is a list of aids
for “Heterogeneous computing and parallelization” in Appendix B.2.

3.1 Mathematical spaces for geometric programming
A combination of Affine and Projective spaces are the most convenient spaces to use in
geometric programming. One reason to use Affine spaces is to be as independent as pos-
sible of the coordinate system. In an Affine space, origin is just one point among the
other points, and nothing directly depends on it. For each point we can assign a vector
space where the point itself is the origin. Thus, points can be moved using a vector. An-
other important application is local coordinate systems. In a geometric system (computer
graphic) in R3, the vector space associated with a point can have three orthogonal unit
vectors which together form a local coordinate system, located at the point.

In a projective space we can use homogeneous coordinates. Then an extra coordinate is
added, 1 for points and 0 for vectors, see page 19. This fits perfect to Affine spaces, and
there is a simple map between these spaces, (2.6) and (2.7). But in computer programming
we sometimes want to use the data directly in external routines such as BLAS-compatible
functions. Then we can not include the extra coordinate 1 for points and 0 for vectors.
Thus a solution is to distinguish them by type as shown in the next section.

23

24 CHAPTER 3. IMPLEMENTING GEOMETRY IN C++

u

v
h

p

g

Figure 3.1: A projection of a vector u on a vector v, both starting from a point p. The
projection is visualized as a vector η .

3.2 Homogeneous coordinates and programming
Points and vectors are the basic objects in affine spaces and thus geometric programming.

To distinguish the affine 2D / 3D / ... vector from the std::vector which is a container,
we can use a capital first letter on them. It is especially advantageous to use template
programming, because you can switch between single and double precision, choose di-
mension and also define types recursively. In template programming, it is also possible
to create a separate version for specific template parameters. For example, Vector〈T,3〉
may have a vector product operator that produces a vector, while Vector〈T,2〉 may have
the same operator that then produces a signed scalar.

We can make the following definition based on the types, template〈typename T, int n〉

Point〈T,n〉 - for example Point〈double,3〉 a point in a double precision 3D affine space.

Vector〈T,n〉 - for example Vector〈float,3〉 a vector in a single precision 3D vector space.

The relationship between Point and Vector must be as consistent as possible, and they
should be closely linked, but not so narrowly defined that it causes problems. These two
basic types can be expand to:

Simplex〈T,n,m〉 - Vector〈Point〈T,n〉,m〉. Note that Simplex〈float,3,2〉 is a line segment,
Simplex〈float,3,3〉 is a triangle and Simplex〈float,3,4〉 is a tetrahedron.

Matrix〈T,n,m〉 - Vector〈Vector〈T,n〉,m〉. This is an n×m matrix. If n = m then the
matrix ia a square matrix and might be non singular and an inverse can be made.

HMatrix〈T,n〉 - Vector〈Vector〈T,n+1〉,n+1〉. Is an homogeneous matrix, see (2.8)

One operation that is heavily used is the inner product between two vectors. In Figure 3.1
is this operation visualized. We see that 〈u,v〉〈v,v〉 =

|η |
|v| and that η = 〈u,v〉

〈v,v〉 v. If v is a unit vector
(length 1) then the formula is η = 〈u,v〉v, and |η |= 〈u,v〉.

An homogeneous matrix can also represent a local coordinate system1. A coordinate
system for R3 is typically described by three coordinate vectors, usually denoted x-axis,
y-axis and z-axis. They are all unit vectors (length 1) and usually orthogonal, the angle
between them are 90◦. It follows that the inner product between them are all zero.

1In blending splines, local coordinate systems are used by local curves and surfaces, this will be de-
scribed in chapters 8 and 12.

3.2. HOMOGENEOUS COORDINATES AND PROGRAMMING 25

p

q

x

y

z

Figure 3.2: A local coordinate system p with its red coordinate axes. The blue axis are
the parent coordinate system. The point q is projected down on the red vectors, and the
black vectors are the decomposition of q with respect to p and its coordinate axes.

An homogeneous matrix is shown in (2.8) where it is connected to affine maps. But it can
also be interpreted as a local coordinate system, ie.

H =
[

x y z p
]
=


xx yx zx px
xy yy zy py
xz yz zz pz
0 0 0 1

 ,
where x, y and z are the coordinate axes and p is a point that indicates the location of the
local coordinate system, see Figure 3.2. If q is a point in the local coordinate system, and
we multiply with H,

q̂ = H q = p+qx x+qy y+qz z,

where q̂ is q in the parent coordinate system (the blue axis in Figure 3.2). The inverse of
H was given in (2.9), it is

H−1 =


xx xy xz −〈x,p〉
yx yy yz −〈y,p〉
zx zy zz −〈z,p〉
0 0 0 1

 .
If we multiply q̂ with this matrix we get

q = H−1 q̂ =


〈x, q̂〉−〈x,p〉
〈y, q̂〉−〈y,p〉
〈z, q̂〉−〈z,p〉

1

=


〈x, q̂−p〉
〈y, q̂−p〉
〈z, q̂−p〉

1

 .
In Figure 3.2 is the local coordinate system illustrated.

Homogeneous matrices can be used in display hierarchy, ie a scene graph. In such a
system, the scene is the reference coordinate system for all objects in the scene graph and
can be used for simulations involving several objects. Thats why object should have two
homogeneous matrices one local and one for the reference system.

26 CHAPTER 3. IMPLEMENTING GEOMETRY IN C++

The graphic system can be connected to virtual cameraes, which can also be objects in
the scene graph, for example inserted into a moving car. In that case, the final coordinate
system is that which is connected to the camera, and the inverse of the camera’s reference
matrix multiplied by the reference matrix of each object is the matrix to be inserted into
the graphic system.

The next topic is simulation, and we will take a closer look at two examples of the use of
local coordinate systems/homogeneous matrices in simulations.

We will first look at how we can lock the direction of a local axis towards another object.
This can be used, for example, by a camera. Because each time step in a simulation is
small, we assume that the changes are also small. At each time step, we start by finding
the distance vector between the points in the two local coordinate systems. Then we set
the desired axis, for example x equal to this, and normalize it. Then we correct y by

y = y−〈y,x〉x,

and then normalize y. Finally we set z = x∧y. Now the direction is locked even though
both objects are moving.

The second example is also useful for a camera, but can be used by many other types
of objects as well. If you want to rotate an object without doing so, you can rotate the
camera around the object, or around a point in the space. We can do this by locking the
camera’s direction towards the object/point, and at each time step moving the camera in
the plane that is orthogonal to the axis pointing forward, ie p = p+ dy y+ dz z, see2.
After each locking and moving operation is performed, we correct the position p in the
homogeneous matrix so that the distance to the object/point is maintained.

3.3 Tools for interactive design
Some geometric objects, curves and surfaces may change shape. To do this interactively
in graphics mode, we need some tools. These geometric objects are either control points
and/or vectors that can be moved or changed. Vectors often change by moving the end-
points. A tool for moving points in graphic mode is a selector. It is an object that has
a reference to the point to be edited and that can report to the parent object of the point
to update itself. A selector can be selected and moved using a mouse pointer. A selector
can typically be displayed as a small ball. Remember that moving an object can be done
based on the local coordinate system of the camera and then change the position of the
point by following the translation vector first to the reference point (scene) and then out
to the object.

Another tool is a placeholder. A curve or surface or another geometric object can be
displayed on the screen by a placeholder. This is then an object that can be both moved
and rotated and that is typically displayed as a cube on the screen. The motion then
changes the point p while the rotation then changes the coordinate axes x, y and z in

2Here the yz-plane is the plane orthogonal to the direction of the camerae. dy and dz are scalars depend-
ing on the time step dt and the speed and direction of the mouse in the user interface.

3.4. IMPLEMENTATION, ABOUT CURVES AND SURFACES 27

the matrix of the object. A placeholder is used in “editing” blending splines that will be
described in chapter 8, 12, 13 and 14.

3.4 Implementation, about curves and surfaces
In section 2.3 about compact spaces is stated that curves and surfaces for computer graph-
ics are compact objects either including their endpoints/edges or is a circle like curve,
sphere like surface, a torus like surface, ... A computer screen is a matrix of pixels, to dis-
play a curve we can calculate each pixel to see if there is an object there that is displayed
as a curve with a given color. This is typically done in ray tracing. Another method that
has been more common so far is to divide a curve into small line segments and then dis-
play each line segment. We call the process of dividing for tessellation. For surfaces, the
same process is to divide into sets of small triangles. We call the corners of the triangles
vertices. For surfaces, in addition to the position of the vertices, we also need the surface
normals in the vertices. Therefore, all curves must have functions for calculating position,
and all surfaces have functions for calculating position and surface normal at the sample
points.

There are many ways to implement a geometry structure, either abstract based on di-
mension, properties and topology, or a simple inheritance structure where one must also
distinguish between parametric and non-parametric type. We will look at a simple inher-
itance structure for parametric curves and surfaces. For curves, we must ensure that there
are functions that define the parameter domain, we need a function to calculate the posi-
tion and derivative in a parameter value, and we must know whether the curve is closed
or open. All these functions can be defined in a base class as a 0-function, which means
that all derived classes must implement these functions. For surfaces, we must also ensure
that there are functions that define the parameter domain, we need a function to calculate
the position and the partial derivatives in a parameter value, and we must know whether
the surface is closed or open in both directions. As for curves, all of these functions can
be defined in a base class as a 0-function, which means that all derived classes must im-
plement these functions. However, the base classes can take care of the tessellation and
contact with the graphics system themselves.

28 CHAPTER 3. IMPLEMENTING GEOMETRY IN C++

Part I

Curves

29

Chapter 4

Parametric Curves

Imagine the space of real numbers R as an infinitely straight line. To make a curve we just
pick a segment of this infinite straight line. We deform it by stretching or pressing it and
bending it in different ways. We put it into a space that can be a plane (Euclidian – R2) or
a 3 dimensional space, (Euclidian – R3). Finally we place it in the desired position with
the desired orientation and scale. The result is a parametric curve. Note that cutting and
gluing is not an option here. Figure 4.1 give an example of this concept. We categorize
a curve as a 1-dimensional object (one parameter). If we put constraints on a parametric
curve such that the curve does not degenerate to a point or intersect itself, then a curve
can be called a 1-dimensional manifold (see [150] or [50]).

This is an attempt to visualize the concept of a parametric curve. We can also think about
a parametric curve as a path of an object in motion and where the path also contains a
time indication of when the object is there. To do this in a more mathematical way we
first generalize the output not only to be in R2 or R3 but more general in Rn, n > 0. A
more formal definition is:

Definition 4.1. A parameterized differentiable curve is a differentiable map α : I −→ Rn

of an open interval I = (a,b) of the real line R into Rn. (Note that a half open or a closed

Figure 4.1: On left hand side is a part of the real numbers plotted as a dashed line, the
half open interval I = (0,2π] is marked as solid. In the mid-figure is the interval bent and
finally, on right hand side, is it bent into a circle. If the circle is a unit circle with radius
r = 1 as in expression (4.1), then the length of the interval and the curve is the same, there
is no stretching, while expression (4.2) is stretching to twice the length.

31

32 CHAPTER 4. PARAMETRIC CURVES

Figure 4.2: A plot of the butterfly curve following from expression (4.3).

interval is just a restriction of an open interval.)

The first example is a circle in a plane, where the parameter interval I = (0,2π] is half
open. In the expression is therefor t going from 0 (not included) to 2π (included). A given
t-value results in a vector with an x and y component, i.e. a vector in the Euclidean space
R2. Therefore, we call the following function (4.1) for vector-valued;

α(t) =
(

x(t)
y(t)

)
=

(
cos t
sin t

)
, 0 < t ≤ 2π. (4.1)

The center of the circle defined in (4.1) is in origin and the radius is 1. If we want to
change the radius of the circle to r = 2, and move the center to another position, for
example to a point with coordinates x = 1, y = 2 we get:

α(t) = 2
(

cos t
sin t

)
+

(
1
2

)
=

(
2cos t +1
2sin t +2

)
, 0 < t ≤ 2π. (4.2)

A more sophisticated curve example is the butterfly, made by Temple H. Fay in 1989 and
published in [66]. The curve can be seen in Figure 4.2 and the equation is as following:

α(t) =
((

ecos t−2cos(4t)− sin5 (t
12

))
sin t(

ecos t−2cos(4t)− sin5 (t
12

))
cos t

)
, 0 < t ≤ 24π. (4.3)

This curve, figure 4.2, is 12 following circles deformed by cyclic changing and collapsing
radius as can be seen from equation (4.3). Parametric curves can be made by all types

33

a(t)

a()´ 1
2

Figure 4.3: A plot of the polynomial based curve from expression (4.4). The 1st-
derivative and tangent vector α ′

(1
2

)
is also plotted.

of functions, trigonometric functions, logarithmic functions, exponential functions and of
course polynomials that has been among the most popular choices. The next example is
therefore a 2D - vector valued parametric curve based on polynomials:

α(t) =
(

6t−9t2 +6t3

−3t +9t2−6t3

)
, 0≤ t ≤ 1. (4.4)

This curve (4.4) can be seen in Figure 4.3, and we see that the curve starts at the origin
of the plane. Note that for a given t-value, α(t) = (x(t),y(t)) is a point on the curve. The
variable t is called the parameter of the curve and the parameter interval I = [0,1] is called
the domain of the curve. The image α(I) ⊂ R2 is called the trace of α . And the word
differentiable means that derivatives of x(t) and y(t) exist everywhere on the domain.

Vector spaces (Linear spaces)
Before we move on, let’s look briefly at the concept of vectors and sets of vectors
called a vector space. In general, we expect vector spaces, normed vector spaces and
inner product spaces and their properties to be known to the reader.
Definition 4.2. A vector space is a set that is closed under finite vector addition and
scalar multiplication (ie the result of the operations are elements in the vector space).
The most common example is n-dimensional Euclidean spaces Rn, where each ele-
ment is a list of n real numbers, where scalars are also real numbers, additions are
componentwise, and scalar multiplication is multiplication on each term separately.

In this book is a classic vector notated with a letter, for example v. If v ∈R2 (element
in a 2D plane) it will have 2 coordinates v = (x,y), can also be written transposed as

v =
(

x
y
)
. If v1 = (x1,y1) and v2 = (x2,y2) are vectors ∈R2 and k is a scalar ∈R then

v = v1 + kv2 =

(
x1
y1

)
+ k
(

x2
y2

)
=

(
x1 + kx2
y1 + ky2

)
An inner product, which is a scalar, will have the following notation

〈v1,v2〉= x1x2 + y1y2
A norm (length) of a vector is defined by

|v|=
√
〈v,v〉=

√
x2 + y2

34 CHAPTER 4. PARAMETRIC CURVES

10.750.50.250

5

2

0 t

s(t)

1

3
4

6

Figure 4.4: The figure shows the speed s(t) = |α ′(t)| of the curve from expression (4.4).

4.1 Differentiations
Recall that a curve α(t) can be considered as a path to an object that moves in time t.

- We denote the first derivative1, dα

dt (t) as α ′(t) = (x′(t),y′(t)).
- α ′(t) is called the tangent or velocity vector of the curve at the point α(t).
- The length of the tangent/velocity vector |α ′(t)| is called the speed at the point α(t).

In Figure 4.3, the tangent vector at α(0.5) is plotted. We can clearly see that it is tangential
to the curve. Because the parameter range is 1, from 0 to 1, the average length of the
tangent/velocity vector will be equal the curve length. The speed of the curve s(t) =
|α ′(t)|, t ∈ [0,1] defined in (4.4) is plotted in Figure 4.4. We can calculate the curve
length from the average speed times the time used. In Figure 4.4, this is the same as
the area under the function s(t), t ∈ [0,1]. In general, we get the following integral for
computing the curve/arc length over the interval I = [a,b]:

l(α)I =

b∫
a

s(t) dt =
b∫

a

|α ′(t)| dt =
b∫

a

√
〈α ′(t),α ′(t)〉 dt (4.5)

Using the curve defined in (4.4) we get the speed function

s(t) =

√
(18t2−18t +6, −18t2 +18t−3)

(
18t2−18t +6
−18t2 +18t−3

)
= 3
√

72t4−144t3 +108t2−36t +5.

And the curve/arc length is

l(α)0,1 =

1∫
0

3
√

72t4−144t3 +108t2−36t +5 dt ≈ 3.28.

1In section 9.1.1, we will introduce a differential operator d. This is a generalization of differentiation
to also include multivariate functions. With such a general description, can the first derivative of a curve
c(t) be described by the expression d(c)t(1), which means that we at a point c(t) have a vector describing
where we will be in 1 time unit if we move without changing direction and speed.

4.1. DIFFERENTIATIONS 35

4.1.1 Regular curves - arc length parametrization
A regular curve is a curve, α(t), t ∈ I, where the tangent/velocity vector does not vanish,
ie s(t) = |α ′(t)| 6= 0 for all t ∈ I.

In order to emphasize some important properties, we will look into a special type of
curves, namely curves that are arc length parameterized.

Given an arc length parameterized curve ζ (t), it follows that,

• |ζ ′|= 1, speed is 1 over the entire curve.

• 〈ζ ′′,ζ ′〉 = 0, the second derivative is always orthogonal to the first derivative, be-
cause it is only the direction of the first derivative that change, not the length
(speed).

• κ = |ζ ′′|, We denote the curvature for κ . The curvature of a curve is defined to be
the length of the second derivatives of an arc length parameterized curve.

For arc length parameterized curves embedded in R3 we also have the following proper-
ties,

• Frenet frame (also called TNB frame) is a frame, ie three unit vectors, T, N, B,
orthogonal to each other in a right hand system. T = ζ ′, N = ζ ′′

κ
and B = T ∧N

(the vector product). The existence of a TNB-frame at a point requires that κ 6= 0.

• τ is the torsion of a curve. It measures the speed of rotation of the binormal vector
N at the given point, and is given by τ =−〈N,B′〉.

4.1.2 Reparameterization
Reparameterization has no effect on the shape of a curve (the trace). It changes speed and
parameter interval (domain) of a curve, but it does not affect any of the properties of a
curve that we call the intrinsic properties (shape, curve length, curvature, torsion, etc.).

Given a curve c(t), t ∈ I ⊂ R. A curve

ρ(t) = c(ω(t)) = c◦ω(t)

is a reparameterization of c(t) if

- ω(t) is differentiable for t ∈ I,
- and there exist an inverse ω−1 that also is differentiable for t ∈ I.

It follows that ω(t) must be a strongly monotone function.

The 1st-derivative of the curve ρ(t) is the tangent/velocity vector to the curve, and the
length of this vector is certainly affected by the reparameterization. The first derivative is

ρ
′(t) = ω

′(t)c′ ◦ω(t).

It follows that the speed is

s(t) = |ω ′(t)c′ ◦ω(t)|= |ω ′(t)| |c′ ◦ω(t)|. (4.6)

36 CHAPTER 4. PARAMETRIC CURVES

4.1.3 Curvature
We denote the 2nd-derivative of a curve c(t) for c′′(t). The 2nd-derivative describe the
linear change of the 1st-derivative. The 2nd-derivative can be decomposed into changing
the speed and changing the direction.

It is obvious that a change of direction depends on the speed. Everyone who has driven a
car has experienced it. Curvature is an intrinsic property that is independent of parametriza-
tion and speed. To find the curvature, we reparameterize a curve so that the velocity is
always 1, ie arc length parametrization. Given a curve

ζ (t) = c◦ω(t).

It follows from (4.6) that ζ (t) is arc length parameterized if ω ′(t) = 1
|c′| .

To simplify we skip the parameter notation in the expression in the following. Using the
kernel rule and the product rule for derivatives, we get

ζ
′ = ω

′c′

and
ζ
′′ = ω

′′c′+(ω ′)2c′′.

To calculate the curvature and to avoid having to calculate ω ′′ we just use the vector
product to find |ζ ′′|. This can be done because the vector product of two parallel vectors
is zero. Further, we know that the curvature, κ , is equal the length of the second derivative,
|ζ ′′|, and that ζ ′′ is normal to the first derivative ζ ′ and that |ζ ′|= 1. This knowledge will
be used in the calculation. To simplify, we first look at curves in R3. We thus get,

κ = |ζ ′′| = |ζ ′∧ζ ′′|
= |ω ′′||ζ ′∧ c′|+ |ω ′|2|ζ ′∧ c′′|
= 0+ |ω ′|3|c′∧ c′′|,

(4.7)

which gives

Curvature for curves in R3 and R2

κ =
|c′∧ c′′|
|c′|3

, c ↪→ R3.

where ∧ denotes the 3D vector (cross) product.
In R2 we can use the same formula but here we use the the wedge product giving a
scalar, a∧b = axby−aybx. This also open for signed curvatures,

κ =
c′∧ c′′

|c′|3
, c ↪→ R2.

which give a positive curvature on left hand side and negative curvature on right hand
side of the curve.
Related to the curvature is the radius of curvature: r = 1

κ
.

4.2. FUNCTION SPACES AND BASIS FUNCTIONS 37

4.2 Function spaces and Basis functions

The curve expression (4.4) can be rewritten as follows

α(t) =
(

6t−9t2 +6t3

−3t +9t2−6t3

)
=

(
6
−3

)
t+
(
−9

9

)
t2+

(
6
−6

)
t3, 0≤ t ≤ 1. (4.8)

This expression is on the general form

α(t) = a0 1+a1 t +a2 t2 +a3 t3, 0≤ t ≤ 1. (4.9)

where a0 = (0,0), a1 = (6,−3), a2 = (−9,9) and a3 = (6,−6) are coefficient vectors,
and the basis functions are on the monomial form, ie the power basis {t i}3

i=0.

Parametric Polynomial Curves
In general, a parametric curve of degree d polynomials using the power basis will be
on the following form

α(t) =
d

∑
i=0

ai t i, t ∈ I ⊂ R (4.10)

where ai, i = 0,1, ...,d are vectors in the space where the curve is embedded.

One can easily see that the power basis in (4.10) can act in the same way as basis vectors
in a (d + 1)-dimensional real vector space. They are clearly linear independent because
you can not get one of the basis functions from a linear combination of the others. We
can therefor treat the set of all polynomial based functions of degree most d as a vector
space where 1, t, t2, ..., td are basis vectors as in (4.10).

This leads to a general expression of curve formulas,

Parametric Curves in general

α(t) =
k

∑
i=1

ci bi(t), t ∈ I ⊂ R (4.11)

where ci, i = 1, ...,k are vectors/points in the space where the curve is embedded,
and bi(t), i = 1, ...,k is a set of linearly independent functions spanning a given finite
dimensional function space.

Note that these are finite dimensional vector spaces, and the curves therefore have big
restrictions in the shaping possibilities. A second degree curve has no inflection points, a
third degree curve has only one inflection points and so on. Imagine that you are drawing
a curve freehand. To find an expression for this curve will require an infinite degree of the
polynomial and, thus, an infinite dimensional vector space. Infinite dimensional vector
spaces can be useful theoretically, but they are certainly not possible to implement for
curves and surfaces in design applications on a computer.

38 CHAPTER 4. PARAMETRIC CURVES

Function space
is a very useful concept in constructing and analyzing curves for geometric modeling
and design (remember that a function space is a vector space).
Definition 4.3. A function space is a set of functions of a given kind from a set X to a
set Y. It is a topological vector space whose ”vectors” are functions.
A typical example is the set of all polynomial of degree most 3, mapping the interval
I = [0,1] to Rn, n > 0 but finite. We denote this function space for P3(I)
In the following sections we will show that in the polynomial case there are several
set of basis functions for a given function space and thus to use for the same curves,
all with valuable properties.
Infinite dimensional function spaces are useful theoretically.
Definition 4.4. An infinite dimensional function space is a set F (I) that is the collec-
tion of all real-valued continuous functions defined on some interval I, and F (n)(I)
is the collection of all functions ∈F (I) with n continuous derivatives.
Example of an infinite dimensional function space is the Hilbert space L2, the set of
all functions f : R→ R such that the integral of | f (x)|2 over the whole real line is
finite. In this case, the inner product is

〈 f ,g〉=
∞∫
−∞

f (x)g(x)dx

4.3 Hermite Curves
We use the polynomial example first formulated in (4.4) and reformulated in (4.8).

α(t) =
(

6
−3

)
t +
(
−9

9

)
t2 +

(
6
−6

)
t3 0≤ t ≤ 1.

We compute the first derivative

α
′(t) =

(
6
−3

)
+2
(
−9

9

)
t +3

(
6
−6

)
t2, 0≤ t ≤ 1.

We then compute the expressions at the start parameter value t = 0 and the end parameter
value t = 1,

α(0) =
(

6
−3

)
0+
(
−9

9

)
02 +

(
6
−6

)
03 =

(
0
0

)
,

α(1) =
(

6
−3

)
1+
(
−9

9

)
12 +

(
6
−6

)
13 =

(
3
0

)
,

α
′(0) =

(
6
−3

)
+2
(
−9

9

)
0+3

(
6
−6

)
02 =

(
6
−3

)
,

α
′(1) =

(
6
−3

)
+2
(
−9

9

)
1+3

(
6
−6

)
12 =

(
6
−3

)
.

4.3. HERMITE CURVES 39

a(0) a(1)

a(0)´ a(1)´

Figure 4.5: A plot of the curve from expression (4.4) and the four coefficients, the start
point and respective first derivative and the end point and the respective first derivative.

In Figure 4.5 there is a new plot of α(t) plotted in Figure 4.3. Now the start and the end
point of the curve, α(0) and α(1) are marked with circles, and the respective tangen-
t/velocity vectors at the start and end of the curve, α ′(0) and α ′(1) are plotted as dashed
arrows.

The next step is to look at the general expression for polynomial based curves of degree
3, ie equation (4.9) in section 4.2, and its 1st-derivative,

α(t) = a0 +a1 t +a2 t2 +a3 t3,
α ′(t) = a1 +2a2 t +3a3 t2. (4.12)

From the expression (4.12) we compute the position of the starting point, α(0), the po-
sition of the endpoint, α(1), the 1st-derivative (the tangent/velocity vector) at the start
point, α ′(0), and the 1st-derivative at the end point, α ′(1);

α(0) = a0,
α(1) = a0 +a1 +a2 +a3,
α ′(0) = a1,
α ′(1) = a1 +2a2 +3a3.

We reorganize in matrix notation and get
α(0)
α(1)
α ′(0)
α ′(1)

=


1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3




a0
a1
a2
a3

 . (4.13)

We turn the equation in (4.13) and invert the matrix
a0
a1
a2
a3

=


1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1




α(0)
α(1)
α ′(0)
α ′(1)

 . (4.14)

40 CHAPTER 4. PARAMETRIC CURVES

We rewrite the curve α(t) from (4.12) to vector notation using inner product, ie

α(t) =
(
1, t, t2, t3)


a0
a1
a2
a3

 .

The next step is to replace the vector of coefficients (ai, i = 0,1,2,3) on right hand side
in the equation above with the expression on right hand side in (4.14), ie

α(t) =
(
1, t, t2, t3)


1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1




α(0)
α(1)
α ′(0)
α ′(1)

 . (4.15)

Finally we compute the vector with the power basis on left hand side with the matrix,

α(t) =
(
1−3t2 +2t3, 3t2−2t3, t−2t2 + t3, −t2 + t3)


α(0)
α(1)
α ′(0)
α ′(1)

 .

In the vector on left hand side we now have a new set of basis functions for a 3rd-degree
polynomial based curve. This gives:

Hermite Curves, 3rd-degree
are polynomial based curves on the following form:

α(t) = α(0) H1(t)+α(1) H2(t)+α
′(0) H3(t)+α

′(1) H4(t), t ∈ [0,1], (4.16)

where the coefficients are the position at start α(0) and end α(1), and the first deriva-
tive at start α ′(0) and end α ′(1). The four 3rd-degree Hermite basis functions are:

H1(t) = 1−3t2 +2t3 = (2t +1)(1− t)2 ,
H2(t) = 3t2−2t3 = (3−2t) t2,

H3(t) = t−2t2 + t3 = t (t−1)2 ,
H4(t) =−t2 + t3 = t2 (t−1) .

(4.17)

The fact that the matrix in (4.13) is inverted in (4.14) and therefore obvious is invertible
proves that the set of Hermite basis functions are linearly independent and thus is a basis
set for 3rd-degree polynomial curves. The four basis functions are plotted in Figure 4.6.

The special about Hermite curves is that the four coefficients are the starting point and
it’s related velocity vector (the first derivative) and the end point and it’s related velocity
vector. This is very practical for constructing curves. This also explains the name2;

2Hermite Curves and Hermite interpolation is named after Charles Hermite (1822 – 1901), a French
mathematician who did research on number theory, quadratic forms, invariant theory, orthogonal polyno-
mials, Abelian and elliptic functions, and algebra.

4.3. HERMITE CURVES 41

1

1

t

H (t)2H (t)1

H (t)3

H (t)4

1
2

1
2

0
0

Figure 4.6: A plot of a the four Hermite basis function in (4.17). The functions connected
to vectors are red. One can clearly see the symmetry in the pairs of functions.

Hermite interpolation is interpolating a point and the derivative vectors at the same point.
This is also called osculatory interpolation (osculatory means kissing on Latin).

The property that is most important for the set of Hermite basis function of degree three,
H3(t) = [H1(t), H2(t), H3(t), H4(t)], is,

H3(0) = [1, 0, 0, 0],
H3(1) = [0, 1, 0, 0],
H′3(0) = [0, 0, 1, 0],
H′3(1) = [0, 0, 0, 1].

(4.18)

Notice that H1(t)+H2(t) = 1. This is called fulfilling the property of partition of unity.
These two basis functions, H1(t) and H2(t), are blending the points. The other two basis
functions H3(t) and H4(t) are blending vectors and does not sum to 1. The importance of
this was explained in the section of Affine spaces, see page 14. The use of a power basis
set is sometimes called the algebraic form while using the Hermite basis set is called the
geometric form.

Hermite interpolation can also be done for higher degree polynomials. Thus, we will look
at general expression for polynomial-based curves of degree 5 and it´s first and second
derivatives,

α(t) = a0 +a1 t +a2 t2 +a3 t3 +a4 t4 +a5 t5

α ′(t) = a1 +2a2 t +3a3 t2 +4a4 t3 +5a5 t4.

α ′′(t) = 2a2 +6a3 t +7a4 t2 +20a5 t3.

(4.19)

We start by computing from (4.19) the position in the starting point α(0), the position of
the endpoint α(1), the 1st-derivative (the tangent vector) in the starting point α ′(0) and
the first derivative of the endpoint α ′(1), the 2nd-derivative in the starting point α ′′(0) and

42 CHAPTER 4. PARAMETRIC CURVES

the 2nd-derivative of the endpoint α ′′(1);

α(0) = a0
α(1) = a0 +a1 +a2 +a3 +a4 +a5
α ′(0) = a1
α ′(1) = a1 +2a2 +3a3 +4a4 +5a5
α ′′(0) = 2a2
α ′′(1) = 2a2 +6a3 +7a4 +20a5.

We reorganize the equations in matrix notation and get
α(0)
α(1)
α ′(0)
α ′(1)
α ′′(0)
α ′′(1)

=


1 0 0 0 0 0
1 1 1 1 1 1
0 1 0 0 0 0
0 1 2 3 4 5
0 0 2 0 0 0
0 0 2 6 12 20




a0
a1
a2
a3
a4
a5

 . (4.20)

We invert the matrix and turn the total equation in (4.20) to
a0
a1
a2
a3
a4
a5

=



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1

2 0
−10 10 −6 −4 −3

2
1
2

15 −15 8 7 3
2 −1

−6 6 −3 −3 −1
2

1
2




α(0)
α(1)
α ′(0)
α ′(1)
α ′′(0)
α ′′(1)

 . (4.21)

We write the curve α(t) on vector notation using inner product, ie

α(t) =
(

1, t, t2, t3, t4, t5
)


a0
a1
a2
a3
a4
a5

 .

The next step is to replace the vector of coefficients (ai, i = 0,1,2,3,4,5) on right hand
side in the equation above with the expression on right hand side in (4.21):

α(t) =
(

1, t, t2, t3, t4, t5
)


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1

2 0
−10 10 −6 −4 −3

2
1
2

15 −15 8 7 3
2 −1

−6 6 −3 −3 −1
2

1
2




α(0)
α(1)
α ′(0)
α ′(1)
α ′′(0)
α ′′(1)

 . (4.22)

Finally we compute the vector with the power basis on left hand side with the matrix, and
we get the new set of basis functions for a 5th-degree polynomial based curve. The six

4.4. BÉZIER CURVES 43

t

H (t)
å

1
H (t)
å

2

H (t)
å

3

H (t)
å

4

H (t)
å

5 H (t)
å

6

t

1
2

1
4

3
4

1
100

2
100

0
0

0

1

1 1

1
4

1
2

1
2

0

Figure 4.7: A plot of a the six 5th-degree Hermite basis functions defined in (4.24). The
functions connected to the second derivatives are also plotted separately on right hand
side, since the values are so small that we can nearly see them together with the other
basis functions on the plot on left hand side.

basis functions are plotted in figure 4.7. Thus we get:

Hermite Curves, 5th-degree
are polynomial based curves on the following form:

α(t) = α(0) Ĥ1(t)+α(1) Ĥ2(t)+α
′(0) Ĥ3(t)+

α
′(1) Ĥ4(t)+α

′′(0) Ĥ5(t)+α
′′(1) Ĥ6(t), t ∈ [0,1],

(4.23)

where the coefficients are the position at start α(0) and end α(1), the first derivative
at start α ′(0) and end α ′(1), and the second derivatives at start α ′′(0) and end α ′′(1).
The six 5th-degree Hermite basis functions are

Ĥ1(t) = 1−10t3 +15t4−6t5 =
(
6t2 +3t +1

)
(1− t)3

Ĥ2(t) = 10t3−15t4 +6t5 =
(
6t2−15t +10

)
t3

Ĥ3(t) = t−6t3 +8t4−3t5 = (3t +1)(1− t)3 t
Ĥ4(t) =−4t3 +7t4−3t5 = (3t−4)(1− t) t3

Ĥ5(t) = 1
2t2− 3

2t3 + 3
2t4− 1

2t5 = 1
2 (1− t)3 t2

Ĥ6(t) = 1
2t3− t4 + 1

2t5 = 1
2 (1− t)2 t3.

(4.24)

4.4 Bézier Curves
In Figure 4.5 was the curve from (4.4) plotted together with the four Hermite coefficients,
two points and two vectors. The next thing we can do is to replace the two vectors with
two points so that we only have points as coefficients. Recall that the dimension of the
polynomial function space is 4, and that we will thus have 4 points as coefficients. This
means that the points are connected by 3 lines (see Figure 4.8). The length of the 1st-
derivative vector is the speed, and since the parameter range is 1, the speed and the curve
length are on average equal. We therefor use 1

3 of the length of the vectors to find the

44 CHAPTER 4. PARAMETRIC CURVES

p0

p1

p2

p3

Figure 4.8: A plot of a curve first formulated in expression (4.4). The Bézier control
polygon and the four control points (coefficients) are also plotted.

points. We name the points pi and get

p0 = α(0),
p1 = α(0)+ 1

3α ′(0),
p2 = α(1)− 1

3α ′(1),
p3 = α(1).

Reorganizing this in matrix notation,
p0
p1
p2
p3

=


1 0 0 0
1 0 1

3 0
0 1 0 −1

3
0 1 0 0




α(0)
α(1)
α ′(0)
α ′(1)

 , (4.25)

inverting, 
α(0)
α(1)
α ′(0)
α ′(1)

=


1 0 0 0
0 0 0 1
−3 3 0 0
0 0 −3 3




p0
p1
p2
p3

 . (4.26)

From expression (4.15) we have

α(t) =
(
1, t, t2, t3)


1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1




α(0)
α(1)
α ′(0)
α ′(1)

 .

Replacing the Hermite coefficient with (4.26) we get

α(t) =
(
1, t, t2, t3)


1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1




1 0 0 0
0 0 0 1
−3 3 0 0
0 0 −3 3




p0
p1
p2
p3

 .

4.4. BÉZIER CURVES 45

10

1

0 t

b (t)0,3

b (t)1,3 b (t)2,3

b (t)3,3

1
2

1
2

Figure 4.9: A plot of the four Bézier basis functions of degree 3 specified in the formula
(4.28) used to generate a 3rd-degree Bézier curves defined in (4.27).

Finally, we computing the vector on left hand side with the two matrices and we get,

α(t) =
(
(1− t)3, 3t(1− t)2, 3t2(1− t), t3)


p0
p1
p2
p3

 .

We now have another new set of basis functions for the curve where we previously have
the power basis in (4.9) and afterwards the Hermite basis in (4.16). This new sets provides:

Bézier Curves of degree 3
is uniquely defined by a set of four ordered points describing a control polygon (plot-
ted as dotted lines in the example in figure 4.8),

α(t) = p0 b0,3(t)+ p1 b1,3(t)+ p2 b2,3(t)+ p3 b3,3(t) =
3

∑
i=0

pi bi,3(t), t ∈ [0,1],

(4.27)
where the 4 Bézier basis functions are the set of 3rd-degree Bernstein polynomials

b0,3(t) = (1− t)3

b1,3(t) = 3t(1− t)2

b2,3(t) = 3t2(1− t)
b3,3(t) = t3.

(4.28)

The fact that the matrix in (4.25) is inverted in (4.26) proves that the set of 3rd-degree
Bézier basis functions (the Bernstein polynomials) is linearly independent and thus is a
basis for 3rd polynomial degree curves. The four basis functions for third degree Bézier
curves are plotted in Figure 4.9.

46 CHAPTER 4. PARAMETRIC CURVES

1. grad 2. grad

3. grad
4. grad

Figure 4.10: A plot of four Bézier curves of degree 1, 2, 3 and 4. Also the control points
(marked with circles) and the control polygons are plotted. The first degree curve and it’s
control polygon coincide.

The set of basis functions for 3rd-degree Bézier curves is called the Bernstein polynomi-
als of degree 3. There is a set of Bernstein polynomials for each degree. They will be
described further in the following subsection, but every set are fulfilling the requirement
to be a set of basis functions for their respective degrees of polynomial functions on the
domain [0,1]. Bézier curves are using a set of Bernstein polynomials as their blending
functions. It follows that there are Bézier curves of all polynomial degrees d and that they
are uniquely defined by an ordered set of d +1 points.

Bézier Curves of degree d

is uniquely defined by d+1 control points describing a control polygon. The general
expression for a Bézier curve of degree d is,

α(t) =
d

∑
i=0

pi bi,d(t), t ∈ [0,1], (4.29)

where the coefficients pi, i = 0,1, ...,d are the d+1 points defining the control poly-
gon of the Bézier curve. The set of the d+1 basis functions bi,d(t), i = 0, ..,d are the
Bernstein polynomials;

bi,d(t) =
(

d
i

)
t i(1− t)d−i, i = 0,1, ...,d.

The Bézier curve start at the first control point and ends at the last control point. The
tangent of the curve are equal the direction of the control polygon at the start and end
point. The control polygon is modeling the curve in such a way that the variation of
the curve are smaller than the variation of the control polygon (called the variation
diminishing property). Examples can be seen in the figures 4.8 and 4.10.

4.4. BÉZIER CURVES 47

Bézier curves3 are among the most popular curve formats. They are defined only by a
set of points called a control polygon. As we can see in figure 4.10 the control polygon
is modeling the curve. In the figure, a first degree, a second degree, a third degree and
a fourth degree Bézier curve are plotted together with their respective control polygons.
The first degree curve and it’s control polygon is actually coinciding. As we will se later
Bézier curves are actually a special case of B-splines. Several algorithms for computing
Bézier curves will therefor be shown when B-spline is treated.

4.4.1 Bernstein polynomial
An algorithm for computing Bernstein polynomials can be made recursively. And we
will also see that they, on the domain [0,1], can form a basis for curves and that each set
always sums up to 1.

The general expression for a set of Bernstein polynomial of degree d, restricted to the
domain [0,1], are

bi,d(t) =
(

d
i

)
t i(1− t)d−i, i = 0,1,2, . . . ,d.

The name Bernstein polynomials were first used for the function itself were these poly-
nomials were the basis functions.4 Today, however, the set of basis functions are usually
called the Bernstein polynomials. Below follows the 6 first set of Bernstein basis func-
tions (d = 0,1,2,3,4,5), one set on each row,

1
1− t t

(1− t)2 2t(1− t) t2

(1− t)3 3t(1− t)2 3t2(1− t) t3

(1− t)4 4t(1− t)3 6t2(1− t)2 4t3(1− t) t4

(1− t)5 5t(1− t)4 10t2(1− t)3 10t3(1− t)2 5t4(1− t) t5

(4.30)

The notation is as following

b0,0(t)

b0,1(t) b1,1(t)

b0,2(t) b1,2(t) b2,2(t)

b0,3(t) b1,3(t) b2,3(t) b3,3(t)

———————- and so on ————————

3Bézier Curves are named after Pierre Bézier (1910 – 1999). He worked for Renault from 1933 – 1975,
where he developed his UNISURF CAD-CAM system. He published and patented the results in 1962
although Paul de Castejau (1930 –) already in 1959 had made an algorithm for computing Bézier Curves
but only published this in an internal Citroén report.

4The polynomial occurred as result of the work of Sergei Natanovich Bernstein, an Ukrainian mathe-
matician (1880-1968). Bernstein introduced the polynomials in 1911 (published in [10]), using them for
constructive proof of the Stone-Weierstrass approximation theorem. For a closer study of these polynomials
see page 183–186 in [91] or page 108–126 in [35].

48 CHAPTER 4. PARAMETRIC CURVES

a) b)

c)

e)

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1

d)

f)

b (t)0,1 b (t)1,1 b (t)0,2
b (t)2,2

b (t)0,3
b (t)3,3

b (t)1,3 b (t)2,3

b (t)0,4

b (t)1,4 b (t)2,4
b (t)3,4

b (t)4,4

b (t)1,2

b (t)0,5
b (t)0,6

b (t)1,5 b (t)2,5 b (t)3,5
b (t)4,5

b (t)5,5

b (t)1,6
b (t)2,6 b (t)3,6

b (t)4,6 b (t)5,6

b (t)6,6

Figure 4.11: Six sets of Bernstein basis polynomials. a) is the set of degree, forming
first degree Bézier curves. b) is the set of degree two, c) is the set of degree three, d) is the
set of degree four, e) is the set of degree five, f) is the set of degree six. All sets are basis
functions for Bézier curves of the respective degree.

In figure 4.11 are the six sets of Bernstein polynomials of degree 1 to 6 plotted. These are
the functions on each row of expression 4.30.

The algorithm for computing the sets of d+1 Bernstein polynomials of degree d is recur-
sive, and using the set of d Bernstein polynomials of degree d−1.

1. First we compute the one on the left hand side, b0,d(t) = (1− t) b0,d−1(t),

2. if d > 1 (we have more than two polynomials) we compute all internal polynomials
in the row: for i = 1, ...,d−1, bi,d(t) = t bi−1,d−1(t)+(1− t) bi,d−1(t).

3. Finally we compute the one on the right hand side, bd,d(t) = t bd−1,d−1(t).

We start with the function b0,0(t) = 1 (a polynomial of degree 0). We then compute the
next set, the degree d = 1 based on b0,0(t) and then the next, and so on. The algorithm is
also called a pyramid algorithm (see [77]). Another view of the algorithm will be shown
in the next section.

Algorithm 1. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes a vector bd(t) ∈ Rd+1, containing the values of the d +1 Bern-
stein polynomials {bd,i(t)}d

i=0. The input variables are: the degree d of the Bernstein
polynomials and the parameter value t ∈ [0,1].

vector〈double〉 bernstein (int d, double t)

4.4. BÉZIER CURVES 49

vector〈double〉 b(d+1); // The return vector, dimension d +1.
b0 = 1; // A general Cox/deBoor like algorithm for
for (int i=1; i≤ d; i++) // - Bernstein polynomials, computing the

bi = t bi−1; // - value for the set of polynomial of degree d.
for (int j=i-1; j > 0; j−−)

b j = t b j−1 +(1− t) b j;
b0 = (1− t) b0;

return b;

Lemma 4.1. The Bernstein polynomials of degree d form a basis-set for polynomial func-
tions of degree d and lower, on the domain [0,1].

Proof. This is the same as answering the following question; are the functions in the set
linearly independent of each other or can we get one of them as a linear combination of
the other?

The answer is; they are linearly independent. This can be shown in the following way, the
argument is clearly illustrated in the pyramid (4.30):

• The function on the right is the only one with only one term (of degree d). It is
obvious linearly independent from the other.

• the next function from right hand side is the only one with only two terms (degree
d and d−1. It is obvious independent from the other functions.

• The same argument can be used for all other functions because the number of terms
increase in the same way as the second one when we go from right to left.

Lemma 4.2. The set of Bernstein polynomials of degree d sums up to 1 for all d. We call
this property; to form a partition of unity on the domain [0,1], and it is expressed by

d

∑
i=0

bi,d(t) = 1, for d = 1,2,3, ...

Proof. We start with the first function (on the first row) b0,0(t) = 1 that obvious sum up
to 1. The next row, b0,1(t)+ b1,1(t) = (1− t)+ t = 1 i.e. also sum up to 1. If we now
look at the sum sd(t) of a set (a row) of degree d defined by the recursive algorithm on
the previous page, we get

sd(t) = (1− t) b0,d−1(t)+
d−1

∑
i=1

(t bi−1,d−1(t)+(1− t) bi,d−1(t))+ t bd−1,d−1(t).

If we reorganize this we get,

sd(t) =
d−1

∑
i=0

bi,d−1(t) = sd−1(t)

which shows that the sum of a row is equal the sum of the row above. By induction this
shows that a set of Bernstein basis functions for all degrees sum up to 1.

50 CHAPTER 4. PARAMETRIC CURVES

c0

c01

c1 c2

c3

c012
c12

c23
c123c0123

Figure 4.12: A Bézier curve (bold) and the points (bullets) and lines (dotted) illustrating
the de Casteljau’s algorithm for a third degree Bézier curve at t = 0.6.

4.4.2 Factorization and de Casteljau’s Corner cutting algorithm
To further investigate the algorithm for Bernstein polynomials and Bézier curves, we start
with linear interpolation between two points c0 and c1 (in the plane or the 3D space):

c(t) = (1− t) c0 + t c1.

For t ∈ [0,1] we get the line segment between c0 and c1.

Given a sequence of points c0,c1,c2,c3. If, for a given t ∈ [0,1] interpolate between pairs
of two points, c0 and c1, c1 and c2, c2 and c3, we get three new points, which we call c01,
c12 and c23, respectively. In matrix vector notation we have done the following, c01

c12
c23

=

 1− t t 0 0
0 1− t t 0
0 0 1− t t




c0
c1
c2
c3

 .

If we repeat the process with these new control points we get(
c012
c123

)
=

(
1− t t 0

0 1− t t

) c01
c12
c23

 ,

and finally

c0123 =
(

1− t t
)(c012

c123

)
.

This process is called de Casteljau’s5 corner cutting algorithm for evaluating Bézier curves
(see [39] and [41]), and it is illustrated in Figure 4.12.

If we connect these three multiplications, we get the following equation for a third degree
Bézier curve,

c(t) =
(

1− t t
)(1− t t 0

0 1− t t

) 1− t t 0 0
0 1− t t 0
0 0 1− t t




c0
c1
c2
c3

 . (4.31)

5Paul de Casteljau (1930 -) is a French physicist and mathematician. In 1959, while working at Citroën,
he developed an algorithm for evaluating calculations on what later was named Bézier curves because he
was not permitted to publish his early work. We also call the multilinear polynomials ”blossoming”,

4.4. BÉZIER CURVES 51

If the matrices are multiplied from the right, we follow the pyramid in (4.30) and Algo-
rithm 1. For each matrix we multiply in, we get a new row in the pyramid in (4.30). This
means that when we have multiplied together all the matrices we have the four Bernstein
polynomials of degree 3, ie(

(1− t)3, 3(1− t)2t, 3(1− t)t2, t3) .
We call these matrices for the Bernstein factor matrices and denote them Td(t). For ex-
ample if d = 2 we get

T2(t) =
(

1− t t 0
0 1− t t

)
.

We now have the following general definition of the Bernstein factor matrices.

Definition 4.5. Td(t) is a matrix with dimension d× (d +1) where all lines numbered j

a) only have element number j and j+1 different from zero.
b) where (in the Bézier case) element number j is 1− t and element number j+1 is t.

Note that in the ordinary Bézier case we use t. We can also scale and translate the domain
by using ws,e(t) = t−s

e−s instead of t. Later we will see that in B-splines we use a translation
and scaling function wd,i(t) =

t−ti
ti+d−ti

, see page 82 and 87.

Because we have chosen this notation for the set of Bernstein factor matrices, we will use
the following notation for the vector of Bernstein polynomials of degree d:

Td(t) = T1(t)T2(t) · · ·Td(t) = (b0(t),b1(t), . . . ,bd(t)) .

It follows that equation (4.31) can be expressed as

c(t) = T1(t)T2(t)T3(t) c = T3(t) c,

where c = (c0,c1,c2,c3)
T is a vector of points. In traditional notation this will be

c(t) =
3

∑
i=0

bi,d(t) ci.

Notice that the derivative of the matrix Td(t) is a matrix of constants. We, therefor, denote
it T ′d . For d = 1 we get

T ′1 = (−1, 1) .

We can now look at a matrix version of a Bézier curve as described in expression (4.31).
In the following equations we will see a 3rd-degree Bézier curve and its three derivatives
in matrix form.

c(t) = T3(t) C = T1(t)T2(t)T3(t) C,
c′(t) = 3 T2(t)T′ C = 3 T1(t)T2(t) T ′3 C,
c′′(t) = 6 T1(t)T′2 C = 6 T1(t) T ′2T ′3 C,
c′′′(t) = 6 T′3 C = 6 T ′1T ′2T ′3 C.

(4.32)

52 CHAPTER 4. PARAMETRIC CURVES

The indices denotes the number of rows in the matrix. The derivative of the matrix T (t),
denoted T ′ is a matrix independent of t. Expanding (4.32), we get,

c(t) =
(

1− t t
)(1− t t 0

0 1− t t

) 1− t t 0 0
0 1− t t 0
0 0 1− t t




c1
c2
c3
c4

 ,

c′(t) = 3
(

1− t t
)(1− t t 0

0 1− t t

) −1 1 0 0
0 −1 1 0
0 0 −1 1




c0
c1
c2
c3

 ,

c′′(t) = 6
(

1− t t
)(−1 1 0

0 −1 1

) −1 1 0 0
0 −1 1 0
0 0 −1 1




c0
c1
c2
c3

 ,

c′′′(t) = 6
(
−1 1

)(−1 1 0
0 −1 1

) −1 1 0 0
0 −1 1 0
0 0 −1 1




c0
c1
c2
c3

 .

(4.33)

The equations also depends on the commutativity relations between T (t) matrices and
their derivatives. For example is T ′1T2(t)T3(t) = T1(t)T ′2T3(t) = T1(t)T2(t)T ′3(t), and it
follows that

c′(t) =
(
T ′1T2(t)T3(t)+T1(t)T ′2T3(t)+T1(t)T2(t)T ′3

)
C = 3 T1(t)T2(t) T ′3 C.

A proof of the commutativity relations is given in subsection ??.

Summing up the factorisation, we can clearly see that:

i) If we compute from the right hand side (skipping the zeros), we get the de Casteljau
corner cutting algorithm.

ii) If we compute from the left hand side, we get an algorithm of Cox/de Boor type.
iii) If we multiply all matrices without the coefficient vector on the right hand side, we

will get the Bernstein polynomials and their derivatives. 6

4.4.3 The Bernstein/Hermite matrix
We take the formulas in (4.33), multiply the three matrices in each row together and merge
the result into a matrix formulation, ie

c(t)
c′(t)
c′′(t)
c′′′(t)

=


(1− t)3 3t(1− t)2 3t2(1− t) t3

−3(1− t)2 9t2−12t +3 −3t(3t−2) 3t2

6−6t 18t−12 6−18t 6t
−6 18 −18 6




c0
c1
c2
c3

 . (4.34)

6In section 6.2.3, is the same matrix notation used on B-splines. This easily gives us both the Cox/de
Boor algorithm for B-splines, a geometric de Casteljau version for B-splines, and if we multiply the matri-
ces, a fast expanded version of an evaluator. Matrix notation on B-splines is also discussed in [116].

4.4. BÉZIER CURVES 53

This matrix (4.34) is the Bernstein/Hermite matrix of order 4. It is the set of Bernstein
polynomials of degree 3 and all their derivatives. Note that if we turn the expression in
4.34 and invert the matrix we get the Hermite interpolation formula


c0
c1
c2
c3

=


1 −t 1

2t2 −1
6t3

1 1
3 − t 1

2t2− 1
3t 1

6t2(1− t)
1 2

3 − t 1
2t2− 2

3t + 1
6 −1

6t(1− t)2

1 1− t 1
2t2− t + 1

2
1
6(1− t)3




c(t)
c′(t)
c′′(t)
c′′′(t)

 . (4.35)

Remember that a set of Bernstein polynomials of a given degree sums up to 1, so it
follows that the first row of the Bernstein/Hermite matrix (4.34) sums up to 1 and all the
other rows sums up to 0. It also follows, as we can see in (4.34) that all elements in the
first column of the inverted matrix are 1, cf. Taylor expansion in Section 5.5.

Recall from the sections 2.4, 2.5 and 2.6 that for a point in homogeneous coordinates
the last coordinate is equal to 1, and the last coordinate of a vector is equal to 0. The
properties of the Bernstein/Hermite matrix reflect this: c0, c1, c2, c3, c(t) are points,
while c′(t), c′′(t), c′′′(t) are vectors. Both (4.34) and (4.35) follows these states for points
and vectors.

The Bernstein/Hermite matrix of order k

where k = d + 1 and d is the polynomial degree of the Bernstein polynomials it
represent. The matrix is a k× k invertible matrix defined as

Bd(t,δ) =


b0,d (t) b1,d (t) . . . bd,d (t)

δ Db0,d (t) δ Db1,d (t) · · · δ Dbd,d (t)
...

...
δ dDdb0,d (t) δ dDdb1,d (t) · · · δ dDdbd,d (t)

 . (4.36)

where d > 0, t ∈ [0,1] and δ > 0.
Usually δ = 1, but if the domain is [a,b] and not [0,1], and the input parameter is
s ∈ [a,b] we then must scale and translate, and use t = s−a

b−a and δ = 1
b−a .

The special feature about this definition of the matrix (4.36) is the scaling δ j, where j,
the power exponent, is the row number (the first row is numbered 0). The reason for this
scaling is of course the scaling of the parameter domain.

As we saw in (4.34) and (4.35) there are two ways we can use this matrix:

1. Compute the Bernstein polynomials and it’s derivatives and thus the position and
the derivatives of a Bézier curve, expression (4.34).

2. Create a Bézier curve that for a given parameter value t interpolates a given position
and d subsequent derivatives (Hermite interpolation), expression (4.35).

The following algorithm creates the matrix Bd(t,δ) described in (4.36).

54 CHAPTER 4. PARAMETRIC CURVES

Algorithm 2. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes the extended square matrix Bd(t,δ) ∈ Rd+1×d+1, contained in
the first row, the values of the d + 1 Bernstein polynomials {bd,i(t)}d

i=0, and, in the fol-
lowing rows values for each of the d derivatives, {D jbd,i(t)}d

i=0, j = 1,2, . . . ,d, respec-
tively, in each of the j following rows. In addition, all rows where the number is j > 0
(the rows are numbered from 0 to d), are multiplied by δ j. If the matrix is supposed to be
used in a general evaluator, then δ = 1, and if the matrix is supposed to be used in Her-
mite interpolation and evaluation of local curves, then we have to use δi, see subsection
8.2.2, where i is the index of the local curve. The input variables are: the degree d of the
Bernstein polynomials, the parameter value t ∈ [0,1], and the scaling factor δ .

matrix〈double〉 BernsteinHermiteMat (int d, double t, double δ)
matrix〈double〉 B(d+1,d+1); // The return matrix, dimension (d +1)× (d +1).
Bd−1,0 = 1− t;
Bd−1,1 = t; // The general Cox/deBoor like algorithm for
for (int i=d-2; i≥ 0; i−−) // - Bernstein polynomials, computing the

Bi,0 = (1− t) Bi+1,0; // - triangle of values of bi, j(t)
for (int j=1; j < d− i; j++) // - of degree 1 to d, respectively in each row.

Bi, j = t Bi+1, j−1 +(1− t) Bi+1, j;
Bi,d−i = t Bi+1,d−i−1;

Bd,0 =−δ ;
Bd,1 = δ ; // Multiply all rows except the upper one
for (int k=2; k ≤ d; k++) // - with the derivative matrices in the

double s = k δ ; // - expression (4.33), and the scalings,
for (int i = d; i > d− k; i−−) // - so every row extends the number

Bi,k = s Bi,k−1; // - of nonzero elements to d.
for (int j = k−1; j > 0; j−−)

Bi, j = s
(
Bi, j−1−Bi, j

)
;

Bi,0 =−s Bi,0;
return B;

The order of this algorithm is clearly between O(n2) and O(n3) , and the following table
shows the number of multiplications depending on d, for d up to 10.

d 1 2 3 4 5 6 7 8 9 10
multiplications 0 11 30 59 100 155 226 315 424 555

The speed of the algorithm is not essential because the algorithm is only supposed to be
executed when the curves are made, or when the sampling is changed (preevaluation).
But for small d values (d < 4) the algorithm is fairly fast.

4.4.4 Degree Elevation of Bézier Curves
Remember that polynomial based curves can be on the power form,

α(t) =
d

∑
i=0

ai t i,

4.4. BÉZIER CURVES 55

where the coefficients ai are elements in the embedded space, typically R2 or R3.

Any polynomial curve of degree g < d can be expressed on this form, but where the
coefficients |ai|= 0, i > g. Degree elevation of Bézier curves is just about this, but where
we use Bernstein polynomials as basis functions instead of the power basis. Thus, degree
elevation can be done by basis change from Bernstein to power basis, raising the degree,
and convert the basis back to Bernstein polynomials. An easier way to find the formula is
the following,

c(t) =
d

∑
i=0

bi,d(t) ci = (1− t)
d

∑
i=0

bi,d(t) ci + t
d

∑
i=0

bi,d(t) ci

= (1− t)
d

∑
i=0

(
d
i

)
t i(1− t)d−i ci + t

d

∑
i=0

(
d
i

)
t i(1− t)d−i ci

=
d

∑
i=0

(
d
i

)
t i(1− t)d+1−i ci +

d

∑
i=0

(
d
i

)
t i+1(1− t)d−i ci

=
d +1− i

d +1

d

∑
i=0

bi,d+1(t) ci +
i+1
d +1

d

∑
i=0

bi+1,d+1(t) ci

= b0,d+1(t) c0 +
d

∑
i=1

bi,d+1(t)
(

i
d +1

ci−1 +

(
1− i

d +1

)
ci

)
+bd+1,d+1(t) cd,

which can be expressed in matrix form:

The Bézier degree elevation matrix
Given a Bézier curve of degree d, c(t) = ∑

d
i=0 bi,d(t) ci. To increase the degree to

d + 1 we must generate a new set of control points where we keep the first point,
create d new points in the middle and then keep the last one. On vector/matrix form
vi get, C̃=Dd C, where C̃=(c̃1, c̃2, . . . , c̃d), C=(c0,c1, . . . ,cd), andDd is the Bézier
degree elevation matrix of dimension d× (d +1), it is


c̃1
c̃2
...

c̃d

=


1− d

d+1
d

d+1 0 . . . 0
0 1− d−1

d+1
d−1
d+1 · · · 0

...
...

...
0 . . . 0 1− 1

d+1
1

d+1




c0
c1
...

cd−1
cd

 (4.37)

For the Bézier curve of degree d + 1 is the set of d + 2 control points
{c0, c̃1, c̃2, . . . , c̃d−1, c̃d,cd}.

From the matrix in (4.37) we can clearly see that degree elevation is corner cutting, which
is clearly illustrated in Figure 4.13. All the new control points we get by increasing the
degree by one are on the old control polygon. The degree elevation matrix from degree
2 to 3, the matrix from degree 3 to 4, the matrix from degree 4 to 5 and the matrix from

56 CHAPTER 4. PARAMETRIC CURVES

Figure 4.13: A 3rd-degree Bézier curve (black) and the four control points (bullets) and
control polygon (dotted red) and the control polygons of 4th-degree (green), 5th-degree
(orange), 6th-degree (dark green), 7th-degree (dark brown), 8th-degree (blue) and 9th-
degree (dark red) Bézier curve generated from the first one with the degree elevation
algorithm.

degree 5 to 6 are all shown below,

(
1
3

2
3 0

0 2
3

1
3

)
,


1
4

3
4 0 0

0 1
2

1
2 0

0 0 3
4

1
4

 ,


1
5

4
5 0 0 0

0 2
5

3
5 0 0

0 0 3
5

2
5 0

0 0 0 4
5

1
5

 ,


1
6

5
6 0 0 0 0

0 1
3

2
3 0 0 0

0 0 1
2

1
2 0 0

0 0 0 2
3

1
3 0

0 0 0 0 5
6

1
6

 .

It follows that for simple degree elevation we obtain the following coefficients expressed
with the coefficients from the polynomial degree below:

2→ 3 c1, 1
3 (c1 +2c2), 1

3 (2c2 + c3), c3.

3→ 4 c1, 1
4 (c1 +3c2), 1

2 (c2 + c3), 1
4 (3c3 + c4), c4.

4→ 5 c1, 1
5 (c1 +4c2), 1

5 (2c2 +3c3), 1
5 (3c3 +2c4), 1

5 (4c4 + c5), c5.

An example of continuous degree elevation is given in Figure 4.13. It is initially a 3rd-
degree Bézier curve where the four control points are marked with black circles. The
degree of the curve is raised degree by degree up to degree 9, and as we can see on the
dark red control polygon we will finally have 10 control points. The example also shows
that the control polygon converges quite slowly towards the curve.

4.5. CONVERTING BETWEEN HERMITE- AND BÉZIER- FORMAT 57

Table 4.1: Matrices for basis change

Type of basis function from power basis to power basis

Hermite 3rd-degree H=


1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1

 H−1 =


1 1 0 0
0 1 1 1
0 1 0 2
0 1 0 3


Bernstein 3rd-degree B=


1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

 B−1 =


1 1 1 1
0 1

3
2
3 1

0 0 1
3 1

0 0 0 1


4.5 Converting between Hermite- and Bézier- format
Hermite curves and Bézier curves are widely used in computer programs. Therefore, it
can be very useful to be able to convert from one format to another. In fact, all polynomial-
based curve formats of the same degree and over the same domain can be converted to
each other with a basis-shift matrix.

In Table 4.1 we find the basis-shift matrices for the 3rd-degree Hermite and Bernstein basis
functions. If we name the set (vectors) of 3rd-degree basis functions defining P3[0,1] for

M3(t) =
(
1, t, t2, t3)T

Power basis,

H3(t) =
(
1−3t2 +2t3, 3t2−2t3, t−2t2 + t3, −t2 + t3)T

Hermite basis,

T3(t) =
(
(1− t)3, 3t(1− t)2, 3t2(1− t), t3)T

Bézier basis,

we get T3(t) =B H−1 H3(t)

ie 
(1− t)3

3t(1− t)2

3t2(1− t)
t3

=


1 0 −3 0
0 0 3 0
0 0 0 −3
0 1 0 3




1−3t2 +2t3

3t2−2t3

t−2t2 + t3

−t2 + t3


Given a curve c(t) = pH3(t), where p = (c(0), c(1) c′(0), c′(1),). It follows that we can
find the control points c = (c0, c1, c2, c3) of the equivalent Bézier curve, c(t) = cT3(t),
by

c T3(t) = p H3(t)

c B H−1H3(t) = p H3(t)

c B H−1 = p
c = p H B−1.

It gives

(c0, c1, c2, c3) =
(
c(0), c(1), c′(0), c′(1)

)
1 1 0 0
0 0 1 1
0 1

3 0 0
0 0 −1

3 0

 .

58 CHAPTER 4. PARAMETRIC CURVES

4.6 Implementation and Tessellation
Rendering parametric curves normally requires tessellation which can be done by either
the graphics device, GPU, or the CPU. Hermite curves and Bézier curves normally have
no internal discontinuities for any order of derivatives, with the exception of geometric
discontinuity from singularities based on cusp, i.e. where the velocity, the length of the
1st derivative, is zero. Therefore, it is not natural to divide the parameter domain into
partitions. What we normally do is tessellate the curve, ie. divide the curve into small
parts that are usually rendered as line segments. There are three widely used tessellation
methods for curves,

• Uniform tessellation

• Tessellation based on speed

• Tessellation based on curvature

Uniform tessellation is based on n+ 1 points, which means dividing the domain into n
equal parts. For Hermite and Bézier curves, the domain is 1, ie. dt = 1

n so that the n+1
points that determine the rendering become {c(i∗dt)}n

i=0. This is the most used method.

Tessellation based on speed can be performed more or less complex. A simple version
is to first calculate the curve length l(c), see (4.5), with Romberg integration, modified
Algorithm 14. Then dl = l(c)/n, then start with the first sample point c(0) and t = 0. For
each new t-value, we must first calculate the time step dt. It is based on |c′(t)| dt = dl,
and it follows that dt = dl

|c′(t)| . Then we get the next sample point c(t + dt) and for the
next step we update t = t + dt. The final sample point is c(1). A more complex method
is to correct for that the speed may change over a step. To calculate the time step we then
get
(
|c′(t)|+ 〈c

′(t),c′′(t)〉
2|c′(t)| dt

)
dt = dl. This means solving a quadratic equation instead of a

linear one.

Tessellation based on curvature do not start with number of sample points, but only indi-
cates a minimum number of sample points. The main input is δ , the maximum allowed
distance between a curve segment and a straight line. Calculating a step dt is based on the
arc length b≈ dt |c′|, the curvature κ , (4.7) (where r = 1

κ
) and |c′|. We have cosα = r−δ

r
and α = b

r , so

cos
b
r
= 1− δ

r
,

b = r arccos(1−δ κ) ,

dt =
arccos(1−δ κ)

|c′|κ
.

This expression assumes that the curvature (actually the product of the curvature and the
speed) is not very small. Therefore, if we have anything near a straight line, we must base
the algorithm on a small number of points and uniform sampling.

Chapter 5

Classical interpolation theory

In his book on interpolation, Thiele characterized interpolation as the art of reading be-
tween lines in a numerical table (see [155]). Until the introduction of computers and
especially computer graphics this was actually a very precise formulation.

The history includes Astronomy in Mesopotamia and Babylon, mathematicians in ancient
Greece, Chinese mathematicians and Indian astronomer.

In Europe, apparently unaware of results obtained much earlier in other parts of the world,
interpolation theory started to develop after the great “scientific revolution” around 1500
AD. In particular the new developments in astronomy and physics, initiated by Coperni-
cus, continued by Kepler and Galileo, and culminating in the theories of Newton, gave
strong impetus to further advancement of mathematics, including what is now called
“classical” interpolation theory.

5.1 Divided differences
Given a point set {pi}n

i=0 = {(x0,y0),(x1,y1), ...,(xn,yn)}. A definition of the first-order
divided difference is,

[y0,y1] =
y0− y1

x0− x1
.

Higher-order divided differences is defined recursively,

[y0, . . . ,yn] =
[y0, . . . ,yn−1]− [y1, . . . ,yn]

x0− xn
, for n > 1.

Order 0 divided difference is notated [y0] = y0. The recursive process can be put in a
tabular form, i.e.

x0 y0 = [y0]
[y0,y1]

x1 y1 = [y1] [y0,y1,y2]
[y1,y2] [y0,y1,y2,y3].

x2 y2 = [y2] [y1,y2,y3]
[y2,y3]

x3 y3 = [y3]

59

60 CHAPTER 5. CLASSICAL INTERPOLATION THEORY

As an example, given a point set {(xi,yi)}3
i=0 = {(0,0),(1,1),(2,1),(3,0)}. From this set

of data we get the following recursion,

0 [y0] = 0
[y0,y1] =

0−1
0−1 = 1

1 [y1] = 1 [y0,y1,y2] =
1−0
0−2 = −1

2

[y1,y2] =
1−1
0−1 = 0 [y0,y1,y2,y3] =

−1
2 −

−1
2

0−3 = 0.
2 [y2] = 1 [y1,y2,y3] =

0+1
1−3 = −1

2
[y2,y3] =

1−0
0−1 =−1

3 [y3] = 0

If the data points are given as a function, i.e. organised as ti and f (ti), the data point
is (ti, f (ti)). For any function f : R→ Rm, m ∈ Z, and for any two values t0 6= t1, the
first-order divided difference is

f [t0, t1] =
f (t0)− f (t1)

t0− t1
.

Higher-order divided differences is then defined recursively,

f [t0, . . . , tn] =
f [t0, . . . , tn−1]− f [t1, . . . , tn]

t0− tn
, for all n > 1.

Some important properties,

� Linearity

(f +g)[t0, . . . , tn] = f [t0, . . . , tn]+g[t0, . . . , tn]

(λ · f)[t0, . . . , tn] = λ · f [t0, . . . , tn]

� Leibniz rule

(f ·g)[t0, . . . , tn] = f [t0] ·g[t0, .., tn]+ f [t0, t1] ·g[t1, .., tn]+ f [t0, .., tn] ·g[tn],

� Divided differences are symmetric, If σ is a permutation of {0, . . . ,n} then

f [t0, . . . , tn] = f [tσ(0), . . . , tσ(n)],

� Divided differences and mean value theorem

f [t0, . . . , tn] =
f (n)(ξ)

n! where ξ is in the open interval determined by the smallest
and largest of the tm’s

The formula for divided differences can be expanded as we can see below,

f [t0] = f (t0),
f [t0, t1] =

f (t0)
(t0−t1)

+ f (t1)
(t1−t0)

,

f [t0, t1, t2] =
f (t0)

(t0−t1)(t0−t2)
+ f (t1)

(t1−t0)(t1−t2)
+ f (t2)

(t2−t0)(t2−t1)
,

f [t0, t1, t2, t3] =
f (t0)

(t0−t1)(t0−t2)(t0−t3)
+ f (t1)

(t1−t0)(t1−t2)(t1−t3)
+ f (t2)

(t2−t0)(t2−t1)(t2−t3)
+

f (t3)
(t3−t0)(t3−t1)(t3−t2)

.

5.2. NEWTON POLYNOMIAL 61

We then get a direct formula for divided differences,

f [t0, . . . , tn] =
n

∑
i=0

f (ti)
n

∏
k=0,k 6=i

(ti− tk)
,

which can also be formulated more compact,

f [t0, ..., tn] =
n

∑
i=0

f (ti)
ω ′n(ti)

, (5.1)

where ωn(t) = (t− t0) · · ·(t− tn), i.e.

ωn(t) =
n

∏
k=0

(t− tk), and it follows that ω
′
n(ti) =

n

∏
k=0,k 6=i

(ti− tk). (5.2)

To extend divided differences to include equal values we has to look at derivatives. Re-
member that

f ′(t0) = lim
t1→t0

f (t0)− f (t1)
t0− t1

.

Thus we can define
f [ti, ti] = f ′(ti).

and if, in the expression for divided differences, ti is repeated n times we get a connection
between divided differences and the derivatives of a function in general, notice the inverse
scaling (n−1)!,

f [ti, ti, . . . , ti] =
f (n−1)(ti)
(n−1)!

ie f [ti repeated n times]. (5.3)

An important issue is that divided differences can be vector or point-valued. That is, if
f (ti) ∈ Rd, d > 0 then all the associated divided differences f [ti, . . . , ti+k] ∈ Rd .

5.2 Newton polynomial
We start with a first order divided differences. Given a set of values ti ∈ I ⊂ R. Then for
t ∈ I but t 6= t0 we get

f [t, t0] =
f (t)− f (t0)

t− t0
.

It follows that the value of f at any t can be written as

f (t) = f (t0)+(t− t0) f [t, t0]. (5.4)

We continue with a second order divided differences,

f [t, t0, t1] =
f [t, t0]− f [t0, t1]

t− t1
.

62 CHAPTER 5. CLASSICAL INTERPOLATION THEORY

p0

p1

p2

p3

Figure 5.1: The curve from the example below. The interpolation points are highlighted.

Turning this we get
f [t, t0] = f [t0, t1]+ (t− t1) f [t, t0, t1]. (5.5)

we can now substitute f [t, t0] in (5.4) with expression (5.5). Then we can repeat this
process with higher and higher order divided differences. The result is

f (t) = f [t0]+ (t− t0) f [t0, t1]
+ (t− t0)(t− t1) f [t0, t1, t2]
+ (t− t0)(t− t1)(t− t2) f [t0, t1, t2, t3]+ . . .

A compact notations is
f (t) =

k

∑
j=0

a jn j(t), (5.6)

where a j = f [t0, ..., t j], and n0(t)≡ 1 and n j(t) =
j−1

∏
i=0

(t− ti) when j > 0.

If we do not use a function notation but a set of points connected to each parameter value,
i.e. {(ti, pi)} we get a j = [p0, ..., p j], pi ∈ Rd, i = 0,1, . . . , j, d > 1.

Newton polynomials are used for polynomial interpolation. For a given set of distinct
parameter values {t j}d

j=0 and corresponding points {p j}d
j=0, the set gives the polynomial

of the least degree that at each value t j fit the corresponding point p j, i.e. the function
interpolate all points. As an example, let’s use the curve in the expression (4.4) in Chapter
4, which is plotted in Figure 4.3. The parameter range of the curve is [0,1]. We divide it
into 3 and get the following, t0 = 0, t1 = 1

3 , t2 = 2
3 and t3 = 1. When we use these four

parameter values in (4.4) we get the points, p0 = (0,0), p1 = (11
9 ,−

2
9), p2 = (16

9 ,
2
9) and

p3 = (3,0). If we calculate the divided differences, we get,

f
[

0,
1
3

]
=

(
0
0

)
−
(11

9
−2
9

)
0− 1

3

=

(
11
3

−2
3

)
, f
[

1
3
,
2
3

]
=

(11
9
−2
9

)
−
(16

9
2
9

)
1
3 −

2
3

=

(
5
3
4
3

)

f
[

2
3
,1
]
=

(19
9
2
9

)
−
(

3
0

)
2
3 −1

=

(
11
3

−2
3

)
, f
[

0,
1
3
,
2
3

]
=

(11
3
−2
3

)
−
(5

3
4
3

)
0− 2

3

=

(
−3

3

)

f
[

1
3
,
2
3
,1
]
=

(19
9
2
9

)
−
(

3
0

)
2
3 −1

=

(
3

−3

)
, f
[

0,
1
3
,
2
3
,1
]
=

(
−3
3

)
−
(

3
−3

)
0−1

=

(
6

−6

)
The points marked in red are the coefficients a1, a2 and a3, and together with a0 = p0 and
t0 = 0, t1 = 1

3 , t2 = 2
3 and t3 = 1 they define a curve using (5.6). The curve is the same as

in Figure 4.3 and is in Figure 5.1 plotted along with the four marked interpolation points.

5.3. LAGRANGE POLYNOMIALS 63

a)

0 1
0

1

t

L (t)1,1L (t)1,0 b)

t

L (t)2,0 L (t)2,1
L (t)2,2

d)
L (t)4,4

L (t)4,1

L (t)4,2

L (t)4,3

L (t)4,0

c)

t

L (t)3,1 L (t)3,3L (t)3,0
L (t)3,2

0 1 2

t

0 1 2 3 0 1 2 3 4

0

1

0

1

0

1

Figure 5.2: A plot of four sets of Lagrange interpolation polynomials (5.8). The set a) is
of polynomial degree one, forming first degree curves. The set b) is of polynomial degree
two, forming second degree curves. The set c) is of polynomial degree three, forming third
degree curves. The set d) is of polynomial degree four, forming forth degree curves. All
Lagrange interpolation polynomials are named Ld,i(t), where d is the polynomial degree
and i is the index of the interpolation point the function is connected to.

5.3 Lagrange polynomials
A very elegant alternative representation of Newton’s general formula, ie (5.6), which
does not require computation of divided differences, was published in 1779 by Waring
[159], this formula is

f (t) = f (t0)
(t− t1)(t− t2)(t− t3) · · ·

(t0− t1)(t0− t2)(t0− t3) · · ·
+

f (t1)
(t− t0)(t− t2)(t− t3) · · ·

(t1− t0)(t1− t2)(t1− t3) · · ·
+

f (t2)
(t− t0)(t− t1)(t− t3) · · ·

(t2− t0)(t2− t1)(t2− t3) · · ·
+

Notice the pattern of the ti in the expression above. A compact notation of the formula is,

f (t) =
d

∑
i=0

f (ti) Ld,i(t), (5.7)

where d is the polynomial degree, and where the basis functions, i.e the Lagrange poly-
nomials are

Ld,i(t) =
d

∏
j=0, j 6=i

(t− t j)

(ti− t j)
. (5.8)

In Figure 5.2 are all Lagrange polynomials Ld,i(t) up to degree four plotted. Note that
Ld,i(ti) = 1 and Ld,i(t j) = 0, j 6= i. Lagrange polynomials1 are used for polynomial

1Today, it is common to credit these polynomials to Lagrange, which however published it 16 years
after Waring [100]. According to Euler [61], the formula (5.7) can be linked to a related representation of
Newton’s formula, and according to Joffe [94], it was Gauss who first noticed the connection between the
formulae by Newton, Euler, and Waring-Lagrange, as appears from his posthumous works [72], although
Gauss did not refer to his predecessors.

64 CHAPTER 5. CLASSICAL INTERPOLATION THEORY

p
0

p
1

p
2

p(t)
01 p(t)

12

p (t)
012

p
3

p(t)
23

p (t)
123

p (t)
0123

Figure 5.3: Four points p0, p1, p2 and p3 are plotted in red. Three 1st degree curves
p01(t), p12(t), and p23(t) interpolate the points and are plotted in dashed black. Two 2nd
degree curve p012(t) and p123(t) are plotted in dashed blue and dashed orange, and one
3rd degree curve p0123(t) in solid green interpolates all four points.

interpolation. For a given set of distinct parameter values {t j}d
j=0 and corresponding

points {p j}d
j=0, the set and Lagrange polynomials gives the polynomial of the least degree

that at each value t j fit the corresponding point p j, i.e. the function interpolate all points.

Lemma 5.1. The Newton and Lagrange polynomials are two different representations as
expressions of the same polynomial.

The proof for lemma 5.1 can be found in appendix C.1.

Although the Newton and Lagrange polynomials are the same polynomials, they have
different advantages. Lagrange polynomials are the easiest and fastest to use because the
coefficients are the interpolation points. The Newton polynomials have the advantage that
one can add new interpolation points by adding a new term.

The Newton and Lagrange polynomials also show us a more basic result, namely that
only one polynomial of degree greater or equal to n interpolates n+1 point at n+1 given
values. This gives us the following theorem.

Theorem 5.1. If x0,x1, ...,xn are distinct real numbers, then for arbitrary values y0,y1, . . . ,yn,
there is a unique polynomial pn of degree at most n such that pn(xi) = yi, 0≤ i≤ n.

Proof. Suppose there were two such polynomials, pn and qn. Then the polynomial pn−qn
would have the property (pn−qn)(xi) = 0 for 0≤ i≤ n. Since the degree of pn−qn can be
at most n, this polynomial can have at most n zeros if it is not the 0 polynomial. Since the
xi are distinct, pn−qn should have n+1 zeros; it must therefore be 0. Hence, pn = qn.

5.3.1 Neville’s Algorithm

The algorithm is named after the English mathematician E.H. Neville (1889-1961). It is
a geometric interpretation of Newton/Lagrange polynomials. We take (5.6), expand it,
reorganise it, and introduce the Neville’s notation of an interpolation polynomials p...(t),

5.4. HERMITE INTERPOLATION 65

f (t) = p0 +(t− t0) f [t0, t1]+ (t− t0)(t− t1) f [t0, t1, t2]
= p0 +

t−t0
t0−t1

(p0− p1)+
(t−t0)(t−t1)

t0−t2
(f [t0, t1]− f [t1, t2])

= p0 +
t−t0
t0−t1

(p0− p1)+
(t−t0)(t−t1)

(t0−t2)
(p0−p1

t0−t1
− p1−p2

t1−t2
)

= t−t1
t0−t1

p0 +
t0−t
t0−t1

p1 +
(t−t0)(t−t1)

(t0−t2)
(p0−p1

t0−t1
− p1−p2

t1−t2
)

= p01(t)+
(t−t0)(t−t1)

(t0−t2)
(p0−p1

t0−t1
− p1−p2

t1−t2
)

= p01(t)+
t−t0
t0−t2

p01 +
t0−t
t0−t2

p12

= t−t2
t0−t2

p01(t)+
t0−t
t0−t2

p12(t)
= p012(t).

