
Discretization and Representation of a Complex

Environment for On-policy Reinforcement Learning for

Obstacle Avoidance for Simulated Autonomous Mobile

Agents

Andreas Dyrøy Jansson [0000-0001-5116-6041]

Department of Computer Science and Computational Engineering,

UiT The Arctic University of Norway, 8514 Narvik, Norway
andreas.d.jansson@uit.no

Abstract. In recent years, the demand for digitalization, automation, and smart

systems in the airline industry has accelerated. Furthermore, due to the ongoing

global pandemic as of 2022, airlines are faced with the challenge of offering flex-

ibility in both cargo and passenger capacity. Studies show that the use of smart

products and autonomous agents are expected to play a key part in the digital

transformation of the logistics industry. This paper aims to examine the current

state-of-the-art in multi-agent systems and reinforcement learning with special

interest in intelligent baggage handling systems. How to simplify, implement and

simulate a system of autonomous baggage carts as a software model in order to

examine congestion situations will be the main topics of this paper. Furthermore,

how the findings from the software model may be applied to real-world scenarios

related to Industry 4.0 and baggage handling will also be discussed.

Keywords: Autonomous Agents, Congestion, Edge Devices, Reinforcement

Learning, Self-optimization, Simulation.

1 Introduction

Due to the outbreak of Covid-19, aviation demand has fallen considerably. According

to [1], leisure trips and tourism were first to recover after previous global crises and are

expected to surpass business travel demand as the pandemic subsides. During this cri-

sis, airlines have been taking major financial hits, amassing more than $180 billion

worth of debt in 2020 [1]. As a result, the industry as a whole is required to cut costs

by restructuring for greater efficiency. This means investing in IT, digitalization, and

automation. As of 2019, investing in Business Intelligence (BI) and Smart Systems

was a top priority for 95% of airlines and 87% of airports [2].

Furthermore, due to increased globalization, competition and e-commerce, interna-

tional competitiveness of companies will depend on effective and on-time delivery of

products globally. Similarly, global supply chains are dependent on air freight to reach

their customers as quickly and efficient as possible. However, as many passenger flights

were grounded during the pandemic, cargo capacity was also reduced. [1] estimated

2

that passenger flights are responsible for half of total air cargo capacity, which means

that air freight will be a limited resource going forward. As a consequence, airlines need

to be agile and grow cargo capacity while still being flexible and able to quickly adapt

to changing demand. As a result, previous efforts in digitization have been accelerated

and are expected to play a vital part in this transformation [1, 2].

Sensors enable smart products to detect and report problems, and, in some cases,

even make decisions on their own [3]. Smart products appear in several forms and in

various domains, and one of the best known is perhaps the automated guided vehicle

(AGV). According to [4], using AGVs for resource transportation may help improve

effectiveness, safety, and flexibility in the context of Industry 4.0, and by extension,

baggage handling and logistics. To achieve this, agents representing such AGVs are

required to have a solid strategy for avoiding obstacles in a complex and dynamic en-

vironment. However, a limiting factor that must be considered is the computing perfor-

mance of the AGVs onboard computers. As such, the main topic this paper will examine

is how a complex, dynamic environment can be broken down into discrete states to run

on low-power hardware while still being useful for obstacle avoidance. This will be

done using a simulation of multiple autonomous agents learning an obstacle avoidance

strategy through on-policy reinforcement learning. A simple prototype application to

simulate and visualize the agents will be developed and tested, and the results dis-

cussed. How agents are able the handle dynamic obstacles, in addition to changes in

available space will be examined and discussed. Finally, how the findings from this

paper may be adapted in order to be useful for real-world challenges regarding baggage

handling and logistics will be brought up.

2 Similar Work and Experiments

The use of multi-agent systems (MAS) and reinforcement learning (RL) in the industry

have been documented thoroughly. Examples include [5], where they explored the use

of smart systems and Internet of Things (IoT) to decentralize control of jobs on the

factory shop floor. The main focus of this paper was on the challenge of efficient ma-

terial flow control through stationary entities. Traditionally, this was performed using

a top-down centralized control approach, where agents were structured hierarchically.

