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• Open energy system optimization model for Europe run with decades of weather data

• Different weather years impact optimal solutions, but near-optimal spaces intersect

• Geometry of near-optimal spaces allows for robustness against perturbations

• More investment lowers variable costs & leads to more robustness and fewer emissions

• Approximating near-optimal spaces is parallelizable, making large problems tractable
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Abstract

We suggest a new methodology for designing robust energy systems. For this, we investigate so-called near-optimal
solutions to energy system optimisation models; solutions whose objective values deviate only marginally from the
optimum. Using a refined method for obtaining explicit geometric descriptions of these near-optimal feasible spaces,
we find designs that are as robust as possible to perturbations. This contributes to the ongoing debate on how to define
and work with robustness in energy systems modelling.

We apply our methods in an investigation using multiple decades of weather data. For the first time, we run a capacity
expansion model of the European power system (one node per country) with a three-hourly temporal resolution and 41
years of weather data. While an optimisation with 41 weather years is at the limits of computational feasibility, we
use the near-optimal feasible spaces of single years to gain an understanding of the design space over the full time
period. Specifically, we intersect all near-optimal feasible spaces for the individual years in order to get designs that are
likely to be feasible over the entire time period. We find significant potential for investment flexibility, and verify the
feasibility of these designs by simulating the resulting dispatch problem with four decades of weather data. They are
characterised by a shift towards more onshore wind and solar power, while emitting more than 50% less CO2 than a
cost-optimal solution over that period.

Our work builds on recent developments in the field, including techniques such as Modelling to Generate Alternatives
(MGA) and Modelling All Alternatives (MAA), and provides new insights into the geometry of near-optimal feasible
spaces and the importance of multi-decade weather variability for energy systems design. We also provide an effective
way of working with a multi-decade time frame in a highly parallelised manner. Our implementation is open-sourced,
adaptable and is based on PyPSA-Eur.

Keywords: Climate-resilient energy systems, Energy system optimization model, Weather uncertainty, Near-optimal
solutions, Robust energy systems, Modeling to generate alternatives

1. Introduction

The climate crisis and tumbling prices for renewable technologies in the last decade are leading to an unprecedented
shift to variable renewable and other low-carbon energy sources. The pace and extent at which this transition is
projected to take place often corresponds to a complete overhaul of currently existing energy systems within a few
decades. This necessitates a renewed understanding of the workings and planning of energy systems, taking into
account future unknowns including weather, climate, costs, and politics.
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In the domain of energy system modelling, grappling with these unknowns is an open research problem which has
prompted many different approaches. In particular, weather variability has been identified to have a large impact
on model solutions: cost-optimal solutions are often fragile in the sense that modelling with one weather year can
produce solutions that are infeasible for other weather years. At the same time, recent work involving the relaxation
of cost-optimality has revealed the opportunities and insights provided by the near-optimal feasible space of energy
system optimisation models. Still, existing methods only map out near-optimal solutions partially or heuristically, and
a complete understanding of the theoretical and computational trade-offs has not yet been developed.

In this paper, we introduce a methodology to study robustness of energy systems against uncertainties in inputs and
apply it to inter-annual weather variability. To start with, we investigate methods for approximating projections
of near-optimal feasible spaces of energy system models. We then intersect these spaces for varying input data to
produce solutions which are feasible in all scenarios. Finally, we propose to consider points well in the interior of this
intersection as candidate robust solutions. This geometric approach lends itself to building increased resilience against
uncertainties and perturbation in a systematic way and generating greater flexibility for policymakers.

We are interested in the problem of long-term planning of the European power system with a large share of renewable
production capacity in order to meet emission targets. Capacity expansion models are often used for this purpose, in
which capacities of generation technologies, storage, and transmission are optimised. The model at the same time
ensures feasibility by simultaneously solving the corresponding optimal dispatch problem over a certain time period,
“simulating” the operations of the network. Such models are vital exploratory tools used to shape high-level European
energy policy.

In this study, we use the open-source, bottom-up energy system optimisation model (ESOM) called PyPSA-Eur [1]
for our implementation. PyPSA-Eur consists of a model-building routine based on the PyPSA (Python for Power
System Analysis) framework [2], collecting and processing the required input data from various sources. It assembles
a faithful representation of the European high-voltage transmission grid and existing generation capacities, and
uses Atlite [3] to compute capacity factor time series for renewable energy sources (PV, wind, hydro), based on
historical ERA5 reanalysis weather data. We use PyPSA-Eur with a partial greenfield approach under perfect foresight,
including existing transmission (expandable), hydropower and nuclear capacities (both non-extendable), but optimising
renewables (onshore & offshore wind power, solar power), gas turbines and storage from zero. For the purpose of
demonstrating and validating our methodology, we use a spatial resolution of one node per country, and a 3-hourly
temporal resolution (without time aggregation). However, our techniques can be applied also when using a significantly
higher resolution and including more technologies and energy sectors.

Usually, these types of energy system models are optimised using one or a few historical weather years [4], or different
weather years are used for sensitivity analyses [5]. The issue of weather year variability has been addressed in the
literature [6, 7, 8, 9, 10, 11, 12] and has been identified as an important factor for ESOM outcomes [13]. In particular,
using only a single weather year as input data for ESOMs can produce design solutions which are over-fitted to that year,
and are not feasible in general [14, 13]. However, most previous studies running ESOMs with decades of weather data
have either focused on a single country such as Germany [12], the UK [7, 13], and the US [15] (a single-node model),
or used only a European dispatch model to solve for operations, not capacity expansion [8]. One study on the impact of
different climate scenarios applied a TIMES model for the European power system with a decades-long modelling
horizon [16] in which the usage of representative time slices limited the ability to model storage and capture medium-
and long-term effects. Pickering, Lombardi and Pfenninger have recently used the sector-coupled Euro-Calliope model
in a study of the European energy system at a 96-node two-hourly resolution [17]; the main results were generated over
a single weather year but validated using 8 additional weather years.

To the authors’ knowledge, this is the first paper to run a spatially resolved ESOM for the European power sector with
multiple decades of weather data, without aggregating to time slices. For this analysis, we use 41 years of ERA5
reanalysis data [18] for the European continent (from 1980 until 2020 inclusive). While we aim to find system designs
which are feasible for all weather years under consideration, we base our methods on optimisations with single weather
years in order to reduce the computational burden. However, we are still able to optimise our model with all 41 weather
years in order to validate our approach.

The robust solutions that we are interested in are near-optimal feasible solutions, meaning that their costs do not go
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beyond a previously defined threshold. These solutions are “close to cost-optimal” and leave room for alternative
objectives and desirable qualities; the additional costs we accept lie below the 9–23% deviation from cost optimality
(due to political, social, or technical reasons) that have been observed in recent years in the UK [19]. Following the
works by Neumann and Brown [20] and Pedersen et al. [21] we exploit the geometric shape and properties of the
near-optimal space defined by the ESOM. Instead of studying the full-dimensional near-optimal feasible space, we
study a projection onto 5 relevant dimensions representing total investments in certain technologies.

By varying the weather years as inputs, we then construct one (reduced) near-optimal feasible space for each year.
When we intersect these near-optimal feasible spaces, we obtain a space of solutions in which each point represents a
set of total investment decisions which are feasible for every year under consideration.

As the most robust candidate in the intersection, we choose the point which lays in the middle, being as far away from
being infeasible as possible. This means that changes in total investment decisions (up to a certain point) still leave us in
the near-optimal feasible space for every weather year. We then map the total investments back to a full system design,
and verify its feasibility by simulating its operations over the entire time period. Note that our form of “robustness” is
a geometric concept (laying in the middle of a near-optimal feasible space) and is only loosely connected to robust
optimisation.

Apart from contributing to the discussion on energy system robustness, our methods also have implications for ESOM
parallelisation. The difficulty in parallelising linear program (LP) solvers has been highlighted as the main barrier
preventing ESOMs in taking advantage of increasing computational power [22]. While there are efforts to address this
problem at the level of LP solvers [23], we work at the level of model formulation. Finding solutions which are feasible
for many weather years by studying the intersection of their respective near-optimal spaces can be an alternative to
solving ESOMs with many weather years outright, which is computationally prohibitive. Thus, our methods constitute
a way of heuristically replacing one large (difficult to parallelise) optimisation by many optimisations with single
weather years.

Finally, we formalise and significantly deepen the understanding of the geometry and approximation of near-optimal
feasible spaces of ESOMs. Previously, Pedersen et al. proposed a methodology for approximating near-optimal feasible
spaces of ESOMs [21], and used the results to study the density of certain system design properties under projections
of the near-optimal feasible space. Furthermore, Lombardi et al. mapped out the utilisation of renewable capacity,
transmission capacity, and storage capacity of chosen near-optimal solutions, depending on different uncertainties,
indicating overlaps between these [5]. We detail the dimension reductions involved in working with near-optimal
feasible spaces, and how to map back and forth between the different stages. We then propose several variations on a
general algorithm for approximating reduced near-optimal feasible spaces, and analyse their convergence characteristics.
The application of geometric descriptions of near-optimal spaces to studying different weather years is also novel.

