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Studies of spatial population synchrony constitute a central approach for understanding
the drivers of ecological dynamics. Recently, identifying the ecological impacts of
climate change has emerged as a new important focus in population synchrony studies.
However, while it is well known that climatic seasonality and sequential density
dependence influences local population dynamics, the role of season-specific density
dependence in shaping large-scale population synchrony has not received attention.
Here, we present a widely applicable analytical protocol that allows us to account for
both season and geographic context-specific density dependence to better elucidate the
relative roles of deterministic and stochastic sources of population synchrony, including
the renowned Moran effect. We exemplify our protocol by analyzing time series of
seasonal (spring and fall) abundance estimates of cyclic rodent populations, revealing
that season-specific density dependence is a major component of population synchrony.
By accounting for deterministic sources of synchrony (in particular season-specific
density dependence), we are able to identify stochastic components. These stochastic
components include mild winter weather events, which are expected to increase in
frequency under climate warming in boreal and Arctic ecosystems. Interestingly, these
weather effects act both directly and delayed on the vole populations, thus enhancing the
Moran effect. Our study demonstrates how different drivers of population synchrony,
presently altered by climate warming, can be disentangled based on seasonally sampled
population time-series data and adequate population models.

population dynamics | spatial ecology | environmental stochasticity | temporal scale dependence |
sequential density dependence

Spatial synchrony—referring to the extent local populations display simultaneous changes
across space—is a widespread characteristic of geographically distributed populations.
The strength and scale of population synchrony, which vary tremendously between
species and ecosystems, have been the subject of a large number of theoretical and
empirical studies (reviewed by refs. 1 and 2). These studies are motivated by their
potential to provide unique insights into the mechanisms that drive ecological dynamics
across a range of spatial scales (3–5). The study of spatial population synchrony is one of
the fields within ecology that is, both conceptually and methodologically, most tightly
linked to other sciences that also deal with spatio-temporal dynamics (6, 7).

P.A.P. Moran developed the first formal theory of spatial population synchrony (8).
Moran’s theorem postulates that populations subjected to the same regulatory biotic
mechanisms (i.e., log-linear density dependence), and influenced by the same abiotic
environmental variation (e.g., stochastic weather), will display a synchrony that mirrors
the synchrony of the environmental variation (2, 8, 9). While this theorem has become a
cornerstone of the study of population synchrony, Moran himself expressed the need for
relaxing some of its restrictive assumptions in order to be more applicable to empirical
case studies. Subsequently, many studies have contributed to a “generalization of the
Moran effect” (sensu 2) by, for instance, allowing for nonlinear density dependence
(10, 11), spatially heterogeneous (12, 13) and temporally autocorrelated environmental
variation (14), and inclusion of other synchronizing mechanisms [e.g., dispersal (15)
and trophic interactions (16)]. Analytical approaches to elucidate the effect of climatic
variation on population synchrony have become particularly timely in the current era of
anthropogenic climate change (17, 18).

Accounting for seasonality was a fundamental aspect highlighted by Moran when
assessing the effect of meteorological conditions on population synchrony (8). This
became clear to him when analyzing the population time series of lynx from boreal
Canada, which is a region with strikingly different climates in summer and winter.
Moran realized that season-specific biotic mechanisms were important because different
demographic parameters are involved in the two seasons (e.g., reproduction only in
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summer). However, because the lynx population time series
were based on only one census per year, Moran was not able
to analytically account for season-specific population processes
(such as density dependence). More modern studies of seasonally
sampled boreal and Arctic rodent populations have shown that
marked season-specific density dependence is indeed present and
a crucially important determinant of local population dynam-
ics (19–21). Season-specific density dependence is a form of
sequential density dependence, which results from demographic
or environmental mechanisms which cause density dependence to
differ temporally (22, 23). Although seasonality is such a critical
aspect of most ecological systems (24), and changing seasonality
is one of the most profound consequences of global warming in
the northern hemisphere (25), we are not aware of any synchrony
study of boreal or Arctic animal populations that has explicitly
incorporated seasonality. On the contrary, it has even been argued
that one should use annual averages to remove the influence of
seasonality when estimating synchrony (e.g., ref. 26).