Using simulation, they demonstrated that self-organized decentralized control was a

feasible approach to this challenge. They claimed that a decentralized approach was on-

par with or could even outperform traditional implementations of material flow control

in speed and robustness. As the manufacturing industry moves towards a more cus-

tomer-driven market, companies are required to shorten product life cycles and reduce

time-to market without negatively impacting quality and costs. Such a shift demands

more decentralized, flexible control and increased robustness. The concept of an auc-

tion-based task-allocation system in a manufacturing context was introduced in [6].

Findings showed that this system was robust in the face of disruptions and unpredicta-

ble events, due to its dynamic way of allocating tasks through auctions.

The application of multi-agent technology has been thoroughly documented in [7],

in which they described a baggage handling system (BHS) as a production system with

3

a number of random inputs. As the final destination of bags was unknown until its tag

was scanned and the bag entered the system, off-line planning and scheduling became

impossible. In addition, there was the logistical challenge of storing baggage before

loading the plane. This resulted in a system with low flexibility and high level of shared

resources. Both full and empty baggage totes shared conveyor belts, which meant that

this was a limited, shared resource prone to congestion challenges.

Experiments with reinforcement learning in combination with MAS has been per-

formed on the logistical challenge of air traffic flow management. In [8], it was pointed

out that the current air traffic control was centralized, and consequently, slow to re-

spond to changing weather conditions and other unexpected events. They proposed a

system of agents who were assigned specific 2D points throughout the airspace, in

which each agent was tasked with keeping the separation of incoming traffic to a re-

quired distance. Reinforcement learning was used to learn the appropriate control pol-

icies. Results showed that using agent-based rewards performed better than using the

full system reward, as agents received more direct feedback on their actions, improving

learning performance.

Finally, various approaches for route planning for autonomous guided vehicles has

been examined. [9] focused on a closed warehouse application enhanced by industry

4.0 technology. Using this approach, the authors were able to create a dynamic route

planning system for real-time applications. The main area of interest in this case was

on creating a fast algorithm able to run on hardware with limited computational power.

This was achieved by creating an encoded abstraction of the agent’s environment, re-

ducing the size of the input vector. Sensor data and previously generated routes were

collected and used to build the model to find the optimal route. This model had to be

maintained over time, and a long data collection period was required in order to aggre-

gate sufficient training data. A possible remedy for this was the use of simulated da-

tasets, the authors suggested.

Similarly, [10] showed how LiDAR sensor data combined with odometer data could

be used to determine a robot’s position in an unknown environment. However, the ma-

jor drawback of this approach was that a manually constructed map created up-front

was required.

A similar approach examined a LiDAR-only based navigation algorithm for a weed-

ing robot [11]. Here, they experimented with a general and robust approach for auton-

omous robot navigation in an unknown environment. Information about the environ-

ment was collected and used to construct a model in real-time, which the robot utilized

in order to move along detected lines in rows of crops. However, no visual information

was available, as this approach relied on LiDAR only. As a consequence, the robot was

unable to act according to the type of obstacle, i.e., a harmless obstacle (weeds) and a

potentially harmful obstacle (rocks, branches etc.). Despite this, their approach was still

promising given the limited data available to the robot, and where no prior information

about an environment was available.

The use of visual information combined with LiDAR scans to improve accuracy has

been discussed in [12]. Using an extensive set of pre-collected images, a robust and

accurate strategy for the robot was created. However, the extensive manual effort

4

required upfront was a major drawback. Relying on pre-collected image data also meant

that changes in the environment could throw the robot off.