In summary, our paper contributes to the literature on ESOMs in several ways. We formalise a general framework for
working with and intersecting near-optimal feasible spaces, which allows us to study uncertainties of different kinds.
We apply this framework to a first-of-its-kind study of robustness of highly renewable scenarios for the European power
system to decades of weather data. Beyond robustness, the methods also contribute to parallelisation of energy system
optimisation models.

In Section 2 we formalise the methodology and introduce the necessary steps to define “robust” energy system designs.
Afterwards, in Section 3, we describe the adapted PyPSA-Eur model we use and our modelling set-up to obtain power
systems resilient to 41 years of weather data. In Section 4 we present our main findings on using intersections of
near-optimal feasible spaces, features of robust solutions, and performance. We discuss ramifications of our approach
in Section 5, before we conclude with Section 6.

2. Methodology and formal definitions

We introduce the methodology used in this paper and describe how we apply this to obtain energy system designs
robust to weather variability: in Section 2.1 we revisit the concept of near-optimality. In Section 2.2 we discuss how
dimension reduction is necessary to describe the near-optimal feasible space in a computationally tractable manner,
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and we elaborate on how we approximate near-optimal feasible spaces. Afterwards we introduce robustness as the
geometric property of lying in the intersection of different near-optimal feasible spaces (Section 2.3). In Section 2.4 we
then justify our choice of the Chebyshev centre as our robust solution of choice, as its location implies maximal stability
to perturbations. Finally, in Section 2.5 we suggest different allocations that can translate a point in the low-dimensional
intersection of the near-optimal feasible spaces to a spatially resolved (full-dimensional) energy system design.

2.1. Near-optimality

Let a capacity expansion problem be given as the linear program

min c · x such that Ax ≤ b. (1)

Here, x ∈ RN is a vector of decision variables, c ∈ RN the coefficients of the objective function, and A ∈ RM × RN and
b ∈ RM give the set of M linear constraints. Let F be the feasible space of the linear program Equation (1), defined as

F := {x | Ax ≤ b}. (2)

Letting x∗ ∈ F be an optimal solution with objective value c · x∗ = copt ∈ R, and ε > 0 a chosen slack level, we define
the ε-near-optimal feasible space as

Fε := {x ∈ F | c · x ≤ (1 + ε) · copt}. (3)

When ε is clear from the context, we simply refer to Fε as the near-optimal space. For general linear programs, Fε is a
convex polyhedron, and when x is bounded (as is the case for energy system models), Fε is a convex polytope. To
work with Fε geometrically, we can solve the optimisation problem min d · x s.t. Ax ≤ b and c · x ≤ (1 + ε) · copt for
some objective d in order to find a vertex or boundary point of Fε. In the context of ESOMs, this amounts to solving
the energy system model once with an alternative objective function.

The definition of a near-optimal space is not new in the context of ESOMs, and previous work has explored the
near-optimal space either through uniform sampling as [21], maximally different solutions as [24, 25], or extreme
points of the space [20].

2.2. Dimension reduction

The near-optimal space Fε is high-dimensional and complex; large-scale ESOMs typically involve millions of variables
(dimensions) and constraints (hyperplanes defining the polytope). In this section we reduce to a much lower-dimensional
space in two steps; see Figure 1 for an overview of the maps and spaces involved.

In the case of capacity expansion models, we are most interested in investment decision variables of the linear program,
as opposed to all other (operational) decision variables. Specifically, let x = (xI , xO)T ∈ RN be split into investment
decision variables xI ∈ RNinv and operational decision variables xO ∈ RNop , where N = Ninv + Nop. Then we define the
projection map π : RN → RNinv by simply forgetting about the operational decision variables. The image

F ′ε = π(Fε) = {xI ∈ RNinv | x = (xI , xO)T ∈ Fε} (4)

of Fε under π is the Ninv-dimensional ε-near-optimal feasible space of investment variables.

The convex polytope F ′ε consists of all points xI such that an energy system with capacity investments given by xI

is feasible and whose total system cost (including operations) is at most (1 + ε) · copt. In short, it is the space of all
near-optimal feasible investment decisions. This makes an explicit description of F ′ε interesting for decision-makers in
order to explore different kinds of near-optimal investments.

However, in a model with a high spatial resolution, the number of investment decision variables Ninv is typically still
in the hundreds or more (with multiple investment decisions at each node, and transmission expansion). This makes
the polytope F ′ε ⊆ RNinv difficult to work with, visually and mathematically. Specifically, in order to work with F ′ε
we would want to find a set of points P such that F ′ε is the convex hull of P. However, the number of vertices of an
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Figure 1: Illustration of how the spaces Fε, F ′ε and Aε are connected. The map φ can be seen as a composition of a model optimisation
“min c · x s.t. Ax ≤ b and σ ◦ π(x) = y” composed with the projection π. It gives an explicit model design based on chosen coordinates y in the
reduced near-optimal feasible spaceAε.

Ninv-dimensional polytope defined by M hyperplanes is in O(MbNinv/2c) — see [26], Chapter 26. This puts a precise
description of F ′ε in terms of vertices out of reach.

One solution is to map down to a much lower-dimensional space where we group and aggregate investment decision
variables. Let xI = (x1, . . . , xNinv ) be the individual investment decision variables. Let T1, . . . ,Tk be a collection of sets
of indices with Ti ⊆ {1, . . . ,Ninv} and Ti ∩ T j = ∅. For each index j in one of these sets, we also choose a coefficient /

weight c j. Then we define a linear map σ : F ′ε → Rk as:

σ(x) =
(∑

j∈Ti
c jx j

)k

i=1
. (5)

In our case, we take each Ti to be the set of indices identifying decision variables that belong to a specific technology.
We weight these decision variables x j (for j ∈ Ti) by their respective capital costs c j. Specifically, throughout this paper
we consider k = 5, with T1, . . . ,T5 corresponding to transmission expansion, PV expansion, onshore wind expansion,
offshore wind expansion and gas turbine expansion respectively. In effect, σ maps a vector xI of investment decisions
to a summary of selected total investment costs.

Let
Aε = σ(F ′ε ) = {σ(xI) | xI ∈ F ′ε } ⊆ Rk (6)

be the image of F ′ε under σ. ThenAε is a k-dimensional convex polytope (since convex polytopes are preserved by
linear maps). Note that in our specific choice of T1, . . . ,T5 we have not included all investment decision variables
in σ, only those we deemed most important for the particular model instances we work with. Of course, different
dimension reductions can be achieved by other choices of aggregation (groups of indices Ti and coefficients c j). While
we have taken the coefficients c j to be capital costs (making investment in different technologies easier to compare), the
coefficients could, for example, also be set to 1 in order to consider only capacities.

The utility of the reduced near-optimal spaceAε is as a proxy for system feasibility. If we can describeAε well, we
can quickly assess whether any given set of total investments y ∈ Aε can result in a feasible system design. However,
by aggregating investment decision variables, we lose information on the specific feasible system designs σ−1(y) ⊆ F ′ε
realising the total investments y. The trade-off is that the fewer dimensions k we aggregate to, the easierAε is to work
with, but the less information it gives us. Each point y ∈ Aε can have a large preimage under σ and π, meaning there
may be many near-optimal feasible solutions x ∈ Fε with the given total investments y (see Figure 1). As we discuss in
more detail in Section 2.5, to find a specific solution x ∈ (σ ◦ π)−1(y) ⊆ Fε, we must solve a version of the original
model Equation (1) in RN .

Similarly to [21], we attempt to describe the low-dimensional spaceAε explicitly. Again, in order to find an explicit
description of the polytopeAε, we would like to find (a large subset of) its vertices. We can do this by optimising over
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Figure 2: Illustration of a single step of Algorithm 1. Additionally, the Chebyshev ball (see Section 2.4) is shown at each stage.

Aε with different objective functions or directions in Rk. For each direction d ∈ Rk, the solution to the linear program

max d · y such that y = σ(π(x)) and Ax ≤ b and x ∈ Fε (7)

is an extreme point ofAε in the direction d. The above linear program can be solved by solving the original problem in
Equation (1) with the new objective function −d · σ(π(x)) (which is linear), and mapping the solution toAε by σ ◦ π.
In effect, for each extreme point ofAε that we want to find, we need to solve the original capacity expansion problem
once with an adapted objective function.

While we cannot expect to find all vertices ofAε (quadratic in the number of model constraints when k = 4, 5 [26]),
we want to find a set of extreme points P such that their convex hull approximates Aε well. Given a “budget” of n
optimisations (and hence n extreme points), the natural question is: how do we choose the directions d1, . . . , dn to
optimise in, in order to get a set of points P whose convex hull approximatesAε the best possible?

We use an iterative approach to approximateAε while filtering on already used (or similar) directions. At each step
we optimise in a different direction: depending on which property of the near-optimal feasible space is of interest,
there can be many different ways to choose these directions. In our case we are interested in the largest ball within the
near-optimal feasible space, the Chebyshev ball (see Section 2.4). Thus, we optimise at each iteration in the normal
direction to a facet tangential to the Chebyshev ball of the current approximated polytope. If these have been exhausted,
we choose the normal direction to the largest facet by volume. For other approaches to choosing directions, caveats and
performance comparisons, see Appendix Appendix A. An illustration of one step in this process is shown in Figure 2.
A simplified version of the algorithm (based only on normals to large facets) is given in pseudo-code in Algorithm 1.