This procedure can be extended to higher degrees in the same way, and is essentially the
same as used in the proof of Lemma 5.1. This means that we now have a procedure for in-
terpolation of a point set p0, p1, p2, . . . that actually gives Newton / Lagrange polynomials.
The first step is to calculate,

p01(t) =
t− t1
t0− t1

p0 +
t0− t
t0− t1

p1, p12(t) =
t− t2
t1− t2

p1 +
t1− t
t1− t2

p2,

and further p23, p34, . . . which all give straight lines from p0 to p1, from p1 to p2 and so
on. The next levels are

p012(t) =
t−t2
t0−t2

p01 +
t0−t
t0−t2

p12, p123(t) =
t−t3
t1−t3

p12 +
t1−t
t1−t3

p23,

p0123(t) =
t−t3
t0−t3

p012 +
t0−t
t0−t3

p123,

where in the first line there are 2nd-degree curves interpolating p0, p1, p2 and p1, p2, p3,
and in the last line there is a 3rd-degree curve interpolating all 4 point. Furthermore, we
can compute several levels and thus more interpolation points with the same procedure.

In Figure 5.3 there is an example of interpolating 4 points with Neville’s algorithm. In his
book Pyramid Algorithms [77], Ron Goldman use Neville’s algorithm as one of the basic
pyramid algorithms.

5.4 Hermite interpolation
Hermite interpolation is a method closely related to Newton’s classical interpolation for-
mulae defined with divided differences (5.6). Hermite interpolation allows us to inter-
polate points together with a given number of subsequent derivatives in each point. The
result of the interpolation is a polynomial with a degree equal to the number of points +
the number of derivatives used together in the points - 1 (can also be less if the result is a
degenerate polynomial). In Hermite interpolation, we start by treating derivatives as extra
points. In the divided difference table, the points are repeated corresponding to the num-
ber of derivatives. To avoid division by zero, we replace the expression with derivatives
multiplied by a constant, depending on the order. For example, if a value ti is repeated n
times, from (5.3) we have

f [ti, ti, ..., ti] =
f (n−1)(ti)
(n−1)!

,

i.e. for n = 4 is, f [ti, ti, ti, ti] = 1
6 f (3)(ti). (NB, divided differences can be vector valued.)

66 CHAPTER 5. CLASSICAL INTERPOLATION THEORY

In Hermite interpolation we start with two points, f (ti) and f (ti+1), f : R→ Rd, d =
1,2,3, ... and two 1st-derivatives f ′(ti) and f ′(ti+1) connected to each point. We then
make a 3rd-degree polynomial using Hermite interpolation in the two points together with
their respective 1st-derivatives using (5.6)2,

ci(t) = f (ti)+(t− ti) f [ti, ti]
+ (t− ti)(t− ti) f [ti, ti, ti+1]

+ (t− ti)(t− ti)(t− ti+1) f [ti, ti, ti+1, ti+1].

(5.9)

If we ”nest out” the divided differences, we get

ci(t) = f (ti)+(t− ti) f ′(ti)

+(t− ti)(t− ti)
f ′(ti)− f [ti, ti+1]

ti− ti+1

+(t− ti)(t− ti)(t− ti+1)

f ′(ti)− f [ti,ti+1]
ti−ti+1

− f [ti,ti+1]− f ′(ti+1)
ti−ti+1

ti− ti+1
.

Since (t− ti+1) = (t− ti)+ (ti− ti+1) and we use this to substitute the third factor in the
third line, we get

ci(t) = f (ti)+(t− ti) f ′(ti)

+(t− ti)2 2 f ′(ti)+ f ′(ti+1)−3 f [ti, ti+1]

ti− ti+1

+(t− ti)3 f ′(ti)+ f ′(ti+1)−2 f [ti, ti+1]

(ti− ti+1)2 .

(5.10)

Note that by using Newton polynomials, we can add derivatives to the points or elsewhere
(with some restrictions) to the formula (5.9). In Figure 5.4, a curve f (t), based on a
combination of trigonometric and polynomial formulas, is plotted in dashed green. In
solid red, a 3rd degree polynomial curve is made by Hermite interpolation of two points
on the curve and their 1st derivatives. We see that the point should have been closer to get
a better approximation.

However, (5.10) can be transformed into a more convenient and familiar format. Let’s
start by expanding the formula (5.10),

ci(t) = f (ti)+
(t− ti)

(ti+1− ti)
(ti+1− ti) f ′(ti)

+
(t− ti)

2

(ti+1− ti)
2 (ti+1− ti)

(
3

f (ti)− f (ti+1)

(ti− ti+1)
−2 f ′(ti)− f ′(ti+1)

)
+

(t− ti)
3

(ti+1− ti)
3 (ti+1− ti)

(
f ′(ti)+ f ′(ti+1)−2

f (ti)− f (ti+1)

(ti− ti+1)

)
.

2The reason for using an index i at the curve ci(t) in (5.9) and the following expressions will be explained
on page 68.

5.4. HERMITE INTERPOLATION 67

f(t)i

f(t)i´

f(t)i+1

f(t)i+1
´

Figure 5.4: A curve f (t) (dashed green) and a 3rd degree polynomial curve (solid red)
that is an Hermite interpolation of f at ti and ti+1.

We then reorganise it,

ci(t) =
(
1−3wi(t)2 +2wi(t)3) f (ti)

+
(
3wi(t)2−2wi(t)3) f (ti+1)

+(ti+1− ti)
(
wi(t) f ′(ti)−2wi(t)2 f ′(ti)+wi(t)3 f ′(ti)

)
+(ti+1− ti)

(
wi(t)2 f ′(ti+1)+wi(t)3 f ′(ti+1)

)
.

Thus, the cubic polynomials is now reformulated to what we call the geometric form:

ci(t) = f (ti)Hi,3,0(t)+ f (ti+1)Hi,3,1(t)+ f ′(ti)Hi,3,2(t)+ f ′(ti+1)Hi,3,3(t) (5.11)

where
Hi,3,0(t) = 2wi(t)3−3wi(t)2 +1,
Hi,3,1(t) = −2wi(t)3 +3wi(t)2,

Hi,3,2(t) = ∆ti
(
wi(t)3−2wi(t)2 +wi(t)

)
,

Hi,3,3(t) = ∆ti
(
wi(t)3−wi(t)2) ,

(5.12)

and where
wi(t) =

t− ti
ti+1− ti

, and ∆ti = ti+1− ti. (5.13)

In (5.11) is the start and end points and their respective 1st-derivatives, the coefficients.
The basis functions (5.12) are defined using the “translation and scaling function” wi(t),
(5.13), which you will also find (with an extra index) in the definition of B-splines, see
(6.11). Note that the sum of the first two basis functions in (5.12) is 1, ie they are invariant
under affine transformations. The last two basis functions are connected to vectors and
therefore do not have to sum up to 1. These two coefficients are not affected by translation,
but they are affected by any rotations.

Remark 2. However, in a system of homogeneous coordinates, as we find in graphical
systems such as OpenGL, both translation and rotation will work well for all four coef-
ficients in (5.11) if the first two coefficients are recognized as points and the last two as
vectors.

68 CHAPTER 5. CLASSICAL INTERPOLATION THEORY

Figure 5.5: A Catmull-Rom spline curve in green, that interpolates 9 points marked as
grey circles. The tangent vectors appear as red arrows.

5.5 Taylor expansions
This is a kind of Hermite interpolation, but was first introduced as a series by Brook
Taylor in 1715. If we use a 3rd-degree polynomial as an example and start with the the
Newton polynomials (5.6), and then change the formula from interpolating four different
points to interpolating the same point four times, ie

f (t) = f [t0]+ (t− t0) f [t0, t0]
+ (t− t0)(t− t0) f [t0, t0, t0]
+ (t− t0)(t− t0)(t− t0) f [t0, t0, t0, t0].

If we replace the divided differences according to (5.3) we get

f (t) = f (t0)+(t− t0) f ′(t0)+(t− t0)2 f ′′(t0)
2

+(t− t0)3 f ′′′(t0)
6

.

The general expression for Taylor expansions is thus,

f (t) =
∞

∑
n=0

f (n)(t0)
n!

(t− t0)n.

5.6 Hermite spline
The classical Hermite interpolation method using 5.11, from the reorganization of 5.6
together with 5.3, is suitable to interpolate several points together with derivatives of
subsequent orders located at these points. The result is therefore a polynomial of very
high degree. This has many drawbacks, so there is another way to do it which is more
practical, namely using pieces of several polynomial-based curves that are glued together
at their endpoints by using common points and derivatives of subsequent orders. This
was earlier called “osculatory interpolation”3 but nowadays it is mostly called Hermite
splines. A Hermite spline is a set of pieces of polynomial curves of degree up to d (odd
number) that is C

d−1
2 -smooth on its domain. Cubic Hermite splines are mostly used, that is

3Repeated interpolation at a point was called “osculatory interpolation” since it produces higher than
first order contact between the function and its interpolant (“osculari” means “to kiss” in Latin), p.7 in [37].

5.7. CUBIC SPLINE INTERPOLATION 69

n polynomial pieces of curves, {ci(t)}n−1
i=0 , where each curve piece is defined as in (5.11),

(5.12) and (5.13). It follows that the spline is uniquely defined by n + 1 knot values
{ti}n

i=0, n+1 points { f (ti)}n
i=0 and n+1 vectors { f ′(ti)}n

i=0, where n > 0.

Sometimes the tangents (derivatives) are not present, Therefor, several strategies for mak-
ing smooth curves without given derivatives are developed:
� A cardinal spline4 is a cubic Hermite spline whose tangents are defined by the points
and a tension parameter. This spline creates a curve from one point to another taking into
account the points before and after. By taking into account the points before and after the
current curve, the curves appear to join together making one seamless curve. I.e. given
n+1 points p0, ..., pn, to be interpolated with n cubic Hermite curve segments, for each
curve we have a starting point pi and an ending point pi+1 with starting tangent vi and
ending tangent vi+1 with the tangents defined by:

vi =
ti+1− ti−1

2
(1− c)(pi+1− pi−1)

where the first and last tangent v0 and vn are given (or one can use the endpoints only
without dividing by 2) and c is a constant that modifies the length of the tangent (the
tension parameter). The tension parameter c should be between 0 and 1.
� A Catmull-Rom spline (see [20]) is a cardinal spline with the tension parameter c = 0.
Figure 5.5 shows an example of a Catmull-Rom spline curve made by 9 points.
� Another spline related to cubic Hermite spline is “cubic Bessel spline” (see [37]). Here
one chooses the vectors (tangents) as the derivative at ti of the polynomial of degree 2
which agrees with f at ti−1, ti, ti+1. A short calculation gives the tangents

vi =
∆ti f [ti−1, ti]+∆ti−1 f [ti, ti+1]

∆ti−1 +∆ti
,

which shows that Bessel interpolation is also a local method.
� Yet another local method is Akima’s interpolation method from 1970 (see [2]). Akima
chose to compute the tangents by,

vi =
wi+1 f [ti−1, ti]+wi−1 f [ti, ti+1]

wi−1 +wi+1
.

where
w j =

∣∣ f [t j, t j+1
]
− f

[
t j−1, t j

]∣∣ .
5.7 Cubic spline interpolation
There is, however, an other “classical” interpolation method, using piecewise polynomi-
als, which has a higher degree of continuity, namely cubic spline interpolation (see [37]).
This method is not local, so changes do not only have a local affect. The computational
cost is, however, only slightly higher then the local methods because the matrix to be
solved is a very narrow band matrix with only 3 diagonal elements.

4Schoenberg (see [140]) defines Cardinal splines as the class of polynomial splines on R with an infinite
knot vector of simple integer knots and where all knot interval are 1.

70 CHAPTER 5. CLASSICAL INTERPOLATION THEORY

So, if we want a C2-smooth function we still can look at the cubic Hermite interpolation,
but we now refrain from specifying derivatives at the internal knots. Instead we specify
that:

c′′i−1(ti) = c′′i (ti) for i = 1,2, ...,n−1, (5.14)

and use these to solve a system of linear equations, i.e. involving an (n−1×n−1) matrix,
to find the derivatives in the internal knots,

c′i(ti), i = 1,2, ...,n−1.

To find the equations for cubic spline interpolation we just take (5.10) and compute the
second derivative. Then we use the condition (5.14) in the internal knots.

The system of equations follows,
Ax = b, (5.15)

i.e. 

2 1−λ1 0 · · · 0

λ2 2 1−λ2
.

0 λ3
. 0

... 1−λn−2

0 · · · 0 λn−1 2





c′1(t1)
...
...
...

c′n−1(tn−1)


=



b1

...

...

...

bn−1


.

Here is

λi =
∆ti

∆ti−1 +∆ti
, and bi = 3βi−δi, (5.16)

where
βi = λi f [ti−1, ti]+ (1−λi) f [ti, ti+1], (5.17)

and

δi =


λ1 c′0(t0), i = 1,

0, 1 < i < n−1,

(1−λn−1) c′n−1(tn), i = n−1.

(5.18)

In (5.18) we can see that we need to know (or be able to estimate) the tangents at the start
and end of the spline. This freedom leads to several types of boundary conditions. In [37]
several boundary condition are listed.

Another way of organizing the equations that leads to another type of boundary conditions
is to restrict the 2nd derivatives at the ends. The equation is the same as in (5.15), but
the matrix dimension will now be n+ 1× n+ 1. The start and end tangents, and 2nd
derivatives, are now included in a new first and last line of the matrix (computed from a

5.7. CUBIC SPLINE INTERPOLATION 71

Figure 5.6: Three cubic spline curves in solid black, interpolating the same six points
marked in blue. The dotted green lines mark the curvature of the curves as an offset
based on the direction of the 2nd derivative. Free end condition is used in the upper
example, that is, 2nd derivatives are zero at start and end, this can be clearly seen in the
figure. Horizontal tangent vectors used as end conditions are given in the middle example.
Tangent vectors that are both 45◦ up to the right used as end conditions are given in the
lower example.

second derivative of (5.10). We now get

2 1 0 · · · · · · 0

λ1 2 1−λ1
.

0 λ2 2 1−λ2
.

... 0

... λn−1 2 1−λn−1

0 · · · · · · 0 1 2





c′0(t0)
...
...
...

c′n−1(tn−1)

c′n−1(tn)


=



b0

...

...

...

...

bn


.

Here λ is defined in (5.16) and β is defined in (5.17), but now

bi =


3 f [t0, t1]− ∆t0

2 c′′0(t0), i = 0,

3βi, 0 < i < n,

3 f [tn−1, tn]− ∆tn−1
2 c′′n−1(tn), i = n.

(5.19)

If, in (5.19), c′′0(t0)= c′′n−1(tn)= 0 (or a zero vector if vector valued) we have so called free
ends, and the spline is a “natural spline” with a behavior quite like a real spline device.5

5To draw curves, especially for shipbuilding, draftsmen often used long, thin, flexible strips of wood,

72 CHAPTER 5. CLASSICAL INTERPOLATION THEORY

In Figure 5.6 is one example of cubic spline interpolation with free ends (the upper one).
As we can see, the curvature zero is at the ends. In the other two examples end conditions
are used with given tangents at both the start and end. The fact that the energy (or actually
the approximation and simplification by using c′′(t) instead of the curvature) is minimized
by a third degree spline function (in the Sobolev space H2(a,b)), i.e. min

∫ b
a |c′′(t)|2dt, is

in a way illustrated in the figure. We can clearly see from the plots in Figure 5.6 that the
free end condition has “the smallest curvature”.

According to Schumaker [141] it was noticed already in the mid-1700s by Euler and the
Bernoulli brothers that the shape of a spline device is approximately given by pieces of
functions that are 3rd degree polynomials.

5.8 Circle Splines
In 1996 Hans-Jörg Wenz published [163] an interpolation method based on blending cir-
cular arcs. Given a sequence of points {pi}n

i=0. In each internal point pi, i= 1,2, . . . ,n−1
there is a circular arc ϑi(u), u ∈ [0,1] starting in pi−1, interpolating pi and ending in pi+1
but parameterized from 0 to 1 in both segments, [pi−1, pi] and [pi, pi+1]. To make a smooth
curve segment between two point pi and pi+1, i = 0,1, . . . ,n− 1, Wench used a simple
blending scheme,

ci(t) =
(

1− t t
)(ϑi(t)

ϑi+1(t)

)
.

Note that, despite that they used a linear blending, the curve is G1-smooth because every
arcs interpolates three points and the expanded Hermite interpolation property, that will
be explained in theorem 7.2 (on page 119) tells us that this raise the continuity by one.

Wenz was followed by Márta Szilvási-Nagy and Teréz P. Vendel, [153]. They improved
the blending scheme, by replacing the linear interpolation function with a trigonometri-
cally weighted blending function that also sums up to 1 and giving a G2-smooth curve,

ci(t) =
(

cos2 (πt
2

)
sin2 (πt

2

))(ϑi(t)
ϑi+1(t)

)
.

Figure 5.7 shows an example of constructing a circle spline curve by blending two circular
arcs using a trigonometrically weighted blending function.

To avoid loops and cusps Carlo Séquin, Jane Yen Kiha Lee introduced another blending
technic (see [146, 145]). They used the trigonometrically weighted blending function to
compute the directional angle τ(u) from τi and τi+1,

τ(u) =
(

cos2 (πu
2

)
sin2 (πu

2

))(τi
τi+1

)
.

plastic, or metal called a spline. The strips were held in place with lead weights (called ducks because of
their duck line shape). The elasticity of the material combined with the constraint of the control points, or
knots, would cause the strip to take the shape which minimizes the energy required for bending it between
the fixed points, and thus adopt “the smoothest possible” shape (according to elasticity theory).

5.8. CIRCLE SPLINES 73

p
i

p
i-1

p
i+1

p
i+2

Figure 5.7: Example of Circle splines. Between the point pi and pi+1 are two circular
arcs blended to one curve. As we can see, the curve segment between the points pi and
pi+1 is only defined by the four points: pi−1, pi, pi+1 and pi+2.

The angle τi is the angle between the line segment pi+1− pi and the tangent ϑ ′i (0). They
then compute the position on the curve ci(u) by computing the angle between the line
segment pi+1− pi and the line segment ci(u)− pi,

φ(u) = (1−u)τ(u),

and the distance |ci(u)− pi| by

|ci(u)− pi|=
sin(u τ(u))
sin(τ(u))

|pi+1− pi|.

74 CHAPTER 5. CLASSICAL INTERPOLATION THEORY

Chapter 6

B-spline Curves

Today, spline curves are synonymous with B-spline curves. B-splines are the de facto
industrial standard for modelling in Computer Aided design. B-splines is a way of rep-
resenting polynomial splines, it connect polynomial splines to corner cutting techniques,
which induces many useful properties. In this chapter we will go deeper into polynomial
B-splines, but we start with an overview to give an idea about what B-splines are.

B-splines is basically a set of “local” basis functions that together sums up to 1 over the
entire domain. Each basis function is connected to one point. The formula for a curve is,

c(t) =
n−1

∑
i=0

ci bd,i(t), where
n−1

∑
i=0

bd,i(t) = 1, for td ≤ t ≤ tn,

and where ci are n points that together form a control polygon, and bd,i(t) are the basis
functions, d is the polynomial degree and τ = {ti}n+d

i=0 is a vector of knot values. The basis
functions together form a spline space, and is defined by a knot vector and a polynomial
degree. The domain is restricted to [td, tn] because it is where the basis functions sums up
to 1, and an important property is the Cd−1-continuity over non multiple knots.

An example, given a vector of knot values τ = {0,0,0,0,1,2,3,4,5,6,7,7,7,7}. Together
with a degree d = 3 we get 10 basis functions shown in Figure 6.1. In the figure we see
that there are 7 intervals between the knots. In each interval there are 4 active basis
functions. We now introduce a set of 10 points pi, i = 0,1, . . . ,9. The result is shown in

b (t)�,�

b (t)�,� b (t)�,�
b (t)�,� b (t)�,� b (t)�,� b (t)�,� b (t)�,� b (t)�,�

b (t)�,�

t�
t�t�

t�
t�

t� t� t� t� t�
t��
t��
t��
t��

t

Figure 6.1: A set of 10 3rd-degree B-spline (basis) functions b3,i(t), i = 0,1, . . . ,9, de-
fined by a vector of 14 knot values, marked with red bullets.

75

76 CHAPTER 6. B-SPLINE CURVES

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9p

0

c(t)4

c(t)7

c(t)5

c(t)6

c(t)8c(t)9

c(t)
3

Figure 6.2: We see a 3rd-degree B-spline curve where the 7 parts have different colors.
Control points and polygon are marked. The red dots mark position of knot values.

Figure 6.2. We see the ten point pi marked with black pentagons, we see the dotted black
control polygon, the total C2-smooth spline curve c3(t), and each piece of the curve in
different colors. The red marks is where the the parameter value is equal the “internal”
knot values ti, i = 4,5, . . . ,9. Each of the 7 pieces is a polynomial curve and we can find
the formula in the Bézier format. Because of the local support of the basis functions, we
see that if we move p2, only the blue, orange and green curve will be affected.

6.1 History of B-splines
We now go back more than a century. The need for smoother interpolants in some appli-
cations led in the late 1800s to the development of interpolation formulae based on piece-
wise polynomials, so-called osculatory interpolation techniques, most of which appeared
in the actuarial literature, Greville [81]). An example of this is the formula proposed in
1899 by Karup [96]. The formula results in a piecewise 3rd-degree polynomial interpolant
that is continuous and continuously differentiable everywhere. By using this formula, it
is possible to reproduce polynomials up to 2nd degree. Another example is the formula
proposed in 1906 by Henderson [89], which also yields a continuously differentiable,
piecewise 3rd-degree polynomial interpolant, and is capable of reproducing polynomials
up to 3rd-degree. A third example is the formula published in 1927 by Jenkins [93]. The
resulting composite curve is a piecewise 3rd-degree polynomial that is twice continuously
differentiable. However, this curve is not an interpolant. (All these formulaes can be
found in [81], and [124].)

The need for practically applicable methods for interpolation or smoothing of empirical
data was the driving force for Schoenberg’s first study of the subject. In his 1946 papers
[137, 138] he noted that for every osculatory interpolation formula applied to equidistant
data, where he assumed the distance to be unity, there exists an even function Φ : R→R,
in terms of which the formula may be written as

f (x) =
∞

∑
j=−∞

a jΦ(x− j), (6.1)

6.1. HISTORY OF B-SPLINES 77

where Φ, which he termed as the basic function, completely determines the properties of
the resulting interpolant and reveals itself when applying the initial formula to the impulse
sequence defined by a0 = 1 and ak = 0, ∀k 6= 0. By analogy with Whittaker’s cardinal
series [164], Schoenberg referred to the general expression (6.1) as a formula of the car-
dinal type, but noted that the basic function of the cardinal series, Φ(x) = sin(πx)/(πx),
is inadequate for numerical purposes due to its excessively low damping rate. The basic
functions involved in Waring-Lagrange interpolation, on the other hand, possess the lim-
iting property of being at most continuous, but not continuously differentiable. He then
pointed at the smooth curves obtained by the use of a mechanical spline,1 argued that
these are piecewise cubic arcs with a continuous 1st- and 2nd-order derivative, and then
continued to introduce the notion of the mathematical spline:

Definition 6.1. A real function f defined for all real x is called a spline function (curve)
of order k and denoted by Sk if it have the following properties:

i) it is composed of polynomial arcs of degree at most d = k−1,
ii) it is of class Ck−2, i.e., f has k−2 continuous derivatives,

iii) the only possible function points (knot values) of the various polynomial arcs are the
values x = k if k is even, or else x = k+ 1

2 if k is odd.

Note that these requirements are satisfied by the curves resulting from the aforementioned
smoothing formula proposed by Jenkins, and also studied by Schoenberg [137], which
constitutes one of the earliest examples of a spline generating formula. Note also that
Hermite spline and related splines do not fulfill all the requirements.

After having defined the spline curve, Schoenberg continued to prove that any spline curve
Sk may be represented uniquely in the form

Sk(x) =
∞

∑
j=−∞

a jMk(x− j) (6.2)

for appropriate values of the coefficients a j. There are no convergence difficulties since,
as we will se below, Mk(x) vanishes for |x|> k/2. Thus (6.2) represents an Sk for arbitrary
{a j} and represents the most general one.

Here, Mk : R → R denotes the so-called central B-spline of degree d = k− 1, which
Schoenberg defines as the inverse Fourier integral

Mk(x) =
1

2π

∫
∞

−∞

(
sin(ω/2)

ω/2

)k

eiωxdω, (6.3)

and, when evaluating explicitly as2

1The use of the word “spline” for a flexible rod can be traced back to shipbuilding in the 18th century. It
was originally an East Anglian dialect word. Flexible rods (spline devices) have been used by shipbuilders
all over the world for a very long time. In Norway there are actually 3 different names for them, depend-
ing on the location of the shipyard. In the north (where this author has his experience) it is called “rei”,
pronounced and related to ray, as in “ray-tracing”.

2Scoenberg noted that (6.3) had been evaluated explicitly for low values of k by various authors, i.e.
S. Bochner in lectures of Fourier analysis in 1936. In an article by Butzer, Schmidt and Stark [18] sev-

78 CHAPTER 6. B-SPLINE CURVES

Mk(x) =
1

(k−1)!
δ

kxk−1
+ ,

where δ p is the pth-order central difference operator 3 and xn
+ denotes the one-sided power

function defined as

xn
+ =

{
xn, if x≥ 0
0, if x < 0.

Soon after this first paper [137, 138] was written, the possibilities of an extension to
arbitrary spaced knots was implied by Curry in his review [31] of Schoenberg’s paper.
And in an abstract, [32], B-splines4 for arbitrary spaced knots were introduced. The whole
article was written in 1945-47 but was actually published 20 years later [33]. Curry and
Schoenberg’s definition of B-splines is as follows,

Definition 6.2. A B-spline denoted Mk(x) is defined by k + 1 increasing real values
x0, . . . ,xk, where x0 < xk, its explicit expression is

Mk(x;x0, . . . ,xk) = k
k

∑
ν=0

(xν − x)k−1
+

ω ′(xν)
(6.4)

where
ω(x) = (x− x0) · · ·(x− xn) see (5.2). (6.5)

Curry and Schoenberg stated the following properties for the B-splines:
1) They are shown to be bell-shaped.
2) They are also shown to be the projections onto the x-axis of the volumes of appropriate

n-dimensional simplices.
3) This geometric interpretation allows us to conclude, by means of Brunn’s theorem,

that the B-spline function is logically concave.
4) They are also shown to form a basis for all spline functions of degree n−1 and given

knots.
5) They can be defined on multiple knots.
6) The B-splines Mk(x) (defined above) are frequency functions, which means that they

are non-negative and their integral over R is 1.5

eral predecessor in B-splines are mentioned that where probably not known by Scoenberg. Among these
are Maurer in 1896 [120] (discussing a function related to the central B-spline function of Schoenberg),
Sommerfeld in 1904 and 1929 [149] (making a geometric interpretation, a Box-spline like method for con-
structing B-splines) and Brun in 1932 [17] (developing a recursive corner cutting method like de Casteljau).

3Often called Sheppard’s central-difference operator δ (see [147]), defined by

δ φ(ξ) = φ(ξ +
1
2
)−φ(ξ − 1

2
)

and
δ

p
φ(ξ) = δ

p−1
φ(ξ +

1
2
)−δ

p−1
φ(ξ − 1

2
), p > 1,

for any function φ : R→ R at any ξ . Not to be mixed up with the right-sided difference operator.
4Curry and Schoenberg actually first called them the fundamental spline functions. The name B-spline

refers to basis splines because they form a basis for spline functions, which was proved by Curry and
Schoenberg in [32]. In [139], published in 1967, Schoenberg used the name B-spline.

5NB! Modern B-splines are scaled in a different way because in CAGD partition of unity is a more
important property.

6.1. HISTORY OF B-SPLINES 79

0 1 2 3 4

M1 M2

M3
M4

M5

M6

Figure 6.3: A copy of a sketch from Curry and Schoenberg [33] of six quaddratic B-
splines defined by 9 knots; x1 = x2 = 0, x3 = 1, x4 = 2, x5 = x6 = 3 and x7 = x8 = x9 = 4.

In Figure 6.3 there is a copy of a sketch from Curry and Schoenberg [33] of the six
quaddratic B-splines (k = 3) for the case when there are 9 knots, and where some of them
are equal. The six B-spline functions are:

M1(x) = M3(x;0,0,1,2), M2(x) = M3(x;0,1,2,3), M3(x) = M3(x;1,2,3,3),
M4(x) = M3(x;2,3,3,4), M5(x) = M3(x;3,3,4,4), M6(x) = M3(x;3,4,4,4).

The classical expanded definition of divided differences (5.1), states the following

[yo,y1, . . . ,yn] =
n

∑
i=0

yi

ω ′(xi)
, (6.6)

where ω(x) is defined in (5.2), and is the same as in (6.5).

Expression (6.6) is in a way equal to (6.4), but because there is the function (xν − x)k−1
+

instead of scalars involved in (6.4) we have to clarify the notation. A divided difference
version of a B-spline Mk(x) is, therefore,

Mk(x;x0, . . . ,xk) = k (·− x)k−1
+ [x0, . . . ,xk] . (6.7)

The notation is called a “placeholder” notation and a more detailed description of this
notation can be found on page 108 in [37].

Divided differences are defined recursive, so it is natural to try to develop a simple recur-
sive algorithm for computing B-splines. This was done in 1972 by at least three different
authors simultaneously. Cox [29] established it for simple knots. The result for general
knots is credited to deBoor [36]. In his paper he mentioned that Louis Mansfield had also
discovered the recursion. In the same paper deBoor also introduces the derivative formula
for B-splines. Some other important algorithms in spline history are; knot insertion in-
troduced simultaneously in 1980 by Boehm [15] for single knots and Cohen, Lyche and
Riesenfield [23] for general knot insertion, and degree raising in 1985 by Cohen, Lyche
and Schomaker [24]. It should of course be mentioned that Paul de Casteljau in 1959
developed an algorithm for the computation of Bézier curves (but it was only published
in an internal Citroë report [38]) and that Pierre Étienne Bézier in 1966 published the
construction of Bézier curves/surfaces [12, 13]. (Bézier curves are the simplest B-spline
curves)

80 CHAPTER 6. B-SPLINE CURVES

As a final historical remark in this section it can be mentioned that according to Farin
[64] N. Lobachevsky was as early as the nineteenth century investigating B-splines as
convolutions of certain probability distributions (over a very special knot sequence). Also
Peano Kernel for 3rd difference gives a second degree B-spline, for which there is a plot on
page 73 in the Davis book from 1963, [35]. The name spline is refereing to a mechanical
spline device that is minimizing the energy while bending. This can be expressed as an
equation minimizing the square of the curvature, i.e.

min
∫ xn

s=x0

κ(s)2ds. (6.8)

A cubic spline function satisfies the formula, but where the second derivative replaces the
curvature. Of course, this is not the same as (6.8), but if the speed is close to 1 above the
hole curve, this is a good approximation. There are works on better approximations, e.g
Mehlum in [122, 123]. How to use the term spline is therefore not evident. It should pos-
sibly in some sense approximate a spline device, whether it is an optimal or not an optimal
solution according to some functional. today it is most common to think about splines as
pieces that are glued together to one curve or surface with controlled smoothness.

This leads to the modern normalized B-splines, it’s notation and algorithms which are the
contents of the next section.

6.2 Modern B-splines
Modern B-spline theory has several branches. There is blossoming method proposed
by Ramshaw [133] and, in a different form by de Casteljau [41], he called it polar form.
However in this section we will first look at B-splines in what we now can call the classical
way, we will give some examples and finally we will look at B-spline algorithms. But in
order not to get lost in indices, we will use matrix - vector formulations.

There are several different B-spline notations in use. The most common are,

bd,i(t) = b(t; ti, . . . , ti+d+1), or bk,i(t) = b(t; ti, . . . , ti+k).

where d is the degree, k = d + 1 is the order (dimension of the function space). Here,
B-splines are synonymous with normalized B-splines, which means that all B-splines
defined on an infinite knot sequence sum up to 1 (form the partition of unity), i.e.

j

∑
i= j−k

b(t; ti, . . . , ti+k) = 1, t j ≤ t < t j+1. (6.9)

Compared to the original Curry-Schoenberg B-splines M(t; ti, . . . , ti+k) we thus have the
following relationship (to compare visually see also Figure 6.4)

b(t; ti, . . . , ti+k) =
ti+k− ti

k
M(t; ti, . . . , ti+k).

Note that for integer non multiple knots i.e 1,2,... then b(t; ti, . . . , ti+k) = M(t; ti, . . . , ti+k).

This leads to the following definition of the B-spline that usually is called the Cox-
de‘Boor recursion formula, sometimes also called Mansfield-Cox-de‘Boor:

6.2. MODERN B-SPLINES 81

0 1 2 3 4

b2,1
b2,2 b2,3

b2,4

b2,5

b2,6

0 1 2 3 4

M1

M2

M3

M4 M5

M6

Figure 6.4: Two plots of six 2nd-degree B-splines that both are defined by the 9 knots
used in Figure 6.3; t1 = t2 = 0, t3 = 1, t4 = 2, t5 = t6 = 3 and t7 = t8 = t9 = 4. The upper
ones are the original B-splines from Curry and Schoenberg [33], sketched in Figure 6.3
and where the integral of each basis function is 1, ie they are frequency functions. The
lower ones are the modern B-splines that form the partition of unity, that is, they sums up
to 1 wherever there is a complete set of basis functions, which means k basis functions
different from zero where k is the order (the dimension of the function space). The scale
is the same for both plots. Note that M2 = b2,2 because the knots are {0,1,2,3}, ie non
multiple integer values.

82 CHAPTER 6. B-SPLINE CURVES

Definition 6.3. For a polynomial degree d, and order k = d+1, and given k+1 increasing
real numbers {ti, ti+1, . . . , ti+k}, where ti+k > ti (they do not otherwise need to be strongly
increasing), then a B-spline of degree d is defined by the recursion formula

b(t; ti, . . . , ti+k) = wd,i(t) b(t; ti, . . . , ti+k−1)+
(
1−wd,i+1(t)

)
b(t; ti+1, . . . , ti+k) (6.10)

where the termination of the recursion is

b(t; t j, t j+1) =

{
1, t j ≤ t < t j+1,
0, otherwise,

and where the linear translation and scaling function

wd,i(t) =
t− ti

ti+d− ti
. (6.11)

A list of the basic properties of b(t; ti, . . . , ti+k) follows.

P1. Every basis functions b(t; ti, . . . , ti+k) is positive on (ti, ti+k) and zero otherwise.

P2. The set of basis functions b(t; ti, . . . , ti+k) for i = j−d, . . . , j form a partition of unity
on [t j, t j+1), i.e.

j

∑
i= j−d

b(t; ti, . . . , ti+k) = 1, t j ≤ t < t j+1.

P3. A B-spline b(t; ti, . . . , ti+k) is Cr(R) where r = d−s and s is ‘the number of maximum
multiplicity of the knots ti, . . . , ti+k’, i.e. maximum number of equal knots.

P4. The B-spline b(t; ti, . . . , ti+k) is, in case of simple knots “bell-shaped”, i.e. the vth

derivative b(v)(t; ti, . . . , ti+k) (up to v = d − 1) has exactly v zeros in the interval
(ti, ti+k). If the knots are simple these zeros are distinct.

6.2.1 The knot vector
Knots have already been mentioned several times, first in section about Hermite spline
5.6 and Cubic spline interpolation 5.7 and also earlier in this chapter. The knot values
actually describe the domain for each piece of polynomial functions. These functions are
glued together at the knot values. This is clearly illustrated in Figure 6.2 and 6.7, where
the red circles mark c(ti), ie where on the curve the knot values are, and thus where two
curve parts are glued together.

The knot vector
is the set of knot values that together with a polynomial degree d defines the spline
space, ie the set of B-splines (basis function). In [6.9] the requirement that the sum
of the basic functions must be 1 is stated (the partition of the unity). It follows that
there must be d+1 active basic functions at all knot intervals. That is for a given knot
vector τ = {t0, t1, . . . , tn+d} is the domain of any B-spline function/curve of degree d
based on this knot vector restricted to [td, tn].

A B-spline function / curve can have three states determined by the knot vector, open,
clamped or closed/cyclic. These states will be described in more detail in the following.

6.2. MODERN B-SPLINES 83

t�
t�
t�
t�

t�
t�
t�
t�

t�

b (t)�,�

t

b (t)�,�
b (t)�,� b (t)�,� b (t)�,�

b (t)�,�

t� t� t� t� t� t� t�t�

b (t)�,�

t

b (t)�,� b (t)�,� b (t)�,� b (t)�,� b (t)�,�

t�

t� t� t� t� t� t� t�t�

b (t)�,�

t

b (t)�,� b (t)�,� b (t)�,� b (t)�,� b (t)�,�

t�

a)

b)

g)

a) g)b)

Figure 6.5: Three B-spline curves are shown, α) is open, β) is closed and cyclic and γ)
is open and clamped. Also the B-splines (basis functions and the knot vectors (red dots)
are shown and the domains are marked with solid lines through the red knots.

6.2.2 B-spline curves - Open, Clamped or Closed
B-spline curves share many properties with Bézier curves, because the former is a gener-
alization of the later. In the following, we denote a B-spline curve c(t). It is defined by a
polynomial degree d, and thus order k = d +1, and by a knot vector τ = {t0, t1,, tn+d}
and n control points. The general formula is

c(t) =
n−1

∑
i=0

ci bk,i(t), open / clamped - t ∈ [td, tn] closed - t ∈ [td, tn+d) , (6.12)

where {ci}n−1
i=0 , is the vector of coefficients / control points. These control points define

the control polygon of the curve. bk,i(t) is the set of B-spline basis functions defined by
the knot vector τ , which has n+ k knot values.

As mentioned, a B-spline curve can have three states, open, open/clamped or closed/-
cyclic. If a curve are constructed from n basis functions and thus n control points, then

Open - is a curve that is build on an ordinary set of knot values τ = {t0, t1,, tn+d}
where ti+1 ≥ ti and where the domain of the curve is restricted to [td, tn].

Open/Clamped - is an open curve with a knot vector τ = {t0, t1,, tn+d}, but where the
first k and last k knots are equal, i.e t0 = t2 = ...= td and tn = tn+1 = ...= tn+d ,

Closed/Cyclic - is a curve where the knot vector “bites itself in the tail”, it has a knot
vector τ = {t0, t1,, tn+d}, but the domain is extended to [td, tn+d). In addition
must tn+i+1− tn+i = ti+1− ti, i = 0,1, . . . ,d−1.

84 CHAPTER 6. B-SPLINE CURVES

t�
t�
t�
t�

t� t� t� t� t�
t��
t��
t��

t�

b (t)�,�

t

b (t)�,�

b (t)�,� b (t)�,� b (t)�,� b (t)�,� b (t)�,�

b (t)�,�

b (t)�,�b (t)�,�

b (t)�,�

b (t)�,� b (t)�,�
b (t)�,�

b (t)�,� b (t)�,� b (t)�,� b (t)�,�
b (t)�,�

b (t)�,�

t�
t�
t�
t�

t� t� t� t� t� t��
t��
t��
t��

t
t� t��

Figure 6.6: At the top we see a set of 10 2nd-degree B-spline (basis) functions b2,i(t),
defined by a knot vector of 13 knots, marked with red bullets, and at the bottom we see a
set of 10 4th-degree B-spline (basis) functions b4,i(t), defined by a knot vector of 15 knots.

In Figure 6.5, three 2nd-degree B-spline curves are plotted together with their basis func-
tions. They all are build on the same 6 control points. Curve α) is open and “not
clamped”, β) is closed/cyclic and γ) is open and clamped.

An open curve can be clamped or not clamped. An open not clamped B-spline curve is
shown as curve α) in Figure 6.5. On the plot of the basis function the domain is marked
and is [t2, t6]. In the plot of the curve we can see that it starts and ends at a knot value
between two control points.

A clamped B-spline curve starts in the first coefficient, then goes out in the same direction
as the control polygon. It ends in the last coefficient and enters in the same direction as
the control polygon. An example is shown in curve γ) in Figure 6.5. The knot vector is
clamped to the domain of the curve and the curve start and ends at control points. The 1st-
derivatives at the start end point also follows the control polygon. This type of B-spline
curves is the most common, and in general, if nothing is mentioned we are dealing
with this type of curves.

A closed/cyclic B-spline curve is shown as curve β) in Figure 6.5. As we see for the open
curves α) and γ), there are 4 knot interval that form the domains of the curves, but for the
closed/cyclic curve there are 6. This can clearly be seen in the plots of the curves at the
bottom of Figure 6.5, ie curve β). We can also see that the open (not clamped) curve is
equal the closed curve at the same 4 knot intervals. The two additional knot intervals are
the parameter domain of the parts that is closing the curve. It follows that the domain is
the half open interval [t2, t8). However, the restriction on the knot vector is that the last
two knot intervals are equal to the first two, ie t1− t0 = t7− t6 and t2− t1 = t8− t7 in the
example in curve β) in Figure 6.5.

6.2. MODERN B-SPLINES 85

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9p

0

c(t)4

c(t)7
c(t)5

c(t)6

c(t)8
c(t)9

c(t)3 p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9p

0

c(t)7

c(t)5

c(t)6c(t)8
c(t)9

c(t)
2

c(t)
4

Figure 6.7: A 2nd-degree B-spline curves c2(t) and a 4th-degree B-spline curve c4(t)
based on the same control points. The red dots mark position of internal knot values.

In Figure 6.1, a set of 3rd-degree B-spline basis functions based on a knot vector τ =
{0,0,0,0,1,2,3,4,5,6,7,7,7,7} is shown. The corresponding Figure 6.2 shows a B-
spline curve based on these basis functions and a set of 10 points pi, i = 0,1, . . . ,9.

From the same set of control points. We make a curve of polynomial degree 2 based on
a knot vector {0,0,0,1,2,3,4,5,6,7,8,8,8}, and another curve with polynomial degree
4 and knot vector {0,0,0,0,0,1,2,3,4,5,6,6,6,6,6}. In Figure 6.6, we see the B-splines
based on these two knot vectors. In Figure 6.7 is B-spline curves based on these two set
of basis functions plotted. We see that the 2nd-degree curve touches the control polygon
due to that only two basis function are 6= 0 at the knot values (illustrated in Figure 6.6).
Consequently the touch points are also the place where the pieces are glued together. In
the 2nd-degree curve we have 8 pieces, see Figure 6.7-left, while in the 3rd-degree curve
we have 7 pieces, Figure 6.2, and in the 4th-degree curve 6 pieces, Figure 6.7-right.

A B-spline curve has many useful properties, some of which are listed below.

1. A B-spline curve c(t) is a piecewise curve where each piece is a curve of degree at
most d. Thus, the curve is the union of curve segments defined on each knot span.

2. A Clamped B-spline curve start at the first control point and end at the last control
point. Further, the curve leave the first point tangential to the line between the first
and the second control point and enter the last control point tangential to the line
between the second last and the last control point.

3. B-spline curves has a strong ´´Convex Hull Property”. That is, a B-spline curve is
contained in the convex hull of its control points. More specifically, if t ∈ [ti, ti+1)
then c(t) is in the convex hull of the control points ci−d,ci−d+1, ...,ci.

4. A B-spline curve has a local Modification scheme. That is, changing the position
of the control point ci only affects the curve c(t) at the interval [ti, ti+k].

5. A B-spline curve c(t) is Cd− j continuous at a knot of multiplicity j. That is, if
ti = ti+1 = ...= ti+ j−1, then the curve is Cd− j continuous at c(ti).

6. A B-spline curve has a variation diminishing property. That is, in R2, no straight
line intersects a B-spline curve more times than it intersects its control polygon.

86 CHAPTER 6. B-SPLINE CURVES

Figure 6.8: A 3rd-degree B-spline curve and its control polygon. One of the control
points is moved to the left. To illustrate the local control, part of the curve that is changed
is also plotted (dashed).

Figure 6.9: A 3rd-degree B-spline curve and its control polygon. A line is intersecting
the curve 2 times and the control polygon 4 times.

7. Bézier curves are special cases of B-spline curves. They are Clamped B-spline
curves on the domain [0,1], and without internal knots (only knots at start and end).

8. The affine invariance property also applies to B-spline curves. If a B-spline curve is
to be translated, rotated, scaled, ..., ie applied to an affine transform, see (2.4), this
can be done by using the affine map only on the control points. This also applies
for Bézier curves, section 4.4, and if the homogeneous matrix is used as an affine
map, see (2.8), this also applies to Hermite curves, section 4.3.

9. The control polygon of a B-spline curve is converging towards the B-spline curve
when the number of knots goes towards infinity. This will be clearly shown in the
knot insertion algorithm shown in subsection 6.2.6. This is because the B-spline
algorithm itself is basically corner cutting, see also section 6.7 about subdivision
curves, especially Lane-Riesenfeld subdivision algorithm in subsection 6.7.3.

Figure 6.8 illustrate local modification. We see a 3rd-degree B-spline curve, with different
color at each interval. The knot vector that define the B-splines is as in Figure 6.1. 9 of
the 10 control points are marked blue, while one is red. The red point is then moved to the
left and we can see the part of the curve that is affected, ie 4 intervals because the degree
is 3.

Figure 6.9 illustrate the variation diminishing property. A line intersects a 3rd-degree
B-spline curve 2 times, while it intersects the control polygon 4 times.

6.2. MODERN B-SPLINES 87

6.2.3 The B-spline factor matrix T (t)

In subsection 4.4.2, factor matrices for Bézier curve, Td(t), were defined. In (4.31) a 3rd-
degree Bézier curve is formulated in matrix notation. The algorithm for computing the
Bernstein polynomials is described in subsection 4.4.1. A Comparison of the Bernstein
recursion with the B-spline recursion, Definition 6.3, shows that they are equal, but where
t in the Bernstein algorithm is replaced by the linear function wd,i(t) , described in(6.11),
in the B-spline algorithm. Recall that wd,i(t) maps [ti, ti+d] to [0,1].

A B-spline curve is polynomial-based curve pieces that are glued together at the knot val-
ues. Therefor, for a 2nd-degree B-spline curve, for each piece with the domain [ti, ti+1), i=
d,d +1, . . . ,n we get the following formula (provided that ti+1 > ti),

c(t) =
(

1−w1,i(t) w1,i(t)
)(1−w2,i−1(t) w2,i−1(t) 0

0 1−w2,i(t) w2,i(t)

) ci−2
ci−1
ci

 .

We call these matrices for factor matrices because they actually factorize the B-splines
over one knot interval. A general definition of a factor matrix follows.

Definition 6.4. The B-spline factor matrix Td(t) is a d× (d+1) band limited matrix with
two nonzero elements (based on wd,i(t) (6.11)) on each row. The matrix is as follows

Td(t)=



1−wd,i−d+1(t) wd,i−d+1(t) 0 0

0 1−wd,i−d+2(t) wd,i−d+2(t) 0 · · · ...
...
... . . . 0 1−wd,i−1(t) wd,i−1(t) 0
0 · · · · · · 0 1−wd,i(t) wd,i(t)


Note that this matrix Td(t), is for the knot interval [ti, ti+1).

We observe in the matrix Td(t) that the last index of w is decreased by 1 from one line to
the next line. For the bottom line it is denoted i and for the line above i−1 and so on.

For d = 3 we have the following formula for a B-spline curve on [ti, ti+1),

c(t) =
(

1−w1,i(t) w1,i(t)
)(1−w2,i−1(t) w2,i−1(t) 0

0 1−w2,i(t) w2,i(t)

)
 1−w3,i−2(t) w3,i−2(t) 0 0

0 1−w3,i−1(t) w3,i−1(t) 0
0 0 1−w3,i(t) w3,i(t)




ci−3
ci−2
ci−1
ci

 ,

where the index i is determined by ti ≤ t < ti+1. Note that the indices of the w(t) at the
bottom of all the matrices Td(t) are (d, i). As for the Bézier curves (4.32), an expression
for a 3rd-degree B-spline curve is

c(t) = T1(t)T2(t)T3(t) c = T 3(t) c,

where T 3(t) is a vector of 4 B-splines of degree 3 on the interval [ti, ti+1).

88 CHAPTER 6. B-SPLINE CURVES

Theorem 6.1. The matrices in Definition 6.4 (Tq(t), q = 1,2, . . . ,d) are together the fac-
torisation of a set of B-splines on a knot interval, and they are the formula of the Algorithm
described in Definition 6.36, the recursive B-spline algorithm.

Proof. Recall that T1(t) = (1−w1,i(t) w1,i(t)) = (b(t; ti−1, ti, ti+1) b(t; ti, ti+1, ti+2)).
We also see that T 1(t) = T1(t). We now assume that T d−1(t) is a vector of d B-spline
functions of degree d− 1 on the interval [ti, ti+1]. Computing this vector with each of
the columns of Td(t) gives each of the B-splines of degree d and is exactly the same as
expression (6.10) describes in Definition 6.3.

To investigate the derivative of T (t) we first look at the derivative of the linear translation
and scaling function wd,i(t) (6.11), which we denote

δd,i =
1

ti+d− ti
, where d is the degree and i is fixed by ti ≤ t < ti+d (6.13)

δd,i is a constant, only reflecting the scaling, independent of the translation, and only
depending on t to find the index i. In the Bézier case is δd,i = 1 for all relevant i and d.

The derivative of the matrix T (t) is then defined by the following.

Definition 6.5. The B-spline derivative matrix T ′d is a d×(d+1) band limited matrix with
two nonzero constant elements on each row (independent of t). The matrix is as follows

T ′d =



−δd,i−d+1 δd,i−d+1 0 0

0 −δd,i−d+2 δd,i−d+2 0 · · · ...
...
... . . . 0 −δd,i−1 δd,i−1 0
0 · · · · · · 0 −δd,i δd,i


Although T ′d in itself is independent of t, the index i in the definition is dependent of t and
follows the rule ti ≤ t < ti+1 which is the same as for Td(t) from the definition 6.4.

6.2.4 B-splines on Matrix notations
First a concrete example, given a third degree B-spline curve

c(t) = T1(t) T2(t) T3(t) c = T 3(t) c.

It follows from Theorem C.1 given in appendix C.2 that the derivatives are

c′(t) = (T ′1 T2(t) T3(t)+T1(t) T ′2 T3(t)+T1(t) T2(t) T ′3) c = 3 T 2(t) T ′3 c,
c′′(t) = (T ′1 T2(t) T ′3 +T1(t) T ′2 T ′3) c = 6 T1(t) T ′2 T ′3 c.

We are now ready to look at a general expression of a B-spline function/curve and its
derivatives on matrix notation.

6.2. MODERN B-SPLINES 89

ti ti+1 ti+2ti-1

w1,i

w2,i-1 w2,i

B2,iB2,i-1B2,i-2

0

1

ti+3ti-2

Figure 6.10: The three 2nd-degree B-splines in the knot interval [ti, ti+1] (solid green)
and the three linear translation and scaling functions (dashed blue) involved in the com-
putations of these B-splines. The B-splines and w are dashed outside the actual interval.

2-ic

,2 iP wusing2

1,2 -iP wusing1
,1 iP wusing12

1-ic
ic

Figure 6.11: The de Casteljau’s corner cutting algorithm applied on a 2nd-degree B-
spline curve with knots 0,1,2,3. In the example the position p12 is at c

(3
2

)
.

Definition 6.6. A B-spline function/curve of degree d is on matrix notation as follows

c(t) = T1(t) T2(t) · · · Td(t) c = T d(t) c

where d, T1(t) T2(t) · · · Td(t) is the factorization of the set of d+1 B-splines of degree on
the interval [ti, ti+1] (Definition 6.4), c = (ci−d, ci−d+1, . . . , ci)

T is the coefficient vector
with d +1 elements, and where the index i satisfies ti ≤ t < ti+1.

The jth-derivative, j = 1,2, . . . ,d, of a B-spline function/curve of degree d is a function of
degree d− j and is as follows

c(j)(t) =
d!

(d− j)!
T1(t)T2(t) · · ·Td− j(t) T ′d− j+1 T ′d− j+2 · · · T ′d c =

d!
(d− j)!

T d− j(t) T ′ j c.

6.2.5 An example of B-splines and de Casteljau’s algorithm
We will make it simple, i.e. use a 2nd-degree B-spline curve,

c(t) = T 2(t) c = T1(t) T2(t) c = (B2,i−2(t), B2,i−1(t), B2,i(t))c

=
(

1−w1,i(t) w1,i(t)
)(1−w2,i−1(t) w2,i−1(t) 0

0 1−w2,i(t) w2,i(t)

) ci−2
ci−1
ci

 .

Figure 6.10 shows the three 2nd-degree B-splines, B2,i−2(t),B2,i−1(t) and B2,i(t), together
with the three linear translation and scaling functions they are constructed from (remem-
ber that this is only in the interval [ti, ti+1)). These 3 functions are w1,i, in the left hand
matrix T1(t), and w2,i−1 and w2,i in the second matrix T2(t).

90 CHAPTER 6. B-SPLINE CURVES

c0

c1

c2

c3

c4

c2̂
t1
t0

t2

t3 t4
t6
t5

t7

0

1 w2,2

t̂

w2,3

1
4

3
4

c3̂

Figure 6.12: On the left there is a 2nd-degree B-spline curve and its control polygon.
On the right is the knot vector shown. One new knot, t̂ is inserted. The result is, as we can
see on the left, two new control points ĉ2 and ĉ3, which replaces the old control point c2.

Figure 6.11 shows de Casteljau’s corner cutting algorithm applied on a 2nd-degree B-
spline curve with the knots {ti−1, . . . , ti+2} = {0,1,2,3}. t̂ = 3/2 is used as parameter to
evaluate in the example. This gives w1,1(̂t) = 1/2 in the first matrix T1(t), and w2,i−1(̂t) =
3/4 and w2,i(̂t) = 1/4 in the second matrix T2(t). The first two new points p1 and p2 are
calculated, and then the last point p12 (the one on the curve) is calculated below,(

p1
p2

)
=

(
1− 3

4
3
4 0

0 1− 1
4

1
4

) ci−2
ci−1
ci

=

(
1
4ci−2 +

3
4ci−1

3
4ci−1 +

1
4ci

)

p12 =
(

1− 1
2

1
2

)(p1
p2

)
=
(1

2 p1 +
1
2 p2

) .

6.2.6 B-splines and knot insertion
Knot insertion is one of the most important algorithms on B-splines. It was introduced
simultaneously in 1980 by Boehm [15] for single knots and Cohen, Lyche and Riesenfield
[23] for general knot insertion, the Oslo Algorithm.

Knot insertion is basically corner cutting and can therefor also be expressed in the context
of matrix notation. When a single knot is inserted, we have the following expression

ĉ = Td (̂t) c (6.14)

where t̂ is the value of the new knot and ĉ is a vector of the d new control points replacing
the d − 1 control points that are in the interior of the vector c on the right hand side
(except for the first and the last control points). Here, as usual, the index i is determined
by ti ≤ t̂ < ti+1. We shall look at some examples, first a second degree B-spline function

(
ĉi−1
ĉi

)
=

(
1−w2,i−1(̂t) w2,i−1(̂t) 0

0 1−w2,i(̂t) w2,i(̂t)

) ci−2
ci−1
ci

 . (6.15)

In Figure 6.12 is there to the left, a 2nd-degree B-spline curve and it’s control polygon
{c0,c1,c2,c3,c4} in R2. On the right, the knot vector and the w-functions are plotted. In

6.2. MODERN B-SPLINES 91

c3
c3̂ t1

t0

t2

t4 t5
t9
t8

t10

0

1 w3,3

t̂

w3,4 w3,5

t6

t3 t11

t7

c0

c1 c2

c4

c5 c6

c7
c4̂

c5̂

1
6

5
6

1
2

Figure 6.13: On the left there is a 3rd-degree B-spline curve and its control polygon. On
the right is the knot vector shown. One new knot, t̂ is inserted. The result is, as we can
see on the left, three new control points ĉ3, ĉ4 and ĉ5, which replaces the two old control
points c3 and c4.

the middle a new knot, t̂, is to be inserted. It follows from the value of t̂ that i = 3. The
two “linear translation and scaling” functions involved in the matrix T2(̂t) in expression
(6.15), w2,2 and w2,3 are shown to the right in the figure. The result of the knot insertion is
that the internal coefficient on the right of (6.15), c2, is replaced by two new coefficients
on the left of (6.15), ĉ2 and ĉ3. This can clearly be seen to the left in Figure 6.12.

Next is a 3rd-degree B-spline function

 ĉi−2
ĉi−1
ĉi

=

 1−w3,i−2(̂t) w3,i−2(̂t) 0 0
0 1−w3,i−1(̂t) w3,i−1(̂t) 0
0 0 1−w3,i(̂t) w3,i(̂t)




ci−3
ci−2
ci−1
ci

 (6.16)

In Figure 6.13 is there, to the left, a third degree B-spline curve (in R2) and its control
polygon (c0,c1,c2,c3,c4,c5,c6,c7). On the right side there is the knot vector illustrated
(on R, horizontal). In the middle a new knot, t̂, is to be inserted. It follows from the
position of t̂ that i = 5. The three “linear translation and scaling” functions involved in
the matrix T3(̂t) in expression (6.16), w3,3, w3,4 and w3,5 are shown to the right in Figure
6.13. The result of the knot insertion is that the internal coefficients on the right side of
(6.16), c3 and c4 are replaced by the three new coefficients on the left side of (6.16), ĉ3,
ĉ4 and ĉ5. This can clearly be seen on the left in Figure 6.13.

From subsection 4.4.2 and definition 6.4 it is clear that the matrix Td(t) is a corner cutting
matrix. It is therefore obvious that knot insertion is corner cutting. From the two examples
we can see that the new control points we get when we insert one new knot are on the
old control polygon. This is related to discrete B-splines,6 and it leads us to subdivision
technics. Inserting more than one knot (Oslo algorithm) leads us to blossoming, see
Goldman in [76].

6Discrete splines (on a uniform grid) were introduced by Mangasarian and Schumaker in [117] as so-
lutions to certain variational problems. They were discussed in detail by Tom Lyche in his Ph.D. Thesis,
“Discrete polynomial spline approximation methods”, for which there is a summary in [115].

92 CHAPTER 6. B-SPLINE CURVES

t0
t1
t2

t3
t4

t5
t6

t7 t9
t8 t10

t11

x

t0
t1
t2

t4
t5

t6
t7

t8 t10
t9 t11

t12
t3 t13

x

Figure 6.14: On the top left, in green, we see the knot vector for a 1st-degree B-spline
curve. To the right we see the curve itself and its 5 (green) control points. After degree
raising to a 2nd-degree B-spline curve we see the same curve but we now get 9 control
points, including 4 new marked red. In the lower part we see a 2nd-degree curve, green
knots and control points, raised to a 3rd-degree curve, where red knots have been added
where the internal green control points have been replaced with the red ones.

6.2.7 Degree elevation of B-splines

In subsection 4.4.4 is degree elevation of Bézier Curves shown. At each parameter inter-
val (between two knot clusters) there is a polynomial based curve segment of the given
degree. If, at each parameter interval, we transform the format to power basis, and add
one more term td+1, ie c(t) = ∑

d+1
i=0 ait i, where ad+1 = 0, we have raised the degree by 1.

The challenge is to do this with the B-spline format.

Because of the continuity property for B-splines over knot values, it follows that to main-
tain the continuity as we increase the degree by 1, we must increasing the multiplicity of
each cluster of knots with 1. Thus, the number of control points must increase with the
number of knot intervals.

We first use a 1st-degree, piecewise continuous linear curve as an example, it is quite
obvious that, after the degree elevation, there will be one new control point between each
of the old ones, and this is true for each knot interval. It is also obvious that the new
control points will be on the original control polygon, in the middle between two old
points.

To verify this observation we first distinguish between the 1st-degree and the 2nd-degree
curve. We therefore use ∼ in the notation for the original 1st-degree curve. Given a
knot vector for a 1st-degree B-spline space, τ̃ = {t̃i}6

i=0 = {0,0,1,2,3,4,4}. After degree
elevation we get τ = {ti}11

i=0 = {0,0,0,1,1,2,2,3,3,4,4,4}. Recall (6.11), ie w̃1,i(t) =
t−t̃i

t̃i+1−t̃i
. To simplify, we set x = w̃1,i(t) and x̄ = 1− x. If after the degree elevation, t j−1 =

t j and t j+1 = t j+2, then x = w̃1,i(t) = w2,2i−1(t) = w2,2i(t). We thus get the following

6.2. MODERN B-SPLINES 93

expression for the knot elevation in each knot interval,

c(t) =
(

x̄ x
)(c̃i−1

c̃i

)
=
(

x̄ x
)(x̄ x 0

0 x̄ x

) c2i−2
c2i−1
c2i


From x = 0 (start of the interval) it follows that c2i−2 = c̃i−1 and from x̄ = 0 (end of
the interval) that c2i = c̃i. By solving x̄2c̃i−1 + 2x̄x c2i−1 + x2c̃i = x̄c̃i−1 + xc̃i we get the
new point c2i−1 = 1

2 c̃i−1 +
1
2 c̃i. In the upper part of Figure 6.14 is this degree elevation

illustrated. On the left side we see the knot vector (green), after inserting new (red) knots
at each knot cluster. Also x = w̃1,2(t) = w2,3(t) = w2,4(t) is shown. On the right side we
see the piecewise linear 1st-degree B-spline curve and its control points (green). The 2nd-
degree curve is the same curve, but where the red points are the ones we have added in
the degree elevation. Together with the green points they form the new control polygon.

For a 2nd-degree B-spline curve, the number of control points will increase with the num-
ber of knot intervals. In fact, if t̃i < t̃i+1, then c̃i−1 must be replaced by two new control
points. This is because we insert one new knot into each cluster of knots. To illustrate the
process, we start with a knot vector τ̃ = {t̃i}8

i=0 = {0,0,0,1,2,3,4,4,4}. This will gener-
ate six 2nd-degree B-splines, and the B-spline curve c(t) = ∑

5
i=0 b2,i(t) c̃i. On the lower

part of Figure 6.14 there is an example of such a curve, illustrated with green knots and
green control points. The new knot vector is τ = {ti}13

i=0 = {0,0,0,0,1,1,2,2,3,3,4,4,4,4}
illustrated on the left in the figure by added red dots. To the right we see the curve with
both old and new control points as well as a brown pentagons at each cluster of internal
knots. Now, to find the new set of control points, we do the following. For every knot
interval, ie for i = 0,1,2, . . . , ñ−2, (in Figure 6.14 is ñ = 6)

q = (1−w2,i+1(t̃i+2))c̃i +w2,i+1(t̃i+2)c̃i+1, position of a knot cluster on the curve.
We make two new control point for this knot interval, see algorithm (4.37),

c2i =
2
3 c̃i +

1
3q and c2i+1 =

1
3q+ 2

3 c̃i+1,
which is equivalent to the Bézier-algorithm. Note that w2,i(t) uses the original knot vector
τ̃ . We shorten this and get the generally degree elevation algorithm from degree 2 to 3.

Degree elevation from 2 to 3
For i = 0,1,2, . . . , ñ−2

x = w2,i+1(t̃i+2) // Relative distribution in this knot interval
c2i =

(
1− x

3

)
c̃i +

x
3 c̃i+1 // Two control points in this knot interval

c2i+1 =
1
3 (1− x) c̃i +

1
3 (2+ x) c̃i+1 // for the elevated 3rd-degree B-spline curve.

If there are multiple internal knots in the 2nd-degree B-spline curve we will get one
control points twice. For example, if t̃4 = t̃5, c5 will be equal to c6, and also the
resulting knot vector will have 4 equal knots t6 = t7 = t8 = t9. But we can (and
should) reduse this to just 3 equal knots, and we then have to skip c6 and reduce the
index of the next control points by 1 in the algorithm.

As a final example, we will look at a 3rd-degree curve. In this example the knot vec-
tor is τ̃ = {0,0,0,0,1.08,2,3.2,4,5.1,6.5,7,7,7,7}, ie nonuniform with only single in-
ternal knots. Thus the knot vector of the elevated 4th-degree B-spline curve will be

94 CHAPTER 6. B-SPLINE CURVES

Figure 6.15: We see a 3-degree B-spline curve in blue, and its 10 control points, large
brass-colored spheres, along with the degree elevated (4th-degree) B-spline curve in red
and its 17 control points, small brass-colored spheres. The large copper-colored spheres
are the points in the first corner cutting step, q0 and q1. The small copper-colored spheres
are the position of the internal knot clusters.

τ = {0,0,0,0,0,1.08,1.08,2,2,3.2,3.2,4,4,5.1,5.1,6.5,6.5,7,7,7,7,7}. The example is
shown in Figure 6.15. Note that the new basis functions b0 and b1 cover 1 knot interval,
b2 and b3 cover 2 intervals, b4 cover 3 intervals, b5 cover 2 intervals, and so on with 2
and 3 knot intervals every other time, until the end mirrors the start. We initially have 10
control points and we get 17 after the degree elevation. It follows that the two first and the
two last control points follows the Bézier algorithm because the related basic functions
only cover 1 knot interval, but we do not need to treat them separately. Furthermore, we
must distinguish between the control points associated with basic functions that cover 2
and those that cover 3 knot intervals. At start and end the cover is redused due to the knot
multipisity, but this will not efect how we have to treat them. We only need to separate
the algorithm into one for the new control points with an even number as an index, and
one for the new control points with an odd number as an index. In our example, for the
points with an even index we get, for i = 0,1, . . . ,8,

c2i = (1− x) c̃i + x c̃i+1, where x = w3,i+1(t̃i+2)+w3,i+1(t̃i+3)
2 .

In Figure 6.15, these points can be seen as small brass-colored spheres that lies on the
original control polygon. Now, the points with an odd index are connected to corners, we
get, for i = 0,1, . . . ,7,

q0 = xc̃i +(1− x)c̃i+1, where x = 1−w3,i+1(t̃i+3)
2 ,

q1 = (1− y)c̃i+1 + yc̃i+2, where y = w3,i+2(t̃i+3)
2 ,

c2i+1 =
q0+q1

2 ,

Note that w3,i(t) uses the original knot vector τ̃ . In Figure 6.15, q0 and q1 are marked as
large copper-colored spheres on either side of one original internal control points, exept
for one that is coverd by the second original point and one that is covered by the second
last original point. The new control points with odd indices (small brass-colored spheres)
lies in the middle between their respective q0 and q1. We make the algorithm general,
shorten it and get the degree elevation algorithm from degree 3 to 4.

6.2. MODERN B-SPLINES 95

Degree elevation from 3 to 4
For i = 0,1,2, . . . , ñ−2

x = w3,i+1(t̃i+2)+w3,i+1(t̃i+3)
2 // Relative distribution in this knot interval

c2i = (1− x) c̃i + x c̃i+1 // Control points with an even index number

For i = 0,1,2, . . . , ñ−3
x = w3,i+1(t̃i+3) // First scale and translation mapping
y = w3,i+2(t̃i+3) // Second scale and translation mapping
c2i+1 =

1−x
4 c̃i +

3+x−y
4 c̃i+1 +

y
4 c̃i+2 // Control points with an odd index number

If there are multiple internal knots in the 3nd degree B-spline curve we will get
“redundent” control points. For example, if t̃5 = t̃6, c6 will lies on the line between
c5 and c7 , and the resulting knot vector will have 4 equal knots t7 = t8 = t9 = t10.
But we can (and should) reduse this to just 3 equal knots. Thus we have to skip c6 by
simply reducing the indices of the next “odd” control points by 1, and increasing the
indices of the next “even” control points by 1, but in the “even” case we also need to
increase the indices in the computation to w3,i+2(t̃i+3), w3,i+2(t̃i+4), c̃i+1 and c̃i+2.

6.2.8 Blossoming - Polar form

In 1987 L. Ramshaw introduced blossoming as a way to treat B-splines and corner cutting,
[131], [132] and [133]. This was based on the work of P. de Casteljau from 1984, [40].
R. Goldman has also later worked with blossoming in [76] and [77].

The blossom or polar form of a polynomial of a single variable of degree d, pd(t), is the
symmetric multiaffine polynomial bp(u1, . . . ,ud) such that bp(t, . . . , t) = pd(t) . Blossom-
ing means replacing a degree d polynomial in one variable by an equivalent symmetric
polynomial in d variables where each new variable is only of power 1. Thus the blossom
bp(t1, . . . , td) is characterized by three properties,

Diagonal bp(t, t, t) = p3(t), where d = 3 can be replaced by any number > 0.

Symmetry bp(u1, . . . ,ui, . . . ,u j, . . . ,ud) = bp(u1, . . . ,u j, . . . ,ui, . . . ,ud)

Multiaffine bp(. . . ,a ui +(1−a)ui, . . .) = a bp(. . . ,ui, . . .)+(1−a)bp(. . . ,ui, . . .)

It follows that blossoming is a kind of factorisation down to only d-linear functions, in a
way the same as we see in matrix notation,

bp(u1,u2,u3) =
(

1−w1,i(u1) w1,i(u1)
)(1−w2,i−1(u2) w2,i−1(u2) 0

0 1−w2,i(u2) w2,i(u2)

)
 1−w3,i−2(u3) w3,i−2(u3) 0 0

0 1−w3,i−1(u3) w3,i−1(u3) 0
0 0 1−w3,i(u3) w3,i(u3)




bp(ti−2, ti−1, ti)
bp(ti−1, ti, ti+1)
bp(ti, ti+1, ti+2)

bp(ti+1, ti+2, ti+3)

 ,

where [ti, ti+1] is the active domain, and u j, j = 1,2,3 must be in the domain. If we

96 CHAPTER 6. B-SPLINE CURVES

organize the sub-results as a pyramid we get,

bp(u1,u2,u3)
↗ ↖

bp(ti,u2,u3,) bp(u2,u3, ti+1)
↗ ↖ ↗ ↖

bp(ti−1, ti,u3) bp(ti,u3, ti+1) bp(u3, ti+1, ti+2)
↗ ↖ ↗ ↖ ↗ ↖

bp(ti−2, ti−1, ti) bp(ti−1, ti, ti+1) bp(ti, ti+1, ti+2) bp(ti+1, ti+2, ti+3)

6.2.9 Algorithms for B-splines
The recursion formula for B-splines was given i Definition 6.3 and clearly illustrated by
the matrix notation in subsection 6.2.3. An algorithm would therefore be to compute the
factor matrices from left to right, but skip the elements that are zero. In the following
algorithm, we will fill in a vector with d + 1 real numbers, one for each of the active
B-splines (basic functions) at the current interval [ti, ti+1) when ti ≤ t < ti+1.

Algorithm 3. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes a vector bd(t) ∈ Rd+1, containing the values of the d + 1 B-
splines {bd, j(t)}

ς

j=ς−d , where ς is determined by tς ≤ t < tς+1.The input variables are:
the knot vector τ , the polynomial degree of the B-splines d, the index ς , which is derived
from tς < t ≤ tς+1, and the parameter value t ∈ [td, tn].

vector〈double〉 bspline(vector〈double〉 τ , int d, int ς , double t)
vector〈double〉 b(d+1); // The return vector, dimension d +1.
vector〈double〉 w(d);
b1 =W1,ς (t;τ); // see (6.11)
b0 = 1−b1; // The general Cox/deBoor algorithm for
for (int i = 2; i≤ d; i++) // - B-splines, computing the set

for (int j = 0; j < i; j++) // - of all B-spline values of degree d at t
w j =Wi,ς− j(t;τ); // - when τς ≤ t < τς+1.

bi = (1−w0) bi−1;
for (int j = i−1; j > 0; j−−)

b j = wi− j b j−1 +(1−wi− j−1) b j;
b0 = wi−1 b0;

return b;

The Algorithm 3 is a classical optimal Cox-deBoor algorithm for B-splines.

Often we will need derivatives of order 1, 2, etc. Therefore, an algorithm is needed that not
only compute the values of the B-spline functions, but also derivatives of several orders.
For a degree d polynomial function, there will be d derivatives of subsequent order that
may have values different from zero. Therefor, we need a d +1×d +1 matrix Bd,τ(t) of
real numbers to store all these values. We get c(t) = Bd,τ(t) c, where c(t) is a vector of
one value and d subsequent derivatives. Note that c = Bd,τ(t)−1g, ie Taylor expansion at
t, where g is the position and d subsequent derivatives. To compute the position and d
derivatives of a 3th-degree B-spline curve, we have the following formulaes,

6.2. MODERN B-SPLINES 97

c(t) = T3(t) c = T1(t)T2(t)T3(t) c,
c′(t) = 3 T2(t)T′ c = 3 T1(t)T2(t) T ′3 c,
c′′(t) = 6 T1(t)T′2 c = 6 T1(t) T ′2T ′3 c,
c′′′(t) = 6 T′3 c = 6 T ′1T ′2T ′3 c.

(6.17)

In the first line of (6.17) we compute the upper left triangle of the matrix with values of
the B-spline functions from degree 0 to d from the bottom and up. In the next step we
compute T ′1 on the bottom line the matrix, then we compute T ′2 on the bottom line and the
line above, and so on until all derivatives are computed according to (6.17)

The following algorithm creates the matrix Bd,τ(t,ς), where d is the polynomial degree,
τ = {t0, t1, . . . , tn+d} is the knot vector, t ∈ [td, tn] is the parameter value and the index ς

is derived from tς < t ≤ tς+1. The matrix is defined and made in the same way as the
Bernstein-Hermite matrix, described in subsection 4.4.3, but where the Bernstein factor
matrices, defined in section 4.4.3, are replaced by the matrices in definition 6.4 and 6.5.

Algorithm 4. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes the extended square matrix Bd,τ(t,ς) ∈ Rd+1×d+1, which con-
tains in the first row, the values of the d + 1 B-splines {bd,i(t)}

ς+d
i=ς

, and in the following

rows values for each of the d derivatives, {D jbd,i(t)}
ς+d
i=ς

, j = 1,2, . . . ,d. The input vari-
ables are: the knot vector τ , the polynomial degree of the B-splines d, the index ς , which
is derived from tς < t ≤ tς+1, and the parameter value t ∈ [td, tn].

matrix〈double〉 BSplineHermiteMat (vector〈double〉 τ , int d, int ς , double t)
matrix〈double〉 B(d+1,d+1); // The return matrix, dimension (d +1)× (d +1).
vector〈double〉 w(d);
Bd−1,1 =W1,ς (t;τ); // see (6.11)
Bd−1,0 = 1−Bd−1,1; // The general Cox/deBoor algorithm for
for (int i=d-2, k=2; i≥ 0; i−−, k++) // - B-splines, computing the triangle

for (int j=1; j < k; j++) // - of all values of B-splines of degree
w j =Wk,ς−k+ j+1(t;τ); // - 1 to d, respectively in each row.

Bi,0 = (1−w0) Bi+1,0;
for (int j=1; j < d− i; j++)

Bi, j = w j−1 Bi+1, j−1 +(1−w j) Bi+1, j;
Bi,d−i = wk−1 Bi+1,d−i−1;

Bd,1 = δ1,ς (τ); // see (6.13)
Bd,0 =−Bd,1; // Multiply all rows except the upper one
for (int k=2; k ≤ d; k++) // - with the derivative matrices in the

for (int j=0; j < k; j++) // - definition 6.5, so every row
w j = k δk,ς−k+ j+1(τ); // - extends the number of

for (int i = d; i > d− k; i−−) // - nonzero elements to d+1.
Bi,k = wk−1 Bi,k−1;
for (int j = k−1; j > 0; j−−)

Bi, j = w j−1 Bi, j−1−w j Bi, j ;
Bi,0 =−w0 Bi,0;

return B;

98 CHAPTER 6. B-SPLINE CURVES

x =2.12 x =3.23

x =44

t
0

1

x =00

x =0.81

b (t)3,0

b (t)3,1

b (t)3,2

b (t)3,3
b (t)3,4

b (t)3,5 b (t)3,6

b (t)3,7

b (t)3,8

b (t)3,9

t1
t2
t3

t0

t4
t5

t10

t6
t7

t8
t9

t11
t12
t13

Figure 6.16: The B-spline basis functions for Hermite splines. There are 5 interpolation
points and 10 B-splines. The knot values are marked by dots. One can see that the
multiplicity of the internal knots is 2.

6.3 Hermite spline interpolation on B-spline form
In section 5.6, page 68–68, cubic Hermite splines were described in both algebraic and
geometric form. We shall now look at cubic Hermite splines in B-spline form.

Given m strictly increasing real numbers {xi}m
i=1, m points {pi}m

i=1 and m respective vec-
tors {vi}m

i=1. We can now define a cubic Hermite splines in B-spline form, i.e.

c(t) = T 3(t) c.

This curve will interpolate the points and the vectors at the given real numbers, i.e. c(xi) =
pi and c′(xi) = vi. We first make a knot vector, {ti}n+3

i=0 , where n = 2m, setting

at the start: t0 = t1 = t2 = t3 = x1

at the end: tn = tn+1 = tn+2 = tn+3 = xm

and otherwise: ti = ti+1 = x j, for i = 4,6,8, . . . ,2(m−1) and j = i
2 .

(6.18)

We then compute the control points, which we are construct by setting

c0 = p1 and cn−1 = pm,

and

ci = p j +
∆x j
6 v j, for i = 1,3, . . . ,n−3 where j = i+1

2 ,

ci = p j+1−
∆x j
6 v j+1, for i = 2,4, . . . ,n−2 where j = i

2 ,
(6.19)

where ∆x j = x j+1− x j.

We can of course generate the vectors {vi}m
i=1 using either Cardinal, or Catmull-Rom

spline, or Bessel’s interpolation, or Akima’s interpolation method, as described in section
5.6. In Figure 6.16 is there an example of a set of B-splines (basis functions) that are
constructed to interpolate m = 5 points. One can observe in the figure, and recognize

6.3. HERMITE SPLINE INTERPOLATION ON B-SPLINE FORM 99

p
1

p
2

p
3

p
4

p
5

c8
c9

c7

c6

c0 c1

c2

c3

c4

c5

Figure 6.17: We see an Hermite interpolation of 5 points {pi}5
i=1 and respective vectors

{vi}5
i=1 by Hermite spline on B-spline form. The control polygon appears in dashed green.

The control points {ci}9
i=0 are blue, and the interpolation points {pi}4

i=0 are marked red.
The resulting curve is in solid black.

from the expressions in (6.18), that all the inner knots are of multiplicity 2. This is because
an Hermite spline is C1-smooth. A 3rd-degree B-spline is C2[td, tn] with simple internal
knots , so to be only C1[t0, tn] there must be 2 equal internal knots. This also secure the
interpolation. In Figure 6.16 we can observe that there are 5 clusters of knot-values, with
multiplicity 2 in the internal and 4 at the ends. The value of each of these clusters is the
parameter value of the interpolation points, i.e. c(xi) = pi. We can see in Figure 6.16
that over the internal knots there are only two B-splines that are different from zero. This
ensures that the interpolation points lie on the control polygon, the straight line between
two control points, and is actually how we construct the control points in (6.19).

Figure 6.17 shows a Catmull-Rom spline where the vectors vi =
1
2(pi+1− pi−1) and the

x values are {0,0.8,2.1,3.2,4} as in Figure 6.16. In Figure 6.17 we can see a solid black
B-spline curve together with the control polygon in dashed green. The 10 control points
{ci}9

i=0 are marked as blue circles and the 5 interpolation points {pi}5
i=1 are marked with

red stars. The tangent vectors are v0 = (p2− p1), v1 = 1
2(p3− p1), v2 = 1

2(p4− p2),
v3 = 1

2(p5− p3) and v4 = v0. If we introduce tension parameters, the example is also
potentially a Cardinal spline, also called a Canonical spline.

If we generally introduce tension parameters {ρi}5
i=1, we must change (6.19) to

ci = p j +
∆x j ρ j

6 v j, for i = 1,3, . . . ,n−3 where j = i+1
2 ,

ci = p j+1−
∆x j ρ j+1

6 v j+1, for i = 2,4, . . . ,n−2 where j = i
2 .

Also Bessels spline or Akima’s method described in sections 5.6 can be used to generate
the tangent vectors.

100 CHAPTER 6. B-SPLINE CURVES

b (t)�,�

b (t)�,� b (t)�,�
b (t)�,� b (t)�,� b (t)�,� b (t)�,� b (t)�,� b (t)�,�

b (t)�,�

t�
t�t�

t�
t�

t� t� t� t� t�
t��
t��
t��
t��

t

Figure 6.18: The figure shows the 10 3rd-degree B-splines that are generated by a knot
vector of 14 elements, {ti}13

i=0, that is used for cubic spline interpolation of 8 points. As
we can see, only 3 B-splines are different from zero at the internal knots. That is why the
matrix A in the equation (6.20), is three diagonal.

6.4 Cubic spline interpolation on B-spline form
In section 5.7 a cubic spline interpolation is described. We shall now look at cubic spline
interpolation on B-spline form.

In section 5.7, we used Hermite interpolation as the basic form even though the curve
was C2-smooth. This is why the unknowns were the 1st-derivatives in the interpolation
points. When we have B-splines, it is natural that the unknowns are the coefficients, i.e.
the control points.