In summary, we see many examples of MAS and RL in the industry, both for bag-

gage handling and logistics, and obstacle avoidance and navigation for autonomous

agents. However, for the work done with regards to robotics and autonomous agents,

the main focus has been on single agents, in environments with few obstacles. [7] did

address a system with 300 agents, but they were not dynamic, rather they served the

role of mediators controlling resource flow throughout the BHS. Furthermore, the state

space in works like [9 - 12] was relative to the static environment, and not to the agent

itself, making for a less flexible system. On the other hand, [8] used a system with

rewards and state space relative to the agents, which was able to adapt quickly to unex-

pected events. The agents in [9] used a centralized approach, where the model had to

be monitored and re-trained regularly if performance began to decline.

Based on these findings, this paper aims to examine how a highly complex, multi-

agent system can be broken down and represented using a simple, tabular approach,

with no human interaction. Furthermore, control will be bottom-up and decentralized,

and with no information about the environment required up-front.

3 Approach and Implementation

It was decided to examine a model of multiple autonomous, mobile agents in an envi-

ronment consisting of a large number of obstacles (200+). A simple agent obstacle

avoidance simulator based on off-policy RL was developed from scratch [13]. In order

to examine the effects of congestion and space allocation in a dynamic environment,

this previous implementation was extended, and new benchmarks were defined.

3.1 State Space and Action Definition

The simulation should consist of a simplified model, while still having some relevancy

to real-world applications. This was achieved by using a discretized state space, where

the current state of an agent was defined by its distance and angle relative to its nearest

obstacle, somewhat similar to [8]. The state space was constructed using two different

discretization approaches:

Relative Angle and Distance to Nearest Obstacle. In the first approach, the state was

based on the distance and relative angle to the nearest obstacle in range. Distance and

angle values were discretized to construct the state space, defined as a 2D matrix of

width W and height H. W and H thus determined the resolution of the state space in

each dimension, which will be discussed later. Sensor values were discretized to a’ and

d’ using the following formulae:

 𝑎′ =
𝑎

360
× (𝐻 − 1) (1)

 𝑑′ =
𝑑

100
× (𝑊 − 1) (2)

5

This is visualized in the figure below:

Fig. 1. State space discretization example 1. Current agent orientation and heading is shown by

the blue arrow.

In (1), the measured angle value a is discretized into intervals of 15 degrees. Similarly,

in (2), the measured distance d is divided by the total sensor range of 100 pixels and

discretized into intervals of 5 pixels. Fig. 1 (a) shows a visual representation of the state

space, as seen by the sensor of a square agent. The values a’ and d’ thus become the

indices of the state space matrix in Fig. 1 (b). In the above example, an obstacle repre-

sented as a black circle is present within the sensor’s range, and its position and relative

angle defines the current state of the agent. The corresponding state matrix and agent

position is shown in Fig. 1 (b). In the current implementation, H was set to 25 and W

was set to 20. This produced a 2D state space matrix of size 25 × 20 = 500 possible

states.

Cardinal Partitions and Number of Obstacles in each Partition. In the second ap-

proach, the state of the agent was defined based on relative angle and the number of

obstacles in each interval. Instead of discretizing the angles into 25 15-degree intervals,

four 45-degree partitions based on the cardinal directions were manually defined: Front,

Right, Rear, and Left:

6

Fig. 2. State space partitions based on cardinal directions.

A visual representation of the state space discretization and partitioning is shown in

Fig. 2. Next, the actual state was determined based on the presence of one or more

obstacles in each quadrant. The ideal state would thus be no obstacles in the Front par-

tition, where the agent is heading. Similar to the first approach, states were mapped to

indices in a 1D state matrix by the following method:

Fig. 3. Partition state mapping visualization.

Fig. 3 shows how indices were generated based on the presence of obstacles in each of

the quadrants. This is simply a true or false value, represented as 0 and 1, going clock-

wise from the Front partition. Since there were four partitions of two “sub-states” each,

the total size of this state matrix became 24 = 16. Indices of the state matrix were then

generated by converting from the binary to decimal value.