Once in the low-dimensional space Rk (with k = 5 in our case), the complexity of the geometric objects of interest is
low enough that we can do efficient exact computations on them. In particular, recall that a polytope with n vertices can
only have O(n2) facets for k = 4, 5, so computing the convex hull of the vertices, its volume, etc. has a time complexity
of O(n2). We use the qhull software [27] for computational geometry related to polytopes. Since the number of vertices
n which we can compute (by solving Equation (7) for each vertex) is limited, the complexity of O(n2) is acceptable for
our purposes. In particular, note that for our application, the complexity of Algorithm 1 is dominated by the model
optimisations, not the computational geometry.

2.3. Intersections and robust solutions

One of the new ideas we propose is to investigate the intersections of the near-optimal spaces of related capacity
expansion problems, or different instances of the same abstract model. Of course, if F (a),F (b) ⊆ RN are the feasible
spaces of two linear programs A and B, then F (a) ∩ F (b) is simply the space of all solutions x which are feasible for
both problems. More interestingly for capacity expansion problems, consider F ′ε

(a)
∩ F ′ε

(b): the space of all investment
allocations which are both feasible and near-optimal for both A and B.
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Algorithm 1: Outline of algorithm for approximatingAε

P := ∅;
for d ∈ {e1,−e1, e2,−e2, . . . , ek,−ek} do

Let y be extreme point onAε in direction d (optimisation);
Add y to P;

end
for i ∈ {1, . . . , n} do

Let H be the convex hull of P;
Let F1, F2, . . . be the facets of H, sorted by decreasing volume;
Let di be the normal of facet Fi;
Let d be the first of d1, d2, . . . which is not within a small angle θ of any previously used direction;
Let y be extreme point onAε in direction d (optimisation);
Add y to P;

end
Return convex hull of P;

In our case, we consider the near-optimal spaces for optimisation problems defined with different weather years.
Specifically, we use 41 years of reanalysis weather data (1980-2020) in order to compute capacity factors and load time
series as input for our model (Section 3.2 and Appendix Appendix B). This gives 41 model instances, each defined
with the input data from a different weather year. For brevity, let Y := {1980, . . . , 2020} denote the set of weather years.
Then for i ∈ Y write

min c(i) · x(i) such that A(i)x(i) ≤ b(i) (8)

for the LP in Equation (1) defined with weather year i. Let F (i) be the feasible space of the above LP. From these
feasible spaces, we want to recover investment allocations which are feasible for each of the weather years.

Since total system costs vary considerably between cost optimisations with different weather years, we define a uniform
system cost bound across all weather years. Specifically, letting c(i)

opt be the optimal objective value (total system cost)
for weather year i, we take

c∗ = max
i∈Y

c(i)
opt (9)

to be the highest optimal system cost across all weather years under investigation. In defining near-optimal spaces with
the different weather years, we then set the slack relative to c∗ instead of relative to each c(i)

opt for each weather year
individually:

Fε
(i) = {x ∈ F (i) | c · x ≤ (1 + ε) · c∗}. (10)

We define F ′(i)ε andA(i)
ε similarly to F ′ε andAε (Equations (4) and (6)).

Now, the intersection
⋂

i∈Y F
′(i)
ε is the space of investment decisions which are feasible for all weather years under

consideration and near-optimal (relative to the most expensive year)2. We are interested in the intersection of the reduced
near-optimal space A(i)

ε . Repurposing our notation slightly, we write Aε :=
⋂

iA
(i)
ε . Note that Aε =

⋂
i σ(F ′(i)ε ) =

σ
(⋂

i F
′(i)
ε

)
. However, while we cannot easily find explicit descriptions of the spaces F ′(i)ε , we can approximate each

(low-dimensional)A(i)
ε as explained above. This, in turn, enables us to find an explicit (approximate) description of

Aε =
⋂

iA
(i)
ε .

We call a set of total investments y ∈ Rk robust when y ∈ Aε. This means that for each weather year i, there exists some
near-optimal feasible model solution x(i) ∈ F

(i)
ε (including investment and operation decisions) such that σ ◦ π(x(i)) = y.

Note that the same total investment for each technology, y ∈ Aε, may be spread differently onto the different nodes of
the model for each x(i), i ∈ Y. Formally speaking, it is plausible that

⋂
i F
′(i)
ε = ∅ even if we find some robust point

2In fact, this resembles the near-optimal feasible space of a robust optimisation program defined over the weather years Y. Strictly speaking,
however, the different operational variables for different weather years make this a loose generalisation of classical robust optimisation.
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(a) The approximation of a reduced near-optimal feasible space after 5, 10, and
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(b) The Chebyshev centre ych of the intersection of two reduced near-optimal
feasible spaces. The radius of the Chebyshev ball around the centre can give us
an idea of how much flexibility we might expect around this point.

Figure 3: Near-optimal space approximation, intersection and Chebyshev centre.

y ∈ Aε. In Section 2.5, however, we propose different methods for finding robust allocations xI ∈
⋂

i F
′(i)
ε such that

σ(xI) = y if they exist, and in Section 4.1 we show that this works well in practice.

2.4. Chebyshev centre
Among the total investment decisions in the intersectionAε =

⋂
iA

(i)
ε , we want to find choices that are not only feasible

for all years considered. We want to find the most resilient choice among all the alternatives. We therefore select the
point ych ∈ Aε maximally removed in all directions from the boundary ofAε, meaning ych is as far away from being
infeasible as possible. This is realised if we pick ych to be the Chebyshev centre (see [28], Section 8.5.1), i.e.

ych = argmaxy∈Aε
(r) s.t. Br(y) ⊆ Aε, (11)

where Br(y) is the ball of radius r around y. Figures 2 and 3b show examples of Chebyshev balls. The point ych can be
found efficiently using a linear program. Specifically, let a j be the normal vectors of the hyperplanes supportingAε

and b j the associated offsets, so that each y ∈ Aε satisfies a j · y ≤ b j for all j. Then ych is given by

max r such that a j · y + r‖a j‖ ≤ b j ∀ j and r ≥ 0. (12)

2.5. Disaggregating robust solutions
The previous steps leading to the Chebyshev centre, one chosen robust point, have all been performed in the reduced
ε-near-optimal feasible spaces and their intersection,Aε. The designs that are of ultimate interest to us, however, are
elements in F ′ε , including all investment decision variables. Thus, we would like to define a function φ : Aε → F

′
ε

mapping robust total investments to complete system designs realising those total investments. Being more precise, we
need to specify over which weather years the space we map back to is defined — we want a map

φ : Aε → F
′Y
ε , (13)

recalling the notation Y = {1980, . . . , 2020}. From this map, we want to obtain a robust near-optimal energy system
design xrob = φ(ych) at the Chebyshev centre ofAε.

We can write our ESOM as in Equation (8) but instead define it with all 41 weather years as min cY ·xY such that AYxY ≤
bY; its ε-near-optimal feasible space of investment variables is F ′Yε . Then we define the map φ (which we call φY for
clarity) by adding constraints to the above LP to ensure that the solution has total investments given by y ∈ Aε:

φY(y) = π(argmin cY · xY) such that AYxY ≤ bY and σ ◦ π(xY) = y. (14)
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Map Short name Description Computation

φY exact Fix the investment costs in ych as additional
constraints. Then solve Equation (1) jointly
over all years.

Optimisation over 41 years
(134 GB RAM, 35 hours)

φ(i∗) conservative Fix the investment costs in ych as additional
constraints. Then solve Equation (1) for the
year with the highest optimal cost, c∗.

1 single-year optimisations
(ca. 3 GB RAM, 0.25 hours)

φmean mean Fix the investment costs in ych as additional
constraints. Then solve Equation (1) for
all single years and take the mean over all
capacities.

41 single-year optimisations
(parallelisable, each ca. 3 GB
RAM, 0.25 hours)

Table 1: Overview over three different allocations to obtain “robust” solutions.

Given that π and σ are linear, the above is still a linear program. Note that φY may not be well-defined for all y if
the corresponding linear program has no solutions; this can happen if some total investments y are realisable for each
individual weather year, but not realisable by any one complete system design over all 41 years.

Solving Equation (14) amounts to solving an ESOM defined with 41 weather years, which is computationally
challenging. Indeed, one of the motivations for working with the intersectionAε is that it can be computed on the basis
of model optimisations with single weather years.

Thus, we propose two alternatives to the “exact” map φY. We call the exact map and its alternatives allocations
since they map total investments y ∈ Aε to a spatially resolved allocation of investments φ(y) ∈ F ′Yε . The alternative
allocations are heuristics in the sense that they map to designs that are not strictly speaking guaranteed to be feasible.
Formally, they map Aε → RNinv but may map some points of Aε outside of F ′Yε (whereas φY(Aε) ⊆ F ′Yε ). For the
first alternative, which we call the “conservative” allocation, let i∗ be the most expensive year, for which c(i∗)

opt = c∗.
Then we simply take φ(i∗) as an alternative to φY. That is, for the conservative allocation we take the solution of the
ESOM defined with weather year i∗, with the added constraints that σ ◦ π(x(i∗)) = ych. Computing φ(i∗) involves only
one model optimisation with a single weather year.