Given m strictly increasing real numbers {xi}m
i=1 and m points {pi}m

i=1. We will now
construct a 3rd-degree B-spline curve,

c(t) = T 3(t) c.

This curve interpolates the given points at the given real numbers, i.e. c(xi) = pi, i =
1,2, . . . ,m. Because we use 3rd-degree B-splines, it follows that the number of knot values
must be m+6. This is because we want single knots internally, since the curve is actually
C2−smooth, and four knots at start and end. Since the number of knots is the number of
control points plus the order of the B-spline, that is 4, it follows that the number of control
points is n = m+2. First, The knot vector must be

at the start: t0 = t1 = t2 = t3 = x1

at the end: tn = tn+1 = tn+2 = tn+3 = xm

and otherwise: ti = xi−2, for i = 4,5, . . . ,n−2,n−1.

Figure 6.18 shows the knot vector we get from a given x-vector and a plot of the B-splines
it generates. When the degree is 3 then there will be k = 4 equal knots at start and end.
It then follows that the control points at start and at the end are equal to the interpolation
points, i.e.

c0 = p1 and cn−1 = pm.

To compute the remaining control points we have to solve a system of linear equations
similar to equation (5.15) in section 5.7, i.e.

A c = b (6.20)

6.4. CUBIC SPLINE INTERPOLATION ON B-SPLINE FORM 101

where

A =



B′′3,1(t3) B′′3,2(t3) 0 · · · · · · 0

B3,1(t4) B3,2(t4) B3,3(t4) 0

0 B3,2(t5) B3,3(t5) B3,4(t5) 0
...

... 0

... . . . 0 B3,n−4(tn−1) B3,n−3(tn−1) B3,n−2(tn−1)

0 · · · · · · 0 B′′3,n−3(tn) B′′3,n−2(tn)


,

and

c =


c1
...
...
...

cn−2

 and b =


−B′′3,0(t3) c0

p2
...

pm−1
−B′′3,n−1(tn) cn−1

 .

We have, in this equation, used the free end condition, which is that the second derivative
is zero at start and end (see (5.19) in section 5.7). All rows in A, except the first and last,
can be created using Algorithm 3. The first and last rows can be created using Algorithm
4, and then 3rd row from the result.

Figure 6.18 shows an example of B-splines in cubic spline interpolation where m= 8 (you
can see that there are 8 clusters of knots). It follows that there are 10 B-splines, n = 10,
and that there are 14 knots (marked with red dots). On the left side of Figure 6.18 we see
that only 4 B-splines are active at start, B3,0, B3,1, B3,2 and B3,3. But since B′′3,3(t3) = 0 it
follows that we get an expression with 3 terms that describe the 2nd derivative at start. At
the end of the curve we can see something similar. Thus we get the following conditions,

c′′(t3) = B′′3,0(t3) c0 +B′′3,1(t3) c1 +B′′3,2(t3) c2 = 0

c′′(t10) = B′′3,7(t10) c7 +B′′3,8(t10) c8 +B′′3,9(t10) c9 = 0.

If we reorganize these two expressions we get,

B′′3,1(t3) c1 +B′′3,2(t3) c2 =−B′′3,0(t3) c0

B′′3,7(t10) c7 +B′′3,8(t10) c8 =−B′′3,9(t10) c9

These two requirements are the first and the last line of matrix A in (6.20). As we see in
Figure 6.18, only three B-splines are different from zero in all internal knots. Thus, to
interpolate in these internal knots, it follows that (as we can see from the figure)

c(ti) = B3,i−3(ti) ci−3 +B3,i−2(ti) ci−2 +B3,i−1(ti) ci−1 = pi−2,

which is actually what all the other lines in the matrix A in equation (6.20) show.

102 CHAPTER 6. B-SPLINE CURVES

6.5 B-spline approximation and least squares
As we saw in cubic spline interpolation, the number of interpolation points is equal to the
number of control points minus the start and end point. That is, the system is determined
and thus can be solved. If, on the other hand, the number of interpolation points is greater
than the degrees of freedom, we cannot interpolate, because then we do not get a square
matrix. So what can be done? One possibility is to use the least squares method.

So, given m strictly increasing real numbers {xi}m
i=1 and m points {pi}m

i=1. We can con-
struct a B-spline curve of degree d,

c(t) = T d(t) c,

where the number of control points is n < m. Unlike cubic spline interpolation, we now
have freedom to make a knot vector independent of the xi values. Thus, we must make
a knot vector such that there is an xi value inside every B-splines (domain of the basis
functions). We now have the following optimal solution for each of the m points,

c(xi) =
n−1

∑
j=0

c jbd, j(xi) = pi.

If we organize this in a matrix/vector equation, we get

A c = p. (6.21)

Here A is a m×n-matrix where each row has a maximum of d+1 non-zero elements. We
can look at an example, a 2nd degree B-spline curve where we have made a knot vector
where t0 = t1 = t2 = x1, tn = tn+1 = tn+2 = xm, t3 > x2 and tn−1 < xm−1. The equation is,

A =



B2,0(x1) 0 · · · · · · · · · 0

B2,0(x1) B2,1(x1) B2,2(x1) · · · · · · ...
...

...
...

0 B2,1(x2) B2,2(x2) B2,3(x2) · · · ...
...
... . . . B2,n−4(xm−1) B2,n−3(xm−1) B2,n−2(xm−1) 0
...

...
...

...
... · · · 0 B2,n−3(xm) B2,n−2(xm) B2,n−1(xm)
0 · · · · · · · · · 0 B2,n−1(xm)



,

(6.22)
and

c =


c0
c1
...

cn−2
cn−1

 and p =


p1
p2
...

pm−1
pm

 .

6.5. B-SPLINE APPROXIMATION AND LEAST SQUARES 103

Figure 6.19: To the left an arc curve in black and a 3rd-degree B-spline curve, in red,
made by 60 sample point on the arc and using least square to make the B-spline curve.
To the right is the arc curve in black and a B-spline curve in blue. This B-spline curve is
made by the least squares method including smoothing and where α = 1.

All rows in A can be created using Algorithm 3. Remember that one of the parameters
in the algorithm is ς , and that in row number i in A we use xi as parameter to the basis
functions. It follows that ς comes from tς ≤ xi < tς+1. If i = m then ς = n−1.

Since the matrix A is not squared and thus not invertible, we can not solve it as it is.
So what do we do? We take min |A c− p|2, find the derivative with respect to c, and
find when the derivative is 0. That is when d

dc(|Ac|2− 2pAc+ |p|2) = 0, which give
2AT Ac−2AT p = 0. Thus, to solve the least square expression, we must solve

Bc = y, where B = AT A and y = AT p. (6.23)

If m = n, (6.21) can be solve directly, it is an interpolation, but different from classical
cubic spline interpolation. If m > n, and usual mush bigger, (6.23) will create a system
with an n×n matrix B = AT A and a vector with n points y = AT b which is easy to solve.
Especially because the matrix is symmetric around the main diagonal and also diagonal
dominant because the most significant basic function is on the diagonal. The matrix is
called a positive definite matrix (defined by xT Ax > 0 for any nonzero vector x), and
can better and faster be solved by using Cholesky- or QR-decomposition instead of LU
decomposition. See section about BLAS - B.1, or about Numerical Computations in [78].

In Figure 6.19 is an example given. It’s a piece of a circular arc sampled in 60 points.
These points together with a vector of parameter values used in the sampling are then
used to create a 3rd-degree B-spline curve. This curve is clamped and otherwise has a
uniform knot vector. On left hand side, the B-spline curve is made by using least square
method. It has 5 control points. In the figure, the arc-curve is black while the B-spline
curve is red. A closer study of these two curves shows that the B-spline curve oscillate
around the arc curve. This is typical of interpolation and also approximation using least
squares method. It is a result of balancing the error.

The degree/order of a B-spline is limiting the shapes of a curve. To understand the prob-
lem we can just draw a freehand curve on a sheet of paper, and ask the question; is it
possible to find the formula for this curve? The answer is yes, but there is a catch with
it, the dimension of the function space must be infinite. If we reduce this dimension to 4,

104 CHAPTER 6. B-SPLINE CURVES

ie a 3rd-degree B-spline curve then we get an approximation. If we force the curve to go
through a set of points or as close as possible, the curve will necessarily begin to oscillate.

Often we want to get a smooth curve that is close enough. This can be done by adding an
extra term to the equation, ie try to minimize the square of the curvature, or what is eas-
ier, the square of the second derivative. So, in addition we get c′′(t) = ∑

n−1
i=0 b′′d,i(t)ci,

which give min |Dc|2, where the matrix D is similar to matrix A except that the ba-
sis functions are replaced by the 2nd derivatives of the basis functions. We thus get,
Bc = b, where B = AT A+α DT D and b = AT p. Here α is a scalar that determines
the weight of the smoothing. On right hand side in Figure 6.19 can we see the same
approximation in blue as the one to the left, but here a smoothing with α = 1 is added.

Least Square and B-splines
Given m points p, and m parameter values x. Then we can make a B-spline curve of
degree d, with n < m control points and a knot vector τ , where all x-values are in the
domain, and where the domain of each B-splines includes at least one x-value. We
get

Bc = y, where B = AT A+α DT D and y = AT p.

The m×n matrix A is according to (6.22), which also applies to matrix D, but where
the B-splines are replaced by the 2nd derivative of the B-splines. α is a scalar that
determines the smoothing. If α = 0 we have an ordinary least square method and can
use Algorithm 3 to generate A. Otherwise it is a smoothing least square method and
we must use Algorithm 4, 1st row to generate A and 3rd row to generate D.

6.6 NURBS
NURBS is short for non uniform rational B-splines. Non uniform B-splines are, as typical
modern B-splines, defined by knots that can be arbitrary spaced. This is contrary to the
uniform B-spline defined (on an implicit integer knot vector) by Schoenberg in [137, 138].
To describe rational B-splines it is necessary to know about homogeneous coordinates,
frequently used in graphical systems like OpenGL. A homogeneous coordinate system is
connected to a projective space, Pn.7 A concrete description is that Pn can be defined as
the space of all infinite straight lines in Rn+1 going through the origin. The main effect is
that there is one extra coordinate compared to an equivalent Euclidian/affine8 space. We
have q = (x,y,z,w), when q is an element in a 3D space. Using this description it follows
that q ∈ P3 can be expressed by

q = (kx,ky,kz,kw),

where q is independent of k, i.e. k can be any nonzero real.

7Projective space is described in section 2.5 and homogeneous coordinates in section 2.6. For a more
thorough study, see e.g. [11] or [30].

8Affine spaces are discussed in section 2.4. Affine spaces are spaces of points with associated vectors.
The points in the affine space are independent of the origin, and the origin is just one of the points just like
any other. See section 2.4. For more deeply studies see e.g. http://en.wikipedia.org/wiki/Affine space.

http://en.wikipedia.org/wiki/Affine_space

6.6. NURBS 105

c5

c2

c1

c3

c4c0

w=12

w=102

w=2 1
3

Figure 6.20: Three versions of a Rational Bézier Curve (NURBS without internal knots)
It is only the weight, w2, of the control point c2 that has different values in the three
examples. The control polygon is the same for all three curves.

There is a canonical injection of Rn into Pn. This means that an affine space Rn can be
embedded isomorphically in Pn by the standard injection

(x1, . . . ,xn) 7→ (x1, . . . ,xn,1).

Affine points can be recovered from projective ones with the mapping

(x1, . . . ,xn,xn+1)∼
(

x1

xn+1
, . . . ,

xn

xn+1
,1
)
7→
(

x1

xn+1
, . . . ,

xn

xn+1

)
.

Definition 6.7. Non uniform rational B-splines (NURBS) are B-splines, defined on a non
uniform knot vector, in a projective space and mapped into an affine space. It follows that
a B-spline in Pn is

c(t) = T d(t) c,

where each element c j, j = i−d, i−d +1, . . . , i of c are given in homogeneous coordi-
nates

c j = w j(x j,1, . . . ,x j,n,1).

Finally, preparing for mapping from the projective space Pn to an affine space Rn gives

c(t) =
T d(t) c
T d(t) w

, (6.24)

where w = (wi−d,wi−d+1, . . . ,wi)
T , which is actually the NURBS definition.

It follows from expression (6.24) that if wi = 1 for all i, then the NURBS is an ordinary
B-spline function in an affine space. To sketch the control polygon the coefficients ci, i =
0, . . . ,m−1, where m is the number of coefficients, is mapped from Pn to Rn, i.e.

wi(xi,1, . . . ,xi,n,1) 7→ (xi,1, . . . ,xi,n).

106 CHAPTER 6. B-SPLINE CURVES

Figure 6.20 shows a rational 3rd-degree B-spline curve plotted with the weight of the
third coefficient having the values w2 = 0.1, w2 = 1 and w2 = 10. The effect is clearly
demonstrated, as we can see, a small weight is pushing the curve from the control point,
while a big weight is pulling it towards the control point.

6.7 Uniform B-splines and subdivision
Uniform integer-based B-splines, described in (6.2) and (6.3), were the first B-splines
developed by Schoenberg. In particular, the symmetry and the fact that all basic functions
are similar, only moved in relation to each other, means that knot insertion in the middle
between the knots can be simplified as well as a subsequent re-parametrization to integer
knots. This leads to subdivision curves.

Subdivision is usually corner cutting, where an initial point set are replaced by a new
larger point set where the new points are on the lines between the previous set of points.
But subdivision can also be interpolation, where the new points are added to the initial
point set and where the new points not necessarily are inside the convex hull of the original
point set. In the following subsections we will look at both types of subdivision and we
start with interpolation.

6.7.1 Catmull-Rom Subdivision Splines
Catmull-Rom splines are discussed in section 5.6, page 69, and later shown in Figure
6.17, page 99. Catmull-Rom splines interpolates a set of points in such a way that the 1st

derivatives at each point are equal to the vector from the point before, to the point after
this, scaled by 1

2 . If we consider a uniform and unit-based knot vector, then Catmull-Rom
splines can be developed as an interpolating C1-continues subdivision curve, [20].

Given the knots {−1,0,1,2} and the points pi−1, pi, pi+1 and pi+2, then we get, on
Lagrange form,

c(t) = L3,0(t)pi−1 +L3,1(t)pi +L3,2(t)pi+1 +L3,3(t)pi+2

=
t(t−1)(t−2)
−1(−2)(−2)

pi−1 +
(t +1)(t−1)(t−2)

1(−1)(−2)
pi

+
(t +1)t(t−2)

2(1)(−1)
pi+1 +

(t +1)t(t−1)
3(2)(1)

pi+2

=−1
6
(
t3−3t2 +2t

)
pi−1 +

1
2
(
t3−2t2− t +2

)
pi

− 1
2
(
t3− t2−2t

)
pi+1 +

1
6
(
t3− t

)
pi+2.

(6.25)

If we compute the formula for Catmull-Rom splines at t = 1
2 , halfway between the points

pi and pi+1, we get the 4 points subdivision scheme for Catmull-Rom splines, also called
the Dubuc-Deslaurier subdivision scheme,

p̂i =−
1

16
pi−1 +

9
16

pi +
9
16

pi+1−
1
16

pi+2, (6.26)

6.7. UNIFORM B-SPLINES AND SUBDIVISION 107

Figure 6.21: To the left is an open Catmull-Rom subdivision curve, The black circles
are the initial points, the green points are the 1st level, the blue are the 2nd level and the
orange are the 3rd level of new points. To the right is a closed Catmull-Rom subdivision
curve made from the same set of points as the curve to the left.

where the point p̂i is a new point that lies between pi and pi+1. The procedure is quite
clear. Given a point set, we can expand this set by making new points between all the
old ones, recursively using the Dubuc-Deslaurier subdivision scheme, until the point set
is dense enough. Note that we only use the old point set to generate the new points that
should be between the old points, and we keep the old points.

If the curve is closed, ie topological equal to a circle, we implement “the head to bite the
tail”, see Algorithm 5. However, if the curve is open, ie including a start and an end point,
then the scheme does not work at those ends. We can either move away from the ends
as we go deeper in the recursion, or changing the scheme at the ends. We use the same
formula, (6.25). The index of the first four points are 0,1,2,3. Because we now want a
new point between p0 and p1 we change the t-value, ie we compute the formula (6.25) at
t =−1

2 , halfway between the points p0 and p1 and get the following scheme,

p̂0 =
5

16
p0 +

15
16

p1−
5

16
p2 +

1
16

p3, (6.27)

where the point p̂0 is a new point that lies between p0 and p1. At the end we can use the
same scheme, but turned. If the last point has index n, ie pn, then

p̂n−1 =
5

16
pn +

15
16

pn−1−
5

16
pn−2 +

1
16

pn−3, (6.28)

where the point p̂n−1 is a new point that lies between pn−1 and pn.

A tension parameter was launched in [56]. Introducing ω = 1
16 , then we get:

p̂i =

(
1
2
+ω

)
(pi + pi+1)−ω (pi−1 + pi+2) , (6.29)

that is a reformulation of (6.26). But ω can be changed, and Dyn at al showed in [56] that
the curve is C1-continues if 0 < ω <

√
5−1
8 .

A description of an algorithm without a tension parameter follows. There will be some
differences between an algorithm for making an open curve and an algorithm for a closed
curve. In the algorithm description below, the differences are described after the algorithm
description itself, which is basically for an open curve

108 CHAPTER 6. B-SPLINE CURVES

Algorithm 5. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm calculates a vector of sample points of a curve based on Dubuc-Deslaurier
subdivision scheme. There is an algorithm for open curves and changes for closed curves.
The input variables are: the initial point set {Pi}n

i=0 and the level of refinement d.

Vector〈Point〉 catmulRom(vector〈Point〉 P, int d)
int n = P.size−1; // The number of intervals
int m = 2dn; // The final number of points
vector〈Point〉 Φ(m+1); // The return vector - m+1 points.
for (int i=0; i < P.size; i++)

Φ2d i = Pi; // Inserting the initial points
for (int j=1; j ≤ d; j++) // For each level of refinement

int h = 2d− j;
int k = 2h;
Φh =

5
16 p0 +

15
16 pk− 5

16 p2k +
1

16 p3k; // a) - from (6.27)
for (int i=1; i < n−1; i++)

Φki+h =− 1
16 pk(i−1)+

9
16 pki +

9
16 pk(i+1)− 1

16 pk(i+2); // b) - from (6.26)
Φkn−h =

5
16 pkn +

15
16 pk(n−1)− 5

16 pk(n−2)+
1

16 pk(n−3) // c) - from (6.28)
return Φ;

If the curve is close, we change the number if interval, int n = P.size;
after inserting the initial points we add Φ2dn = P0;
we replace the line marked a) with Φh =− 1

16 pk(n−2)+
9

16 pk +
9

16 p2k− 1
16 p3k;

and we replace the line marked c) with Φkn−h =− 1
16 p2k+

9
16 pkn+

9
16 pk(n−1)− 1

16 pk(n−2);

Remember, in programming language of the C-family, 2d can be implemented as 1 << d.

On left side of Figure 6.21 is shown an open Catmull-Rom subdivision curve made using
the algorithmic description given above. We have n+1 ´´black” points where n= 7. These
are the original points. We use 3 refinement levels, ie d = 3. We follow the description
above and find that m = 237 = 56, so there will be 57 points when the process is complete.
We copy the 8 original points to q0,q8,q16,q24,q32,q40,q48 and q56. Then at the 1st level
is k̂ = 4 and k = 8. In accordance with the algorithm, 7 new ’green’ points are added, with
the indices 4,12,20,28,36,44 and 52. At the 2nd level we add 14 new ´´blue” points, with
indices 2,6,10,14,18,22,26,30,34,38,42,46,50 and 54. Finally at 3rd level we insert 28
new ´´orange” points with the indices 1,3,5, ...,51,53 and 55. As we can see to the left
in Figure 6.21, the total number of points is 57. If we have used 4 refinement levels, the
total number would have been 113.

On right in Figure 6.21 is shown a closed Catmull-Rom subdivision curve made using the
same set of points as the curve on left side in the figure.

6.7.2 Chaikin’s algorithms, 2nd-degree subdivision B-splines
We first look at the most simple corner cutting procedure. George Chaikin gave a lecture
at the University of Utah in 1974, where he specified a new procedure for generating
curves from a limited set of points [21]. This algorithm was among the first refinement

6.7. UNIFORM B-SPLINES AND SUBDIVISION 109

algorithms based on corner cutting. The algorithm refines a point set in such a way that it
converges towards a smooth curve. The algorithm is derived from a 2nd degree uniform
B-splines [135]. Recall the matric from knot insertion, expression (6.15), and put a new
knot in the middle between ti and ti+1,(

q2i−1
q2i

)
=

(
1−w2,i−1(

ti+ti+1
2) w2,i−1(

ti+ti+1
2) 0

0 1−w2,i(
ti+ti+1

2) w2,i(
ti+ti+1

2)

) pi−1
pi

pi+1

 ,

where the two new points lie on opposite sides of pi. If we assume a uniform knot vector
of integers, then

w2,i−1

(
ti + ti+1

2

)
=

1
2 − (−1)

2
=

3
4

and w2,i

(
ti + ti+1

2

)
=

1
2 −0

2
=

1
4

and that the entire point set pi is replaced by the following set of two new points in each
of the intervals pi, pi+1,

q2i =
3
4

pi +
1
4

pi+1 and

q2i+1 =
1
4

pi +
3
4

pi+1.

(6.30)

If the number of intervals is n. It follows that the number of points for an open curve is
n+1 and for a closed curve n. We set the level of refinement to d. The number of points
we get after corner cutting is 2 point for each interval, ie 2n. This means that for open
curves is the number of intervals now 2n− 1, but for closed curves is it 2n. For closed
curves we add a copy of the first point to the end. For d levels of refinements we get,

m = 2d(n−1)+2, for open curves and, m = 2dn+1, for closed curves. (6.31)

Because of (6.30) we can observe that for an open curve the starting point will be moved
from p0 towards p1, similarly the end point will be moved from pn towards pn−1. We can
calculate how much the start and end points will move. From (6.30) we see that, with the
first corner cutting, the start point will move x = 1

4(p1− p0). In the next step, it will move
x = 1

4
1
2(p1− p0) and so it continues so that for d levels of refinement we get,

x =
d

∑
i=1

1
2i+1 , where x is the factor the endpoints will move. (6.32)

A solution of this is to move the start and end points so that the first and the last point in
the point set will be at start and end of the curve after the refinement. Note that this is
only possible for a 2nd-degree subdivision-curves. This is because a 2nd-degree B-spline
curve touch the control polygon at knot values. Thus, we get,

p0 = p0 +
x

1− x
(p0− p1) and pn = pn +

x
1− x

(pn− pn−1) (6.33)

This subdivision scheme is the same as we find in Doo-Sabin surface construction, [54,
55], and it is therefore natural to name the curve as a Doo-Sabin curve. Figure 6.22 shows
an example of Doo-Sabin curves, an open curve on the left and a closed curve on the right.
Now the algorithms follow.

110 CHAPTER 6. B-SPLINE CURVES

Figure 6.22: Corner cutting in subdivision curves using Chaikin’s algorithms, made
from the same set of points as the curve in Figure 6.21. On the left side is an open curve
and on the right side is a closed curve. The black circles are the initial points.

Algorithm 6. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm calculates a vector of sample points of a curve based on Chaikin’s al-
gorithm. There is an algorithm for open curves and one for closed curves. The input
variables are: the initial point set {Pi}n

i=0 and the level of refinement d.

vector〈Point〉 ChaikinOpen(vector〈Point〉 P, int d)
int n = P.size−1; // The number of intervals
int m = 2d(n−1)+2; // The final number of points, from (6.31)
vector〈Point〉 Φ(m); // The return vector - m points.
double x = ∑

d
i=1

1
2i+1 ; // the factor to move the endpoints, see (6.32)

Φ0 = P0 +
x

1−x(P0−P1); // Moving the first point according to (6.33)
for (int i=1; i < n; i++)

Φi = Pi; // Inserting the initial points
Φn = Pn +

x
1−x(Pn−Pn−1); // Moving the last point according to (6.33)

for (int j=1; j ≤ d; j++) // For each level of refinement
for (int i=n-1; i≥ 0; i−−)

P2i =
3
4Pi +

1
4Pi+1; // Making new points according to (6.30)

P2i+1 =
1
4Pi +

3
4Pi+1;

n = 2n−1; // The number of intervals in the next level
return Φ;

vector〈Point〉 ChaikinClosed(vector〈Point〉 P, int d)
int n = P.size; // The number of intervals
int m = 2dn+1; // The final number of points, from (6.31)
vector〈Point〉 Φ(m); // The return vector - m points.
for (int i=0; i < n; i++)

Φi = Pi; // Inserting the initial points
Φn = P0; // Copy the first point to the end
for (int j=1; j ≤ d; j++) // For each level of refinement

for (int i=n-1; i≥ 0; i−−)
P2i =

3
4Pi +

1
4Pi+1; // Making new points according to (6.30)

P2i+1 =
1
4Pi +

3
4Pi+1;

Φn = Φ0; // Copy the first point to the end
n = 2n; // The number of intervals in the next level

return Φ;

6.7. UNIFORM B-SPLINES AND SUBDIVISION 111

B (t)d,i B (t)d,i+1w (t)d ,i+1
d ,i+1 +1w (t)

Figure 6.23: A B-spline Bd+1,i(t), dotted black, is made from a sum wd+1,i(t)Bd,i(t), in
red, and the symmetric product of the neighboring B-spline of degree d, in blue.

Figure 6.24: We see four closed subdivision curves that are all generated from the same
set of points as the curves in Figures 6.21 and 6.22. In red we see a 3rd-degree curve,
in blue a 4th-degree curve, in green a 5th-degree curve and in orange a 6th-degree curve.
The black circles are the initial points.

6.7.3 Lane-Riesenfeld subdivision algorithm

However there is an easier and also more general way to develop subdivision schemes
for Uniform B-splines. In 1980, the Lane-Riesenfeld subdivision algorithm for uniform
B-splines was launched, [110]. This algorithm reproduce closed uniform B-spline curves
and open curves that are not clamped. It is a compact and very simple and thus elegant
algorithm, and follows from symmetry around the half knot values, and that Bd+1,i(t) =
wd+1,i(t)Bd,i(t)+ (1−wd+1,i+1(t))Bd,i+1(t) as illustrated in Figure 6.23. The algorithm
is divided into two parts. First doubling the point set, which can be done by making two
of each point or inserting new points in the midpoint between all the points. The next
step is the smoothing/degree raising. This is done by replacing the points with new points
in the midpoint between all the old points, ie pi =

1
2 (p̃i + p̃i+1). This step is repeated to

the desired degree. We have now doubled the number of points. The whole procedure of
doubling and smoothing are now repeated until we have a sufficient number of points.

In Figure 6.24, four curves are made using Lane-Riesenfeld subdivision algorithm. The
curves are closed uniform subdivision B-splines of polynomial degree 3, 4, 5 and 6 made
of the same set of 8 points as in Figures 6.21 and 6.22. The Lane-Riesenfeld subdivision
algorithm now follows.

112 CHAPTER 6. B-SPLINE CURVES

Algorithm 7. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm calculates a vector of sample points of a curve based on Lane-Riesenfeld
algorithm. The algorithm is divided in closed curves and open but not clamped curves.
There are help functions for the two parts. The input variables are: the initial point set
{Pi}n−1

i=0 and the level of refinement k and the degree d.

vector〈Point〉 LaneRiesenfeldOpen(vector〈Point〉 P, int k, int d)
int n = P.size; // The number of intervals
int m = 2k(n−d)+d; // The final number of points
vector〈Point〉 Φ(m+d−1); // The return vector – m points.
for (int i=0; i < n; i++)

Φi = Pi; // Inserting the initial points
for (int i=0; i < k; i++) // For each level of refinement

n = doublePart(Φ, n);
smoothPartOpen(Φ, n, d);

Φ.resize(m);
return Φ;

vector〈Point〉 LaneRiesenfeldClosed(vector〈Point〉 P, int k, int d)
int n = P.size; // The number of intervals
int m = 2kn+1; // The final number of points
vector〈Point〉 Φ(m); // The return vector – m points.
for (int i=0; i < n; i++)

Φi = Pi; // Inserting the initial points
Φn = P0; // Closing the curve
for (int i=0; i < k; i++) // For each level of refinement

n = doublePart(Φ, n);
smoothPartClosed(Φ, n, d);

return Φ;

int doublePart(vector〈Point〉& P, int n)
for (int i=n-1; i > 0; i−−)

P2i = Pi;
P2i−1 =

1
2(Pi +Pi−1);

return 2n−1;

void smoothPartOpen(vector〈Point〉& P, int& n, int d)
for (int j=1; j < d; j++, n−−)

for (int i=0; i < n−1; i++)
Pi =

1
2(Pi +Pi+1);

void smoothPartClosed(vector〈Point〉& P, int n, int d)
for (int j=1; j < d; j++)

for (int i=0; i < n−1; i++)
Pi =

1
2(Pi +Pi+1);

Pn−1 = P0;

6.7. UNIFORM B-SPLINES AND SUBDIVISION 113

Figure 6.25: To the left is a Doo-Sabin curve and it’s 1st derivative in green. To the
right is a Catmull-Clak curve and it’s 1st derivative. They are both made from the same
point set.

As the reader probably now recognize, it is possible to replace the nested loops in the
smooth-part with a scheme that is produced by Pascals triangle, ie if the degree is 3 we
can use Pi =

1
4(pi+2pi+1+ pi+2), or if the degree is 4, Pi =

1
8(pi+3pi+1+3pi+2+ pi+3)).

It is also possible to optimize by merging the two parts and develop specific schemes for
given degrees. If we look at a degree 3 curve, we see that we have two levels. Due to the
doubling of points, we have 3 and 3 points that lie on a straight line. Therefore, due to 2
levels, every second point will be equal to the midpoints that were generated. The other
points will then be Qi +2Qi+1 +Qi+2 where Qi and Qi+2 will be midpoints. We then get
Pj =

1
4

(1
2(Pi−1 +Pi)+2Pi +

1
2(Pi +Pi+1)

)
. This leads to Catmull-Clark curves.

Catmull-Clark curves, named after Catmull-Clark surfaces, [19], curves are based on
3rd-degree uniform B-splines. The algorithm is an optimized Lane-Riesenfeld algorithm
where both the doublePart() and smoothPartOpen() functions are replaced by,

int CatmullClarkOpen(vector〈Point〉& P, int n)
for (int i = n−2; i > 1; i−−)

P2i =
1
2 (Pi +Pi+1) ;

P2i−1 =
1
8 (Pi−1 +6Pi +Pi+1) ;

Point q = 1
8 (P0 +6P1 +P2) ;

P2 =
1
2 (P1 +P2) ;

P0 =
1
2 (P0 +P1) ;

P1 = q;
return 2n−d;

or if closed where both the doublePart() and smoothPartClosed() functions are replaced
by,

int CatmullClarkClosed(vector〈Point〉& P, int n)
P2n =

1
8 (Pn−1 +6P0 +P1) ;

for (int i = n−1; i > 0; i−−)
P2i+1 =

1
2 (Pi +Pi+1) ;

P2i =
1
8 (Pi−1 +6Pi +Pi+1) ;

P1 =
1
2 (P0 +P1) ;

P0 = P2n;
return 2n;

114 CHAPTER 6. B-SPLINE CURVES

In Figure 6.25, to the left is there a plot of a Doo-Sabin curve and to the right a Catmull-
Clark curve. Also the 1st derivatives are plotted for both curves. The derivatives are
generated using divided differences. We can clearly see that the Doo-Sabin curve on the
left is C1− smooth, and the Catmull-Clark curve on the right is at least C2− smooth. This
is of course in accordance with the continuity properties of B-splines.

Subdivision is widely used, especially in computer graphics. Here is just a small excerpt
of articles in the field that go beyond what we have gone through; [56, 58, 87, 70, 57, 112,
154].

Chapter 7

Blending

Bézier and B-splines are based on blending of points, Hermite curves are based on blend-
ing of points and vectors, Coons Patch [26] are actually blending of Surfaces, and Gordon
Surfaces [79] is also using blending of curves and surfaces. There is a lot of work done on
blending, examples are [160], [86], [148]. It is therefore of interest to investigate blending
in more detail, and especially look at blending technics to blend functions in general. We
start with defining the B-function.

7.1 B-functions
B-function is an abbreviation for blending function. It is for blending functions, whether
they are based on scalar-, vector- or point-values, such as points, curves, tensor product
or triangular surfaces etc. In the following, we restrict B functions to be monotonous and
we will look especially at symmetric B-functions and what it means. The definition is:

Definition 7.1. A B-function is:

– D1 a homeomorphism (“permutation function”) B : I→ I (I = [0,1]⊂ R),

– D2 and thus is B(0) = 0,

– D3 and B(1) = 1,

– D4 and that is monotone, i.e. B′(t)≥ 0, t ∈ I.

D5 A B-function is called symmetric if, B(t)+B(1− t) = 1, t ∈ I.

This symmetry is a point symmetry, around the point (0.5 0.5). Other types of symmetry
will be introduced in sections 7.8. A more general definition of a B-function is given
i Definition 13.1. To give an idea of what a B-function is, we will look at four simple
examples of symmetric B-functions:
a) linear function B(t) = t
b) trigonometric function B(t) = sin2 πt

2
c) polynomial function of first order B(t) = 3t2−2t3

d) rational function of first order B(t) = t2

t2+(1−t)2

115

116 CHAPTER 7. BLENDING

10
0

1

0 1
0

1

10
0

1

a) b) c)

2

10
0

1

d)

Figure 7.1: Four B-functions (solid black) and their derivatives (dashed red). From left
is a) B(t) = t, b) B(t) = sin2 πt

2 , c) B(t) = 3t2−2t3 and d) B(t) = t2

(1−t)2+t2 .

Figure 7.1 shows the four examples of B-functions plotted together with their 1st deriva-
tives. We can clearly see from the figure that these four functions all starts at 0 and ends
at 1 and that they are all monotone. That they are symmetrical follows from that,
a) B(t)+B(1− t) = t +1− t = 1,
b) B(t)+B(1− t) = sin2 πt

2 + sin2 π(1−t)
2 = 1,

c) B(t)+B(1− t) = 3t2−2t3 +3(1− t)2−2(1− t)3 = 1,

d) B(t)+B(1− t) = t2

t2+(1−t)2 +
(1−t)2

(1−t)2+t2 = 1.

B-functions can be organized in groups. All of the above examples are members of groups
of B-functions. Later, we will conduct a thorough investigation of some of the groups and
their special properties. But first let’s look at the definition of an important property.

Definition 7.2. A property that plays an important role is the number of subsequent
derivatives that is zero at start and end. We call this

The order of B-functions
The order of a B-function, short for the Hermite order of a B-function, denoted S, is
for a symmetric B-function determined by

B(j)(0) = B(j)(1) = 0, j = 1,2, ...,S. (7.1)

For a non-symmetric B-function we have to differ between the start and the end,

B(j)(0) = 0, j = 1,2, ...,S0.

B(j)(1) = 0, j = 1,2, ...,S1.
(7.2)

This is the Hermite property to a B-function, explained further in Theorem 7.1.

For the examples b), c) and d) are B′(0) = B′(1) = 0, i.e. the first derivative is zero at start
and end, but the second derivative is not. It follows that these are 1st-order B-functions.

Later in this chapter we will look at higher order B-functions, and also complete B-
functions where all derivatives are zero at both start and end.

7.2. BLENDING OF TWO FUNCTIONS 117

Figure 7.2: In the figure is two Bézier-curves blended to one curve using a B-function.
The original Bézier-curves are shown in blue and green and the resulting curve is shown
in red.

7.2 Blending of two functions

The simplest blending is blending of two functions/curves, g1(t) and g2(t), organized in
a sequence where g1(t) is the first function and g2(t) is the last function, and both with
domain [0,1]. In Figure 7.2 is an example shown. Two Bézier-curves are plotted, g1(t) in
blue and g2(t) in green. The result of the blending is shown as a red curve in the figure.
The B-function used here is B(t) = 3t2−2t3. What the result curve look like follows from
the sequence of the two initial curves together with the order of the B-function used in the
blending. This will be further discussed later. First we look at the formulas.

The formulas for a two functions blending
The formulas for a two functions blending is

f (t) = (1−B(t)) g1(t)+B(t) g2(t)

= g1(t)+B(t) (g2(t)−g1(t)).
(7.3)

where B(t) is a B-function.
If we denote the difference function for h(t) = g2(t)−g1(t), we get the formula

f (t) = g1(t)+B(t) h(t)). (7.4)

The 1st order derivative is

f ′(t) = g′1(t)+B(t) h′(t)+B′(t) h(t), (7.5)

and the formula for derivatives of all orders is

f (j)(t) = g(j)
1 (t)+

j

∑
i=0

(
j
i

)
B(i)(t) h(j−i)(t). (7.6)

In Figure 7.3, the speed of the curves from Figure 7.2 is plotted. There we can see that
the speed of the resulting curve is the same as the speed of the first curve at start, ie
| f ′(0)| = |g′1(0)|, and the speed of the resulting curve is the same as the speed of the

118 CHAPTER 7. BLENDING

0.0 0.2 0.4 0.6 0.8 1.0

10

5 t

|c`(t)|
15

Figure 7.3: The functions shows the speeds, |c′(t)|, to the two Bézier-curves and the
resulting blended curve from Figure 7.2. The speed-function plots also have the same
colors as the corresponding curves in Figure 7.2.

second curve at end, ie | f ′(1)|= |g′2(1)|.

The relationship between the two initial functions called local functions and the resulting
function called the global function, and then especially what happens at the start and at the
end of the functions is of special interest. The following theorem provides a description
of this.

Theorem 7.1. A two-functions blending by B-function has the following property

The Hermite interpolation property
In a two-functions blending using a B-function, f (t) = g1(t)+B(t) (g2(t)− g1(t)),
it follows that the global function interpolate the first local function at the start point
with position and subsequently derivatives up to order S0, i.e.

f (j)(0) = g(j)
1 (0), j = 0,1, ...,S0, (7.7)

and the global function interpolate the last local function at the end point with posi-
tion and subsequently derivatives up to order S1, i.e.

f (j)(1) = g(j)
2 (1), j = 0,1, ...,S1, (7.8)

where S0 and S1 are the (Hermite) orders at start and end of the current B-function.

Proof. First we look at (7.7). ie at the start of the functions where t = 0. From D2 in
Definition 7.1 and from (7.2) we see that B j(0) = 0 for j = 0,1, ...,S. Thus it follows
from (7.4) and (7.6) that f (j)(0) = g(j)

1 (0) for j = 1, ...,S0.

Proving (7.8) is based on a similar reasoning as above due to the symmetry. At the end
is t = 1. Recall from D3 in Definition 7.1 that B(1) = 1. From (7.3) it follows that
f (1) = g2(1). If we rewrite (7.6) by separating out the first term of the sum we get

f (j)(t) = g(j)
1 (t)+B(t) (g(j)

2 (t)−g(j)
1 (t))+

j

∑
i=0

(
j
i

)
B(i)(t) h(j−i)(t).

Since B(1) = 1 and B(j)(1) = 0 is f (j)(1) = g(j)
2 (1) for j = 1, ...,S1.

7.2. BLENDING OF TWO FUNCTIONS 119

The Hermite interpolation property is also influenced by the behavior of the local func-
tions. This can be summarized in the following theorem.

Theorem 7.2. The Hermite interpolation property is influenced by

The extended Hermite interpolation property
In a two-function blending, if the two local functions are equal at the start, i.e.
g1(0) = g2(0), then the order of the Hermite interpolation increase by 1 at the start,
ie

f (j)(0) = g(j)
1 (0), j = 0,1, ...,S0 +1, (7.9)

and if the two local functions is equal at end, i.e. g1(1) = g2(1), then the order of the
Hermite interpolation increases by 1 at end, ie

f (j)(1) = g(j)
2 (1), j = 0,1, ...,S1 +1, (7.10)

where S0 and S1 are the (Hermite) orders at start and end of the current B-function.
—————————————————————————————————————–
In general, if the two local functions have position and subsequently derivatives equal
at start, i.e. g(j)

1 (0) = g(j)
2 (0), j = 0,1, ...d0, then the order of the Hermite interpola-

tion increase by d0 +1 at start, i.e.

f (j)(0) = g(j)
1 (0), j = 0,1, ...,S0 +d0 +1, (7.11)

and if the two local functions have position and subsequently derivatives equal at
end, i.e. g(j)

1 (1) = g(j)
2 (1), j = 0,1, ...d1, then the order of the Hermite interpolation

increase by d1 +1 at end, i.e.

f (j)(1) = g(j)
2 (1), j = 0,1, ...,S1 +d1 +1, (7.12)

where S0 and S1 are the (Hermite) orders at start and end of the current B-function.

Proof. If we rewrite (7.6) by taking out the last term of the sum in the expression we get

f (j)(t) = g(j)
1 (t)+

j−1

∑
i=0

(
j
i

)
B(i)(t) h(j−i)(t)+B(j)(t) (g2(t)−g1(t)).

Since g2(0)− g1(0) = 0, then it follows that the sum and the last term is also zero for
j = 0,1, . . . ,S0 +1 because B(i)(0) = 0 for j = 0,1, . . . ,S0.

The same type of argument is also valid for the end of the curve, which concludes the
proof of the first part of the theorem.

If we rewrite (7.6) by taking out the d last terms of the sum in the expression we get

f (j)(t) = g(j)
1 (t)+

j−d−1

∑
i=0

(
j
i

)
B(i)(t) h(j−i)(t)+

j

∑
i= j−d

(
j
i

)
B(i)(t) (g(j−i)

2 (t)−g(j−i)
1 (t)).

120 CHAPTER 7. BLENDING

0 1 2 3
0

1

x

y
p1

p2

0 1 2 3
0

1

x

y
p1

p2

0 1 t

s(t)

0

Figure 7.4: The figure at the top left shows a curve with linear blending of the two
points p1 and p2. The red curve is plotted using equal spaced (in the parameter line) dots
to show the constant speed. On the right side is the trigonometric B-function used in the
blending (the green curve) and we can clearly see that the speed is not constant. Below,
the speed is plotted. The red is the constant speed, the green starts and ends at zero. The
integral of the two functions is the same because the curve length is the same.

Because B(i)(0) = 0, the penultimate sum is also zero for i = 0,1, ...,S0. And, since
j− i = d,d − 1, . . . ,0 when i = j− d, j− d + 1, . . . , j is also g(j−i)

1 (0)− g(j−i)
2 (0) = 0

when j− i = 0,1, ...d. Thus it follows that the order of the derivatives that is zero goes up
to S0 +d +1.

The same argument is valid also for t = 1, the end of the curve, which concludes the proof
of the second part of the theorem.

7.2.1 Examples, blending of order zero and order one
Example with blending of two points (Figure 7.4):
The most classical B-function is the linear blending function, B(t) = t, best known from
linear interpolation. On left hand side in Figure 7.1 this, order zero B-function is plotted
together with its 1st derivative, and on the left in Figure 7.4 we can see a curve which is a
linear blending of two points, p1 and p2. From formula (7.4) we get

c(t) = p1 + t (p2− p1),

c′(t) = p2− p1.

As we can see, the derivative c′(t) is a constant, and the velocity/speed of the curve is thus
the same everywhere. This can be clearly seen in Figure 7.4 where the red curve is plotted
with an evenly distributed point sequence at the top left, and the the red line which is a
plot of the velocity/speed at the bottom of the figure.

On the upper right side in Figure 7.4 there is a linear curve which is made from formula
(7.4) and where the B-function is the trigonometric B(t) = sin2 π

2 t of order 1. This gives

c(t) = p1 +
(
sin2 π

2 t
)
(p2− p1)

c′(t) =
(
π cos π

2 t sin π

2 t
)
(p2− p1)

7.2. BLENDING OF TWO FUNCTIONS 121

2

x

c)
x

d)

x

a)
x

b)g (x)1

g (x)2

g (x)2
~

g (x)1
g (x)1

f(x) h(x)

f(x)
~

h(x)
~

g (x)2

g (x)2
~

g (x)1

0.5 10

0

1

22

0

1

0.5 10

2

0

1

2

0

1

0.5 10

0.5 10

Figure 7.5: All green curves are g1(x), expression (7.13). The red curves in the two
lower plots are g2(x), expression (7.14). The red curves in the two upper plots are g̃2(x),
expression 7.15. The blending on left hand side are using a linear B-function of order 0,
while the blending on right hand side are using a trigonometric B-function of order 1.

From the formula it is clear that the speed is not constant. The speed is zero at start and
end because sin0 = 0 and cos π

2 = 0. In Figure 7.4 on the upper right side, the dots in the
green curve are not uniformly distributed, the density of the dots is greatest at both ends.
This is confirmed in the plot at the bottom of Figure 7.4. There we see a green function
describing the speed of the curve over the domain.

Example with blending of two functions (Figure 7.5):
In the next example we blend two functions. The first function is

g1(x) = 4x2−3x+1 (7.13)

which is shown as a green curve in Figure 7.5. The second function is

g2(x) = 3x3−5x2 +3x+1, (7.14)

which is shown as a red curve in plot a) and plot b) in Figure 7.5. In plot c) and d), g2 is
moved 1 upwards, which gives

g̃2(x) = 3x3−5x2 +3x+2. (7.15)

In the examples we use two different B-function, the zero order linear B-function and the
first order trigonometric B-function. Using the zero order linear B-function we get

f (x) = g1(x)+ x (g2(x)−g1(x)),

f ′(x) = g′1(x)+ x (g′2(x)−g′1(x))+g2(x)−g1(x),

f ′′(x) = g′′1(x)+ x (g′′2(x)−g′′1(x))+2(g′2(x)−g′1(x)).

122 CHAPTER 7. BLENDING

0.5 1

-2

0

2

4

x

Figure 7.6: The first derivative, g′1(x)-solid green, g′2(x)-solid red and the resulting
curve f ′(x)-dashed green , h′(x)-dashed red, f̃ ′(x)-dashed blue and h̃′(x)-dashed yellow.

Using the first order trigonometric B-function we get

h(x) = g1(x)+ sin2 π

2 x(g2(x)−g1(x))

= 1
2(g1 +g2 +(g1−g2)cosπx),

h′(x) = 1
2 ((g

′
1 +g′2)+(g′1−g′2)cosπx−π (g1−g2)sinπx) ,

h′′(x) = 1
2

(
(g′′1 +g′′2)+

(
(g′′1−g′′2)−π2 (g1−g2)

)
cosπx−2π (g′1−g′2)sinπx

)
.

Since we use two blending functions and two second functions g2 and g̃2, we get 4 result-
ing curves f (x), f̃ (x), h(x) and h̃(x). These four curves are shown in Figure 7.5 as dashed
curves. Observe that the curve in plot c) only interpolates the position of g1 at start and
g2 at end (order 0). The curves in plot a) and d) also interpolate the first derivative (order
1), and the curve in plot b) also interpolates the second derivative (order 2).

To verify this observation, the first and second derivatives are calculated in the table below.
Note that all derivatives are equal for g̃2 and g2. The first and second derivatives at start of
g1 and end of g2, and at start and end of the resulting curves f , h, f̃ and h̃ are calculated:

g1-green, g2-red g′1(0) =−3 g′2(1) = 2 g′′1(0) = 8 g′′2(1) = 8 order
a) f (x)-green f ′(0) =−3 f ′(1) = 2 f ′′(0) = 20 f ′′(1) = 2 1
b) h(x)-red h′(0) =−3 h′(1) = 2 h′′(0) = 8 h′′(1) = 8 2
c) f̃ (x)-blue f̃ ′(0) =−2 f̃ ′(1) = 3 f̃ ′′(0) = 20 f̃ ′′(1) = 2 0
d) h̃(x)-yellow h̃′(0) =−3 h̃′(1) = 2 h̃′′(0) = 8+ π2

2 h̃′′(1) = 8− π2

2 1

The letter and the color in first column in the table is refereing to Figure 7.5 and also to
the color of the first derivatives in Figure 7.6. The red numbers in the table indicate match
to g1 at x = 0 and to g2 at x = 1. The order in the last column is Hermite order of the
B-function. In Figure 7.6 is g′1(x) solid green, g′2(x) = g̃′2(x) is solid red. f ′(x) is dashed
green, h′(x) is dashed red, f̃ ′(x) is dashed blue and h̃′(x) is dashed yellow.

7.2.2 Examples, connecting two curves by using a B-function
Now we look at an example where two separate curves are smoothly connected using a
B-function. There are a number of articles on this topic and the topic in the previous
subsection, such as [166], [121] and [86]. We shall here use a spline concept and thus a
knot vector. We start with two 3rd-degree Bézier-curves embedded in R2,

7.2. BLENDING OF TWO FUNCTIONS 123

Figure 7.7: In the figure, two curves are connected using a B-function. The green curve
c1(t) is connected to the blue curve c3(t) with the red curve c2(t) which connects the two
original curves in a smooth way, C1 continuity.

c1(t)= (1− t)3
(

1
1

)
+3t (1− t)2

(
2
2

)
+3t2 (1− t)

(
3.6
1

)
+t3

(
3.9
2

)
, t ∈ [0,1],

and

c3(t) = (1− t)3
(

4
1.5

)
+3t (1− t)2

(
4
3

)
+3t2 (1− t)

(
5
4

)
+ t3

(
6
3

)
, t ∈ [0,1].

These two curves are plotted in Figure 7.7, c1(t) in green on left hand side, and c3(t)
in blue on right hand side. If we use 40% of each of the original curves for the ”joining
curve”, we get the knot vector {ti}3

i=0 = {0, 0.6, 1, 1.6}, and we get the following formula
for the new piece of curve,

c2(t) = c1(t)+B◦w1,1(t)(c3(t− t1)− c1(t)), t1 ≤ t < t2.

where B(t) is a B-function, and w1,i(t) = t−ti
ti+1−ti

, see (6.11). In this example we use
B(t) = 3t2−2t3. This new curve segment c2(t) is shown as the red curve in Figure 7.7.

The total curve is now,

f (t) =


c1(t), if t0 ≤ t < t1,

c2(t), if t1 ≤ t < t2,

c3(t− t1), if t2 ≤ t ≤ t3.

(7.16)

The domain of f (t) defined in (7.16) is [t0, t3]. The curve is C1-smooth because we used
a B-function of order 1, see Theorem 7.1. The resulting curve can be seen in Figure 7.7
as a subsequent green, red and blue curve.

124 CHAPTER 7. BLENDING

7.3 Beta-functions, the group of polynomial B-functions
The Euler beta function, also called the Euler integral of the first kind, is a special function
defined by

B(a,b) =
1∫

0

xa(1− x)bdx

for a,b ≥ 0, see [1]. The Euler beta function is symmetric, i.e. B(a,b) = B(b,a). If a
and b are positive integers the expression can be simplified to:

B(a,b) =
a! b!

(a+b+1)!
. (7.17)

The Euler beta function was first studied by Euler and Legendre and was given its name
by Jacques Binet.

The incomplete beta function is a generalization of the Euler beta function that replaces
the definite integral of the Euler beta function with an indefinite integral, ie

B(t;a,b) =
t∫

0

xa(1− x)bdx. (7.18)

The regularized incomplete beta function is defined in terms of the incomplete beta func-
tion and the complete beta function, ie

It(a,b) =
B(t;a,b)
B(a,b)

, t ∈ [0,1]. (7.19)

Working out the integral for integer values of a and b, one finds (computet in [130])

It(a,b) =
a+b+1

∑
j=a+1

(a+b+1)!
j! (a+b+1− j)!

t j(1− t)a+b+1− j. (7.20)

Lemma 7.1. The regularized incomplete beta function, It(a,b), has the properties:

I Zero at t = 0 I0(a,b) = 0,

II One at t = 1 I1(a,b) = 1,

III Hermite order d j

dt j I0(a,b) = 0, j = 1,2, ...,a, i.e. order a at start

d j

dt j I1(a,b) = 0, j = 1,2, ...,b, i.e. order b at end

IV Antisymmetric It(a,b) = 1− I1−t(b,a), i.e. symmetric if a=b

V monotone d
dt It(a,b)> 0, 0 < t < 1 and d

dt It(a,b) = 0, t = {0,1}.
VI Recursive It(a,b) = t It(a−1,b)+(1− t) It(a,b−1).

It(a,b) = It(a−1,b)− ta(1−t)b+1

a B(a−1,b) = It(a,b−1)+ ta+1(1−t)b

b B(a,b−1) ,

7.3. BETA-FUNCTIONS, THE GROUP OF POLYNOMIAL B-FUNCTIONS 125

0 0.5 1
0

0.5

1

t t
0 0.5 1

0

1

2

Figure 7.8: On left side we see six symmetric Beta-functions, black-order 0, red-order
1, green-order 2, blue-order 3, purple-order 4 and dashed gray-order 20. On right side
is the first derivative for five of the Beta-functions shown in the same color.

The proof of lemma 7.1 can be found in appendix C.3.

Theorem 7.3. The regularized incomplete beta function is a B-function when the shape-
values a,b are integers. For short we name it Beta-function (see [43]), expressed by

Ba,b(t) = It(a,b), for t ∈ [0,1],

and for a,b ≥ 0, a,b ∈ Z, and where a = S0 and b = S1 are the (Hermite) orders of the
Beta-function. If a = b we use the notation BS(t) = It(S,S)

Proof. The theorem follows from Definition 7.1 and Definition 7.2 and lemma 7.1.

Note that the Beta-function of lowest order is linear and the series of the group converges
towards step-functions. Beta-function in blending was first introduced by L. Dechevsky
together with Gancheva and Delistoyanova in 2006 and published in [71] and [47]. We
will now look at the symmetric series of Beta-functions.

Symmetric Beta-functions
A symmetric Beta-function Bs(t) is symmetric because of property IV in lemma 7.1.
The order of the Beta-function is S. The first five Beta-functions of order 0 to 4 are:

B0(t) = t order 0

B1(t) = −2t3 +3t2 order 1

B2(t) = 6t5−15t4 +10t3 order 2

B3(t) = −20t7 +70t6−84t5 +35t4 order 3

B4(t) = 70t9−315t8 +540t7−420t6 +126t5 order 4

Calculated from expression (7.20)

126 CHAPTER 7. BLENDING

0

2

0.2 0.4 0.6 0.8 1
-2000

2000

-10000

-6000

400

-800

-400

800

00

20

-40

-20

40

0

2

-6

-2

6

0

1

t

B(t)´B(t)´́
B(t)´́́B(t)´́́́B(t)´́́́́

Figure 7.9: The figure shows the five first subsequent derivatives of a 3rd order sym-
metric Beta-functions; 1st derivative red, 2nd derivative blue, 3rd derivative green, 4th

derivative dashed black and 5th derivative dashed orange. The functions are connected to
their respective axis on the left side with their color. The 4th and 5th derivative are dashed
because they are not zero at t = 0,1.

In Figure 7.8 is the five first symmetric Beta-functions plotted together with the order
20 Beta-function. Note that the series appears to converge towards a step function at
t = 0.5. Otherwise, the symmetric Beta-functions are the same functions we find as basis
functions for Hermite curves of degree 3,5,7, ..., see the basis function number 2 in (4.17)
and (4.24).

7.3.1 Beta-functions, differentiation
The derivatives of a general Beta-function are quite complex especially on the high order
derivatives. The three first derivatives for the general Beta-function are:

B′a,b(t) =
(a+b+1)!

a!b! ta(1− t)b,

B′′a,b(t) =
(a+b+1)!

a!b! (a(1− t)−bt) ta−1(1− t)b−1,

B′′′a,b(t) =
(a+b+1)!

a!b! (a(a−1)− (a+b−1)(2a− (a+b)t)t) ta−2(1− t)b−2.

For a concrete Beta-function is the derivatives much more easy. We use the symmetric
3rd order Beta-functions as example. The formula and the five first derivatives are

B3(t) = −20t7 +70t6−84t5 +35t4,

B′3(t) = 140t3(1− t)3,

B′′3(t) = 420t2(1−2t)(1− t)2,

B′′′3 (t) = 840t(1− t)(5t2−5t +1),

B(4)
3 (t) = 840(1−2t)(10t2−10t +1),

B(5)
3 (t) = 10080(−5t2 +5t−1).

7.4. THE GROUP OF RATIONAL B-FUNCTIONS 127

In Figure 7.9 shows the first five subsequent derivatives of the symmetric 3rd order Beta-
function. To show them in the same figure, we must use a separate axis for each of them.
The color of the axis is the same as the color of the respective function. The red is the first
derivative, the blue is the second derivative, the green is the third derivative. Note that the
values of all three are zero at start and end. This is because the order of the Beta-function
is three. The fourth derivatives are plotted in dashed black and the fifth derivatives are
plotted in dashed orange.

7.4 The group of rational B-functions

In 2001, parametric Gn blending was discussed by E. Hartmann in [86]. He introduced a
rational blending function, abbreviated RB-function.

bn(t; µ) =
(1−µ)tn+1

(1−µ)tn+1 +µ(1− t)n+1 , t ∈ [0,1] , 0 < µ < 1, n≥ 0.

If µ = 0.5 the curves are point symmetric about the point (0.5, 0.5). For other µ the curves
are asymmetric. Therefor he called µ the balance of the blending function bn(t; µ). The
number n determine the number of subsequent derivatives to be zero at start and end.

To use a balance variable µ can be useful and we will look into it later. However, if we
want to limit the number of shape parameters to only the order parameters we can slightly
modify the formula to get a more convenient B-function.

Theorem 7.4. The rational function is a B-function. For short we name it an RB-function.
It is expressed by

Ba,b(t) =
ta+1

ta+1 +(1− t)b+1 , for t ∈ [0,1], (7.21)

and for a,b≥ 0, a,b ∈ Z, where a = S0 is the left side (Hermite) order and where b = S1
is the right side (Hermite) order. If a = b then the RB-function is symmetric according to
D5 in Definition 7.1.

The proof of theorem 7.4 can be found in appendix C.4.

Note that the RB-function of lowest order is linear,

B0,0(t) =
t

t +(1− t)
= t,

and that the series of the group seems to converges towards a step-function at t = 0.5.
Except for the linear function they all have a kind of S-shape.

We first look at the symmetric series of RB-functions.

128 CHAPTER 7. BLENDING

0 0.5 1
0

0.5

1

0

1

2

3

4

5

0 0.5 1

tt

Figure 7.10: On left side we see six symmetric RB-functions; black-order 0, red-order
1, green-order 2, blue-order, purple-order 4 and dashed gray-order 20. On right side is
the first derivative for five of the RB-functions shown in the same color.

Symmetric RB-functions
In Theorem 7.4 is shown that a symmetric RB-function Bs(t) is symmetric, and the
order is shown to be S in Theorem 7.4. The general formula for the series of sym-
metric RB-functions is:

Bs(t) =
ts+1

ts+1 +(1− t)s+1

The four first symmetric RB-function in the series (of order 0,1,2,3) are:

B0(t) = t1

t1+(1−t)1 = t

B1(t) = t2

t2+(1−t)2 = t2

2t2−2t+1

B2(t) = t3

t3+(1−t)3 = t3

3t2−3t+1

B3(t) = t4

t4+(1−t)4 = t4

2t4−4t3+6t2−4t+1

B4(t) = t5

t5+(1−t)5 = t5

2t5−5t4+10t3−10t2+5t−1

In Figure 7.10 are the five first symmetric RB-functions plotted together with the order
20 symmetric RB-function. Here we see that the series seems to converge towards a step-
function at t = 0.5. Compared to the symmetric Beta-functions from Figure 7.8, we see
from the plot of first derivatives in Figure 7.10 that the RB-functions are steeper.

7.4. THE GROUP OF RATIONAL B-FUNCTIONS 129

0.2 0.8 1

-180

0

2

6

0

12

-12

-6

12

60

0

-120

-60

0 0.4 0.6

B(t)´
B(t)´́B(t)´́́

1

Figure 7.11: The figure shows the three first subsequent derivatives of a 2th order sym-
metric RB-functions; 1st derivative - bold red, 2nd derivative - bold blue and 3rd derivative
- dashed green. Each vertical axis is connected to the plot with the same color.

7.4.1 RB-functions, differentiation
The derivatives of a general RB-function are quite complex especially on the high order
derivatives. The two first derivatives for the general RB-function are:

B′a,b(t)= (a(1− t)+bt +1) ta(1−t)b

(ta+1+(1−t)b+1)2 ,

B′′a,b(t)=
[[

t2 (a(a+1)−b(b+1))+a(a+1)(1−2t)
](

ta+1 +(1− t)b+1
)
−

2(a(1− t)+bt +1) t (1− t)
(
(a+1) ta− (b+1)(1− t)b

)]
ta−1(1−t)b−1

((1−t)b+1+ta+1)
3 .

For a concrete RB-function is the derivatives much easier. We use the symmetric 2nd
order RB-functions as example. The formula and the three first derivatives are

B2(t) = t3

t3+(1−t)3 ,

B′2(t) = 3 t2(1−t)2

(t3+(1−t)3)2 ,

B′′2(t) = −6 (2t−1)t(1−t)
(t3+(1−t)3)3 ,

B′′′2 (t) = −618t2(1−t)2−1
(t3+(1−t)3)4 .

In Figure 7.11, the three first derivatives of the symmetric 2nd order RB-function are
plotted. To be able to show them in the same figure we have to scale them. The bold-red
is the first derivative (not scaled), the bold-blue is the second derivative (divided by 6) and
the dashed-green is the third derivative (divided by 30). Note that the value of the first and
second derivatives are zero at start and end. It follows that the order of this Beta-function
is two. The third derivatives is not zero at start and end as we can see in the Figure 7.11.

130 CHAPTER 7. BLENDING

0 0.5 1
0

0.5

1

t

B(t)

Figure 7.12: Examples of Rµ-functions. The blue curve is the symmetric B-function
B2,2(t;0.5) = B2(t). The four black dashed curves are Rµ-functions where µ is
0.6,0.7,0.8 and 0.9. The red solid curve is an asymmetric RB-function, B2,1(t).

7.4.2 RB-functions with a balance parameter

If we include the balance parameter to the rational B-function we get:

Corollary 7.1. A Rµ-function is a B-function defined by

Ba,b(t; µ) =
(1−µ)ta+1

(1−µ)ta+1 +µ(1− t)b+1 , for t ∈ [0,1], (7.22)

and where a,b ∈ N, a,b > 0 and 0 < µ < 1, µ ∈ R.

It follows that a Rµ-function is a B-function because of Theorem 7.4.

As for RB-functions, the left side order is a = S0, and the right side order is b = S1. If
a = b and µ = 0.5 then the Rµ-function is symmetric according to D5 in Definition 7.1.

To compare Rµ-functions with RB-functions we first look at a second order symmetric
RB-function B2(t). We then expand this RB-function to a Rµ-functions where a = b = 2
and µ = 0.5, i.e. B2,2(t;0.5). Then we change µ to see what happens.

In Figure 7.12 is the function, B2,2(t;0.5) = B2(t) plotted in solid blue. We can also see
four functions plotted in dashed black. These are B2,2(t;0.6), B2,2(t;0.7), B2,2(t;0.8) and
B2,2(t;0.9). As we can see, they are pushed to the right according to the value of µ .
Remember that all five function are of order 2 on both sides, but only the solid blue is
symmetric.

To see the effect of the balance parameter µ we also shows an asymmetric RB-function
B2,1(t) plotted in solid red in Figure 7.12. The balance parameter µ does not influence
the steepness of the function, while the order affects the steepness. Later, in section 7.8,
we will investigate what we call a balance-symmetry of B-functions.

7.5. FABIUS FUNCTION, THE COMPLETE B-FUNCTION 131

0 1
0

1

0

-4

0

8 2

14

-8

-32

0

64

32

-64

x
1
8

1
4

3
8

5
8

3
4

7
8

1
2

1
2

Figure 7.13: A plot of the Fabius function (red) and its 1st derivative (blue), 2nd deriva-
tive (green) and 3rd derivative (brown). The vertical axis on the left have the same colors
as the plots to which they are attached.

7.5 Fabius function, the complete B-function
H. Olofsen introduced the Fabius function as a B-function in [126]. Fabius function in-
troduced by Jaap Fabius [62] is an infinitely differentiable, but nowhere analytic function
that is self-differential. The Fabius functional satisfies the following differential equation:

F′(x) = 2F(2x), x ∈ R+ (that is [0,+∞)). (7.23)

It follows that F(x + 2n) = −F(x) for 0 ≤ x ≤ 2n where n is a positive integer. The
sequence of intervals within which this function is positive or negative follows the same
pattern as the Thue-Morse sequence [3]. In Figure 7.13 there is a plot of the Fabius
function and its 1st , 2nd and 3rd derivatives on 0 ≤ t ≤ 1. We can see that the derivatives
are squeezed and scaled (plus or minus) copies of the function itself. The scaling of the
derivatives are reflected in that max |F(j)(x)|= 2∑

j
i=1 i. i.e. 2,8,64,1024, . . ., due to (7.23)

and this can also be observed in Figure 7.13.

132 CHAPTER 7. BLENDING

If we limit the domain to [0,1], we observe the following, the Fabius function satisfies
the initial condition F(0) = 0, the symmetry condition F(x)+F(1−x) = 1 for 0≤ x≤ 1,
i.e. it is point symmetric about

(1
2 ,

1
2

)
. It follows that F(x) is monotone increasing for

0 ≤ x ≤ 1, with F(1
2) =

1
2 and F(1) = 1. An expression of the Fabius functon, if we

restrict the domain to x ∈ [0,1], is

F(x) =



2x∫
0

F(s)ds, if x ∈
[
0, 1

2

]
,

1∫
2x−1

F(s)ds+2x−1, if x ∈
(1

2 ,1
]
.

(7.24)

The Fabius function clearly meets all the requirements for being a symmetric B-function,
All the 5 points from Definition 7.1 are fulfilled. However, there is one extra property
that makes the Fabius function special. Because all derivatives are scaled versions of the
function itself where it is scaled by 2n in the x-axis, as follows from (7.23) and (7.24) and
as we see in Figure 7.13, all derivatives are zero at t = 0 and t = 1 . It follows that the
Hermite order is ∞, and therefore it leads to the following definition:

The complete B-function
Definition 7.3. A complete B-function is a function that fulfill the requirement in
Definition 7.1, and where all derivatives at t = 0 and t = 1 are zero. Thus, the order
of a complete B-function is ∞.

• A complete B-function are not analytic at t = 0 and t = 1. It follows that Taylor
expansion does not work at these two points.
• The Fabius function is a complete B-function, but in addition to be a complete

function it is nowhere analytic.

In addition to be nowhere analytic there is one more practical problem using the Fabius
function as a B-function, we cannot directly calculate the value anywhere. It is only
possible to calculate at dyadic rational numbers in the form m

2n , where n is a positive
integer 1,2,3, . . . and m is a positive odd number 1,3, ...,2n − 1, as shown by Jan K.
Haugland in 2016 [88]. Calculating (7.24) for n up to 5 gives us,

F
(1

2

)
= 1

2

F
{1

4 ,
3
4

}
=
{ 5

72 ,
67
72

}
F
{1

8 ,
3
8 ,

5
8 ,

7
8

}
=
{ 1

288 ,
73
288 ,

215
288 ,

287
288

}
F
{ 1

16 ,
3

16 , . . . ,
15
16

}
=
{ 143

2073600 ,
46657

2073600 ,
305857

2073600 ,
777743
2073600 ,

1295857
2073600 ,

1767743
2073600 ,

2026943
2073600 ,

2073457
2073600

}
F
{ 1

32 ,
3

32 , . . . ,
31
32

}
=
{ 19

33177600 ,
25219

33177600 ,
334781

33177600 ,
1396781

33177600 ,
3470381

33177600 ,
6555581
33177600 ,

10393219
33177600 ,

14515219
33177600 ,

18662381
33177600 ,

22784381
33177600 ,

26622019
33177600 ,

29707219
33177600 ,

31780819
33177600 ,

32842819
33177600 ,

33152381
33177600 ,

33177581
33177600

}
.

To calculate the Fabius function in general, one can use interpolation between these
dyadic rational numbers or/and to use polynomial approximations of the Fabius function,
see appendix A or [126].

7.6. THE GROUP OF TRIGONOMETRIC B-FUNCTIONS 133

7.6 The group of trigonometric B-functions
TB-function is short for trigonometric B-functions. In 2019 Hans Olofsen introduced
blending functions based on trigonometric and polynomial approximations of the Fabius
function [126]. He showed us how to construct trigonometric B-functions of all order
from approximating the Fabius function. A sum of weighted cosines can approximate the
Fabius function on the domain [0,2], see [42, eq.(30)]. From this we get

FM(t) =
1
2
−

M

∑
m=1

cm cos(mπt), t ∈ [0,1]. (7.25)

In order to be able to develop trigonometric B functions that are point symmetric, the
following three points are important;

• If m is odd, cos(mπt) is point symmetric around
(1

2 ,
1
2

)
. If m is even, cos(mπt) is

symmetrical about the vertical axis x = 1
2 . Therefore, to ensure point symmetry, m

must only be odd ie {1,3,5, . . .}, and consequently M must also be odd.

• To ensure that F(0) = 0 and F(1) = 1 must ∑cm = 1
2 for m = 1,3, ...,M.

• The order of the B-function is connected to that all 1st-, 2nd-,. . . , Mth-derivatives
are zero at t = 0,1. This will be fulfilled if ∑m jcm = 0 for m = 1,3, ...,M and
j = 2,4, ...,M−1.

Two examples of how to construct symmetrical B-functions of odd order will be given. In
(7.25), to find cm when m = 1,3 and cm when m = 1,3,5 we make a M+1

2 ×
M+1

2 matrix
and then compute cm for M = 3 and for M = 5 in the following way,

M = 3 ⇒
(

1 1
12 32

)(
c1
c3

)
=

(1
2
0

)
⇒

(
c1
c3

)
=

(9
16
− 1

16

)
,

M = 5 ⇒

 1 1 1
12 32 52

14 34 54

 c1
c3
c5

=

 1
2
0
0

 ⇒

 c1
c3
c5

=

 75
128
− 25

256
3

256

 .

The result is trigonometric B-functions of odd order, order 1 with coordinates c1 = 1
2 ,

order 3 with coordinates c1 = 9
16 and c3 = − 1

16 , and order 5 with coordinates c1 = 75
128 ,

c3 =− 25
256 and c5 =

3
256 .

To obtain trigonometric B-functions of Hermite order of even numbers, we use B-functions
of odd Hermite order M = 1,3,5, . . . as the first derivative of the new function. This can
be done because cosmπt is symmetric about the vertical axis x = 1 for m = 1,3,5, It
follows that the derivatives at t = 2 are also zero for M subsequent derivatives. Therefore,
it is possible to obtain a B-function of order m+1, Bm+1(t) from a B-function of order m,
ie. Bm(t) when m = 1,3,5,

The method is to use the antiderivative of Bm(t), m = 1,3, ... scaled by 2, because (7.23)
states that the maximum value of the first derivative of the Fabius function is 2, and we
use it on the domain [0,2] because the parameter is scaled by 2 in (7.23). The result is
Bn(t), n = 2,4, ... on the domain [0,1].

134 CHAPTER 7. BLENDING

1

t

B(t)

0.5

0
10.50

2

0

1

t
10.50

B(t)´

Figure 7.14: On left side, the plot of the Fabius function, dashed green and five trigono-
metric B-functions, order 1 blue, 2 red, 3 black, 4 orange and 5 yellow. On right side are
the plots of the 1st derivatives, in the same color as their respective functions.

One example is; we start with B1(t) = 1
2 −

1
2 cosπt. We then replace t with 2t, and we

multiply the function by 2. The result is

B′2(t) = 1− cos2πt.

We then use the antiderivative, and get,

B2(t) = t− 1
2π

sin2πt, t ∈ [0,1].

In Figure 7.14 on the left side there is a plot of 5 trigonometric B-functions (of order
1,2,3,4,5) together with the Fabius function, on the right side is their 1st derivatives.

Symmetric TB-functions
A series of symmetric TB-functions obtained by approximating the Fabius function.
The formula for the first five symmetric TB-functions are

B1(t) = 1
2 −

1
2 cosπt order 1

B2(t) = t− 1
2π

sin2πt order 2

B3(t) = 1
2 −

1
16 (9cosπt− cos3πt) order 3

B4(t) = t− 1
48π

(27sin2πt− sin6πt) order 4

B5(t) = 1
2 −

1
256 (150cosπt−25cos3πt +3cos5πt) order 5

(7.26)

Note that B1(t) is the same function as the one plotted in b) in Figure 7.1 and used in
circle splines [153], i.e.

sin2 πt
2

=
1
2
− 1

2
cosπt.

7.7. THE GROUP OF EXPO-RATIONAL B-FUNCTIONS 135

t

2

1

0

8

4

0

-8

-4

60

30

0

-60

-30

1000

500

0

-1000

-500

t

3

1

0

12

6

0

120

60

0

-60

1200

600

0

-1200

-600

-12

-6

-120

16000

8000

0

-16000

-8000

10.50 10.50

2

Figure 7.15: On left side, the plot of the four first derivatives for B4(t), B′4(t)-red, B′′4(t)-
green, B′′′4 (t)-blue and B(4)

4 (t)-orange. On right side are the plots of five derivatives for

B5(t), B′5(t)-red, B′′5(t)-green, B′′′5 (t)-blue, B(4)
5 (t)-orange and B(5)

5 (t)-brown.

The differentiation of the trigonometric B-functions, (7.26), is simple and faste to calcu-
late both on a CPU and a GPU. In Figure 7.15, the first four successive derivatives of
B4(t) are plotted on the left. On the right, the five derivatives from 1st to 5th of B5(t) are
plotted. Each plot of a derivative function has a given color. The different vertical axis on
the left is connected to the plots that have the same color.

The plot in Figure 7.15 clearly verifies the Hermite order of the two functions because
all derivatives in the plot are zero at t = 0,1. Another observation is that B4(t) is the
function that seems to be the best approximation of the Fabius function, an observation
from combining Figure 7.13, 7.14 and 7.15. We also see that the maximum absolute
value of the derivatives for B4(t) is increasing slightly more than the Fabius function as
the order increase. For B5(t) the value increase significant more.

One open question raised by Olofsen; is the Fabius function the complete B-function
where the maximum absolute value of the derivatives increases at least as the order of the
derivatives increases? ie

max |F(j)(t)|< max |B(j)
c (t)|, 0≤ t ≤ 1,

when j→ ∞, and for all complete B-functions Bc(t).

136 CHAPTER 7. BLENDING

1

-10

0

10

20

30

t

-20

-30

0 0.5

Figure 7.16: Plot of the rational exponents of the expo-rational functions, (7.27) dashed
red, (7.28) brown and blue, and (7.30) dotted green.

7.7 The group of Expo-Rational B-functions
The properties of the natural exponential function are useful when building a B function.
It is always positive and it is its own derivative, and it always goes faster towards +∞ than
any power of x when x→ +∞, thus it also overrides any rational polynomial function
when it goes toward zero1. If we add a rational exponent or, a hierarchical model together
with a rational exponent, we get the basis for several Expo-Rational B functions. Of
particular interest are the expo-rational functions and their 1st derivative below,

φ(t) = e−
(t− 1

2)
2

t(1−t) , φ
′(t) =

1−2t
4(t(1− t))2 φ(t), (7.27)

ψ(t) = e
−2
t e
−1
1−t

, ψ
′(t) = 2

t2− t +1

t2 (1− t)2 e
−1
1−t ψ(t), (7.28)

θ(t) = e
1
t , θ

′(t) =− 1
t2 θ(t), (7.29)

ϕ(t) =
θ(t)

θ(1− t)
= e

1
t −

1
1−t , ϕ

′(t) =−

(
1
t2 +

1

(1− t)2

)
ϕ(t). (7.30)

An exponential function maps R to R+. What we see is that (7.27), (7.28) and (7.30)
contract the domain to the open interval (0,1). In Figure 7.16 there are plots of the
rational exponents from the three functions above. The dashed red plot is the exponent
in (7.27), mapping (0,1) to R-, it is symmetric about the axis t = 1

2 . The result is that
φ(t) is a hat function with max value 1, and that the exponent at t = 0,1 is −∞, a number
that is not ∈ R but it is in the extended real number system. The result is that φ(t) is non
analytic at t = 0,1. It is the same for (7.28). In Figure 7.16 is the brown and the blue plot
the upper and the total exponent of ψ(t). The blue comes from−∞ and the brown goes to
−∞ and they are both only negative. So ψ(t) is also non analytic at t = 0,1. The dotted
green plot in Figure 7.16 is the exponent of (7.30), it maps (0,1) to R turned, and is point
symmetric around (0.5,0). Consequently, ϕ(t) is also non analytic at t = 0,1.

1limx→+∞ xne−x = 0 for every n and e0 = 1, ea+b = eaeb, ea = 1
e−a and R+ is [0,+∞), R- is (−∞,0].

7.7. THE GROUP OF EXPO-RATIONAL B-FUNCTIONS 137

In 2004 Expo-Rational B-splines were presented by Dechevsky, Lakså and Bang at the
conference of Mathematical methods for Curves and Surfaces, and later published in
[104],[44],[45] and [102]. They initially used an expo-rationale function with several
intrinsic parameters, but the default exponential function they used was φ(t) from (7.27).
This function is related to the Gaussian bell function and the cumulative distribution func-
tion, see [74]. In 2015 the Expo-Rational B-splines was put into the frame of B-functions
[103]. The expression of the default B-function, ie type 1 ERB-function, is:

Bd(t) = S
t∫

0

φ(s)ds, t ∈ [0,1], (7.31)

where the expo-rational function φ(t) as given in (7.27) and the scaling

S=

 1∫
0

φ(t)dt

−1

≈ 1.6571376797382103. (7.32)

Because there is no analytical solution to the integral in (7.31), this is a computationally
demanding formula. But in 2007 an approximative calculation algorithm with tolerances
better than 3.4e− 13 (L∞[0,1] and double precision) was given and where the number
of multiplications is 6 for the function value, 4 for the 1st derivative and 5 for the 2nd

derivative. The method and algorithm are described in Appendix A.4 and in more detail
in [102].

In 2004 Ying and Zorin published a work on constructing surfaces of arbitrary smoothness
[168]. The work was based on Grimm and Hughes work from 1995 [82], and Navau and
Garcia in 2000 [125] on the same topic. Navau and Garcia used a basis function (B-
function) that was not point-symmetric according to Definition 7.1. This function was
(7.28). Ying and Zorin made a symmetric B-function by combining this non-symmetric
function with the rational construction of Hartmann given in 7.21, ie

By(t) =
ψ(t)

ψ(t)+ψ(1− t)
. (7.33)

However, there is a standard way to create a symmetric B-function from a non-symmetric
B-function. It is to sum the function with its antisymmetric twin and divide the result by
two. The Hermite order of the resulting B-function will be equal the lowest order of the
initial non symmetric B-function. If we use this method on (7.30), we get the following
symmetric ERB-function,

Bx(t) =
1
2
(1−ψ(1− t)+ψ(t)) . (7.34)

In 2013 Dechevsky and Zanaty introduced a Logistic ERB-function [46], which included
the expo-rational functions θ(t), (7.29) or ϕ(t), (7.30). The following fractions gives the
LERB-function,

Bz(t) =
θ(1− t)

θ(1− t)+θ(t)
=

1
ϕ(t)+1

, (7.35)

138 CHAPTER 7. BLENDING

0 1
0

0.5

1

t

B(t)

t
0.5

1

2

0

B(t)´

0 10.5

Figure 7.17: On the left side in the figure is four Expo-Rational B-functions, Bd(t) in
black (7.31), By(t) in blue (7.33), Bx(t) in green (7.34) and the Logistic ERB-function
Bz(t) in red (7.35). On the right side is a plot of the 1st derivatives of these four ERB-
functions in the same color as their respective functions on the right side.

which is actually the standard logistic function with a contraction of the domain from R to
the open interval (0,1). Following the definitions of the ERB-functions, the 1st derivative
of (7.31) Bd(t), (7.33) By(t), (7.34) Bx(t) and (7.35) Bz(t) are:

B′d(t) = S φ(t), B′y(t) =
ψ ′(t)By(1− t)+ψ ′(1− t)By(t)

ψ(t)+ψ(1− t)
, (7.36)

B′x(t) =
1
2
(
ψ
′(1− t)+ψ

′(t)
)
, B′z(t) =−ϕ

′(t)Bz(t)2. (7.37)

On the left side in Figure 7.17, there is a plot of the four functions Bd(t) in black, By(t) in
blue, Bx(t) in green and Bz(t) in red together with their 1st derivatives on the right side.

Expo-Rational B-functions
Definition 7.4. An Expo-Rational B-function (ERB-function) is:
• a B-function according to Definition 7.1,
• it is a complete B-function according to Definition 7.3 (order ∞),
• is not analytic at t = 0 and t = 1,
• and is constructed using exponential functions with rational exponents.