Action Definition. In every state of both approaches, an agent could take one of four

actions A’: turn left, turn right, wait, or keep going. The actions for turning left and right

were performed in the simulator by rotating the agent’s direction vector �⃗� by a fixed

amount of 10 degrees in either direction. The wait action was implemented by not up-

dating the agent’s position for 10 simulator ticks. As the simulator ran at 125 ticks per

second, the agent would wait for 1250 milliseconds.

7

3.2 Reinforcement Learning Implementation

The reinforcement learning algorithm used was SARSA, which is an on-policy rein-

forcement learning algorithm [14]. Advantages of SARSA may include faster conver-

gence compared to off-policy, since the agent relies more on previous knowledge when

selecting its next action, using a greedy policy. However, balancing exploration versus

exploitation becomes even more important using this approach. To address this, a ran-

dom exploration factor r was added.

Next State Estimation. In order to determine the next state following the selected ac-

tion, “look-ahead” functions for each of the two approaches were implemented. For the

first approach, to calculate an agent’s next position, its current trajectory according to

the selected action A was used, as shown in Fig. 4. The result from this computation

was in turn used to estimate the next distance and relative angle dt+1 and at+1, and thus

St+1 | A:

Fig. 4. Look-ahead computation.

The agent is shown in Fig. 4 as a green square, with an obstacle shown as a black circle.

The current distance dt and relative angle at were provided by the sensor. |�⃗� | was also

known, as this was the constant velocity of all agents. The next estimated position given

action A was then found by:

 (𝑥, 𝑦)𝑡+1 = (𝑥, 𝑦)𝑡 + 𝑉 ⃗⃗ ⃗|𝐴 , �⃗⃗� 𝑡+1 = [𝑥𝑂 − 𝑥𝑡+1, 𝑦𝑂 − 𝑦𝑡+1] (3)

Based on (3), dt+1 and at+1 could be calculated:

 𝑑𝑡+1 = √𝑥𝐷
2 + 𝑦𝐷

2 , 𝑎𝑡+1 = cos−1 �⃗⃗� ∙𝐷𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

|�⃗⃗� |×|𝐷𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
 (4)

8

For the partition approach, the next state following a selected action was estimated by

simply “rotating” the observed state seen in Fig. 3 according to the current action. This

is shown in the below figure:

Fig. 5. Next state estimation for cardinal partition approach.

Next, the function to determine what action to take in any given state was defined as

follows:

Algorithm 1

 1: Pick a random decimal number 𝑛 ∈ [0, 1)
 2: if n < r then

 3: return random action 𝐴 ∈ 𝐴′

 4: end if

 5: Max value 𝑞 ← −∞

 6: 𝐴 ← 𝑘𝑒𝑒𝑝𝐺𝑜𝑖𝑛𝑔
 7: for each action a : A’ do

 8: if Q(St, a) > q then

 9: 𝐴 ← 𝑎, 𝑞 ← 𝑄(𝑆𝑡 , 𝑎)
 10: end if

 11: end for

 12: return A

Next, the estimated reward was calculated. For the relative angle and distance approach,

the expected reward was based on the predicted distance to the nearest obstacle:

Algorithm 2

 1: if dt+1 < 10 then

 2: return -10

 3: else if dt+1 < 20 then

 4: return 10

9

 5: else

 6: return dt+1

This meant that if the agent was less than 10 pixels away from an obstacle, it counted

as a collision, and the agent received a penalty in the form of a negative reward. Next,

if the agent was closer than a “safe distance” of 20 pixels, it received a low, positive

reward. Only if this safety distance was exceeded would the agent receive a larger re-

ward. For the partition approach, the reward was based on the number of obstacles in

the Front partition after “rotation”:

Algorithm 3

 1: if number of obstacles in Front > 0 then

 2: return –(number of obstacles in Front)