For the second alternative, which we call the “mean” allocation, we follow the idea of the conservative allocation φ(i∗),
but involve the other weather years more. Indeed, we define φmean as

φmean =
1
|Y|

∑
i∈Y

φ(i). (15)

Computing φmean involves |Y| model optimisations with single weather years. In our case, |Y| = 41. The exact and
alternative allocations are summarised in Table 1.

For comparison, we also define a “baseline” point in RNinv which is obtained by scaling up investments uniformly in the
optimal solution for the most expensive weather year. This is explained in more detail in Section 4.3.

3. Implementation

3.1. Modelling set-up
We base our implementation on the PyPSA-Eur 0.4 model [1], which is itself based on the general PyPSA framework
(version 0.18) [2]. While we have modified PyPSA-Eur for our purposes (as described in Appendix Appendix B),
especially in order to support multiple weather years, we have kept the model set-up relatively close to the defaults
as described in [1]. We use the model in a partial greenfield configuration, where existing transmission, nuclear3

3Nuclear power in Germany is removed from the model.
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and hydro capacities at current (2020) capacities are included in the model from the start, but all other technologies
start at zero capacity4. The extendable technologies included in the model are transmission (both AC and relevant
DC connections), battery and hydrogen storage, onshore and offshore wind power, solar power and open-cycle gas
turbines. The model is run with a single investment period and perfect foresight. We limit annual CO2 emissions to
95% of 1990 levels5. A one-node-per-country6 spatial resolution and a 3-hourly temporal resolution is chosen. Note,
however, that the spatial and temporal resolution can be increased easily (as in PyPSA-Eur); the resolution is limited in
this paper in order to allow extensive validation of our methods. We model the year 2030 with 41 distinct historical
weather years (1980-2020) driving renewable capacity factors and electricity demand based on the default PyPSA-Eur
cost assumptions7 (given in 2013 EUR) for the year 2030. Thus all weather years are viewed as different potential
realisations of 2030, and we can compare investment and operational costs of multi-year optimisations to single-year
optimisations by taking annual averages.

Using enough weather data to accurately represent long- and short-term dynamics and extreme events is difficult
in ESOMs, considering the resulting model size and increased solving complexity. However limited the lessons of
historical weather data are on future weather [29], further driven more and more by climate change, the extreme events
and variability represented here will still likely offer insights for future designs. We capture historical climate change
implicitly here, whereas incoming trends and changes through climate change are hard to predict and an active field of
research in itself [30, 31, 32, 33].

3.2. Data

The data we use as input for our model lean heavily on the data and sources used in PyPSA-Eur. For instance, we use
cost data based on the default costs considered in PyPSA-Eur, which are estimates for 20307 (in 2013 EUR). However,
time series input data have been extended to 41 weather years.

We use reanalysis data to generate capacity factors for the renewable energy sources; our source is the hourly ERA5
dataset [18] for the time period from 1980 up to and including 2020. The open-source tool Atlite [3] translates weather
data to hourly capacity factors for solar PV, on- and offshore wind. The inflow profiles for hydropower are generated
similarly, however they are corrected to fit production data given by [34]. We describe in detail how we process the
data in Appendix Appendix B.

The load input data are generated using a regression model on 1980–2020 ERA5 temperature data. The regression
is based on hourly country-level ENTSO-E load data from 2010 to 2014 [35], as well as the temperature data. We
conduct a two-staged regression with a similar approach to that used in [36]. This allows us to generate 41 years of
country-level temperatur-dependent load data matching the weather data we use. Finally, we scale the demand by a
factor of 1.13 according to load projections for 2030 by the European Commission8. More details on the generated
load data can be found in Appendix Appendix B.

3.3. Modeller’s decisions

In this section, we discuss various details and choices regarding the implementation of the methods described in
Section 2. For the exact code, including configuration options and installation and running instructions, we refer to the
GitHub repository9.

One of the first decisions we have to make is choosing a suitable slack level ε. For small ε the intersectionAε may be
empty; a priori it is not clear how large ε has to be forAε to be nonempty. In our case, we choose ε = 5% on top of the
most expensive weather year, but found that Aε is even nonempty with ε = 2.5%; this may change with a different

4PyPSA-Eur can also include existing biomass capacities in the model. Due to their limited capacities, they do not lead to significant deviations
in results compared to the scenario we considered, so we choose to omit biomass for simplicity of the setup.

5We present additional results with a 100% emission reduction in Appendix Appendix C.
6Except for countries in multiple synchronous zones (Denmark, Spain, Italy, UK), which are represented through two nodes.
7 https://github.com/PyPSA/pypsa-eur/blob/v0.4.0/data/costs.csv (accessed 06/10/2022)
8https://ec.europa.eu/clima/document/download/ec1acac9-10fe-4eeb-915f-cad388990e0f en, Fig. 44 (accessed

23/06/2022)
9https://github.com/aleks-g/intersecting-near-opt-spaces/tree/v1.0.1
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modelling set-up. For comparison, Trutnevyte found in [19] that the transition in the UK energy system from 1990 to
2014 deviated between 9 and 23% from the cost optimum.

Given that the dimension reduction map σ is our main tool in working with near-optimal spaces (see Section 2.2),
we need to define it carefully. Both the number of dimensions k that σ maps to and which investment decision
variables are mapped to each dimension must be considered. We have investigated the convergence of Algorithm 1
with k = 2, 3, . . . , 7 (Appendix Appendix A) and we find that it is tractable to work with this number of dimensions.
The decision variables that are mapped to each dimension (the sets T1, . . . ,Tk in the notation of Section 2.2, here
abbreviated to “dimensions”) should be chosen meaningfully. On one hand, including as a dimension a technology
which is not utilised in cost-optimal solutions may be detrimental, as much computational effort will be expended
on potentially irrelevant solutions including this technology. Moreover, the Chebyshev centre of the resulting space
must include at least a Chebyshev radius worth of that technology, which may be sub-optimal. On the other hand,
not including as a dimension a technology which plays a significant role in any near-optimal solution can limit the
usefulness of the results. In our case, we choose to map investment decision variables for transmission expansion, solar,
onshore wind, offshore wind and gas to 5 respective dimensions.

Lastly, we choose the coefficients c j in the definition of σ to be the investment cost associated with the investment
decision variable x j; this has the advantage of mapping to the single unit of EUR in every dimension, making different
dimensions easily comparable. In contrast, for example, comparing renewable capacity expansion in MW and storage
capacity expansion in MWh directly is more difficult and not as useful for the purpose of working with a Chebyshev
ball. For some applications one might consider scaling the weights c j for certain dimensions, for example, when
robustness to changes in investment in one technology are more important than for other technologies.

A key driver of the computational demands of our approach is the desired quality of approximation of near-optimal
spaces. How many iterations of Algorithm 1 are needed, depends on the number of dimensions k, the mode of finding
new directions to explore (see Figure A.1) and the intended use-case. A fixed number of iterations can be chosen, or
the algorithm can be ended once some convergence criteria is satisfied. Either way, we refer to Appendix Appendix A
for a discussion of the various trade-offs involved.

The other factor influencing the computational effort is how much time and computing power every single optimisation
takes. This is typically driven by the number of technologies, inter-temporal relations between different variables (e.g.
through storage), temporal resolution [37] and spatial resolution [38, 39]. Deciding on the model complexity must
be done in light of the research question at hand. For our application with weather years, we do assume that each
individual model is defined over a time period of one calendar year.

4. Results

We first present the main results pertaining to system design with 41 weather years, and the use of near-optimal spaces
in this context (Section 4.1). This is followed by a more detailed description of the characteristics of our proposed
robust solutions (Section 4.2). The subsequent subsection focuses on validation results and a comparison of the different
robust design allocations (Section 4.3). Finally, we touch on computational results and parallelisability (Section 4.4).

4.1. Weather years and intersection

First of all, optimising our model with each of the 41 considered weather years individually shows large discrepancies
in the respective optimal solutions, re-affirming the importance of considering a large set of different weather years.
Optimal total system costs range from 121 billion EUR for 2020 to 152 billion EUR in 198510. The composition of
investment by technology also differs significantly between weather years, with especially the onshore- and offshore
wind investment varying by up to around 20 and 25 billion EUR between years (corresponding to variations up to 243
GW for onshore wind and 82 GW for offshore wind), respectively. The inter-year variability in optimal investments is
illustrated in Figure 5, where the investments are compared to the robust solution xrob.

10These and all the following total system costs are annualised and include investment in new capacities as well as variable costs (in 2013 EUR),
but not existing capacities. See Section 3.1 for details on which existing technologies are included in the model.
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Meanwhile, for this study we also conduct the first capacity expansion optimisations of a spatially resolved model
for the European power system with 41 weather years directly (one node per country, 3-hourly resolution). These
optimisations took in the order of 1-2 days (using two threads) and up to 134 GB of memory. The optimal annualised
total system cost for the 41-year model is 137 billion EUR; only slightly higher than the average of the total system
costs of optimisations with single weather years at 134 billion EUR. See also Figure 7 for a break-down into investment
(for extendable technologies)- and variable costs and comparison with the optimisations with single weather years.
Apart from providing a basis of comparison, optimising the model with 41 weather years also allows us to compute the
exact robust map φY in order to validate the alternative mean and conservative allocations (Section 4.3).