Theorem 7.5. Bd(t) defined in (7.31), By(t) defined in (7.33), Bx(t) defined in
(7.34) and Bz(t) defined in (7.35) are all symmetric Expo-Rational B-functions (ERB-
functions).
Thus, they are complete B-functions, with order infinite and they are not analytic at
t = 0 and t = 1.

The proof of theorem 7.5 can be found in appendix C.5.

In Figure 7.18 are four derivatives of the four ERB-functions plotted. On upper left hand
side we see four successive derivatives of Bd(t), (7.31), on upper right hand side we see

7.7. THE GROUP OF EXPO-RATIONAL B-FUNCTIONS 139

1

2

0
0 0.5 1

000

10

5

100

-10

-50

501000

2000

-1000

-2000

t

B (t)z

(j)-5

1

0
0 0.5 1

000

10

5

100

-10

-50

50

4000

2000

-4000

-2000

t

B (t)y

(j)-5

150

B (t)x

(j)

0 0.5 1
0

1
4

8

0

-4

-8

100

50

0

-50

2000

1000

-3000

-2000

-1000

0
t

3000

1
2

3
2

0

6000

t
0 0.5 1

1

00

3

6

-3

-6

-40

0

40

80

120

3000

-6000

-3000

B (t)d

(j)

1
2

3
2

1
2

3
2

2

1
2

3
2

Figure 7.18: In the figure, there are four derivatives of four ERB-functions. On upper
left hand side we see four successive derivatives of Bd(t), (7.31), on upper right hand side
we see four successive derivatives of Bz(t), (7.35), on lower left hand side we see four
successive derivatives of By(t), (7.33) and on lower right hand side we see four successive
derivatives of Bx(t), (7.34). The 1st derivatives are plotted in red, the 2nd derivatives are
plotted in blue, the 3rd derivatives are plotted in green and the 4th derivatives are plotted
in orange. The axis on left hand side of each derivative plots has the same color as their
respective functions in the derivative plots.

140 CHAPTER 7. BLENDING

1

22

1

g g
t

B (t;g)ź

t

41

B (t;g)z

Figure 7.19: On left hand side is a plot of Bz(t;γ) for γ = {0.8,1,1.2,1.4,1.6,1.8,2}.
Bz(t;γ = 1) = Bz(t) is plotted in red and Bz(t;2) is plotted in blue. On right hand side,
the respective 1st derivatives are plotted.

four successive derivatives of Bz(t), (7.35), on lower left hand side we see four successive
derivatives of By(t), (7.33) and on lower right hand side we see four successive derivatives
of Bx(t), (7.34). The 1st derivatives are plotted in red, the 2nd derivatives in blue, the 3rd

derivatives in green and the 4th derivatives are plotted in orange. In general, the derivatives
have the same behaviour for all four ERB-functions. But there are some differences. For
Bd(t) the changes of the derivatives occur closer to t = 0 and t = 1 than for the others,
and also, the maximum value of the derivatives grows faster for increasing order of the
derivatives. On the opposite side is Bz(t) which seems to be closest to the Fabius function.

In the following sections we will introduce four intrinsic parameters to the ERB-functions.

7.7.1 The slope parameter γ

The first intrinsic parameter is the slope parameter γ . We just add the slope parameter to
(7.27), (7.28) and (7.30) and get,

φ(t;γ) = e−γ
(t− 1

2)
2

t(1−t) , ψ(t;γ) = e
−2γ

t e
−γ

1−t
, ϕ(t;γ) = eγ(1

t−1+
1
t), γ ∈R, γ > 0. (7.38)

We can now adjust the slope of the ERB-functions. Note that the ERB-functions are
still point symmetric. Figure 7.19 illustrates the effect of the slope parameter. Here
Bz(t;γ) is used as an example. The function and 1st derivative are shown for a set of slope
parameters. The functions can be seen on the left side of the figure and the 1st derivatives
on the right side. The least steep ERB-function is the function with slope parameter
γ = 0.8. The function plotted in red is the default function with γ = 1. Then follows
functions with γ = 1.2, γ = 1.4, γ = 1.6 and γ = 1.8, all plotted in black. Finally, in blue,
is a function with γ = 2. Looking at the 1st derivatives we see that the slope becomes
steeper and steeper as γ grows. For γ = 1, the maximum value is 2, while for γ = 2, the
maximum value is 4. For all four ERB-functions, the behaviour is quite similar. Note that

for Bd(t,γ), the constant S will also be affected by γ , ie Sγ =

[
1∫
0

φ(t;γ)dt
]−1

.

7.7. THE GROUP OF EXPO-RATIONAL B-FUNCTIONS 141

For ψ(t;γ) (7.38), it is possible to replace γ with two slope parameters, i.e.

ψ(t;γ1,γ2) = e
−γ1

t e
−γ2
1−t

.

The default connection between them is then γ1 = 2γ2. It is also possible to link them i.e.
γ1 = 1+ γ and γ2 = 1− γ .

The slope parameter has the same effect on the shape of the B-function as the order
parameter of the symmetric Beta-functions and the symmetric RB-functions.

7.7.2 The balance parameter µ

The next intrinsic parameter is the balance parameter µ . This parameter is analogous to
the balance parameter in the Rµ-function, see Corollary 7.1 in subsection 7.4.2. We now
also add a balance parameter to (7.27), (7.28) and (7.30) and get,

φ(t;γ,µ) = e−γ
(t−µ)2

t(1−t) , γ,µ ∈ R, γ > 0 and 0 < µ < 1, (7.39)

ψ(t;γ,µ) = (1−µ) e
−2γ

t e
−γ

1−t
, γ,µ ∈ R, γ > 0 and 0 < µ < 1, (7.40)

ϕ(t;γ,µ) = e2γ

(
1−µ

t −
µ

1−t

)
, γ,µ ∈ R, γ > 0 and 0 < µ < 1. (7.41)

Note that the balance parameter will give the following formulas to (7.33) and (7.34),

By(t; µ) =
(1−µ)ψ(t)

(1−µ)ψ(t)+µ ψ(1− t)
, (7.42)

Bx(t; µ) = µ (1−ψ(1− t))+(1−µ)ψ(t), (7.43)

For Bd(t; µ) the formula is straight forward, except that we have to calculate Sµ . For
Bz(t; µ) the formula is just straight forward.

The effect is expected to be similar to that of the Rµ-function. The ERB-functions (7.39),
(7.40) and (7.40) with a balance parameter µ = 0.5 are point symmetric as the default
definition in (7.27),(7.28) and (7.30), while all other values gives asymmetric functions.

In Figure 7.20 is Bx(t; µ) used as an example because the result for Bx(t; µ) is similar to
Bz(t; µ) and By(t; µ). For Bd(t; µ) the behaviour is more similar to the RB-function with
balance parameter (7.22), more like a parallel shift as we can observe in Figure 7.12.

In section 7.8 we will investigate what is called a balance-symmetry of B-functions.

7.7.3 The asymmetric tightening parameters α and β

The next intrinsic parameters are probably most of theoretical interest. We call them
the asymmetric tightening parameters α and β . They are, in terms of shape, analogous
to the order parameter a and b in the Beta- and RB-function, see section 7.3, Theorem
7.3 and section 7.4, Theorem 7.4. Remember that, unlike Beta- and RB-functions, these
parameters do not effect the order of the ERB-function, because the order is infinite. The
shape of the function is of cause effected.

142 CHAPTER 7. BLENDING

0
0 1

1

0
0 1

1

2

Figure 7.20: On left hand side we see Bx(t; µ) for µ = {0,0.2,0.4,0.6,0.8,1}. Bx(t; µ =
0) is plotted in red and Bx(t; µ = 1) is plotted in blue. The other four are plotted in colors
that gradually go from red to blue. On right hand side, the respective 1st derivatives are
plotted in the same color as their respective functions.

We add this asymmetric tightening parameters to (7.39), (7.40) and (7.41). Including all
intrinsic parameters we get the following new definition,

φ(t;γ,µ,α,β) = e
−γ
|t−µ|α+β

tα (1−t)β , γ,µ,α,β ∈ R, γ,α,β > 0 and 0 < µ < 1,
(7.44)

ψ(t;γ,µ,α,β) = µe
−2γ

tα e
−γ

(1−t)β
, γ,µ,α,β ∈ R, γ,α,β > 0 and 0 < µ < 1,

(7.45)

ϕ(t;γ,µ,α,β) = e
2γ

(
1−µ

tα −
µ

(1−t)β

)
, γ,µ,α,β ∈ R, γ,α,β > 0 and 0 < µ < 1.

(7.46)

In [102, Theorem 2.1, page 18–24], a complete proof is given of that Bd(t;γ,µ,α,β) is a
complete B-function. The same proof will also be valid for the other ERB-functions.

The different ERB-functions will behave differently on these intrinsic parameters. For
Bd(t,γ,µ,α,β), increasing α and β , the plots tends toward a linear function on a part
of the domain, see Figure 7.21 - d). This is confirmed by Figure 7.21 - a), where we
see that the 1st derivative goes towards something similar to “a doorway”. However, the
ERB-function is still C∞-smooth, which can be seen in Figure 7.21 -b).

If α and β are different, the curve will be offset parallel to the side with the lowest number
and at the same time a little less steep. This can be observed in Figure 7.21 - c). Remember
that the integral of B′d(t) is always 1, so in the figure, if the “box” is lower it is also wider.

In Figure 7.22 - a), Bz(t;α,β) is plotted for (α + β = 8) where α and β are positive
integers. The function plots are almost vertical and according to the difference between
α and β they are horizontally offset relative to one another.

In Bd(t;α,β) and Bz(t;α,β), α and β are antisymmetric, where α is associated to t = 0

7.7. THE GROUP OF EXPO-RATIONAL B-FUNCTIONS 143

0

0.5

1

1.5

0.1463 0.1466 0.1469
0

0.5

1

b)

0 0.5 1
0

0.5

1

0 0.5 10 0.5 1

0.5

1

0

1.5 1.5

c)a) d)

tttt

B (t;a=b)d́ B (t;10,10)d

B (t;1000,1000)d́ B (t;a,b)d́

Figure 7.21: In plot a) is B′d(t;α = β = 1) in dashed red, B′d(t;α = β = 3) in dashed
green and B′d(t;α = β = 1000) in dashed blue. In plot b) is the t-axis of plot a) sharply
scaled, and we can see a part of B′d(t;α = β = 1000). In plot c) is B′d(t;α = β = 20) in
dashed red, B′d(t;α = 15,β = 25) in dashed green and B′d(t;α = 10,β = 30) in dashed
blue. In plot d) is Bd(t;α = β = 10) plotted in solid red.

and β is associated to t = 1. This unlike Bx(t;α,β) and By(t;α,β) where α and β

act on two levels. In Figure 7.22 - b) is a plot of Bx(t;α,β) where α = 1 and β =
{1,2,3,4,5,1000}. It look like that limβ→∞ Bx(t,1,β) = 1

2 . A plot of By(t;α,β) with the
same values for α and β gives a similar result.

In Figure 7.22 - c) there is a plot of Bx(t;α,β) where β = 1 and α = {1,2,3,4,5,1000}.
From β = 1 and up, the function starts to get steeper, but from β = 2 it turns and seems
to converge towards 1

2 , as in b) where β was varies. In Figure 7.22 - d) is a plot of
By(t;α,β) where β = 1 and α = {1,2,3,4,5,10}. It behaves different and seems to
converges towards a step function at t = 1

2 .

7.7.4 ERB-functions, differentiation
As an example, let’s look at derivatives for Bd(t). For the other ERB-functions, there will
be similar procedure.

Let’s call the exponent in (7.27), or the one with intrinsic parameters, for g(t). In (7.36)
is the 1st derivatives given. The other derivatives can be expressed as,

B(j)
d (t) = f j(t) B′d(t),

where f1(t) = 1. f j(t) can be expressed with g(t). For the default version of Bd(t) is

g(t) =
h(t)
s(t)

, where h(t) = 1−2t and s(t) = (2t(1− t))2. (7.47)

Using derivatives of a product, we get the following expression for f j(t) for j up to 4,

f2(t) = g(t),

f3(t) = g′(t)+g(t)2,

f4(t) = g′′(t)+3g(t)g′(t)+g(t)3.

144 CHAPTER 7. BLENDING

a)

t
0 0.5 1
0

1
B (t;a,b)z

c)

t

B (t;a,1)x

b)

t

B (t;1,b)x

d)

t

B (t;a,1)y

0

1

0

1

0

1

0 0.5 1 0 0.5 1 0 0.5 1

1
2

1
2

1
2

1
2

Figure 7.22: In plot a) is from left Bz(t;α = 1,β = 7) in orange, Bz(t;2,6) in green,
Bz(t;3,5) in blue, Bz(t;4,4) in red, Bz(t;5,3) in blue, Bz(t;6,2) in green and Bz(t;7,1) in
orange. In plot b) is Bx(t;α = β = 1) in red, Bx(t;1,2) in orange, Bx(t;1,3) in brown,
Bx(t;1,4) in blue, Bx(t;1,5) in green and Bx(t;1,1000) in black. In plot c) is Bx(t;α =
β = 1) in red, Bx(t;2,1) in orange, Bx(t;3,1) in brown, Bx(t;4,1) in blue, Bx(t;5,1) in
green and Bx(t;1000,1) in black. In plot d) is By(t;1,1) in red, By(t;2,1) in orange,
By(t;3,1) in brown, By(t;4,1) in blue, By(t;5,1) in green and By(t;10,1) in black.

For the default version of Bd(t), we get the following expressions for f j(t) for j up to 4,

f2(t) =
h(t)
s(t) ,

f3(t) =
3
2 h(t)4− 1

2
s(t)2 ,

f4(t) =
(3h(t)6+ 3

2 h(t)4−5h(t)2+ 3
2)h(t)

s(t)3 .

where h(t) and s(t) is given in 7.47.

7.8 Point-, Order- and Balance-symmetry of B-functions

The symmetry properties are important for the B-functions. It tells us how the local
functions influence the result. in section 7.1, the point-symmetry of a B-function was
introduced. It is that a B-function is symmetric about the point (0.5, 0.5).

The Point-symmetry of a B-function
A B-function is symmetric or Point-symmetric if

B(t)+B(1− t) = 1, t ∈ [0,1]⊂ R.

This is the most important type of symmetry and tells us that the influence on the
result of both local functions are the same. We have shown that for all groups and
series of B-functions there exist Point-symmetric functions.

The next type of symmetry is Order-symmetry. This type of symmetry is opening for
different orders, connected to knots in a spline-function based on blending.

7.9. IMPLEMENTING B-FUNCTIONS 145

The Order-symmetry of a B-function
A B-function is called Order-symmetric if a,b≥ 0, a,b ∈ Z, i.e.

Ba,b(t)+Bb,a(1− t) = 1, t ∈ [0,1]⊂ R, (7.48)

where a and b are the (Hermite) orders that are changing side in the two functions.

Theorem 7.6. The following B-functions are Order-symmetric:
• Beta-functions are Order-symmetric.
• RB-functions are Order-symmetric.
• The ERB-functions Bd(t;α,β) and Bz(t;α,β) are “Order”-symmetric in the

sense that it is symmetric according to α and β .

The proof of Theorem 7.6 can be found in appendix C.6.

The last type of symmetry is Balance-symmetry. This type of symmetry is opening for
different balance and thus weight, connected to knots in a spline-function based on blend-
ing.

The Balance-symmetry of a B-function
A B-function is called Balance-symmetric if

B(t; µ)+B(1− t;1−µ) = 1. (7.49)

Theorem 7.7. The following B-functions are Balance-symmetric:
• Rµ-functions are Balance-symmetric.
• ERB-functions are Balance-symmetric.

The proof of Theorem 7.7 can be found in appendix C.7.

As a conclusion of the section we will show that some B-functions can be Order-symmetric
and Balance-symmetric simultaneously.

Simultaneous order and balance symmetry of B-functions
Theorem 7.8. The following B-functions are Order-symmetric and Balance-
symmetric simultaneously:
The Rµ-functions fulfills Ba,b(t; µ)+Bb,a(1− t;1−µ) = 1,
The ERB-function Bd fulfills Bd(t; µ,α,β)+Bd(1− t;1−µ,β ,α) = 1.
The ERB-function Bz fulfills Bz(t; µ,α,β)+Bz(1− t;1−µ,β ,α) = 1.

The proof of Theorem 7.8 can be found in appendix C.8.

7.9 Implementing B-functions
For most B-functions and their derivatives, algorithms can easily be created directly from
their formulas. An algorithm for calculating B-functions, including their derivatives is
called an evaluator. It is easy to implement efficient evaluators for Beta-functions, Ratio-
nal B-functions and Trigonometric B-functions for given intrinsic parameters. However,

146 CHAPTER 7. BLENDING

it is more complicated to create a general evaluator for B-functions, and an evaluator for
ERB-functions of type 1 is not possible to make directly, because it require numerical
integrations and/or approximations.

In Appendix A is a numerical evaluator described. The evaluator was initially made for
ERB-functions of type 1, but is later modified to other B-functions.2 The evaluator is
based on approximation of the B-function by piecewise 3rd-degree Hermite polynomials,
where the coefficients for all of the Hermite functions in all subareas are pre-computed
and stored. The default partitioning is 1024 and this partitioning requires 1024×6×8 =
48k-byte memory.

The error bounds are important and for ERB-functions is the error bound: 10−13 for the
function value, 10−9 for the first derivative and 10−6 for the second derivative.

The efficiency of the evaluator is 6 multiplications for the function value, 4 multiplica-
tions for the first derivative, 5 multiplications for the second derivative ... C++ codes
for the evaluator are present at https://source.coderefinery.org/gmlib/gmlib1/gmlib/-/
tree/master/modules/parametrics/evaluators.

2The evaluator was introduced in [102], made for Expo-Rational B-splines. It was made for the scalable
subset, which is practically identical with the ERB-function described here. Later Gancheva and Delistoy-
anova expanded the evaluator in [71], to also include Beta-functions.

https://source.coderefinery.org/gmlib/gmlib1/gmlib/-/tree/master/modules/parametrics/evaluators
https://source.coderefinery.org/gmlib/gmlib1/gmlib/-/tree/master/modules/parametrics/evaluators

Chapter 8

Blending splines

Recall the formula for a polynomial B-spline curve in (6.12), ie

c(t) =
n−1

∑
j=0

c j bd, j(t).

where {c j}n
j=1, are the control points, ie the points that define the control polygon of the

curve. The set of B-splines (basis functions) {bd, j(t)}n−1
j=0 is defined by the knot vector

t = {t0, t2, ..., tn+d} and the polynomial degree d. The order of the B-spline is k = d + 1
and is the dimension of the function space.

Because bd, j(t) has local support, ie is different from zero only at the interval t ∈ [t j, t j+k),
we can reformulate the formula for the B-spline curve as follows,

c(t) =
i

∑
j=i−k

c j bd, j(t).

where the index i is determined by ti ≤ t < ti+1. That is a specific formula for each knot
interval [ti, ti+1).

In subsection 6.2.3, matrix formulation of B-splines was introduced. Using it, a third
degree B-spline curve will have the following formula for each knot interval [ti, ti+1),

c(t) =
(

1−w1,i(t) w1,i(t)
)(1−w2,i−1(t) w2,i−1(t) 0

0 1−w2,i(t) w2,i(t)

)
 1−w3,i−2(t) w3,i−2(t) 0 0

0 1−w3,i−1(t) w3,i−1(t) 0
0 0 1−w3,i(t) w3,i(t)




ci−3
ci−2
ci−1
ci

 ,

(8.1)
where

wd,i(t) =
t− ti

ti+d− ti
, (8.2)

and the index i is determined by ti ≤ t < ti+1.

147

148 CHAPTER 8. BLENDING SPLINES

The matrix formulation illustrate that B-spline curves formula is based on corner cutting.
Some important properties of B-spline curves comes from this corner cutting algorithm
illustrated in the matrix form in (8.1). As described in section 6.2.2 the properties con-
nected to the corner cutting are:

• The strong convex hull property,

• the variation diminishing property.

In addition can the following properties easily be seen from the matrix formula,

• the local modification scheme,

• the affine invariance property.

Local modification follows from that the formula (for degree 3) only depend on four
points, and the affine invariance follows from that each row in all matrices sums up to 1.

The continuity property can be directly derived from (8.2), i.e. wd,i(t) : [ti, ti+d]→ [0,1].
Recall the Hermite-order of the B-function in definition 7.2. The linear B-function B(t) =
t has Hermite-order zero, it further follows that t2 has left side Hermite-order 1, t3 has
left side Hermite-order 2 etc. It thus follows that the Hermite-order of the B-spline basis
is d−1 at the ends because it start with td , where t is translated and scaled, and ends with
(1− t)d , with a translated and scaled t. At the internal knots, only one linear function
ends and starts, which then reduce the continuity from d to d−1. This is the explanation
for the B-spline continuity at a simple knot, the continuity is the polynomial degree minus
one. By the same arguments it follows that the continuity is reduced by 1 if two knots has
the same value and that the continuity in general is the degree minus the multiplicity of
the knots.

8.1 B-splines with B-function
Recall the matrices in (8.1). Most elements in the matrices are zero. At each row of the
matrices, the non-zero elements have the values wd, j(t) and 1−wd, j(t). Since wd, j(t)
is a linear function mapping t from [t j, t j+d] to [0,1], each row is a linear interpolation
between to points. It is still a linear interpolation if instead of linear functions we use
higher order symmetric B-function, Definition 7.1, as elements of the B-spline matrices.
We then get the following expression for B-spline curves:

c(t) =
(

1−B◦w1,i(t) B◦w1,i(t)
)(1−B◦w2,i−1(t) B◦w2,i−1(t) 0

0 1−B◦w2,i(t) B◦w2,i(t)

)
 1−B◦w3,i−2(t) B◦w3,i−2(t) 0 0

0 1−B◦w3,i−1(t) B◦w3,i−1(t) 0
0 0 1−B◦w3,i(t) B◦w3,i(t)




ci−3
ci−2
ci−1
ci

 ,

(8.3)
where the knot interval and thus index i is determined by ti ≤ t < ti+1.

8.1. B-SPLINES WITH B-FUNCTION 149

0 1 2 3

Figure 8.1: The blue basis functions are the polynomial B-splines on a given knot vector
~t = {0,0,0,0,1,2,3,3,3,3}. The red basis functions are the B-spline with a 2nd-order
B-function on the same knot vector.

Figure 8.2: A plot of a 3rd-degree polynomial B-spline curve in blue. The dashed green
lines are the control polygon.The red curve is a B-spline with B-functions curve with the
same knot vector and control points as the polynomial B-spline. The red and green stars
marks extreme values of the speed of the red-curve.

The extension do not change the main properties of the B-spline curve. We still have
the corner cutting algorithm inducing all the properties of convex hull, local modification
scheme, variation diminishing etc, and the linear interpolation scheme induce the affine
invariant property.

The main difference compared to polynomial B-splines is the continuity properties. The
continuity at the knots will increase with the order of the B-function. If the B-function
has order infinity, then the curve will be C∞-smooth.

In Figure 8.1 is the B-splines (the basis functions), plotted for both polynomial B-splines
in blue, and for B-splines with a B-function in red. The main difference we can observe,
just by looking at Figure 8.1, is that the derivatives of all basis functions with a B-function
are zero at the start and at the end of their support. Most clearly can this be seen for the
first two basis function at t = 0, and for the last two basis function at t = 3. At the internal
knots we can observe that the basis functions are closer to zero over a larger area.

In Figure 8.2 is a third degree polynomial B-spline curve plotted in blue. The knot vector

150 CHAPTER 8. BLENDING SPLINES

0 1 2 3

5

0

Figure 8.3: The speed of the curves in Figure 8.2. The blue function is the speed of the
polynomial B-spline and the red function is the speed of B-spline with B-functions.

tk+2tk+1tk

b (t)k

tk-1

b (t)k-2

tk-2
Figure 8.4: A plot of 2nd order B-splines. To the left polynomial 2nd order (1st-degree)
B-splines, to the right 2nd order Expo-Rational B-splines.

(spline space) is the same as in Figure 8.1. The 6 control points are marked with circles.
The red curve is the B-spline with B-functions curve based on the same knot vector and
control points, but where we have used the basis function plotted in red in Figure 8.1.

The examples in Figure 8.2 and also the plot of the respective velocities in Figure 8.3
show one special property of a B-spline with B-functions curve. The red stars in Figure
8.2 mark the points where the speed has a local maximum, and the green stars mark the
points where the speed has local minimum. We can clearly see that the stars correlate
with the curvature, where the curvature is smallest the speed is highest, and where the
curvature is highest the speed is lowest. It can be reminiscent of driving a car over a given
distance, you start with zero for speed, acceleration, ..., ie all derivatives, and you regulate
the speed with respect to the road bends and you end by stopping, and where then all
“derivatives” are zero.

8.1.1 2nd order B-splines with B-function
The formula for a 2nd order B-spline curve is quite simple also if we include B-functions,
the formula for a knot interval [ti, ti+1) is

c(t) =
(

1−B◦w1,i(t) B◦w1,i(t)
)(ci−1

ci

)
, (8.4)

which obviously is a curve of strait lines between the subsequent control points due to the
linear interpolation in the formula. But if the B-function is an ERB- or Fabius-function
then the curve is actually C∞-smooth, which is quite strange since the curve is piecewise
linear. The explanation for this is that all derivatives are zero at all control points as will
be shown later.

In Figure 8.4 the basis functions are plotted, to the left polynomial 2nd order (1st-degree)
B-splines, to the right 2nd order Expo-Rational B-splines. The formulas follow from

8.1. B-SPLINES WITH B-FUNCTION 151

Figure 8.5: A 2nd order Expo-Rational B-spline curve is plotted in dotted blue. The
points are plotted uniformly according to parameter values. Thus the density of points
will describe the velocity. Note that the curve is C∞-smooth, but only G0.

(6.10) and (8.4) and are

b1,i(t) =


B◦w1,i(t), ti < t ≤ ti+1,
1−B◦w1,i+1(t), ti+1 < t < ti+2,
0, otherwise.

For a polynomial B-spline is B(t) = t, otherwise B(t) can be any symmetric B-function
as described in Chapter 7.

In Figure 8.5, a 2nd order Expo-Rational B-spline curve is plotted. The points are plotted
uniformly according to parameter values. Thus the density of points will describe the
velocity. In the figure we see that the points become denser and denser the closer to the
control points we are.

To verify the statement at the beginning of the section that all derivatives are zero in the
control points and the observation in Figure 5, we now derive (8.4) and get

c′(t) =
(
−δd,iB′ ◦w1,i(t) δd,iB′ ◦w1,i(t)

)(ci−1
ci

)
,

= δd,iB′ ◦w1,i(t) (ci− ci−1)

where δd,i, defined in (6.13), is the derivative of w1,i(t), defined in (6.11). δd,i (ci− ci−1)
is the vector from control point ci−1 to ci, scaled with the parameter interval. It thus
follows that

c(j)(t) = δ
j

d,iB
(j) ◦w1,i(t) (ci− ci−1) , for j = 1,2, (8.5)

As we see in 8.5 the derivatives are dependent on the derivatives of the selected B-
function. If the B-function is an ERB-function or the Fabius function, then all derivatives
will be zero at all control points. This also corresponds to Theorem 7.1 even though we
only have points here.

Here, too, the car driving analogy can be advantageous to use, you start with zero speed,
acceleration,..., then you start to increase the speed to midway between two points, then
you slow down until you stop at the point. There you turn before you drive on. In this
way you drive in a straight line between all the points in a mathematically C∞-smooth
way while geometrically it is only G0-smooth.

152 CHAPTER 8. BLENDING SPLINES

8.2 2nd order B-splines as blending splines
2nd order B-splines with B-functions have some very special properties, such as

- the basis functions have minimal support, ie over two knot intervals,

- the curve interpolates the control points, this follow from order 2

- the curve is Ck-smooth where k is the order of the B-function,

Together with the fact that the construction is very simple, these properties are the reason
for using 2nd-order B-splines with B-functions as a basis for blending-splines.

The formula of a 2nd-order B-spline curve, where the control points are replaced by con-
trol curves (also called local curves), and where the basis functions are generated from a
knot vector τ = {ti}n+1

i=0 combined with B-functions, is

c(t) =
n−1

∑
i=0

ci(t) b1,i(t), for t ∈ [t1, tn], (8.6)

where ci(t), i = 0,1, ...,n− 1 are local curves each defined over the two knot intervals
(ti, ti+2), and where b1,i(t) are 2nd-order B-splines with a symmetric B-function according
to Definition 7.1, as shown in (8.4). We call this construction for blending splines. You
will also find them under the name ERBS or GERBS in several papers1. Due to the 2nd

order and thus minimal support, the formula (8.6) can, on the knot interval t ∈ [ti, ti+1], be
simplified to

c(t) =
(

1−B◦w1,i(t) B◦w1,i(t)
)(ci−1(t)

ci(t)

)
= ci−1(t)+B◦w1,i(t) ∆ci(t), (8.7)

where ∆ci(t) = ci(t)− ci−1(t). This is according to two function blending described in
Section 7.2 and is the same as expression (7.3).

Definition 8.1. A 2nd order B-splines with B-functions, and with control curves, also
called local curves is

Blending splines
It follows from (7.6) that for j = 0,1,2, . . . ,S (the order of the B-functions used) is

c(j)(ti) = c(j)
i−1(ti), for i = 1,2, . . . ,n, (8.8)

c(j)(t) = c(j)
i−1(t)+

j

∑
k=0

(
j
k

)
δ

k
1,iB

(k) ◦w1,i(t) ∆c(j−k)
i (t) when ti < t < ti+1, (8.9)

where δ1,i is defined in (6.13). (8.8) is according to the Hermite interpolation prop-
erty described in Theorem 7.1. Expression (8.9) looks complicated but has the same
structure as the Bernstein polynomials where the numbers follows Pascals triangle.

1ERBS and later GERBS were first presented at “Mathematical Methods for Curves and Surfaces-
conference” in Tromsø 2004 and later published several places, [104], [44], [45], [102], [47], [6],...

8.2. 2ND ORDER B-SPLINES AS BLENDING SPLINES 153

Figure 8.6: A blending spline, ie a 2nd order B-spline curve in red, with four local
curves in green. The resulting curve is a blending of its local curves, where B-functions
are the blending functions. The resulting curve also completely interpolates all existing
derivatives to each of the adjacent local curves at the “middle” knot.

2nd order B-spline with B-function
To simplify the notation of the basis functions including its derivatives, we use

B(k)
i (t) = δ

k
1,iB

(k) ◦w1,i(t), for k = 0,1, . . . and t ∈ [ti, ti+1]. (8.10)

Then we call the second term of (8.9) for: g(t) = ∑
j
k=0

(j
k

)
δ k

1,iB
(k) ◦w1,i(t) ∆c(j−k)

i (t). The
function value and the 1st , 2nd and 3rd derivatives for this second term of (8.9) are,

gi(t) = Bi(t) ∆ci(t),
g′i(t) = B′i(t) ∆ci(t)+Bi(t) ∆c′i(t), (8.11)
g′′i (t) = B′′i (t) ∆ci(t)+2B′i(t) ∆c′i(t)+Bi(t) ∆c′′i (t),
g′′′i (t) = B′′′i (t) ∆ci(t)+3B′′i (t) ∆c′i(t)+3B′i(t) ∆c′′i (t)+Bi(t) ∆c′′′i (t).

We now summarize one of the main property of blending splines.

The Hermite interpolation property of Blending splines
A blending splines defined in Definition 8.1 interpolates each local curve ci in the
knot value ti+1, not only the value but with all subsequent derivatives up to the or-
der of the B-function used, as shown in expression 8.8. This is called the Hermite-
interpolation property of the blending spline.

Are there any restrictions on the local curves? The answer is yes, but for all practical use
it is almost impossible to find examples of curves that cannot be used as local curves. Of
theoretical interest, these restrictions are described in [102], Section 2.6. The most com-
mon types of local curves are Bézier curves, sub-curves, circular arcs, blending splines
itself, B-splines and curves made by Taylor expansion. Of course, the continuity of the
resulting curve depends on the continuity of the local curves used.

Figure 8.6 shows an example of a blending spline curve and its local curves. There are
4 local curves (green). The knot vector is τ = {ti}5

i=0, where t0 = t1 and t4 = t5 are
the multiple start and end knots, and t2 and t3 are non-multiple internal knots. Each
basis function and thus also local curves spans two knot intervals, and each local curve

154 CHAPTER 8. BLENDING SPLINES

interpolates the global curve at its middle knot of its span. Because the first two knots are
equal and t1 is the middle knot, the first local curve, which spans [t0, t2], will interpolate
the start of the global curve. The same reasoning also explains why the last local curve
interpolates the end of the global curve. The curve in Figure 8.6 can be divided into three
parts, and the “division points” are where the local curves touch the global curve, ie the
internal knots t2 and t3. Each part of the curve is a blending of parts of two local curves.
The first part is a blending of the whole first local curve and the first half (until knot t2) of
the second local curve. The second part is a blending of the second part (from knot t2) of
the second local curve and the first part (until knot t3) of the third local curve (both parts
dashed green). The third part is a blending of the second part (from knot t3) of the third
local curve and the whole fourth local curve. This shows the extreme local support, ie if
we change the first local curve, only the first third of the global curve will be changed.

A general algorithm for blending splines is as follows:

Algorithm 8. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes {c(j)(t)}d

j=0 for a blending spline curve. The algorithm assumes
that evaluators for the local curves and for the B-function are present. The knot vector
{ti}n+1

i=0 is also assumed to be present. The input variables are: t ∈ [t1, tn], and d - which
is the number of derivatives to compute. The return is a vector〈Vector〉, where the first
element contains c(t), and then c′(t), ...,c(d)(t).

vector〈Vector〉 eval (double t, int d)
int i = i :\; ti ≤ t < ti+1; // Index for the current knot-interval.
vector〈Vector〉 c0 = {c

(j)
i−1(t)}d

j=0; // Result evaluating local curve ci−1(t).
if (t == ti) return c0; // Return only local curve ci−1(t), see (8.8).
vector〈Vector〉 c1 = {c

(j)
i (t)}d

j=0; // Result evaluating local curve ci(t).
vector〈double〉 a(d +1); // Vector to store “Pascals triangles nr”.
vector〈double〉 B = {B(j)

i (t)}d
j=0; // Computing B-function, see (8.10).

c1 −= c0; // c1 now becomes ∆ci, see (8.9).
for (int j=0; j ≤ d; j++)

a j = 1;
for (int k=j-1; k > 0; k−−)

ak += ak−1; // Computing “Pascals triangle”-numbers.
for (int k=0; k ≤ i; k++)

c0, j += (ak Bk)c1, j−k; // “vector += scalar*vector”, from (8.9).
return c0;

In the Algorithm, the computation of the local curves is marked in red.

8.2.1 Affine transformations of local curves
Affine maps are described in (2.4) on page 16. These are typically scaling, rotation, share
and translation, and in general taken on the familiar form

Ap+ v,
where p is a point and v is a associated vector in an affine space. This affine space might
typical be 3D, where A is a 3×3 matrix

8.2. 2ND ORDER B-SPLINES AS BLENDING SPLINES 155

Figure 8.7: The blending spline curve from Figure 8.6, but where three of the local green
curves are translated and two are also rotated. The curve is in the 3D-space.

However, if we use homogeneous coordinates, see Section 2.6 and 3.2, everything will be
gathered in one 4×4 matrix (in 3D) for all affine maps. This matrix then looks like this;

Ai =


xi,x yi,x zi,x pi,x
xi,y yi,y zi,y pi,y
xi,z yi,z zi,z pi,z
0 0 0 1

 . (8.12)

The first three columns of the matrix are vectors where the homogeneous coordinate is 0,
the last column is a point where the homogeneous coordinate is 1. The matrix represents
the position and orientation of a local curve, and describes a local coordinate system
where the point pi is the origin and the three column vectors are the coordinate axes xi
(red), yi (green) and zi (blue). If we restrict the maps to rotation, scaling and translation,
we keep an orthogonal coordinate system.

- To translate with a vector d - we compute pi = pi +d,

- To rotate an angle β around an axis r - we compute xi = Rβ ,r xi and yi = Rβ ,r yi and
zi = Rβ ,r zi where Rβ ,r is a rotation matrix described in (2.5).

- To scale with a factor s, we scale each vector xi = s xi and yi = s yi and zi = s zi.

In Algorithm 8, we see two places marked in red, these are the places where the local
curves are calculated. To implement affine transformations of local curves, we make
these computations

c(j)
i (t) = Ai α

(j)
i (t), j = 1,2, ...,

where Ai is a matrix as (8.12) associated with the local curve αi(t). Note that αi(t) and
thus ci(t) are points where the homogeneous coordinate is 1, and for j > 0, α

(j)
i (t) and

thus c(j)
i (t) are derivatives and thus vectors where the homogeneous coordinate is 0.

In Figure 8.7, the curve in Figure 8.6 (embedded in R3) is changed by moving and rotating
some of the local curves. The second curve is only moved, the third curve is moved and
rotated about a vertical axis and the fourth curve is moved upwards and rotated slightly
around an axis out of the page.

As we see in Figure 8.7, the rotations of the local curves are made around the interpolation
points of the curves ci(ti). Another observation / possibility is that rotation axis often

156 CHAPTER 8. BLENDING SPLINES

is connected to the tangent or cotangent of the curve at the interpolation points. This
provides some guidance on what local coordinate systems should look like.

X Therefore, in general it is preferable that the local origin of a local curve is at the
point where the blending curve interpolates the local curve. The way to do this
will depend on the type of local curves, but in general we find the position of the
interpolation point, pi = ci(ti+1), then pi is inserted as the last column in the matrix
Ai and we correct the intrinsic data in the local curve with −pi.

X It can be useful to make the Frenet frame, the matrix F(ti+1), also called a TNB
frame, see subsection 4.1.2. Usually it is a row matrix, but in our case we want a
column matrix. It is a matrix where the first column is T = c′i(ti+1) normalized, the
second column is N = c′′i (ti+1)−〈c′′i (ti+1),T 〉T normalized, and the third column is
B = T ∧N. Since the matrix is orthogonal F−1 = FT . Thus, we correct the intrinsic
data in ci(t) with F−1(ti+1) and set F(ti+1) as the upper left submatrix in Ai.

8.2.2 Bézier-curves as local curves
Bézier curves are very convenient to use as local curves. Recall from Section 4.4 expres-
sion (4.29) that Bézier curves are defined by

α(t) =
d

∑
j=0

c j bd, j(t), for t ∈ [0,1],

where d is the polynomial degree, the basis functions bd, j(t) are the Bernstein polyno-
mials described in Subsection 4.4.1, c j ∈Rs, j = 0,1, ...d are the coefficients and thus the
control polygon, and where s usually is 2 or 3 (in the plane or the 3D-space).

From Definition 8.1 we can see that the domain of each local curve ci(t) must be [ti, ti+2].
This means that each Bézier curve ci(t) must be re-parameterized from [0,1]→ [ti, ti+2].
To do this, the linear translation and scaling functions and its derivative are used,

w2,i(t) =
t− ti

ti+2− ti
and δ2,i = w′2,i =

1
ti+2− ti

. (8.13)

So for local Bézier curves we get the following evaluator, which includes position and d
derivatives, which reflects (8.8) and (8.9), and which can be used where it is marked red
in Algorithm 8.

c(j)
i (t) = δ

j
2,iα

(j)
i ◦w2,i(t), j = 0,1, . . . ,d and t ∈ [ti, ti+2]. (8.14)

In section 4.4.3 is the Bernstein-Hermite matrix Bd(t,δ) described in (4.36). This is the
matrix we use for computing the position and all derivatives at a given t-value, ie

ci(t)
c′i(t)

...
c(d)i (t)

=


b0,d (w2,i(t)) b1,d (w2,i(t)) . . . bd,d (w2,i(t))

δ2,i Db0,d (w2,i(t)) δ2,i Db1,d (w2,i(t)) · · · δ2,i Dbd,d (w2,i(t))
...

...
δ d

2,iD
db0,d (w2,i(t)) δ d

2,iD
db1,d (w2,i(t)) · · · δ d

2,iD
dbd,d (w2,i(t))




c0
c1
...

cd



8.2. 2ND ORDER B-SPLINES AS BLENDING SPLINES 157

and in vector/matrix notation

{c(j)
i (t)}d

j=0 = Bd(w2,i(t),δ2,i) c. (8.15)

To compute (8.15) and thus (8.14) we can use Algorithm 2 which creates the matrix
Bd(w2,i(t),δ2,i), described in section 4.4.3, and multiply this matrix by a vector of the
control points c. If we want to compute fewer than d derivatives, Algorithm 2 can be
modified to reduce the number of rows in the matrix. In both Figure 8.6 and Figure 8.7,
2nd-degree Bézier curves are actually used as local curves of the blending spline.

In order for all local Bézier curves to have their local coordinate system, where the local
origin is where the blending curve interpolates the local curve, we must correct the control
points. We do this by finding the local origin, pi = αi ◦w2,i(t), and then going through all
the control points to correct them to c j = c j− pi, for j = 0,1, . . . ,d. As a counterweight,
the last column in the homogeneous matrix Ai must be set to pi.

In Figure 8.7 is the local Bézier curves rotated around their local origin.

8.2.3 Making a blending spline approximation of a curve
Given a curve ϕ(t), with a domain t ∈ [a,b] for an open curve or t ∈ [a,b) for a closed/-
cyclic curve. To make an approximate “copy” of this curve we need

• the number n and the polynomial degree d of the local Bézier curves to make,

• to create a knot vector, {ti}n+1
i=0 spanning the domain of ϕ(t),

• to find the control points {ci, j}d
i=0 of all local Bézier curves c j(t), j = 0,1, . . . ,n−1.

The simplest way to create a knot vector is to use uniform distance between the internal
knots t1, . . . , tn, where [t1, tn] is the domain of ϕ(t). The two end knots is then set accord-
ing to that ϕ(t) is open or closed (see section 6.2.2). Then recall expression (8.15). We
must use as many derivatives as the polynomial degree we have chosen, therefor the ma-
trix Bd(w2,i(t),δ2,i) is a d + 1× d + 1 matrix (made by Algorithm 2). From the original
curve ϕ(t) we therefore need the position and d subsequent derivatives in each knot value
t1, t2, . . . , tn. We now reverse expression (8.15) and get the following procedure to make a
blending spline copy of a curve.

Copying with Hermite interpolation
This method of “copying” curves is actually an Hermite interpolation. We get

ci−1 = Bd(w2,i(t),δ2,i)
−1

ϕ(ti), for i = 1,2, . . . ,n,

where ci−1 are the control points of the local Bézier curve ci−1, and ϕ(ti) are the
position and d subsequence derivatives to the original curve in the parameter value ti.
Thus, at every internal knot value, the position and d derivatives of the blending
spline c(t) will be equal the position and d derivatives of the original curve ϕ(t), ie

c(j)(ti) = ϕ
(j)(ti), j = 0,1, . . . ,d and i = 1,2, . . . ,n.

158 CHAPTER 8. BLENDING SPLINES

Figure 8.8: To the right, a blending spline curve (blue) approximating a “Rose-curve”
(red) by using 56 interpolation points; only the position and the first derivative in each
point are used. This approximation seems to make the curve too long, so that the curve is
buckling between the interpolation points. To the left, the 56 local Bézier curves (lines)
of the blending splines plotted in different colors (all 1st-degree). Because the “Rose-
curve” has 14 petals, and there are 14*4=56 interpolation points, the local curves (lines)
are “symmetrical around the rose center”. In addition, every pair of subsequent lines
intersect.

8.2.4 Examples
We will now see examples of Hermite-interpolation using three different original curves.
These three curves are approximated by blending spline curves using local Bézier curves
of different degrees. The purpose is to show some of the properties and possibilities of
blending spline curves using local Bézier curves. Most of the examples are closed/cyclic
curves, but there is also one example of an open curve. The examples clearly show that
Hermite-interpolation is not an “optimal” approximation (a well known fact), and that it
is possible to improve the solution by scaling the local curves, or the local domain in the
input of the interpolation process.

The first example is a so called “Rose-curve” described in [162], and defined by the
formula,

g(t) =

 cos t cos
(7

4t
)

sin t cos
(7

4t
)

0

 for t ∈ [0,8π). (8.16)

A plot will look like a rose with 14 petals. The number of petals is 2 times the numerator
in the fraction in the cosine in equation (8.16). The speed is oscillating between 1 and
1.75, slowest at the center of the rose and the fastest at the tip of each petal.

In Figure 8.8, the “Rose-curve” is interpolated by a blending spline using 4 interpolation
points on each petal. In total, there are 4*14=56 interpolation points uniformly distributed

8.2. 2ND ORDER B-SPLINES AS BLENDING SPLINES 159

Figure 8.9: To the right a blending spline curve (blue) approximating a “Rose-curve”
(red) by using 56 interpolation points; only the position and the first derivative in each
point are used, but the local curves are scaled by 0.5 after the interpolation. This approx-
imation seems to be, geometrically, very close to the original curve. To the left, the 56
local Bézier curves (lines) of the blending splines (all 1st-degree) are plotted in different
colors. Because the “Rose-curve” has 14 petals, and there are 14*4=56 interpolation
points, the local lines are “symmetrical around the rose center”. In addition, each line
does not intersect with the previous and next line in the sequence.

on the parameter interval. The position and first derivative in each of the interpolation
points are used, and we can easily see the effect of using only 1st-derivatives. Since we
do not specify 2nd-derivatives, the curvature is thus assumed to be zero at all intersection
points. But the curvature here is greater than zero, and the result is that the curve becomes
too long. This can clearly be seen to the right in Figure 8.8. To the left in the figure, the
local curves are plotted. Because all local curves are of degree 1, they are straight lines.
The length of the lines, and the fact that they intersect each other, also indicates that the
resulting curve becomes too long and thus will bulge out.

The curve in Figure 8.9 is made with the same interpolation as in the previous example
(Figure 8.8). But the local curves are now scaled by 0.5, as can be seen on the left in
Figure 8.9. When scaling, it is important that the interpolation point is the origin of the
local coordinate system of each local curve, so that the interpolation points do not moving.
The resulting curve is geometrically very similar to the original “Rose-curve”. However,
the speed will oscillate more strongly. It is possible to get the same result by using another
method. You can scale the input derivatives instead of scaling the resulting curve, and still
get the same result. As can be seen in this example, the result is geometrically very good.
However, an even greater potential for improving the result is if the scaling factor differs
from local curve to local curve.

In Figure 8.10, the “Rose-curve” is, as in the two previous examples, using 56 interpola-
tion points, but now the position and two derivatives in each interpolating point are used.

160 CHAPTER 8. BLENDING SPLINES

Figure 8.10: To the right, two curves partly covering each other. The red curve is the
original “Rose-curve”, the blue curve is the approximating blending spline curve. The
approximation is made by 56 interpolation points, the position and the first and second
derivatives in each point are used. To the left, the 56 local Bézier curves of the blending
splines are plotted gradually from green to red. They are all 2nd degree Bézier curves,
forming the original curve around each interpolating point. The local curves are in a way
“symmetrical around the rose center”.

The result is quite good, but not as geometrically good as in the previous example. The
speed however is quite equal to the original curve, and is thus much better than in the
previous example. To the left in the figure, the local curves are plotted. They are all of
degree 2, and “symmetrical”, in the sense that on every petal there is a set of local curves
that have the same form on each petal. One can also noticeably improve the result by
changing the local curves in this example, using a similar argument as in the previous
example.

The next curve example is a so called “Cardioid curve” described in [80], and defined by
the formula,

g(t) =

 2cos t (1+ cos t)
2sin t (1+ cos t)

0

 , for t ∈ [0,2π). (8.17)

A plot of expression (8.17) will look like an apple, with a cusp at the top. To the right in
Figure 8.11, the “Cardioid curve” is approximated by a blending spline using 7 interpo-
lation points uniformly distributed on the parameter interval. In each of the interpolation
points are the positions, the first and the second derivatives used in the Hermite interpo-
lation process. No special effort is done to reshape the cusp. There is one interpolation
point at the bottom, and three on each side, where the distance (in the plane) is getting
shorter on the way up from the bottom intersection point. The third point on each side is
relatively close to the cusp. To the left in Figure 8.11, all seven local curves are plotted in
different colors. They are all 3rd-degree Bézier curves, modeling the shape of the original

8.2. 2ND ORDER B-SPLINES AS BLENDING SPLINES 161

Figure 8.11: To the right, two curves partly covering each other. The red curve is
the original “Cardioid curve” . The blue curve is the approximating blending splines.
The approximation is made by 7 interpolation points; the position and the three first
derivatives in each point are used. To the left, the seven local Bézier curves of the blending
splines are plotted in different colors. All seven curves are 3rd-degree Bézier curves with
4 control points.

curve quite well, but they seem to be too long because not only do they overlap half of the
next curve, but they also overlap some of the following curve. The logical reason for this
is, of course, the same as for the previous example, that the algorithm in this case assumes
that the fourth derivatives are zero.

The last examples are some curiosities. There are three different approximations of circles
and circular-arcs. To the left of Figure 8.12 there is an approximation of a circle using
only one interpolating point, the position, first and second derivatives. The local curve is,
therefore, only one 2nd degree Bézier curve. In the figure the original circle is red, the
approximating curve is blue, and the local Bézier curve is dashed green.

Figure 8.12: Three examples of approximations of circles/circular arcs by blending
spline using local Bézier curves. The original curves are red, the blending spline are
blue, and the local Bézier curves are green. On the left side only one 2nd-degrees Bézier-
curves is used as local curve. In the middle, two local curves of 1st-degree (lines) are
used. On the right hand side there is a circular arc approximated by an blending spline
using two 2nd-degrees Bézier-curves as local curves.

162 CHAPTER 8. BLENDING SPLINES

Figure 8.13: The “Rose-curve” approximated by a blending spline using 56 interpola-
tion points and local 2nd-degree Bézier curves. The local curves at the tip of the petals
are rotated (7 times around their local y-axis which coincide with the direction of the ra-
dius of the rose curve). In the figure, 7 “rotated” “Rose-curves” are plotted, each rotated
22.5◦ more than the previous one. The fourth curve, where the local curves at the tip of
the petals are rotated a total of 90◦, is also plotted from the side.

In the middle of Figure 8.12, a circle is approximated by only two interpolating points,
the position and the first derivatives in each of the two points. The local lines are scaled
by 0.92 after the interpolation. The result is visually quite good.

To the right of Figure 8.12, an arc, slightly smaller than a half circle, is approximated by
a blending spline. Two local curves are created using an interpolation point with position,
first and second derivatives, for each of them. In this case, another type of correction is
showed, the domain interval is scaled by 0.635. The result is very accurate. One can see
almost only the blue blending spline curve which is covering the red original circular arc.

In Figure 8.13, animation by rotating some of the local curves is shown. On a copied rose
curve, all the local curves at the tip of each petal are continuously rotated 7 times about
the radius of the rose curve. You will find more about all the examples shown here and
also other examples, about approximation errors and how you can improve the result in
[102], which can be loaded from http://urn.nb.no/URN:NBN:no-15022

http://urn.nb.no/URN:NBN:no-15022

8.3. THE SUB-CURVE CONSTRUCTION 163

8.3 The sub-curve construction
Extending any parametric curve to a blending spline curve

We can convert any curve to a spline curve by adding a knot vector. The result is that
we get a set of overlapping sub-curves, each of which is linked to one of the internal
knot values and with a domain that covers two knot intervals, one on each side of the
corresponding knot. Thus, a sub-curve is only a restriction of the domain of a curve. To
use sub-curves as local curves means that a blending spline copy of a curve initially is
identical to the curve itself. This is because blending of a curve with itself gives the curve
itself. When adding affine transformations (subsection 8.2.1), a sub-curve algorithm will
basically be similar to the algorithm for local Bézier curves. From modifying (8.7), we
get for i = 1,1, . . . ,n

c(t) =
(

1−B◦w1,i(t) B◦w1,i(t)
)(Ai−1 ϕ(t)

Ai ϕ(t)

)
, t ∈ [ti, ti+1),

where ϕ(t) is the curve from which we get the sub-curves, and Ai is a homogeneous
matrix described in subsection 8.2.1 and expression (8.12). The formula can be further
simplified to,

c(t) = Ai−1 ϕ(t)+B◦w1,i(t)(Ai−Ai−1)ϕ(t)

which gives us the following method.

Making any curve editable by converting to blending splines
Given a curve ϕ(t). To converted ϕ(t) to a blending spline curve we do the following
- determine the number n of editing cubes we want to use,
- create a knot vector adapted to this number and to a 2nd-order B-spline, ie {ti}n+1

i=0 ,
- to each internal knot we assign a homogeneous matrix, initially identity matrices.
Then we have the following formula for the knot interval [ti, ti+1)

c(t) = (Ai−1 +B◦w1,i(t) ∆Ai)ϕ(t) (8.18)

where Ai is the homogeneous matrix connected to knot ti+1, ∆Ai = Ai−Ai−1, B is
a B-function and w1,i(t) is defined in (6.11). Note that ϕ(t) is a point with the last
homogeneous coordinate equal to 1. For the derivatives we will have the same struc-
ture as in (8.9) and thus (8.11), ie we use B(k)

i (t) = δ k
1,iB

(k) ◦w1,i(t), defined in (8.10).
Thus the first 3 derivatives are

c′(t) = Ai−1 ϕ
′(t)+∆Ai

(
B′i(t) ϕ(t)+Bi(t) ϕ

′(t)
)
,

c′′(t) = Ai−1 ϕ
′′(t)+∆Ai

(
B′′i (t) ϕ(t)+2B′i(t) ϕ

′(t)+Bi(t) ϕ
′′(t)
)
,

c′′′(t) = Ai−1 ϕ
′′′(t)+∆Ai

(
B′′′i (t) ϕ(t)+3B′′i (t) ϕ

′(t)+3B′i(t) ϕ
′′(t)+Bi(t) ϕ

′′′(t)
)
.

Note that in the first part, Ai−1 is multiplied by a vector where the last homogeneous
coordinate is 0, and in the second part, ∆Ai is multiplied by a point (underlined) where
the last homogeneous coordinate is 1.

164 CHAPTER 8. BLENDING SPLINES

Figure 8.14: A blending spline curve made from a circle, formula (4.1). On the left side
we see it initially, a perfect circle where the four editing points are marked, on right side
the curve is changed by moving the four editing points towards the center.

In subsection 8.2.1 is the homogeneous matrices Ai introduced. The matrix represent a
frame, a local coordinate system located at a point pi with the coordinate axes xi, yi and zi
in R3. Thus the matrix Ai, ie the point and the axis can be visualized as a cube. This can
be seen in Figure 8.6, Figure 8.7 and in Figure 8.14.

We will look at a simple example. A circle is given by the formula (4.1). The domain is
[0,2π). The only changes we can make are to change the radius, otherwise the curve is
static. The first decision is to use 4 editing points. The curve is closed, and from subsec-
tion 6.2.2 we see that the domain is [t1, t5) and the knot vector τ = {−π

2 ,0,
π

2 ,π,
3π

2 ,2π}.
The four matrices {Ai}3

i=0 are initially identity matrices.

Figure 8.14 shows this example. The curve is initially a perfect circle, as we can see on
the left in the figure. To the right of the figure we see the curve after all four editing points
have been moved towards the center of the circle. The editing points can now be moved
in different directions, rotated and scaled. The curve will totaly change shape. but it will
always be closed and thus topologically similar to a circle.

One problem in this example, and also in the recipe on the previous page, is that the local
coordinate systems for the editing points are the global coordinate system. To make it
easier to change/edit the curve we should follow the advise from subsection 8.2.1 on page
156, we must adjust the local curves, and insert the corresponding rotation and translation
into the matrices Ai, i = 0,1,2,3.

Therefore, at each editing point we add one extra matrix, Ti . Now, for each editing points,

- compute Ai = F(ti+1), ie the Frenet frame at every point ϕ(ti+1), i = 0,1, . . . ,n−1, see
about Frenet frame on page 156 and section 4.1.1,

- then we compute Ti = A−1
i , i = 0,1, . . . ,n−1.

The consequence is that the evaluation of the original curve now depend on the knot

8.3. THE SUB-CURVE CONSTRUCTION 165

Figure 8.15: Blending spline curve made from a circle, formula (4.1). The green curves
has 4 knot intervals. At each knot, all the sub-curves are rotated, 30◦, 60◦ and 180◦,
respectively, in the curves seen from the left side. In the red curves with 6 knot-intervals
and the blue ones with 8 knot-intervals, every other sub-curve is moved towards the center
of the circle, respectively 1

2 , 1, 2 times the distance to the center.

interval, ie expression (8.18) now becomes

c(t) = (Ai−1 +B◦w1,i(t) ∆Ai)(Ti ϕ(t))

and a corresponding change for the derivatives. When editing is completed, Ai can be
updated by multiplying Ai by Ti, and then remove Ti.

Figure 8.15 shows more examples of the sub-curve construction. The green curves show
the use of rotation and the red and blue curves show the use of translation. Note that only
the matrices Ai are changed, for rotation the rotation in the 3×3 sub-matrix is at the top
left, see page 16. For translation, only the column vector on the far right is changed, as
described in (8.12).

Figure 8.16 and 8.17 shows how we can interactively shape figures using rotation and
translation at the knots. It can be compared to pencil sketching, and it is done in seconds.

166 CHAPTER 8. BLENDING SPLINES

Figure 8.16: A silhouette of a face modeled from a circle using 12 knots.

Figure 8.17: Only 2 knots are used, both are rotated and one is translated. Two circles
are plotted to illustrate the blending.

Part II

Surfaces

167

Chapter 9

Parametric Surfaces

To give an idea of what a parametric surface is, imagine R2 as an infinite plane. To make
a surface, we select a part of this plane, which we then call a parameter plane. Then we
insert it into the intended space, which is usually the Euclidian space R3, deform it by
either stretching or pressing it and bending it in several ways. Finally, we put it in the
desired position and orientation. Note that to cut and glue is not an option here. Figure
9.2 give an example of this concept. A surface is a 2-dimensional object. If a surface is
neither degenerated nor self intersecting we also call it a 2-dimensional manifold.

This was an attempt to illustrate the concept of parametric Surfaces. Usually is the output
to be embedded in R3 but it can be in another Euclidian space or manifold with dimension
> 0. A more formal definition is:

Definition 9.1. A parameterized differentiable surface is a differentiable map S : U ⊂
R2 −→Mn, n > 0 of an open set U ⊂ R2 into an Euclidian space or manifold. Note that
a half open or closed set is just a restriction of an open set.

One often imagines a surface as the outer boundary of a three-dimensional object in space.
Usually a surface is closed and topologically similar to a sphere or torus, or a torus-like
object with several holes. It is not always as easy to parameterize such surfaces. Only the
torus can be easily parameterized, the other types must be covered by several parameteri-
zations, where the transition between them must be consistent (homeomorphic).

For the rest of the chapter we will assume that surfaces are embedded in R3. A map
is usually notated by a letter, eg. S : U ⊂ R2 → R3 where U is called the domain / the
parameter plane, where the coordinates usually are notated by the letters (u,v). A surface
can have a boundary as in the monkey saddle example or partly boundary as in a cylinder
or no boundary as in a torus. The first example is a monkey saddle defined as following,

S(u,v) =

 u
v

uv2

 , u ∈ [−1,1], v ∈ [−1,1]. (9.1)

Here the domain U = [−1,1]× [−1,1] and the parameter plane is reflecting the xy-plane
in R3 (x = u and y = v). This means that the surface is stretched in the mapping process

169

170 CHAPTER 9. PARAMETRIC SURFACES

Figure 9.1: Three example surfaces, a so called monkey saddle from expression (9.1), a
cylinder from expression (9.2) and a torus from expression (9.3).

and that the area must be bigger than the parameter plane, 22 = 4. A plot of the surface is
shown in green in figure 9.1.

The next example is a cylinder,

S(u,v) =

 cosv
sinv

u

 , u ∈ [0,6], v ∈ [0,2π). (9.2)

Here the domain U = [0,6]× [0,2π). This mapping is more like taking a piece of paper
and roll it. The surface is not stretched in the mapping process and the area is the same as
in the parameter plane, 10π . A plot of the surface is shown in yellow in figure 9.1.

Example three is a torus,

S(u,v) =

 (cosu+3)cosv
(cosu+3)sinv

sinu

 , u ∈ [0,2π), v ∈ [0,2π). (9.3)

Here the domain is U = [0,2π)× [0,2π). A plot of the surface is shown, copper-colored,
in figure 9.1.

Figure 9.2 is an attempt to provide a picture of what a parametric surface is. The figure
shows the parameter plane at bottom left. It is called U and its coordinates are named u
and v. The map is called S and is as a dotted curved arrow. The surface, upper right in the
figure, is thus called as S(U). In the figure, S maps a point p in the parameter plane to a
point q on the surface. Summing up:

- S(U) is the entire surface embedded in R3.
- p = (u,v) is a point in the parameter plane U ⊂ R2, (u,v) are the coordinates.
- q = S(p) = S(u,v) is a point on the surface in R3.
- S maps points in the parameter plane to points on the surface (in R3).

9.1. DIFFERENTIATION 171

U

S

dS

m

g
p

q

uv

Sv
Su

S(U)

T (S)q

Figure 9.2: On lover left hand side is the parameter plane U ⊂ R2 shown. On upper
right hand side is there the surface, S(U), embedded in R3. A point p in the parameter
plane is mapped by S to a point q = S(p) on the surface. A vector γ from the point p in
the parameter plane is mapped by diferential map dS to a vector µ = dSp(η) laying in
the tangent plane Tq(S) at the point q on the surface.

9.1 Differentiation
The next step, which is also illustrated in figure 9.2, is differentiation. Recall that S maps
a point p from the parameter plane to a point q on the surface. We will now find the
direction we have to move in if we are in q and want to move in the direction where only
one of the two parameter values changes. We call these directional vectors the partial
derivatives. A surface has two parameter values and thus two partial derivatives. There
are several notations used for partial derivatives. In the following we will see 3 different
notations that are commonly used.

- The partial derivative in the u-direction, denoted in three different ways DuS = Su =
∂S
∂u ,

is a 3-dimensional vector if S(U)⊂ R3 and a tangent vector to the surface at the given
position q = S(p).

- The partial derivative in the v direction, denoted in three different ways DvS = Sv =
∂S
∂v ,

is a 3-dimensional vector if S(U)⊂ R3 and a tangent vector to the surface at the given
position q = S(p).

The two tangent vectors Su and Sv span a tangent plane at the point q = S(p). The tangent
plane, denoted Tq(S), is also shown in figure 9.2 with a white border. Remember that
the dimension of the tangent vectors, the partial derivatives, is equal the dimension of
the space for which the surface is embedded. As an example of partial derivatives we
can look at the monkey saddle in expression (9.1). We then get the following partial
derivatives (using all three notations),

DuS = Su =
∂S
∂u

=

 1
0
v2

 , DvS = Sv =
∂S
∂v

=

 0
1

2uv

 , (9.4)

172 CHAPTER 9. PARAMETRIC SURFACES

9.1.1 The differential dSp

The next map is the differential dS, a matrix where the two partial derivatives are the
columns,

dS = [Su Sv] , ∈M(s,2),

where s is the dimension of the space the surface is embedded in. This means that dS has
two columns and the number of rows is equal the dimension of the space the surface is
embedded into (i.e. 3 in R3). It maps a vector at the point p in the parameter plane, to a
vector in the tangent plane Tq(S) at the point q = S(p).

In figure 9.2, there is an example where a vector γ is mapped to a vector µ by dSp. i.e.
dSp(γ) = µ . We call µ the directional derivative in direction γ . If the surface is embedded
in R3 then dSp is a 2×3 matrix, i.e.

dSp : R2→ R3, p ∈U ⊂ R2. (9.5)

It also follows that d is a differential operator making a map to a differential map, we
therefor get

d (Su) = [Suu , Suv] ,

d (Sv) = [Svu , Svv] ,

and so on.

9.1.2 Curves on surfaces
We will describe the construction of how curves defined in the parameter plane of a sur-
face is mapped into R3.

Given a curve h : I ⊂ R→ R2,

h(t) =
n

∑
i=1

cibi(t).

where ci, i = 1, ...,n are points or vectors in R2 and bi(t) are basis functions spanning a
finite dimensional function space.

The question is, what curve will we get when the curve in the parameter space is mapped
into 3D-space. Given a surface S : U ⊂ R2→ R3. The curve definition then is,

c(t) = S (h(t)) = S◦h(t), t ∈ I ⊂ R. (9.6)

Using the chain rule on (9.6) we get the first, second and third derivative,

c′(t) = dSh(h′),
c′′(t) = d(dSh(h′))h(h′)+dSh(h′′), (9.7)
c′′′(t) = d(d(dSh(h′))h(h′))h(h′)+d(dSh(h′))h(h′′)+d(dSh(h′′))h(h′)+dSh(h′′′),

where the differentials matrices, there are used in the derivatives above are (to simplify
we skip the position index in the rest of this subsection),

9.1. DIFFERENTIATION 173

Figure 9.3: On top, two views of a curve on a torus are displayed along with the torus
itself. On the lower part there are three different views of the same curve. But now the
first derivative is also shown in red, the second derivative is shown in green and the third
derivative is shown in blue.

d(dS(h′)) = d
(
[Su , Sv] h′

)
=
[(
[Su , Sv] h′

)
u ,
(
[Su , Sv] h′

)
v

]
=
[
[Suu , Svu] h′ , [Suv , Svv] h′

]
,

and

d(d(dS(h′))(h′)) = d
([
[Suu , Svu]h′ , [Suv , Svv]h′

]
h′
)

=
[([

[Suu , Svu]h′ , [Suv , Svv]h′
]

h′
)

u ,
([
[Suu , Svu]h′ , [Suv , Svv]h′

]
h′
)

v

]
=
[[
[Suuu , Svuu]h′ , [Suvu , Svvu]h′

]
h′ ,

[
[Suuv , Svuv]h′ , [Suvv Svvv]h′

]
h′
]
.

In Figure 9.3 is a first degree Bézier curve, a straight line, expression (4.29), in the pa-
rameter plane of a torus, expression (9.3), mapped into R3 by expression (9.6). On top
in Figure 9.3 is two different views of the curve together with the torus shown, on the
lower part is there three different views of the curve and its first derivative (red), second
derivative (blue) and third derivative (green) given in expression (9.7).

Another example of “curves” on a surface is a vector valued function describing the direc-
tional derivatives along a curve, not in the curve direction, but perpendicular to the curve
direction. In this case we need two vector valued functions in the parameter plane, one
vector valued function describing the position in the parameter plane depending on the pa-
rameter, another vector valued function describing the vector in R2 to find the directional
derivatives on the surface. Vi therefore must have the two vector valued functions,

h(t) =
n1

∑
i=1

cibi(t), and r(t) =
n2

∑
i=1

dibi(t), (9.8)

174 CHAPTER 9. PARAMETRIC SURFACES

both for t ∈ I ⊂ R. The map from parameter space of the surface to 3D-space is then

c̃(t) = dSh(t) (r(t)) . (9.9)

The derivatives are,

c̃′(t) = d(dS(r))(h′)+dS(r′), (9.10)
c̃′′(t) = d(d(dS(r))(h′))(h′)+d(dS(h′))(r′)+d(dS(r′))(h′)+dS(r′′),

where the differentials matrices are,

d(dS(r)) = d ([Su , Sv] r)
= [([Su , Sv] r)u , ([Su , Sv] r)v]

= [[Suu , Svu] r , [Suv , Svv] r] ,

and

d(d(dS(r))(h′)) = d
(
[[Suu , Svu]r , [Suv , Svv]r] h′

)
=
[(
[[Suu , Svu]r , [Suv , Svv]r] h′

)
u ,
(
[[Suu , Svu]r , [Suv , Svv]r] h′

)
v

]
=
[[
[Suuu , Svuu]r′ , [Suvu , Svvu]r

]
h′ , [[Suuv , Svuv]r , [Suvv Svvv]r] h′

]
.

An example of this type of vector valued function, where the expressions (9.8), (9.9) and
(9.10) are used is given in section 9.3.

9.1.3 The tangent plane Tq(S)

Consider any curve in a surface passing a point q = S(p) on the surface. The derivatives
of these curves at the common point q is, from (9.7),

c′ = dSp(h′) = [Su , Sv]

(
h′u
h′v

)
= h′u Su +h′v Sv.

We can see that the first derivative, the tangent vector, of every curve on the surface
passing q can be described as a linear combination of the two vectors Su and Sv. This
shows that they all lays in a plane spanned by Su and Sv. This plane is therefore a tangent
plane of surface S(U) at the point q, and we denote it

Tq(S) = dSq(R2).

It is obvious that the tangent plane still is the same even if we change parametrization. It
is an intrinsic property independent of the parametrization.

In R3 we denote the unit vector orthogonal to the tangent plane to be the normal of the
surface. The notation and orientation is in the following way. We first define the normal
with a small letter,

nq = Su∧Sv(p), (9.11)

where ∧ denote the 3D vector product. We then define the unit normal to be denoted

Nq =
nq

|nq|
. (9.12)

The unit normal is also obvious independent of the parametrization and thus an intrinsic
property.

9.1. DIFFERENTIATION 175

9.1.4 First fundamental form

Here we shall study geometric structures carried by the surface and that is connected to
the tangent plane. The first fundamental form is the inner product on the tangent plane of
a surface embedded in a 3D Euclidean space, ie it is the inner product of tangent vectors.
It permits the calculation of curvature and metric properties of a surface such as length
and area in a manner consistent with the ambient space. The first fundamental form is
denoted by the Roman numeral I,

Iq(r,s) = 〈r,s〉.

Let S(p), p = (u,v) ∈ R2 be a parametrization of a surface. Then the inner product of
two tangent vectors r = dSp(r̂) and s = dSp(ŝ), r̂ = (a,b) and ŝ = (c,d), is

Iq(r,s) = 〈dS(r̂),dS(ŝ)〉S(p)

= 〈aSu +bSv,cSu +dSv〉
= ac〈Su,Su〉+(ad +bc)〈Su,Sv〉+bd〈Sv,Sv〉
= ac E +(ad +bc) F +bd G,

where E, F and G are the coefficients of the first fundamental form, and gives us -

The first fundamental form
The coefficients of the first fundamental form are

E = 〈Su,Su〉
F = 〈Su,Sv〉
G = 〈Sv,Sv〉

(9.13)

The first fundamental form, represented as a symmetric matrix.

Iq(r,s) = r̂T
(

E F
F G

)
ŝ.

where r, s ∈ Tq(S), the tangent plane of S in the point q = S(p), and r̂, ŝ ∈ R2,
connected to the point p in the parameter plane.
If the vectors r and s are the same vector the first fundamental form becomes

Iq(µ) = µ̂
T
(

E F
F G

)
µ̂.

where µ = dSp(µ̂), µ̂ ∈ R2.

The first fundamental form completely describes the metric properties of a surface. Thus,
it enables one to calculate the lengths of curves on the surface and the areas of regions on
the surface. In the following, the line element and the area element will be developed and
shown, and afterwards an example of the use of each of them will be shown .

176 CHAPTER 9. PARAMETRIC SURFACES

The line element ds may be expressed in terms of the coefficients of the first fundamental
form as

ds2 = Iq (dŝ)

where dŝ =
(

du
dv

)
, the elements in R2. Computing this gives

ds2 = (du , dv)
(

E F
F G

)(
du
dv

)
= E du2 +2F dudv+G dv2. (9.14)

The classical area element given by dA = |Su∧ Sv| can be expressed in terms of the first
fundamental form with the assistance of Lagrange’s identity,

dA = |Su∧Sv| dudv =
√

EG−F2 dudv. (9.15)

X First example is computation of length of curve on surfaces, using (9.14),

l(c) =
b∫

a

ds
dt

dt =
b∫

a

√
E u′2 +2F u′v′+G v′2 dt

Using the curve on a torus, equation (9.3), shown in Figure 9.3, gives,

Su =

 −sinucosv
−sinusinv

cosu

 and Sv =

 −(cosu+3)sinv
(cosu+3)cosv

0

 ,

and than,
E = 1, F = 0, G = (cosu+3)2

The curve in Figure 9.3 defined in the parameter plane of the torus is

h(t) =
(

2.3
0.3

)
+

(
3.7
5.7

)
t, and the derivative h′(t) =

(
u′

v′

)
=

(
3.7
5.7

)
,

which gives

l(c) =
1∫

0

√
13.69+32.49(cos(2.3+3.7t)+3)2 dt ≈ 16,

where the approximated solution is computed using composite Simpson’s rule.

X The second example is computing the area of the torus defined in (9.3) using (9.15)

A(S) =
∫
U

dA

=

2π∫
0

2π∫
0

(cosu+3) dudv

= 2π

2π∫
0

(cosu+3) du

= 12π
2

9.1. DIFFERENTIATION 177

9.1.5 Second fundamental form
The second fundamental form (or shape tensor) is a quadratic form on the tangent plane
of a smooth surface in the three dimensional Euclidean space, usually denoted by II (read
”two”). Together with the first fundamental form, it serves to define extrinsic invariants
of the surface, its principal curvatures.

Recall the normal Nq. There is a close relation between a unit sphere and a unit normal.
There is a map

N : S→ S2,

where S2 is the unit 2D sphere. This is called the Gauss map of S. It follows that the
differential of the Gauss map N is

dNq : Tq(S)→ TNq(S
2).

But since Tq(S) and TNq(S
2) are parallel planes, it follows that

dNq : Tq(S)→ Tq(S).

The linear operator dNq is clearly related to changes of directional derivatives because
the normal and all tangents are orthogonal. It follows that |dNq(r)| is the curvature in
direction of a unit vector r in the tangent plane.

Second fundamental form is a quadratic form on the tangent plane. It is also an inner
product. Given a vector µ = dSp(µ̂) ∈ Tp(S), where µ̂ = (a,b). The second fundamental
form is

IIp(µ) =−〈dNq(µ),µ〉
=−〈Nua+Nvb,Sua+Svb〉
=−a2〈Nu,Su〉−ab(〈Nu,Sv〉−〈Nv,Su〉)−b2〈Nv,Sv〉
= a2 e+2ab f +b2 g,

where e, f and g are the coefficients of the second fundamental form. From the definition
of the normal it follows that 〈N,Su〉= 〈N,Sv〉= 0. The derivatives both with respect to u
and v are therefore also zero. It then follows that 〈N,Su〉u = 〈N,Suu〉+ 〈Nu,Su〉 = 0, and
so on. This gives us -

Second fundamental form
The coefficients of the second fundamental form are

e = 〈N,Suu〉=−〈Nu,Su〉,
f = 〈N,Suv〉=−〈Nu,Sv〉=−〈Nv,Su〉,
g = 〈N,Svv〉=−〈Nv,Sv〉.

(9.16)

The second fundamental form, represented as a symmetric matrix is

IIp(µ) = µ
T
(

e f
f g

)
µ.

where µ ∈ Tq(S), i.e is in the the tangent plane of S in the point q = S(p).

178 CHAPTER 9. PARAMETRIC SURFACES

The following definition is related to curvature:

• The Gaussian curvature K = det(dNq) of S, ie K = det(II)
det(I) .

• The maximum normal curvature k1 and the minimum normal curvature k2 are called
the principal curvatures of S at the point q. It follows that dNq(e1) = k1e1 and
dNq(e2) = k2e2. e1 and e2 are orthogonal to each other, they are called principal
directions and are eigenvectors to dNq. k1 and k2 are thus eigenvalues of dNq.

• The mean curvature of S at the point q is H = k1+k2
2 .

• It follows that the Gaussian curvature K = k1k2.

By computations (see [49], page 154-156) the following formulas follows:

K =
eg− f 2

EG−F2

H =
1
2

eG−2 f F +gE
EG−F2

k = H±
√

H2−K

dN =
−1

EG−F2

(
e f
f g

)(
G −F
−F E

)
=

−1
EG−F2

(
f F− eG eF− f E
gF− f G f F−gE

)
.

9.2 Surface of revolution
This includes most of the classical surfaces as cone, cylinder, sphere and torus. The basic
construction is:

- We start with a curve c(u) in R2,

c(u) =
(

cx(u)
cy(u)

) {
u ∈ [s,e], if open,
u ∈ [s,e), if closed. (9.17)

- Then we decide the axis that the curve should rotate around. If we choose the z-axis we
get

S(u,v) =

 cx(u)cosv
cx(u)sinv

cy(u)

 (9.18)

- Finally we choose the domain. In u-direction we must use an interval in the domain
of the curve c(u), but in v-direction it has to be [a,b] if 0 < b− a < 2π (not complete
rotation) or [a,b) if b−a = 2π (complete rotation).

We have already seen two surfaces of revolution, a cylinder, equation (9.2), and a torus,
equation (9.3. The curves (9.17) for the cylinder ĉ(u) and the torus c̄(u) are

ĉ(u) =
(

1
u

)
u ∈ [0,5] and c̄(u) =

(
cosu
sinu

)
+

(
3
0

)
u ∈ [0,2π).

Both fits their respective formulas (9.2) and (9.3) when replacing cx and cy in (9.18).

9.3. SURFACE BY SWEEPING 179

0
0

1

1

2

x

y

Figure 9.4: An example of a surface of revolution, The curve on right hand side is
rotated 360◦ around it’s y-axis to get the surface shown on left hand side.

Another example is shown in figure 9.4. In the figure is the curve c(u) shown on right
hand side. The curve is a second degree Bézier curve and we can see the control polygon
and thus the coefficients (control points) in the figure. It follows that the curve is

c(u) =
(

1
0

)
(1−u)2 +

(
0
1

)
2u(1−u)+

(
1
2

)
u2, u ∈ [0,1],

and the surface

S(u,v) =

 (1−2u+2u2)cosv
(1−2u+2u2)sinv

2u

 u ∈ [0,1], v ∈ [0,2π).

9.3 Surface by sweeping
Imagine two curves, and that one of the curves, g - called a cross section or profile curve,
is sweeping along the other curve, h - called a spine curve, ie

s(u,v) = h(v)+A(v)(g(u)−h(v0)) , (9.19)

where A(v) is an orthonormal 3×3 matrix,

A(v) = [t(v) f2(v) f3(v)] , (9.20)

where t(v) is the unit tangent vector to the spine curve h,

t(v) =
h′(v)
|h′(v)|

, (9.21)

and f2(v) and f3(v) are unit vectors normal to each other and to t(v).

180 CHAPTER 9. PARAMETRIC SURFACES

The matrix A(v) is a rotation matrix describing how to rotate the profile curve when we
move along the spine curve. We want the profile curve to keep the orientation according
to the spine curve. We therefor need the first column vector to be the tangent vector of the
spine curve. There are however several choices of rotation around the tangent vector, and
we shall look at two different choices.

Frenet frame (also called TNB frame, see subsection 4.1.1) is one choice. Here we denote
the column of the matrix by

A(v) = [T N B] . (9.22)

where

T = t(v) =
h′

|h′|
and B = T ∧ N =

h′∧ h′′

|h′∧ h′′|
and N =

T ′

|T ′|
= B∧T.

The partial derivatives of a surface by sweeping are

Su = A(v)g′(u) and Sv = h′(v)+A′(v)(g(u)−h(v0)). (9.23)

To compute A′(v) using Frenet frame, is using the Frenet-Serret formulas,

d
dv

[T N B] = |h′| [T N B]

 0 −κ 0
κ 0 −τ

0 τ 0

= |h′| [κN τB−κT − τN] .

where κ is the curvature of the spine curve h, and τ is the torsion.

The formulas for computing the curvature and the torsion are

κ =
|h′∧ h′′|
|h′|3

, τ =
〈(h′∧h′′) ,h′′′〉
|h′∧h′′|2

.

Proofs of all formulas connected to Frenet frames can be found from page 130 in [80].

There is a problem connected to the use of Frenet frame. If h′′ is zero or parallel to h′ at a
point on the spine curve h, then we do not have an orhonormal matrix at that point and we
also might get a jump in the rotation over the point. The surface might even look strange
if h′′ is close to zero or to be parallel to h′.

It is not easy to avoid singularities, but it is possible to make the rotation smoother. An-
other choice is therefor using rotation minimizing frames, RMF, developed and discussed
in [97], [83], [119] and [158].

In relation to the Frenet frame (9.22), the RMF (9.20) can be represented as

Ã(v) = A(v) R(v). (9.24)

where A(v) is defined in(9.22) and the orthonormal matrix

R(v) =

 1 0 0
0 cosω −sinω

0 sinω cosω

 . (9.25)

9.3. SURFACE BY SWEEPING 181

Figure 9.5: On left hand side is there two different views of a surface by sweeping
using TNB-frame. On right hand side is there two views of a surface by sweeping using
RMF-frame. The same profile and spine curves are used for both surfaces.

with a rotation angle ω = ω(v) specifying the rotation around the T -axis, i.e. the differ-
ence between TNB and RMF. The angle ω can be computed from the integral formula

ω(v) = ω0−
∫ v

v0

τ(t)|h′(t)|dt, (9.26)

with an integration constant ω0, giving an initial rotation.