The purpose of the present study is to devise a general
stepwise analytical protocol to identify which aspects of determin-
istic biotic (density dependence) and stochastic environmental
processes (climatic variation) are most influential to spatial
population synchrony (detailed in Fig. 1). The protocol applies to
settings in which time series of spatially distributed populations
are sampled seasonally across ecologically different geographic
regions (Steps 1 and 2). The key steps in the analytical protocol
correspond to fitting statistical models to the time series that
successively account for geographic and seasonal components
of the density-dependent structure (Step 3) to understand how
these components affect synchrony patterns estimated through
correlograms (Step 4). Finally, analyses based on residuals from
the best-fitting density-dependent model and spatial synchrony
of weather variables are conducted to investigate Moran effects
(Step 5). We illustrate the applicability and potential of the
protocol through a case study of the gray-sided vole (Myodes
rufocanus). This boreal-arctic rodent species is renowned for its
important role in ecosystem functioning (27) and multiannual
population cycles (19, 28), with suspected impacts of climate
change on these cycles (29, 30).

Results

Sampling (Step 1). Local gray-sided vole abundances were esti-
mated every spring and fall over 21 y based on capture–recapture
sampling in northern Norway (Fig. 2 A and B). The gray-sided
vole has an average lifespan of less than 1 y; it is multivoltine
and does not breed during the winter season (31). Sampling
in spring was conducted before the recruitment of spring-born
voles. Nineteen sampling locations (i.e., live-trapping grids) were
spaced along a 170-km transect in a subarctic mountain birch
forest and encompassed three predefined geographic regions
(R1: coast, R2: fiord, and R3; inland; Fig. 2A), which were
expected to influence the density-dependent structure of vole
population dynamics.

Time Series (Step 2). The 21-y population time series encompass
five multiannual cycles, exhibiting profound overall synchrony
across the extent of the study area (Fig. 2B). However, despite
visible spatial synchrony, and relative temporal stationarity, there
is also some variation in the timing and amplitude of the cyclic
peaks among the localities. This regards especially the spring
series (Fig. 2B) which have lower and more variable abundance
estimates. Moreover, the spring series consist of voles having

survived the winter, whereas the fall series are mainly composed
of voles recruited over the summer (31).

Previous studies have demonstrated that local boreal and
Arctic vole populations are adversely affected by winter weather
phenomena, such as thaw–freeze cycles (32, 33) and rain-on-
snow events (21). Hence, we derived the local time series of the
number of days the temperature crossed zero degrees (Celsius)
and the total amount of rainfall (mm) during winter. The two
weather variables exhibit spatial synchrony, with a tendency for
milder (more zero crosses) and wetter (more rainfall) climates
toward the coastal area (Fig. 2 C and D).

Density-Dependence Structure (Step 3). Following (20), we
fitted second-order log-linear autoregressive models to the popu-
lation time series that successively included annual, geographic,
and seasonal components of the density-dependent (DD) struc-
ture (Models II–IV, Fig. 1; see SI Appendix, Appendix B for
estimated model coefficients). As we use a Bayesian framework
to conduct the data analysis, we selected Bayesian R2 (34) as
a measure of explained variance (i.e., the fit) of the different
linear autoregressive models (see SI Appendix, Appendix D for
additional information on the Bayesian R2).

In general, the models explained more of the abundance
variance in the fall than the spring (Fig. 3, Top). The inclusion
of geographic region-specific DD parameters (when comparing
II and III) did not improve the model fit much, suggesting that
there are small differences in the DD structure between the three
geographic regions. However, a large improvement of the model
fit was achieved when including season-specific DD parameters
(IV), especially concerning the fall abundances. This implies that
season-specific biotic DD interactions are strongly influential
components of the overall population dynamics and that this
season-specific deterministic structure needs to be accounted for
(i.e., removed) before assessing the effect of weather variables on
the remaining stochastic component (i.e., the residuals from the
best fitting model).