We implement (as in Section 3) the methodology of intersecting near-optimal spaces (laid out in Section 2) using
PyPSA-Eur. With a slack level of ε = 0.05 as in Equation (9), we obtain a nonempty intersection Aε and a robust
allocation xrob that is fully feasible using all the weather data of 41 years. Thus we show that there are robust solutions
with less than 5% additional costs (on top of the most expensive year). We even find robust solutions which are less
than 5% more expensive than a system optimised with the entire period of 41 years (see Figure 7). Furthermore, the
spaceAε offers significant flexibility for policymakers beyond our point of reference xrob, and beyond what flexibility
is shown by previous MGA approaches.

Figure 4 shows projections of a selection of near-optimal spacesA(i)
ε for weather years i ∈ {1985, 1989, 1996, 2006,

2014, 2020} in addition to the intersectionAε =
⋂

i∈YA
(i)
ε over all weather years. While the spaces are 5-dimensional

(with the dimensions being investment in onshore wind, offshore wind, solar, gas and transmission expansion), they
have been projected down to all possible pairs of technologies considered. The Chebyshev centre, marked by a cross,
is located within the intersection which consists of the robust solutions. The figure reveals that there is significant
flexibility in these dimensions; while a certain amount of investment in renewables is needed, the investment can be
shifted between different technologies while staying feasible and near-optimal. Note also that the near-optimal spaces
for different years resemble each other in shape and location in space, but mainly differ in size. This indicates that the
effect of “difficult” weather years on modelling is mainly that they restrict the size of the feasible design space.

We find that the Chebyshev radius ofAε is 3.43 billion EUR, coming near to the theoretical maximum possible radius
of 3.80 billion EUR given by the chosen slack level. Indeed, note that the distance between cost-optimal solutions
and the near-optimal cost constraint is c∗opt · ε, meaning that any near-optimal space can have a Chebyshev radius of
at most c∗opt · ε/2 ≈ 3.80 billion EUR. The result means that the total investments in technologies that make up the
dimensions ofAε can change by up to 3.43 billion EUR (corresponding to 2.35% of the total cost of the robust system)
in any direction, starting at the robust point ych. The resulting (potentially reduced) total investments can still result in a
feasible design for every weather year.

Given that we work with an absolute objective bound (1.05 times the cost of the most expensive year) for all near-
optimal spaces, we find that the smallest and largest near-optimal spaces differ in volume by a factor of about 79.
This means that some weather years by themselves allow for many more different near-optimal feasible solutions than
others. Put differently, some weather years restrict the system design much more than others. The smallest and largest
near-optimal spaces come from the weather years 1985 and 2020 respectively, and the difference in volume corresponds
to an average scaling factor of 791/5 ≈ 2.4 in every dimension. Meanwhile, the intersection of the near-optimal spaces
has a volume that is 79% and 36% of the volumes of the near-optimal space for years 1985 and 1987, respectively, and
is between 1% and 10% of the volume of all other near-optimal spaces. This means that except for 1985 and 1987,
10% or less of near-optimal solutions for any particular weather year are feasible for all other weather years under
consideration.

In fact, we find that the optimal solutions with the years 1985 and 1987 actually have total investments that lie within
the intersectionAε. When operated over the entire weather year dataset, these designs are practically feasible, with
negligible load shedding. These results can inform the choice of weather year to model with — if only a single (or few)
years can be chosen.

We note, however, that while there are weather years to which our model does not “over-fit” in a single-year optimisation
(1985 being such a year resulting in a generally applicable design), this result could be particular to our modelling
set-up.
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Figure 4: Projections of the near-optimal spaces for different weather years and their intersection. All values are annualised total investment costs per
technology. For illustrative purposes, we only plot the near-optimal spaces for 6 out of 41 weather years (in different hues of blue). The intersection
of all 41 near-optimal spaces is filled in yellow and the Chebyshev centre is marked with a cross.
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4.2. Robust design characteristics
The robust solutions we compute, coming from the Chebyshev centre of the intersectionAε, have several interesting
properties. First, we compare the investment composition of the robust point ych to that of optimisations using just a
single year of weather data. We then analyse total investment and operational costs. Finally, we present results related
to the CO2 limit.

Figure 5 shows the differences in investment per technology between the robust point and each of the optimal designs
for individual years. The robust point is characterised by more investment in onshore wind, solar, transmission, and
gas (sorted by decreasing additional investments). Meanwhile, most optima from single weather years over-invest
significantly in offshore wind power compared to the robust allocation due to higher relative costs. In this particular
set-up where gas can smooth the electricity production, the cost benefits of additional onshore wind capacities outweigh
the potential of offshore wind power in the most favourable years. We conclude that here onshore wind power
contributes more than other technologies to robustness, followed by solar power and transmission capacity11. This
holds as well when one compares the investments in the robust (“exact”) allocation to the optimal solution using all
weather years (see the “41y” row in Figure 5).

Figure 6 shows the annual (for the optimisations with more weather years, average) total electricity generation per
technology. This shows the increased importance of onshore wind and solar for the robust system. Meanwhile, the
figure also shows that although solutions for individual years typically under-invest in gas turbines relative to the robust
ones, the robust solutions actually generate less power with gas (and nuclear) in total. This reflects the fact that while
additional gas capacity is needed for robustness, the additional investment in renewables leads to a reduced dependence
on gas for “day-to-day” operations.

On that topic, Figure 7 shows the variable and total system costs of systems optimised with single weather years, as
well as the robust system and a system optimised with the full dataset of 41 weather years. It illustrates that the robust
design has a higher total investment cost than designs for individual years, while the (average) operating costs are
lower due to the reduced use of gas and nuclear as mentioned above. Recall that while we set the slack ε to 5%, we
see that the investment costs in fact lie only 0.4% above what would have to be invested based on the most expensive
year. With the (average) variable costs of the robust system being lower due to a strengthening of renewables, the
total (annualised) system cost of the robust solution is about 146 billion EUR and actually lower than the system costs
for some optimal solutions with single weather years. This is because the total system cost for the robust solution is
averaged over all 41 weather years, with some being more expensive than others.

We also see that robust system designs emit less CO2 in our tests compared to the single-year optimisations, and use
48% of the given CO2 limit12. This is again because robust designs direct more of the total system cost into capital
investment of renewables and less into variable costs including gas, the only source of emissions in our model. However,
we should note that when we operate the design obtained from e.g. a system optimisation with the single weather year
1985 over the entire time period (over which it is practically feasible), it also does not use up the whole CO2 limit.
Although capacity expansion optimisations with single weather years always use up the CO2 limit, the designs which
are adapted to difficult years such as 1985 have enough renewable capacities that they do not use up the CO2 limit in a
typical year.

Finally, Figure 8 shows the geographical differences in investment between the exact robust allocation and the cost-
optimal solution with 41 weather years. We see that the majority of additional onshore wind power in the robust system
is allocated to the UK, followed by Poland, France, Estonia and Sweden. The transmission capacity to the UK also
receives more investment in the robust allocation. Meanwhile, although the system invests less in offshore wind in total,
more offshore wind investment is shifted to Denmark.

4.3. Validation of robust allocations
Recall from Section 2 that we can use a (large) number of optimisations with single weather years to find a robust point
of total capacity allocations ych ∈ Aε — the Chebyshev centre in the intersection of near-optimal spaces of model

11The conclusions can change with different assumptions — see Appendix Appendix C.
12The optimal solution with all 41 weather years uses the whole CO2 limit as well.
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Figure 5: Comparison of total investments for selected technologies in the optimal solutions for each weather year and the optimal solution with all
weather years (“41y”) to the robust point ych. Positive values mean greater investment in the given technology by the robust solution.
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Figure 6: Annual average generation mixes for the optimal solutions for each single weather year, the optimal solution with all weather years (“41y”)
and the robust allocations as well as the baseline design. The baseline design is used for comparison in validation (Section 4.3).

instances using different weather years. However, in order to find specific (per-node) investment allocations fitting the
given robust totals and being feasible for every weather year, we have to map ych back to F ′Yε . The exact allocation
φY does this by solving the original ESOM (with the additional constraint that σ ◦ π(x) = ych) with 41 weather years.
Section 2.5 gives two alternatives for allocating the robust capacities to individual nodes: the “mean” and “conservative”
allocations, both based only on a number of optimisations with one single weather year at a time (see Table 1). Recall
that both the mean and conservative allocations have the same coordinates inAε as the exact allocation, namely ych,
but are not guaranteed to be feasible for all 41 weather years.