To compute the derivative, Ã′(v), we get

Ã′(v) = A′(v)R(v)+A(v)R′(v). (9.27)

where

R′(v) =

 0 0 0
0 −ω ′ sinω −ω ′ cosω

0 ω ′ cosω −ω ′ sinω

 . (9.28)

and
ω
′(v) = τ(v)|h′(v)|. (9.29)

In figure 9.5 is one profile curve, a curve along one edge of the surfaces, and one spine
curve, a curve from one edge to the opposite edge in the middle of the surfaces, marked
with red. Two different surfaces are made by the same profile and spine curve, one on
left hand side and one on right hand side. The surface on left hand side is made using
a TNB-frame (Frenet frame) along the spine curve, and the surface on right hand side is
made by using a RMF frame (rotation minimizing frame) along the spine curve. In this
case is ω0 = 0 chosen, see (9.26). Both surfaces are shown in two different views to give
a better impression of them. The surface on right hand side is obvious much smoother
than the other one.

182 CHAPTER 9. PARAMETRIC SURFACES

Figure 9.6: Two views of a surfaces made by blending 4 2nd degree Bézier curves plotted
in green, and where the blending functions are the 3rd degree Bernstein polynomials.

9.4 Surfaces from blending curves
Recall the Curve constructions, Hermite, Bézier, B-splines etc. All these constructions
are based on blending points or points and vectors by using different types of blending
functions. It is possible to make a surface in the same way by just replacing the points
(and vectors) by curves.

The following general construction can be used for surfaces, similar to the general curve
construction in (4.11),

S(u,v) =
n

∑
i=1

bi(u) ci(v). (9.30)

Here all curves must have a common domain,

ci(v) : I ⊂ R2→ R3, i = 1,2, ...,n,

and the set of basis functions bi(u), i = 1,2, ...,n, must be linearly independent of each
other and span an n-dimensional function space. An example of a surface made from
blending curves is given in Figure 9.6. Note that there are few limits for which blending
functions to be use, for example Lagrange, Bernstein, Hermite, B-splines. The choice
will depend on which interpolation / approximation properties you want to use in the
modeling.

The differentiation is straight forward, and the partial derivatives are

Su =
n

∑
i=1

b′i(u) ci(v), Sv =
n

∑
i=1

bi(u) c′i(v), Suv =
n

∑
i=1

b′i(u) c′i(v).

Alternatively we can swap the parameters,

S̄(u,v) =
n

∑
i=1

bi(v)ci(u). (9.31)

In the rest of the chapter will a bar over the map of a surface based on curve construction
denote a swap of the parameters between the curves and the basis functions.

9.5. TENSOR PRODUCT SURFACES 183

9.5 Tensor product surfaces
The name tensor product refers to a product of two vector spaces, in this case finite di-
mensional function spaces.

Recall from Section 4.2 how a function space is spanned by a set of basis functions. In
Section 4.2 the initial example was Pd(I), the space of polynomial functions of degree
d on the domain I ⊂ R. In the following, the tensor product of two polynomial-based
function rooms is the theme. From section 4.2 we know that Pd(I) for a given d and I
can be expressed by different set of basis functions, ie

- Monomial basis functions {t i}d
i=0, where d is finite

- Hermite basis functions {Hi}d
i=0, especially if d = 3 or d = 5, see Section 4.3

- Lagrange interpolation functions {Ld,i}d
i=0, where d is finite, see Section 5.3

- Bernstein polynomials {bi,d}d
i=0, where d is finite, see Section 4.4.1

For the Hermite basis functions and set of Bernstein polynomials, the domain I = [0,1].

A tensor product is actually an outer product between two vectors. As an example, given
two vectors of monomial basis functions, one 2nd-degree, m(u) = (1,u,u2), and one 3rd-
degree, m(v) = (1,v,v2,v3) Than the tensor product will be a matrix of basis functions,

M(u,v) = m(u)T (m(v) =

 1
u
u2

(1 v v2 v3)=
 1 v v2 v3

u uv uv2 uv3

u2 u2v u2v2 u2v3

 .
To each of these 12 basis functions is a coefficient awarded. In order to get a parametric
surface, one can do it in the following way,

S(u,v) =
(
1 u u2) a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3




1
v
v2

v3


A surface will typically be embedded in R3, where the coefficients are elements of R3, ie
points or vectors. A general formula for a tensor product surface based on polynomials is

S(u,v) =
du

∑
i=0

dv

∑
j=0

ai, j b j(v) bi(u), u ∈ Iu, v ∈ Iv, (9.32)

where du is the polynomial degree and Iu is the parameter domain in u-direction, dv is the
polynomial degree and Iv is the parameter domain in v-direction. For implementation, the
expression can be divided into two curve like expressions (see 9.30),

S(u,v) =
du

∑
i=0

ci(v)Bi(u), where ci(v) =
dv

∑
j=0

ai, jB j(v), for i = 0,1, ...,dv. (9.33)

This shows that this is just a “surface from blending curves” (from Section 9.4), and that
all algorithms from curves can thus be used for tensor product surfaces.

184 CHAPTER 9. PARAMETRIC SURFACES

S (0,0)u

S (0,0)v

S (0,0)uv

S(0,0) S(1,0)

S (1,0)v

S (1,0)uv

S (1,0)u

S(0,1) S (0,1)u

S (0,1)uv

S (0,1)v

S(1,1)

S (1,1)u

S (1,1)v

S (1,1)uv

Figure 9.7: A 3rd-degree tensor product Hermite surface S(u,v) is shown. At each
corners is the position S and the partial derivatives Su and Sv and the cross derivative Suv
plotted. These 4 points and 12 vectors are the content of the 4×4 - matrix in the formula.

9.5.1 Tensor product Hermite surfaces
In Section 4.3, the basis functions for 3rd-degree Hermite interpolation are shown in
(4.17), ie

H(t) =


H1(t)
H2(t)
H3(t)
H4(t)

=


1−3t2 +2t3

3t2−2t3

t−2t2 + t3

−t2 + t3

 .

It follows that according to (9.32), a tensor product Hermite surface will be as follows:

s(u,v) = H(u)T M H(v) =
4

∑
i=1

4

∑
j=1

Mi, j H j(v) Hi(u), u ∈ [0,1], v ∈ [0,1],

which expanded gives,

s(u,v)= (H1(u) H2(u) H3(u) H4(u))


s(0,0) s(0,1) sv(0,0) sv(0,1)
s(1,0) s(1,1) sv(1,0) sv(1,1)
su(0,0) su(0,1) suv(0,0) suv(0,1)
su(1,0) su(1,1) suv(1,0) suv(1,1)




H1(v)
H2(v)
H3(v)
H4(v)

.
The 4×4 matrix M is the data describing the shape of the surface. It can be divided into
four 2× 2 sub-matrices. The upper left sub-matrix consist of 4 points that describe the
location of the 4 corners. The lower left sub-matrix consists of the partial derivatives in the
u-direction in the 4 corners. The upper right sub-matrix consist of the partial derivatives
in the v-direction in the 4 corners and the lower left sub-matrix consist of the cross-
derivatives in in the 4 corners.

Figure 9.7 shows an example of a tensor product Hermite surface. It is a copy of a part
of a torus, see (9.3). The parameter interval on the torus is [[0.4,0.9]× [0.4,1.6]] and
the 4 partial derivatives su from the torus are scaled with 0.5, the 4 partial derivatives sv
are scaled with 1.2 and the 4 cross derivatives suv are scaled with 0.5 ∗ 1.2 = 0.6. All
derivatives (the scaled ones) are visualized as red arrows in Figure 9.7.

9.5. TENSOR PRODUCT SURFACES 185

Figure 9.8: We see two Bézier surfaces including their control points and control poly-
gons. The surface on the left is of degree 2 in both directions, the surface on the right is
of degree 5 in one direction and degree 3 in the other direction.

9.5.2 Tensor product Bézier surfaces
Recall Bézier curves from Section 4.4. Given a degree d and a control polygon consisting
of d+1 control points. If we then replace the control points with curves, ie Bézier curves,
we get a tensor product Bézier surface,

s(u,v) =
du

∑
i=0

dv

∑
j=0

pi, j b j,dv(v) bi,du(u), u, v ∈ [0,1], (9.34)

The polynomial function spaces in the Bézier case are of degree du in the u-parameter
direction and of degree dv in the v-parameter direction. The two functions spaces are are
spanned by the Bernstein polynomials bi,du(u), i = 0,1, . . . ,du and by the Bernstein poly-
nomials b j,dv(v), j = 0,1, . . . ,dv. The control points pi, j, i = 0,1, . . . ,du, j = 0,1, . . . ,dv
define a control net that in a way outlines the surface.

If we use the 2nd degree example shown on the left side in Figure 9.8, and look at the
matrix formulation of (9.34), we get,

s(u,v) = (b0,2(u) b1,2(u) b2,2(u))

C0,0 C0,1 C0,2
C1,0 C1,1 C1,2
C2,0 C2,1 C2,2

b0,2(v)
b1,2(v)
b2,2(v)

.
Recall the Bernstein/Hermite matrix from section 4.4.3, as well as Algorithm 2 to compute
it. By using this matrix, the 2nd degree example from Figure 9.8, and thus the expression
above, can be expanded tos su suu

sv suv suuv
svv suvv suuvv

=

(1−u)2 2u(1−u) u2

2u−2 2−4u 2u
2 −4 2

C0,0 C0,1 C0,2
C1,0 C1,1 C1,2
C2,0 C2,1 C2,2

(1− v)2 2v−2 2
2v(1− v) 2−4v −4
v2 2v 2


In Figure 9.8 is there two examples of tensor product Bézier surfaces. To the left is a
2nd degree Bézier surface including its 9 control points. To the right is a 5th×3rd-degree
Bézier surface including its 24 control points plotted.

186 CHAPTER 9. PARAMETRIC SURFACES

Figure 9.9: We see 4 tensor product B-spline surfaces including their control points and
control polygons. The control points and polynomial degree are the same for all four. The
only difference is that the upper left surface is open/clamped in both directions, the upper
right is closed in one direction, the lower left is closed in the other direction and the lower
right is closed in both directions.

9.5.3 Tensor product B-spline surfaces
Recall B-spline curves from Chapter 6, Section 6.2. The definition includes a knot vector
τ = {t0, t1, . . . , tn+d}, a degree d, and a set of n control points c0,c1, . . . ,cn−1. The general
formula, (6.12), is similar to the formula of Bézier curves.

If we, as in the Bézier case, replace the control points, but now with B-spline curves
defined over the same spline space (ie common knot vector and polynomial degree), then
we get a tensor product B-spline surface,

s(u,v) =
nu−1

∑
i=0

nv−1

∑
j=0

ci, j bdv, j(v) bdu,i(u), (9.35)

The parametric domain depends on the following (illustrated in Figure 9.9):

Open - u u ∈ [udu,unu] Open - v v ∈ [vdv,vnv] Figure 9.9 - upper left
Open - u u ∈ [udu,unu] Closed - v v ∈ [vdv,vnv+dv) Figure 9.9 - upper right
Closed - u u ∈ [udu,unu+du) Open - v v ∈ [vdv,vnv] Figure 9.9 - lower left
Closed - u u ∈ [udu,unu+du) Closed - v v ∈ [vdv,vnv+dv) Figure 9.9 - lower right

9.5. TENSOR PRODUCT SURFACES 187

Figure 9.10: We see two different views of the surface from Figure 9.9 that is closed in
both directions. Here the number of sample points is smaller and the unit normals Nu,v
at each sample point are also shown. On the left side of the figure there is a dashed blue
ellipse, which marks that there are two normals at the same point in all the points along
a given constant v-parameter value, v = 2.

The surfaces in Figure 9.9 are of 2nddegree in both directions. For open surface, the knot
vectors are u = {0,0,0,1,2,2,2}, v = {0,0,0,1,2,2,3,4,4,4} and domain [0,2]× [0,4].
For closed surfaces are u = {−2,−1,0,1,2,3,4}, v = {−2,−1,0,1,2,2,3,4,5,6} and
domain [0,4)× [0,6). The control points ci, j, i = 0,1,2,3, j = 0,1, . . . ,6 define a control
net sketching the surface better than a Bézier surface. In Figure 9.9, there are 4×7 = 28
control points, which can be seen as copper colored balls connected with green lines.

To implement closed B-spline surfaces, it is best to use a modified version of Algorithm
4 which we find in Section 6.2.9, where we reduce the number of derivatives as needed.
Then, for practical reasons, it will be an advantage to make extended knot vectors, where
we add d more knots at the end of the knot vectors, where the distance between them
reflect the distance between the knots from knot td to knot td+d . In Figure 9.9 and 9.10,
this means u = {−2,−1,0,1,2,3,4,5,6} and v = {−2,−1,0,1,2,2,3,4,5,6,7,8}.

Note that the knot vector v from the example in Figure 9.9 has two equal knots in the
interior, v4 = v5 = 2. Since the polynomial degree is 2 in the v-direction, the continuity is
reduced by 1 over the parameter value v = 2, cf. Definition 6.3, property P3 and point 5
in the list of nice properties in Section 6.2.2. A 2nd-degree B-spline are C1-smooth over a
single knot-value. So over 2 equal knots the surface will have a kink. This is what Figure
9.10 shows. The lower right surface from Figure 9.9 (closed in both direction), is shown
in Figure 9.10 also, but now the unit normal at each sample points is also plotted. In the
figure is there a dashed blue ellipse which marks that we can see two, not equal, normals
at the same point for all sample points along the constant parameter value v = 2. It is also
possible to see in the figures that there is a king on the surface at this curve, s(u,2).

On matrix notation is the computation for tensor product B-spline surfaces as follows,

s(u,v) = Bd,u(u, i) C Bd,v(v, j)T , when ui ≤ u < ui+1 and vi ≤ v < vi+1,

which is the B-spline version of the last expression in section 9.5.2. The B-spline-Hermite
matrices B in both u- and v-direction can be computed using Algorithm 4 on page 97.

188 CHAPTER 9. PARAMETRIC SURFACES

9.6 Boolean sum surface
Boolean sum surface is based on equating a surfaces to a Boolean sum set. If A(F) and
B(F) are two set operators acting on F , then the Boolean sum (A⊕B)(F) is defined as the
union of the two sets, which contains the intersection set, A(B(F)) = B(A(F)) = AB(F),
only once. Hence

(A⊕B)(F) = A(F)+B(F)−AB(F).

Imagine that the boundary of a surface, represented by 4 connected curves, is know. To
make a surface with this boundary, then Coons patch - bilinear blends can be used.

When modeling shapes, we often want smooth surfaces. If several surfaces are put to-
gether, we want, not only the surfaces to be connected, but that the derivatives across an
edge are the same on two adjacent surfaces. Coons Patch - bicubic blends, is a solution.

Another possibilities is that a net of curves describing a surface is known. The curves in
one direction intersect all curves in the other direction. A surface made by these curves is
called a Gordon surface (see [79]).

The construction is the same for these three types of blending and can be adapted to any
other type of boolean sum surfaces. The fundamental construction is:

- First a surface from blending curves is made. The curves are oriented in the first param-
eter direction. This surface is S1(u,v) and the set of basis functions is {bi}.

- Another surface from blending curves is made. The curves are oriented in the second
parameter direction. This surface is S̄2(u,v) and the set of basis functions is {b̄i}.

- Finally a tensor product surface is made, where {b̄i} and {bi} are the basis functions.
The coefficients depend of the type of basis functions. That might be values and deriva-
tives at corner points, or a point “net”. This surface is S3(u,v).

- A Boolean sum surface is defined as,

S(u,v) = S1(u,v)+ S̄2(u,v)−S3(u,v). (9.36)

9.6.1 Coons patch, bilinear blending
Steven Anson Coons 1 introduced the Coons patch in 1964, [26]. The Coons patch ap-
proach is based on the premise that a patch can be described in terms of four distinct
boundary curves. A simple approach is the bilinearly blended Coons patch. It is based on
four boundary curves, i.e. two sets. The two sets are (see also Figure 9.11)

the u-set: g0(u) and g1(u), u ∈ [0,1], the v-set: c0(v) and c1(v), v ∈ [0,1].

The curves must be connected, and it is therefore an assumption that

c0(0) = g0(0), c0(1) = g1(0), c1(0) = g0(1), c1(1) = g1(1).

1Steven Anson Coons (1900 – 1979) was professor at the Massachusetts Institute of Technology in
mechanical engineering. During world war II, he worked with aircraft surfaces, developing the mathematics
for generalized ”surface patches”. Later(1960is) he published works on what today is known as Coons
patch.

9.6. BOOLEAN SUM SURFACE 189

c (v)1
u

v

S1

S3 S

S2

c (v)0

g (u)1

g (u)0

c (0)0

c (1)1

c (0)1

c (1)1 c (v)1

c (v)0

g (u)0

g (u)1

Figure 9.11: Example of Coons patch. The surface S is a Boolean sum of the three
surfaces S1, S̄2 and S3, i.e. S = S1 + S̄2−S3.

We first makes three surfaces by linear interpolation in u direction, S1, in v direction, S̄2
and finally (tensor product) bilinear interpolation that interpolates the corner points, S3, ie

S1(u,v) =
(

c0(v) c1(v)
)(1−u

u

)
blending curves,

S̄2(u,v) =
(

1− v v
)(g0(u)

g1(u)

)
turned blending curves,

S3(u,v) =
(

1− v v
)(c0(0) c1(0)

c0(1) c1(1)

)(
1−u

u

)
tensor product.

(9.37)

To make the final surface (S) we just use the boolean sum of the three surfaces, i.e.

S(u,v) = S1(u,v)+ S̄2(u,v)−S3(u,v),

where S1, S̄2 and S3 are defined in (9.37). The process is clearly illustrated in Figure 9.11.
As a control, we calculate the edges of the resulting surface S,

S(u,0) = S1(u,0)+ S̄2(u,0)+S3(u,0)
= (1−u) c0(0)+u c1(0)+g0(u)− (1−u) c0(0)−u c1(0) = g0(u),

S(u,1) = S1(u,1)+ S̄2(u,1)+S3(u,1)
= (1−u) c0(1)+u c1(1)+g1(u)− (1−u) c0(1)−u c1(1) = g1(u),

S(0,v) = S1(0,v)+ S̄2(0,v)+S3(0,v)
= c0(v)+(1− v) g0(0)+ v g1(0)− (1− v) c0(0)− v c0(1) = c0(v),

S(1,v) = S1(1,v)+ S̄2(1,v)+S3(1,v)
= c1(v)+(1− v) g0(1)+ v g1(1)− (1− v) c1(0)− v c1(1) = c1(v),

showing that the edges are as originally provided.

190 CHAPTER 9. PARAMETRIC SURFACES

g (u)0

c (v)2

g (u)1

c (v)1

g (u)2

c (v)3

g (u)3

c (v)0

u

v

Figure 9.12: Four boundary curves c0(v), c1(v), g0(u) and g1(u), and four vector val-
ued functions c2(v), c3(v), g2(u) and g3(u), describing the derivatives orthogonal to the
boundary curves.

9.6.2 Coons patch, bicubic blending
It is also possible to construct Coons patch which give a higher degrees of control of
the boundary, i.e. which also give the derivative in v direction on the boundary where u
varies, and the derivative in u direction on the boundary where v varies. This is called
a bicubically blended Coons patch, and is constructed in the same way as the bilinearly
blended Coons patch. The difference is that we now have to use a Hermite interpolation
rule instead of linear interpolation.

We need four boundary curves, i.e. two sets, notated as

c0(v) and c1(v), v ∈ [0,1],
g0(u) and g1(u), u ∈ [0,1].

Then it is two vector valued functions that gives the derivatives in u direction along the
boundary curves in v direction, and the two vector valued functions that gives the deriva-
tives in v direction along the boundary curves in u direction,

c2(v) and c3(v), v ∈ [0,1],
g2(u) and g3(u), u ∈ [0,1].

The curves must be connected and consistent with each other, therefore it is required that

c0(0) = g0(0), c0(1) = g1(0),
c1(0) = g0(1), c1(1) = g1(1).
c′0(0) = g2(0), c′0(1) = g3(0),
c′1(0) = g2(1), c′1(1) = g3(1),
g′0(0) = c2(0), g′0(1) = c3(0),
g′1(0) = c2(1), g′1(1) = c3(1).

The connection between the curves and vector valued functions is shown in Figure 9.12.
Before we start constructing Coons patch bicubic blending, we define the vectors

H(t) = [H1(t), H2(t), H3(t), H4(t)],
c(t) = [c1(t), c2(t), c3(t), c4(t)],
g(t) = [g1(t), g2(t), g3(t), g4(t)].

9.6. BOOLEAN SUM SURFACE 191

Two surfaces made by Hermite interpolation of curves and vector valued function, one in
u direction (surface S1), one in v direction (surface S̄2), and one tensor product Hermite
surface using the position, the partial derivatives in u and v and the cross derivatives, in
all four corners (surface S3), must be made. Ie

S1(u,v) = 〈c(v), H(u)〉 blending curves,

S̄2(u,v) = 〈H(v), g(u)〉 turned blending curves,

S3(u,v) = H(v) M H(u)T tensor product,

(9.38)

where the matrix M is

M =


c0(0) c1(0) c2(0) c3(0)
c0(1) c1(1) c2(1) c3(1)
c′0(0) c′1(0) a11 a12
c′0(1) c′1(1) a21 a22

=


g0(0) g0(1) g′0(0) g′0(1)
g1(0) g1(1) g′1(0) g′1(1)
g2(0) g2(1) a11 a12
g3(0) g3(1) a21 a22

 .

The four numbers on the lower right square are the cross derivatives to S3 in the four
corners. We will later show what these four values must be if the requirements at the
edges shall be fulfilled. But the pattern also indicates what these values should be. To
make the final surface S we use the boolean sum of (9.38), i.e.

S(u,v) = S1(u,v)+ S̄2(u,v)−S3(u,v),

Recall the Hermite basis property described in (4.18),

H(0) = [1, 0, 0, 0], H(1) = [0, 1, 0, 0], H′(0) = [0, 0, 1, 0], H′(1) = [0, 0, 0, 1].

Using this when calculating the boundaries of the surface gives us

S(u,0) = S1(u,0)+ S̄2(u,0)−S3(u,0) = 〈c(0), H(u)〉+g0(u)−〈c(0), H(u)〉= g0(u),
S(u,1) = S1(u,1)+ S̄2(u,1)−S3(u,1) = 〈c(1), H(u)〉+g1(u)−〈c(1), H(u)〉= g1(u),
S(0,v) = S1(0,v)+ S̄2(0,v)−S3(0,v) = c0(v)+ 〈H(v), g(0)〉−〈H(v), g(0)〉= c0(v),
S(1,v) = S1(1,v)+ S̄2(1,v)−S3(1,v) = c1(v)+ 〈H(v), g(1)〉−〈H(v), g(1)〉= c1(v),

which shows that the edges are as expected. The derivative in the opposite direction on
the four edges must be equal to the four given vector valued functions, thus

Sv(u,0) = 〈c′(0), H(u)〉+g2(u)−〈(g2(0), g2(1), a11, a12), H(u)〉= g2(u),
which requires that a11 = c′2(0) and a12 = c′3(0). Further is

Sv(u,1) = 〈c′(1), H(u)〉+g3(u)−〈(g3(0), g3(1), a21, a22), H(u)〉= g3(u),
which requires that a21 = c′2(1) and a22 = c′3(1). Further is

Su(0,v) = c2(v)+ 〈H(v), g′(0)〉−〈H(v), (c2(0), c2(1), a11, a21)〉= c2(v),
which requires that a11 = g′2(0) and a21 = g′3(0). Further is

Su(1,v) = c3(v)+ 〈H(v), g′(1)〉−〈H(v), (c3(0), c3(1), a12, a22)〉= c3(v),
which requires that a12 = g′2(1) and a22 = g′3(1).

192 CHAPTER 9. PARAMETRIC SURFACES

u

v

c (u)0

g (v)0 g (v)1 g (v)2
g (v)3

c (u)1

c (u)3

c (u)2

Figure 9.13: A net of curves, the red in the u-direction and the blue in the v-direction.
Every red curves intersect all blue curves and vice versa. A Gordon surface will interpo-
late all of these curves.

Thus, if the final surface shall fulfill the requirements, that the four edges and the “orthog-
onal” derivatives to the four edges shall be equal the given boundary curves and vector
valued functions, the matrix M must be,

M =


c0(0) c1(0) c2(0) c3(0)
c0(1) c1(1) c2(1) c3(1)
c′0(0) c′1(0) c′2(0) c′3(0)
c′0(1) c′1(1) c′2(1) c′3(1)

=


g0(0) g0(1) g′0(0) g′0(1)
g1(0) g1(1) g′1(0) g′1(1)
g2(0) g2(1) g′2(0) g′2(1)
g3(0) g3(1) g′3(0) g′3(1)

 . (9.39)

9.6.3 Gordon surface
Gordon surfaces where developed in the late 1960s by W. Gordon, [79], who then worked
for the General Motors Research labs. He called the method for “transfinite interpolation”.

The method is basically the same as the method for Coons patch, ie a Boolean sum oper-
ation. The difference is that Hermite interpolation is replaced by ordinary interpolation,
ie that the basis functions here will be Lagrange polynomials. The input data of a Gordon
surface is a net of curves, one set of curves ci(u) in the u-parameter direction going in “the
same” direction, and another set of curves g j(v) in the v-parameter direction, not neces-
sarily orthogonal to the first set of curves, but in an “opposite” direction as can be seen in
Figure 9.13. Every curve ci(u) in the first set of curves must intersect all the curves in the
second set and vice versa, which also is clearly illustrated in Figure 9.13.

Recall the Langrange interpolation polynomials from Section 5.3, and formula (5.8),

Ld,i(t) =
d

∏
j=0, j 6=i

(t− t j)

(ti− t j)
, where i = 0,1, . . . ,d and d is the polynomial degree, and further

we denote the set of Lagrange polynomials for Ld(t) =
(
Ld,0(t) Ld,1(t) . . . Ld,d(t)

)
.

The input to an algorithm must be a set of dv + 1 curves {gi(u)}dv
i=0 in the u-parameter

direction. They must have a common parameter domain Iu, and there must be a set of

9.6. BOOLEAN SUM SURFACE 193

Figure 9.14: We see an implementation of a Gordon surface that interpolates a net of
4×4 curves drawn in blue.

du+1 parameter values ui ∈ Iu where this set of curves intersect the other set. Likewise it
must be a set of du +1 curves {ci(v)}du

i=0 in the v-parameter direction. They must have a
common parameter domain Iv, and there must be a set of dv +1 parameter values vi ∈ Iv
where this second set of curves intersect the first set. Summing up:

X First set of curves g(u) = {gi(u)}dv
i=0,

X second set of curves c(v) = {c j(v)}du
j=0,

X the constrains are gi(u j) = c j(vi), for i = 0,1, . . . ,dv and j = 0,1, . . . ,du,

X and in case of open curves, [u0,udu] = Iu, and [v0,vdv] = Iv.

The partial formulas for Gordon surfaces are

S1(u,v) = 〈c(v), Ldu(u)〉 blending curves,

S̄2(u,v) = 〈Ldv(v), g(u)〉 turned blending curves,

S3(u,v) = Ldv(v) M Ldu(u)
T tensor product,

(9.40)

where the matrix M is

M =


c0(u0) c0(u1) · · · c0(udu)

c1(u0)
. c1(udu)

...
cdv(u0) cdv(u1) · · · cdv(udu)

=


g0(v0) g1(v0) · · · gdu(v0)

g0(v1)
. gdu(v1)

...
g0(vdv) g1(vdv) · · · gdu(vdv)

 .
Finally, the total formula for Gordon surfaces is

S(u,v) = S1(u,v)+ S̄2(u,v)−S3(u,v).

In Figure 9.14 is shown a Gordon surface made by 4 curves in each parameter directions.
The construction started with 16 points in a net. 4 and 4 curves were then made by
interpolation, which were then used in the surface construction. The parameter domain is
[0,3]× [0,3]. The polynomial degree is 3 in both directions. The surface can be converted
to a tensor product Bézier surface, but then the domain must be changed to [0,1]× [0,1]
by reparametrization, see Section 4.1.2.

194 CHAPTER 9. PARAMETRIC SURFACES

A

A

B

CC

B

Figure 9.15: A torus plotted in “bronze” is approximated with 12 Coons patch bicubic
blending surfaces, in red. The edges are also drawn in black. To the left we see the
parameter plane, to show how the 12 patches are placed.

9.6.4 Example, Coons patch
Coon Patch bicubic blending is a boolean sum of three surfaces, Two surfaces made by
blending curves using Hermite interpolation of curves and vector valued functions, and
one tensor product Hermite surface.

We will now see an example of approximating a torus with 12 Coons patch bicubic blend-
ing surfaces using curves on surfaces. To the left in Figure 9.15 is the parameter domain
of a torus, Ω = [0,2π)× [0,2π). The domain is divided into 12 parts as illustrated in the
figure. Each part is a rotated square. To show that all parts are squares, parts of some
of them are apparently outside the domain, they are marked either red, blue, green or
with the letters A, B or C. All these parts are also marked inside the domain with the
corresponding color or letter.

In the parameter domain Ω ⊂ R2 we have 17 points, pi, i = 0,1, . . . ,16 which are all
corners of the squares. The point are organized regularly so that the distance between
them is 2

3π in the u-direction and π in the v-direction. There are a total of 24 edges, lines
between two points, σi(t) = (1− t)pr + t ps and where σ ′i (t) = ps− pr, ie

(
π

3
π

2

)
for the

lines that go up to the right, and
(
−π

3
π

2

)
for the lines that go up to the left. We denote the

torus for θ(p), p = (u,v). The curves (edges) in R3 are thus

ci(t) = θ ◦σi(t),

and if we denote the derivative functions “orthogonal” to the edges for

gi(t) = [θu θv]σi(t)σ
′
i (t) =

π

2
θv ◦σi(t)±

π

3
θu ◦σi(t).

we get the following surfaces by blending curves and vector valued functions

S1(u,v) = H1(u) ci(v)+H2(u) c j(v)+H3(u) gi(v)+H4(u) g j(v),

S2(u,v) = H1(v) cr(u)+H2(v) cs(u)+H3(v) gr(u)+H4(u) gs(v).

9.6. BOOLEAN SUM SURFACE 195

For the tensor product surface we need, in each corner, the position, the partial derivatives
in the two directions and the cross derivative. Let us call the to direction vectors in the
parameter plane a =

(
π

3
π

2

)
and b =

(
−π

3
π

2

)
. Then, at a point pi, we get the position,

the two partial derivatives and the cross derivative

θ(pi)

θa(pi) = [θu θv]pi
a =

π

2
θv(pi)+

π

3
θu(pi),

θb(pi) = [θu θv]pi
b =

π

2
θv(pi)−

π

3
θu(pi),

θab(pi) =
[
[θuu θuv]pi

a [θvu θvv]pi
a
]

b =
π2

4
θvv(pi)+

π2

9
θuu(pi).

Now, for the four corners of each square, we put these values into the matrix M in (9.39).

In Figure 9.15 we see, in the middle, a torus made by formula (9.3) and to the right a set
of 12 red Coons patch bicubic blending surfaces that approximates the torus. the curves
between the surfaces are also plotted, in black. Using sampling, we find that the largest
deviation from the torus is approximately 0.0003, which is very close since the tube radius
is 1.

196 CHAPTER 9. PARAMETRIC SURFACES

Chapter 10

Subdivision Surfaces

Parametric surfaces, as described in the previous chapter, are based on formulas for cal-
culating position and partial derivatives, and thus the surface normal, for given parameter
values. To render a surface, the surface must be tessellated. That is, the surface is been
divided into a collection of connected small quad or triangular patches. The vertices in
these patches are sample points, usually created by computing values and partial deriva-
tives and thus normals. In the case of tensor product B-splines, this can also be done by
using knot insertions that are sufficiently refined.

Subdivision surfaces, similar to subdivision curves described in Section 6.7, are initially
based on uniform B-splines. They where first described in 1978 by Edwin Catmull and
Jim Clark, ie Catmull-Clark subdivision surface, and by Daniel Doo and Malcom Sabin, ie
Doo-Sabin subdivision surface. The first one was based on bi-cubic uniform B-splines and
the second was based on bi-quadratic uniform B-splines. Due to the flexibility, and thus
the ability to use triangular patches, Box-splines have been widely used for schemes/al-
gorithms that have been developed later.

In the following, we will not explain the subdivision schemes, only describe them. The
same applies to analyzes of convergence and continuity. To be a valid scheme, it must
converge to a continuous surface, a tensor product B-spline surface or the like, ie Box-
splines. Typically surfaces that are C1 or C2-smooth. However, schemes for arbitrary
topology meshes are modifications of spline based schemes, and therefore there will be
vertices called extraordinary vertices1. These vertices change the regularity of a mesh.
However, it is these vertices that make subdivision surfaces so applicable. Ulrich Reif
described the behaviour near extraordinary vertices in 1995, [134]. At these points, the
continuity is typically one order lower than in the rest of the surface.

Figure 10.1 illustrates 6 different sub-division schemes with stencils. In the figure, the
blue points are the initial vertices and the red point are the vertices after one subdivision.
The red points are either new or modified old vertices. Green points are temporary points

1Extraordinary vertices can be compared to Star junction, described in section 12.6.4. Sometimes they
are called irregular or singular vertices. From Graph theory, the valence of a vertex is the number of edges
connected to the vertex. An extraordinary vertex is one that has a valence different from its neighbors.

197

198 CHAPTER 10. SUBDIVISION SURFACES

used in the calculation of the new vertices. Note the scheme for Doo-Sabin and Catmull-
Clark. Doo-Sabin is made from 2nd-degree tensor product B-spline surfaces. Figure 6.12
shows the knot insertion for 2nd-degree B-splines. Here, one control point is replaced
by two. We see the same in the Doo-Sabin scheme where a point is replaced by four
(ie. 2× 2). Catmull-Clark is made from 3rd-degree tensor product B-spline surfaces.
Figure 6.13 shows the knot insertion for 3rd-degree B-splines. Here, two control points
are replaced by three. We see the same in the Catmull-Clark subdivision scheme. Since
subdivision is based on uniform B-splines, it should be possible to evaluate accurately. Jos
Stam provided a method for accurate evaluation for Catmull-Clark subdivision surfaces
under arbitrary parameter values, [151].

The schemes can be classified in several ways. For example, they can be classified as
Primal or Dual, based on face split or vertex split. The classifications based on geometric
properties are mainly:

1. whether they are corner cutting (ie approximating) or interpolating schemes,

2. the continuity, ie C1-smooth or C2-smooth,

3. whether they mainly are based on triangles or quads.

Note the extraordinary vertices, those with valance different from most of the others, and
that converge towards a point where the smoothness is 1 order of magnitude smaller. We
do not find them in for example Doo-Sabin and Mid-Edge. In Catmull-Clark, after first
refinement, all the polygons are quads, and in Loop all the polygons are triangles. For
Dual Doo-Sabin and Mid-Edge schemes the valance are always the same, e.g. all vertices
have valance 4. Most polygons are quads, but those that are not will be of the same type in
every refinements, and will converge toward a point that has 1 order of magnitude lower
continuity, just like extraordinary vertices.

The starting point for a subdivision algorithm is a set of points connected in a network that
covers and defines an underlying surface. The data must be arranged so that the inside and
outside can be determined locally in each polygon. There are ready-made data structures
for programming subdivision, such as OpenMesh, [14], but it is also possible to use a
simple self-maid data structure. For example, arrays of three types of objects, a Vertex
(a point and a surface normal), a Face (a polygon - ie an ordered set of Vertex indices,
organized counterclockwise seen from the outside) and an edge (two Vertex indices plus
two Face indices). NB! When implementing, it is important, and also possible, to make
all parts of an algorithm so that they are of O(n). If some parts are of O(n logn) or O(n2)
the subdivision will be very slow when the number of vertices becomes large.

10.1 A selection of subdivision schemes
Figure 10.2 shows 6 subdivision surfaces, all made from a box, shown as blue lines in the
figure. For quads we see 8 vertices, 6 faces and 12 edges, and for triangles 8 vertices, 12
faces and 18 edges. Stencils of schemes of these surfaces are shown in Figure 10.1. In
the following, we will take a closer look at those schemes. Remember that schemes are
always affine combinations of points, ie weights that sums up to 1.

10.1. A SELECTION OF SUBDIVISION SCHEMES 199

v5

v0

f1 f2

f3f4

e1

e2

e3

e4

v0v4

v6 v7 v8

v1 v2 v3

v0

v1 v2

v3

v4v5

v6 e6

e1 e2

e3

e4e5

v00
v0

v1 v2

v3

v4v5

v6

f 6

f 1

f 2

f 3

f 4

f 5

v00

Catmull-Clark

Loop (Kobbelt)

Doo-Sabin

v5

v0

f1 f2

f3f4

e1

e2

e3

e4

v4

v6 v7 v8

v1 v2 v3

v10 v20

v30v40

p
3

v4

v5
v3 v6

v1 v2

v7

e0

v8

Butterfly

v5

v0

e1

e2

e3

e4

v4

v6 v7 v8

v1 v2 v3

Mid-Edge

Figure 10.1: Stencils of 6 different subdivision schemes for surfaces. Top left is Catmull-
Clark, based on cubic B-splines. To the right is butterfly, an interpolation scheme based
on triangles. In the middle are Loop and

√
3-Kobbelt, both based on triangles and box-

splines. At the bottom are Mid-Edge and Doo-Sabin, both based on 2nd-degree B-splines.

200 CHAPTER 10. SUBDIVISION SURFACES

10.1.1 Catmull-Clark

This is a Quad based scheme based on bi-cubic uniform B-spline knot insertion, first
described in [19]. For arbitrary initial meshes, this scheme generates limit surfaces that are
C2-continuous everywhere except at extraordinary vertices where they are C1-continuous.
A surface is shown at the top of Figure 10.2. At the top left of Figure 10.1 we see a stencil
of the scheme. The blue dots are the old vertices and the red are the new ones generated
around one old vertex vi. There are 3 types of new vertices, edge points, face points and
correction of the old vertices. The scheme is as follows. For each refinement step and for
all faces, edges and vertices, we create the following new vertices (points);

Face point is a point in the center of a face: fi =
1
m ∑ j v j, where m is the number of

vertices defining the face. After the first subdivision is m = 4.

Edge point is a point in the middle of an edge: ei =
1
4 (va + vb + fh + fg), where va and vb

are the old vertices defining the current edge, and fg and fh are the new face points
from the connected faces.

Vertex point is updating of an old vertex value: vi =
1
n (F +2E +(n−3)vi), where n is

the valance of the vertex, F = 1
n ∑ j f j - is the average of all connected Face Points

and E = 1
n ∑ j e j - is the average of all connected Edge Points.

When all new vertices are made, we denote the index in the vertex array of the first Face
point to be m f and of the first Edge point to be me. Then there is a simple map between
the index of a face and a Face point, and between the index of an edge and an Edge point.
Now we can make a new array of faces.

X For each old face Fi (which has n vertices the first time, 4 later),
where Fi = {v1,v2, . . . ,vn}, the Face Point is: fi = m f + i,
and the Edge Points are {ε1,ε2, . . . ,εn}= {e1 +me, e2 +me, . . . , en +me},

we make n new Faces that replace Fi, ie
Fi1 = { fi,εn,v1,ε1}, Fi2 = { fi,ε1,v2,ε2}, . . . , Fin = { fi,εn−1,vn,εn}.

In the algorithm above, we use the indices of the edges of a face, {e1, e2, . . . , en}. They
can be stored in either a separate array or in each individual face, ie a face is a set of indices
for vertices and a corresponding set of indices for edges. If there are still subdivision steps
to be performed, the array of edges must be created and the indices of the edges in the
faces must be set. As an auxiliary tool, we create an array Ψ with size equal the new
Vertex array, and where each element is a list of pairs of indices to a vertex and an edge.

X For each new face Fi = {v1,v2,v3,v4} (which always has 4 vertices),
we make 4 edges: E1 = {v4,v1, i}, E2 = {v1,v2, i}, E3 = {v2,v3, i}, E4 = {v3,v4, i}.
Then for each E j, j = 1, 2, 3, 4

If ΨE j[0] do not contain E j[1], the edge is not made already, then
ΨE j[1].insert {E j[0],s}, where s is the size of the Edge vector E,
E.push back(E j) (we put the new edge in the end of the edge vector).

If the edge is made already we get the edge index from ΨE j[0] and then update Fi.
and we update the edge with this face index i.

10.1. A SELECTION OF SUBDIVISION SCHEMES 201

Note that if the input faces have a correct orientation, then the orientation is correct after
a subdivision as well.

After computing all subdivision steps we need the surface normal at each vertex. Since
the orientation is to be found in the faces, we use them to create the surface normals.
The vertices/edges of a face is organized counter clockwise seen from outside. There are
several works on calculating surface normals, for example [73]. However, here we will
use a simple technique based on the sum of the normals of the adjacent triangular part
of the faces of a Vertex. This converges towards the correct surface normal. We use the
same technic as for the edges, ie we use an auxiliary tool, we create an array Ψ with size
equal the new Vertex array, and where each element is a list of indices to faces. To make
this array Ψ we go through all faces, and for each Face we insert its Face index in Ψ[j],
where j is the indices of all the vertices of the Face. The next step is to go through each
element of Ψ, ie

X For each element of Ψ, that is Ψi.
For each Face of Ψi, in the list of indices to vertices,

find the index (b)efore and (a)fter index i,
compute n = n+(va− vi)∧ (vb− vi), (remember ∧ is the vector product)

update vi with its unit normal n
|n| .

The surface a) in Figure 10.2 is a Catmull-Clark subdivision surface made from a cube
(plotted in blue). 5 steps are used, and we got the following number of elements,

Subdivision step 0 1 2 3 4 5 formula
Number of vertices 8 26 98 386 1538 6146 v+ e+ f
Number of edges 12 48 192 768 3072 12288 2v+ f
Number of faces 6 24 96 384 1536 6144 4 f

10.1.2 Doo-Sabin and Mid-Edge

Doo-Sabin subdivision scheme is also quad based. The scheme was launched in [55],
and is Chaikin’s corner cutting method extended from curves to surfaces, see subsection
6.7.2. It is based on the bi-quadratic uniform tensor product B-spline surface and produce
C1-smooth limit surfaces with arbitrary topology for arbitrary initial meshes2. After one
subdivision, all vertices have valence 4.

A stencil of the Doo-Sabin scheme is displayed at the bottom left of Figure 10.1. There
we see that the Face and Edge points to be made are only help points and not new ver-
tices. The new vertices are 4 points that replace each of the old vertices. Then, for each
refinement step and for all faces and edges, we create the following two arrays of help
points;

Face Point is a point in the center of a face: fi =
1
m ∑ j v j, where m is the number of

vertices defining the face. For most faces are m = 4.

2An auxiliary point can improve the shape of Doo-Sabin subdivision, see [22].

202 CHAPTER 10. SUBDIVISION SURFACES

Figure 10.2: Catmull-Clark is shown in a), Doo-Sabin in b), Mid-Edge in c), Loop in
d),
√

3-Kobbelt in e) and the interpolation scheme butterfly is shown in f) and g). We see
that Doo-Sabin and Mid-Edge gives the same surface, and so do Loop and

√
3-Kobbelt.

10.1. A SELECTION OF SUBDIVISION SCHEMES 203

Edge Point is a point in the middle of an edge: ei =
1
2 (va + vb), where va and vb are the

old vertices defining the current edge.

Furthermore, we can either use auxiliary arrays or extended data structure to connect faces
and edges to each vertex. Next step is to make a new array of vertices replacing the old
ones.

X For each old vertex vi, (which has n faces and edges the first time, 4 later)
For each face Fj connected to the vertex vi we make a new vertex v ji,

here f j is the face point, ea and eb are the connected Edge points,
v ji =

1
4

(
vi + f j + ea + eb

)
.

Finally we create a face based on the n vertices we have now created.

After this we make a face inside each old face and we make a face around each old edge.
The edges and connection to the faces and the surface normals can be made in the same
way as in the Catmull-Clark scheme.

The surface b) in Figure 10.2 is a Doo-Sabin subdivision surface made from a cube that
is plotted in blue. 5 steps are used, and we got the following number of elements,

Subdivision step 0 1 2 3 4 5 formula
Number of vertices 8 24 96 384 1536 6144 4v
Number of edges 12 48 192 768 3072 12288 8v
Number of faces 6 26 98 386 1538 6146 v+ e+ f

Note that the formula is not correct for the first step because of the vertex valance.

Mid-Edge subdivision scheme was proposed independently by Jörg Peters and Ulrich
Reif [129] and Ayman Habib and Joe Warren [85]. The former used the mid-point of
each edge to build the new mesh. The latter used a four-directional box spline to build the
scheme. This scheme generates the same surface as Doo-Sabin, but converge noticeably
slower, in fact 2 to 1 as we can see in the tables.

The scheme is quite simple, we replace the old vertices with new ones. The new ones are
the center point of each old edge. After making the new vertices we make the faces inside
each old face and around each old vertex. The edges and surface normals are made in the
same way as for Doo-Sabin scheme.

The surface c) in Figure 10.2 is a Mid-Edge subdivision surface made from a cube. 8
steps are used, and we got the following number of elements,

Subdivision step 0 1 2 3 4 5 6 7 8 formula
Number of vertices 8 12 24 48 96 192 384 768 1536 e
Number of edges 12 24 48 96 192 384 768 1536 3072 2e
Number of faces 6 14 26 50 98 194 386 770 1538 v+ f

10.1.3 Loop and
√

3

Loop subdivision scheme, based on triangles, was introduced in 1987 by Charles Loop,
[113] and [114]. He proposed a subdivision scheme based on a quartic box-splines of six

204 CHAPTER 10. SUBDIVISION SURFACES

direction vectors to provide a rule to generate C2-continuous limit surfaces everywhere
except at extraordinary vertices where they are C1. A stencil of the scheme is shown in
the middle left of Figure 10.1, and a surface generated from a “box” is shown in Figure
10.2 as surface d). The “box” is shown as triangles drawn in blue lines in Figure 10.2. The
lack of symmetry that we see in the plot is due to the triangulation of the cube. Normally
the valance should be 6 for most of the vertices, but in the example in Figure 10.1 half of
the initial vertices have valance 4 and the rest have valance 5, and they will all keep their
valance after all the subdivisions. However, all new vertices will have valance 6.

Loop scheme are quite simple, it is basically to divide each edge in two, and then split a
triangle in 4. In each refinement step, be sure that edges and faces are connect, then for all
edges and for all vertices, update the old vertices and create the new vertices as follows:

Vertex point is an update of the position of an old vertex: vi = (1−αn)vi +
αn
n ∑ j∈β v j,

where n is the valance of the vertex to update, β is the set of indices of the neigh-
boring vertices, and αn is a valance value described in (10.1). The example from
Figure 10.1 is: v00 = (1−α6) v0 +

α6
6 ∑

6
j=1 v j ≈ 0.635v0 +0.0625∑

6
j=1 v j.

Edge point is a point in the middle of an edge: ei =
1
8

(
3va +3vb + v f + vg

)
, where va

and vb are the old vertices defining the current edge, and v f and vg are the missing
vertices from the two connected faces/triangles. An example from Figure 10.1 is
e3 =

1
8 (3v0 +3v3 + v2 + v4).

All vertices are now updated or made. We denote the index in the vertex array of the first
Edge point to be me. Then there is a simple map between the index of an edge and an
Edge point. Now we update and make new faces/triangles.

X For each old Face/triangle Fi (which has 3 vertices),
where Fi = {v1,v2,v3} and
the Edge Points are {ε1,ε2,ε3}= {e1 +me, e2 +me, e3 +me},

we updating the old Face Fi, and make 3 new Faces Fi2, Fi3, Fi4, ie
Fi = {v1,ε1,ε3}, Fi2 = {ε1,v2,ε2}, Fi3 = {ε1, ε2, ε3} and Fi4 = {ε2,v3,ε3}.

Finally, edges and surface normals can be made in the same way as in Catmull-Clark.

The valance values αn for Loop subdivision used in updating old vertices are

αn =
5
8
−
(

3
8
+

1
4

cos
2π

n

)2

. (10.1)

Calculated values for some valance numbers can be seen i Table 10.1.

The surface d) in Figure 10.2 is a Loop subdivision surface made from a triangulated cube
that is plotted in blue. 5 steps are used, and we got the following number of elements,

Subdivision step 0 1 2 3 4 5 formula
Number of vertices 8 26 98 386 1538 6146 v+ e
Number of edges 18 72 288 1152 4608 18432 2e+3 f
Number of faces 12 48 192 768 3072 12288 4 f

10.1. A SELECTION OF SUBDIVISION SCHEMES 205

Valance - n = 4 5 6 7 8
Loop: αn = 0.4844 0.4205 0.375 0.3432 0.3205√

3-Kobbelt: αn = 0.4444 0.3758 0.3333 0.3059 0.2873

Table 10.1: The weighting values α4, α5, α6, α7, and α8.

If we compare this numbers with the Catmull-Clark scheme on page 201 we see that the
number of vertices are the same, the number of faces are twice as large (a quad divided
in two triangles), and the number of edges for Loop is equal the number of edges plus the
number of faces in Catmull-Clark.
√

3-Kobbelt scheme is also based on triangles - It was developed by Leif Kobbelt, [99],
and it handles arbitrary triangular meshes, it is C2 continuous everywhere except at ex-
traordinary vertices where it is C1 continuous and it offers a natural adaptive refinement
when required. And also, it is a “dual” scheme for triangle meshes and it has a slower
refinement rate than Loop, but it converges toward the same surface.

A
√

3-Kobbelt scheme is basically to make a new vertices in the center of each face/tri-
angle, update old vertices and divide the old triangles in 3 and swap all old edges, see the
stencil in the middle right of Figure 10.1. Thus we get

Vertex point is an update of the position of an old vertex: vi = (1−αn)vi +
αn
n ∑ j∈β v j,

where n is the valance of the vertex to update, β is the set of indices of the neigh-
boring vertices, and αn is a valance value described in (10.2). The example from
Figure 10.1 is: v00 = (1−α6) v0 +

α6
6 ∑

6
j=1 v j.

Face point is a point in the middle of a face: fi =
1
3 (va + vb + vc), where va, vab and vc

are the old vertices defining the current face/triangle. An example from Figure 10.1
is f3 =

1
3 (v0 + v3 + v4).

All vertices are now updated or made. We denote the index in the vertex array of the first
Face point to be m f . Then there is a simple map between the index of an face and an Face
point. Now we update and make new faces/triangles.

X For each old Edge Ei,
shared by two faces/triangles with indices fa and fb
and the indices of the Face Points become φa = fa +m f and φb = fb +m f

we make two new Faces F2i = {Ei[0], φa, φb} and F2i+1 = {Ei[1], φb, φa}

Note that it is important that the two faces of an edge are organized so that fa is on the right
side of the edge seen from the outside of the surface. Now, edges and surface normals can
be made in the same way as in Catmull-Clark.

The valance values αn for
√

3-Kobbelt subdivision used in updating old vertices are

αn =
4−2cos 2π

n
9

, (10.2)

and calculated values for some valance numbers can be seen i Table 10.1.

206 CHAPTER 10. SUBDIVISION SURFACES

The surface e) in Figure 10.2 is a
√

3-Kobbelt subdivision surface made from a triangu-
lated cube that is plotted in blue. 6 steps are used, and we got the following number of
elements,

Subdivision step 0 1 2 3 4 5 6 formula
Number of vertices 8 20 56 164 488 1460 4376 v+ f
Number of edges 18 54 162 486 1458 4374 13122 e+3 f
Number of faces 12 36 108 324 972 2916 8748 2e

10.1.4 Butterfly
Catmull-Rom subdivision splines, discussed in section 6.7.1, and generalized to “A 4-
point interpolatory subdivision scheme” in [56], interpolate all points, both starting points
and points generated by subdivision steps.

In 1990 Nira Dyn at al provided a subdivision scheme for surfaces based on triangles, [59].
The scheme is an extension of (6.29), where the tension parameter ω was introduced.
Recall that if ω = 1

16 than (6.29) is an ordinary Catmull-Rom subdivision spline. If we
use the indices of the vertices from the stencil on the upper right side in Figure 10.1, Dyn
et al started with e0 = u(v1 + v2)+ v(v3 + v4)−ω (v5 + v6 + v7 + v8) and showed that to
be C0 then 2u+2v−4ω = 1 and if u = 1

2 it is C1, and it follows that v = 2ω .

The scheme is called Butterfly because of its shape. It is based on triangles and the valance
is thus normally 6. It also work with valance 5, 7 and 8. In out example is the valance
initially 4 at some vertices. We have then defined v6 and v8 to be the same point. Then,
the scheme is as follows. For each refinement step and for all faces, edges and vertices,
we create the following new vertices (points),

Vertex point is the set of the old vertices and will remain unchanged.

Edge point is a point in the middle of an edge. Using indices from the sketch on the upper
right side in Figure 10.1: e0 =

1
2 (v1 + v2)+2ω (v3 + v4)−ω (v5 + v6 + v7 + v8).

The tension parameter ω should not be too far from 1
16 , and it is possible to have different

value on each individual vertex. All vertices are now updated or ready for reuse. We
denote the index in the vertex array of the first Edge point to be me. Then there is a
simple map between the index of an edge and an Edge point. To update and make new
faces/triangles, edges and finally normals we use the same procedure as for Loop.

Surface f) in Figure 10.2 is made using the Butterfly scheme. It is made from the triangu-
lated cube which is plotted in blue in g) in Figure 10.2. 6 steps are used, and we got the
following number of elements,

Subdivision step 0 1 2 3 4 5 6 formula
Number of vertices 8 26 98 386 1538 6146 24578 v+ e
Number of edges 18 72 288 1152 4608 18432 73728 2e+3 f
Number of faces 12 48 192 768 3072 12288 49152 4 f

10.1. A SELECTION OF SUBDIVISION SCHEMES 207

v1v0 e0

v1

vn-2 vn-1

v v0

v2

e0

vn-3

v2

v3

v4
v3v3v3

v7 v6

v5

v8 v9

Figure 10.3: Modified Butterfly scheme. To the left is a stencil of an ordinary 10 point
scheme, where both vertices of an edge has valance 6. To the right is a stencil of a scheme
where one vertex v has a valance different from 6.

The Butterfly scheme is an 8-point interpolation scheme, as we can observe in the Butter-
fly stencil in Figure 10.1. There is an extension, a 10-point scheme also called Modified
Butterfly, described in [169]. Here, vertices with valance different from 6 have a modified
scheme using only the extraordinary vertex. This scheme is illustrated on the right side in
Figure 10.3. To the left in the figure there is an ordinary 10 points scheme. It require that
both vertices of the edge have valance 6.

The Modified Butterfly slightly change the way of making new edge, which gives,

Edge point , where both vertices have valance 6:
Using index names from the stencil on the left side in Figure 10.3:
e0 = a(v0 + v1)+b(v2 + v3)+ c(v4 + v5 + v6 + v7)+d (v9 + v9)
where a = 1

2 −w, b = 1
8 +2w, c =− 1

16 −w and d = w.

Edge point , where one vertex have valance 6= 6:
Using index names from the sketch on the right side in Figure 10.3:
If the valance n = 3, e0 =

3
4v+ 5

12v0− 1
12v1− 1

12v2.
If the valance n = 4, e0 =

3
4v+ 3

8v0 +�
�Z
Z0v1− 1

8v2 +�
�Z
Z0v3.

If the valance n > 4, e0 =
3
4v+∑

n−1
j=0

1
n

(
1
4 + cos 2π j

n
1
2 + cos 4π j

n

)
v j.

Edge point , where both vertices have valance 6= 6:
Use the formula above for both v and v0, and use the middle, ie e0 =

e0(v)+e0(v0)
2 .

Note that the w used for valance 6 is not the same as the previous ω used in ordinary
Butterfly. In fact, if w = 0 we get an ordinary 8 point Butterfly scheme with ω = 1

16 .

Also note that since ∑
n−1
j=0

1
n

(
1
4 + cos 2π j

n
1
2 + cos 4π j

n

)
= 1

4 , the weights in all parts of the
Modified Butterfly scheme sums up to 1.

In Figure 10.4 there is on the left a surface made by ordinary Butterfly and on the right a
surface made by Modified Butterfly. They both started from a cube withe 8 corner points
plus one point in the middle of each plane of the cube, a total of 14 points defining 24
triangles. In the figure we see a hint of the initial triangles in blue. As we can see, the

208 CHAPTER 10. SUBDIVISION SURFACES

Figure 10.4: To the left is a surface from ordinary Butterfly and to the right is one from
Modified Butterfly. The starting point for both is 8 points that form a cube and one point
in the center of each of the 6 sides of the cube, ie a total of 14 points.

vertices from the points in the middle of the planes have valance 4. The ordinary Butterfly
do not necessarily handle valance 4 smooth as we can observe on the left in Figure 10.4.

10.1.5 Interpolatory Quad - Kobbelt
As we have seen for curves, The “4-point interpolatory subdivision scheme”, (6.29), in-
terpolates all points, both starting points and points generated by subdivision steps. If we
extend this to be used in two directions, as tensor product B-splines we get a quad-based
interpolatory subdivision scheme. This was recognized and tested by Leif Kobbelt in [98],
and he also introduced a possible solution for extraordinary vertices.

In section 9.5.3 we showed that a Tensor product surface is just a surface from blending
curves. It follows that in the case of interpolation the scheme is simply the curve scheme
in two directions. If we have regular vertices then for all edges we just make edge points
with the curve scheme (6.29). For face points it is also easy, we can make them from the
4× 4 vertices that surround the face using a tensor product (outer product) of the curve
scheme. But since we have already made the edge points, and due to the symmetry of the
tensor product, we can instead only use the curve scheme on these new edge points, and
the result will be the same no matter which direction we choose.

Thus the scheme is to make one new vertex in the “middle” of each edge, and one new
vertex in the “middle” of each face. For regular vertices, with valance 4, we get

Edge point is a point in the “middle” of an edge. If both vertices of an edge is regular,
we use the scheme (10.3), where pi and pi+1 are the vertices of the edge and pi−1
and pi+2 are the next vertices on the extension of the edge.

Face point is a point in the “middle” of a face. If all vertices of a face is regular, we use
the scheme (10.3), where pi and pi+1 are new edge points of two opposite edges of
the face, and pi−1 and pi+2 are the new edge points on the opposite edges of the

10.1. A SELECTION OF SUBDIVISION SCHEMES 209

f

a1

a2

a3

b1

b2

b3

p

c1 c2

c3

d1

d2 d3

d4

d5d6

h1 h2

h3

e1

e2

e3

g1

g2

g3

g5

g4

g6

a1

b1

b2 a3b3

a4

b4

a5

b5

d1

d2

d3
d4

d5

d6

d7

d8
d9

d10

c1

c2

c3

c4
c5

h1

h2

h3

h4h5

e1

e2 e3

e4

e5

g1
g2

g3

g4

g5

g6

pf

a2

Figure 10.5: An illustration of how to generate a face point f when the valence at the
vertex p is 3 (the figure on the left) and 5 (the figure on the right). g3,g4,e1,g6 and
g1,g2,e2,g5 are edge points, e1,e2,e3 and e4,e5 are the edge points closest to p.

opposite faces of the first two edges.

To simplify the implementation of edge and face points near extraordinary vertices, it is
useful to keep the symmetry of the face points. Therefore, to calculate an edge point when
one or both vertices of the edge are extraordinary, virtual vertices can be introduced.
Remember (6.29), the scheme can be reformulated to

p̂i = µ(pi + pi+1)−ω(pi−1 + pi+2), where µ =
1
2
+ω (10.3)

First we look at valence 3, left side of Figure 10.5. We calculate the face point f from
g3,g4,e1,g6 and set this equal to f calculated from g1,g2,e2,g5, ie

ω2c1 −ωµ d2 −ωµa2 +ω2d3
−ωµ d1 +µ2h1 +µ2b2 −ωµ h2

+µ e1
+ω2d6 −ωµ h3 −ωµb3 +ω2h2

=


ω2c1 −ωµ d1 −ωµ a1 +ω2d6
−ωµ d2 +µ2h1 +µ2b1 −ωµ h3

+µ e2
+ω2d3 −ωµ h2 −ωµ b3 +ω2h3

 .

Summing and reorganizing this we get

e1− e2 = ω(a2−a1)+µ(b1−b2)+
ω2

µ
(h3−h2). (10.4)

We now do the same for valence 5, ie the right side of Figure 10.5 we get
ω2c1 −ωµ d2 −ωµa2 +ω2d3
−ωµ d1 +µ2h1 +µ2b2 −ωµ h2

+µ e1
+ω2d10 −ωµ h5 −ωµb5 +ω2h4

=


ω2c1 −ωµ d1 −ωµ a1 +ω2d10
−ωµ d2 +µ2h1 +µ2b1 −ωµ h5

+µ e2
+ω2d3 −ωµ h2 −ωµ b3 +ω2h3

 ,

e1− e2 = ω(a2−a1)+µ(b1−b2)+ω(b5−b3)+
ω2

µ
(h3−h4). (10.5)

Note that one edge point is used to create face points in two adjacent faces. It follows
that in all faces connected to an extraordinary vertex, there is a locked vector between the

210 CHAPTER 10. SUBDIVISION SURFACES

two edge points on the adjacent edges. This means that for all extraordinary vertices with
valance n, the nearest edge points lie in the corners of an n-edged polygon. For n = 3 this
is a triangle and for n = 5 it is a pentagon, both of which can see in Figure 10.5.

The shape and orientation of the polygon is given. However, the position of the polygon is
a freedom we can use, but under the restriction that the barycenter of the edge points must
converge smoothly towards the extraordinary vertex. One way to do this is to compar with
ordinary vertices. The barycenter X for ordinary vertices, n = 4 is

X =
1
n

n

∑
i=1

ei = µ p+
1
n

(
1
2

n

∑
i=1

bi−ω

n

∑
i=1

ai

)
(10.6)

Because we, for extraordinary vertices, can calculate the distance vector between each
pair of edge points, eg (10.4) and (10.5), we can compute the barycenter only depending
on one of the edge points,

X =
1
n

n

∑
i=1

ei = e1 +
1
n

n−1

∑
i=1

(n− i)(ei+1− ei) (10.7)

We then set (10.6) equal (10.7) and reorganize it. The result is a general formula for
calculating edge points connected to one extraordinary vertex:

e1 = µ p+
1
n

(
1
2

n

∑
i=1

bi−ω

n

∑
i=1

ai +
n−1

∑
i=1

(n− i)(ei− ei+1)

)
. (10.8)

Finally we reformulate this to

e1 =−ω a1 +µ b1 +µ p−ω ν , (10.9)

where ν is a virtual vertex that can be expressed by combining (10.8) with either (10.4)
if n = 3 or (10.5) if n = 5, or a related expression if n > 5. Note that if b1 also is an
extraordinary vertex, we replace a1 with another virtual vertex.

If n = 3 we replace the vectors e1− e2 in (10.8) with (10.4), and e2− e3 with a rotated
(10.4), and get the virtual vertex

ν =
1
3

3

∑
i=1

bi +
ω

µ

(
h2−

1
3

3

∑
i=1

hi

)
. (10.10)

If n = 5 we replace the vectors e1− e2 with (10.5), and e2− e3, e3− e4 and e4− e5 with a
a 1 times, 2 times and 3 times rotated (10.5), and get the virtual vertex

ν = b3 +b4−

[
1
5

5

∑
i=1

bi +
ω

µ

(
h3−

1
5

5

∑
i=1

hi

)]
. (10.11)

In Figure 10.6 is an example of an interpolatory subdivision surface based on quads
shown. The algorithm are using formula (10.3), (10.9), (10.10) and (10.11). The left

10.1. A SELECTION OF SUBDIVISION SCHEMES 211

Figure 10.6: An interpolating Quad subdivision surface. To the right, the initial points
and quads are shown in blue. There are 8 corner points with valance 3 and 8 inside
corners with valance 5. The remaining 16 points are ordinary vertices with valance 4.

side of Figure 10.6 shows the initial points and quads in blue. There are 8 corner points
with valance 3 and 8 inner corners with valance 5. The remaining 16 points are ordinary
vertices with valance 4. Four refinement steps were run. From the initial 32 points, 64
edges and 32 faces, this generated 8192 vertices, and the program used 95 milliseconds
on the computation. In total, including the generation of normals and triangles for the
graphics, the program used 161 milliseconds. The program was run on Intel Core i9-9900
CPU, 3.6 GHz and is made of simple but O(n)-algorithms and without optimization.

212 CHAPTER 10. SUBDIVISION SURFACES

Chapter 11

Two surface blending

In Boolean sum surfaces, three surfaces are blended together into one surface. We will
now look at a method where we only use the first two surfaces, the surfaces that are made
by blending curves.

From the expression (9.38), Coons patch - bicubic blending, we have the first two surfaces
S1(u,v) and S2(u,v), both made from blending curves. These two surfaces are defined on
a common domain U = [0,1]× [0,1]. The difference surface is

S̃(u,v) = S2(u,v)−S1(u,v). (11.1)

Using this we get a blending surface

S(u,v) = S1(u,v)+B(u,v) S̃(u,v), (11.2)

where B(u,v) is a blending function in two variables (2-p). Recall Chapter 7, Definition
7.1, where the B-function in one variable (1-p) is defined. In the following we will look
at how we can construct a 2-p B-function, B(u,v), with similar properties as a 1-p B-
function, ie internal Cd-smooth where d is the order of the 1-p B-function used to build
B(u,v), and that all derivatives up to order d are zero at the boundaries of the domain.

11.1 2-parameter B-function
To construct a 2-p B-function B(u,v) of at least order 1 and preferably larger than 1, cf.
Definition 7.1, we start with a help function

g(u) =

{
1− 1

2B(2u), if u≤ 1
2 ,

1− 1
2B(2−2u), otherwise,

(11.3)

with smoothness in accordance with the order of the B function, and which is symmetric
about u = 1

2 . It follows that

g′(u) =

{
−B′(2u), if u≤ 1

2
B′(2−2u), otherwise

g′′(u) =

{
−2 B′′(2u), if u≤ 1

2 ,
−2 B′′(2−2u), otherwise.

(11.4)

213

214 CHAPTER 11. TWO SURFACE BLENDING

The next two functions are

a(u) = 2u(1−u), where a′ = 2(1−2u), and a′′ =−4, (11.5)

and

t(u,v) =


v

a(u) , if v < a(u)

1−v
a(u) , if v > 1−a(u)

1 otherwise

(11.6)

We can see that t(u,v) is continues. It follows that

tu =


−v a′

a2 , if v < a
−(1−v) a′

a2 , if v > 1−a
0 otherwise

, tv =


1
a , if v < a
−1
a , if v > 1−a

0, otherwise

tuu =


v(2(a′)2−a′′a)

a3 , if v < a
(1−v)(2(a′)2−a′′a)

a3 , if v > 1−a
0, otherwise

, tuv =


−a′
a2 , if v < a
a′
a2 , if v > 1−a
0, otherwise

(11.7)
and tvv = 0.

Finally a blending function can be constructed,

B̂(u,v) = g(u) B◦ t(u,v), (11.8)

and where the partial derivatives are

B̂u = g′ B+g B′ tu,
B̂v = g B′ tv,

B̂uu = g′′ B+2g′ B′ tu +g (B′′ t2
u +B′ tuu),

B̂uv = g′ B′ tv +g (B′′ tu tv +B′ tuv),
B̂vv = g B′′ t2

v .

(11.9)

One problem with the blending function B(u,v) is that it does not behave symmetric in
the sense that

B(u,v)+B(v,u) = 1 (11.10)

One would expect that a blending function will behave the same way in the two parameter
directions. To modify a blending function to behave like this we can define,

B(u,v) =
1
2
(1+ B̂(u,v)− B̂(v,u)). (11.11)

A plot of the blending functions B(u,v)) as a surface can be seen in Figure 11.1. To get a
better impression of the function, it is displayed from two sides. If the surface is turned
upside down and rotated 90◦, it will be exactly the same.

In addition to being symmetrical as described above, B(u,v) is designed to have some
special properties, ie for a given d, to be internal Cd-smooth and that all derivatives up to

11.1. 2-PARAMETER B-FUNCTION 215

Figure 11.1: We see two different view of the blending function B(u,v) defined in ex-
pression (11.11). It appears as a surface. We can see that it seems that the derivatives
along the edges are zero and that there is a kind of discontinuity at the corners.

order d are zero at the boundaries of the domain. Note that B and B̂ will have the same
properties, so all propositions that apply to B̂ will also apply to B, so we only call it B. A
summary of the properties of B(u,v) is

- that the value is 0 “internally” on two opposite edges (with constant v value),

- that the value is 1 over all the other two edges (with constant u value),

- it is symmetric, i.e. B(u,v)+B(v,u) = 1,

- it is “internally” Cd-smooth,

- that all derivatives up to order d are 0 on the edges,

- and it is discontinuous in all the corners in the “u direction”

In appendix C.9 there is a set of proofs showing that the 2-p B function B(u,v) satisfies
all these properties.

This 2-p B-function essentially reflects the properties of a 1-p B-function, in addition to
the fact that all derivatives along the edges are zero in all directions. However, this 2-p
B-function is special because although all derivatives are continuous, the function itself is
discontinuous at the corners, i.e. it jumps from 0 to 1 in the “u direction”, as pointed out
by the last item in the list of properties.

The last point in the summary of the properties is special, because it means that we can
only use B(u,v) (11.11) to blend two surfaces when the two surfaces are equal in the four
corners - if the result should be Cd-continuous. We will look more closely at applications
of this in the next section.

216 CHAPTER 11. TWO SURFACE BLENDING

Figure 11.2: On left hand side is there a plot of 12 surfaces that together form a C1-
smooth surface, which is approximately a torus. We can see the boundary curves located
on the “torus”. The derivatives that are “orthogonal” to this boundary curves are also
according to a torus. The 12 surfaces are made by using Hermite blending surfaces. On
the right side are also the 12 surfaces that together are almost a torus, but here they are
moved apart so that we better can see them separately.

11.2 Hermite 2-p blending surface
With “Coons patch” - bicubic blending it is possible to fill a square hole in a surface in
a smooth way, see section 9.6.2. However, the blending of two surfaces is an alternative
method. We start by creating two surfaces using Hermite blending of curves in two direc-
tions, as in “Coons patch”. We call these S1(u,v) and S2(u,v), and the difference surface
for S̃(u,v) = S2(u,v)−S1(u,v) (11.1). We then use these in accordance with (11.2), i.e.

S(u,v) = S1(u,v)+B(u,v) S̃(u,v),

where S̃(u,v) is defined in (11.1). The partial derivatives then become

Su = S1u +Bu S̃+B S̃u,

Sv = S1v +Bv S̃+B S̃v,

Suu = S1uu +Buu S̃+2 Bu S̃u +B S̃uu,

Suv = S1uv +Buv S̃+Bu S̃v +Bv S̃u +B S̃uv,

Svv = S1vv +Bvv S̃+2 Bv S̃v +B S̃vv.

(11.12)

In figure 11.2 is there to the left a plot of a torus, approximated by 12 surfaces made by
Hermite 2-p blending surfaces, in the same way as in the Coons patch example shown
in Section 9.6.4. To the right, the surfaces have been moved apart so that we can more
easily see them individually. Figure 11.2 can be compared with figure 9.15 as the partial
surfaces in both surfaces are made on the same domains.

The method is quite simple to implement, easier than for Coons patch, but the approxima-
tion gives a deviation that is slightly larger than for the Coons patch example in Section
9.6.4. In the appendix C.10 there is a theorem that shows that it is possible to fill a square
hole with a surface so that the overall result has a desired degree of continuity, which thus
means that Hermite 2-p blending surfaces can replace “Coons patch”.

Chapter 12

Tensor Product Blending spline Surface

Similar to blending spline curves, tensor product blending spline surfaces are 2nd order
tensor product B-spline surfaces with B-functions, but where the control points are re-
placed with local surfaces. We have the following general formula,

S(u,v) =
nu−1

∑
i=0

nv−1

∑
j=0

si j(u,v)B◦w1,i(u)B◦w1, j(v), (12.1)

where si j(u,v), i = 0, ..,nu − 1, j = 0, ..nv − 1, are nu × nv local surfaces, and {B ◦
w1,i(u)}nu−1

i=0 , {B◦w1, j(v)}nv−1
j=0 are the respective B-spline basis functions with B-functions,

see (8.10). The formula resembles the ordinary polynomial B-spline tensor product sur-
face, except that si j(u,v) are surfaces, not points. A blending spline tensor product surface
can therefor be regarded as a blending of “local” surfaces. An open blending spline sur-
face with nu×nv local surfaces can thus be divided into (nu−1)×(nv−1) “quadrilateral”
patches, each of which is a blending of parts of 4 local surfaces. These are the 4 surfaces
connected to their respective interpolation points that are in each of the four corners of
the patch.

0

1

2

0 1 2

s (u,v)00 s (u,v)01 s (u,v)02

s (u,v)10

s (u,v)20

s (u,v)11

s (u,v)21

s (u,v)12

s (u,v)22

0 1 2
0

1

0

1

0

1

0 1 1 2

0 1 1 2
0

1

2

0

1

2

0 1 20 1 1 2
1

2

1

2

1

2

0 1 2
0

1

2

Figure 12.1: A tensor product Blending spline surface with 9 local surfaces (interpola-
tion points - colored in parameter domain, cubes in R3). To the right we see the domain
of the local surfaces. All local surfaces are flat, one of them is shown on the left side.

217

218 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

Figure 12.2: Three tensor product blending spline surface with the same domain, knot
vectors and local surfaces as the surface in Figure 12.1. The only difference is that the
local surfaces are moved and/or rotated.

An example is given in Figure 12.1. On the left side we see the parameter domain of a
tensor product blending spline surface with 3×3 = 9 local surfaces. The surface is a 2nd

order B-spline surface with two clamped knot vectors, u and v. The domain of each lo-
cal surface si, j is shown in the middle of Figure 12.1. The interpolation points, the points
where the blending spline surface (later also called the global surface) completely interpo-
lates (including derivatives up to the order of the B-function used) the local surfaces, are
marked as cubes. All local surfaces in this example are planar and parallel to the xy-plane,
and on the right hand side in Figure 12.1, one of the local surfaces is shown. The knot
vector u is {ui}4

i=0 = {0,0,1,2,2} and the knot vector v is {vi}4
i=0 = {0,0,1,2,2}. As can

be seen on the left in Figure 12.1, the local surfaces at the corners are only covering 1
4 of

the global surface, and for this example, the local surfaces connected to the points on the
sides are covering half of the global surface, and the surface connected to the point in the
middle of the global surface is covering the whole global surface. In Figure 12.2, there
are three surfaces with the same domain, knot vectors and local surfaces as the surface
in Figure 12.1. The only difference is that the local surfaces are moved and/or rotated.
Apparently we now have a spline surface with control points that interpolate the surface
and which also have an orientation, not just position.

As we see in the example, the domain is [u1,u3]× [v1,v3]. This is in accordance with
B-splines, see section 6.2.2, where the domain for an open B-spline curve is [td, tn], where
d = k−1 is the polynomial degree and n is the number of control points. In the example
is k− 1 = 1 and n = 3. In Section 8.2, the local curves ci(t) in blending spline curves
are defined with domains (ti, ti+2). It follows that for surfaces, the domain of the local
surfaces si, j(u,v) will be (ui,ui+2)× (v j,v j+2). This can be seen in the example in the
middle of Figure 12.1.

12.1 Implementation of Blending spline Surfaces
A tensor product blending spline surface is a 2nd-order B-spline surface in both u and
v direction, and is, like ordinary tensor product B-spline surfaces, to be considered as a
curve (se Section 8.2) where the coefficients are curves, as described in Section 9.5.3. But

12.1. IMPLEMENTATION OF BLENDING SPLINE SURFACES 219

Figure 12.3: On the left side we see a tensor product blending spline surface which
initially is a copy of a torus. The surface has 3×3 = 9 local surfaces where some of them
have been moved and rotated. To the right there is also a copy of a torus, but here with
1×2 = 2 local surfaces, the two local surfaces have just been moved apart.

here the inner curves has coefficients that are surfaces.

Recall from Section 6.2.2 that B-spline curves and surfaces can be either open or closed
in each of the parameter directions. Normally we mean clamped when we say open.
Remember that for a 2nd-order B-spline is k = 2 and analogous to the polynomial degree
is k− 1 = 1. Below is a table where the domain for open, half-open and closed surfaces
are shown. By half-open we mean open in one direction and closed in the other. On the
right side of the table, the number of knot intervals, ie “quadrilateral” patches, is shown.

u - direction v - direction The parameter domain Number of patches
Open Open (u,v) ∈ [u1,unu]× [v1,vnv] (nu−1)× (nv−1)
Open Closed (u,v) ∈ [u1,unu]× [v1,vnv+1) (nu−1)×nv
Closed Open (u,v) ∈ [u1,unu+1)× [v1,vnv] nu× (nv−1)
Closed Closed (u,v) ∈ [u1,unu+1)× [v1,vnv+1) nu×nv

Remember that a closed knot vector is a “cyclic” knot vector, it follows that the continuity
is the same over the “closing edge” as over any other knot value. If we use the u-parameter
as example, it follows that

lim
u→unu+1−

S(j)
u (u,v) = S(j)

u (u1,v), for j = 0,1,2, ...,Su,

lim
u→unu+1−

S(j)
v (u,v) = S(j)

v (u1,v), for j = 0,1,2, ...,Sv,
and v ∈ [v1,vnv],

where Su and Sv are the order of the respective B-function used.

In Figure 12.3 we see two blending spline surfaces, both of which were originally copies
of a torus. They are both closed in both directions. After the creation, the local surfaces
were moved and/or rotated and we see the results in the figure. In Figure 12.4, a cylinder
and a sphere are initially copied and then modified by moving and rotating local surfaces.
These are half open surfaces. Note that a sphere is either implemented topologically

220 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

Figure 12.4: On the left side we see a tensor product blending spline surface that initial
is a copy of a cylinder, but where 3 of the 9 local surfaces has been moved and rotated.
To the right is there two plots of the same surface, that initially is a copy of a sphere using
1×3 = 3 local surfaces that has been moved and rotated. The implementation we see is
actually a sphere that is a modified cylinder, ie. where the two boundaries of the cylinder
each are pinched together into two points/poles.

similar to a cylinder, where the north and south poles are added with hard-coded normals,
or it is topologically similar to a plane where the boundaries collapse towards one point.
The first is most common, and a typical implementation is as a cylinder with a contraction
in both of the “open” ends, and it is, therefore, degenerated at the poles. It is actually
possible to introduce “contraction” as a state on its own, to handle degenerated poles,
prevent holes and secure a kind of “continuous” unit normal (a single map for a sphere
is, as known, not possible without degenerations). “Contraction” is actually not a state
for a parameter direction, but a “contraction” of all function values along a curve in the
parameter plane and where the directional derivatives in the direction of the derivative of
the curve is a zero vector. However, a practical implementations is a straight line restricted
to be parallel with one of the coordinate axes in the parameter plane. For a sphere there
typically is a “contraction” at the start value and end value of one of the parameters (u or
v), while the other parameter is “closed”, ie cyclic.

For a “closed” parameter in a blending spline surface, it is basically only necessary to
have the same number of knot intervals as the number of local surfaces. That is n+ 1
knot values, where n is the number of local surfaces. However, to make it consistent to
“closed” parameter knot vectors where we have two equal knot values at start and end,
we put an extra knot value first in the knot vector so that the knot interval at the end is
”mirrored” at the beginning of the knot vector.

One question is, what is the minimum number of local surfaces we can have in a parameter
direction? The answer is given in the table below.

Type of parameter Minimum number of local surfaces size of knot vector
Open n = 2 n+2

Closed n = 1 n+2

In order to implement / program blending spline surfaces, a number of specific problems

12.2. EVALUATION - COMPUTING VALUE AND DERIVATIVES 221

must be solved. this is dealt with in the following sections.

12.2 Evaluation - computing value and derivatives
The general expression for a tensor product blending spline surface was given in (12.1),
ie

S(u,v) =
nv−1

∑
j=0

nu−1

∑
i=0

si, j(u,v) B◦w1,i(u) B◦w1, j(v), (12.2)

We can simplify. Due to the double sum, and the tensor product standard computation
method, the natural choice is first to split the function into an inner part and then apply an
outer part, see (9.33). The inner part is, for u ∈ [ui,ui+1]

ci, j(u,v) =
(

1−B◦w1,i(u) B◦w1,i(u)
)(si−1, j(u,v)

si, j(u,v)

)
, j = 0,1, ...,nv−1.