 3: else

 4: return 5

Finally, combining Algorithm 1, 2, and 3 with (1, 2, 3, 4) resulted in the following final

algorithm used for agent learning:

Algorithm 4

1: Initialize Q(s, a) with default values 0

2: Select initial action A

3: while true do

4: Get sensor readings dt, at for current agent posi-

tion t

5: Determine state St using (1) and (2)

6: Apply rotation associated with A to �⃗�
7: Calculate dt+1 and at+1 for next state St+1 using (3)

and (4)

8: Get action 𝐴𝑡+1 ∈ 𝐴′ with the highest Q-value for

St+1 from Q(s, a) using Algorithm 1

9: Calculate reward R based on dt+1 using Algorithm

(2, 3)

10: 𝑄(𝑠𝑡 , 𝐴) ← 𝑄(𝑠𝑡 , 𝐴) + 𝛼 × (𝑅 + 𝛾 × 𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑠𝑡 , 𝐴))

11: 𝐴 ← 𝐴𝑡+1

12: if A is not WAIT then

13: Translate agent position according to �⃗� (𝑆𝑡 ← 𝑆𝑡+1)

The values of control parameters H, W, α, and γ used in the implementation are shown

in Table 1.

10

Table 1. Control variable values

Variable Value

r 0.038

α 1.0

γ 0.8

W 25

H 20

3.3 Obstacle Generation, User Interface, and Interactivity

A level of interactivity was desired in order to make the simulator more dynamic. In

the simulator window, cursor coordinates were captured when clicking, creating a new

obstacle in the specified location. By default, a preset number of obstacles were gener-

ated and distributed in the environment for the agents to avoid. No explicit hard world

border was defined. In addition to the randomly distributed obstacles, lines of obstacle

objects were added, surrounding the environment. This was done in order to make

agents learn to stay within the screen using the same algorithm as for obstacle avoid-

ance. How this addition affected the agents’ behavior will be discussed later. When

agents did wander off screen, they were repositioned in their original starting location

and continued exploring. In the simulator, agents were also considered obstacles. The

sensors used could detect both static obstacles, and other agents present in the scene.

4 Results

A set of experiments were performed in order to examine the agents’ ability to learn to

avoid obstacles and deal with congestion. Firstly, it was of interest to test a single agent

in a static environment, to see if the basic concept of the implementation worked as

intended. A single agent was added to an environment of size 1184x761 pixels, with

250 obstacles randomly distributed. Both approaches to the state space discretization

and mapping produced similar visual results:

Fig. 6. Single agent with action and reward label.

11

In Fig. 6 we see a single agent with trail and status label avoiding obstacles. On the left,

the agent was able to stay more than 20 pixels away from the obstacle when selecting

action “KeepGoing”, and received a reward based on distance. In the right-hand part of

the figure, the agent came too close to an obstacle, and thus received a reward of -10,

as described in Algorithm 2. It is also possible to see from the trail that the agent was

able to navigate and avoid the obstacles. A selection of screenshots of single agent nav-

igation are presented below:

Fig. 6. Blue agent navigating.

Fig. 7. Lime agent navigating.

As previously mentioned, no explicit world border was defined in the reward function.

To discourage agents from leaving the screen, a border made up of static obstacle

12

objects was added, in addition to the randomly distributed obstacles, as can be seen in

Fig. 9. Agents would sometimes leave the scene even with this border in place, but were

more likely to swerve back into view, also seen in Fig. 9:

Fig. 8. Agent responding to border of obstacles.

This border also served as a mechanism to introduce space restraints and congestion to

the system. To get a better understanding how this border affected the agents, the num-

ber of times agents left the scene over time, with and without the border was recorded.

25 agents and 250 obstacles were added to the environment. 10 instances of the simu-

lator were run simultaneously for 10 minutes, and their numbers averaged to account

for the randomness inherit in the reinforcement learning approach.

13

Fig. 9. Agents leaving scene with and without obstacle border.