Spatial Population Synchrony (Step 4). Population synchrony is
here measured by the pairwise Pearson’s correlations between
population dynamics metrics at different locations. These cor-
relations are then modeled as a function of their respective
pairwise distances, providing the pattern of spatial population
synchrony in the form of smoothed correlograms (Eq. 4,
Step 4 in Methods). The spatial correlograms are displayed in
Fig. 3, Bottom, based on the four population metrics (I–IV)
outlined in Fig. 1 and reveal the contributions of the different
DD structure models (II–IV) in explaining the total observed
synchrony displayed in correlogram I. The correlograms clearly
show that much of the spatial synchrony in the overall abundance
dynamics is due to a common season-specific DD structure
across the study area. Specifically, when accounting for season-
specific DD (Model IV), the synchrony in the residuals drops
substantially in comparison to those from Models II and III,
which only account for annual DD. The reduction in spatial
synchrony due to seasonal DD is particularly sharp for the
fall abundances as could have been expected due to Model IV
clearly being the best fitting among the models for fall (Fig. 3;
Upper Right). The correlogram based on residuals from this model
(Fig. 3; Lower Right) shows that the synchrony between the
most distant populations approaches zero, which mirrors the
weather synchrony patterns (Fig. 4A). Accounting for the slight
differences in density dependence among the three geographic
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Fig. 1. The five main steps of a general methodological protocol to single out the impacts of climatic variation (weather) on spatial population synchrony,
by accounting for seasonal and geographical contexts in ecological population processes (density dependence). Step 1: Seasonal (spring and fall) sampling
of both local populations and a focal weather variable at different locations (crosses). The geographic sampling frame encompasses two regions (R1 and R2)
representing different geographic ecological contexts (e.g., habitats or ecological communities). Step 2: Season- and region-specific time series of local population
abundance estimates resulting from the sampling process, together with the time series of the focal weather variable. The estimation of abundance ideally
involves separating the observation process and the population process, accounting for detectability. Step 3: Four alternative models to further analyze spatial
population synchrony. I) corresponds to seasonal abundance estimates (Xt and Yt ). II–IV) correspond to the sets of residuals Xt − f (.) and Yt − f (.) from the
respective general models for density dependence, modeling the state of the population at time t as a function of the previous p states. Model II includes
only one set 2 of density-dependence parameters with annual time lags (i.e., ignoring seasonal and regional components). Model III includes region-specific
parameters 2R , again with annual time lags (i.e., ignoring seasonal components). Model IV is a bivariate model (20) that includes both geographic- and season-
specific parameters 2RX and 2RY . Step 4: Season-specific synchrony patterns (i.e., scale and shape) of the population (derived from Step 3) and weather
metrics (derived from Step 2) as function of distance. The dots are the pairwise cross-correlations of the population metrics and the weather variables, while
the lines are estimated correlograms with associated uncertainty intervals (e.g., 3). Step 5: Estimated effects of weather synchrony on population synchrony.
Season-specific (Fall and Spring) population synchrony corrected for seasonal density dependence and geographic context effects (i.e., residuals from Model
IV) are regressed against the spatial synchrony in the focal weather variable. Illustrations created with Biorender.com.
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Fig. 2. Sampling design and time series. (A) Map with the 19 sampling stations (“dot/stars”) along the 170-km transect encompassing three geographical
contexts (R1: coast, R2: fjord, and R3: inland). Green shade land cover denotes the mountain birch forest; white denotes tundra and blue denotes water
surfaces. (B) The time series of abundance estimates for the 19 local gray-sided vole populations in spring (lower) and fall (upper). The time series of the two
focal winter weather variables are presented in (C) number of zero crossings and (D) total winter rainfall. Colors of curves in (B–D) correspond to the three
geographic contexts in (A).

regions provides almost no contribution to the synchrony pattern
(i.e., comparison between correlograms II and III).

Effect of Weather (Step 5). The synchrony of both of the weather
variables declined steeply as a function of the distance between
the sampling stations. However, there was more scattering in the
cross-correlations in rainfall when compared to the correlations
in the zero crosses (Fig. 4A). The synchrony of number of zero
crosses was positively and significantly associated with population
synchrony corrected for DD structure (Model IV) both in fall and
spring, while the synchrony in winter rainfall was only related to
the population synchrony in the fall (Fig. 4 B and C). While the
synchrony in the weather variables and the stochastic component
of the population fluctuations are significantly related, these
empirical relations appear to be weaker than an idealized Moran
effect as could be expected from the influence of other stochastic
processes than the two weather variables analyzed (2).