In this section, we investigate the quality of these heuristic allocations. The basis for comparison is two-fold: the exact
robust allocation on the one hand, and a “naı̈ve” baseline allocation based solely on the most expensive weather year
on the other hand. Specifically, in order to make the designs more comparable, the baseline allocation is obtained
by taking the allocation from the single most expensive weather year (1985 in our case) and uniformly scaling all
expandable capacities up by such a factor that the total capital cost of the whole network equals that of the exact robust
design. This way, the only difference between the exact, mean, conservative, and baseline designs is how investment is
allocated (by technology and spatially), not the total investment volume.

The validation of the robust allocations consists of a “stress test” where we operate the systems over the entire dataset
of weather years (i.e. only optimise the dispatch and not the investments). This dispatch optimisation includes the 95%
CO2 reduction constraint as in the capacity optimisation. Similarly to how we ensure that the total investment cost
is equal between the four different allocations, we also ensure that all designs keep to the same operational budget;
namely the total operational costs of the exact robust design. By allowing costly load shedding (with variable costs of 7
300 EUR/MWh, as in [40]), we make sure that the models are solvable. The quality of the allocations is then measured
in the amount of load shedding; 0 load shedding means complete feasibility. In the presence of a hard operational
budget constraint, it should be understood that total unmet demand combines actual unmet demand due to technical
infeasibility and over-budget operations. Without the operations budget constraint, a number of designs — including
all robust allocations and also some optimal solutions for single years — are practically feasible with all weather years
(see Section 4.1), but simply have higher operational costs. In general, however, optimal solutions from single years
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Figure 7: Comparison of cost-minimal designs based on optimisations over individual years to the annualised costs of robust designs (exact, mean
and conservative, respectively), an optimisation with all 41 years (“41y”) and the baseline design.

fail to serve the entire time period reliably.

Table 2 shows that the exact allocation has 0 load shedding as expected, and is followed by the conservative allocation
in quality. The mean and baseline designs perform slightly worse, but still only up to about 0.1% of the total load is
shed or produced over budget. This shows that the conservative and mean heuristics produce results that are practically
feasible.

Allocation method Total load shedding [TWh] Relative load shedding [%]

Exact 0.0 0.000
Conservative 46.7 0.032
Mean 119.0 0.081
Baseline 132.3 0.090

Table 2: Performance of the different allocation methods and the baseline for comparison. Note that total load shedding (over 41 years) here includes
technical infeasibility and over-budget operations as explained earlier. The relative load shedding is with respect to the total load of all 41 weather
years.

4.4. Performance and computational effort

Our work demonstrates methods for working with decades of weather and demand data in a parallelised setting. Namely,
the mean and conservative allocations produce robust system designs with decades of weather data while only requiring
model optimisations with single weather years which can be parallelised effectively. This is done by using the centre
point of the intersection of near-optimal spaces for different weather years to obtain a robust set of total capacities per
technology. From these we then compute specific per-node capacity allocations adhering to the robust totals for each
individual weather year, and average the resulting capacities.

This is particularly relevant because solving ESOMs is usually memory-constrained: a single large model may take
more memory to solve than is available on common systems. While effort is being spent on splitting up and parallelising
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Figure 8: Difference in investment between the exact robust allocation and the optimum solution with 41 weather years. Bars above the baselines
mean that there is more investment for that technology in the robust solution. For transmission there are only positive differences (negative differences
are too small to appear on this scale), and AC and DC transmission have been combined. For both bars and transmission lines, the same area means
the same investment difference in EUR. All costs are annualised.

the solving process [23], this is not yet practical. With our methods we avoid solving models defined over a period of
decades, and instead obtain results based on many smaller runs — a process which is easily parallelised. The workflow
is now constrained by the number of available processors, which is better suited to current computational developments
which are in the direction of more, not faster processing cores.

While computational time often varies significantly based on a multitude of factors (exact modelling set-up, model size,
nature of objective and constraints, numerical issues among others) and is difficult to predict, the memory requirements
are easier to derive directly from model size (number of technologies, temporal and spatial resolution). With our
modelling set-up (see Section 3.1), a capacity expansion optimisation with a single weather year takes 3.5–4 GB of
memory using the commercial optimisation software Gurobi [41]. Thus, our methods put optimal energy system design
with decades of weather data within reach of typical desktop computers for the first time. For comparison, optimising
with 41 years of weather data in one model takes approximately 41 times as much memory, around 134 GB. For models
with a higher spatial and temporal resolution, our methods may currently be the only viable method of designing a
system with decades of weather data; we estimate that optimising a typical PyPSA-Eur model with an hourly resolution
and 181 nodes (as suggested in [39]) with 41 weather years could take around 1.7TB of memory, while this can be split
into single-year optimisations taking around 45 GB of memory each using our methods.

With our modelling set-up, a model optimisation with one weather year takes 23 minutes of CPU time13 on average
using Gurobi with 2 threads. Spending 10 initial optimisations along unit vectors in positive and negative direction,

13We make a distinction between the CPU time of a process, which is the sum of time spent on the process by all CPUs, and the wall time of a
process, which is the elapsed real time between process start and finish. Thus CPU time may be larger than wall time for a parallelised process.

18



150 for the algorithm to approximate the near-optimal space for each year and finally 1 optimisation per year to
compute per-node allocation of robust allocations, the mean allocation takes approximately 41 · (10 + 150 + 1) · 23 =

151823 min. ≈ 2530 hours of CPU time to compute. On a cloud computing platform with 64 CPU cores (and around
4 · 64 = 256 GB of memory), this equates to around 40 hours of wall time13. This is actually comparable to the wall
time it typically takes to solve a single capacity expansion optimisation with 41 weather years of the same model on the
same platform, which is in the range of 1-2 days.

We also investigate different methods for approximating near-optimal spaces of ESOMs, focusing on how optimisation
directions are chosen, and how many optimisations are needed for a good approximation (for a different number of
dimensions or projection variables). The results presented in Appendix Appendix A support the configurations we
choose as default options.

5. Discussion

The urgent transition to energy systems based on intermittent renewable generation comes at a time with increasing
computational power and availability of extensive climate data. However, while using ever larger models is helping us
to understand the detailed functioning of future energy systems, it does not necessarily improve the understanding of
uncertainties and resilience. In this paper, we propose a framework for producing energy system designs that are robust
to uncertainty, taking advantage of the geometry of near-optimal spaces. We apply the framework to a study involving
41 weather years; the importance of using as much weather data as possible has been shown in the literature and is
confirmed by our findings. Our framework can help policymakers to investigate different alternatives (similarly to the
predecessors of this methodology, MGA and MAA) and overcome the fallacy of single solutions that can become
infeasible through marginal perturbations.

Our choice of using the Chebyshev centre as a robust point is motivated by it being maximally tolerant to changes in
investment in any direction. This is one of the distinctions to robust optimisation, where the optimum solution (with
respect to the worst-case scenario) lies at the boundary of the intersection of feasible spaces, thus becoming infeasible
with just marginal perturbations. At the same time, we see that even a naı̈ve over-investment starting at the cost-optimal
solution with a difficult weather year results in a system design which is practically feasible for all considered weather
years. The choice of the Chebyshev centre can be seen as an attempt to find the most advantageous over-investment for
robustness. In other words, while all additional investment contributes to robustness to some extent, our methods are
aimed at finding the most efficient additional investments for robustness.

The first runs of a spatially resolved European power system optimisation model with four decades of weather data build
on advances in open data accessibility and computational resources. Our results show that robust solutions stand out
from standard cost-optimal solutions by a relatively higher investment in onshore wind and solar power. Furthermore,
the increased investment in renewables reduces the usage of gas and nuclear, which lowers the CO2 emissions of the
system by more than 50% (in comparison to optimising the system with 41 weather years). By adjusting the slack level
ε, our methods allow for a trade-off between robustness and additional costs.

Beyond looking at how weather years influence total system cost or investment composition, we see the effects of the
choice of the weather year on the entire near-optimal space. Whereas the shapes and locations are fairly uniform, we
see that near-optimal spaces for different weather years vary significantly in size. We still find a significant amount of
flexibility within their intersection, mainly limited by a small number of most difficult weather years.

In previous studies utilising MGA techniques, dimension reduction has been used somewhat implicitly in order to make
a systematic exploration of reduced near-optimal spaces feasible. Mapping down to a lower-dimensional space was
seen as a way of summarising a few key properties of model solutions. However, the geometry of reduced near-optimal
spaces has been largely unexploited, a gap we aimed to fill with this paper. Moreover, we investigate and propose
practical methods for going back to spatially explicit investment decisions from points in the reduced near-optimal
space. Mapping the Chebyshev centre of an intersection of near-optimal spaces back to a robust system design is just
one application of this idea.

At the same time, approximating and intersecting near-optimal spaces as a way of designing systems which are feasible
for many weather years is a reasonable alternative to optimising with many weather years directly from a computational
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perspective. Having split the problem into many smaller optimisations with single weather years, our methods are
easily parallelised. This represents a new approach to optimisation problems which previously have been considered
intractable or at least very impractical. In particular, an application of our methods to larger models (including sectoral
coupling, higher spatial or temporal resolution) would be interesting and computationally feasible. While we expect
the heuristic allocations to work at higher spatial resolutions (see also [42] for related work), their quality should be
investigated under such conditions.