Since this benchmark was based on time, the Wait action was disabled. Otherwise, the

agents would potentially get good results by simply standing still for the duration of the

simulator.

Fig. 10 shows that agents had left the scene more than 250 times after 10 minutes

(600 seconds) when no border was defined. When introducing the obstacle border,

agents were more inclined to stay within the screen, and had wandered off 154,4 times

on average.

Another interesting aspect regarding AGVs in enclosed spaces is to examine how

the size of the environment affects congestion. In the next experiments, the size of the

simulator window was reduced, and the number of collisions for each configuration

was measured. As in the previous experiment, the number of agents used was 25 and

the number of obstacles 250. Each configuration was run 10 times for 300 seconds, and

the resulting values averaged. The size of the window in each experiment is listed be-

low. Due to software constraints, the actual environment in the simulator is slightly

smaller than the total window size. This discrepancy was accounted for in the calcula-

tions performed.

Table 2. Simulator environment sizes used in experiments.

Window size in pixels Environment size in pixels % of default area

1200x800 (default) 1184x761 100

900x600 884x761 55

600x400 584x361 23.4

When the size of the area was compared to the total number of collisions after 300

seconds, the following graph was produced:

0

50

100

150

200

250

300

0 30 60 90 120150180210240270300330360390420450480510540570600

Agents leaving scene

Without border With border

14

Fig. 10. Total collisions compared to simulator area.

Finally, the performance of both approaches was measured and compared based on the

number of collisions per distance in pixels travelled by each agent. For this experiment,

the number of agents was 20, the number of obstacles was 200, and the Wait action was

enabled. The screen size was left at the default, and the simulator was run for 5 minutes

in both configurations. For the relative angle/distance approach, the average number of

collisions per distance in pixels was 0.337. For the cardinal partition approach, the re-

sulting average was 0.072. Both approaches had a similar memory usage of less than

30 MB of RAM, as seen in Fig. 12:

Fig. 11. Memory and CPU usage of the implementation.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1200x800 900x600 600x400

Total collisions compared to area

Area Collisions

15

5 Discussion of Results

As seen in Fig. 6-9, agents were able to avoid obstacles, and received a negative reward

when they failed to do so. However, screenshots can only show so much when dealing

with moving objects. Using trails to visualize the path of the agent were imagined to be

helpful in order to show the movements of agents over time. This became clearer when

introducing the world border consisting of standard obstacle objects. As seen in Fig. 9,

the agent wandered off slightly, then was able to reorient itself and navigate back into

view. This screenshot was picked specifically to demonstrate this behavior, as agents

would sometimes disappear completely off screen. In those cases, the agent was auto-

matically repositioned to its random starting position. No penalty was given for leaving

the scene other than obstacle proximity. The effect of this is even clearer in Fig. 10,

which compares the number of times agents left the scene with and without the border

in place. From this, it is possible to see that the agents were incentivized to stay within

the screen solely based on the learned obstacle avoidance strategy.

Next, the effects of limiting the space of the agents were examined. In these experi-

ments, a collision was counted every time an agent received a negative reward, as de-

fined in Algorithm 2. When looking at Fig. 11, we see the relationship between the

number of collision and total area. As one might expect, there was an inverse correla-

tion. What is interesting is that when reducing the area to 55% of the default, collisions

only went up by 37%. In other words, half the area did not equal double the collisions.

However, this did not hold when reducing the environment further to 23%. In this case,

collisions rose by 228%, as seen in Fig. 11. The limitation of agent actions is also ex-

pected to have had an impact, since agents could only turn left or right or keep going

straight. With less space to “idle” in, constantly moving while still maintaining a safe

distance becomes much more difficult due to congestion. This suggests that this ap-

proach only performs acceptably down to a certain environment size, while maintaining

the number of obstacles and agents. Space itself becomes a limited resource. As agents

were required to maintain a minimum safe distance to each other and other obstacles in

the environment, the challenge of allocating this between agents presented itself. Ob-

stacles were not able to move, and thus agents were required to negotiate. However, no

explicit negotiating mechanisms were implemented, meaning that agents just had to

skirt around each other as best they could. In larger environments this becomes less of

a problem, mostly due to limited agent vision. An agent does not consider an obstacle

it cannot detect.