Discussion

We have here proposed and exemplified an analytical protocol
that, based on time series data, allows for elucidating deter-
ministic and stochastic sources of spatial population synchrony.
Potential deterministic sources include density dependence,
climatic seasonality, and geographic ecological context, while
influential stochastic sources are likely weather variables. Spatial

covariance in stochastic weather events amounts to the Moran
effect provided that the deterministic components of local
population dynamics are linear and identical. Nonetheless, under
most circumstances, correlated weather events are expected to
also exert synchronizing effects when the local density-dependent
structure is nonlinear and spatially and temporally heterogeneous
(i.e., the generalized Moran effect; cf. refs. 2, 11, and 12).

Moran showed that a key step to make “meteorological
phenomena show up more clearly” in statistical analyses of pop-
ulation synchrony is to remove the density-dependent structure
from the population time series before making further statistical
inferences (e.g., by analyzing the residuals of an autoregressive
model) (8). Many studies have used Moran’s approach to
remove serial autocorrelation in order to fulfill the independence
requirement for significance tests of synchrony (1, 35). However,
there appears to be a lack of studies that have followed Moran’s
suggestion to formally analyze whether the scale of synchrony
in the population residuals is dependent on synchrony in the
weather (but see ref. 36); i.e., as achieved by Step IV in our
analytical protocol. Accordingly, it has been concluded that
there has been an “analytical deficiency” in empirical Moran-
effect studies in terms of making formal inferences about how
population synchrony is environmentally forced (2). We show
in the present study that by focusing on residuals, which by
definition depend on an adequate model structure, we draw
more accurate inferences regarding the strength and scale of
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correlations used for the correlogram. The top panels display the Bayesian R2 value distributions with matching color coding, corresponding to the DD Models
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synchrony (37). Indeed, simulations show that not correcting
for season-dependent local dynamics, when such is present, leads
to biased estimates of synchrony (i.e., inflated correlation of the
noise terms; SI Appendix, Appendix C).

By applying our analytical protocol to the biannually sampled
time series of gray-sided vole populations, we demonstrate winter
weather contributions to spatial synchrony. We found that both
the amount of rainfall and the frequency of mild spells in winter
contribute to spatial synchrony. These two weather variables
have previously been found to affect local population dynamics
of boreal and arctic vole species by enhancing winter declines
(21, 32). However, the present study is the first to analytically
link large-scale spatial synchrony in animal populations—a
phenomenon that appears to be ubiquitous in boreal and arctic
cyclic small rodents (cf. refs. 38 and 39)—to any form of
stochastic environmental forcing; i.e., Moran effects.

An interesting result arising from our analysis is the time-
lagged effect of the winter weather on the synchrony of fall
abundances. Moran found similar time-lagged weather effects
on an annual time-scale for Canada lynx and speculated about
which biological mechanisms could be involved (8). In voles,
environmental conditions in the nonbreeding seasons may have
lasting effects, for instance, by delaying the onset of reproduction
and thereby reducing population growth over the summer

(40). More generally, such environmentally induced carry-over
effects represent a kind of cohort effect. Cohort effects have
been found to be potentially important to local population
dynamics in several animal taxa (41, 42). Our case study suggests
that such cohort effects are also likely to cause lagged Moran
effects and thereby influence regional population dynamics. The
combination of direct and lagged effects of winter weather
amounts to enhance the Moran effect as it acts over more than
one season. As increased frequencies of rain-on-snow events and
thaw–freeze cycles are very likely outcomes of climate warming
in boreal and Arctic ecosystems (43), we predict that the strength
and scale of spatial synchrony of rodent populations will change
in these ecosystems.

Climatic seasonality is an external oscillator that acts strongly
on the dynamics of most natural ecological systems (44).
Consequently, changed seasonality represents one of the most
profound impacts of climate change on ecosystems, especially in
boreal and arctic regions (25). Yet, both empirical and theoretical
studies of ecological dynamics mostly ignore this fact (24). While
seasonality has been shown to be a very important component
of spatio-temporal disease dynamics (45–47), we are not aware
of empirical studies that have explicitly investigated how such
seasonal forcing acts on the strength and scale of synchrony
in animal population dynamics. Nevertheless, assessing the role
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Fig. 4. Weather synchrony vs. population synchrony. Panels (A) Correlograms of the two focal weather variables with associated 95% credible intervals, winter
zero crosses (ZC; Top), and winter rainfall (WR; Bottom). Panels (B) and (C) correspond to linear regression lines, with associated 95% credible intervals, of
population synchrony as a function of weather synchrony for spring (B) and fall abundances (C). Slope estimates for spring are �ZC = 0.16 (CI = [−0.04, 0.36])
and �WR = 0.00 (CI = [−0.11, 0.10]). Slope estimates for fall are �ZC = 0.38 (CI = [0.20, 0.56]) and �WR = 0.21 (CI = [0.12, 0.30]). CI denotes 95% credible intervals
for each of the regression coefficients.