(12.3)
It follows that the equation (12.2) can be reformulated by using (12.3). We therefor get a
new formulation that replace (12.2), for (u,v) ∈ [ui,ui+1]× [v j,v j+1] is

S(u,v) =
(

1−B◦w1, j(v) B◦w1, j(v)
)(ci, j−1(u,v)

ci, j(u,v)

)
. (12.4)

Both equations, (12.3) and (12.4) are comparable with the curve formula (8.6) combined
with (8.10). Therefore, when developing an algorithm, we can, with some modifications,
use the same algorithm as that used for curves.

First, how to compute (12.3):
As in the curve example, we can simplify. From (8.7) and definition 8.1 we get; For every
knot interval in the v-direction, ∆v j = [v j,v j+1), j = 0,1, ...,n, where n = nv−2 for open
surfaces and n = nv−1 for closed surfaces:

ci, j(ui,v) = si−1, j(ui,v), for i = 1,2, . . . ,nu

ci, j(u,v) = si−1, j(u,v)+ ŝi, j(u,v)Bi(u), when ui < u < ui+1,
(12.5)

where Bi(u) = B◦w1,i(u) and where

ŝi, j(u,v) = si, j(u,v)− si−1, j(u,v). (12.6)

To computing partial derivatives only according to u of (12.5), we see that for u = ui, i =
1,2, ...,nu, are all partial derivatives with respect to u equal to the respective derivatives
of the local surface, i.e.

Ddu
u c j(ui,v) = Ddu

u si−1, j(ui,v), for j = 0, ...,nv−1, and du = 0,1, ...,Su. (12.7)

Then for ui < u < ui+1, we get the following equation for the function value and the two
first partial derivatives in the u direction,

ci, j(u,v) = si−1, j(u,v)+ ŝi, j(u,v)Bi(u),
Duci, j(u,v) = Dusi−1, j(u,v)+Duŝi, j(u,v)Bi(u)+ ŝi, j(u,v)DBi(u), (12.8)

D2
uci, j(u,v) = D2

usi−1, j(u,v)+D2
uŝi, j(u,v)Bi(u)+2Duŝi, j(u,v)DBi(u)+ ŝi, j(u,v)D2Bi(u).

222 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

The expressions are essentially the same as those we used in the curve case (8.9). How-
ever, this is only a part of the computation in the inner loop. We must also compute
all the partial derivatives/mixed derivatives for c j(u,v) in the v-direction. However, the
derivatives in the v-direction are straightforward to compute, because the basis function in
(12.8) is independent of v, and therefore, only one of the factors in all terms is dependent
on v. The derivatives of the total lines are thus only the derivatives of each term. This
can, as we will see, be used to expand formula (12.8) to a vector of vectors instead of only
vectors. To expand formula (12.8) to also include derivatives in the v direction we have to
first look at the first line of (12.8). It follows that

Dd
v ci, j(u,v) = Dd

v si+1, j(u,v)+Dd
v ŝi, j(u,v)Bi(u), for d = 1,2, ...,

and that in general for computing

Ddu
u Ddv

v ci, j(u,v), for du = 1,2, ... and dv = 1,2, ...,

on the right hand side in expression 12.8, we just have to replace

Ddu
u si+1, j(u,v) with Ddu

u Ddv
v si+1, j(u,v) and

Ddu
u ŝi, j(u,v) with Ddu

u Ddv
v ŝi, j(u,v).

Actually, the total result of the inner loop must be a matrix of vectors, where both the
matrix and the vectors must have the same dimension as the evaluators from the local
surfaces returns, and the matrix must contain the value and all partial derivatives. We,
therefore, clarify this by introducing the notation of the inner loop matrix,

Ci, j,du,dv(u,v), (12.9)

where each element of the matrix is a vector ∈ Rn, where n usually is 3. The index j
is related to the knot interval, and du denotes the number of derivatives there are in the
u direction, and dv denotes the number of derivatives there are in the v direction. An
example of this matrix, where both du = 2 and dv = 2, is

Ci, j,2,2(u,v) =


c j(u,v) Dvc j(u,v) D2

vc j(u,v)

Duc j(u,v) DuDvc j(u,v) DuD2
vc j(u,v)

D2
uc j(u,v) D2

uDvc j(u,v) D2
uD2

vc j(u,v)

 . (12.10)

The notation of the equivalent matrix from the local patches is

S̃i, j,du,dv(u,v), (12.11)

where i and j are in the indices of the local patch, and du and dv denote the number
of derivatives to compute in the respective u and v directions. These matrices are also
organized as (12.10).

To sum up before constructing an algorithm: The first column in (12.9–12.10) is equal to
the left hand side of (12.8), and only elements from the first column in (12.11) are used on

12.2. EVALUATION - COMPUTING VALUE AND DERIVATIVES 223

the right hand side of (12.8). To compute the other columns we have to replace elements
from the first column in (12.11) with respective elements from the other columns. The
conclusion is, therefore, that we only have to replace individual elements from the first
column of (12.11), that is, on right hand side of (12.8), with the respective rows of (12.11),
to expand (12.8) to return (12.9).

Remark 3. It is, of course, possible and usual, to construct an evaluator which only
returns the upper left half of the matrix (12.9). The advantage of a construction like this
is to optimize speed, because one often only needs the upper left part of the matrix. The
algorithm in this section, however, will focus on computing the whole matrix, but it is
fairly simple to modify the algorithm to only compute the upper left part of the matrix.

The algorithm now becomes quite similar to algorithm 8 used for curves. It depends
on the B-function evaluator and evaluators for local surfaces. As for curves, we assume
that the surfaces are embedded in an Euclidian space, where the dimension normally is
3, but it could also be something else, so the vector type is, therefore, denoted Vector,
although one of them is a point (the upper left ones that is the position). However, the
big difference from curves is that the algorithm returns a matrix (of Vectors) instead of
a vector (of Vectors), and that the evaluator for local surfaces also returns matrices. We
now introduce an algorithm for the inner loop of the tensor product surface evaluator,
computing (12.3):

Algorithm 9. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes the matrix Ci, j,du,dv(u,v) defined in (12.9). Computation of B-
function must be present. This also applies to local surfaces where the evaluators must
return a matrix S̃i, j,du,dv(u,v) defined in (12.11). The knot vectors {ui}nu+1

i=0 and {vi}nv+1
i=0

are also supposed to be present. The input variables are: u ∈ [u1,unu], v ∈ [v1,vnv],
and iu :\; uiu ≤ u < uiu+1, iv :\; viv ≤ v < viv+1, and du ∈ {0,1,2, ...,Su} (the number
of derivatives in u direction) and dv ∈ {0,1,2, ...,Sv} (the number of derivatives in v
direction), where Su and Sv depends on the B-function. The return is a “matrix〈Vector〉”,
ie a set of vectors typically in R3, remember,however, that matrix[0][0] is actually a Point.

matrix〈Vector〉 C(double u, double v, int iu, int iv, int du, int dv)
matrix〈Vector〉 C0 = S̃iu,iv,du,dv(u,v); // Result evaluating first local surface
if (u == uiu) return C0; // Return only local surface, see (12.5)
Matrix〈Vector〉 C1 = S̃iu+1,iv,du,dv(u,v); // Result evaluating second local surface
vector〈double〉 a(du +1); // For “Pascals triangle”-numbers
vector〈double〉 B = {B(j)

i }
du
j=0; // Computing B-function, see (8.10).

C1 −=C0; // The matrix c0 is now ĉ0, see (12.6)
for (int i=0; i≤ du; i++)

ai = 1;
for (int j=i-1; j > 0; j−−)

a j += a j−1; // Computing “Pascals triangle”-numbers
for (int j=0; j ≤ i; j++)

C0,i += (a j B j)C1,i− j; // “row += scalar*row”, see (12.8)
return C0;

224 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

Note that the algorithm updates entire rows of the matrix C0 by summing to each row
scaled rows of matrix Ĉ1. This follows directly from the fact that equation (12.8) is
expanded to compute not only the first column in (12.10), but all columns, and that the
B-spline (with the B-function) only depend on u.

Next, how to compute (12.4):
This is the final computation of tensor product blending spline surfaces. The equation
(12.4) is similar to equation (12.3). Thus, we can simplify the first part of formula (12.4)
in the same way as we did for (12.3). It follows that at every knot interval in the u-
direction, ie u∈ [ui,ui+1), i= 0,1, ...,n, where n= nu−2 for open surfaces and n= nu−1
for closed surfaces, we get:

S(u,v j) = ci, j−1(u,v j), for j = 1,2, . . . ,nv,

S(u,v) = ci, j−1(u,v)+ ĉi, j(u,v)B j(v), when v j < v < v j+1.
(12.12)

where B j(v) = B◦w1, j(v) and where

ĉi, j(u,v) = ci, j(u,v)− ci, j−1(u,v),

Computing the partial derivatives of (12.12) only according to v, we can see that for
v = v j, j = 1, ...,n, all partial derivatives of the spline surface with respect to v are equal
to the respective derivatives from the inner loop, i.e.

Ddv
v S(u,v) = Ddv

v ci, j(u,v), for j = 1, ...,nu, and dv = 0,1,2,

then for v j < v < v j+1 we get the following equation for the function value and the deriva-
tives in the v direction,

S(u,v) = ci, j+1(u,v)+ ĉi, j(u,v)Bi(v)
DvS(u,v) = Dvci, j+1(u,v)+ ĉi, j(u,v)DB j(v)+Dvĉi, j(u,v)B j(v) (12.13)

D2
vS(u,v) = D2

vci, j+1(u,v)+ ĉi, j(u,v)D2B j(v)+2Dvĉi, j(u,v)DB j(v)+D2
v ĉi, j(u,v)B j(v).

Studying (12.13) we can see that it has the same structure as (12.8). But as for the in-
ner loop, the total result of the outer loop must be a matrix of vectors, where both the
matrix and the vectors must have the same dimension as the algorithm for computing the
inner loop returns, and the matrix must contain the value and all partial derivatives. We,
therefore, clarify this by introducing the notation of the matrix of the surface evaluator,

Sdu,dv(u,v), (12.14)

where each element of the matrix is a vector ∈ Rn, where n is the dimension of the Eu-
clidian space the surface is embedded in. The index du denotes the number of derivatives
there are in u direction, and dv denotes the number of derivatives there are in v direction.
An example of this matrix, where du = 2 and dv = 2, is:

S2,2(u,v) =


S(u,v) DvS(u,v) D2

vS(u,v)

DuS(u,v) DuDvS(u,v) DuD2
vS(u,v)

D2
uS(u,v) D2

uDvS(u,v) D2
uD2

vS(u,v)

 . (12.15)

12.2. EVALUATION - COMPUTING VALUE AND DERIVATIVES 225

Finally, when preparing for the main algorithm of the tensor product blending spline
surface, and thus the outer loop, note that on the left side of (12.13) we have the first row,
not the first column in the resulting matrix (12.14–12.15). In addition, on the right side of
(12.13) we only find elements from the first row of the matrix C j,du,dv(u,v) (12.9–12.10).

The algorithm becomes quite similar to algorithm 8 used for curves, and algorithm 9 for
the inner loop. It depends on the B-function evaluator and on the inner loop. As it was
for the inner loop algorithm, we assume that the surfaces are embedded in an Euclidian
space, normally R3, but can also be somewhere else, so the type is, therefore, denoted
Vector, usually a 3D-vector. The big difference from the inner loop algorithm is that we,
in the penultimate line of the algorithm, have to sum up matrix columns instead of rows.

Algorithm 10. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes the matrix Sdu,dv(u,v) described in (12.14) and (12.15). The
algorithm assumes that Algorithm 9 and computation of a B-function are present. The
knot vectors {ui}nu+1

i=0 and {vi}nv+1
i=0 are supposed to be present. The input variables are:

u ∈ [u1,unu], v ∈ [v1,vnv], and du ∈ {0,1,2, ...,Su} (the number of derivatives in u
direction), and dv ∈ {0,1,2, ...,Sv} (the number of derivatives in v direction), limited by
the order of the B-function used. The return is a “matrix〈Vector〉”, where Vector typically
is a 3D-vector matching S(u,v), and where the elements in the matrix are matching the
elements in the matrix Ci, j,du,dv(u,v) described in (12.10).

matrix〈Vector〉 eval (double u, double v, int du, int dv)
int iu = iu :\; uiu ≤ u < uiu+1; // Index for the current knot-interval for u.
int iv = iv :\; viv ≤ v < viv+1; // Index for the current knot-interval for v.
matrix〈Vector〉 S0 = Ciu,iv,du,dv(u,v); // Result from inner loop - iv.
if (v == viv) return S0; // Return only inner loop, see (12.12).
matrix〈Vector〉 S1 = Ciu,iv+1,du,dv(u,v); // Result from inner loop - iv +1.
vector〈double〉 a(d+1); // For numbers - “Pascals triangle”.
vector〈double〉 B = {B(j)

iv }
dv
j=0; // Computing B-function, see (8.10).

S0 −= S1; // C0 is now Ĉ0, the whole matrix, see (12.7).
for (int i=0; i≤ dv; i++)

ai = 1;
for (int j=i-1; j > 0; j−−)

a j += a j−1; // Computing “Pascals triangle”-numbers.
for (int j=0; j ≤ i; j++)

(ST
1)i += (a j B j)(ST

0)i− j; // “column += scalar×column”, (12.13).
return S1;

The computational cost of evaluating a tensor product blending spline-surface is, as we
can see, to evaluate two B-functions, four local surfaces, and pass a total of three times
through the summing loop in the last half of both the inner and outer loop. The most
expensive part of the computation is to evaluate the four local surfaces. This can take
more than 9

10 of the time, depending on the type of local surface.

226 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

12.3 Bézier surfaces as local surfaces
In general, Bézier surfaces are very convenient to use as local surfaces. Bézier surfaces are
defined in subsection 9.5.2, expression (9.34). It follows from the Bernstein polynomials
that the parameter domain for Bézier tensor product surfaces is [0,1]× [0,1]. Blending
splines are 2nd-order B-splines. Therefore, the domain of each local surface must span
two associated knot intervals in each parameter direction. For a local surface si, j(u,v), the
parameter domain must be [ui,ui+2]× [v j,v j+2]. In (8.13) is the map w2,i and its derivative
δ2,i described. For example, w2,i(u) will map u ∈ [ui,ui+2] to u ∈ [0,1]. Thus we get the
following formula for local Bézier surfaces,

si, j(u,v) =
du

∑
r=0

dv

∑
s=0

cr,s bdv,s ◦w2, j(v) bdu,r ◦w2,i(u), (12.16)

when (u,v) ∈ [ui,ui+2]× [v j,v j+2], and where the basis functions are the Bernstein poly-
nomials, and cr,s ∈ Rn, n > 0 and usually 3, are the coefficients, ie. control points.

All types of tools for computing Bézier curves are of course also available for Bézier
tensor product surfaces. In subsection 4.4.3 the Bernstein/Hermite matrix was introduced,
and in Algorithm 2 an algorithm to make the same matrix is developed and described. In
the Bernstein/Hermite matrix, each row is scaled by δ j, where the power j is the row
number (starting with 0). This is δ2,i, the derivative of the the translation and scaling
function w2,i. Thus the matrix looks like this:

Bd(w2,i(t),δ2,i) =

 δ 0
2,iD

0bd,0 ◦w2,i(t) . . . δ 0
2,iD

0bd,d ◦w2,i(t)
...

δ d
2,iD

dbd,0 ◦w2,i(t) · · · δ d
2,iD

dbd,d ◦w2,i(t)

 . (12.17)

In the curve case, the matrix was used both for evaluation (pre-evaluation) and Hermite
interpolation. It is therefore natural to do this for tensor product blending spline surfaces.

Hence, using this matrix, (12.17), we first make an expanded matrix version of equation
(12.16), not only returning the value, but also all the partial derivatives from 1st to dth,
where d is the degree. We now get:

S̃du,dv(u,v) = Bdu(w2,i(u),δ2,i) C Bdv(w2, j(v),δ2, j)
T (12.18)

for ui ≤ u≤ ui+2 and v j ≤ v≤ v j+2, and where C is the control net (matrix), and w2,i(u),
w2, j(v), δ2,i and δ2, j are from (8.13), described in subsection 8.2.2. If du = dv = 2 the
matrix S̃du,dv(u,v) will be,

S̃2,2(u,v) =


s(u,v) Dvs(u,v) D2

vs(u,v)

Dus(u,v) DuDvs(u,v) DuD2
vs(u,v)

D2
us(u,v) D2

uDvs(u,v) D2
uD2

vs(u,v)

 . (12.19)

As one can see, this matrix (12.19) contains the position (upper-left element) and all
partial derivatives at the parameter value (u,v) on the surface. It also follows that this
matrix completely describes the local surface.

12.3. BÉZIER SURFACES AS LOCAL SURFACES 227

u

v

Figure 12.5: The parameter plane of a surface g(u,v), and two knot vectors {ui}6
i=0 and

{v j}5
j=0 which divide the domain into 12 pieces. At all internal knot-values, (ui,v j) for

i = 1, . . . ,5, j = 1, . . . ,4, there are polygons marked for Hermite interpolation to create
local surfaces. The colors of the polygons are for explaining the differences between open
and closed surfaces.

12.3.1 Local Bézier surfaces and Hermite interpolation

We start by recalling the settings from subsection 8.2.3, and adapting them to tensor
product blending spline surfaces.

1. Given is a surface g(u,v), g : Ω⊂R2→Rk, where Ω = [us,ue]× [vs,ve], and where
k > 0 and usually 3.

2. Given is also the numbers of interpolation points nu > 1 and nv > 1 and the number
of partial derivatives du > 0 and dv > 0 to be used in the Hermite interpolation. Note
that it is possible to specify the number of partial derivatives to be used for each
interpolation point individually.

3. Generate the knot vectors u = {ui}nu+1
i=0 and v = {v j}nv+1

j=0 by:
– first to set u1 = us and v1 = vs, i.e. the start of the domain of g in both u and v

direction,
– then to set unu = ue and vnv = ve, i.e. the end of the domain of g in both u and

v direction.
– Then for i = 2,3, . . . ,nu− 1, generate ui so that ui−1 < ui (typically uniformly

distributed), and for j = 2,3, . . . ,nv−1, generate v j so that v j−1 < v j.
– Finally, u0 and unu+1 and also v0 and vnv+1 must be set according to the rules for

“open/closed” parameters for 2nd-order tensor product B-spline surfaces.

4. Make the local Bézier surfaces. We do this by Hermite interpolating g in all pairs
of (internal) knot values, ie. (ui,v j), i = 1,2, . . . ,nu, j = 1,2, . . . ,nv. In Figure 12.5
is the interpolation points marked with colored polygons. If g(u,v) is
– open in both parameter directions, local surfaces must be created at all points,
– open in u-direction and closed in the v-direction, local surfaces must be created at

all red and green points while the blue and yellow must reuse the the local surfaces
made on the top line,

228 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

– closed in u-direction and open in the v-direction, local surfaces must be created at
all red and blue points while the green and yellow must reuse the the local surfaces
made on the line on the left side,

– closed in in both parameter directions, local surfaces must be created at all red
points while the blue must reuse the the local surfaces made on the top line, the
green must reuse the the local surfaces made on the line on the left side, and the
yellow must reuse the one on the upper left corner.

Item 4 above tells us to create local surfaces by Hermite interpolation. Recall that for
B-functions of sufficiently high order and for su = 0, ...,du and sv = 0, ...,dv is

Dsu
u Dsv

v S(ui,v j) = δ
su
2,i−1,ūδ

sv
2, j−1,v̄ Dsu

u Dsv
v si, j ◦ (w2,i−1(ui),w2, j−1(v j)),

where S(u,v) is the tensor product blending spline surface, si, j(u,v) are for all i, j local
Bézier surfaces, and

w2,i−1(ui) =
ui−ui−1

ui+1−ui−1
and w2, j−1(v j) =

v j− v j−1

v j+1− v j−1
,

are the linear translation and scaling function from definition 6.11, and

δ2,i−1,ū =
1

ui+1−ui−1
and δ2, j−1,v̄ =

1
v j+1− v j−1

are the derivative of the linear translation and scaling function, see (6.13).

The equation for the Hermite interpolations for a local Bézier surface with the pair of
indices (i,j) for su = 0, ...,du and sv = 0, ...,dv is,

Dsu
u Dsv

v g(ui,v j) = Dsu
u Dsv

v S(ui,v j)

= δ
su
2,i−1,ūδ

sv
2, j−1,v̄ Dsu

u Dsv
v si, j ◦ (w2,i−1(ui),w2, j−1(v j))

=
d1

∑
r=0

d2

∑
s=0

ci, j,r,s δ
su
2,i−1,ū Dsubdu,r ◦w2,i−1(ui)δ

sv
2, j−1,v̄ Dsvbdv,s ◦w2, j−1(v j).

This is nearly the same as the formulation in (12.18), but we now have included the
parameter mapping. The matrix form now is, for i = 1, ...,mu, and j = 1, ...,mv,

gdu,dv(ui,v j) = Bdu(w2,i−1(ui),δ2,i−1,ū) Ci, j Bdv(w2, j−1(v j),δ2, j−1,v̄)
T ,

where

gdu,dv(ui,v j) =

 g(ui,v j) . . . Ddv
v g(ui,v j)

...
Ddu

u g(ui,v j) · · · Ddu
u Ddv

v g(ui,v j)

 .

Bézier-surface and Hermite interpolation
The final step in generating the local Bézier surfaces is to turn the equation according
to the Bézier coefficients Ci, j, the control polygon of the local surface Si, j(u,v), i.e.

Ci, j = Bdu(w2,i−1(ui),δ2,i−1,ū)
−1 gdu,dv(ui,v j) Bdv(w2, j−1(v j),δ2, j−1,v̄)

−T . (12.20)

12.3. BÉZIER SURFACES AS LOCAL SURFACES 229

The conclusion is that, in order to compute the coefficient to the local Bézier surfaces, ie
solve (12.20), one has to compute the expanded Bernstein/Hermite matrix using algorithm
2, and then invert this matrix and multiply the inverted matrix with the “evaluation”-
matrix from the original surface. The matrix inversion will not be dealt with further here,
but there are a lot of available programming libraries including optimized algorithms for
matrix inversions, see, e.g., [165].

Remark 4. Note that the three matrices on the right hand side in 12.20 are not of the same
“type”. The middle one, gdu,dv(ui,v j) is a matrix of point/vectors in Rn, where n usually is
3. The Bernstein/Hermite matrix is a standard matrix where each element is a scalar. For
both a surface evaluator and the Hermite interpolation, it is ,therefore, of great interest
to implement a matrix template type that has overloaded matrix multiplication including
multiplication between a matrix of scalars and a matrix of vectors/points.

As in the curve case, there are several reasons why it is advantageous to translate all
coefficients so that the interpolation point is the local origin. Then it follows that we
have to subtract the point g(ui,v j) from all the coefficients in the control polygon Ci, j
of the local Bézier surfaces, and that we have to cancel this by inserting the opposite
movement to the graphical homogeneous matrix system. The premise is, of course, that
this homogeneous matrix system is involved in the total evaluator.

12.3.2 Examples of Hermite interpolations

In this subsection we will look at examples of Hermite interpolation of well-known para-
metric surfaces by tensor product Blending spline surfaces with local Bézier surfaces. In
some of the examples we will see some of the local Bézier surfaces, and take a closer look
at how they are constructed by the Hermite interpolation.

The first example is based on a surface called “Trianguloid Trefoil”. This surface was
constructed by Roger Bagula and can be found at [4]. The formula is

s(u,v) =


2 sin(3u)

2+cosv

2 sinu+2sin(2u)
2+cos(v+ 2

3 π)

(cosu−2cos(2u))(2+cosv)(2+cos(v+ 2
3 π))

4

 for u ∈ (−π,π],

and v ∈ (−π,π].
(12.21)

In Figure 12.6 there is a plot of a tensor product blending spline surface interpolating
a “Trianguloid Trefoil” surface (12.21) in 5× 5 points. At each point the position and
8 partial derivatives are used, i.e. the matrix gdu,dv(ui,v j) defined in (12.17) is 3× 3
dimensional. In Figure 12.6 the interpolation points are marked with blue cubes, and
most of them are visible. The surface is “closed” in both parameter directions, and is
quite complex in shape, but the reconstruction has kept the structure and form fairly well.

The second example is based on a surface called “Bent Horns”, also constructed by Roger

230 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

Figure 12.6: This Blending spline tensor product surface is made by Hermite interpo-
lation of a “Trianguloid Trefoil” surface [4] at 5×5 points. The interpolating points are
seen as blue cubes.

Bagula and can be found at [5]. The formula for this surface is

s(u,v) =

 (2+ cosu)
(v

3 − sinv
)(

2+ cos
(
u− 2

3π
))

(cosv−1)(
2+ cos

(
u+ 2

3π
))

(cosv−1)

 for u ∈ (−π,π],

and v ∈ (−2π,2π].
(12.22)

In Figure 12.7 there is a plot of a tensor product blending spline surface interpolating a
‘Bent Horns” surface (12.22) at 5× 5 position. Also in this example, the position and 8
partial derivatives are used at each point, i.e. the matrix gdu,dv(ui,v j) defined in (12.17)
has the dimension 3× 3. In the Figure 12.7 the interpolation points are marked as blue
cubes, and some of them can be seen clearly. The surface is “closed” in one parameter,
but “open” in the other parameter directions. This cannot actually be seen, because the
two “open” ends are squeezed into two separate edges. They can be seen at the front on
either side in the figure, and each of them are marked by three blue cubes. These cubes
are, in fact 5 cubes (one on the tip towards the center, and two coincident cubes on each
of the other two). The surface is also irregular in the center, where it collapses to a point.
The blending spline surface has managed to keep this irregularity intact because there is
an interpolation point (actually, 5 points) at this position.

12.3. BÉZIER SURFACES AS LOCAL SURFACES 231

Figure 12.7: This Blending spline tensor product surface is made by interpolating (posi-
tion, first and second derivative) a “Bent Horns” surface [5] at 5×5 points. The positions
of the interpolating points are seen as cubes.

The third example is based on a sphere, where the formula is,

s(u,v) =

 r cosu cosv
r sinu cosv

r sinv

 for u ∈ (0,2π],

and v ∈ (−π

2 ,
π

2].
(12.23)

In the equation, r is the radius of the sphere. Figure 12.8 shows 3 plots of a tensor
product blending spline surface interpolating a sphere (12.23) at 4× 4 points. Also in
this example, the position and 8 partial derivatives are used at each point, i.e., the matrix
gdu,dv(ui,v j) defined in (12.17) has the dimension 3×3. In Figure 12.8 the interpolation
points are marked as blue cubes. At the top of the “sphere” we can see one cube, but there
are actually 4 cubes in the same position. The surface is, therefore, irregular, and actually
collapses to a point at both poles. In the upper part of Figure 12.8 there is plots that
includes one of the local Bézier surfaces located at the “north pole”. There is one shaded
picture on the left hand side, and one wireframe picture on the right hand side. As we can
see, especially in the wireframe picture, the local surface only has two corners. The other
two corners have collapsed to one point, and are lying on the apparently “smooth” edge at
the “north pole”. Also the edge between the two corners has completely collapsed to the
same point. The tensor product blending spline surface has 8 local Bézier surfaces, which
can be found at the two poles. They are all equal in form compared to the Bézier surface
shown in the figure (but rotated and/or translated). On the lower part of Figure 12.8 there
is another plot of the approximated “sphere”, this time including one of the local Bézier
surfaces that is not located at the poles. The figure is rotated to the left, so that the “north
pole” is on the left hand side. The local surface looks quite complex, and probably unlike
what can be expected. There are a total of 16 local Bézier surfaces attached to the tensor
product blending spline surface, and 8 of these local surfaces have the same shape as this
one.

232 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

Figure 12.8: Three plots of the approximated sphere from expression (12.23), The upper
part with one of the local Bézier surfaces located at the “north pole”. The control polygon
of the Bézier surface is marked in green, and the nodes in the control polygon are marked
as red cubes. On the right hand side there is a wireframe version of the figures that we
can see on the left hand side. The lower part shows another local Bézier surface. This
is one of the surfaces not located at the poles. All 8 local surfaces that is not located at
north and south pole will have this shape, but translated and rotated.

12.3. BÉZIER SURFACES AS LOCAL SURFACES 233

Figure 12.9: A plot of the approximated torus from (12.24), where one of the local
Bézier surfaces is also plotted. Also the control polygon of the local Bézier surface is
plotted in green, while the control points are plotted as red cubes. At the bottom of the
figure the local Bézier surface is moved slightly upwards.

The fourth example is based on a Torus, where the equation is

s(u,v) =


cosu(R+ r cosv)

sinu(R+ r cosv)

r sinv

 for u ∈ (0,2π],

and v ∈ (0,2π].
(12.24)

Here r is the small radius, the radius of the tube, and R is the big radius, the distance from
the center of the tube to the center of the torus. The upper part of Figure 12.9 shows a
tensor product blending spline surface interpolating a torus (12.24) at 5× 5 points. As
in the previous examples, the position and 8 partial derivatives are used at each point,
ie the matrix gdu,dv(ui,v j) defined in (12.17) has dimension 3× 3. In Figure 12.9 the
interpolation points are marked as blue cubes. One of the local Bézier surfaces is also
plotted. This surface models a part of a torus quite well. At the bottom of the figure
the local Bézier surface is moved slightly upwards, so we can see it more clearly. There
the surfaces are plotted in two different views, so it is possible for us to see the local
surface better. As we can see on the left hand side, the blending spline surface is actually
following the local surface when it is moved, and thus changing shape of the torus.

The last example shows us a surface called “Sea Shell”, described amongst other by Paul

234 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

Figure 12.10: Two plots of a tensor product blending Spline surface made by interpo-
lating a “Sea Shell” surface expressed in (12.25). The two plots are seen from different
angles. In each of the two plots one of the local Bézier surfaces is also plotted. In the
upper plot one of the bigger local patches is plotted. In the lower one a smaller patch is
plotted. We can also see the control polygon for each of the local Bézier surfaces. The
local patches model the global surface quite well locally.

12.4. THE SUB-SURFACE CONSTRUCTION 235

Bourke at [16]. The formula for this surface is

s(u,v) =

 cosv+ v
10 (cosucosv+acosusinv)

sinv+ v
10 (cosusinv−acosucosv)(

bsinu+ 6
10

)
v

 for u ∈ (0,2π],

and v ∈ (π

4 ,5π].
(12.25)

In Figure 12.10 there is a plot of a tensor product blending spline surface interpolating
a “Sea Shell” surface (12.25) at 4× 8 points. At each point the position and 8 partial
derivatives are used, ie the matrix gdu,dv(ui,v j) defined in (12.17) has the dimension 3×3.
The interpolation points are marked as blue cubes, and most of them are visible. As can be
seen, the surface is “closed” in one parameter direction, but “open” in the other parameter
direction. In the figure, the surface can be seen from two different angles. In both plots
one of the local Bézier surfaces is also plotted, and it can be seen colored in purple. The
control polygons of the local Bézier surfaces are also plotted. They can be seen as a green
net, and their control points are drawn as red cubes.

12.4 The sub-surface construction
As in the curve case, we can convert any parametric surface ϕ(u,v) to a blending spline
surface by adding two vectors of knot values, {ui}nu+1

i=0 and {v j}nv+1
j=0 . With that we get

a set of overlapping sub-surfaces, each of which is the original surface only limited by
a reduction of parametric domain that covers 2×2 knot intervals. Using sub-surfaces as
local surfaces means that a blending spline copy is initially identical to the surface itself.
This is because blending of a surfaces with itself gives the surface itself. When adding
affine transformations (subsection 8.2.1), a sub-surface algorithm will basically be similar
to the algorithm for local Bézier surfaces. Similar to section 12.2, and expression (12.3),
we get for i = 1,1, . . . ,nu and j = 1,1, . . . ,nv and (u,v) ∈ [ui,ui+1]× [v j,v j+1]

Ci, j(u,v) =
(

1−Bi(u) Bi(u)
)(Ai−1, j ϕ(u,v)

Ai, j ϕ(u,v)

)
=
(
Ai−1, j +Bi(u) ∆

iAi−1, j
)

ϕ(u,v), (12.26)

where Bi(u) = B ◦w1,i(u), ϕ(u,v) is the initial surface, Ai, j are homogeneous matrices
described in subsection 8.2.1 and ∆iAi−1, j = Ai, j −Ai−1, j. Next step is to reformulate
(12.4),

S(u,v) =
(

1−B j(v) B j(v)
)(Ci, j−1(u,v)

Ci, j(u,v)

)
=Ci, j−1(u,v)+B j(v) ∆

jCi, j−1(u,v) (12.27)

where ∆ jCi, j−1(u,v) =Ci, j(u,v)−Ci, j−1(u,v). If we put (12.26) in (12.27) we get:

The sub-surface construction
S(u,v) = Ai−1, j−1 (u,v) ϕ(u,v) (12.28)

where

Ai, j (u,v) = Ai, j +Bi−1(u) ∆
iAi, j +B j−1(v)

(
∆

jAi, j +Bi−1(u) ∆
i jAi, j

)
(12.29)

236 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

Figure 12.11: Two examples of blending spline surfaces from the sub-surface construc-
tion. On the left side a torus is copied using only 2 local surfaces, the local surfaces
associated with the interpolation point inside the torus is rotated 60◦. To the right of the
figure, a sphere is copied. Also here with only using 2 local surfaces. These 2 surfaces
are then moved apart and rotated slightly.

The delta notation in (12.29) can be expanded as follows,

∆
iAi, j = Ai+1, j−Ai, j

∆
jAi, j = Ai, j+1−Ai, j

∆
i jAi, j = Ai+1, j+1−Ai, j+1−Ai+1, j +Ai, j.

All surfaces shown in Figures 12.1, 12.2, 12.3, 12.4 and 12.11 are blending spline surfaces
based on sub-surfaces and thus computed by using expression (12.28) and (12.29).

12.5 Examples, free form sculpturing using tensor prod-
uct blending splines

In Computer Aided Geometric Design, object (surface) sculpturing is a big issue both for
constructions for real world (products), and design for virtual worlds (movies, computer
games, VR/AR, etc.). As regards sculpturing, Barr introduced as early as in 1984 oper-
ations for twisting, stretching, bending and tapering surfaces around a central axis [8].
This was followed by Sederberg and Perry who in 1996 introduced a more general tech-
nique [144], called the Free Form deformation method, FFD. This method embeds objects
to be deformed in the 3D lattice of control points that define a trivariate Bézier volume.
Deformations can thus be done by deforming this 3D control polygon and evaluating the
Bézier volume to find the new position for the embedded objects. In the following years a
tremendous amount of work has been done in this area, using mechanical technics, mul-
tilevel representations etc. (Examples of articles are [27] [9] [84] [167]). In general, all
works so far have struggled with the geometric representation. Blending splines offer an
improved “shaping” functionality because it is a B-spline where all type of affine maps
can be applied to the “control points”.

12.6. T-JUNCTION AND STAR-JUNCTION 237

Figure 12.12: Foure sculpted objects, all of which were initially a torus. They are edited
by moving interpolation points, except for the object on the upper right side, where the
points are only rotated. All surfaces are tensor product blending splines with local Bézier
surfaces. The one on the upper right side has 8×4 local surfaces, the other has 5×5.

In this chapter we have many figures that illustrate the possibilities for creative design.
Early in this chapter we find 4 figures where all the examples/plots are based on the sub-
surface construction. In Figure 12.1 and 12.2, a blending spline “plain” is deformed in
different ways. They all have 3×3 interpolation points. In Figure 12.3, there is one torus
with 9 local surfaces and one with 2. Both are deformed, and we can see that the number
of interpolation points are important for the shape possibilities. In Figure 12.4 there is a
deformed cylinder and two plots of a deformed sphere seen from two different positions.

Figure 12.11 is also based on sub-surfaces, and shows a torus and a sphere, both with only
2 local surfaces. And in Figure 12.12 is a torus changed in four different ways. The upper
left one is plotted from 2 different positions. The local surfaces are Bézier surfaces. In
Figure 12.13 is a sphere changed to a mug and a head.

12.6 T-junction and Star-junction
In product development and design, solid modeling is mainly used as a tool. Boundary
representation, abbreviated B-rep, is a method of representing 3D object. The surface and
the boundary between different materials in an object are then a collection of continuous
surface elements. Thus, it is important to be able to model complex surfaces, ie to model
surfaces of different genus, and with varying degrees of complexity. This means that we
must be able to handle ”irregular” surface geometry. Traditionally, this has been done
mainly with trimmed surfaces with trimming curves that are calculated with Boolean

238 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

Figure 12.13: To the left of the figure, a sphere is changed to a mug just by moving
the interpolation points. The object is displayed from 2 different positions. To the right
of the figure you can see a “head”. It is a tensor product blending spline surface made
with local Bézier surfaces by first interpolating a sphere at 6× 6 points (position, first
and second derivative). Then some of the interpolation points (five of the blue cubes) are
moved, and some of them, three points at the eyes and nose, are also rotated.

operations and thus surface intersection, see [118] and [90].

An important reason to handle irregularities without using trimming is the introduction
of isogeometric analysis that is a replacement of the traditional Finite Element function-
spaces with spline-spaces, to provide the same function space (set of basis functions) for
both computation and shape description, see [28].

Both, T-splines, [143] and [142], LR-splines, [51], [95] and [127], and PHT-splines
[157], are surface descriptions that modify B-splines to handle some kind of irregulari-
ties. Therefor, a related solution for dealing with irregularities using tensor product blend-
ing spline surfaces was described in [109]. This imply looking at T-junctions and Star-
junctions, together with special local surfaces which in turn are divided into sub-surfaces
and sometime with re-parameterization. This is to ensure continuity (and smoothness) in
the splicing between different tensor product surfaces.

12.6.1 Dependencies on vertices and “internal edges”

The parameter domain of a tensor product blending spline is partitioned by the knot vec-
tors, see Figure 12.14. At the intersection of the parameter lines are the vertices. These
are the points where the local surfaces interpolate the global surface. It follows that the
support of the local surfaces is the sub-partitions in the domains that is surrounding the
related vertex. For all internal vertices is this four squared partitions, for vertices on the
edges is it two partitions, and for vertices in the corners is it one partition. All this is
clearly illustrated in Figure 12.14, but also outlined in Figure 12.1.

On each partition we have sub-surfaces of the four local surfaces that cover this partition.
To simplify, we consider the local domain of each sub-surface as the unit square [0,1]×
[0,1]. The formula for a surface with this domain, made by blending parts of four local

12.6. T-JUNCTION AND STAR-JUNCTION 239

s04
s22 s42

S (u,v)1 S (u,v)2

S (u,v)3 S (u,v)4

Figure 12.14: To the left is a tensor product blending spline surface made of a network
of 5× 5 “local surfaces”. In the middle is the parameter plane of the surface where the
grid is shown. Three examples of the domain of the local surfaces are illustrated. In a
corner, the surface S04 is in blue, in the center is S22 in red, and on the left edge is S42 in
black. To the right is one partition shown and the four local surfaces, connected to each
corner are marked.

surfaces, each connected to one of the four corners, right side in Figure 12.14, is:

S(u,v) = (1−B(v))((1−B(u))s1(u,v)+B(u)s2(u,v))
+B(v)((1−B(u))s3(u,v)+B(u)s4(u,v)),

= s1(u,v)+B(u)(s2(u,v)− s1(u,v))+B(v)(s3(u,v)− s1(u,v))
+B(u)B(v)(s4(u,v)− s3(u,v)− s2(u,v)+ s1(u,v)).

We skip the parameters (u,v) for the surfaces and the simplified expressions is

S = s1 +B(u)(s2− s1)+B(v)(s3− s1)+B(u)B(v)(s4− s3− s2 + s1) (12.30)

To investigate the behavior on the edges, we just look at the edge on the left side. The
other edges we will have similar behavior. Thus, we get

S(0,v) = s1 +B(v)(s3− s1), (12.31)

and the first and second order partial derivatives are

Su(0,v) = s1u +B(v)(s3u− s1u),
Sv(0,v) = s1v +B(v)(s3v− s1v)+B′(v)(s3− s1),

Suu(0,v) = s1uu +B(v)(s3uu− s1uu),

Suv(0,v) = s1uv +B′(v)(s3u− s1u)+B(v)(s3uv− s1uv),
Svv(0,v) = s1vv +2B′(v)(s3v− s1v)+B(v)(s3vv− s1vv).

(12.32)

The following lemma states the interpolation properties on the boundary of the blending
surfaces made by blending four surfaces connected to each corners. Thus, the blended
surface inherits some of its behavior from its “local surfaces”.

Lemma 12.1. At the four corners we get the following properties

240 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

Figure 12.15: To the left is a T-junction (solid red) and the two terminating points
marked. The seven sub-patces involved in the irregular blending are marked light blue.
To the right is a Star-junction (solid red) and three terminating points marked. The sub-
surfaces involved are, three marked dark gray and six marked light blue.

lower left corner S(0,0) S≡ s1 including all its derivatives
lower right corner S(1,0) S≡ s2 including all its derivatives
upper left corner S(0,1) S≡ s3 including all its derivatives
upper right corner S(1,1) S≡ s4 including all its derivatives

At the four edges we get the following properties

Left edge S(0,v) = s1 +B(v)(s3− s1) only depend on s1 and s3
Right edge S(1,v) = s2 +B(v)(s4− s2) only depend on s2 and s4
Lower edge S(u,0) = s1 +B(u)(s2− s1) only depend on s1 and s2
Upper edge S(u,1) = s3 +B(u)(s4− s3) only depend on s3 and s4

Proof. It follows from B-function properties and (12.30), (12.31) and (12.32).

12.6.2 Tensor product Surfaces and irregular grids
Irregular grids can be quite complex. What we will discuss, however, is a collection
of regular tensor product surfaces that are connected in an irregular way. This involves
handling T-junctions and Star-junctions in the connections. To connect several blending
surfaces to one surface, we must use special local surfaces just for the blending between
neighboring surfaces. These local surfaces must cover the nearest neighborhood (accord-
ing to the grid) to all surfaces to be connected.

To the left in Figure 12.15 there is an example of a T-junction, and to the right an example
of a Star-junctions. We also call points that end irregular areas “terminating points”.

12.6.3 T-junctions
A T-junction is a grid line ending in an orthogonal grid line. In Figure 12.15 is there an
examples of a T-junction. T-junction occurs either when the knot-vector in a surface is not
the same as the knot-vector in the neighboring surface or if a knot value disappear when

12.6. T-JUNCTION AND STAR-JUNCTION 241

0

1

3

4

5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21

0

1

3

4

5

6

7

9

10

11

12

13

14

15

2

8

0 6 12 18

8

2

Figure 12.16: To the left of the figure we see the parameter plane of a cylinder that is
partitioned by the knot vectors u and v described in (12.33). The parameter patches are
marked with red numbers in the figure, and the interpolation points are marked with black
numbers. Two points have been removed. In the figure we see that points and parameter
surfaces at the upper right part have taken over the indices (numbers) of the removed
points and patches. To the right of the figure, we first see a blending spline cylinder with
the specified T-junction. The points around the area where the interpolation points have
been removed are then moved and rotated. We see the result to the right in the figure.

passing a grid line. How to handle T-junction to achieve smooth surfaces, is given by the
following theorem.

Theorem 12.1. If there is a T-junction or a collection of connected T-junction then the
local surfaces connected to these T-junction and to the terminating points of this collection
must be parts of a common surface to get a smooth and even C∞-smooth blending.

Proof. From Lemma 12.1 it follows that, at the vertices, the surface is identical with the
local surfaces connected to the respective vertex. If there is a T-junction, the T-junction is
a vertex on two neighboring sub-surfaces on a common local surface. On the other side
of the T-junction is another sub-surface from the same local surface. On this sub-surfaces
is the T-junction not a vertex. To interpolate a local surface at an internal point on an edge
(with all its derivatives), it follows from Lemma 12.1 that the two surfaces connected to
the two vertices defining the edge must be parts of the same surface, and that the surface
connected to the T-junction also must be part of the same surface.

To the left in Figure 12.15 is a T-junction highlighted in solid grey and two terminating
points marked with a black ring. The three local surfaces connected to the marked vertices
and covering the irregularities, is marked light blue and is divided into seven sub-surfaces.

Figure 12.16 shows an implementation. To the left of the figure we see the parameter

242 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

0

1

3

4

5

6

7

9

10

11

13

14

18

16

17

18

19

20

15

0

1

3

4

5

6

7

9

10

11

13

12

142 8

0 6

12

82

21

Figure 12.17: As in Figure 12.16, it is a matter of removing interpolation points. To
the left of the figure we see the parameter plane which is partitioned by the knot vectors
u and v described in (12.33). The parameter patches are marked with red numbers in
the figure, and the interpolation points are marked with black numbers. Two points have
been removed. The placement of the numbers is a result of the algorithm for removing the
points and patches. To the right of the figure, we first see a blending spline cylinder with
the specified T-junctions. The points around the area where the interpolation points have
been removed are then moved and rotated. We see the result to the right in the figure.

plane of a cylinder which is partitioned by the knot vectors

u =

{
−1

2
, −1

2
, −1

6
,

1
6
,

1
2
,

1
2

}
, and (12.33)

v =

{
−4

3
π, −π, −2

3
π, −1

3
π, 0,

1
3

π,
2
3

π, π,
4
3

π

}
.

The implementation is based on parameter patches marked with red numbers in the fig-
ure, and interpolation points including their local surfaces which are marked with black
numbers in the figure. They are both placed in separate vectors where the numbers are
indices in their respective vectors. The interpolation points can be removed interactively
by selecting one or more points and then removing them. In Figure 12.16, this is done
with two points. This is clearly illustrated in the figure because the points and patches in
the upper right part of the parameter plane have taken over the numbers of the removed
points and patches. The interpolation point number 14 in the figure is now a T-junction,
and consequently the local surfaces in points 13, 14 and 15 must be connected in accor-
dance with Theorem 12.1. If we use the sub-surface construction, the three points must
have a common matrix. To the right in Figure 12.16, we first see a blending-spline cylin-
der with the current T-junction. The points around the patches where the interpolation
points have been removed are then moved and rotated. The result can be seen to the right
in Figure 12.16 and is still as smooth as the cylinder itself.

In Figure 12.17, the removed points are on each side of the “cyclic boundary”, on a closed
surface, and they are therefor internal. Two points have been removed. In Figure 12.17

12.6. T-JUNCTION AND STAR-JUNCTION 243

0

1

3

4

5

6

7

9

10

11

24

24

12

1314

25

0

1

3

4

5

6

7

9

10

11

13

12

142 8

0 6

82

15

16

17

15

16

17

19

20

21

18

22

18

23

6

7

6

11

10

Figure 12.18: In this example, the u-vector, (12.34), has an inner multiple value, To the
left of the figure we see the parameter plane and the double knot can be seen as two almost
coincident vertical lines. Then 4 interpolation points with associated local surfaces are
removed. These are the points to the right of 6,7,10 and 11. To the right of the figure
is the surface shown in R3. The result is that we can model holes in the surface without
trimming the surface, ie there is a one to one map between the parameter plane of the
surface.

we see that it is the point between patch 10 and 11, and the point between the patch 11
and 6. The figure to the right shows the result in the parameter plane after the two points
have been removed. The parameter patches, marked with red numbers, keep track of the
indices of the interpolation points marked with black numbers. The interpolation points
also keep track of the parameter patches that surround them. The number of parameter
patches is reduced by three. All points around the removed points have been moved and
rotated after the two points have been removed.

If we insert a multiple knot-value, ie

u =

{
−1

2
, −1

2
, −1

6
, −1

6
,

1
6
,

1
2
,

1
2

}
(12.34)

we get a geometrically possible discontinuous surface. In figure 12.18 this is done. At
the same time, using T-junctions, we have removed 4 interpolation points/local surfaces,
these are the points with the indices 12, 13, 16 and 17. The result can be seen to the right
in Figure 12.18. Where we have not removed the points along the multiple knot value,
we now have a hole and where we have removed the points, the surface is continuous and
smooth. Note that there is still is a one to one mapping between the parameter plane and
the surface. In Pedersen at al. [128], more sophisticated holes are shown together with
possible applications, especially related to Isogeometric analysis.

244 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

Figure 12.19: To the left is the parameter plane of a surface (either tensor product
surface or Bézier-triangle) for a Star-junction and how the sub-surfaces are. In the middle
is shown the control polygon of the Bézier patches used in the reparametrization. To the
right is a Bézier triangle used. It is divided in 3 by reparametrization using Bézier patches.
In addition is 3 surfaces based on Hermite blended curves connected to each edges.

12.6.4 Star-junctions
A Star-junction is a point where several grid lines meets at a non-orthogonal way. One
example of a Star-junction is given to the right in Figure 12.15, where three grid lines
meet at one point. The problems related to Star-junction appears clearly when we look at
Figure 12.15. Lines in the parameter plane where one parameter is constant gets a kink
when they pass one of the edges going out of a Star-junction. In the following lemma we
show how to handle Star-junction in blending.

Theorem 12.2. To get a smooth blending when a Star-junction occur, then:
The local surface connected to the Star-junction and the local surfaces connected to the
terminating points must be sub-surfaces of one common surface, but the local surfaces
can be individually translated (not rotated, scaled, ..).
The smoothness over the edges from the Star-junction to its terminating points will be CS,
but the smoothness over the edge orthogonal to the terminating points (see Figure 12.19)
will depend on the reparametrization that is used.

Proof. Because the local surfaces are either parts of the same surface or only translated,
all derivatives of all orders are equal on the two local surfaces that share an edge. It follows
from Lemma 12.1 that the value and all derivatives on the resulting surface must go to-
wards the same when we go towards the edge from both sides. Thus, the edge between the
Star junction and its termination points becomes CS-smooth. At the surrounding edges,
the triangle we see in Figure 12.19, the smoothness will only depend on the smoothness
of reparametrization to the composite local surface. Thus, the resulting surface can only
be as smooth as the reparametrization, cf. the example in Figure 12.19.

On the left side of Figure 12.19 there is an example of a parameter plane of a surface that
covers the irregular Star-junction area. There are nine sub-surfaces, marked gray and light
blue, which together define four local surfaces. The top in the middle of the figure shows
the local surface attached to the Star-junction itself, below we see one of the three local

12.6. T-JUNCTION AND STAR-JUNCTION 245

Figure 12.20: Example of a smooth surface with a Star-junction. The surface is made by
blending of planar surfaces and one Bézier triangle expanded by using Hermite blended
curves from the three edges.

246 CHAPTER 12. TENSOR PRODUCT BLENDING SPLINE SURFACE

surfaces that are connected to the terminating points. Note that the upper part of the lower
surface is the same as the lower part of the upper surface.

At the upper middle triangle in Figure 12.19, the reparametrization is done in each of the
three sub-surfaces using a Bézier map, ω : R2 → R2. Each of the three sub-surfaces is
reparameterized in both directions using a 2nd-degree Bézier map with a 3× 3 control
polygon, in a “symmetric” way. The lower surface in the middle has 4 parts. The two
upper parts are equal to the two lower parts in the surface above. In the two lower parts
we see in dashed red a Bézier image with 3×4 control points, ie 2nd degree horizontally
and 3rd degree vertically.

In the lower middle surface in Figure 12.19, we name the control points on the left side
from top to bottom for ci, j, i = 1,2,3 and j = 1,2, ...,6. The upper patch then use ci, j, i =
1,2,3 and j = 1,2,3 and the lower patch ci, j, i = 1,2,3 and j = 3,4,5,6 then the local
surface is continuous. If in addition ci,4− ci,3 = ci,3− ci,2 then the local surface is C1-
smooth over the edge.

On the right side of Figure 12.19 is used a Béziertriangle map expanded by Hermite
blended curves and vector valued functions connected to each of the edges of the triangle.
The curves on the other side can be arbitrary chosen. The number of derivative functions
used in the Hermite blending determines the continuity.

In Figure 12.20 a surface with a Star-junction is shown, using the map explained on the
right side in Figure 12.19. The Surface is C1-smooth because only one derivative function
is used. Using the two maps described on the left side in Figure 12.19, the result was
similar to the first example. To the left in Figure 12.20 the surface is shown with normals
drawn at the boundary and the three edges connected to the Star-junction. The figures
illustrates the continuity. To the right, the three parts are moved apart.

Chapter 13

Triangular Surfaces

A triangle is a simplex, and thus one of the basic shapes in geometry. It is a polygon
with 3 edges and 3 vertices. A triangle can be seen as the boundary of a surface, typically
embedded in R3. Often a triangular surface is planar, but here we will concentrate on
curved triangular surfaces. Figure 13.1 gives an example of this.

Modelling of 3D objects in R3 is usually done by modeling the outer boundary. These sur-
faces of are bounded compact and connected and of different topological genus g, number
of holes/handles1. Tessellation of surfaces to 3D objects is often done by triangulation.
Triangular representation is more simple than general polygons. A short investigation of
these triangulations tells us that κ(S) is actually a number independent of a particular
triangulation, and will be the same for all triangulations of the given surface S.

In the first part of this chapter we will concentrate on the basic properties of simple trian-
gular surfaces (a simplex). Furthermore, we will look at triangulated surfaces, ie surfaces
that consist of a set of connected triangles that are more or less smooth in the connection.

1The Euler-Poincaré characteristic for a compact and connected surface S is κ(S) = F−E +V , where
F is the number of triangles, E is the number of edges and V is the number of vertices. It is related to the
genus, g, of the surface in the following way, κ(S) = 2(1−g). See the Gauss-Bonnet Theorem in [49].

Figure 13.1: A smooth and non-planar triangular surface embedded in R3.

247

248 CHAPTER 13. TRIANGULAR SURFACES

The best known curved triangular surface is the Bézier triangle. Bézier triangles were
(according to Farin [64]) first introduced early in the 1960s by de Casteljau in two internal
Citroën technical reports [38] and [39]. The basic constructions of a Bézier triangle will
shortly be repeated in section 13.1.

However, the main goal of the first part of this chapter is the introduction of triangles
based on blending, also defined on a domain described by homogeneous barycentric co-
ordinates.

13.1 Bézier triangles
A convex set defined by homogeneous barycentric coordinates (a ∆2 simplex) defines
the domain for the Bézier triangle, where we can construct basis functions of arbitrary
degrees d in the following way and still keep it in ∆2,

(u+ v+w)d = 1, where u,v,w≥ 0 and d > 0.

The expression of these basis functions for Bézier triangles are thus the Bernstein poly-
nomials of degree d, where for u+ v+w = 1,

bd,i, j,k(u,v,w) =
(

d
i jk

)
uiv jwk, where i+ j+ k = d and i, j,k ≥ 0.

For Bézier triangular surfaces we, therefor, have the following general formula,

S(u,v,w) = ∑
i+ j+k=d,

i, j,k≥0

ci, j,k bd,i, j,k(u,v,w) for u+ v+w = 1,

where ci, j,k ∈ Rn, are the coefficients, and n usually is 3.

Recall the Bernstein factor matrices Td(t) described in definition 4.5 in section 4.4.2.
Here, each line in these matrices sums to 1, so they are ready for barycentric coordinates.
We just need to replace u = 1− t and v = t. Rune Dalmo has in [34] made this extension
for higher dimensions. He showed that Td(u0, . . . ,uk) is a

(d+k−1
k

)
×
(d+k

k

)
band limited

matrix with k+1 nonzero elements on each row. The matrix is defined recursively as

Td(u0, . . . ,uk) =

(
Td−1(u0, . . . ,uk) 0

Tddiag(u0) Td(u1, . . . ,uk)

)
.

A 3rd-degree Bézier triangle is then

s(u,v,w) = T1(u,v,w) T2(u,v,w) T3(u,v,w) C

where

T1(u,v,w) =
(

u v w
)
, T2(u,v,w) =

 u v w 0 0 0
0 u 0
0 0 u

v w 0
0 v w



13.1. BÉZIER TRIANGLES 249

cuuu

cuuv cuuw

cuvv cuvw cuww

cvvv cvvw cvww cwww

Figure 13.2: The notation, distribution and connection of the control points in a 3rd-
degree Bézier triangle.

T3(u,v,w) =


u v w 0 0 0
0 u 0 v w 0
0 0 u 0 v w

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 u 0 0
0 0 0 0 u 0
0 0 0 0 0 u

v w 0 0
0 v w 0
0 0 v w


and

C = (cuuu,cuuv,cuuw,cuvv,cuvw,cuww,cvvv,cvvw,cvww,cwww)
T

Figure 13.2 shows the notation and distribution/interconnection of the control points C.
Note that the organization of the points in the vector is from bottom to top and from left
to right in the figure. If we now compute the 3rd-degree Bézier triangle we get

s(u,v,w) = u3cuuu +3u2vcuuv +3u2wcuuw +3uv2cuvv +uvwcuvw

+3uw2cuww + v3cvvv +3v2wcvvw +3vw2cvww +w3cwww

In homogeneous barycentric coordinates, we have both partial derivatives, Su, Sv, Sw and
directional derivatives, Sd. From (4.33) we saw that we can compute the derivative by
differentiating the last matrix, and that the rows of this matrix sum up to 0, and that
the derivatives are thus vectors. Here in barycentric coordinates, the lines in the deriva-
tive matrix will sum up to 1, and thus the partial derivatives will be points. The ap-
propriate derivatives are thus direction derivatives, where the vector d = p1− p2 (the
distance vector between two points) is a vector in homogeneous barycentric coordinates
d = (r,s, t) where r + s+ t = 0. The directional derivative is thus a vector and can be
computed in the following way

Sd(u,v,w) = r Su(u,v,w)+ s Sv(u,v,w)+ t Sw(u,v,w), (13.1)

where u+ v+w = 1 and r+ s+ t = 0.

Note that the parameters at the corners are (1,0,0), (0,1,0) and (0,0,1). We can thus use
d1 = (−1,1,0) and d2 = (−1,0,1) to compute directional derivatives,

sd1(u,v,w) = sv(u,v,w)− su(u,v,w) and sd2(u,v,w) = sw(u,v,w)− su(u,v,w),

250 CHAPTER 13. TRIANGULAR SURFACES

Figure 13.3: A 3rd-degree Bézier triangle including the control points and the control
polygon is shown. The surface is plotted both shaded and in wire-frame mode so that all
control points can be seen.

and the normal is
n = sd1(u,v,w)∧ sd2(u,v,w).

Figure 13.3 shows a shaded Bézier triangle, where normals are computed. More about the
general theory of Bernstein-Bézier triangles, including the algorithm for evaluation and
derivations, can be found in [63] or [64].

13.2 B-function in homogeneous barycentric coordinates

In section 7.1 is the univariate B-function defined. In D5 in Definition 7.1 is the point
symmetry defined, that is B(t) + B(1− t) = 1, which in 1-dimensional homogeneous
barycentric coordinates becomes B(u)+B(v) = 1 or B(u,v) = (x1,x2) where (x1,x2) are
homogeneous barycentric coordinates.

If we now extend the B-function to homogeneous barycentric coordinates we get:

Definition 13.1. A B-function B(u0,u1, . . . ,un), where ∑
n
i=0 ui = 1, is:

D1 a permutation function B : ∆n→ ∆n, where ∆n is an n-simplex

– D2 thus is B(. . . ,ui−1,0, . . .) = {. . . ,xi−1,0, . . .}, i=0,1,. . . ,n

– D3 and B(. . . ,ui−1,1, . . .) = {. . . ,xi−1,1, . . .}, i=0,1,. . . ,n

– D4 and that is monotone, i.e.
n

∑
j=0

u j
∂

∂ui
B(ū)− ∂

∂ui
B(ū) = x̄, xi ≥ 0, i=0,1,. . . ,n

D5 A B-function is symmetric if B(ū) = x̄, for all coincident permutations of ū and x̄

Note that to show the monotony, D4, it follows that for each coordinate, the directional
derivative from any point, in the direction of the top point of the current coordinate must
be ≥ 0 (the top point is where the current coordinate value is 1, see figure 13.4).

13.2. B-FUNCTION IN HOMOGENEOUS BARYCENTRIC COORDINATES 251

Figure 13.4: The B-function B1(u1,u2,u3) for triangles seen from two different view
points.

A B-function maps n+1 coordinates. With triangles we get 3 coordinates such that

B(u,v,w) = (x0,x1,x2) ,

and it follows that we can denote each element with an index, ie.

Bi(u,v,w) = xi, i = 0,1,2.

As we learned from univariate B-functions in section 7.1, we have many ways of con-
structing B-functions in homogeneous barycentric coordinates.

We will look at two examples, first using the univariate B-function.

Definition 13.2. Given a point (u0,u1, ...,un) ∈ ∆n (in homogeneous barycentric coordi-
nates, fulfilling the convexity property). A B-function in ∆n can be defined as follows,

B(u0,u1, . . . ,un) =
1

∑
n
i=0 B(ui)

(B(u0),B(u1), . . . ,B(un)) (13.2)

where B(u) is a univariate B-function as defined in Definition 7.1.

For n = 2, ie. a triangle, each component of the B-function will be

Bi (u0,u1,u2) =
B(ui)

B(u0)+B(u1)+B(u2)
for i = 0,1,2.

We can see that Definition 13.2 fulfill all 5 points in Definition 13.1.

In Figure 13.4 is a 2-dimensional B-function for one coordinate shown. In this plot is the
Expo-Rational B-function (7.31) used as the univariate B-function in Definition 13.2.

As in the Bézier triangle, the directional derivatives must be used, d∈ϒn. Thus, the partial
derivatives are necessary. Therefore, for n > 0 we have for the following 6 equations.
First, the first-order partial derivatives, where for i = 0,1, ...,n is

DuiBi(u0, . . . ,un) = B′(ui)
∑

n
j=0 B(u j)−B(ui)(

∑
n
j=0 B(u j)

)2 , (13.3)

252 CHAPTER 13. TRIANGULAR SURFACES

and, for j = 0,2, ...,n, but where j 6= i,

Du jBi(u0, . . . ,un) = B′(u j)
−B(ui)(

∑
n
j=0 B(u j)

)2 . (13.4)

For second order partial derivatives we have,

D2
ui

Bi(u0, . . . ,un) =

(
B′′(ui)−

2(B′(ui))
2

∑
n
j=0 B(u j)

)
∑

n
j=0 B(u j)−B(ui)(

∑
n
j=0 B(u j)

)2 , (13.5)

and for j = 0,1, ...,n, but where j 6= i for both

D2
u j

Bi(u0, . . . ,un) =

(
B′′(u j)−

2
(
B′(u j)

)2

∑
n
j=0 B(u j)

)
−B(ui)(

∑
n
j=0 B(u j)

)2 , (13.6)

and

DuiDu jBi(u0, . . . ,un) = B′(ui) B′(u j)
2B(ui)−∑

n
j=0 B(u j)(

∑
n
j=0 B(u j)

)3 , (13.7)

and for j = 0,1, ...,n, but where j 6= i, and for h = 0,1, ...,n, but where h 6= i, j, we have

DuhDu jBi(u0, . . . ,un) = B′(uh) B′(u j)
2B(ui)(

∑
n
j=0 B(u j)

)3 . (13.8)

Note that all these 6 partial derivatives has a factor with the chosen univariate B-function
with the same order of derivatives. Thus the order, Definition 7.2, of the homogeneous
barycentric B-function will be the same as the order of the chosen univariate B-function.

Now, given a vector d ∈ ϒn, i.e.,

d = u1−u2 = (d0,d1, ...,dn), where u1 and u2 ∈ ∆n.

Remember that partial derivatives in homogeneous barycentric coordinates gives points,
To compute normals we need vectors, ie. directional derivatives for the B-function in
homogeneous barycentric coordinates. That is

DdBi(u0,u1, ...,un) =
n

∑
j=0

d j Du jBi((u0,u1, ...,un)). (13.9)

It is convenient to define some main directions for derivatives. For triangles we can use,

d1 = (−1,1,0), and d2 = (−1,0,1). (13.10)

In these main directions are the derivatives up to second order for Bi(u,v,w), i = 0,1,2,
as follows,

Dd1Bi(u,v,w) = DvBi(u,v,w)−DuBi(u,v,w),
Dd2Bi(u,v,w) = DwBi(u,v,w)−DuBi(u,v,w),

D2
d1

Bi(u,v,w) = D2
vBi(u,v,w)−DuDvBi(u,v,w)+D2

uBi(u,v,w),

D2
d2

Bi(u,v,w) = D2
wBi(u,v,w)−DuDwBi(u,v,w)+D2

uBi(u,v,w),

Dd1Dd2Bi(u,v,w) = DvDwBi(u,v,w)−DuDvBi(u,v,w)−DuDwBi(u,v,w)+D2
uBi(u,v,w).

13.2. B-FUNCTION IN HOMOGENEOUS BARYCENTRIC COORDINATES 253

Figure 13.5: Plot of density functions based on the Beta-function. To the left is an order
1 function Φ(u,v,w) = u2v2w2, and to the right is an order 2 function Φ(u,v,w) = u3v3w3.

The next example is based on density of mass distribution. Based on observations in
the univariate B-functions, Beta-functions (7.18) and an Expo-Rational B-function (7.31)
who both are constructed with this technic, is it naturally to expand this to B-functions in
homogeneous barycentric coordinates.

Definition 13.3. Given a point p = (u0,u1, ...,un) ∈ ∆n (in homogeneous barycentric co-
ordinates, fulfilling the convexity property). A B-function in ∆n can be defined as follows,

B(u0,u1, . . . ,un) =
1

mass(∆n)
(mass(p,u0),mass(p,u1), . . . ,mass(p,un)) (13.11)

where mass(∆n) is the mass of the hole simplex, mass(p,ui), i = 0,1, . . . ,n is the mass of
the simplex defined by the point p and the sub-simplex ∆n−1 where ui = 0.

For n = 2, ie. the triangular case follows two examples of density functions,

Φ(u,v,w) = e−
a

uvw , a > 0, and Φ(u,v,w) = (uvw)k, k > 0.

The last example, the Beta function, we will now go ahead with and develop B functions.
In Figure 13.5 is an order 1 and an order 2 density function of type Beta-function plotted.
the order means, like univariate B-functions, the order of the derivatives that are zero
along the edges. Following Definition 13.3 expression (13.11) we get

B(u,v,w) =
1∫

Ω
Φ(u,v,w)dΩ

(∫
Ω0

Φ(u,v,w)dΩ0,
∫

Ω1

Φ(u,v,w)dΩ1,
∫

Ω2

Φ(u,v,w)dΩ2

)
where the domain Ω and the sub-domains Ω0, Ω1 and Ω2 are shown in Figure 13.6. The
point p = (u,v,w), the ´´evaluation”-point, and the coordinates of the two vectors in the
figure are r = p− p1 = (u,v−1,w) and s = p− p2 = (u,v,w−1). The integrals are thus

∫
Ω

Φ(u,v,w)dΩ =

1∫
0

1−µ∫
0

φ(µ,ν ,1−µ−ν) dνdµ

∫
Ω0

Φ(u,v,w)dΩ0 =

u∫
0

1− 1−v
u µ∫

v
u µ

φ(µ,ν ,1−µ−ν) dνdµ

254 CHAPTER 13. TRIANGULAR SURFACES

p2

p0

p1

W2

W0

W1

p=(u,v,w)

W = 0W 1W 2WU U

r s

(0,1,0) (0,0,1)

(1,0,0)=

= =

Figure 13.6: We see a Triangle domain Ω and its three vertices p0, p1 and p2. A point
p divide it into three sub-domains Ω0, Ω1 and Ω2. Also two vectors r and s are shown.

Most of the limits in the integrals are self explanatory. What needs explanation is the
lower and upper boundaries of the last integral. They follow because we use the vertices
p, p1 and p2 and the vectors r and s scaled by µ

u (see Figure 13.6). Thus we get

p1 +
µ

u
(p− p1) = ((0,1,0)+

µ

u
((u,v,w)− (0,1,0)) =

(
µ, 1− 1− v

u
µ,

w
u

µ

)
where the second component is the upper limit, and

p2 +
µ

u
(p− p2) = ((0,0,1)+

µ

u
((u,v,w)− (0,0,1)) =

(
µ,

v
u

µ, 1− 1−w
u

µ

)
where the second component is the lower limit.

∫
Ω1

Φ(u,v,w)dΩ1 and
∫

Ω2
Φ(u,v,w)dΩ2

can then be computed by cyclic shifting of the barycentric variables u, v, w. Then -

For 1st-order Beta-functions we get the following B-function
B(u,v,w) =

(
(6vw−2u+3)u2, (6uw−2v+3)v2, (6uv−2w+3)w2,

)
and for 2nd-order Beta-functions we get

B(u,v,w) =
(
(30vw(3vw−u+1)+6u2−15u+10)u3,

(30uw(3uw− v+1)+6v2−15v+10)v3,

(30uv(3uv−w+1)+6w2−15w+10)w3)
The partial derivatives for both 1st and 2nd-order Beta-functions are easy to compute. And
we can use the same technique as used in the first example, Definition 13.2, to compute
the directional derivatives of all order. We also see that the Hermite order S, Definition
7.2, for Beta-functions will be the degree of the density functions minus 1, and that the
order generally follow what we see for the univariate B-function of the same type.

Figure 13.7 shows the components of two Beta functions in homogeneous barycentric
coordinates, the three of 1st-order on the left and the three of 2nd-order on the right.
Remember that since they are elements of homogeneous barycentric coordinates, they
always sum up to 1. The order S works in the same way as for univariate B-functions, but
the start and end are where all directional derivatives are zero, ie where ui = 1 and ui = 0.
The former is a point, while the latter is a sub-simplex ∆n−1, i.e. an edge.

13.3. BLENDING TRIANGLES 255

Figure 13.7: we see the three components of a Beta function in homogeneous barycen-
tric coordinates, three 1st-order functions on the left, three 2nd-order functions on the
right.

13.3 Blending triangles
The general formula for a Blending triangle is

S(u,v,w) =
2

∑
i=0

si(u,v,w) Bi(u,v,w), where u+ v+w = 1, u,v,w≥ 0,

where si(u,v,w), i = 0,1,2 are local triangles and B(u,v,w) is a B-function in homoge-
neous barycentric coordinates. In Figures 13.8, there are two plots of Blending triangles
and their respective 3 local triangles. All the local triangles are actually planar in both fig-
ures, and we can see their boundary/control polygon marked as green lines. In the figure
to the left we can see that they are also parallel. We can also see that the global Blend-
ing triangle interpolates each of the local triangles in one of the corners, and we know
from the properties of B-functions that the interpolation not only involves the position, it
actually includes interpolation of a certain order of derivatives depending on the order of
the B-function used. The Blending surface to the right in Figure 13.8 is initially the same
as the one to the left. The local triangles have just been moved and rotated slightly. The
partial derivatives are computed using the product rule and the directional derivatives are
done by using (13.9) and the direction we find in (13.10).

It is preferable for several reasons that the local surfaces are oriented in such a way that
the full support of the first parameter (i.e. u = 1) is in the interpolation point to the global
Blending triangle. This simplifies the construction and organization of the local triangles,
but it introduces the need for a new type of mapping of the parameters between the global
triangle and the local triangles for each of the vertices. This mapping is actually only a
cyclic use of the parameters. This cyclic mapping is shown in the following expression,

S(u,v,w) = s0(u,v,w) B0(u,v,w)+s1(v,w,u) B1(u,v,w)+s2(w,u,v) B2(u,v,w), (13.12)

where u+v+w = 1, u,v,w≥ 0, and si, i = 0,1,2 are local triangles, orientated in such a
way that the full support of the first parameter (i.e. the “local u= 1”) is in the interpolation
point with the global Blending triangle. Therefore, we have the rotation of the parameters
of the local triangles in (13.12). However, the expression is straightforward to implement.

256 CHAPTER 13. TRIANGULAR SURFACES

Figure 13.8: Two blending spline triangle surfaces with their three local triangles
marked with green lines. The local triangles are all 1st-degree Bézier triangles. To the
left they are parallel to each other but are rotated and moved in the surface to the right.

13.4 Local Bézier triangles and Hermite interpolation
Figure 13.9 shows three Blending triangles, where the local triangles are 2nd-degree
Bézier triangles. This provides a small insight into the shaping possibilities where both
the control points of the Bézier triangles and also the position and orientation of the Bézier
triangles themselves can be changed.

To make a Blending triangle by ”copying” a part of another surface, the local triangles
can be made by Hermite interpolating each of the vertices with one Bézier triangle. In
section 12.3.1, local tensor product Bézier surfaces are made with Hermite interpolation
at one point. The technique for Bézier triangles is quite similar, but must be adapted to
triangles and thus barycentric coordinates. The method is:
√

Given a surface g : Ωg ⊂ R2→ Rn, where usually n = 3.
√

Given three points in the parameter plane Ωg; p0, p1 and p2, each associated with one
local triangle. The polynomial degree of each of the local Bézier triangles is also
required.

√
Make local Bézier triangles si(u,v,w) of degree di using position and derivative infor-

mation at the parameter values pi, i = 0,1,2. Note the cyclic shift in the expressions
below, cf. (13.12). The hermite interpolation is based on the fact that the following
requirements must be met to make the three Bézier triangles, i.e.

Di
(−1,1,0)D

j
(−1,0,1)s0(1,0,0) = Di

(−1,1,0)D
j
(−1,0,1)S(1,0,0) = Di

p1−p0
D j

p2−p0
g(p1),

Di
(−1,1,0)D

j
(−1,0,1)s1(1,0,0) = Di

(0,−1,1)D
j
(1,−1,0)S(0,1,0) = Di

p2−p1
D j

p0−p1
g(p2),

Di
(−1,1,0)D

j
(−1,0,1)s2(1,0,0) = Di

(1,0,−1)D
j
(0,1,−1)S(0,0,1) = Di

p0−p2
D j

p1−p2
g(p3),

for all combinations of i, j where 0≤ (i+ j)≤ dk, and i, j ≥ 0, for k = 0,1,2.

13.4. LOCAL BÉZIER TRIANGLES AND HERMITE INTERPOLATION 257

Figure 13.9: Three different Blending triangles are shown. The local triangles are 2nd-
degree Bézier triangles (not planar any more), and we can see them colored blue. The
control polygons of these local Bézier triangles can be seen as green lines, and their
control points as red cubes.

258 CHAPTER 13. TRIANGULAR SURFACES

Blending triangles interpolates their local triangles in the vertices (corners), with the po-
sition and all derivatives up to the Hermite order S. This can be clearly seen in Figures
13.9. This is why Hermite interpolation of the local surfaces only must be done at one
point for each local triangular surface, where the position and the derivatives from the
original surface g uniquely determine the local surface.

To make Hermite interpolation of Bézier triangles, we start from the requirements on the
previous page. We take the expression on the left which is the expression of position
and derivatives to Bézier triangles, and the expression on the right which is the same
derivatives in the same point on the original surface,ie

Di
(−1,1,0)D

j
(−1,0,1)s(1,0,0) = Di

d1
D j

d2
g(p), for 0≤ (i+ j)≤ d, i, j ≥ 0, (13.13)

where d is the polynomial degree of the Bézier triangle, p is the point in Ωg, and d1,d2
are vectors ∈ R2 at the point p. Recall that the number of equations in (13.13) is

nb =
d+1

∑
i=1

i,

which follows from that the sum of the possible variants, for i+ j = d is d + 1 when
i, j≥ 0. For d = 1, we get nb = 3, for d = 2, we get nb = 6, and for d = 3, we get nb = 10.
This matches the relationship between the degree and the number of control points/basis
functions of a Bézier triangle. Equation (13.13) is, therefore, uniquely determining the
Bézier triangle from the position and derivatives of the original surface.

To compute the equations for the Hermite interpolation we use the expression for the
directional derivatives for the Bézier triangle. The 1st-order (directional) derivatives are
given in (13.1). All these computations are done in [102], page 157–161.

For 3 points p,p1,p2 ∈ Ωg, and two vectors q1 = p1−p and q2 = p2−p, the results for
the Hermite interpolation of a parametric surface by the 1st-degree Bézier triangle is

c0 = g(p),
c1 = c0 +dgp(q1),

c2 = c0 +dgp(q2).

The Hermite interpolation of a 2nd degree Bézier triangle is a little bit more complex, the
control points will then be

c1 = g(p),

c2 = c1 +
1
2

dgp(q1),

c3 = c1 +
1
2

dgp(q2),

c4 =−c1 +2c2 +
1
2

d(dg(q1))p(q1),

c5 =−c1 + c2 + c3 +
1
2

d(dg(q1))p(q2),

c6 =−c1 +2c3 +
1
2

d(dg(q2))p(q2).

13.4. LOCAL BÉZIER TRIANGLES AND HERMITE INTERPOLATION 259

The Hermite interpolation of a 3rd-degree Bézier triangle gives the control points

c1 = g(p),

c2 = c1 +
1
3

dgp(q1),

c3 = c1 +
1
3

dgp(q2),

c4 =−c1 +2c2 +
1
6

d(dg(q1))p(q1),

c5 =−c1 + c2 + c3 +
1
6

d(dg(q1))p(q2),

c6 =−c1 +2c3 +
1
6

d(dg(q2))p(q2),

c7 = c1−3c2 +3c4 +
1
6

d(d(dg(q1))(q1))p(q1),

c8 = c1−2c2− c3 + c4 +2c5 +
1
6

d(d(dg(q1))(q1))p(q2),

c9 = c1− c2−2c3 +2c5 + c6 +
1
6

d(d(dg(q1))(q2))p(q2),

c10 = c1−3c3 +3c6 +
1
6

d(d(dg(q2))(q2))p(q2).

As we see above, to find the control points of the Bézier triangles, we must calculate posi-
tion and directional derivatives on the original surface g(u,v), both first, second, third, and
the cross derivatives between two directions. Therefore we need a position p = (u0,v0)
and two direction vectors, q1 = (u1,v1) and q2 = (u2,v2), in the parameter plane of the
original surface g. So, the 1st order derivatives in the two directions are

dgp(q1) = u1gu(p)+ v1gv(p),
dgp(q2) = u2gu(p)+ v2gv(p).

The 2nd-order derivatives are

d(dg(q1))p(q1) = u1d(gu)p(q1)+ v1d(gv)p(q1) = u2
1guu(p)+2u1v1guv(p)+ v2

1gvv(p),
d(dg(q2))p(q2) = u2d(gu)p(q2)+ v2d(gv)p(q2) = u2

2guu(p)+2u2v2guv(p)+ v2
2gvv(p),

d(dg(q1))p(q2) = u1d(gu)p(q2)+ v1d(gv)p(q2)

= u1u2guu(p)+(u1v2 +u2v1)guv(p)+ v1v2gvv(p),

and the 3rd-order derivatives are

d(d(dg(q1))(q1))p(q1) = u3
1guuu(p)+(3u2

1v1)guuv(p)+(3u1v2
1)guvv(p)+ v3

1gvvv(p),
d(d(dg(q2))(q2))p(q2) = u3

2guuu(p)+(3u2
2v2)guuv(p)+(3u2v2

2)guvv(p)+u3
2gvvv(p),

d(d(dg(q1))(q2))p(q2) = u1u2
2guuu(p)+a1guuv(p)+b1guvv(p)+ v1v2

2gvvv(p),
d(d(dg(q1))(q1))p(q2) = u2

1u2guuu(p)+a2guuv(p)+b2guvv(p)+ v2
1v2gvvv(p),

a1 = u2
2v1 +2u1u2v2, b1 = u1v2

2 +2u2v1v2, a2 = u2
1v2 +2u1u2v1, b2 = u2v2

1 +2u1v1v2.

260 CHAPTER 13. TRIANGULAR SURFACES

Figure 13.10: Two views of a sphere and one Blending triangular surface interpolating
a part of the sphere. The Blending triangle is slightly translated away from the sphere. The
local triangles are 3rd-degree Bézier triangles, and we can see all the control polygons of
the local Bézier triangles as green lines, and the control points as red cubes.

13.4. LOCAL BÉZIER TRIANGLES AND HERMITE INTERPOLATION 261

Figure 13.11: Three different views of a surface composed of four Blending triangles
that Hermite-interpolates a part of a torus, equation (12.24), in 5 points. There are 4×3
local 3rd-degree Bézier triangles. We can see their control polygons as green lines, and
the control points as red cubes. The blue cube is the center of the original torus.

262 CHAPTER 13. TRIANGULAR SURFACES

Figure 13.12: On the left hand side there is a plot of a Seashell, equation (12.25), and
on the right hand side there is a plot of a set of 80 Blending triangles, Hermite interpo-
lating a Seashell at 44 different points. The 80 Blending triangles are all independent of
each other, but are “continuously connected”; this means that there are no holes in the
composite surface after the interpolation.

13.5. SUB-TRIANGLES FROM ANY PARAMETRIC SURFACE 263

p2

p1

p0

I

u

v

Figure 13.13: The parameter plane Ω of a surface S : Ω⊂ R2→ Rn, n > 0. The three
points p0,p1,p2 ∈Ω describe a triangle in the parameter plane.