 Furthermore, when comparing the performance of the two approaches, it appears

that the cardinal partition approach outperforms the relative angle/distance approach

when we only consider collisions per distance travelled. This is interesting since that

approach only relied on 16 states, while the angle/distance approach used 500 states.

The next-state calculation was also simpler and was achieved in practice by simply

swapping the indices of the four partitions according to the selected action. Being able

to achieve better of performance with a reduced number of states could be beneficial

when running this system on low-power hardware for real-life applications and sug-

gests that a partition-based approach shows some promise for further investigations.

16

5.1 Further Work and Recommendations

As mentioned above, the introduction of a negotiating mechanism to help with space

allocation in small environments is expected to benefit the system and help deal with

congestion. In practice, all agents have to share a common good in the form of space,

or more specifically, the maximum distance from obstacles. Negotiations could be in

the form of agent-to-agent, or a mediator agent could be introduced, like in [7]. There,

bag totes had to share a common good in the form of conveyor belts. Such a mediator

agent would need to have an overview of the environment and every agent position in

order to designate spaces the agents could move to. This is imagined to speed up deci-

sions when faced with congested situations. Furthermore, using multiple, or even other

types of sensors, to define the state space should be looked into. Using LiDAR only has

been proven to be a drawback previously [11] and introducing visual information did

improve performance in certain situations, as shown in [12].

Further expanding or enhancing the state space, as demonstrated in the cardinal par-

tition approach should also be looked into. Even though that approach showed promise

with only 16 states, introducing additional granularity to the partitioning should also be

investigated. One approach that comes to mind is adding additional substates to each

partition, like “no obstacles”, “a few obstacles” and “many obstacles”. This would re-

sult in a state space of 81, which is still considerably less than 500. More partitions

could also be added to achieve a finer level of control for specific situations. Memory

wise, using 500 or 16 states had minimal impact during benchmarks. Adding additional

states would also mean that manually defining rules of action for each state would be

increasingly difficult, strengthening the argument that the agents should create their

own models without human intervention. In summary, using a small, discretized state

space as proposed did show some promise, but continuous state spaces and actions

should also be investigated.

6 Conclusion

Two methods to simplify and model the state space for autonomous mobile agents was

presented, and a simulator was implemented and demonstrated in software. The pre-

sented approaches demonstrated how a complex environment with multiple obstacles

could be simplified using a discretized state space based on a single LiDAR-like sensor.

Agents were implemented with an internal representation of their environment created

in real-time, and an on-policy reinforcement learning algorithm was used in order to

learn to avoid randomly distributed obstacles. Discretizing the state space allowed for

a simple, tabular approach to reinforcement learning, which is less resource intensive

than high-dimensional or even continuous state spaces. Even with this simplified ap-

proach, it was possible to observe learning. The environment was made dynamic by

introducing multiple agents, each moving around and trying to avoid each other as well

as a high number of static obstacles. No information about the environment was re-

quired up-front, and the agents were purely self-optimizing and relied on decentralized

control.

17

Results showed some promise using a single LiDAR-like sensor to construct simple

state spaces, which can be useful when dealing with cheap, low-power equipment in

the real world. The computational overhead for a single agent is low compared to more

complex system of high continuous state- and action spaces. A complex environment

with multiple agents and 200+ obstacles was broken down into a small state spaces,

requiring less than 30 MB to run including the graphical user interface, while still being

useful for obstacle avoidance. One might even draw parallels to “social distancing”,

which has become much more relevant in the time of writing. However, there is still

room for improvement, especially when considering the use of multiple sensors to in-

crease performance. A system of negotiation among agents could also be useful in sit-

uations when space is limited and should be investigated further. Creating high-level

actions like “turn left” and “turn right”, or “keep going”, made debugging, demonstra-

tion and general understanding of the system easier. Using a similar approach when

building and configuring RL systems for real-world AGVs may make simple proof-of-

concepts easier to deploy rapidly. Further tweaking to low-level actuator control can

thus be made while still providing a consistent interface to end users and developers.