of seasonal dynamics in synchrony studies may be viewed as
a particular case of selecting an appropriate temporal scale to
elucidate drivers of synchrony (17, 48, 49). Our analytical
protocol provides means for assessing the role of such temporal
scale dependence. Specifically, the role of seasonality becomes
evident by comparing the correlograms of residuals from models
with and without seasonal density dependence (i.e., compare
correlograms III and IV in Fig. 3). In the case of subarctic gray-
sided voles, seasonality is evidently an important determinant of
the region-scale spatial synchrony. Especially, this is noticeable
for the fall abundances, in which the overall synchrony becomes
reduced and the distance effect is enhanced when seasonal density
dependence is accounted for. In this case, it appears that the exact
nature of such season-specific effects is contingent on the relative
magnitude of the spring and fall noise term of the bivariate
autoregressive model (SI Appendix, Appendix C).

The role of seasonality may be a particularly forceful deter-
minant of spatio-temporal population dynamics in species with
multivoltine life cycles, like voles. For instance, the length of
winter seasons has been found to exert a strong effect on the local
vole population dynamics by acting through a density-dependent
structure (20, 50–52) and likely also through season-specific noise
terms (53, SI Appendix, Appendix C). Moreover, season-specific
density dependence is a form of sequential density dependence
that may be caused by several biotic mechanisms (22). In boreal
and Arctic vole populations, demographic processes are season-
specific (e.g., usually no reproduction during winter) so that the

resultant population growth rate is likely to exhibit different
density dependence in winter and summer (21, 32). Moreover,
numerical and functional responses of predators are inherently
density dependent and likely to differ between seasons (19).
Demographic processes and trophic interactions are typically
season-specific also in univoltine species (54)—including how
they are affected by density-dependent and independent factors.
Hence, we believe that our analytical approach (Fig. 1) will help
advance empirical studies of spatial population synchrony for a
wide range of species.

Materials and Methods

This section describes how the five steps of the general analytical protocol
outlined in Fig. 1 were applied in the gray-sided vole case study.

Sampling (Step 1). We use data collected between 2000 and 2020 from a
long-term running monitoring program of the rodent community in the region
of Porsanger, northern Norway. The data collection consisted of a capture–
mark–recapture methodology with two trapping days at 19 individual stations,
scattered along a linear transect of approximately 170 km (Fig. 2). Trapping
sessions were conducted over two days twice per year, once in spring (middle of
June) and once in fall (middle of September) (see ref. 55 for more details
regarding the sampling). Porsanger contains different landscapes that are
subject to a strong climatic contrast (in both temperature and precipitation)
and likely also biotic contexts (i.e., community structure). The 19 sampling
stations were therefore sorted into m = 3 regions according to their landscape
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affinities (Fig. 2): coastal region (R1), fjord region (R2), and inland region (R3).
Stations 1 to 5 were included in R1 (n1 = 5), stations 6 to 12 were included
in R2 (n2 = 7), and stations 13 to 19 were included in R3 (n3 = 7). Fig. 2
summarizes spatial features of the study area and data.