We highlight that we study just one out of many definitions of robustness [43, 44]; note also that our techniques
do not directly follow the concept of robust optimisation. In all generality, robustness is a relative concept and is
directed towards some uncertainty. Although these uncertainties can be well understood, some of them may be hard to
quantify (e.g. political, societal changes), other could be epistemic (e.g. extreme weather events, changes in costs, or
misspecifications of the model), or even aleatoric (as the actual future weather conditions). For instance, Stirling [45]
locates robustness in the overlap of problematic levels of knowledge about possibilities and probabilities. All in all, our
approach contributes to a wide academic debate about how to deal with uncertainty and robustness in energy systems
modelling.

6. Conclusion

In this article we find that studying the near-optimal feasible space is a helpful tool to achieve more robust solutions
against uncertainties for energy systems. When investigating weather variability, this enables us to quantify the
variations and to find alternative designs that allow some flexibility for policymakers.

Since we utilised historical climate reanalysis data, we have not incorporated the consequences of climate change that an
energy system in transition will face, nor the possibility of unseen extreme events. It would be interesting to understand
which developments will limit flexibility and what events are defining for the design of a future (climate-)robust energy
system. Moreover, we see that a small number of weather years including 1985 and 1987 constrain our system design
the most, having relatively small near-optimal feasible spaces. These results call for a deeper understanding of which
meteorological properties of these weather years, including extreme and compound events, are determining for energy
system design.

While we have applied a notion of robustness in the reduced near-optimal spaceAε, we have not considered robustness
at lower levels of the network. So although the point ych ∈ Aε is robust to a shift in investments of 3.4 billion EUR,
the system xrob ∈ F

′
ε is not robust to such a shift at any one particular node in the network. There may also be many

system designs with very different per-node capacities mapping to the same point ych. Another interplay with the spatial
dimension is whether different regions contribute differently to the robustness of the whole system, as hinted at by
Figure 8. Thus, spatial aspects of robustness form an interesting avenue for future research.

More generally speaking, our methods leave a lot of room for different choices of dimension reduction: choosing
which variables to aggregate and how. The choice leading to the most suitable reduced near-optimal space should
be considered application-specific, depending on the technologies of interest, their relative importance and use-case
for the reduced near-optimal space. Mapping to a space of investment costs as we did is a neutral choice, but which
reduction is the most efficient for more specific purposes is still an open question.

The results we present here may depend on our particular modelling set-up. To which extent specific technologies
contribute to robustness and flexibility may change if other technologies are included (e.g. through sector coupling),
additional restrictions are introduced (e.g. on transmission) or the spatial and temporal resolutions of the model are
improved. And whereas our model has a single investment period, it would be interesting to apply our methods with a
model considering transition pathways through multiple investment periods. As our implementation is open-source and
customisable, it should be adaptable to this setting.

Last but not least, our methodology can also be used to investigate other uncertainties besides weather variability. As
near-optimal spaces strongly depend on cost assumptions, future applications of the present framework can contribute
to an improved understanding of robustness in the face of uncertain costs.

20



Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments and suggestions.

The computations were partly performed on the Norwegian Research and Education Cloud (NREC), using resources
provided by the University of Bergen and the University of Oslo. http://www.nrec.no/.

A.G., F.E.B. and M.Z. acknowledge funding by UiO:Energy (SPATUS).

Code & data availability

The code for our approach and its documentation can be found at https://github.com/aleks-g/interse
cting-near-opt-spaces/tree/v1.0.1, and is made available under the GPL 3.0 license. Some of the data
included in the above repository (load and hydropower capacity factors) were generated using the workflow available
at https://github.com/aleks-g/multidecade-data/tree/v1.0 (code licensed GPL 3.0, data licensed
CC-BY-4.0).

The reanalysis data we used for this study (for renewable capacity factors and temperature-dependent load data)
were downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store [18] using the Atlite
software [3] as documented in the main repository. We have additionally made these weather data more easily
available at https://doi.org/10.11582/2022.0003414; they are shared under the “License to use Copernicus
Products”15, which is comparable to the CC-BY license. Neither the European Commission nor the European Centre
for Medium-Range Weather Forecasts is responsible for any use that may be made of the Copernicus information or
data it contains.

Given the substantial size of the weather data needed for this study, we generated a number of PyPSA networks which
can be used to reproduce our results without having to download and process the ERA5 data. They are available at
https://doi.org/10.5281/zenodo.6683829 under the CC-BY-4.0 license.

All other data used in our model is directly inherited from PyPSA-Eur and also openly available as described in [1].

Author contributions

Aleksander Grochowicz: Conceptualisation, Data curation, Formal analysis, Investigation, Methodology, Software,
Validation, Visualisation, Original draft & editing; Koen van Greevenbroek: Conceptualisation, Data curation, Formal
analysis, Investigation, Methodology, Software, Validation, Visualisation, Original draft & editing; Fred Espen
Benth: Conceptualisation, Methodology, Supervision, Review & editing; Marianne Zeyringer: Conceptualisation,
Methodology, Supervision, Review & editing

Declaration of competing interest

None.

References
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Appendix A. Direction generation

We give a more detailed overview on how to explore the near-optimal spaceAε (here in the original sense as a reduced
near-optimal space and not the intersection), using the notation from Section 2. Recall that we can compute an
approximation ofAε by finding a number of its vertices (or rather, extreme points), and each such point is obtained by
solving the linear program in Equation (7) with some different objective (direction) d. As described in Algorithm 1,
we first optimise overAε ⊆ Rk in each of the cardinal directions (positive and negative) in order to obtain a first full
k-dimensional approximation. Each of these optimisations can be performed in parallel. Thereafter, in which direction
d we choose to optimise overAε has a significant effect on how wellAε can be approximated in a limited number of
optimisations.

We investigate and compare three methods that generate directions in which to optimise overAε. The first method is
the simplest and consists of choosing directions uniformly at random. For the remaining two methods, the idea is to
compute the convex hull of the points obtained so far after every optimisation, say Hi, and use the geometric properties
of Hi in some way to generate the “next” direction di+1. The convex hull is computed using the program qhull [27].
The three methods are as follows:

1. “random-uniform”: Choose a random vector from the uniform distribution on the sphere in Rk.
2. “facets”: Choose the normal vector to the facet of Hi with the largest volume.
3. “maximal-centre-then-facets”: Compute the Chebyshev centre ych of Hi and the ball of maximal radius around it

by solving Equation (12). Of all facets of Hi tangential to this ball, choose the one with the largest associated
dual variable in Equation (12) and take its normal vector. If already used, take the normal vector to the facet of
Hi with the largest volume.
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Figure A.1: Performance of the different direction generation methods in terms of volume and Chebyshev radius convergence. We selected three
years (among those, the years with the highest and lowest optimal costs) and approximated their near-optimal spaces with 2000 iterations. For each
of the years the plotted volumes and radii have been normalised by the largest volume and radius obtained by any method for that year. The dotted
lines mark 150 iterations.

With all these methods, we also use a filtering procedure: we discard vectors that have already been used. For
each method, it is clear how to generate another direction if the first was discarded: for example for the “facets”
method we choose the normal of the facet with the second-largest volume if the first direction was discarded. For the
“maximal-centre-then-facets” methods we fall back on the “facets” method when all normals to facets tangantial to the
Chebyshev ball have already been used.

In the filtering procedure, we employ an angle threshold θ such that a potential direction d is discarded if it is within θ
degrees of any previously used direction. If the filter discards all possible directions, we reduce the angle threshold θ by
20%. This is repeated every time a method “runs out of directions”, until θ falls below a pre-defined minimum angle
θmin, at which point the whole algorithm is terminated.

Note that the approximation ofAε can be parallelised effectively for any of the three direction generation methods, in
the sense that multiple optimisations in different directions can be run in parallel. For the latter two methods, this means
that the convex hull Hi−P must be used in the calculation of the i-th direction when there are P parallel optimisations.
When P is large, this means some of the generated direction could be slightly inferior (being generated with an older
hull Hi−P).

We compare the performance of different methods in Figure A.1. The plots show that the three different direction
generation methods have different characteristics, but also that their performance varies substantially between different
spaces (different weather years). Generally speaking, we see that the “random-uniform” method attains the largest
volume in the long term, while the “facets” and “maximal-centre-then-facets” methods attain similar volumes and
have a stronger performance initially. In terms of radius, the “random-uniform” method performs worse, while the

24



0 250 500 750 1000 1250 1500 1750 2000
Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
ise
d
vo
lu
m
e

2 dimensions
3 dimensions
4 dimensions
5 dimensions
6 dimensions
7 dimensions

Figure A.2: The convergence of volume in approximating the near-optimal space for the weather year 2020, reduced to different numbers of
dimensions. The direction generation method is “maximal-centre-then-facets”. The vertical dotted lines marks 150 iterations. The volume is
normalised for each of the dimensions individually.

“maximal-centre-then-facets’ method converges the quickest initially.

We see that a large number of iterations is needed to converge in terms of volume, with the “random-uniform” attaining
the highest volume, but still not converging after 2000 iterations. Meanwhile, the other two methods based on facet
normals make large strides initially, but display a false convergence below the actual volume after about 1000 iterations.
Convergence in terms of the radius is better (especially for the “maximal-centre-then-facets” method), but can be more
erratic than the convergence of volume. 150 iterations with the “maximal-centre-then-facest” method were chosen as a
compromise between accuracy and computational demand for this paper.