In summary, using additional sensors in addition to a system of negotiation is imag-

ined to increase performance of the system. Finally, additional functionality could be

implemented in the simulator itself in order to model and test even more real-world use

cases related to baggage handling and logistics.

References

[1] Back to the future? Airline sector poised for change post-COVID-19,

https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-in-

sights/back-to-the-future-airline-sector-poised-for-change-post-covid-19, last accessed

2021/06/08.

[2] Baggage IT Insights 2020, https://www.sita.aero/resources/surveys-reports/bag-

gage-it-insights-2020, last accessed 2021/03/04.

[3] Meyer, G., Främling, K., Holmström, J.: Intelligent products: a survey. Comput-

ers in Industry 60(3), 137-148 (2009).

[4] Sella, R., Rassõlkinb, A., Wanga, R., Otto, T.: Integration of autonomous vehicles

and Industry 4.0. In: Proceedings of the Estonian Academy of Sciences, pp. 389-394.

Estonian Academy Publishers, Tallin, Estonia (2019).

[5] Thürer, M., Fernandes, N. O., Stevenson, M., Qu, T., Huang, G. Q.: Self-organ-

izing material flow control using smart products: an assessment by simulation. Journal

of Industrial and Production Engineering 38 (2), 148-156 (2021).

[6] Bussmann, S., Schild, K.: Self-organizing manufacturing control: an industrial

application of agent technology. In: Proceedings Fourth International Conference on

MultiAgent Systems, pp. 87-94. IEEE (2000).

[7] Hallenborg, K., Demazeau, Y.: Dynamical control in large-scale material han-

dling systems through agent technology. In: 2006 IEEE/WIC/ACM International Con-

ference on Intelligent Agent Technology, pp. 637-645. IEEE (2006).

https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/back-to-the-future-airline-sector-poised-for-change-post-covid-19
https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/back-to-the-future-airline-sector-poised-for-change-post-covid-19

18

[8] Tumer, K., Agogino, A.: Distributed agent-based air traffic flow management. In:

Proceedings of the 6th international joint conference on Autonomous agents and mul-

tiagent systems, pp. 1-8. Association for Computing Machinery, New York, NY.

[9] Duc, D. N., Huu, T. T., Nananukul, N.: A dynamic route-planning system based

on Industry 4.0 Technology. Algorithms 13(12), 308, (2020).

[10] Cheng, Y., Wang, G. Y.: Mobile robot navigation based on lidar. In: 2018 Chinese

Control And Decision Conference, pp. 1243-1246. IEEE (2018).

[11] Malavazi, F. B. P., Guyonneau, R., Fasquel, J.-B., Lagrange, S., Mercier, F.: Li-

DAR-only based navigation algorithm for an autonomous agricultural robot. Comput-

ers and Electronics in Agriculture 154, 71-79 (2018).

[12] Su, Z., Zhou, X., Cheng, T., Zhang, H., Xu, B., Chen, W.: Global localization of

a mobile robot using lidar and visual features. In: 2017 IEEE International Conference

on Robotics and Biomimetics, pp. 2377-2383. IEEE (2018).

[13] Jansson, A. D.: Simulation of obstacle avoidance for multiple autonomous vehi-

cles in a dynamic environment using Q-learning. International Journal of Computer and

Information Engineering 15, 267-272 (2021).

[14] Sutton, R. S., Barto, A. G: Reinforcement learning: an introduction. 2nd edn. The

MIT Press, Cambridge, Massachusetts, MA (2015).