Time Series (Step 2).
Abundance Estimation from Mark–Capture–Recapture Data. To reduce a
potential bias when estimating synchrony (56), we incorporated the sampling
error from capture heterogeneity in our estimates of seasonal abundances
(57). Specifically, we fitted a multinomial regression model to the capture
history data to estimate the probability of obtaining a given capture history
as a function of individual features registered during the live trapping. These
features included weight and sex of the individuals. We also added a random
effect for the station in the predictor of the regression model. Individual capture
probabilities were subsequently estimated by assuming heterogeneous capture
probabilities and a temporal effect on the capture process (denoted as model
Mth in ref. 58). Finally, the individual probabilities were used to estimate
seasonal (i.e.,springandfall)abundancesusingtheHorvitz–Thompsonestimator
(59), which is a function of the estimated individual capture probabilities. We
denote the resulting estimated log abundances by {Xs,t} and {Ys,t}, for spring
and fall, respectively, at spatial locations s = 1, . . . , ns and year t = 1, . . . , nt
(i.e., ns = 19 and nt = 21).
Weather Variables. To explore the effect of the meteorological conditions on the
spatial population synchrony, we should ideally look into specific winter snow
conditions (i.e., snow depth, hardness, and ice crusts), which are regarded as the
most important abiotic variables affecting the population dynamics of boreal and
arctic voles (21, 32, 33, 60–62). As such information was not directly available,
we resorted to proxy variables of local (i.e., station-specific) snow conditions
(cf. refs. 21, 32 and 45), based on modeled daily temperature and precipitation
from the Norwegian Meteorological Institute during the years 2000 to 2020.
These model-based estimates are more accurate than other climatic gridded
datasets, but uncertainties can still be substantial, particularly for precipitation
(63). Based on these station-specific temperature and precipitation estimates
(detailed in SI Appendix, Appendix A), we derived two variables representing
locally adverse snow conditions during winter (21 December to 20 March): winter
zero crosses (representative of freeze–thaw cycles 32) as the total number of times
the mean daily temperature crossed 0 ◦C; and winter rainfall (representative
of rain-on-snow events 62) as the precipitation sum in days where the mean
temperature surpassed 0 ◦C.

Statistical Framework for Decomposing Spatial Synchrony (Steps 3 to 5).
Density-Dependence Structure (Step 3). The general protocol (Fig. 1, Step 3)
specifies three different models for the DD structure of the estimated time series.
Here, we assume that the general function f(.) is linear, describing the log-DD
structure in terms of direct and delayed effects up to lag p. Specifically, the three
models either include or exclude regional- and seasonal-dependent effects as
specified below.

In general, the sampling locations s are sorted into m regions, R = R1 ∪
· · ·∪Rm. For the gray-sided vole case study, this corresponds tom = 3 regions.
The most general model includes both regional-specific and seasonal-specific
terms (Fig. 1, Model IV), and the assumed log-linear dependency structure up
to order p can be expressed by

Xs,t = βr1Ys,t−1 + βr2Xs,t−1 + · · ·+

βr,2p−1Ys,t−p + βr,2pXs,t−p + εs,t ,
[1]

Ys,t = γr1Xs,t + γr2Ys,t−1 + · · ·+

γr,2p−1Xs,t−p+1 + γr,2pYs,t−p + ωs,t ,
[2]

where t = p+ 1, . . . , nt and s ∈ Rr . The terms εs,t andωs,t denote individual
random environmental noise at each spatial location s for each time point t, while
the sets of regional- and seasonal-specific coefficients can be summarized as
2Rx = {βr1, . . . ,βr,2p} and 2Ry = {γr1, . . . , γr,2p}. Simplifications of the

given model will yield more simplistic measures of the DD structure. According
to the general protocol in Fig. 1, Model (I) corresponds to assuming no DD
structure, in which all of the given coefficients are equal to 0. This corresponds
to simply using the estimated raw log-abundance series, {Xs,t} and {Ys,t}, in
further analysis.

Following ref. (20), we included delayed effects up to order p = 2 for the
case study. Model (II) refers to a second-order annual autoregressive process
including coefficients2 = {β2,β4, γ2, γ4}which are neither regional-specific
(m = 1; disregarding spatial heterogeneity) nor seasonal-specific (β1 = β3 =
γ1 = γ3 = 0; assuming yearly dynamics). Such AR(2) models are often
used in studies of population synchrony (e.g., refs. 64 and 26). Model (III) is
characterized by incorporating regional-specific effects {βr2,βr4, γr2, γr4}

m
r=1.