In Figure A.2 we compare convergence of volume between different numbers of dimensions k of the spacesAε ⊆ Rk.
For this plot, we use the “maximal-centre-then-facets” direction generation method and approximated the near-optimal
spaces for the weather year 2020, but use different dimension reduction maps σ. The final approximated volumes are all
normalised to 1. We see that 3- and especially 2-dimensional spaces are quickly approximated, while the convergence
is slower for higher dimensional spaces. However, we do not find a significant difference in convergence between 4, 5,
6 or 7 dimensions.

The results in this section can be used to inform a termination criterion for Algorithm 1. The simplest option is to
terminate the algorithm after a fixed number of iterations. Alternatively, the algorithm may be terminated after the
volume or Chebyshev radius of Hi have not changed more than δ percent between successive iterations for the last
Nconv iterations. In this case, we advise that Nconv be chosen as large as possible, since we can see from Figure A.1 that
the convergence on volume and especially radius is often somewhat erratic.

Appendix B. Data

Appendix B.1. Load data
In this article we use load data based on two regressions that were trained on hourly country-level ENTSO-E data from
2010 to 2014 from [35]16. The aim is to infer country-level synthetic load data for each weather year between 1980 and

16Due to inconsistencies for Swiss ENTSO-E data, we additionally used data from the Swiss transmission operator [46].
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2020, whose profiles relate to weather patterns but are otherwise directly comparable. In other words, we disregard
long-term changes in demand due to demographic and technological developments.

First we infer weekly load profiles (at an hourly resolution) for each country; for the purpose of this regression we
treat holidays for each country as Sundays (using the Python package python-holidays [47]). Specifically, for each
country c, we first divide the hourly demand values by the daily average value. On these normalised values, we conduct
a regression based on the following model formulation:

Dnorm
c (t) = αc · t + αc, t mod 168, (B.1)

where αc is an annual linear trend component, and the parameters αc,t mod 168 describe the weekly profile (see an
example of this in Figure B.1).

Afterwards we use the concept of heating and cooling degree days (HDD and CDD resp.) as in [48] to find temperature-
independent daily demand and demand driven by heating or cooling demand. For simplicity we only use one threshold
for both HDD and CDD, which we set to be 15.5◦C as [49] use for HDD:

CDDc(d) = max{Tc(d) − 15.5, 0},
HDDc(d) = max{15.5 − Tc(d), 0},

where Tc(d) is daily average temperature in country c during day d. Note that by using the daily averages we
represent smoothing effects of thermal inertia on heating and cooling demand (compare Figure B.2). The country-wide
temperatures are computed from ERA5 reanalysis data [18] via the open-source tool Atlite [3]. We now conduct a
regression on the daily average load, Dc(d), with dummy variables for each weekday (where national holidays are
classified as Sundays), and exogenous variables given by heating degrees and cooling degrees:

Dc(d) = βc,weekday(d) + β
cooling
c · CDDc(d) + β

heating
c · HDDc(d). (B.2)

For both regressions, we test the parameters for statistical significance; in some cases we thus set the trend parameter
αc and the cooling parameter βcooling

c to 0.

With these regressions and the temperatures for 1980–2020 from ERA5, we can compute the artificial load for each
hour as follows:

D̃c(t) = αc,t mod 168 ·
[
αc · (t mod 8760) + βc,weekday(t) + β

cooling
c · CDDc(t) + β

heating
c · HDDc(t)

]
, (B.3)

where the index c is over countries, t is the time in hours, αc,i the regression parameter for the i-th hour of the week,
αc is the annual trend component, βc, j the regression parameter for weekday j, and βcooling

c , βheating
c are the regression

parameters for one degree of cooling/heating demand for country c. We abuse notation slightly by writing CDDc(t) to
mean CDDc(d) where d is the day containing t (and likewise for HDD). For an example, see Figure B.2.

We validate the regression on hourly ENTSO-E load data on the country level for 2015, and show it to be a good fit —
more information about this can be found in the GitHub repository17.

In accordance with load projections for 2030 by the European commission18 we increased the demand in each country
by 13%.

Appendix B.2. Hydropower data

For hydropower data we follow the approach in PyPSA-Eur which uses ERA5 reanalysis data to generate inflow profiles
(using Atlite) that are then scaled by historical country-level hydro generation data from the US Energy Information

17https://github.com/aleks-g/multidecade-data/tree/v1.0
18https://ec.europa.eu/clima/document/download/ec1acac9-10fe-4eeb-915f-cad388990e0f en, Fig. 44 (accessed

23/06/2022)
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Appendix Appendix B.
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Figure B.3: Variability of annual hydropower generation (1980–2020) based on EIA data [34], normalised by the reported hydropower capacities
from 2020.

Administration (EIA) [34]. We have extended the default dataset in PyPSA-Eur to cover the entire period of 1980 to
2020, and we have also normalised EIA’s production data to EIA’s capacity levels of 202017:

genc(y) = nom gen(y) ·
capc(2020)

capc(y)
,

where genc(y) and nom genc(y) are the normalised and reported hydropower generation for country c in year y
respectively, and capc(y) is the reported hydropower capacity for country c in year y.

This allows a comparison throughout different years without any trends in infrastructure development. To avoid
anachronisms, we have distributed generation and capacities of former countries onto the current states (based on the
first year of current borders, e.g. 1993 for Czechia and Slovakia, or the sum of West and East Germany)17.

The historical generation data ensure that the inflow profiles are scaled to reasonable values (see the general approach in
[50] and in particular Fig. 4 in [51]); we are interested in variability and not trends, therefore we want fixed capacities
to have comparable weather years.

Appendix C. Additional results of a 100% emission reduction

We showcase the impact of a 100% emission reduction (as opposed to the 95% reduction studied in the main text) on
the results we present in this paper. As the other assumptions remain unchanged and gas turbines are the only sources
of CO2 emissions in our model, this corresponds to replacing gas as a generation technology with carbon-neutral
alternatives. The results sharpen the uncertainty that weather variability introduces to renewable power systems. We
investigate a different reduced near-optimal feasible space than before (replacing the gas investment dimension by two
new dimensions, investment in battery and hydrogen storage). This means that the Chebyshev centre under this new
reduction is additionally robust to changes in investment in battery and hydrogen storage, which is not the case for the
results in the main text.

Without gas as a dispatchable generation technology, the costs of the now carbon-neutral power systems increase by
15 to 40 billion EUR/a, depending on the weather year. The last percentage points of emission reductions are thus
overproportionally costly (as also shown in [20]), in particular in “more difficult” years. Wind power in combination
with storage technologies see an increase in investment (see Figure C.1), most pronounced in the 1985, the year with
the highest optimal costs.
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Figure C.1: Comparison of cost-minimal designs under a 100% emission reduction based on optimisations over individual years compared to the
annualised costs of robust designs (exact, mean, conservative and baseline, respectively) and an optimisation with all 41 years (“41y”).

Figure C.2 shows that the different optimal power systems are also mostly driven by (onshore) wind power, as in
the 95% reduction case. Additionally, it depicts a strengthening of battery and hydrogen storage, which previously
did not appear in the optimal solutions, although their shares of generation vary throughout the years. Similarly, the
optimal share of nuclear generation becomes more volatile and decreases not only in the robust allocations (which are
characterised by higher renewable investment by design), but also in the 41-year optimisation. As nuclear power has
higher variable costs than renewable generators, the existing capacities are not fully used, indicating the competitiveness
of newly installed renewable capacities.

As with the 95% emission reduction, significant investment in both onshore wind power and solar power is necessary for
a power system that can withstand weather variability. Figures C.1 and C.3 show additionally the need for investment in
hydrogen storage and additional transmission capacities. In comparison to optimal solutions for different weather years,
additional investment in wind power and hydrogen strengthens robustness against weather variability (see Figure C.4).
The full decarbonisation increases the value of offshore wind power which did not feature prominently in the robust
solution under 95% emission reduction (see Figure 5). Finally, it should be noted that there is a significant amount of
investment flexibility for onshore wind, offshore wind and solar among the robust solutions for all 41 weather years.

29



19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Weather year

0

1000

2000

3000

4000

G
en
er
at
io
n
[T
W
h]

Solar
Offshore wind
Onshore wind

Run of River
Dam & Reservoir
Nuclear

Battery
Hydrogen

41
y

Ex
ac
t

M
ea
n

Co
ns
.

Ba
se

Method

Figure C.2: For 100% emission reduction, annual average generation mixes for the optimal solutions for each single weather year, the optimal
solution with all weather years (“41y”) and the robust allocations.
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Figure C.3: Projections of the near-optimal spaces for different weather years and their intersection under 100% emission reduction. All values are
annualised total investment costs per technology. For illustrative purposes, we only plot the near-optimal spaces for 6 out of 41 weather years (in
different hues of blue). The intersection of all 41 near-optimal spaces is filled in yellow and the Chebyshev centre is marked with a cross.
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the robust solution.
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