In Figure 13.10, a Blending triangle is made by interpolating a sphere at three points,One
2nddegreeBézier triangle is made at each of the points. In the figure, the Blending triangle
is slightly removed from the sphere so that we can see it better. We can also see the control
polygons for each of the local Bézier triangles as green lines, and the control points as
red cubes. The three interpolation points are all in the parameter plane of the sphere, and
the directional derivatives are the vector between these points in the parameter plane. The
parametrization of the sphere affects the shape of the triangle. It can clearly be seen that
two of the edges form a “slight S”. The center points of the three control polygons almost
coincides, and the three control polygons are quite equal.

In the previous example and the next two examples, an Expo-rational B-function with
an ∞ order is used. The next example is based on a torus, equation (12.24). In Figure
13.11, we can see three different views of four Blending triangles computed by Hermite
interpolation of a torus, expression (12.24), at 5 different points. The composition of the
four Blending triangles is clearly continuous. Although this cannot be easily seen, the
composition is actually based on four different triangles. But even if they together look as
being G∞ (geometrically infinitely smooth), they are not. This can clearly be seen in the
next example, which is a Hermite interpolation of a “Sea Shell” surface, equation (12.25).
On the left hand side of Figure 13.12 there is a plot of a “Sea Shell” surface, (12.25),
and on the right hand side there is a plot of 80 Blending triangles interpolating the whole
“Sea Shell” surface. One can clearly see that the composition is continuous, but it does
not seem to be G∞. It is actually G∞ at all 44 interpolation points, but at the 124 edges it
seems to be only continuous, G0, although the result is quite good. An observation is that
it seems to be smooth at a point in the middle of each edges. All this follows from the
properties of the B-function and that if an object is covered by several parameterisations,
the map from one to another must be continuous and smooth.

13.5 Sub-triangles from any parametric surface

It is possible to extract a triangular surface S(u,v,w) from an ordinary surface in Cartesian
coordinates ie. S : Ω ⊂ R2 → Rn, where n usually is 3. S(u,v,w) can, thus, be defined

264 CHAPTER 13. TRIANGULAR SURFACES

Figure 13.14: The grey surface is a B-spline tensor product surface. The triangular
green surface is defined by three points in the parameter plane of the B-spline tensor
product surface, and its domain is the minimum convex set including these three points
(that is, a triangle in the parametric domain).

by the three points p0,p1,p2 ∈Ω, in the parameter plane of the parametric surface S, see
Figure 13.13.

To clarify the notation, we have an ´´ordinary” parametric surface S(p)∈Rn, p∈Ω⊂R2

and the differential, dSu = [Su Sv](p) ∈ Rn×2. A triangular surface S is then

S(u,v,w) = S(u), where u = up0 + vp1 +wp2,

where the three points are pi =

(
ui
vi

)
, i = 0,1,2. The first order partial derivatives are,

Su(u,v,w) = dSu(p0) = u0 Su(u)+ v0 Sv(u),
Sv(u,v,w) = dSu(p1) = u1 Su(u)+ v1 Sv(u),
Sw(u,v,w) = dSu(p2) = u2 Su(u)+ v2 Sv(u),

and the second order partial derivatives are,

Suu(u,v,w) = d(dS(p0))u (p0) = u2
0 Suu(u)+2u0v0 Suv(u)+ v2

0 Svv(u),
Svv(u,v,w) = d(dS(p1))u (p1) = u2

1 Suu(u)+2u1v1 Suv(u)+ v2
1 Svv(u),

Sww(u,v,w) = d(dS(p2))u (p2) = u2
2 Suu(u)+2u2v2 Suu(u)+ v2

2 Svv(u),
Suv(u,v,w) = d(dS(p0))u (p1) = u0u1 Suu(u)+(u0v1 + v0u1)Suv(u)+ v0v1 Svv(u),
Suw(u,v,w) = d(dS(p0))u (p2) = u0u2 Suu(u)+(u0v2 + v0u2)Suv(u)+ v0v2 Svv(u),
Svw(u,v,w) = d(dS(p1))u (p2) = u1u2 Suu(u)+(u1v2 + v1u2)Suv(u)+ v1v2 Svv(u).

To calculate directional derivatives and normals, we follow the same procedure as for
Bézier triangles, see section 13.1. In Figure 13.14, a triangular surface extracted from a
tensor product B-spline surface is shown. The domain of this triangular surface is shown
in Figure 13.13.

13.6. SURFACE APPROXIMATION BY TRIANGULATION. 265

2p

0
0

p

p0 p1 p2 p3

p4 p5 p6 p7

p8 p9 p11p10

2 4 6

Type a) Type b) Type c)

D1 D5

D6

D8

D9

D2

D4

D10

D3 D7 D11

D12

pa pb pc

Wpa Wpb Wpc

Figure 13.15: To the left is the parameter domain of a cylinder, [0,6]× [0,2π). We see
8 points marked in red, and 4 points without marks because they are equal to the 4 points
at the bottom. The parameter domain is triangulated. To the right we see the 3 different
types of sub-domains we get, the red marks are the points they are connected to.

We can copy any parametric surface by triangulating the domain and using these sub-
triangles as local triangles, Be aware that we then must have 3 equal triangles to blend. If
all triangles that are connected to one vertex can be moved and/or rotated together, then
we have a tool for shaping objects. This is the subject for the next section.

13.6 Surface approximation by triangulation.
Any parametric surface can be triangulated. If we, in the parameter plane of a surface,
have a set of points (vertices) then we can triangulate by connecting these points with
edges. If the surface is closed/cyclic in one or both directions, the triangulation must also
act on cyclic domains. The goal now is to make a copy of a surface with a set of connected
triangular blending surfaces. The concept is as follows,

1. We start with a point set in the surface parameter domain.

2. We triangulate by connecting points with edges.

3. To each point we assign a sub-surface, ie a parameter area that covers all triangles
where the point is one of the corners of the triangle.

4. To each point/sub-surface we assign an homogeneous matrix.

5. We now find each triangle in 3 different sub-surfaces. These three triangles, each
from its own sub-surface, can now be used in the construction of a blending triangle.

Initially we get an exact copy of a given surface, but the shape can be changed by mov-
ing/rotating the points (sub-surfaces) by the homogeneous matrix assign to the point.

We will now look at two examples. The first example is a cylinder, equation (9.2). To the

266 CHAPTER 13. TRIANGULAR SURFACES

Figure 13.16: The 8 sub-surfaces of the cylinder with the partition given in Figure 13.15
and the table below. Each triangle of the sub-surface are colored separately.

left in Figure 13.15 we see the parameter domain with 8 points which is marked with red.
These are the vertices for triangulating the domain. The 4 points at the top are the same as
the 4 points at the bottom due of the cyclic structure. The domain is triangulated and each
of the 12 triangles is marked as ∆i, i = 1,2, . . . ,12. A sub-domain Ωpi is also assigned to
each point pi, i = 0,1, . . . ,7, see to the right in Figure 13.15. These sub-domains can be
of three different types, and in the figure these are marked as type a), type b) and type c).

The parameter domain of a sub-surfaces is the union of all triangles that have one of their
corners as the defining point of the parameter domain of the sub-surface. The table below
describes the parameter domains of the 8 sub-surfaces of the cylinder example.

sub-surface domain The triangles that form the domain Type
Ωp0 ∆1, ∆3, ∆4 a)
Ωp1 ∆1, ∆2, ∆5, ∆4, ∆7, ∆8 b)
Ωp2 ∆5, ∆6, ∆9, ∆8, ∆11, ∆12 b)
Ωp3 ∆9, ∆10, ∆12 c)
Ωp4 ∆3, ∆1, ∆2 a)
Ωp5 ∆3, ∆4, ∆7, ∆2, ∆5, ∆6 b)
Ωp6 ∆7, ∆8, ∆11, ∆6, ∆9, ∆10 b)
Ωp7 ∆11, ∆12, ∆10 c)

In the table, in the column triangles, there are a total of 36 triangles, and each specific
triangle is always found at exact three different sub-surfaces. For example, triangle ∆1 is
in sub-surface Ωp0 , Ωp1 and Ωp4 , triangle ∆7 is in sub-surface Ωp1 , Ωp5 and Ωp6 .

Figure 13.16 shows the 8 sub-surfaces of the cylinder example. Accordingly, they are
parts of a cylinder and each of them is divided into triangles which are shown by each
having its own color. Together, the sub-surfaces will cover the cylinder 3 times. To each

13.6. SURFACE APPROXIMATION BY TRIANGULATION. 267

Figure 13.17: To the left we see a cylinder composed of Blending-triangles. To the right
we see the same set of triangular surfaces, but now they are deformed. This is because
some sub-surfaces are moved apart in either vertical or horizontal directions.

sub-surface is assigned a homogeneous matrix (see page 155). In practical implementa-
tion, the sub-surfaces are only represented as the definition point and a set of triangles
in the parameter domain as well as the homogeneous matrix. Each of the sub-surfaces
can then be moved, rotated, scaled, ... (affine maps, see page 16) with the homogeneous
matrix so that for each blending triangle we get, in the same way as expression (13.12)
but without the cyclic mapping, the following expression

Si(u) = B0(u) H0 si(u)+B1(u)H1 si(u)+B2(u)H2 si(u)

where u = (u,v,w). This can be reorganized to

Si(u) = H(u) si(u) (13.14)

where
H(u) = B0(u) H0 +B1(u)H1 +B2(u)H2. (13.15)

and si(u) is the expression for the sub-triangle S(∆i) of the cylinder S. Here is the H0
matrix connected to the point in the corner of the triangle where u = 1, H1 is the matrix
connected to the point in the corner of the triangle where v = 1, and H2 is the matrix
connected to the point in the corner of the triangle where w = 1.

The expressions (13.14) and (13.15) are the general expression for surface approximation
by triangulation. The construction is similar to the construction in Section 12.4 for tensor
product sub-surface construction. In Figure 13.17, on the left side, there is a cylinder
made by surface approximation by triangulation. The object is an exact copy of the ini-
tial cylinder. However, the construction is designed for shape changing. To the right in
Figure 13.17, the homogeneous matrices are no longer identity matrices. Here the sub-
surfaces are moved apart in alternating vertical and horizontal directions. But we can still
recognize each individual triangle and clearly see the deformation of these.

The derivatives are straight forward to compute,

DuSi(u) = Hu(u) si((u))+H(u) Dusi((u))
DvSi(u) = Hv(u) si((u))+H(u) Dvsi((u))
DwSi(u) = Hw(u) si((u))+H(u) Dwsi((u))

268 CHAPTER 13. TRIANGULAR SURFACES

p 2p0

0

p
2

p
2

p0 p2p1 p3 p4

p5 p6 p7 p8 p9

p12p11p10 p13 p14

D1 D2 D3 D4

D5 D6 D7 D8

Wpb

pb

paW

pa

p

Wp

Figure 13.18: On the left side we see the parameter plane of a sphere. It is divided into
8 parts which apparently look like squares but are related to triangles because one edge
(top or bottom) is actually one point. In the parameter plane there are 6 points marked
in red, 4 around “equator”, one on the top and one at the bottom. To the right we see the
parameter area of the sub-surfaces Ωpa and Ωpb , and the transformation of both of these
to a union of triangles, shown as a light blue rotated square composed of 4 triangles.

where
Hu(u) = DuB0(u) H0 +DuB1(u)H1 +DuB2(u)H2,

and where the other derivatives can be computed in the same way.

The next example is a sphere where we use the following expression,

S(u,v) =

 cosu cosv
sinu cosv

sinv

 , u ∈ [0,2π), v ∈ (−π,π). (13.16)

Note that the points on both poles are not included in the formula. They must be added
separately because at these points there is no one-to-one mapping from the parameter
plane to the 3D space, and that they are irregular since we cannot span a tangent plane at
these points with the formula.

In Figure 13.18, on the left side, we see the parameter plane of a sphere, as expressed
in (13.16). This is divided into 8 “apparent” squares, “apparent” because each of these
squares is mapped to triangular surfaces in R3. The top line and the bottom line are each
actually one point as showed in Figure 13.18 with the points p2 and p12. The right side of
Figure 13.18 shows two types of parameter domains for sub-surfaces, Ωpa and Ωpb . The
defining point of the sub-surface is marked in red and there are 4 other points (in blue)
that define the triangles that together form the domain. The transition from squares to
triangles is illustrated by the light blue rotated square in Figure 13.18. The map is

gi(u) =
{

pk, if u = 1
w pi + v p j +u

(w
v+w pk +

v
v+w ph

)
, otherwise (13.17)

where u = (u,v,w), u+v+w = 1, and where the indices i, j,k,h depends on the partition,
for example if ∆1 then (i, j,k,h) = (5,6,10,11) and if ∆5 then (i, j,k,h) = (6,5,1,0).

13.6. SURFACE APPROXIMATION BY TRIANGULATION. 269

Figure 13.19: On the left side, there are 6 sub-surfaces of a sphere. They are moved
slightly apart so that they can be more easily seen. In the middle is a surface that is a
collection of 8 blending triangles and an exact copy of a sphere. To the right we see the
same surface, but where the sub-surfaces at the north and south poles are moved apart
and then rotated around the vertical center axis.

Although according to Figure 12.19 we have two types of parameter domains for the sub-
surfaces, Ωpa and Ωpb , these will be mapped to the same, ie the light blue parameter
domain Ωp. The sub-surfaces are just limitations of the domain. If we plot them, we get
6 equal surfaces (hemispheres) that are only oriented differently, as we can see on the left
in Figure 13.19. The surfaces there are correctly oriented, but have been moved slightly
apart so that they can be separated from each other. Each small square in the domain is
colored separately and appears as triangles.

The formula for sub-triangles to be used in the blending is

si(u) = S◦gi(u)
Dusi(u) = dSu (w̃pk + ṽph)

Dvsi(u) = dSu
(

p j + ũw̃(ph− pk)
)

Dwsi(u) = dSu (pi− ũṽ(ph− pk))

where
ũ = 0, ṽ = 0, w̃ = 1 if u = 1,
ũ = u

v+w , ṽ = v
v+w , w̃ = w

v+w otherwise.

Note that Su(pi) = (0,0,0)T , i = 0,1,2,3,4,10,11,12,13,14, ie at the north and south
poles. Since the “pole point” in each triangle corresponds to two points in the parameter
plane, we use Sv in both points, thus we can set Su(pk) = Sv(ph). To make a blending
triangle we use (13.14) and (13.15) where the homogeneous matrices are connected to 3
of the 6 points in the center of each hemisphere that appears as corners of the triangle.
One example, in the middle of Figure 13.19, there are 8 blending triangles that together
form an exact copy of a sphere. On the right side of Figure 13.19, the hemispheres at the
north and south poles are moved apart and rotated 90◦ around the vertical center axis.

270 CHAPTER 13. TRIANGULAR SURFACES

Figure 13.20: Three blending surfaces by triangulation are shown. Unit normals along
the edges of each of the triangles in the surfaces are also displayed. Two of the surfaces
are based on a sphere and one is based on a cylinder. This shows continuity properties.

One important property is continuity. The construction is obviously continuous, but when
it comes to derivatives the construction only guarantees continuity up to the Hermite-order
of the B-function, and this only in the vertices (the points to which the sub-surfaces and
the matrices are connected). This follows from properties of the B-function. In Figure
13.4 we see a triangular B-function. At the vertex where the value is 1, and at the edge
opposite to this top point, where the value is 0 everywhere, all the derivatives up to the
Hermite order S are 0. The question is actually how the parametrisation act close to the
edges. Because when triangles are deformed, directional derivatives can change direction
differently on each side of en edge, and we will see that a kink occurs. The only way
to prevent this is to get a parametrization that is such that the parameter lines (when the
ratio between two parameters are locked) coincide and are preferably perpendicular to the
edge.2 Figure 13.20 shows three blending surfaces by triangulation. Unit normals along
the edges of each of the triangles are also displayed. Two of the surfaces are based on a
sphere where the vertices are moved and / or rotated (but different in the two examples).
The third object is a deformed cylinder. A closer examination of the cylinder example
shows us that the normals coincide in the vertices and sometimes at one point on the edges
between the vertices. This is where the “parameter line” direction coincides on each side
of the edge. The most interesting, however, are the two sphere examples. They show
that on the edges between the northern and southern hemispheres, the normals always
coincide. This is actually a result of the reparametrization done in (13.17).

Figure 13.21 shows three plots of the same triangular surface (1/4 of a hemisphere). The
3 “parameter lines” (where one parameter varies and the ratio between the other two is
constant) are displayed in blue. The surfaces including the parameter lines are rotated

2This was first communicated in response to a question from Malcolm Sabin in may 2007.

13.6. SURFACE APPROXIMATION BY TRIANGULATION. 271

Figure 13.21: Three plots of the same triangular surface (1/4 of a hemisphere) are
displayed. From left and to the right they are rotated clockwise relative to each other.
Seven “parameter lines” are displayed in each of the plots. We see that it is only in the
middle surface that the “parameter lines” come perpendicular to the edge.

clockwise from left to right in the figure relative to each other. To the left of the figure we
see the w-lines, in the middle the u-lines , and to the right are the v-lines. We see that only
the u-lines are perpendicular to the edge. The surface in Figure 13.21 is actually the sphere
from Figure 13.19 and 13.20. The u-lines are those that come towards the “equator”, and
what we see is actually the reason why the surface is smooth over the equatorial edges.

A lot of work has gone into trying to find a general method for reparametrization that
provides full continuity along all the edges. So far, the results have not been particularly
successful. However, it may be possible to find this for specific triangular surfaces in
a sub-surface concept, but this is still an open task, and it is a questionable whether it is
theoretically possible, but this author does not know of any proof of this. Surface approach
with triangles is possibly most useful to use in connection with free-form modeling in an
artistic context and / or more spectacular product design. One method is to start with a
topological object that matches the desired end result and then decide on the number of
triangles / degree of fineness. Then we can create a composite surface and then change
shape interactively by manipulating the interpolation points. From now on, there are two
possibilities, either to make the result smooth by introducing the dual set of surfaces, see
Chapter 14, or to tessellate / generate a refined triangle structure which then goes into a
subdivision algorithm, ie use the Loop method for subdivision surfaces, see Section 12.3.

Figure 13.22 shows more examples of modeling with surface approximation with trian-
gles. All examples are based on the sphere approximation defined in this section. The 5
surfaces at the top right are mainly based on rotations of the points (sub-surfaces), i.e. ro-
tation has been added to the homogeneous matrices Hi, described in (13.14) and (13.15).
The gray surface at the bottom left is only based on the points being moved apart. The
three copper-colored surfaces are made with larger movements and rotations. The surface
at the bottom left is self intersecting. This is how we get the special effect on the “nose”.

There has been some focus on putting together Bézier triangles in a smooth way. The
problem is that it reduces of degrees of freedom very much, so that the construction
becomes rigid and not very formable. Some basic theory about this can be found in [101].
Recently, work has been done on this in connection with an isogeometric approach.

272 CHAPTER 13. TRIANGULAR SURFACES

Figure 13.22: All surfaces we see in the figure are based on the sphere shown in figure
13.19. The only changes are that the interpolation points are moved and rotated. Note
that all rotations are performed around the corresponding interpolation point.

Chapter 14

A Dual Surface Construction

In the previous chapter, Section 13.6, we were introduced to surface approximation by
triangulations. A concept that is well suited for modeling and design, but which has
one disadvantage. The surfaces are continuous, but there is no guarantee of higher order
continuity over the edges. In the vertices, on the other hand, the surface is continuously
up to the Hermite order of the B function used. However, if we want a higher degree of
continuity over the edges, this can be done by introducing a dual set of square surfaces
over the edges that we want to make smooth (introduced in [108]).

If, on surfaces composed of a set of triangular surfaces, we have an edge we want to make
smooth, then we can insert a point in the middle of the parameter domain of each of the
two associated triangular surfaces, ie pc =

1
3(pu + pv + pw), where pu is the vertex where

u = 1, pv is the vertex where v = 1 and pw is the vertex where w = 1. In each of the
two original triangles we then get three smaller triangles; ∆(pu, pv, pc), ∆(pc, pv, pw) and
∆(pu, pc, pw), and where the formula for each of them becomes:

suvc(u,v,w) = s
(

u+
w
3
,v+

w
3
,
w
3

)
, (14.1)

scvw(u,v,w) = s
(u

3
,v+

u
3
,w+

u
3

)
,

sucw(u, ,w) = s
(

u+
v
3
,

v
3
,w+

v
3

)
.

Here s is the original triangular surface and suvc, scvw and sucw are the triangular surfaces
from the subdivision. Remember to use the kernel rule for the partial derivatives.

The subdivisions are illustrated in Figure 14.1. We have the parameter domain of two
neighboring triangles that share an edge to be smoothed. In both triangles, a new point is
inserted in the center. Both triangles are then divided into 3 smaller triangles. In the center
of the figure we see a red dashed square �(p4, p6, p2, p3). The diagonal is displayed in
solid red, and is the edge to be smoothed.

Recall that in the triangular construction, the surface has a continuity in the vertices that
is similar to the Hermite order of the B-function used. This means that all directional
derivatives of order up to the Hermite order of the B-function are equal in all triangular

273

274 CHAPTER 14. A DUAL SURFACE CONSTRUCTION

p2

p3p5 p6p1

p4

v1 v2

v3 v4

D11

æ

D1 D2

D21

æ
D22

æ

D23

æ

D13

æ

D12

æ

Figure 14.1: The figure shows two triangles, ∆1 with the vertices p2, p4, p1 and
∆2 with the vertices p2, p3, p4. The center points p5 = 1

3 (p2 + p4 + p1) and p6 =
1
3 (p2 + p3 + p4) are marked, as are the vectors v1, v2, v3, v4. The barycentric coordi-
nates of the points are p1 = (0,0,1) in ∆1, p2 = (1,0,0) in both ∆1 and ∆2, p3 = (0,1,0)
in ∆2, p4 = (0,1,0) in ∆1 and p4 = (0,0,1) in ∆2. All six sub-triangles are marked.

patches that share a vertex, in the vertex. Thus, we can fill the square area, marked
with red dashed lines in Figure 14.1, with a surface, using either “Coons patch - bicubic
blending” shown in Section 9.6.2, if G1-smoothness is accepted, or using “Two surface
blending” shown in Chapter 11 if a higher order of smoothness is required. If there are
one or two edges in a triangle that are not to be smoothed, we only use the sub-triangles
defined in (14.1).

Regardless of the choice of surfaces,, Coons patch or Two surface blending, we need
boundary curves and vector functions that describe the directional derivatives across the
boundaries along the boundaries. In Figure 14.1 is both the sub-triangles ∆̃11 and ∆̃21 and
the vectors v1, v2, v3 and v4 highlighted.

14.1 Curves and vector fields on triangular surfaces
Figure 14.1 shows two triangles that share an edge, ∆1 and ∆2. These two triangles are
the domains of two triangular surfaces, S1 and S2. In triangle ∆1 we see two vectors,
v1 = p5− p4 and v3 = p2− p5. Furthermore, we define two curves,

h1(t) = p4 + t v1 and h3(t) = p5 + t v3, t ∈ [0,1]. (14.2)

In triangle ∆2 we see two vectors, v2 = p6− p4 and v3 = p2− p6. Furthermore, we define
two curves,

h2(t) = p4 + t v2 and h4(t) = p6 + t v4, t ∈ [0,1]. (14.3)

Remember that in the parameter domain of the triangles, both the points and the vectors
are in barycentric coordinates that relate to the vertices. Therefor, note that in this example
is u = 1 in p2 in both triangles, which will not always be the case. Using this location will

14.1. CURVES AND VECTOR FIELDS ON TRIANGULAR SURFACES 275

p4 = (0,1,0) in ∆1, and p4 = (0,0,1) in ∆2. This corresponds to the sphere examples in
section 13.6. If we now use barycentric coordinates in the curve equations we get

h1(t) =
1
3

 t
3−2t
t

 , h2(t) =
1
3

 t
t
3−2t

 , h3(t) = h4(t) =
1
3

 1+2t
1− t
1− t

 ,

and from (14.2) and (14.3) it follows that h′1 = v1, h′2 = v2, h′3 = v3, and h′4 = v4.

The next step is the mapping into R3. We have the triangular surfaces S j : ∆ j ⊂R2→R3,
j=1,2. The curve definition will be,

ci(t) = S j ◦hi(t), j = 1 and i = 1,3 or j = 2 and i = 2,4, (14.4)

and it follows that the 1st and 2nd derivatives for all four curves are

c′i(t) = d(S j)hi(t)(h
′
i(t)), (14.5)

c′′i (t) = d(d(S j)(h′i(t)))hi(t)(h
′
i(t))+d(S j)hi(t)(h

′′
i),

= d(d(S j)(hi(t)′))hi(t)(h
′
i(t)),

because h′′ = 0, and where

dS = [Su , Sv, Sw] ,

d(dS(h′)) = d
(
[Su , Sv, Sw] (h′)

)
=
[
[Suu , Suv, Suw] h′ , [Svu , Svv,Svw] h′, [Swu , Swv,Sww] h′

]
.

Vector functions on triangular surfaces are the next topic. The vector valued functions
in the parameter planes related to the four boundary curves are (for t ∈ [0,1]) ,

g1(t) = ṽ2(t)+B(t)(v3(t)− ṽ2(t)) , in ∆1,

g2(t) = ṽ1(t)+B(t)(v4(t)− ṽ1(t)) , in ∆2, (14.6)
g3(t) = v1(t)+B(t)(ṽ4(t)− v1(t)) , in ∆1,

g4(t) = v2(t)+B(t)(ṽ3(t)− v2(t)) , in ∆2,

where B(t) is a unary B-function of Hermite order equal to the one used in the blending
triangles. ṽ means that the vector must be expressed in coordinates connected to the
domain of the neighbouring triangle.

To find the coordinates of a point in a triangle that lies in another triangle, we use the
coordinates of the points pi, i = 1,2,3,4,5,6 in the parameter domain of the underlying
sub-surface. In ∆2 we have p6 =

1
3 (p2 + p3 + p4), but in ∆1 we have

u p2 + v p4 +(1−u− v)p1 = p6,

(p2− p1)u+(p4− p1)v = p6− p1,

and it follows that the barycentric coordinates of p6 with respect to ∆1 are

u =
(p6− p1)∧ (p4− p1)

(p2− p1)∧ (p4− p1)
, v =

(p2− p1)∧ (p6− p1)

(p2− p1)∧ (p4− p1)
and w = 1−u− v,

276 CHAPTER 14. A DUAL SURFACE CONSTRUCTION

where a∧b is the wedge product in R2, described at the end of Section 2.1.

The four vector valued (derivative) functions in R3 are thus for j = 1 and i = 1,3 or j = 2
and i = 2,4

ei(t) = d(S j)hi(t)(gi(t)), (14.7)

e′i(t) = d(d(S j)(h′i(t)))hi(t)(gi(t))+d(S j)hi(t)(g
′
i(t)),

where g(t) is defined in (14.6), h(t) in (14.2) and (14.3). Note that compared to the 2nd-
derivative in (14.5) is the second term in the 1st-derivative in (14.7) included because gi(t)
is not a linear function due to the B-function.

14.2 The fill-in patch
The next step is to create a surface that fits in the squared area shown as dashed red lines
in Figure 14.1. We then need the edge curves and functions that describe derivatives
“orthogonally” across the edges.

In Figure 14.1 and from the previous section we see that the curves are organized so that
c1(t) and c4(t) are on opposite edges of the square surface. Together with the vector
functions e1(t) and e4(t), described in (14.7)), they can be used to create a surface by
blending curves, as described in Section 9.4. We then use Hermite interpolation as shown
in (4.16) and (4.17). The result is

S1(u,v) = c1(v) H1(u)+ c4(v) H2(u)+ e1(v) H3(u)+ e4(v) H3(u). (14.8)

In the other direction, c2(t) and c3(t) are on opposite edges, and together with e2(t) and
e3(t) they can also be used to create a surface by blending curves using Hermite interpo-
lation, and the result is

S2(u,v) = c2(u) H1(v)+ c3(u) H2(v)+ e2(u) H3(v)+ e3(u) H3(v). (14.9)

There are now two possible ways to make the final surface, either by using Coons Patch -
bicubic blending, described in Section 9.6.2, or by using Two surface blending, described
in Chapter 11. In both methods, it is assumed that the corners are consistent from both
sides, and this can be seen by comparing (14.5) with (14.7). Remember that the boundary
curves follows the vectors v1, v2, v3 and v4 shown in Figure 14.1 and they also have the
same direction. Also remember the properties of the B-function, B(0) = 0, B(1) = 1 and
B′(0) = B′(1) = 0. An investigation at each vertex shows that:

At the vertex p2, where c3(1) = c4(1) we see by comparing (14.5) and (14.7) that,

a) c′3(1) = e4(1) because h′3 = v3 and g4(1) = ṽ3,

b) c′′3(1) = e′4(1) for the same reason as the point above and that B′(1) = 0,

c) c′4(1) = e3(1) because h′4 = v4 and g3(1) = ṽ4

d) c′′4(1) = e′3(1) for the same reason as the point above and that B′(1) = 0,

14.2. THE FILL-IN PATCH 277

Figure 14.2: We see two fairly similar surfaces. The one on the left is a surface approx-
imation by triangulation. The surface is initially a sphere (13.16), with a triangulation as
described in (13.17). After the generation, the interpolation points are moved and rotated.
The interpolation points are displayed as grey cubes. In the surface on the right, the edges
are smoothed with the technique described in this chapter. A yellow grid pattern outlines
a squere surface between two of the interpolation points, but it is faintly visible.

At the vertex p6, where c2(1) = c4(0) we see that

a) c′2(1) = e4(0) because h′2 = v2 and g4(0) = v2,

b) c′′2(1) = e′4(0) for the same reason as the point above and that B′(0) = 0,

c) c′4(0) = e2(1) because h′4 = v4 and g2(1) = v4

d) c′′4(0) = e′2(1) for the same reason as the point above and that B′(1) = 0,

At the other two vertices, p4 where c1(0) = c2(0), and p5 where c1(1) = c3(0), we get
a similar result Another thing is that the 1st-derivative in (14.7) is actually the twist-
derivative at the corner, ie changing the 1st-derivative when we move in the opposite
direction. Therefore, in the vertices, we must make sure that these derivatives are equal
from both sides. In p4, e′1(0) = e′2(0). By using (14.7) and finding the actual vectors we
get d(d(S1)(v1))p4(ṽ2) = d(d(S2)(v2))p4(ṽ1). Remember that it is a common underlaying
surface that makes that all directional derivatives of S1 and S2 are equal, and that the
differential is symmetry, ie Suv = Svu. The same we will observe in all vertices. This
shows that the system is consistent in the vertices.

This little calculation stunt, to show the consistency of the vertices, really only shows the
property of the construction ”Surface approximation by triangulation” which is that the
total surface interpolates the vertices with position and all derivatives up to the Hermite
order of the B-function used.

Now the two methods. First Coons patch - bicubic blending that is S(u,v) = S1(u,v)+
S2(u,v)− S3(u,v) where S1 is (14.8) and S2 is (14.9) and S3 is a tensor product Hermite

278 CHAPTER 14. A DUAL SURFACE CONSTRUCTION

surface, see Section 9.5.1, where we have a 4×4 matrix to fill,ie

M =


c1(0) c1(1) c′1(0) c′1(1)
c4(0) c4(1) c′4(0) c′4(1)
c′2(0) c′3(0) e′1(0) e′1(1)
c′2(1) c′3(1) e′4(0) e′4(1)

 .
The other method is the Two surface blending where we only use S1(u,v) and S2(u,v)
together with a two variable B-function B(u,v) described in Section 11.1.

An example is given in Figure 14.2. This is the sphere example from Section 13.6. Some
of the 6 vertices have been moved and rotated. To the left in Figure 14.2 we see the result.
We also see edges that are not smooth. To the right of the figure we see the result after
smoothing the edges. Quite faintly we can also see an example of a square patch over an
edge made by two surface blending. The patch is marked with a yellow grid pattern. The
interpolation points (vertices) are shown as gray cubes.

Appendices

279

Appendix A

Computing ERB-function type 1

An “evaluator” for an Expo-Rational B-function of type 1 is a computation of B(t), and
thus the integrals in (7.31). The integral is of the exponential function φ(t) defines in
(7.27) or φ(t;γ) defined in (7.38) or φ(t;γ,µ) defined in (7.39) or φ(t;γ,µ,α,β) defined
in (7.44).

In addition, the computation of B(j)(t) for j = 1,2, ...,d for some d, described in subsec-
tion 7.7.4, is required, which includes computation of f j(t). In practical computations,
d ranges between 0 and 4. All this involves handling overflow and underflow and thus
division by zero in the fractions, stable and precise numerical integrations and methods
for speeding up the computations.

You will find a more detailed description of this in [102], Chapter 3. page 47 which can
be loaded from http://urn.nb.no/URN:NBN:no-15022

This appendix considers the implementation, programming, and problems related to the
number system of the computer. In the first section we will investigate the requirements
for a reliable algorithm. The questions are overflow, underflow and division by zero, and
we will investigate these using “IEEE binary floating point” standardized devices. The
second section is treating algorithms for the derivatives. Then in the third section, A.3,
we will investigate an algorithm for numerical integration of the integral

t∫
s=0

φ(t;γ,µ,α,β)ds, where 0 < t ≤ 1,

In [44], section 6, a sequence of numerical methods for computing “ERBS” were con-
sidered. The type 1 expo-rational B-function is just the same, and here we study only
the simplest of the methods, because we will use an algorithm with fine control of the
precision and a simple implementation.

In the fourth section we will show an implementation and a test of a precise and extremely
fast evaluator. This evaluator is based on preevaluation and Hermite interpolation.

281

http://urn.nb.no/URN:NBN:no-15022

282 APPENDIX A. COMPUTING ERB-FUNCTION TYPE 1

A.1 Reliability in computations
The reliability of an algorithm depends on possibilities for overflow, underflow and divi-
sion by zero. We therefore start by looking at what these three phenomena are and when
they occur. The IEEE standard for Binary Floating-Point Arithmetic [152] describes the
formats of floating-point numbers. According to the current standard, binary floating
point numbers should be on the form

(−1)s 2E (b0.b1b2 . . .bp−1), (A.1)

where p is the precision and,

s ∈ {0,1} (binary),
E ∈ {Emin, . . . ,Emax} (signed integer),
bi ∈ {0,1} (binaries).

The following table describes how the bits in the numbers are distributed.

type sign significant bits (precision) bits for exponent sum bits
single precision 1 23 8 32
double precision 1 52 11 64

(A.1) is defining the so-called normal values. In addition, the IEEE standard specifies
the following special values for numbers; ±0 (signed zero), subnormal values, ±∞ and
signaled and quiet NaN (Not a Number). Usually the first significant bit b0 is 1, because
if it is not, one can always, for normal values, obtain it by reducing the exponent E.
For subnormal values, this is not the case, because we are now already using Emin−
1. Therefore, for numbers with subnormal values, the first significant bit is always 0.
This fact makes it possible to skip this first bit, and thus raise the precision (number of
significant bits), because the separation between normal and subnormal values is well
defined without the first significant bit (see the table below). The following table (see
[75]) shows us how the 5 different types of values can be separated.

Type values implemented exponent implemented precision
Special values ±0 E = Emin−1 b = 0
Subnormal values ±0.b×2Emin E = Emin−1 b 6= 0
Normal values ±1.b×2E Emin ≤ E ≤ Emax
Special values ±∞ E = Emax +1 b = 0
Special values s/q NaN E = Emax +1 b 6= 0

Using this improved precision (skipping the first bit), we get the following number of
significant digits in the decimal number system. For normal values, the biggest value for
single precision (float) is 224−1 = 16777215, i.e. more than 7 significant digits, and for
double precision it is 253−1 = 9007199254740991, i.e. close to 16 significant digits. For
subnormal values the number of significant digits is reduced, and is gradually decreasing
until there is only 1 binary digit.

A.1. RELIABILITY IN COMPUTATIONS 283

To describe overflow, and how it occurs, we first look at the maximum normal value,

single - 1.11 . . .11×228−1−1 =
(
2−2−23)2127 ≈ 3.4028237 e+38.

double - 1.11 . . .11×2211−1−1 =
(

2−2−52
)

21023 ≈ 1.7976931348623159 e+308

Numbers that becomes larger than this will be set to ±∞ depending on the sign bit. To
describe underflow, and how it occurs, we first look at the minimum normal value.1

single - 1.00 . . .00×22−28−1
= 2−126 ≈ 1.1754944 e−38

double - 1.00 . . .00×22−211−1
= 2−1022 ≈ 2.22507385850720138 e−308

Values smaller than this are subnormal values with lower precision. Notice that the sig-
nificant bit will be 0.11 . . .11 for the first subnormal value, and 0.00 . . .01 for the last
subnormal value. Therefore, the minimum (unsigned) subnormal value is,

single - 22−126−23
≈ 1.4012984 e−45,

double - 22−1022−52
≈ 4.9406564584124654 e−324.

Numbers smaller than this will be set to ±0 depending on the sign bit. Looking at the
numbers above we can see that for both and double precision then

1
min normal value

< max normal value.

It follows from this that if the denominator in a fraction has a normal value, and the
numerator is ≤ 1 then the fraction will not produce an overflow.

For a closer study of how the number system affects algorithms, we recommend [75].
An edited reprint can be found at https://docs.oracle.com/cd/E19957-01/806-3568/
ncg goldberg.html.

Summing up:

• Overflow produces a signal and ±∞, which cannot be legally used further in most
computations.

• Underflow first produces subnormal values and then ±0.

• Fractions might produce a signaled overflow.

– Division by zero clearly produces a signaled overflow.

– If the numerator in a fraction is ≤ 1 there will never be an overflow if the
denominator is a normal value.

Now, back to a reliable algorithm for an ERB-evaluator. The first critical part is the
computation of the fraction in the expression (7.27),. . . ,(7.44), namely,

− γ
|t−µ|α+β

tα(1− t)β
, where γ,α,β > 0, and 0 < µ < 1 and t ∈ [0,1], (A.2)

1The reason for using a total of 3 less numbers in the exponent than available is that one is used for zero
and 2 are used for special and subnormal values as showed in the previous table.

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

284 APPENDIX A. COMPUTING ERB-FUNCTION TYPE 1

and later also the fraction f j,k(t), j = 2,3, ..., described in subsection 7.7.4. When we
look at the numerator of the fraction in (A.2), we can see that

|t−µ|< 1, because 0 < µ < 1 and t ∈ [0,1],

and thus
|t−µ|α+β < 1.

We, therefore, get the following remark and algorithm.

Remark 5. It follows that it is not possible to get overflow even if the denominator is as
small as possible, but still a normal number. The only critical part in the algorithm for
computing φ(t) and expression (A.2) is the underflow of the denominator, i.e., that the
number in the denominator is not a normal value.

In the following we give an algorithm first for the set with all intrinsic parameters, and
then for the default set, ie γ = α = β = 1 and µ = 1

2 .

Algorithm 11. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes φ(t;γ,µ,α,β) from expression (7.44), where γ , µ , α and β are
present as states, and t ∈ [0,1] is the input parameter. First follows a general function,
then there is an optimized function for the default set of intrinsic parameters, (7.27).

double φ(double t)
double d = tα (1− t)β ;
if (d 6= normal value) return 0.0; // Test if underflow

else return e−γ
|t−µ|α+β

d ;

double φ(double t)
double d = t(1− t);
if (d 6= normal value) return 0.0; // Test if underflow

else return e−
(t− 1

2)(t−
1
2)

d ;

Remember that φ(t) is the 1st derivatives if Bd(t), the Expo-Rational B-function of type
1. The 2nd derivative is shown in (7.27). In [102], page 51 it is shown that it is possible to
compute up to 49 derivatives of the Expo-Rational B-function of type 1 with the default
set of intrinsic parameters and only test for underflow and still get a valid and reliable
result.

A general function that calculates the value and derivatives up to order 7 follows in the
next section. For practical use, however, we need a much faster algorithm. This can be
done with pre-evaluation, numerical integration and hermite interpolation, and will be
given in section A.4.

A.2. ERB-EVALUATION, COMPUTING VALUE AND DERIVATIVES 285

A.2 ERB-evaluation, computing value and derivatives
Below is a reliable algorithm that calculates the value and up to 6 derivatives of the Expo-
Rational B-function that has the default set of intrinsic parameters.

Algorithm 12. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes D jB(t), j = 0,1, ...,d, where φ(t) is defined in (7.27). It is an
implementation based on section 7.7.4. The algorithm assumes that there are functions
to compute both φ(t), and

∫ t
s=0 φ(s)ds, t ∈ [0,1]. The input variables are: t ∈ [0,1] and

d ∈ {0,1, . . . ,6} (the number of derivatives to compute). The return is a “vector〈double〉”,
where the first element contains B(t), and then DB(t), . . . ,DdB(t).

vector〈double〉 B (double t, int d)
vector〈double〉 R(d +1) = 0.0; // Make a vector for return, size d+1, all elements 0.
double φ = φ(t); // Call to Algorithm 11, part 2.
if (φ 6= normal value) return R; // Test if underflow.
R = S; // Each of the d +1 elements equal to S, (7.32).
double t̃ = (1−2t)2;
switch (d)

case 6: R6 ∗=
(((((45

2 t̃ + 135
2

)
t̃− 765

4

)
t̃ +75

)
t̃ +66

)
t̃− 85

2

)
t̃ + 15

4 ; // see2

case 5: R5 ∗=
((((15

2 t̃ + 45
4

)
t̃−33

)
t̃ + 29

2

)
t̃ + 3

2

)
t̃− 3

4 ;
case 4: R4 ∗=

((
3t̃ + 3

2

)
t̃−5

)
t̃ + 3

2 ; // see section 7.7.4
case 3: R3 ∗= 3

2 t̃2− 1
2 ;

R0 ∗=
∫ t

s=0
φ(s)ds; // See algorithm 14 in the next section.

R1 ∗= φ ;
for (int i=2; i≤ d; i++) Ri ∗= φ

(2t(1−t))2(i−1) ;

for (int i=2; i≤ d; i+=2) Ri ∗= (1−2t);
return R;

This algorithm is for the default intrinsic parameters, that is φ(t) defined in (7.27). If
we want to freely choose the set of intrinsic parameters, we must use φ(t;γ,µ,α,β)
defined in (7.44). The algorithm is then a little more complex. In Algorithm 12, f j(t),
j = 1,2, ..., defined in section 7.7.4, are dissected, and the numerator and denominator in
the fractions are calculated separately. In a general algorithm with non-default intrinsic
parameters, this will not be the case. Pages 52-57 in [102] shows algorithms for evaluating
f2(t) and f3(t) and Bd(t,γ,µ,α,β) with 3 derivatives. In the same section, restrictions
on the intrinsic parameters to obtain a continuous and thus legal B-function is discussed,
and also to show combinations of values on the intrinsic parameters where asymptotic
behaviors on the derivatives occurs.

In the following we will look at f2(t). In [102] it is shown to be continuous if α +β > 1
and that the algorithms can be able to handle asymptotes. Remember also the initial
restrictions on the intrinsic parameters from (7.44). Combining this with the formula on

2The formulas for case 2, 3 and 4 is showed in section 7.7.4 and formulas for case 5 and 6 can be found
in [102], page 33, which can be loaded from http://urn.nb.no/URN:NBN:no-15022.

http://urn.nb.no/URN:NBN:no-15022

286 APPENDIX A. COMPUTING ERB-FUNCTION TYPE 1

the pages 28, 29 and 53 in [102] we get

f2(t) =
{

0, if t = µ,
S x2(t)ζ (t), otherwise. (A.3)

where ζ (t) is the exponent in (7.44), and

x2(t)ζ (t) =−γ
α +β

tα(1− t)β

(
t− α

α+β

t(1− t)
|t−µ|+ sign(t−µ)1

)
|t−µ|α+β−1. (A.4)

Remember that S=

[
1∫
0

φ(t;γ,µ,α,β)dt
]−1

. Now an algorithm computing f2(t) follows.

Algorithm 13. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes f2(t) for the ERB-function with non-default intrinsic parameters.
γ , µ , α and β are supposed to be present, and S = S(γ,µ,α,β) must be pre-evaluated.
The algorithm is the implementation of (A.3) and (A.4). The input variable is supposed to
be t ∈ [0,1], and it is such that the second line in the algorithm shall guarantee that t in
the computation of (A.4) has a normal value on the open segment (0,1).3

double f2(double t)
if (t < 2.3e−308 || t == µ || t == 1) // See (A.3), upper part.

return 0.0;

double h =
t− α

α+β

t(1−t) |t−µ|; // First part of the second factor from (A.4).
if (t < µ) h −= 1; // Last part of second factor (A.4).
else h += 1;
h∗=−S γ

α+β

tα (1−t)β
; // Inserting S and the first factor of (A.4).

if (α +β < 1) // Asymptote at t = µ is present.

double g = |t−µ|1−α−β

h ; // The inverse of (A.4).
if (g 6= normal value)

return 0.0;
else

return 1
g ;

else if (α +β > 1) // Ordinary solution.
return h |t−µ|α+β−1;

else // Discontinuity at t = µ .
return h;

A comment on the foregoing algorithm; as previously mentioned, what do we do with a
possible asymptote when α +β < 1. The convention of what to do at t = µ when there is
no value to return, is that it returns 0 as it will do for all cases when there is a value.

3The guarantee is that we have to introduce practical restrictions on the intrinsic parameters because of
the binary number system.

A.3. USING ROMBERG INTEGRATION IN EVALUATION 287

A.3 Using Romberg integration in evaluation
The main part of the evaluation of the ERB-function Bd(t) defined in (7.31) is the integra-
tion of φ(t) defined in (7.27). Here we will examine a reliable and controllable numerical
integration, namely the Romberg integration, see [136] and [25]. Romberg integration
is based on repeated Richardson extrapolations to eliminate error terms, see [92]. The
background for the algorithm is the Euler-MacLaurin integration formula, see [156]. It
says, given a function f that is C∞[a,b], then the error from a trapezoidal approximation
Tn(f) according to the integral I(f) is

I(f)−Tn(f) =
1
n2

∞

∑
j=0

A(0)
j

1
n2 j =

1
n2 A(0)

0 +
1
n4 A(0)

1 +
1
n6 A(0)

2 + . . . , (A.5)

where A(0)
j are constants. For example, the error formula for the Trapezoidal and Simpson

method gives

A(0)
0 = −(b−a)2

12 (f ′(b)− f ′(a)),

A(0)
1 = (b−a)4

180 (f (3)(b)− f (3)(a)).

Richardson extrapolation can be used in conjunction with (A.5) to iteratively eliminate
terms in the error formula. Richardson extrapolation is in general a method to improve
an approximation by combining two equations using different step sizes. If we make two
simplified versions of (A.5), using step size h instead of the number of steps n, and using
half step size (h/2) on the second one, we get

I(f) = Th(f)+A0h2 j +O(h2 j+1),

I(f) = Th/2(f)+A0
(h

2

)2 j
+O(h2 j+1).

If we put this into order and subtract the second from the first equation we get

B(h) =
22 jTh/2(f)−Th(f)

22 j−1
, (A.6)

where
I(f) = B(h)+O(h2 j+1).

If we also compute B(h/2) we can use B(h) and B(h/2) in a next step (in (A.6)) to reduce
the error terms. This can be repeated in an iterative process until the “removed error term”
is smaller than a given tolerance.

There are three questions appearing when using Romberg integration to numerically inte-
grate φ(t),

1. reliability,

2. efficiency,

3. precision.

288 APPENDIX A. COMPUTING ERB-FUNCTION TYPE 1

curve name a b c d e f
upper limit 0.5 0.25 0.125 0.0625 0.03125 0.015625
1 1 7.2e−2 1.4e−2 8.3e−3 7.7e−4 7.3e−6 1.2e−9
2 2 2.0e−2 2.6e−3 7.9e−4 1.1e−5 1.4e−6 3.2e−10
3 4 1.3e−3 9.3e−4 7.0e−5 1.6e−6 1.8e−8 8.4e−11
4 8 9.5e−4 8.5e−5 2.9e−6 6.9e−8 1.6e−9 4.0e−12
5 16 8.9e−5 3.3e−6 8.0e−8 1.7e−9 1.9e−11 1.6e−14
6 32 3.4e−6 8.3e−8 1.8e−9 2.0e−11 4.8e−14 2.2e−17
7 64 8.4e−8 1.8e−9 2.0e−11 5.3e−14 2.8e−17
8 128 1.9e−9 2.0e−11 5.4e−14 2.4e−17
9 256 2.0e−11 5.5e−14 1.9e−17

10 512 5.5e−14 2.8e−17
11 1024 1.7e−16

Table A.1: The table shows the connection between the number of steps/evaluations and
the precision in the Romberg-integration algorithm. There are 6 “graphs” computed.
Each graph is an integration from 0 to upper limit (second row). The column on the
left hand side shows the number of steps in the integration, the next column shows the
number of new computations of φ(t) that have to be done on the current step. All the other
numbers are the last correction, indicating the level of tolerance (remaining errors).

No attempt is made here to compare Romberg integration with other methods, but an
investigation of how suitable Romberg integration is for integrations of φ(t) has been
made, and some tests have been done on several integration intervals to find out:
- how fast the quadrature process converges,
- the number of calculations of φ(t) used,
- and the remaining errors.
The result can be seen both in Table A.1 and in Figure A.1.

First the reliability here depends not only on the fact that φ(t) is bounded on [0,1], but
also on the fact that we do not get an overflow when we computing φ(t) using algorithm
11, Remark 5 state this. Since also the integration interval is within [0,1), the computation
of the integral will always give a normal value, and is in this sense reliable. The degree
of reliability, the error, will be discussed below.

In Table A.1 and in Figure A.1 we can see the connection between the number of steps
and then evaluations in the Romberg-integration and the “last removed error term”. Six
evaluations, ie integral, are computed. In the computation, the default set of intrinsic
parameters is used, and six different values are computed. The computations are:∫ t

s=0
φ(s)ds, for t =

{
1
2k

}6

k=1
.

Each computation is named by a letter, “a” means that the integration interval is
[
0, 1

2

]
.

This is the computation over the biggest interval. The interval is then halved from compu-

A.3. USING ROMBERG INTEGRATION IN EVALUATION 289

1 2 3 4 5 6 7 8 9 10 11
1 2 4 8 16 32 64 128 256 512 1024

0.1
0.01

0.001
1e-4
1e-5
1e-6
1e-7
1e-8
1e-9

1e-10
1e-11
1e-12
1e-13
1e-14
1e-15
1e-16
1e-17

f e d c b a

Figure A.1: The figure is a plot of Table A.1. There are 6 integrals, a, b, c, d, e and
f. The integrals is from t = 0 to t =upper limit, ie 1

2 , 1
4 , 1

8 , 1
16 , 1

32 , 1
64 . The vertical axis

indicates the error and the vertical axis is the number of steps,the upper number, and the
nuber of new computations, the lower number.

tation to computation until the last computation, named “f”, where the integration interval
is
[
0, 1

64

]
. In Table A.1 we will find the value of all “remaining errors” until they are “out

of significant bits”. The values are actually the differences between the result from this
step in the iteration and the result from the previous step. As we can see in Table A.1, a
value in the table is clearly bigger than the sum of all values below in the same column.
So the values are actually better than the “remaining errors”. We can also see that the
last values (on the bottom of the table) are numbers “outside the edge of significant bits”,
when the results are close to 1. In Figure A.1 is the values from Table A.1 plotted as 6
smooth graphs. On the horizontal axes is the number of new computations of φ(t) on a
logarithmic scale. This tells us that the computational costs are doubled for each mark on
the horizontal axes.

The depth of the iteration depends on the size of the integration interval. Evaluating an
interval of 0.5 requires up to 11 iterations, which is the same as 2×1024 = 2048 compu-
tations of φ(t). This is indeed a time consuming process. In this case it is important to
be careful; one should not use higher tolerance than necessary. When evaluating numbers
bigger than 0.5, one should use mirroring and then instead integrate on a subinterval of
the right part of the domain,

[1
2 ,1
]
.

The following algorithm is only for integration from 0 to t. To make an algorithm for the
general case, integrating from a to b, changes must only be made on line 3, as it must
be φ(a)+φ(b)

2 , and in line 9, as it must be s += φ(a+ j ∗ t). In addition, of course, a new
declaration introducing ”double t = b−a;” must be included. The algorithm is optimal in
that the number of evaluations of φ(t) is minimized. In some cases the evaluation on the

290 APPENDIX A. COMPUTING ERB-FUNCTION TYPE 1

boundaries are already known, in these cases the algorithm can easily be adapted either
by using state variables or by using parameters.

Algorithm 14. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes the integral B̃ =

∫ t
s=0 φ(s)ds, t ∈ (0,1], where B̃ is inside the

given tolerance ε . The value of the input “tolerance” variable ε is recommended to be in
[1e−2,1e−15] (according to Table A.1).

double integrate (double t, double ε)
double M[16][16];
double sum = φ(t)

2 ; // Call to Algorithm 11
M0,0 = t ∗ sum;
for (int i=1; i < 16; i++)

double s = 0;
int k = 2i; // C++ implementation: k = 1� i
t /= 2;
for (int j=1; j < k; j+=2) s += φ(j ∗ t); // Call to Algorithm 11
M0,i = t ∗ (sum += s);
for (int j=1; j ≤ i; j++)

double c = 4 j; // C++ implementation: c = 1� (j� 1)
M j,i− j =

c∗M j−1,i− j+1−M j−1,i− j
c−1 ; // Richardson extrapolation scheme

if (|Mi,0−Mi−1,0|< ε) return Mi,0;
return M15,0;

A.4 Fast ERB-evaluator based on approximations
A fast evaluator for ERB-functions of type 1 is absolutely necessary for the ERB-function
to be used in the construction of curves and surfaces. In practical use, it is very important
to have a fast but at the same time simple algorithm and also with a simple interface.
This because blending splines are especially suitable for interactive design in graphics
mode, for simulations where shape change is included and in situations where Hermite
interpolation is necessary or preferable.

While it must be fast and easy to use, it must also be reliable and precise. In this section,
we shall take a closer look at a method using preevaluation. We divide the domain into,
for example, 1024 intervals and then make a 3rd-degree polynomial in each interval using
Hermite interpolation.

In practical implementation the whole evaluation system should be wrapped in an “ob-
ject” (C++ class or equivalent). The advantage of this is that it takes care of all states such
as the intrinsic parameters φ(t;α,β ,γ,λ) ie (7.44), the scaling factor S(γ,µ,α,β) and, of
course, the number of sample intervals, below denoted by m, and all sampled values, more
than 6m in total, as will be described below. Therefore, in the following, an evaluation
object type will be defined, it will be called the “ERB-evaluator” containing the following:

A.4. FAST ERB-EVALUATOR BASED ON APPROXIMATIONS 291

“ERB-evaluator”
The following state variables are present:
γ, µ, α, β // Intrinsic parameters (the state identifiers, together with m).

m // The number of sample intervals, number of samples is m+1

∆t = 1
m // The interval between each sample (also the scaling factor),

// the sampling vector {ti}m
i=0 defined via ti = i∗∆t.

S = S(α,β ,γ,λ) // Scaling factor, S(γ,µ,α,β) =
∫ 1

0 φ(s;γ,µ,α,β)ds.

b =
{∫ ti

0 φ(s)ds
}m

i=0 // Vector storing of the integral
∫ ti

0 φ(s)ds, where ti = i∗∆t.

a // A matrix with dimension m×5 (actually m vectors).

// Each of the vectors{ai}m
i=0 stores the Hermite coefficients

// a0, a1, a2, a3 and a4 for each sample interval (see A.12).

It will, of course, be necessary to have functions for construction, destruction, settings
etc. They will not be handled here, but the important “public” functions are:
initiate(γ,µ,α,β ,m) // Changing states and thus computing S, b, a and ∆t.

B(t,d) // For a given t ∈ [0,1], d - number of derivatives,

// analogous to Algorithm 12, computing D jB(t), j = 0, . . . ,d.

For “internal” use (used only by initiate()) we need the following functions (the three
last functions are defined in previous sections):
interpolate(i,φ0,φ1,φ

′
0,φ
′
1) // Computing ai,0, ai,1, ai,2, ai,3 and ai,4 (using (A.12)).

φ(t) // Defined in Algorithm 11.

f2(t) // Defined in Algorithm 13.

integrate(t0, t1,φ0,φ1,ε) // Modified version of Algorithm 14. This version uses

// both the start and end value of the interval, and φ(start)

// and φ(end), to minimize the number of evaluations.

A timely question is, how should we use the “ERB-evaluator”? A possible set of answers
to this is therefore listed below.

X For a given set of intrinsic parameters and a given “acceptable error”, make an instance
of an “ERB-evaluator”. All curves and surfaces using this set of parameters can now
use this object for evaluation.

X The parameters or the “acceptable tolerance” can, at any time, be changed for one or
more specific curves/surfaces by making and using a new “ERB-evaluator”, or by
resetting the parameters in the “old” one.

X It is possible to have more than one “ERB-evaluator” available at the same time.

X It is possible to have several instances of a curve/surface, the “ERB-evaluator” needs
only to be altered.

292 APPENDIX A. COMPUTING ERB-FUNCTION TYPE 1

There is an obvious cost to using “ERBS-evaluators”, related to the use of memory. This
concerns, however, small numbers, from approximately 1.8 to 48 kbytes for each instance
of an evaluator object, depending on the number of samples, and thus the desired errors
tolerance. The sample data consist of the vector b, storing the incrementing integral
sample data, and the matrix a, storing, in each line, the Hermite interpolation coefficients
at each sampling interval. Only the first four values in each line, ai,0, ai,1, ai,2, ai,3, are
actually the Hermite interpolation coefficients. The last one ai,4 is the integral from 0 to
1 of the Hermite interpolant. The reason for having this last element is to either integrate
from 0 to ≤ 0.5 or from > 0.5 to 1, so as to reduce the error. The equations for Hermite
interpolation between 0 and 1 will now briefly be discussed (we will later look at the
problems of the scaling of the derivatives because of domain scaling). We start with a
general 3rd-degree polynomial equation,

f (x) = a0 +a1x+a2x2 +a3x3, (A.7)

and its first derivative,
f ′(x) = a1 +2a2x+3a3x2. (A.8)

Integrating (A.7) from 0 to a given value t̂ ∈ (0,1) gives the following result

t̂∫
x=0

f (x) = t̂
(

a0 + t̂
(a1

2
+ t̂
(a2

3
+ t̂
(a3

4

))))
, (A.9)

and evaluating (A.7) at t̂ yields

f (̂t) = a0 + t̂
(
a1 + t̂

(
a2 + t̂ (a3)

))
. (A.10)

Then evaluating (A.8) gives

f ′(̂t) = a1 + t̂
(
2a2 + t̂ (3a3)

)
. (A.11)

If we introduce f (0), f ′(0), f (1) and f ′(1) as known, we can solve the system according
to {ai}3

i=0. If we, in addition, also include a4 (the integral on the whole interval, i.e.∫ 1
0 f (x)dx), the solution is

a0 = f (0),
a1 = f ′(0),
a2 = 3(f (1)− f (0))− f ′(1)−2 f ′(0),
a3 = −2(f (1)− f (0))+ f ′(1)+ f ′(0),
a4 =

f (0)+ f (1)
2 + f ′(0)− f ′(1)

12 .

(A.12)

The next step is to use these four expressions (A.9), (A.10), (A.11) and (A.12) in the
evaluator. Recall that scaling of the domain influences the derivatives and the antideriva-
tives (integrals). Assume that the real interval is ∆t while the expression above are made
with an interval of 1. Due to the general rule about scaling the domain the derivatives /
antiderivatives must be scaled / inversely-scaled respectively,see [49]). Thus, we need to
make the following three adjustments:

• The input derivatives f ′(0) and f ′(1) must both be scaled by ∆t,

A.4. FAST ERB-EVALUATOR BASED ON APPROXIMATIONS 293

• The output integral, B(t), must be scaled by ∆t.

• The output derivative (actual second derivative D2B(t)) must be inversely scaled by
∆t.

To complete the description of the “ERB-evaluator” there are still three algorithms that
have to be described. The first algorithm is initialization.

Algorithm 15. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes the internal state variables ∆t, S = S(α,β ,γ,λ), b = {B(ti)}m

i=0
and the matrix a (by using an interpolating function). The algorithm assumes that there
are algorithms present to compute φ(t) and φ ′(t) (can use f2(t) if S= 1) and

∫ t
s=0 φ(s)ds, 0≤

t ≤ 1. The input variables are: The intrinsic parameters γ , µ , α , β , and m (the number
of sample intervals). There are no return values.

void initiate (double γ , double µ , double α , double β , int m)
double φ0, φ1; // Value at the start and end of each interval
double f0, f1; // Derivative at start and end of each interval
set(γ,µ,α,β ,m); // Store intrinsic parameters and m in object
Allocate memory for b, a; // Set size = m+1 for b, and m×4 for a
∆t = 1

m ; // Set interval size
S = 1; // Temporary, to use φ ′(t) = f2(t)
b0 = φ0 = f0 = 0.0; // Defined to be zero (basic properties)
for (int i=1; i < m; i++) // For each sampling interval

double t = i∗∆t; // The sampling vector marked ti in definition
φ1 = φ(t); // Algorithm 11
f1 = φ1 f2(t); // Algorithm 13
bi = integrate(t−∆t, t,φ0,φ1,1×10−16); // Algorithm 14 (using max tolerance)
interpolate(i−1,φ0,φ1,∆t f0,∆t f1); // Updating Hermite coefficients

{
ai−1,k

}3
k=0

φ0 = φ1; // Preparing for the next step
f0 = f1;

bm = integrate(∆t(m−1),1,φ0,0,1×10−16); // Algorithm 14 (using max tolerance)
interpolate(m−1,φ0,0,∆t f0,0); // Updating Hermite coefficients

{
am−1,k

}3
k=0

for (int i=1; i≤ m; i�=1) // These three following lines are introduced
for (int j=m; j ≥ i; j−= 1) // because there in line 13/17 is not used +=

b j += b j−i; // See below for explanation
S = 1

bm
;

In line 13 and 17 b += integrate(. . .), incremental adding, should have been used. But
then there will have been loss of at least one significant bit because of adding a small
number to a bigger (and growing) number. To avoid this, the next three last lines are
summing up in a binary way. The algorithm is summing neighbors that are nearly equal.
The algorithm is, therefore, constructed to optimize the precision. In the algorithm one
can see that both integrate() and interpolate() are called twice. The reason for this, is to
avoid calling φ(t) and f2(t) for t = 0 and t = 1, because then they are defined to be 0. In
addition, let us recall the scaling of the derivatives: they are all, according to the scaling
rules, scaled by ∆t in the input of the interpolate() function in lines 14 and 18.

294 APPENDIX A. COMPUTING ERB-FUNCTION TYPE 1

The second algorithm, the interpolation, is a very simple algorithm implementing com-
putation of the Hermite interpolation coefficients (see (A.12)).

Algorithm 16. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes the Hermite interpolation coefficients ai,0, ai,1, ai,2, ai,3 and ai,4,
and is an implementation of (A.12).

void interpolate (int i, double f0, double f1, double f ′0, double f ′1)
ai,0 = f0;
ai,1 = f ′0;
ai,2 = 3(f1− f0)− f ′1−2 f ′0;
ai,3 =−2(f1− f0)+ f ′1 + f ′0;
ai,4 =

f (0)+ f (1)
2 + f ′(0)− f ′(1)

12 ;

The third and last function is the main “evaluation function” B(), analogous to Algorithm
14. Note that B() is a B-function not connected directly to a curve or a surface. If there
is a curve or surface behind the call to the B-function, then the mapping B◦w1,i(t) must
be done, see (8.4) and (6.11). And after the call the result mast be scaled by δ

j
1,i, where j

is the order of the derivatives, see (6.13). Remember that the index i in the knot vector is
defined by ti ≤ t < ti+1.

Algorithm 17. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes D jB(t), j = 0,1,2 for the set of intrinsic parameters that are ini-
tialized in the object. The algorithm assumes that initializing is done. The input variables
are: t ∈ [0,1], and d ∈ {0,1,2} (the number of derivatives to compute). The return
is a “vector〈double〉”, where the first element contains B(t), and then ,depending on d
follows DB(t) and D2B(t).

vector〈double〉 B (double t, int d)
vector〈double〉 R(d +1) = S; // Make a vector for return, size d+1, all elements S
int j = min(int(t ∗m),m−1); // j not equal m, due to the “mirroring” around 0.5
double dt = t− j∗∆t

∆t ; // Mapping from total [0,1] to [0,1] on sample
switch (d)

case 2: R2 ∗=
a j,1+dt(2a j,2+dt 3a j,3)

∆t ; // Using (A.11), scaled by 1
∆t

case 1: R1 ∗= a j,0 +dt
(
a j,1 +dt

(
a j,2 +dt a j,3

))
); // Using (A.10), no scaling

if (dt > 0.5) // Integrating: dt - 1 (A.12)

R0 ∗= b j+1−∆t
(

a j,4−dt
(

a j,0 +dt
(

a j,1
2 +dt

(
a j,2

3 +dt a j,3
4

))))
;// Scaled by ∆t

else // Integrating: 1 - dt (A.12)

R0 ∗= b j +∆t dt
(

a j,0 +dt
(

a j,1
2 +dt

(
a j,2

3 +dt a j,3
4

)))
; // Scaled by ∆t

return R;

The next question is the “evaluation” of the “ERB-evaluator” itself. There are two differ-
ent evaluations that need to be done: evaluation of the efficiency, and of precision.

The efficiency is clearly the reason for making the whole system. Due to the Hermite
interpolation and the integration, with regarding to time consumption, the whole system is

A.4. FAST ERB-EVALUATOR BASED ON APPROXIMATIONS 295

-1110 -1210 -1310-1010-910-810-710-610-510

65
122

224

396

622

766

Figure A.2: The relationship between the precision, ie the tolerance, and the evaluation
speed, compared between the use of the B() function in the “ERB-evaluator” and the use
of the B() function in Algorithm 12 from section A.2. At a sample rate of 1024, which
gives a precision of 3.3e-13, the “ERB-evaluator” is 766 times faster than the evaluator
in Algorithm 12, when computing function value and two derivatives.

identical to evaluating a 4th-degree polynomial function, including the derivatives. This is
in some sense a kind of optimal solution. In Figure A.2 there is a graph of the relationship
between the use of Algorithm 12 (with two derivatives) and Algorithm 17, the “ERB-
evaluator”. Algorithm 12 uses the default set of intrinsic parameters, and is, therefore,
relatively fast. The speed of the B() in the “ERB-evaluator” is itself independent of the
sample rate, but the precision is highly dependent on the sample rate. The evaluator B()
in Algorithm 12 is very dependent on the precision, especially the integration part using
Romberg integration. This can clearly be seen in Figure A.2. On the horizontal axis you
can see the precision (tolerance) of the function value, B(t). On the vertical axis you can
see the relation between the speed of the “ERB-evaluator” B() and the “old” B(). One can
clearly see that the difference in speed is tremendous, i.e. it takes up to 766 times longer
to use B() in Algorithm 12 than B() in the “ERB-evaluator”. The figure also indicates that
as we pass the tolerance 10−13 we approach the maximum of the possible acceleration of
the algorithm by replacing with Algorithm 17.

The precision is a more complex problem to deal with, especially since the precision is
getting worse with the increase of the order of derivatives. The reason for this is actually
easy to see because B(t) is the integral of DB(t), and also because DB(t) is the integral
of D2B(t). Observe that a simplified computation of a maximal error of an integral of a
function in a sample interval, is approximately: 2

3 × max error of the function × 1
m (the

sample interval). The difference in error between an approximation of a function and an
approximation of the derivative of the function is, therefor, close to 103 for number of
samples m=1024. There are, of course, methods to improve this, but they might decrease
the speed or the flexibility (this will be discussed further later).

We get an insight into the precision of the “ERB-evaluator” in Table A.2. The table

296 APPENDIX A. COMPUTING ERB-FUNCTION TYPE 1

Figure A.3: The relationship between the number of samples and the precision (max
norm) of B(t) (function value) using the “ERB-evaluator”. For a sample rate of 32, the
precision is 6.4 e-6. For a sample rate of 1024, the precision is 3.3 e-13.

Figure A.4: The relationship between the number of samples and the precision (max
norm) of DB(t) (first derivatives) using the “ERB-evaluator”. For a sample rate of 32,
the precision is 8.8 e-4. For a sample rate of 1024, the precision is 1.4 e-9.

Figure A.5: The relationship between the number of samples and the precision (max
norm) of D2B(t) (second derivatives) using the “ERB-evaluator”. For a sample rate of
32, the precision is 8.9 e-2. For a sample rate of 1024, the precision is 4.5 e-6.

A.4. FAST ERB-EVALUATOR BASED ON APPROXIMATIONS 297

samples interval 1024 512 256 128 64 32

B(t)
L1[0,1] 7.6e−15 2.4e−13 7.6e−12 7.7e−10 8.5e−9 2.7e−7
L2[0,1] 2.9e−14 9.5e−13 3.0e−11 9.6e−10 3.3e−8 9.7e−7
L∞[0,1] 3.3e−13 1.0e−11 3.2e−10 8.6e−9 2.9e−7 6.4e−6

DB(t)
L1[0,1] 4.9e−11 7.8e−10 1.3e−8 2.0e−7 3.5e−6 5.6e−5
L2[0,1] 1.7e−10 2.7e−9 4.3e−8 6.7e−7 1.2e−5 1.7e−4
L∞[0,1] 1.4e−9 2.2e−8 3.5e−7 4.5e−6 7.9e−5 8.8e−4

D2B(t)
L1[0,1] 1.9e−7 1.5e−6 1.2e−5 9.7e−5 8.4e−4 6.5e−3
L2[0,1] 5.9e−7 4.7e−6 3.8e−5 2.9e−4 2.6e−3 1.9e−2
L∞[0,1] 4.5e−6 3.6e−5 2.8e−4 1.8e−3 1.6e−2 8.9e−2

Table A.2: The table shows the connection between the number of sample intervals and
the error for the three functions B(t), DB(t) and D2B(t), using three different norms,
L1[0,1], L2[0,1] and L∞[0,1].

shows the connection between the number of sample intervals and the error of the ERB-
function B(t), and its derivatives DB(t) and D2B(t). The error is displayed using three
different norms. These norms are L1[0,1] representing an arithmetic mean value, L2[0,1]
representing a geometric mean value, and L∞[0,1], a max norm, giving us the guaranteed
tolerance. The three figures A.3, A.4 and A.5, show graphs of the error(the max norm) of
the “ERB-evaluator” in relation to the number of samples. Figure A.3 shows the error for
the function value B(t). It ranges from 6.4×10−6 for 32 samples, to 3.3×10−13 for 1024
samples. This can be considered as quite a good result. In Figure A.4 the error for the first
derivative DB(t) is plotted. It ranges from 8.8× 10−4 for 32 samples, to 1.4× 10−9 for
1024 samples. In many cases, this can still be regarded as an acceptable result. In Figure
A.5, the errors for the second derivative D2B(t) are plotted. It ranges from 8.9×10−2 for
32 samples, to 4.5×10−6 for 1024 samples. This result is significantly closer to the edge
of what is acceptable.

The conclusion is thus that for the value, B(t), and the first derivative, DB(t), the errors are
acceptable. But the error for the second derivative can be improved, and at the same time
we can extend the algorithm to calculate more derivatives. This can be done with general
intrinsic parameters, but will mean a much slower algorithm. But for the default set we
can extend Algorithm 17 with parts from Algorithm 12 and then get up to 6 derivatives
with an acceptable error rate, all derivatives will then get the same error level as DB(t).
At the same time we get a relatively fast algorithm.

This leads us to create a specialized ERB-evaluator for an ERB-function with the default
set of intrinsic parameters. In C++ -programming, it is natural to make a class inherited
from the ERB-evaluator class described on page 291. Much is common, but at least the
function B(t,d) is different. Advantageous changes are that S can be hardcoded and φ(t)
should be made by Algorithm 11, second part.

The main evaluation function B(double t, int d) for an ERB-function with the default set

298 APPENDIX A. COMPUTING ERB-FUNCTION TYPE 1

of intrinsic parameters is:

Algorithm 18. (For notation, see section “Algorithmic Language”, page 6.)
The algorithm computes D jB(t), j = 0,1,2,3,4,5,6 for the set of default intrinsic pa-
rameters. The algorithm assumes that initializing is done. The input variables are:
t ∈ [0,1], and d ∈ {0,1,2,3,4,5,6} (the number of derivatives to compute). The re-
turn is a “vector〈double〉”, where the first element contains B(t), and then ,depending on
d follows DB(t), D2B(t), . . . , D(j)B(t)

vector〈double〉 B (double t, int d)
vector〈double〉 R(d +1) = S; // Make a vector for return, size d+1, all elements S
int j = min(int(t ∗m),m−1); // j not equal m, due to the “mirroring” around 0.5
double dt = t− j∗∆t

∆t ; // Mapping from total [0,1] to [0,1] on sample
if (dt > 0.5) // Integrating: dt - 1 (A.12)

R0 ∗= b j+1−∆t
(

a j,4−dt
(

a j,0 +dt
(

a j,1
2 +dt

(
a j,2

3 +dt a j,3
4

))))
;// Scaled by ∆t

else // Integrating: 1 - dt (A.12)

R0 ∗= b j +∆t dt
(

a j,0 +dt
(

a j,1
2 +dt

(
a j,2

3 +dt a j,3
4

)))
; // Scaled by ∆t

if (d > 0)
double φ = a j,0 +dt

(
a j,1 +dt

(
a j,2 +dt a j,3

))
; // see4

R1 ∗= φ ; // Using (A.10), no scaling
double t̃ = (1−2t)2;
switch (d)

case 6: R6 ∗=
(((((45

2 t̃ + 135
2

)
t̃− 765

4

)
t̃ +75

)
t̃ +66

)
t̃− 85

2

)
t̃ + 15

4 ;
case 5: R5 ∗=

((((15
2 t̃ + 45

4

)
t̃−33

)
t̃ + 29

2

)
t̃ + 3

2

)
t̃− 3

4 ;
case 4: R4 ∗=

((
3t̃ + 3

2

)
t̃−5

)
t̃ + 3

2 ;
case 3: R3 ∗= 3

2 t̃2− 1
2 ;

for (int i=2; i≤ d; i++) Ri ∗= φ

(2t(1−t))2(i−1) ;

for (int i=2; i≤ d; i+=2) Ri ∗= (1−2t);
return R;

4It is also possible to call Algorithm 11, part 2 directly, ie double φ = φ(t); The error will be improved
to better than 1e-15, but the time cost for just this line is approximately 9:22. That is about 2.5 times as
much time. But note that this only applies to this one line.

Appendix B

Programming libraries

Solving linear systems, which are sometimes quite large, is a resource-intensive job for the
computer. Therefore, it is wise to use ready-made optimized subroutines for this. There is
a defined programming interface for this, BLAS, which is described in the section below.
The section also has a list of completed routines that are BLAS compliant.

Another problem associated with resource-intensive programs is being able to use all
available resources on the computer. This is called “Heterogeneous computing” and to-
gether with parallelization is this dealt with in the section after BLAS.

B.1 Basic Linear Algebra Subprograms - BLAS
Basic Linear Algebra Subprograms - BLAS is a de facto application programming inter-
face standard for publishing libraries to perform basic linear algebra operations such as
vector and matrix multiplication. They were first published in 1979, and are used to build
larger packages such as LAPACK, and Armadillo1. Commercial applications such as
MATLAB also use BLAS. BLAS is heavily used in high-performance computing, highly
optimized implementations of the BLAS interface have been developed by hardware ven-
dors such as Intel, AMD and NVIDIA for CPU and GPU, as well as by other authors, see
below. BLAS homepage can be found at http://www.netlib.org/blas/.

BLAS functionality is categorized into three sets called ”levels”, which correspond to
both the chronological order of definition and publication, as well as the degree of the
polynomial in the complexities of algorithms:

Level 1 BLAS operations of O(n). This level consists of all the routines described in the
original presentation of BLAS (1979), [111] which defined only vector operations
on strided arrays: dot products, vector norms, a generalized vector addition of the
form y← αx+ y.

1LAPACK, a software library written in Fortran http://performance.netlib.org/lapack/ and LA-
PACK++ in C++ https://math.nist.gov/lapack++/. Armadillo is another C++ library http://arma.
sourceforge.net/. All three are free software

299

http://www.netlib.org/blas/
http://performance.netlib.org/lapack/
https://math.nist.gov/lapack++/
http://arma.sourceforge.net/
http://arma.sourceforge.net/

300 APPENDIX B. PROGRAMMING LIBRARIES

Level 2 BLAS operations of O(n2). This level contains matrix-vector operations includ-
ing, among other things, a generalized matrix-vector multiplication y← αAx+βy
and solving for x, T x = y with T being triangular. Design of this Level was made in
1984 - 1988, [53].

Level 3 BLAS operations of O(n3), formally published in 1990, [52]. Contains matrix-
matrix operations, including a general matrix multiplication, of the form C ←
αAB+ βC, where A and B can optionally be transposed or hermitian-conjugated
inside the routine, and all three matrices may be strided. The ordinary matrix mul-
tiplication AB can be performed by setting α to one and C to an all-zeros matrix of
the appropriate size. We also find routines for B← αT−1B where T is a triangular
matrix. There is also other functionalities.

Modern BLAS implementations typically provide all three levels.

Below follows a short (not complete) list of libraries with the BLAS interface:

Accelerate - Apple’s framework for macOS and iOS,
https://developer.apple.com/accelerate/

AOCL - is a set of numerical libraries tuned specifically for AMD CPU‘s
https://developer.amd.com/spack/amd-optimized-cpu-libraries/

ATLAS - Open source implementation - APIs for C and Fortran77,
http://math-atlas.sourceforge.net/

BLIS - for AMD, a BLAS-like dense linear algebra libraries,
https://developer.amd.com/amd-aocl/blas-library/

cuBLAS - Basic Linear Algebra on NVIDIA GPUs,
https://developer.nvidia.com/cublas

NVBLAS - For NVIDIA GPUs, but only Level 3 functions,
https://docs.nvidia.com/cuda/nvblas/index.html

clBLAST - is an OpenCL BLAS library written in C++11,
https://rocmdocs.amd.com/en/latest/ROCm Tools/clBLA.html

Eigen BLAS - is a C++ template library (free software)
http://eigen.tuxfamily.org/index.php?title=Main Page

GSL - The GNU Scientific Library for C and C++ (free software),
http://www.gnu.org/software/gsl/

Intel MKL - “oneAPI Math Kernel Library” for Intel CPU‘s
http://software.intel.com/en-us/intel-mkl

Netlib BLAS - freely available in Fortran, for C see CBLAS,
https://www.netlib.org/blas/

OpenBLAS - is based on GotoBLAS2 1.13 BSD. OpenBLAS is an open source project
supported by Lab of Parallel Software and Computational Science,
http://www.openblas.net/

https://developer.apple.com/accelerate/
https://developer.amd.com/spack/amd-optimized-cpu-libraries/
http://math-atlas.sourceforge.net/
https://developer.amd.com/amd-aocl/blas-library/
https://developer.nvidia.com/cublas
https://docs.nvidia.com/cuda/nvblas/index.html
https://rocmdocs.amd.com/en/latest/ROCm_Tools/clBLA.html
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://www.gnu.org/software/gsl/
http://software.intel.com/en-us/intel-mkl
https://www.netlib.org/blas/
http://www.openblas.net/

B.2. HETEROGENEOUS COMPUTING AND PARALLELIZATION 301

rocBLAS - An implementation on top of AMD’s Radeon Open Compute ROCm runtime
and toolchains. rocBLAS is implemented in the HIP programming language and
optimized for AMD’s latest discrete GPUs.
https://rocblas.readthedocs.io/

SurviveGotoBLAS2 - is also based on GotoBLAS2 1.13 BSD, licensed under AGPL-3.
http://prs.ism.ac.jp/∼nakama/SurviveGotoBLAS2/

uBLAS - a C++ template class library provides level 1, 2, 3 functionality for dense,
packed and sparse matrices.
https://www.boost.org/doc/libs/1 72 0/libs/numeric/ublas

ViennaCL - a free open-source linear algebra library for computations on GPUs and
multi-core CPUs. The library is written in C++ and supports CUDA, OpenCL, and
OpenMP. It contains core functionality and many other features including BLAS
level 1-3 support and also iterative solvers.
http://viennacl.sourceforge.net/

There is a lot of other implementation that can be found if you look on internet, se for
example Basic Linear Algebra Subprograms at Wikipedia.

B.2 Heterogeneous computing and parallelization
In heterogeneous computing, we use systems that use more than one kind of processor
or cores. This can typically be to combine central processing units (CPU) and graphics
processor units (GPU). Together with parallelization, ie the use of many similar units/-
cores, this is an important way to increase the speed of calculations, especially when
large matrices are involved.