This corresponds to AR(2) models which allow for spatial differences in the DD
structure which can account for some of the observed synchrony (13). Finally,
by including the seasonal-specific effects {βr1,βr3, γr1, γr3}

m
r=1, we get the

bivariate Model (IV) which is very similar to a second-order vector autoregressive
model (VAR). The difference to a VAR-model, however, is that the time series
{Xs,t} and {Ys,t} are observed at two different time points in year t, and the
fall log-abundances are modeled in terms of the spring observations within the
same year. Seasonal-specific DD has been recognized as fundamental to model
small rodent population dynamics (19), but to our knowledge, seasonal DD
contributions to spatial synchrony have not been assessed.
Assessing the Scale and Shape of Spatial Population Synchrony (Step 4). To
assess the scale and shape of the spatial synchrony, we can consider the spatial
correlations of the environmental noise terms in Models (I–IV) as a function of
geographical distance. The following analysis is repeated using the four different
models for the DD structure (specified in Step 3,Materials andMethods). A major
goal is then to understand how the inclusion of region- and season-specific terms
influences the synchrony estimates, i.e., which part of the synchrony is explained
by the different DD components.

Define the residual vectors �′s = (εs,1, . . . , εs,nt ) and !′s =
(ωs,1, . . . ,ωs,nt ) for all spatial locations s = 1, . . . , ns and t = p+1, . . . , nt .
The contributions to the spatial synchrony are then characterized by the pairwise
correlations between vectors within each of the sets {�′s}

ns
s=1 and {!′s}

ns
s=1. If the

associations between these residual series are expected to be linear, the degree
of synchrony is typically measured using Pearson’s correlation coefficient (1, 3).
To model the correlations in terms of geographical distance, let δi,j denote the
Euclidean distance between two stations i and j. In accordance with calculating
the spatial correlogram (1, 3, 65), we discretize the ns(ns − 1)/2 unique
distances between stations into distance classes dk , k = 1, . . . , K, where K
is the total number of classes. Specifically, a distance class dk is defined by
Lk < δi,j < Uk , where Lk and Uk represent the lower and upper bounds of
the distances within that class, respectively. The corresponding averages of the
pairwise correlations {ρi,j} for distance class dk are then given by

ρk(dk) =
2
∑nk

i=1
∑nk

j=i+1 ρi,j

nk(nk − 1)
, Lk < δi,j ≤ Uk , [3]

where nk is the total number of distances/correlations within distance class
dk . The given formulation is analogous to the calculation of Koenig’s modified
correlogram (3, 4), as the correlations are not centered (zero synchrony is taken
as the reference line of the correlogram). For the given case study, we assumed
that the distance-class width is Uk − Lk = 1 for all classes, which corresponds
to rounding off the geographical distances to the nearest integer. We used this
method to calculate the averaged correlations in Eq. 3 as a preprocessing step
to reduce random noise in the estimated correlations.

As an alternative to using the nonparametric covariance function (65) or other
nonparametric estimates of the correlation function (1), we chose to model the
correlations in terms of the distances using the regression model

ρk(dk) = f(dk) + νk , k = 1, . . . , K. [4]

Here, f denotes a smooth underlying function while {νk} represents zero-mean,
independent Gaussian error terms with constant variance. This model was
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here fitted using a Bayesian framework, according to the methodology of
integrated nested Laplace approximation (INLA) (66), implemented using
the R-package R-INLA (available from http://www.r-inla.org). Specifically, the
function f was assigned a second-order intrinsic Gaussian Markov random
field prior (67). The model was scaled according to ref. (68), and the
precision parameter of the model was assigned a penalized complexity
prior with parameters U = 0.5 and α = 0.01 (69). Using INLA, both
the posterior mean and credible intervals for f are calculated efficiently,
without the need of resampling techniques, like Monte Carlo simulation or
bootstrapping (66).
Effects of Weather (Step 5). Finally, we can use the measures of synchrony ac-
counting for the effects of geographic- and seasonal-dependent DD to investigate
potential weather (or other relevant environmental variables) drivers. For this, we
can model the set of correlations {ρk(dk)}

K
k=1 from Model (IV) as a function of

the corresponding spatial correlations of different weather covariates, defined

by {ρ(c)
k (dk)}

K
k=1. The availability of such covariates are typically case-specific

but should be measured or estimated to represent the same spatial locations
and time points used for the log abundance estimates. For the given case study,
the relationship between the weather variables (zero crosses and winter rainfall)
appeared to be linear and was thus modeled using simple linear regression
models.

Data, Materials, and Software Availability. The scripts and supporting data
files necessary to replicate this research are available at https://doi.org/10.
18710/OVWSAM.
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