CUDA - “Compute Unified Device Architecture”, is a parallel computing platform and
API model created by Nvidia. We can use a CUDA-enabled GPU for general pur-
pose processing, ie GPGPU. The CUDA platform is a software layer that gives
direct access to the GPU’s virtual instruction set and parallel computational ele-
ments, for the execution of compute kernels (shaders). It can be used together with
C, C++ and Fortran. CUDA-powered GPUs also support programming frameworks
such as OpenMP, OpenACC and OpenCL, and also HIP by compiling such code to
CUDA. https://developer.nvidia.com/about-cuda

HIP - The HPC-ready universal language at the core of AMD’s all-open ROCm platform.
HIP can run on both AMD and Nvidia GPUs. The HIP API syntax is very similar to
the CUDA API, and the abstraction level is the same meaning that porting between
the two is easy. https://rocmdocs.amd.com/

OpenMP - The OpenMP API supports multi-platform shared-memory parallel program-
ming in C/C++ and Fortran. It consists of a set of compiler directives, library rou-
tines, and environment variables that influence run-time behavior. The core el-
ements of OpenMP are the constructs for thread creation, workload distribution

https://rocblas.readthedocs.io/
http://prs.ism.ac.jp/~nakama/SurviveGotoBLAS2/
https://www.boost.org/doc/libs/1_72_0/libs/numeric/ublas
http://viennacl.sourceforge.net/
https://developer.nvidia.com/about-cuda
https://rocmdocs.amd.com/

302 APPENDIX B. PROGRAMMING LIBRARIES

(work sharing), data-environment management, thread synchronization, user-level
runtime routines and environment variables. https://www.openmp.org/

OpenCL - The open standard for parallel programming of heterogeneous systems. It is a
framework for writing programs that execute across heterogeneous platforms con-
sisting of central processing units -CPUs, graphics processing units -GPUs, digital
signal processors -DSPs, field-programmable gate arrays -FPGAs and other proces-
sors or hardware accelerators. OpenCL specifies programming languages (based on
C99, C++14 and C++17) for programming these devices and application program-
ming interfaces -APIs to control the platform and execute programs on the compute
devices. OpenCL provides a standard interface for parallel computing using task-
and data-based parallelism. http://www.khronos.org/opencl/

https://www.openmp.org/
http://www.khronos.org/opencl/

Appendix C

Miscellaneous proofs

C.1 Newton and Lagrange polynomials, proof Lemma
5.1

Lemma 5.1 states that the Newton and Lagrange polynomials are just two different repre-
sentations of the same polynomial. Here follows the proof.

Proof. We will show this by induction. First we show it for first degree interpolation,

f (t) =
1

∑
i=0

aini(t) = f (t0)+(t− t0)
(

f (t0)
(t0− t1)

+
f (t1)

(t1− t0)

)
= f (t0)

(t0− t1)+(t− t0)
t0− t1

+
t− t0
t1− t0

f (t1) =
t− t1
t0− t1

f (t0)+
t− t0
t1− t0

f (t1) =
1

∑
i=0

f (xi) L1,i(t),

consequently, the 1st-degree Newton and Lagrange polynomials are the same polynomial.
If we have a Lagrange polynomial of degree d− 1 and then add one more interpolation

303

304 APPENDIX C. MISCELLANEOUS PROOFS

point as a Newton polynomial term using (5.6) we get,

f (t) =
d−1

∑
i=0

f (ti) Ld−1,i(t)+ f [t0, . . . , td]
d−1

∏
i=0

(t− ti)

=
d−1

∑
i=0

(
f (ti)

d−1

∏
j=0, j 6=i

(t− t j)

(ti− t j)

)
+

d

∑
i=0

f (ti)
ω ′d(ti)

d−1

∏
j=0

(t− t j)

=
d−1

∑
i=0

 f (ti)

d−1

∏
j=0, j 6=i

(t− t j)(ti− td)

d−1

∏
j=0, j 6=i

(ti− t j)(ti− td)

+
d

∑
i=0

 f (ti)

d−1

∏
j=0

(t− t j)

d

∏
j=0, j 6=i

(ti− t j)



=
d−1

∑
i=0

 f (ti)

d−1

∏
j=0, j 6=i

(t− t j)(ti− td)+
d−1

∏
j=0, j 6=i

(t− t j)(t− ti)

d

∏
j=0, j 6=i

(ti− t j)

+ f (td)
d−1

∏
j=0

(t− t j)

(td− t j)

=
d−1

∑
i=0

 f (ti)

d−1

∏
j=0, j 6=i

(t− t j)(ti− td + t− ti)

d

∏
j=0, j 6=i

(ti− t j)

+ f (td)
d−1

∏
j=0

(t− t j)

(td− t j)
=

d

∑
i=0

f (xi) Ld,i(t).

We see that this gives Lagrange polynomials of degree d, which concludes the proof.

C.2 Commutativity relations between T (t) and its deriva-
tives

The Td(t) matrices are matrices containing only linear elements or zeros. It means that
T ′d , which is the derivative of Td(t), is a matrix of only constants.

Given that we have a B-spline of degree 3. We will then see that regardless of which of
the 3 matrices we derive, the result will be the same, i.e.

T1(t) T2(t) T ′3 = T1(t) T ′2 T3(t) = T ′1 T2(t) T3(t),

and we shall also see that the same applies regardless of degree.

Lemma C.1. Derivation of the multiplication of two T (t) matrices is commutative. That
is, for all d > 0 and for a given knot sequence t j−d, t j−d+1, . . . , t j+d+1, and ti ≤ t < ti+1 is

Td(t) T ′d+1 = T ′d Td+1(t). (C.1)

Proof. We start by computing the left side of C.1. In each line in all matrices Td(t), d =
1,2, ..., there are only two elements that are different from zero. We multiply these with

C.3. BETA-FUNCTIONS, PROOF LEMMA 7.1 305

the sub-matrix of T ′d+1 which is the part of the matrix that gives something different from
zero.(

1−wd, j(t) wd, j(t)
)(−δd+1, j−1 δd+1, j−1 0

0 −δd+1, j δd+1, j

)
=(

−(1−wd, j(t))δd+1, j−1 (1−wd, j(t))δd+1, j−1−wd, j(t)δd+1, j wd, j(t)δd+1, j
)
.

(C.2)

We use the same procedure on the right hand side of C.1,

(
−δd, j δd, j

)(1−wd+1, j−1(t) wd+1, j−1(t) 0
0 1−wd+1, j(t) wd+1, j(t)

)
=(

−(1−wd+1, j−1(t))δd, j (1−wd+1, j(t))δd, j−wd+1, j−1(t)δd, j wd+1, j(t)δd, j
)
,

(C.3)

and we compute the first element of (C.2) and (C.3),

(1−wd, j(t))δd+1, j−1 =
t j+d− t

(t j+d− t j)(t j+d+1− t j−1)
,

(1−wd+1, j−1(t))δd, j =
t j+d− t

(t j+d+1− t j−1)(t j+d− t j)
,

which shows that they are equal. We now compute the last element of (C.2) and (C.3),

wd, j(t)δd+1, j =
t− t j

(t j+d− t j)(t j+d+1− t j)
, wd+1, j(t)δd, j =

t− t j

(t j+d+1− t j)(t j+d− t j)
,

which shows that they also are equal. The middle element of (C.2) and (C.3) are a com-
bination of the first and last element, and thus they are also equal, which completes the
proof.

The main commutativity theorem now follows.

Theorem C.1. Derivation of multiplication of a set of T (t) matrices is commutative. That
is, for all d > 0 and a given knot vector any matrix can be the derivative matrix T ′. i.e.

Td(t) Td+1(t) · · · Td+ j−1(t) T ′d+ j = T ′d Td+1(t) · · · Td+ j−1(t) Td+ j(t). (C.4)

Proof. This follows by an induction of Lemma C.1’s statement

C.3 Beta-functions, proof Lemma 7.1
Lemma 7.1 says the following:

The regularized incomplete beta function, It(a,b), has the properties:

I Zero at t = 0 I0(a,b) = 0,

II One at t = 1 I1(a,b) = 1,

306 APPENDIX C. MISCELLANEOUS PROOFS

III Hermite order d j

dt j I0(a,b) = 0, j = 1,2, ...,a, i.e. order a at start

d j

dt j I1(a,b) = 0, j = 1,2, ...,b, i.e. order b at end

IV Antisymmetric It(a,b) = 1− I1−t(b,a), i.e. symmetric if a=b

V monotone d
dt It(a,b)> 0, 0 < t < 1 and d

dt It(a,b) = 0, t = {0,1}.
VI Recursive It(a,b) = t It(a−1,b)+(1− t) It(a,b−1).

It(a,b) = It(a−1,b)− ta(1−t)b+1

a B(a−1,b) = It(a,b−1)+ ta+1(1−t)b

b B(a,b−1) ,

Proof. I follows directly from (7.18), II follows from (7.19) because B(1;a,b)=B(a,b).
To prove III we start differentiating (7.18), d

dt B(t;b,a) = ta(1− t)b. It follows that the
subsequent derivatives are a sum where each term contains a factor t j, j > 0 for all
derivatives of order up to a, and a factor (1− t) j, j > 0 for all derivatives of order up to
b. It follows that if t = 0 then all derivatives up to order a is zero, and that if t = 1 then all
derivatives up to order b is zero, which completes the proof of III.

To prove IV we start computing

B(1− t;b,a) =
1−t∫
0

xb(1− x)adx

=
1∫
t
(1− x)b(1− (1− x))adx

=
1∫
t

xa(1− x)bdx.

It follows that B(t;a,b)+B(1− t;b,a) =B(a,b), which together with (7.19) completes
the proof of IV.

The proof of V follows from that differentiating (7.18) we get d
dt B(t;b,a) = ta(1− t)b,

and that the derivative is positive on 0 < t < 1 and zero at t = 0 and t = 1.

To prove VI, the recursion, we start differentiating the kernel of (7.18),

d
dx

xa(1− x)b = a xa−1(1− x)b−b xa(1− x)b−1.

Then we go back by antiderivative (integration) and divide both sides with ab

1
ab

xa(1− x)b =
a

ab

∫ x

0
ta−1(1− t)bdt− b

ab

∫ x

0
ta(1− t)b−1dt. (C.5)

We then add (a+b)xa(1− x)b on both left and right side and reorganize the right side

a+b+1
ab xa(1− x)b = a

ab

(
xa(1− x)b +

∫ x
0 ta−1(1− t)bdt

)
+

b
ab

(
xa(1− x)b−

∫ x
0 ta(1− t)b−1dt

)
.

Integrating once more,

a+b+1
ab

∫ x

0
ta(1− t)b =

1
b

x
∫ x

0
ta−1(1− t)bdt +

1
a
(1− x)

∫ x

0
ta(1− t)b−1dt.

C.4. RATIONAL B-FUNCTIONS, PROOF THEOREM 7.4 307

then we multiply both sides with (a+b)!
(a−1)!(b−1)! ,

(a+b+1)!
a!b!

x∫
0

ta(1−t)b =
(a+b)!
(a−1)!b!

x
x∫

0

ta−1(1−t)bdt+
(a+b)!

a!(b−1)!
(1−x)

x∫
0

ta(1−t)b−1dt.

which together with(7.17) and (7.19) completes the proof of the first part of the recursion.
The proof of the two last parts is just a reorganizing of (C.5), which ends the proof.

C.4 Rational B-functions, proof Theorem 7.4
Theorem 7.4 says that a rational B-function, i.e. an RB-function is a real B-function. The
following proves theorem 7.4

Proof. We follow Definitions 7.1. First it is clearly a permutation function (D1). If we
compute (7.21) we see that Ba,b(0) = 0 (D2) and Ba,b(1) = 1 (D3). The 1st-derivative of
(7.21) is

B′a,b(t) = (a(1− t)+bt +1)
ta(1− t)b

(ta+1 +(1− t)b+1)2 ,

It is clear that B′a,b(t) ≥ 0, because t and 1− t ≥ 0 for t ∈ [0,1], and it follows that all
terms and factors are greater or equal zero. Thus the RB-function is monotone (D4).

Reformulating to Ba,b(t) =
α(t)
β (t) . The derivative B(j)

a,b(t) is a fraction where the numerator

is a sum where each term has factors of α(r)(t),r ≤ j and β (s)(t),s ≤ j where j is the
order of the derivative, and the denominator is β (t)2 j. Note that β > 0 when t ∈ [0,1].

a) If j ≤ a in B(j)
a,b(t) then every term in the numerator has a factor ta+1−r, r ≤ j. It

follows that B(j)
a,b(0) = 0 (left side Hermite order).

b) Because lim
t→1

(1− t) = 0 it follows that if j≤ b then lim
t→1

β
(j)(t) = α

(j)(t). Thus if j≤ b

then B(j)
a,b(1) = 0 (right side Hermite order).

Finally, the RB-function Bs(t) is symmetric (D5) since

BS(t)+BS(1− t) =
tS+1

tS+1 +(1− t)S+1 +
(1− t)S+1

(1− t)S+1 + tS+1 = 1,

which ends the proof.

C.5 ERB-functions, proof Theorem 7.5
Theorem 7.5 states that Bd(t) defined in (7.31), By(t) defined in (7.33), Bx(t) defined in
(7.34) and Bz(t) defined in (7.35) are all symmetric Expo-Rational B-functions (ERB-
functions) and that they are all complete B functions, cf. Definition 7.3.

The following proves theorem7.5

308 APPENDIX C. MISCELLANEOUS PROOFS

Proof. We follow Definitions 7.1. First the four functions (7.31), (7.33), (7.34) and (7.35)
are permutation functions (D1). This follows from that the next three points are fulfilled.
If we compute them we see that B(0) = 0 (D2) and B(1) = 1 (D3). The first derivative
B′d(t) > 0, t ∈ (0,1) in(7.36) because exponential functions are always positive, and the
same argument applies to B′x(t) and B′z(t) in (7.37) as well. B′y(t) in (7.36) is also positive
when t ∈ [0,1] because the the denominator in the fraction is always positive and the
numerator in the fraction is also always positive because (1−By(t)) > 0 since By(t) <
1, 0 < t < 1. Thus they are all monotone (D4).

The symmetry (D5) follows from:

Because
(
t− 1

2

)2
=
(
1− t− 1

2

)2
the symmetry of Bd(t) follows from

Bd(t)+Bd(1− t) = Sd

t∫
0

φ(s)ds+Sd

1∫
t

φ(s)ds = 1.

The two next functions are constructed to be symmetric,

By(t)+By(1− t) =
Ψ(t)

Ψ(t)+Ψ(1− t)
+

Ψ(1− t)
Ψ(1− t)+Ψ(t)

= 1,

Bx(t)+Bx(1− t) =
1
2
(1−Ψ(1− t)+Ψ(t))+

1
2
(1−Ψ(t)+Ψ(1− t)) = 1.

For Bz(t) we see that it will be similar to By(t), so we get

Bz(t)+Bz(1− t) =
θ(1− t)

θ(1− t)+θ(t)
+

θ(t)
θ(t))+θ(1− t)

= 1,

which completes the first part of the proof, Bd(t), By(t), Bx(t) and Bz(t) are all symmetric
B-functions.

The second part, that Bd(t), By(t), Bx(t) and Bz(t) are complete ERB-functions,that is, the
Hermite order is infinite, depend on two properties of the exponential function, (ex)

′ = ex
and limx→+∞ xne−x = 0 for every n. For all ERB-functions the exponential function will
be a factor on each term of all derivatives. Along with what we observed in Figure 7.16,
that is, the mapping from R to (0,1), thus the override of the exponential function will
secure that all derivatives are zero at t = 0,1. This ends the proof.

C.6 Order symmetry of a B-function, proof Theorem 7.6

Theorem 7.6 states that Beta functions and RB functions are order symmetric. And that
the ERB functions Bd(t;α,β) and Bz(t;α,β) are “order symmetric” in the sense that they
are symmetric according to α and β .

The following proves theorem 7.6.

C.7. BALANCE SYMMETRY OF A B-FUNCTION, PROOF THEOREM 7.7 309

Proof. The proof of Theorem 7.6 is divided in three parts, one for each type of B-
functions.

Beta-functions: The Beta-function is the regularized incomplete beta function defined in
(7.18). If we first look at the denominator of the fraction, we see that B(a,b) = B(b,a)
because it follows from (7.17). Therefor, we have a common denominator and we can
just sum up the numerators. If we put (7.18) into (7.48) we get

B(t;a,b)+B(1− t;b,a) =
t∫

0

xa(1− x)bdx+
1∫

t

(1− x)bxadx =
1∫

0

xa(1− x)bdx.

It follows that the numerators and the denominator are equal, and it verifies that the sum
is 1, and that the Beta-functions are Order-symmetric.

RB-functions: The RB-function is defined in Theorem 7.4, (7.21). If we put (7.21) into
(7.48) we get

Ba,b(t)+Bb,a(1− t) =
ta+1

ta+1 +(1− t)b+1 +
(1− t)b+1

(1− t)b+1 + ta+1 = 1,

which verifies that the RB-functions are Order-symmetric.

ERB-functions Bd(t;α,β) and Bz(t;α,β): Bd(t;α,β) is defined in(7.31) and (7.44). If
we exchange α with β and replace t with 1− t in (7.44), it turns out that φ(1− t;β ,α) =
φ(t;α,β). Thus

Bd(t;α,β)+Bd(1− t;β ,α) = Sα,β

t∫
0

φ(s;α,β)ds+Sβ ,α

1∫
t

φ(s;β ,α)ds = 1.

which verifies that the Bd(t;α,β) are Order-symmetric in the sense that it is symmetric
according to α and β . When it comes to Bz(t;α,β) we get,

Bz(t;α,β)+Bz(1− t;β ,α) =
e

1
(1−t)β

e
1

(1−t)β + e
1

tα

+
e

1
tα

e
1

tα + e
1

(1−t)β
= 1,

Bz(t;α,β) are Order-symmetric in the sense that it is symmetric according to α and β .

C.7 Balance symmetry of a B-function, proof Theorem
7.7

Theorem 7.7 states that Rµ functions and ERB functions are balance symmetric.

The following proves Theorem 7.7.

Proof. The proof of Theorem 7.7 is divided in two parts, one for each type of B-functions.

Rµ-functions: The Rµ-function is defined in Corollary 7.1, (7.22). If we put (7.22) into
(7.49) we get

B(t; µ)+B(1− t;1−µ) =
(1−µ)tS+1

(1−µ)tS+1 +µ(1− t)S+1 +
µ(1− t)S+1

µ(1− t)S+1 +(1−µ)tS+1 = 1,

310 APPENDIX C. MISCELLANEOUS PROOFS

which verifies that Rµ-functions are Balance-symmetric.

ERB-functions: Bd(t; µ), Bx(t; µ), By(t; µ) and Bz(t; µ) are defined in subsection 7.7.2.
If we replace µ with 1−µ and t with 1− t in (7.39) we see that

φ(t; µ) = e−
(t−µ))2

t(1−t) and φ(1− t;1−µ) = e−
((1−t)−(1−µ))2

(1−t)t = e−
(µ−t))2

(1−t)t ,

i.e. they are equal. It follows that Sµ = S1−µ =
∫ 1

0 φ(s; µ)ds, and we get,

Bd(t; µ)+Bd(1− t;1−µ) = Sµ

t∫
0

φ(s; µ)ds+S1−µ

1∫
t

φ(s; µ)ds = 1,

which verifies that Bd(t; µ) is Balance-symmetric. We now replace µ with 1− µ and t
with 1− t in (7.43), we get

Bx(t; µ)+Bx(1− t;1−µ) = µ

(
1− e

−2
1−t e

−1
t

)
+(1−µ)e

−2
t e
−1
1−t

+

(1−µ)

(
1− e

−2
t e
−1
1−t
)
+µe

−2
1−t e

−1
t
= 1.

which verifies that Rx(t; µ) is Balance-symmetric. Next we replace µ with 1− µ and t
with 1− t in (7.42), we get

By(t; µ)+By(1− t;1−µ) =
(1−µ)ϕ(t)

(1−µ)ϕ(t)+µϕ(1− t)
+

µϕ(1− t)
µϕ(1− t)+(1−µ)ϕ(t)

= 1,

which verifies that Ry(t; µ) are Balance-symmetric. Finally we replace µ with 1−µ and
t with 1− t in (7.41) we get

Bz(t; µ)+Bz(1− t;1−µ) =
e

µ

(1−t)

e
µ

(1−t) + e
1−µ

t

+
e

1−µ

t

e
1−µ

t + e
µ

(1−t)
= 1,

which verifies that Rz(t; µ) is Balance-symmetric. This ends the proof.

C.8 Simultaneous order and balance symmetry, proof The-
orem 7.8

Theorem 7.8 says that the following B-functions are order-symmetric and balance-symmetric
at the same time: The Rµ functions, the ERB function Bd and the ERB function Bz.

Proof. The proof of Theorem 7.8 is divided in two parts, one for each type of B-functions.

Rµ-functions: The Rµ-function is defined in Corollary 7.1, (7.22). If we exchange a and
b, replace µ with 1−µ and t with 1− t we get

Ba,b(t; µ)+Bb,a(1− t;1−µ) =
(1−µ)ta+1

(1−µ)ta+1 +µ(1− t)b+1 +
µ(1− t)b+1

µ(1− t)b+1 +(1−µ)ta+1 ,

C.9. PROPERTIES OF 2-P B-FUNCTIONS B(U,V) 311

which sums up to 1. This confirms that the Rµ-functions simultaneously are Balance-
and Order-symmetric.

The Bd(t,µ,α,β)-functions: The kernel of Bd(t,µ,α,β) is defined in (7.44). If we
exchange α and β , replace µ with 1−µ and t with 1− t in (7.44) we get

φ(t; µ,α,β) = e
− |t−µ|β+α

tα (1−t)β and φ(1− t;1−µ,β ,α) = e
− |(1−t)−(1−µ)|β+α

(1−t)β tα = e
− |µ−t|β+α

tα (1−t)β ,

which shows that φ(t; µ,α,β)= φ(1−t;1−µ,β ,α), which in turn means that S1−µ,β ,α =
Sµ,α,β and we get

Bd(t; µ,α,β)+Bd(1− t;1−µ,β ,α) =

Sµ,α,β

t∫
0

φ(s; µ,α,β)ds+S1−µ,β ,α

1∫
t

φ(1− s;1−µ,β ,α)ds = Sµ,α,β

1∫
0

φ(s; µ,α,β)ds = 1,

confirming that Bd(t,µ,α,β) simultaneously are Balance- and “Order”-symmetric.

The Bz(t,µ,α,β)-functions: The kernel of Bz(t,µ,α,β) is defined in (7.46).

Finally we replace µ with 1−µ and t with 1− t in (7.41) we get

Bz(t; µ,α,β)+Bz(1− t;1−µ,β ,α) =
e

µ

(1−t)β

e
µ

(1−t)β + e
1−µ

tα

+
e

1−µ

tα

e
1−µ

tα + e
µ

(1−t)β
= 1,

confirming that Bz(t,µ,α,β) simultaneously are Balance- and “Order”-symmetric. This
ends the proof.

C.9 Properties of 2-p B-functions B(u,v)

In section 11.1, a 2-p B-function B(u,v), (u,v) ∈ [0,1]× [0,1] is defined, see (11.11). A
B-function B(u,v) of Hermite order d has the following properties:

- that the value is 0 “internally” on two opposite edges (with constant v value),

- that the value is 1 over all the other two edges (with constant u value),

- it is symmetric, i.e. B(u,v)+B(v,u) = 1,

- it is “internally” Cd-smooth,

- that all derivatives up to order d are 0 on the edges,

- and it is discontinuous in all the corners in the “u direction”

Below are 2 Propositions with proofs that confirm the list of properties,

Proposition C.1. At two opposite edges is the function value 0 (note that it does not
include the corner points), at the other two edges is the function value 1 (including the
corner points). i.e.

312 APPENDIX C. MISCELLANEOUS PROOFS

B(0,v) = B(1,v) = 1, v ∈ [0,1], (C.6)
B(u,0) = B(u,1) = 0, u ∈ (0,1). (C.7)

Further, at all corners and all edges has all derivatives up to order d the value zero,

D(i)
u D(j)

v B(0,v) = D(i)
u D(j)

v B(1,v) = 0, v ∈ [0,1], 0≤ i, j ≤ d, i+ j > 0,
D(i)

u D(j)
v B(u,0) = D(i)

u D(j)
v B(u,1) = 0, u ∈ (0,1), 0≤ i, j ≤ d, i+ j > 0.

(C.8)

Proof. In section 11.1 we have g(u) (11.3), a(u) (11.5), t(u,v) (11.6) and B(u,v) (11.8),
and

if u = 0 and v ∈ [0,1] then a(0) = 0, g(0) = 1 and t(0,v) = 1 than B(0,v) = 1,
if u = 1 and v ∈ [0,1] then a(0) = 0, g(1) = 1 and t(1,v) = 1 than B(1,v) = 1,
if v = 0 and u ∈ (0,1) then t(u,0) = 0 than B(u,0) = 0,
if v = 1 and u ∈ (0,1) then t(u,1) = 0 than B(u,1) = 0,

which proves (C.6) and (C.7).

Recall from the table above that g(0) = g(1) = 1 and t(0,v) = t(1,v) = 1, t(u,0) =
t(u,1) = 0. Now, from the properties of a B-function (7.1), it follows that (at the bound-
aries) B(j)(0) = B(j)(1) = 0, j = 1,2, ...,d where d is the order of the B-function, and
we also recognize from the definition (11.4) that g(j)(0) = g(j)(1) = 0, j = 1,2, . . . ,d.
Because of the product derivation rule, all partial derivatives of B(u,v) up to order d will
contain a set of terms, where every terms contains a product of either g and some deriva-
tives of B (that is 0 because B(j) = 0, j = 0,1, . . . ,d), or g(j) and B (that is 0 because
g(j)(0) = g(j)(1) = 0, j = 1,2, . . . ,d). It follows that (C.8) in Proposition C.1 is true,
which ends the proof

The domain of S(u,v) is U = [0,1]× [0,1] ⊂ R2. To prove that S(u,v) is Cd-smooth on
the domain except for the corners p1 = (0,0), p2 = (1,0), p3 = (0,1), and p4 = (1,1),
we have the following proposition.

Proposition C.2. The 2-parameter blending function B(u,v) is ∈Cd(V), V =U\(0,0)∪
(1,0)∪ (0,1)∪ (1,1), and where U = [0,1]× [0,1]⊂ R2.
- From p1 = (0,0) ∈U is B discontinuous in the direction v1 = (1,z), 0≤ z < 2

- From p2 = (1,0) ∈U is B discontinuous in the direction v2 = (−1,z), 0≤ z < 2

- From p3 = (0,1) ∈U is B discontinuous in the direction v3 = (1,−z), 0≤ z < 2

- From p4 = (1,1) ∈U is B discontinuous in the direction v4 = (−1,−z), 0≤ z < 2

Proof. The 2-p blending function B(u,v) = g(u) B ◦ t(u,v) consists of the B-function
B(t) described in Section 7.1, the function g defined in (11.3) and the function t defined
in (11.6). Each of these factors will be analyzed and then concluded with a result. The
properties of B(t) are important and are also transferred to B(u,v). The proof is divided
in 4 parts, 1) is about g, 2) is about t, 3) is about B◦ t and 4) gives a conclusion.

C.9. PROPERTIES OF 2-P B-FUNCTIONS B(U,V) 313

1) From (11.3) we see that g(u) is symmetric about u = 1
2 . It follows that the number

of derivatives that are zero at u = 1
2 decide the continuity level of g. It follows that

g(j)(u)|u= 1
2
= B(j)(u)|u= 1

2
. Hence from the property described in Definition 7.2)

g(u) ∈Cd([0,1]).

2) Analyzing t(u,v) in expression (11.6) we see that:
- For a fixed u-value ū ∈ [0,1], is t̃(v) = t(ū,v) ∈C0([0,1]) and t̃(v) is piecewise linear.
- For a fixed v-value v̄ ∈ (0,1), is t̂(u) = t(u, v̄) ∈C0([0,1]), t̂(u) is piecewise smooth.
- For v = 0 we see that t̂(u) = t(u,0) = 0

a(u) = 0 when 0 < u < 1.

- For v = 1 we see that t̂(u) = t(u,1) = 1−1
a(u) = 0 when 0 < u < 1.

It follows that t is continuous on V (V defined in Proposition C.2). We see that at the four
corner points is t continuous in the v-direction, but discontinuous in u-direction.

- A closer examination of the corner points shows the following:
a - Computing the formula (11.6) we get t(p1) = 1.
b - From (11.6) it follows that t(u,v) = 1 between the two curves in the parameter
plane v = a(u) and v = 1− a(u), (11.5), and that t(u,v) < 1 else. It follows that
in the start of the curve v = a(u) is (v′,a′)|p1 = (1,2). Investigating the directions
(1,z), 0≤ z < 2 we see that

lim
u→0+

t(u,z u) =
z
2
. (C.9)

Contrary to paragraph a- above is limu→0+ t(u,z u)< 1. Hence t(u,v) is discontin-
ues from the corner point p1 in the direction v1 = (1,z), 0≤ z< 2. Using symmetry
it follows that t(u,v) is discontinues from the corner points
- p2 = (1,0) in the direction v2 = (−1,z), 0≤ z < 2,
- p3 = (0,1) in the direction v3 = (1,−z), 0≤ z < 2,
- p4 = (1,1) in the direction v4 = (−1,−z), 0≤ z < 2.

3) Since t(u,v) is continuous on V (V defined in Proposition C.2), and discontinuous at
the four corner points as described above, it follows that B◦ t(u,v) is the same.

We see that t(u,v) is divided in three parts, by two curves in the parameter plane, v = a(u)
and v = 1−a(u). Each part is internally smooth, continuous first, second, etc. derivatives.
On the two curves we see the following,

t(u,a(u)) = t(u,1−a(u)) = 1,

B(j)(t(u,a(u))) = B(j)(t(u,1−a(u))) = 0, j = 1,2, ...,d.

It follows that B ◦ t(u,v) is not only continuous on V but is Cd(V). This because every
place a derivative of some order of t is discontinuous is the value of t equal 1 and all
derivatives up to the current order is zero (this is illustrated for B in (11.9)).

4) It follows that B(u,v) will inherit all discontinuities from both g and B◦ t(u,v), hence
B(u,v) is in Cd(V), but it is discontinuous from the points p1 in direction v1, p2 in direc-
tion v2, p3 in direction v3 and p4 in direction v4, which ends the proof.

314 APPENDIX C. MISCELLANEOUS PROOFS

C.10 Two-surface blending and continuity
The following theorems will show that it is possible to fill a square hole with a surface so
that the result has a desired degree of continuity.

Theorem C.2. Given two surfaces S1(u,v) and S2(u,v) defined over the same domain
U = [0,1]× [0,1] ⊂ R2 and a number d that determines the continuity. Then, a surface
S(u,v) = B(u,v) S1(u,v)+(1−B(u,v)) S2(u,v) is in Cd(U) if,
a) the blending function B(u,v) from Section 11.1 is ∈ Cd(V), V defined in Proposition
C.2,
b) and the two surfaces S1(u,v) and S2(u,v) both are ∈Cd(U),
c) and that in the four corners the value and all derivatives up to order d are equal in
both the surfaces S1 and S2.

Proof. From Proposition C.2 and the restriction b) above on the surfaces S1 and S2, it
follows that S ∈Cd(V), for V defined in Proposition C.2.

Proposition C.2 tells us that B is discontinuous from the four corner points, pi, i =
1,2,3,4, in given directions vi, i = 1,2,3,4. However, the behavior in the four corners
are symmetrical or antisymmetric about the center point of the surface. We therefor only
need to look at one of the corner points. Therefore, we use the corner point p1 = (0,0)
for the investigation.

- We first examine the value at the corner p1, using (11.2), remember from (C.6) that
B(0,0) = 1,

S(0,0) = S1(0,0)+1(S2(0,0)−S1(0,0)) = S2(0,0). (C.10)

To investigate the limit value when we, on the surface S, move in direction v1 to-
wards the corner point p1, we set up

S(u,zu) = S1(u,zu)+B(u,zu) S̃(u,zu), 0≤ z < 2.

It follows from (11.8) that

B(u,zu)≤ 1, 0≤ z < 2,

and together with the restriction c) in Theorem C.2 it follows that

lim
u→0
|S̃(u,zu)|= 0.

Therefor
lim
u→0

S(u,zu) = S1(u,zu). (C.11)

It follows from (C.10) and (C.11) that S is continuous on U = [0,1]× [0,1]⊂ R2.

- We then examine the first order derivatives at the corner p1,

Su(0,0) = S1u(0,0)+1(S2u(0,0)−S1u(0,0)) = S2u(0,0), (C.12)
Sv(0,0) = S1v(0,0)+1(S2v(0,0)−S1v(0,0)) = S2v(0,0). (C.13)

C.10. TWO-SURFACE BLENDING AND CONTINUITY 315

To investigate the limit value when we, on the surface S, move in direction v1 to-
wards the corner p1, we differentiate expression (11.2), i.e.

Su(u,zu) = S1u(u,zu)+Bu(u,zu) S̃(u,zu)+B(u,zu) S̃u(u,zu),

Sv(u,zu) = S1v(u,zu)+Bv(u,zu) S̃(u,zu)+B(u,zu) S̃v(u,zu),

where 0≤ z < 2. Further, it follows from (11.8) that

B(u,zu)≤ 1, 0≤ z < 2,

and together with the restriction c) in Theorem C.2 it follows that both

lim
u→0+

|B(u,zu) S̃u(u,zu)|= 0,

lim
u→0+

|B(u,zu) S̃v(u,zu)|= 0.

From (11.3) we see that

lim
u→0+

g(u) = 1,

lim
u→0+

g(j)(u) = 0, j = 1,2, ...,d,

and from expression (C.9) it follows that

lim
u→0+

B◦ t(u,zu) = B
(z

2

)
,

lim
u→0+

B(j) ◦ t(u,zu) = B(j)
(z

2

)
,

and from (11.7),

tu(u,zu) =
zu 2(1−2u)
(2u(1−u))2 =

1−2u
(1−u)2

(z
2

) 1
u
,

tv(u,zu) =
1

2(1−u)
=

1
1−u

(
1
2

)
1
u
.

Therefor it follows that

lim
u→0+

Bu(u,zu) S̃(u,zu) = lim
u→0+

(
(g′B+gB′tu) S̃(u,zu)

)
= B′

(z
2

) z
2

lim
u→0+

((
1−2u
(1−u)2

)
S̃(u,zu)

u

)
,

= B′
(z

2

) z
√

1+ z2

2
lim

u→0+

S̃(u,zu)

u
√

1+ z2
,

= k dS̃p1 (v̂1) ,

where k = B′
(z

2

) z
√

1+z2

2 and v̂1 =
v1
|v1| .

316 APPENDIX C. MISCELLANEOUS PROOFS

dS̃p1 (v̂1) is the directional derivatives at p1 in direction v̂1. From restriction c) in
Theorem C.2 it follows that, if d > 0 then all derivatives of order 1 has the same
values in the two surfaces S1 and S2. Thus all directional derivatives of order 1, to
the surface S̃ at p1 must be zero-vectors. Hence

lim
u→0+

|Bu(u,zu) S(u,zu)|= 0, d > 0. (C.14)

We use the same method to treat the partial derivative Bv.

lim
u→0+

Bv(u,zu) S̃(u,zu) = lim
u→0+

(
gB′tv S̃(u,zu)

)
= k dS̃p1 (v̂1) ,

where k = B′
(z

2

) √1+z2

2 and v̂1 =
v1
|v1| .

dS̃p1 (v̂1) is the directional derivatives at the point p1 in direction v̂1. It also now
follows that

lim
u→0+

|Bv(u,zu) S(u,zu)|= 0, d > 0. (C.15)

It follows from (C.14) and (C.15), that if d > 0, the partial derivatives are

lim
u→0+

Su(u,zu) = S1u(u,zu), 0≤ z < 2, (C.16)

lim
u→0+

Sv(u,zu) = S1v(u,zu), 0≤ z < 2. (C.17)

As a conclusion of this examination and because of restriction c) in Theorem C.2
is S1u(0,0) = S2u(0,0) and S1v(0,0) = S2v(0,0), it follows from (C.12), (C.13),
(C.16), (C.17) that at least is S ∈C1(U), U = [0,1]× [0,1]⊂ R2.

- For higher-order derivatives, the argument is analogous to first-order derivatives (though
a little more complicated), and applies as long as restriction c) in the Theorem is
valid.

This ends the proof.

Bibliography

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables. Dover, New York, ninth Dover printing,
tenth GPO printing edition, 1964.

[2] H. Akima. A new method of interpolation and smooth curve fitting based on local
procedures. Journal of ACM, 17:589–602, 1970.

[3] J. P. Allouche and J. Shallit. The ubiquitous prouhet-thue-morse sequence. In
H. Niederreiter C. Ding, T. Helleseth, editor, Sequences and their Applications,
Discrete Mathematics and Theoretical Computer Science. Springer London, 1999.

[4] R. L. Bagula and P. Bourke. Trianguloid trefoil .
http://paulbourke.net/geometry/tranguloid/, 2002. [Online; accessed August-
2021].

[5] R. L. Bagula and P. Bourke. Bent horns surface .
http://paulbourke.net/geometry/benthorns/, 2003. [Online; accessed August-2021].

[6] B. Bang, L. T. Dechevsky, A. Lakså, and P. Zanaty. Blending functions for hermite
interpolation by beta-function b-splines on triangulations. In Ivan Lirkov, Svetozar
Margenov, and Jerzy Waśniewski, editors, Large-Scale Scientific Computing, vol-
ume 7116 of Lecture Notes in Computer Science, pages 393–401. Springer Berlin
Heidelberg, 2012.

[7] R.E. Barnhill, R.F. Riesenfeld, United States. Office of Naval Research, and Uni-
versity of Utah. Computer aided geometric design: proceedings of a conference
held at the University of Utah, Salt Lake City, Utah, March 18-21, 1974. Academic
Press Rapid manuscript Reproduction. Academic Press, 1974.

[8] A. H. Barr. Global and local deformations of solid primitives. In SIGGRAPH ’84:
Proceedings of the 11th annual Conference on Computer Graphics, pages 21–30,
1984.

[9] D. Bechmann. Multidimensional Free-form Deformation Tools. In Eurograph-
ics’98, State of the Art Report, 1999.

317

318 REFERENCES

[10] S. Bernstein. Démonstration du théor̀eme de Weierstrass fondée sur le calcul des
probabilities. Comm. Soc. Math., 13(1–2), 1912.

[11] A. Beutelspacher and U. Rosenbaum. Projective geometry: from foundations to
applications. Cambridge University Press, Cambridge, 1998.

[12] P. Bézier. Définition numérique des courbes et surfâces I. Automatisme, XI:625–
632, 1966.

[13] P. Bézier. Définition numérique des courbes et surfâces II. Automatisme, XII:17–
21, 1967.

[14] Botsch Steinberg Bischoff, M. Botsch, S. Steinberg, S. Bischoff, L. Kobbelt, and
Rwth Aachen. Openmesh – a generic and efficient polygon mesh data structure. In
In OpenSG Symposium, 2002.

[15] Wolfgang Boehm. Inserting New Knots into B-spline Curves. Journal of Computer
Aided Design, 12(4):199–201, 1980.

[16] P. Bourke. Mathematical Sea Shell . http://paulbourke.net/geometry/spiral/, 1998.
[Online; accessed August-2021].

[17] V. Brun. Gauss’ fordelingslov. Norsk Matematisk Tidsskrift, 14:81–92, 1932.

[18] P. L. Butzer, M. Schmidt, and E. L. Stark. Observations on the History of Central
B-Splines. Archive for History of Exact Sciences, 39:137–156, 1988/89.

[19] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topo-
logical surfaces. Computer-Aided Design, 10(6):350–355, 1978.

[20] E. Catmull and R. Rom. A class of local interpolating splines. Computer Aided
Geometric Design, pages 317–326, 1974.

[21] George Merrill Chaikin. An algorithm for high-speed curve generation. Computer
Graphics and Image Processing, 3(4):346 – 349, 1974.

[22] Kȩstutis Karčiauskas and Jörg Peters. Point-augmented biquadratic C1 subdivision
surfaces. Graphical Models, 77:18–26, 2015.

[23] E. Cohen, T. Lyche, and R. Riesenfeld. Discrete B-splines and subdivision tech-
niques in computer aided geometric design and computer graphics. Comp. Graph-
ics and Image Process, 14(2):87–111, 1980.

[24] E. Cohen, T. Lyche, and L. L. Schumaker. Algorithms for degree-raising of splines.
ACM Transactions on Graphics (TOG), 4(3):171–181, 1985.

[25] S. D. Conte and C. de Boor. Elementary Numerical Analyses. McGraw-Hill, Sin-
gapore, 1983.

[26] S. A. Coons. Surfaces for computer aided design. Technical report, MIT, Cam-
bridge, MA, USA, 1964. Available as AD 663 504 from the National Technical
Information service, Springfield, VA 22161.

REFERENCES 319

[27] S. Coquillart. Extended Free-form deformation: a sculpturing tool for 3D geomet-
ric modeling. In SIGGRAPH ’90: Proceedings of the 17th annual Conference on
Computer Graphics, pages 187–196, 1990.

[28] J. Austin Cottrell, Thomas J. R. Hughes, and Yuri Bazilevs. Isogeometric Analysis:
Toward Integration of CAD and FEA. Wiley Publishing, 1st edition, 2009.

[29] M. G. Cox. Curve fitting with piecewice polynomials. J. Inst. Math. Appl., 8:36–
52, 1972.

[30] H.S.M. Coxeter. Projective geometry. University of Toronto Press, Toronto, Ont.,
second edition, 1974.

[31] B. H. Curry. Review of the paper [137, 138]. Math, Tables and other Aids to
Comp., 2:167–169 and 211–213, 1947.

[32] B. H. Curry and I. J. Schoenberg. On Pòlya frequency functions IV: The spline
functions and their limits. Bull. Amer. Math. Soc., 53:1114, 1947. Abstract 380t.

[33] B. H. Curry and I. J. Schoenberg. On Pòlya frequency functions IV: The funda-
mental spline functions and their limits. J. d’Analyse Math., 17:71–107, 1966.

[34] Rune Dalmo. Matrix factorization of multivariate Bernstein polynomials. Interna-
tional Journal of Pure and Applied Mathematics, 103:749–780, 01 2015.

[35] P. J. Davis. Interpolation and Approximation. Dover Publication Inc. (unabridged
republication from a first edition from 1963), New York, N.Y., 1975.

[36] C. de Boor. On calculation with B-splines. Journal of Approximation Theory,
6:50–62, 1972.

[37] C. de Boor. A Practical Guide to Splines, volume 27 of Applied Mathematical
Sciens. Springer-Verlag, New York, 1978.

[38] P. de Casteljau. Outillages méthodes calcul. Technical report, A. Citroën, Paris,
1959.

[39] P. de Casteljau. Courbes et surfaces à pôles. Technical report, A. Citroën, Paris,
1963.

[40] P. de Casteljau. Formes à pôles: Courbes et surfaces. Mathèmatiques et CAO, Vol
2, 1984.

[41] P. de Casteljau. Shape Mathematics and CAD. Kogan Page, 1986.

[42] J. A. de Reyna Martinez. Definition and study of an infinitely differentiable func-
tion with compact support. Rev. Real Acad. Cienc. Exact. Fis. Natur., 76(1):21–38,
1982.

[43] L. T. Dechevsky, B. Bang, and A. Lakså. Generalized Expo-Rational B-splines.
International Journal of Pure and Applied Mathematics, 57(1):833–872, 2009.

[44] L. T. Dechevsky, A. Lakså, and B. Bang. Expo-Rational B-splines. International
Journal of Pure and Applied Mathematics, 27(3):319–369, 2006.

320 REFERENCES

[45] L. T. Dechevsky, A. Lakså, and B. Bang. NUERBS form of Expo-Rational B-
splines. International Journal of Pure and Applied Mathematics, 32(1):11–32,
2006.

[46] L. T. Dechevsky and P. Zanaty. Smooth GERBS, orthogonal systems and energy
minimization. In American Institute of Physics Conference Series, volume 1570 of
American Institute of Physics Conference Series, pages 135–162, December 2013.

[47] Lubomir Dechevsky. Beta-function b-splines: Definition and basic properties. In-
ternational Journal of Pure and Applied Mathematics, 65, 01 2010.

[48] R. Descartes. The Geometry of Rene Descartes. Dover classics of science and
mathematics. Dover Publications, 1954.

[49] M. P. do Carmo. Differential geometry of curves and surfaces. Prentic Hall, Inc.,
New Jersey, USA, 1976.

[50] M. P. do Carmo. Riemannian Geometry. Birkhäuser, Inc., Bosten, MA, USA,
1992.

[51] Tor Dokken, Tom Lyche, and Kjell Fredrik Pettersen. Polynomial splines over
locally refined box-partitions. Comput. Aided Geom. Des., 30(3):331–356, March
2013.

[52] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Duff. A set of level
3 basic linear algebra subprograms. ACM Trans. Math. Softw., 16(1):1–17, March
1990.

[53] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An
extended set of fortran basic linear algebra subprograms. ACM Trans. Math. Softw.,
14(1):1–17, March 1988.

[54] D. Doo. A subdivision algorithm for smoothing down irregularly shaped polyhe-
drons. In Proceedings on Interactive Techniques in Computer Aided Design, pages
157–165, 1978.

[55] D. Doo and M. Sabin. Behavior of recursive division surfaces near extraordinary
points. Computer-Aided Design, 10(6):356–360, 1978.

[56] N. Dyn, D. Levin, and J.A. Gregory. A 4-point interpolatory subdivision scheme
for curve design. Computer Aided Geometric Design, 4(4):257–268, 1987. cited
By 451.

[57] Nira Dyn and Kai Hormann. Geometric conditions for tangent continuity of inter-
polatory planar subdivision curves. Computer Aided Geometric Design, 29(6):332
– 347, 2012.

[58] Nira Dyn, Frans Kuijt, David Levin, and Ruud van Damme. Convexity preservation
of the four-point interpolatory subdivision scheme. Computer Aided Geometric
Design, 16(8):789 – 792, 1999.

REFERENCES 321

[59] Nira Dyn, David Levine, and John A. Gregory. A butterfly subdivision scheme
for surface interpolation with tension control. ACM Trans. Graph., 9(2):160–169,
1990.

[60] Euclide and T. L. Heath. The Thirteen Books of the Elements. Number v. 3 in
Dover classics of science and mathematics. Dover Publications, 1956.

[61] L. Euler. De Eximio usu Methodi Interpolationum in Serierum Doctrina. Opuscula
Analytica, 1:157–210, 1783.

[62] J. Fabius. A probabilistic example of a nowhere analytic c∞-function. Zeitschrift
für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 5(2):173–174, 1966.

[63] G. Farin. Triangular Bernstein-Bezier patches. Computer Aided Geometric Design,
3(2):83–128, 1986.

[64] G. Farin. Curves and Surfaces for CAGD. Morgan Kaufmann, San Francisco,
California, fifth edition, 2002.

[65] J. Fauvel, R. Wilson, and R.Flood (Eds.). Möbius and his Band: Mathematics
and Astronomy in Nineteenth-century Germany. Oxford University Press, Oxford,
England, fifth edition, 1993.

[66] T.H. Fay. The Butterfly Curve. The American Mathematical Monthly, 96(5):442–
443, 1989.

[67] M. S. Floater. Mean value coordinates. Computer Aided Geometric Design,
20(1):19–27, 2003.

[68] M. S. Floater, K. Hormann, and G. Koz. A general construction of barycentric
coordinates over convex polygons. Advances in Computational Mathematics, 24(1-
4):311–331, 2006.

[69] M. S. Floater, G. Koz, and M. Reimers. Mean value coordinates in 3D. Computer
Aided Geometric Design, 22(7):623–631, 2005.

[70] Michael S. Floater. The approximation order of four-point interpolatory curve sub-
division. Journal of Computational and Applied Mathematics, 236(4):476 – 481,
2011. International Workshop on Multivariate Approximation and Interpolation
with Applications (MAIA 2010).

[71] I. P. Gancheva and N. D. Delistoyanova. Euler Beta-function B-spline: definition,
basic properties, and practical use in Computer Aided Geometric Design. Master
theses, Narvik University College, Narvik, Norway, 2007.

[72] C. F. Gauss. Theoria Interpolationis Methodo Nova Tractata, pages 265–327.
Göttingen, 1866.

[73] I. Ginkel, J. Peters, and G. Umlauf. Normals of subdivision surfaces and their
control polyhedra. Computer Aided Geometric Design, 24(2):112–116, 2007.

[74] B. V. Gnedenko. The theory of probability. Translated from the fourth Russian
edition by B. D. Seckler. Chelsea Publishing Co., New York, 1967.

322 REFERENCES

[75] D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[76] Ronald N. Goldman. Blossoming and knot insertion algorithms for b-spline curves.
Computer Aided Geometric Design, 7(1):69 – 81, 1990.

[77] R. Goldmann. Pyramid Algorithms: A Dynamic Programming Approach to Curves
and Surfaces for Geometric Modeling. Morgan Kaufmann Publishers, San Fran-
cisco, Calefornia, 2003.

[78] G. H. Golub and F Van Loan. Matrix Computations, 4th ed. Johns Hopkins Uni-
versity Press, Boltimore, MD, 2012.

[79] W. J. Gordon. Blending-function method of bivariate and multivariate interpolation
and approximation. SIAM Journal on Numerical Analysis, 8(1):158–177, 1969.

[80] A. Gray. Modern Differentioal Geometry of Curves and Surfaces. CRC Press, Inc.,
Boca Raton, Florida, first edition, 1993.

[81] T. N. E. Greville. The General Theory of Osculatory Interpolation. Transactions
of the Actuarial Society of America, 45:202–265, 1944.

[82] Cindy M. Grimm and John F. Hughes. Modeling surfaces of arbitrary topology us-
ing manifolds. In Proceedings of the 22nd annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’95, pages 359–368, New York, NY,
USA, 1995. ACM.

[83] H. Guggenheimer. Computing frames along a trajectory. Comput. Aided Geom.
Des., 6:77–78, February 1989.

[84] S. Guillet and J. C. Leon. Parametrically deformed free form surfaces as a part of
variational model. Computer Aided Design, 30(1), 1998.

[85] Ayman Habib and Joe Warren. Edge and vertex insertion for a class of c1 subdivi-
sion surfaces. Computer Aided Geometric Design, 16(4):223–247, 1999.

[86] E. Hartmann. Parametric Gn blending of curves and surfaces. The Visual Computer,
17:1–13, 2001.

[87] M.F Hassan, I.P. Ivrissimitzis, N.A. Dodgson, and M.A. Sabin. An interpolating
4-point c2 ternary stationary subdivision scheme. Computer Aided Geometric De-
sign, 19(1):1 – 18, 2002.

[88] J. K. Haugland. Evaluating the fabius function. ArXiv e-prints, 1609.07999v1,
September 2016.

[89] R. Henderson. A Practical Interpolation Formula. With a Theoretical Introduction.
Transactions of the Actuarial Society of America, 9(35):211–224, 1906.

[90] Christoph M. Hoffmann. Geometric and solid modeling: an introduction. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1989.

REFERENCES 323

[91] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. Dover Publication
Inc., New York, N.Y., 1994.

[92] H. Jeffreys and B. S. Jeffreys. L. F. Richarddon‘s methode. Methods of Mathemat-
ical Physics, 3rd ed.:288, 1988.

[93] W. A. Jenkins. Graduation Based on a Modification of Osculatory Interpolation.
Transactions of the Actuarial Society of America, 28:198–215, 1927.

[94] S. A. Joffe. Interpolation-Formulae and Central-Difference Notation. Transactions
of the Actuarial Society of America, 18:72–98, 1917.

[95] Kjetil André Johannessen, Trond Kvamsdal, and Tor Dokken. Isogeometric analy-
sis using lr b-splines. Computer Methods in Applied Mechanics and Engineering,
269:471–514, 2014.

[96] J. Karup. Über eine Neue Mechanische Ausgleichungsmethode. In G. King, ed-
itor, Transactions of the Second International Actuarial Congress, pages 31–77,
London, 1899. Charles and Edwin Layton.

[97] F Klok. Two moving coordinate frames for sweeping along a 3D trajectory. Com-
put. Aided Geom. Des., 3:217–229, November 1986.

[98] L. Kobbelt. A Subdivision Scheme for Smooth Interpolation of Quad-Mesh Data.
In Eurographics, 1998.

[99] Leif Kobbelt.
√

3-Subdivision. In Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH’00, pages 103–112,
USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[100] J. L. Lagrange. Leçons élémentaires sur les Mathématiques Données a l’école
Normale. In J. A. Serret, editor, Euvres de Lagrange, volume 7, pages 183–287,
Paris, 1877. Gauthier-Villars. Lecture notes first published in 1795.

[101] Ming-Jun Lai and Larry L. Schumaker. Spline Functions on Triangulations. Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, Cam-
bridge, 2007.

[102] A. Lakså. Basic properties of Expo-Rational B-splines and practical use in Com-
puter Aided Geometric Design. Number 606 in unipubavhandlinger. Unipub, Oslo,
2007.

[103] A. Lakså. Non polynomial b-splines. In 41st International Conference “Applica-
tions of Mathematics in Engineering and Economics” AMEE ’15, volume 1690 of
American Institute of Physics Conference Series, page 030001, 2015.

[104] A. Lakså, B. Bang, and L. T. Dechevsky. Exploring expo-rational B-splines for
curves and surfaces. In Mathematical methods for curves and surfaces: Tromsø
2004, Mod. Methods Math., pages 253–262. Nashboro Press, Brentwood, TN,
2005.

324 REFERENCES

[105] A. Lakså, B. Bang, and L. T. Dechevsky. Geometric modelling with Beta-function
B-splines I. International Journal of Pure and Applied Mathematics, 65(3):339–
360, 2010.

[106] A. Lakså, B. Bang, and L. T. Dechevsky. Geometric modelling with Beta-function
B-splines II. International Journal of Pure and Applied Mathematics, 65(3):362–
380, 2010.

[107] A. Lakså, B. Bang, and A. R. Kristoffersen. GMlib, a C++ library for geometric
modeling. Technical report, Narvik University College, Narvik, Norway, 2006.

[108] Arne Lakså. Surfaces from Curves on Triangular Surfaces in barycentric coordi-
nates. In Ivan Lirkov, Svetozar Margenov, and Jerzy Waśniewski, editors, Large-
Scale Scientific Computing, pages 619–627, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

[109] Arne Lakså and Børre Bang. Surface constructions on irregular grids. In Ivan
Lirkov, Svetozar D. Margenov, and Jerzy Waśniewski, editors, Large-Scale Scien-
tific Computing, pages 385–393, Cham, 2015. Springer International Publishing.

[110] J. M. Lane and R. F. Riesenfeld. A theoretical development for the computer gener-
ation and display of piecewise polynomial surfaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-2(1):35–46, Jan 1980.

[111] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for fortran usage. ACM Trans. Math. Softw., 5(3):308–323, Septem-
ber 1979.

[112] Xin Li and Jianmin Zheng. Interproximate curve subdivision. Journal of Compu-
tational and Applied Mathematics, 244:36 – 48, 2013.

[113] C. T. Loop. Smooth Subdivision Surfaces based on Triangles. Master theses,
University of Utah, Utha, USA, 1987.

[114] Charles Loop. A G1 triangular spline surface of arbitrary topological type. Comput.
Aided Geom. Design, 11(3):303–330, 1994.

[115] T. Lyche. Discrete polynomial spline approximation methods, volume 501/1976
of Lecture Notes in Mathematics, pages 144–176. Springer, Berlin/Heidenberg.,
1976.

[116] T. Lyche and K. Strøm. Knot insertion for Natural Splines. Annals of Numerical
Mathematics, 3:221–246, 1996.

[117] O. L. Mangasarian and L. L. Schumaker. Discrete Splines via Mathematical Pro-
gramming. SIAM Journal on Control, 9:174–183, 1971.

[118] Martti Mäntylä. An introduction to solid modeling, volume 13. Computer Science
Press, Incorporated, 1988.

REFERENCES 325

[119] C. Mäurer and B. Jüttler. Rational approximation of rotation minimizing frames us-
ing Pythagorean-hodograph cubics. Journal for Geometry and Graphics, 3(2):141–
159, 1999.

[120] L. Maurer. Über the Mittelwerte der Funktionen einer reellen Variablen. Math.
Ann., 47:263–280, 1896.

[121] D. S. Meek and D. J. Walton. Blending two parametric curves. Computer-Aided
Design, 41:423–431, 2009.

[122] E. Mehlum. Nonlinear splines. Computer Aided Geometric Design, pages 173–
207, 1974.

[123] E. Mehlum. Appell and apple (nonlinear splines in space). In Larry L. Schumaker
Morten Dæhlen, Tom Lyche, editor, Mathematical Methods for Curves and Sur-
faces, pages 365–383. Vanderbilt University Press (Nashville & London), 1995.

[124] E. Meijering. A chronology of interpolation: From ancient astronomy to modern
signal and image processing. In Proceedings of the IEEE, pages 319–342, 2002.

[125] J.Cotrina Navau and N.Pla Garcia. Modelling surfaces from planar irregular
meshes. Computer Aided Geometric Design, 17(1):1 – 15, 2000.

[126] H. Olofsen. Blending functions based on trigonometric and polynomial approxi-
mations of the fabius function. In Open Journal Systems, Norsk Informatikk Kon-
feranse, 2019.

[127] Francesco Patrizi, Carla Manni, Francesca Pelosi, and Hendrik Speleers. Adaptive
refinement with locally linearly independent LR B-splines: Theory and applica-
tions. Computer Methods in Applied Mechanics and Engineering, 369:113230, 09
2020.

[128] Aleksander Pedersen, Jostein Bratlie, and Rune Dalmo. Spline representation
of connected surfaces with custom-shaped holes. In Ivan Lirkov, Svetozar D.
Margenov, and Jerzy Waśniewski, editors, Large-Scale Scientific Computing, pages
394–400, Cham, 2015. Springer International Publishing.

[129] Jörg Peters and Ulrich Reif. The simplest subdivision scheme for smoothing poly-
hedra. ACM Trans. Graph., 16(4):420–431, October 1997.

[130] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C.
Cambridge University Press, Cambridge, UK, 2nd edition, 1992.

[131] L. Ramshaw. Blossoming: A Connect-the-Dots Approach to Splines. Report 19,
Digital Systems Research Center, Palo Alto, CA., 1987.

[132] L. Ramshaw. Bézier and b-splines as multiaffine maps. In Rae A. Earnshaw, editor,
Theoretical Foundations of Computer Graphics and CAD, pages 757–776, Berlin,
Heidelberg, 1988. Springer Berlin Heidelberg.

[133] L. Ramshaw. Blossoms are polar forms. Computer Aided Geometric Design,
6(4):323–359, 1989.

326 REFERENCES

[134] Ulrich Reif. A unified approach to subdivision algorithms near extraordinary ver-
tices. Computer Aided Geometric Design, 12(2):153–174, 1995.

[135] R.F. Riesenfeld. On chaikin’s algorithm. Computer Graphics and Image Process-
ing, 4(3):304 – 310, 1975.

[136] W. Romberg. Vereinfacthe numerische integration. Det Kongelige Norske Vid.
Selsk. Forl., 28:30–36, 1955.

[137] I. J. Schoenberg. Contributions to the Problem of Approximation of Equidistant
Data by Analytic Functions. Part A – On the Problem of Smoothing or Gradu-
ation. A First Class of Analytic Approximation Formulae. Quarterly of Applied
Mathematics, IV(1):45–99, 1946.

[138] I. J. Schoenberg. Contributions to the Problem of Approximation of Equidistant
Data by Analytic Functions. Part B – On the Problem of Osculatory Interpolation.
A Second Class of Analytic Approximation Formulae. Quarterly of Applied Math-
ematics, IV(2):112–141, 1946.

[139] I. J. Schoenberg. On spline functions. Inequalities, pages 255–291, 1967.

[140] I. J. Schoenberg. Cardinal Spline Interpolation. CBMS-NSF Series in Applied
Mathematics, 12, SIAM, 1973.

[141] L. L. Schumaker. Spline Functions: Basic Theory. A Wiley-interscience publica-
tion. John Wiley & Sons Inc., New York, 1981.

[142] T. W. Sederberg, D. L. Cardon, D. G. Finnigan, J. Zheng, and T. Lyche. T-spline
Simplification and Local Refinement. ACM Transactions on Graphics, 23(2):276–
283, 2004.

[143] T. W. Sederberg, J. Zheng, A. Bakenow, and A. Nasri. T-splines and T-nurces.
ACM Transactions on Graphics, 22(3):477–484, 2003.

[144] T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric mod-
els. In SIGGRAPH ’86: Proceedings of the 13th annual Conference on Computer
Graphics, pages 151–160, 1986.

[145] C. H. Séquin, K. Lee, and J. A. Yen. Fair, G2- and C2-continuous circle splines for
the interpolation of sparse data points. Computer-Aided Design, 37(2):201–211,
2005.

[146] C. H. Séquin and J. A. Yen. Fair and robust curve interpolation on the sphere.
Sketches and Application. In SIGGRAPH ’01: Proceedings of the 17th annual
Conference on Computer Graphics, page 182, 2001.

[147] W. F. Sheppard. Central-difference formula. Proceedings of the London Mathe-
matical Society, 31:449–488, 1899.

[148] K.L. Shi, J.H. Yong, J.G. Sun, and J.C. Paul. Gn blending multiple surfaces in polar
coordinates. Computer-Aided Design, 42:479–494, 2010.

REFERENCES 327

[149] A. Sommerfeld. Eine besonders anschauliche ableitung des gaussischen fehlerge-
setzes. Festschrift Ludwig Boltzman gewidmet zum 60. Geburtstage, 20. Februar
1904, pages 848–859, 1904.

[150] M. Spivak. A Comprehensive Introduction to Differential Geometry I. Publish or
Perish, Inc., Houston, Texas, USA, second edition, 1979.

[151] Jos Stam. Exact evaluation of catmull-clark subdivision surfacessubdivision sur-
faces at arbitrary parameter values. In Proceedings of SIGGRAPH, pages 395–404,
1998.

[152] ANSI/IEEE std. 754-2008. IEEE standard for binary floating-point arithmetic.
Copyright standard, The Institute of Electrical and Electronical Engineers, Inc.,
New York, USA, 2008.

[153] M. Szivasi-Nagy and T.P. Vendel. Generating curves and swept surfaces by blended
circles. Computer Aided Geometric Design, 17(2):197–206, 2000.

[154] Jieqing Tan, Xinglong Zhuang, and Li Zhang. A new four-point shape-preserving
c3 subdivision scheme. Computer Aided Geometric Design, 31(1):57 – 62, 2014.

[155] T. N. Thiele. Interpolationsrechnung. B. G. Teubner, Leipzig, Germany, 1909. In
German.

[156] I. Vardi. The Euler-Maclaurin Formula. Computational Recreation in Mathemat-
ica, pages 159–163, 1991.

[157] Ping Wang, Jinlan Xu, Jiansong Deng, and Falai Chen. Adaptive isogeometric
analysis using rational pht-splines. Computer-Aided Design, 43(11):1438 – 1448,
2011. Solid and Physical Modeling 2011.

[158] W. Wang, B. Jüttler, D. Zheng, and Y. Liu. Computation of rotation minimizing
frames. ACM Trans. Graph., 27:2:1–2:18, March 2008.

[159] E. Waring. Problems Concerning Interpolations. Philosophical Transactions of the
Royal Society of London, 69:59–67, 1779.

[160] J. Warren. Blending Algebraic Surfaces. ACM Trans. Graph., 8(4):263–278, 1989.

[161] J. Warren. Barycentric coordinates for convex polytopes. Advances in Computa-
tional Mathematics, 6(1):97–108, 1996.

[162] E. W. Weisstein. Rose. http://mathworld.wolfram.com/Rose.html, 2006.

[163] H. Wenz. Interpolation of curve data by blended generalized circles. Computer
Aided Geometric Design, 13(8):673–680, 1996.

[164] E. T. Whittaker. On the Functions which are Represented by the Expansions of
Interpolation-Theory. Proceedings of the Royal Society of Edinburgh, 35:181–194,
1915.

328 REFERENCES

[165] Wikipedia. Basic linear algebra subprograms — wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Basic Linear Algebra Subprograms&
oldid=235926608, 2008. [Online; accessed 17-September-2008].

[166] A. Wiltsche. Blending curves. Journal for Geometry and Graphics, 9(1):67–75,
2005.

[167] K. C. Wu, T. Fernando, and H. Tawfik. Freesculptor: A computer-aided freeform
design environment. In 2003 International Conference on Geometric Modeling
and Graphics, 2003. Proceedings, pages 188–194, 2003.

[168] Lexing Ying and Denis Zorin. A simple manifold-based construction of surfaces
of arbitrary smoothness. ACM Trans. Graph., 23(3):271–275, August 2004.

[169] Denis Zorin, Peter Schroder, and Wim Sweldens. Interpolating subdivision for
meshes with arbitrary topology. pages 189–192, 1996. Proceedings of the
1996 Computer Graphics Conference, SIGGRAPH ; Conference date: 04-08-1996
Through 09-08-1996.

List of Acronyms

2D – Describes objects embedded in R2

3D – Describes objects embedded in R3

API – Application Programming Interface
C++ – Object oriented programming language
CAGD – Computer Aided Geometric Design
ERB – Expo-Rational B-functions
ERBS – Expo-Rational B-splines
eVITA – e-Science, includes material from both Computational Sci-

ence and Software Engineering as well as other topics such
as graphics, virtual reality, general computer science

FFD – Free Form deformation method
GMlib – C++ library for geometric modeling and simulations, devel-

oped by the R&D Simulation Group at Narvik University
College

GM Wave – C++ wavelet library, developed by the R&D Simulation
Group at Narvik University College

GPU – Graphic Processor Unit
GPGPU – GPU programming for General Purpose
GUI – Graphical User Interface
IEEE – The Institute of Electrical and Electronics Engineers, Inc.
Kameleon FireEx – A simulation program for fire simulation, developed by

ComputIT
NaN – Not a number
NURBS – Non-uniform rational B-splines
NUERBS – The ERBS analog to NURBS
ODE – Ordinary Differential Equation
OpenGL – Software interface to graphics hardware
PDE – Partial Differential Equation
SINTEF – The Foundation for Scientific and Industrial Research at the

Norwegian Institute of Technology
SISL – SINTEFs spline library
UIO – University of Oslo
UiT – The Arctic University of Norway

329

Index

2D B-function, 213

Accelerate, 300
Affine space, 14
Akima’s interpolation, 69
algebraic form, 41
algorithm, 48, 54, 96, 97, 108, 110, 111,

154, 223, 225, 284–286, 290, 293,
294, 298

AOCL, 300
apple, 160
approximating curve, 159
arc length parametrization, 35
arithmetic mean, 297
Armadillo, 299
asymptote, 285
asymptotic case, 286
ATLAS, 300

B-function, 115
B-spline, 75, 76, 80
B-spline curve, 83
B-spline curves on matrix form, 88
B-spline factor matrix, 87
B-spline surface, 186
balance parameter, 130
barycentric coordinates, 20
basis function, 37, 153
bending, 236
Bent Horns, 229
Bernstein factor matrices, 51
Bernstein polynomial, 47, 156, 226
Bernstein/Hermite matrix, 53, 226
beta-function, 124
bicubic blending, 190, 194
bilinear blending, 188
binary floating point, 281
BLAS, 299
blending, 154

blending circular arcs, 72
blending function, 115
Blending triangles, 255
BLIS, 300
Blossoming, 95
Boolean sum surface, 188
boundary conditions, 70
buckle, 159
butterfly curve, 32
Bézier curves on matrix form, 51
Bézier curve, 43, 156
Bézier degree elevation matrix, 55
Bézier surface, 185, 226
Bézier triangle, 248

C++ class, 290
cardinal spline, 69
Cardioid curve, 160
Catmull-Clark, 113, 200
Catmull-Rom spline, 69
Catmull-Rom Subdivision Splines, 106
central B-spline, 77
central difference operator, 78
Chaikin’s algorithms, 108
charts and atlas, 12
circle, 32, 161
circle splines, 72
circular arc, 161
clamped B-splines, 83
clBLAST, 300
closed B-splines, 83
closed curve, 158
color, 160
commutativity relations, 52, 304
compact, 247
Compact space, 13
connected, 247
continuous composition, 263

330

INDEX

contraction, 220
control polygon, 45, 91, 226
converting format, 57
Coons patch, 188, 190, 194
corner cutting, 50, 91
corollary, 130
Cox-de‘Boor recursion, 80
cubic Bessel spline, 69
cubic spline interpolation, 69, 100
cuBLAS, 300
CUDA, 301
curvature, 36, 159
curves on surfaces, 172, 274
cusp, 160

de Casteljau’s algorithm, 50, 51
default set, 284, 288
definition, 11, 21, 22, 31, 33, 38, 51, 77,

78, 82, 87–89, 105, 115, 116, 132,
138, 152, 169, 250, 251, 253

Degree elevation, 92
degree elevation, 54
derivative, 159, 285
derivative matrix, 52
diffeomorphism, 11
differential, 172
differentiation, 34, 171
directional derivative, 249
divided difference, 59
division by zero, 281
Doo-Sabin, 109, 201
dual surface construction, 273

edge, 247
Eigen BLAS, 300
ERB-evaluator, 291
error term, 287, 291
Euclidean space, 10
Euler-MacLaurin integration formula, 287
Euler-Poincaré characteristic, 247
evaluation-matrix, 229
extend divided difference, 61

Fabius function, 131
Factorization, 50
FFD, 236

figure, 24, 25, 31–34, 39, 41, 43–46, 48,
50, 56, 62–64, 67, 68, 71, 73,
149–151, 153, 155, 158–162, 164–
166, 170, 171, 173, 179, 181, 182,
184–187, 189, 190, 192–194, 199,
202, 207–209, 211, 215–220, 227,
230–234, 236–245, 289, 295, 296

Fill-in patch, 276
First fundamental form, 175
function space, 37, 38

Gauss-Bonnet, 247
genus, 13, 247
geometric form, 41
geometric mean, 297
global curve, 154
global surface, 218
Gordon surface, 188, 192
Grassmannien, 17
GSL, 300

Hermite 2-p blending surface, 216
Hermite basis function, 41
Hermite blending surface, 213
Hermite Curve, 38
Hermite interpolation, 65, 98, 228, 290
Hermite spline, 68, 98
Hermite surface, 184
Hilbert space, 38
HIP, 301
history, 76
homeomorphism, 11
homogeneous barycentric coordinates, 20
homogeneous coordinates, 18, 24, 53
homogeneous matrix, 229

IEEE standard, 282
implementation, 281
improved precision, 282
Industrial geometry, 3
initializing, 293
inner part, 221
inner product, 33
integral, 281
integration interval, 288
Intel MKL, 300

332

interactive design, 26
interpolation, 59, 154
interpolation point, 159
interpolation theory, 59
intersect, 159
inverse Fourier integral, 77
iterative process, 287

knot insertion, 90
knot vector, 82, 153
kontinuitet, 314

Lagrange polynomial, 63
Lagrange’s identity, 176
Lane-Riesenfeld subdivision algorithm, 111
LAPACK, 299
least squares, 102
lemma, 49, 64, 124, 239, 304
linear interpolation, 50
local Bézier surface, 229
local Bézier triangles, 256
local coordinate system, 159
local curve, 156, 159
local support, 154
local surface, 217, 218, 225
local triangle, 255
loops and cusps, 72

main directions for derivatives, 252
matrix notation, 88, 90
matrix template, 229
max error, 295
max norm, 297
maximum normal value, 283
mechanical spline, 77
mechanical spline device, 80
Mid-Edge, 201
middelverdikoordinater, 22
minimum normal value, 283
monomial form, 37
multilevel representation, 236
multiple knots, 153

natural spline, 71
Netlib BLAS, 300
Neville’s Algorithm, 64
Newton polynomial, 61

Newton’s formula, 62
non uniform rational B-splines, 104
normal value, 282
number of samples, 290
number of steps, 288
number system, 281
numerical integration, 281
NURBS, 104
NVBLAS, 300

open B-splines, 83
open curve, 158
OpenBLAS, 300
OpenCL, 302
OpenGL, 104
OpenMP, 301
optimal approximation, 158
optimal solution, 295
origin, 159
original curve, 158, 159
oscillating speed, 158
osculatory interpolation, 68
outer part, 221
overflow, 281, 283
overlap, 161
overloaded matrix multiplication, 229

parameter interval, 32
parametric curve, 31
parametric surfaces, 169
part, 154
Peano Kernel, 80
petal, 158
Polar form, 95
polynomial function space, 43
polynomial interpolation, 62
power basis, 37, 54
precision, 281, 295
preevaluation, 281, 290
programming, 24, 281
projective space, 17, 104
proof, 49, 64, 88, 118, 119, 125, 240,

241, 244, 303–310, 312, 314
public function, 291
pyramid algorithms, 65

radius of curvature, 36

INDEX

rational B-function, 127
rectangular patches, 217
regular curve, 35
reliable algorithm, 281, 283, 285
remark, 13, 67, 223, 229, 284
rendering parametric curve, 58
reparameterization, 35
requirement, 281
resulting curve, 159
Richardson extrapolation, 287
rocBLAS, 301
Romberg integration, 287, 295
Rose-curve, 158
rotational mapping, 255

sample interval, 295
sample rate, 295
sampled values, 290
scale, 159
scaling, 53, 159
scaling factor, 159
scaling rule, 293
scaling the domain, 292
Sea Shell, 233, 263
Second fundamental form, 177
sign bit, 283
signal, 283
significant bit, 282, 289, 293
simpleks, 20
Simpson method, 287
single precision, 283
Sobolev space, 72
special value, 282
speed, 54
spline curve, 75
spline device, 71
star junction, 244
stl, 6
straight line, 159
stretching, 236
sub-triangle, 263
subdivision, 91, 106, 197
subdivision curve, 106
subdivision Surfaces, 197
subnormal value, 282, 283
Surface of revolution, 178

Surfaces from blending curves, 182
SurviveGotoBLAS2, 301
sweeping, 179
symmetric local curves, 160

tangent plane, 174
tangent vector, 34
tapering, 236
Taylor expansions, 68
template, 6
tensor product B-spline surface, 186
tensor product blending spline surfaces,

217
tensor product Bézier surface, 185
tensor product Hermite surface, 184
tensor product surface, 183, 217
teorem, 118, 119, 125, 127, 138, 145
tessellation, 58, 247
tessellation based on curvature, 58
tessellation based on speed, 58
theorem, 64, 88, 241, 244, 305, 314
time consuming process, 289
time consumption, 294
to-flateblending, 314
tolerance, 287
torus, 233, 263
translation and scaling of the domain, 53,

82, 88
trapezoidal approximation, 287
triangle, 247
triangulation, 247
Trianguloid Trefoil, 229
trigonometric B-function, 133
twisting, 236
Two surface blending, 213

uBLAS, 301
underflow, 281, 283
uniform tessellation, 58
use of memory, 292

vector space, 33
velocity vector, 34
vertex, 247
ViennaCL, 301

Waring-Lagrange formula, 63

Geometry – from Ancient Greek, earth measurement – has been an
important ingredient of the development of science and later also industry,
design, construction and production, and has consequently been important
for industry/societal development in general.

Applied/industrial geometry is today a very important factor in, among
other things, product development, virtual systems, systems for
recognition and orientation and arti�icial intelligence.

GEOFO
Geometriforlaget

The geometry publishing house
ISBN 978-82-693065-1-4

Supported by

	Preface
	Introduction
	Industrial geometry
	Geometric modeling
	Algorithmic language
	Overview of this book

	Mathematical spaces and notations
	Euclidean spaces, cartesian coordinates and vector spaces
	Homeomorphism, diffeomorphism and manifolds
	Local/global parametrization, charts and atlas

	Compact spaces
	Affine space
	Projective space and Grassmannien
	Homogeneous coordinates
	Simplexes
	Homogeneous Barycentric coordinates for simplexes

	Implementing geometry in C++
	Mathematical spaces for geometric programming
	Homogeneous coordinates and programming
	Tools for interactive design
	Implementation, about curves and surfaces

	I Curves
	Parametric Curves
	Differentiations
	Regular curves - arc length parametrization
	Reparameterization
	Curvature

	Function spaces and Basis functions
	Hermite Curves
	Bézier Curves
	Bernstein polynomial
	Factorization and de Casteljau's Corner cutting algorithm
	The Bernstein/Hermite matrix
	Degree Elevation of Bézier Curves

	Converting between Hermite- and Bézier- format
	Implementation and Tessellation

	Classical interpolation theory
	Divided differences
	Newton polynomial
	Lagrange polynomials
	Neville's Algorithm

	Hermite interpolation
	Taylor expansions
	Hermite spline
	Cubic spline interpolation
	Circle Splines

	B-spline Curves
	History of B-splines
	Modern B-splines
	The knot vector
	B-spline curves - Open, Clamped or Closed
	The B-spline factor matrix T(t)
	B-splines on Matrix notations
	An example of B-splines and de Casteljau's algorithm
	B-splines and knot insertion
	Degree elevation of B-splines
	Blossoming - Polar form
	Algorithms for B-splines

	Hermite spline interpolation on B-spline form
	Cubic spline interpolation on B-spline form
	B-spline approximation and least squares
	NURBS
	Uniform B-splines and subdivision
	Catmull-Rom Subdivision Splines
	Chaikin's algorithms, 2nd-degree subdivision B-splines
	Lane-Riesenfeld subdivision algorithm

	Blending
	B-functions
	Blending of two functions
	Examples, blending of order zero and order one
	Examples, connecting two curves by using a B-function

	Beta-functions, the group of polynomial B-functions
	Beta-functions, differentiation

	The group of rational B-functions
	RB-functions, differentiation
	RB-functions with a balance parameter

	Fabius function, the complete B-function
	The group of trigonometric B-functions
	The group of Expo-Rational B-functions
	The slope parameter
	The balance parameter
	The asymmetric tightening parameters and
	ERB-functions, differentiation

	Point-, Order- and Balance-symmetry of B-functions
	Implementing B-functions

	Blending splines
	B-splines with B-function
	2nd order B-splines with B-function

	2nd order B-splines as blending splines
	Affine transformations of local curves
	Bézier-curves as local curves
	Making a blending spline approximation of a curve
	Examples

	The sub-curve construction

	II Surfaces
	Parametric Surfaces
	Differentiation
	The differential dSp
	Curves on surfaces
	The tangent plane Tq(S)
	First fundamental form
	Second fundamental form

	Surface of revolution
	Surface by sweeping
	Surfaces from blending curves
	Tensor product surfaces
	Tensor product Hermite surfaces
	Tensor product Bézier surfaces
	Tensor product B-spline surfaces

	Boolean sum surface
	Coons patch, bilinear blending
	Coons patch, bicubic blending
	Gordon surface
	Example, Coons patch

	Subdivision Surfaces
	A selection of subdivision schemes
	Catmull-Clark
	Doo-Sabin and Mid-Edge
	Loop and 3
	Butterfly
	Interpolatory Quad - Kobbelt

	Two surface blending
	2-parameter B-function
	Hermite 2-p blending surface

	Tensor Product Blending spline Surface
	Implementation of Blending spline Surfaces
	Evaluation - computing value and derivatives
	Bézier surfaces as local surfaces
	Local Bézier surfaces and Hermite interpolation
	Examples of Hermite interpolations

	The sub-surface construction
	Examples, free form sculpturing using tensor product blending splines
	T-junction and Star-junction
	Dependencies on vertices and ``internal edges"
	Tensor product Surfaces and irregular grids
	T-junctions
	Star-junctions

	Triangular Surfaces
	Bézier triangles
	B-function in homogeneous barycentric coordinates
	Blending triangles
	Local Bézier triangles and Hermite interpolation
	Sub-triangles from any parametric surface
	Surface approximation by triangulation.

	A Dual Surface Construction
	Curves and vector fields on triangular surfaces
	The fill-in patch

	Appendices
	Computing ERB-function type 1
	Reliability in computations
	ERB-evaluation, computing value and derivatives
	Using Romberg integration in evaluation
	Fast ERB-evaluator based on approximations

	Programming libraries
	Basic Linear Algebra Subprograms - BLAS
	Heterogeneous computing and parallelization

	Miscellaneous proofs
	Newton and Lagrange polynomials, proof Lemma 5.1
	Commutativity relations between T(t) and its derivatives
	Beta-functions, proof Lemma 7.1
	Rational B-functions, proof Theorem 7.4
	ERB-functions, proof Theorem 7.5
	Order symmetry of a B-function, proof Theorem 7.6
	Balance symmetry of a B-function, proof Theorem 7.7
	Simultaneous order and balance symmetry, proof Theorem 7.8
	Properties of 2-p B-functions B(u,v)
	Two-surface blending and continuity

	Bibliography
	List of Acronyms
	Index

	ForsideEng6.pdf
	Page 1

	Tom side
	BaksideEng6.pdf
	Page 1

