ﬂ Sensors

Communication

Multiple Damage Detection in PZT Sensor Using Dual Point
Contact Method

Sayantani Bhattacharya !, Nitin Yadav 2, Azeem Ahmad 3, Frank Melandse 3 and Anowarul Habib 3*

check for
updates

Citation: Bhattacharya, S.; Yadav, N.;
Ahmad, A.; Melandsg, F.; Habib, A.
Multiple Damage Detection in PZT
Sensor Using Dual Point Contact
Method. Sensors 2022, 22, 9161.
https:/ /doi.org/10.3390/522239161

Academic Editors: Francesc Pozo and

Iren E. Kuznetsova

Received: 12 September 2022
Accepted: 21 November 2022
Published: 25 November 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Mining Machinery Engineering, Indian Institute of Technology Dhanbad,

Dhanbad 826004, India

Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
Department of Physics and Technology, UiT-The Arctic University of Norway, 9019 Tromse, Norway
Correspondence: anowarul.habib@uit.no

Abstract: Lead Zirconate Titanate (PZT) is used to make ultrasound transducers, sensors, and
actuators due to its large piezoelectric coefficient. Several micro-defects develop in the PZT sensor due
to delamination, corrosion, huge temperature fluctuation, etc., causing a decline in its performance.
It is thus necessary to identify, locate, and quantify the defects. Non-Destructive Structural Health
Monitoring (SHM) is the most optimal and economical evaluation method. Traditional ultrasound
SHM techniques have a huge impedance mismatch between air and solid material, and most of the
popular signal processing methods define time series signals in only one domain, which provides
sub-optimal results for non-stationary signals. Thus, to improve the accuracy of detection, the point
contact excitation and detection method is implemented to determine the interaction of ultrasonic
waves with micro-scale defects in the PZT. The signal generated from this method being non-
stationary in nature, it requires signal processing with changeable resolutions at different times and
frequencies. The Haar Discrete Wavelet Transformation (DWT) is applied to the time series data
obtained from the coulomb coupling setup. Using the above process, defects up to 100 um in diameter
could be successfully distinguished.

Keywords: Lead Zirconate Titanate; micro-defects; structural health monitoring; Haar Discrete
Wavelet Transformation; point contact excitation and detection method

1. Introduction

Lead zirconate titanate (ZryTi;_«)Os (PZT) is a piezoelectric material with a large
piezoelectric coefficient. PZT ceramics have negligible mass, easy and fast integration,
large frequency responses, low power consumption, low cost of the sensors, superior
electromechanical coupling, and impedance matching with various substrates [1-3]. These
properties make PZT ceramics suitable for integration into the host structure as an in situ
generator/sensor, and they are thus used extensively.

In harsh and extreme environmental conditions, such as corrosion, fatigue, and de-
lamination due to extreme temperature fluctuations, several surfaces and sub-surfaces
are likely to be introduced with micro-defects within the sensor. These flaws may also
be intrinsic to the bulk material, as seldom are they introduced in the final stages of the
fabrication or early stages of device operation. Therefore, it is necessary to identify, locate,
and quantify the defects in sensors to avoid structural failure and false alarm in structural
health monitoring (SHM) applications

In the past several years, a wide range of innovative methods has been implemented
for Non-Destructive Evaluation (NDE) techniques for detecting intrinsic and bulk damage
of ceramic components [4-8]. The air-coupled ultrasonic techniques are being increasingly
used for material characterization, non-destructive evaluation of composite materials using
guided waves, as well as distance measurements [9,10]. The main drawback of air-coupled
ultrasound is the huge impedance mismatch between air and any solid material. Apart
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from ultrasonic methods, several optical methods have been considered to identify the
surface and subsurface flaws in PZT ceramics. The most common optical measurements
include photoacoustic microscopy, optical coherence tomography, and the optical gating
technique [11-13]. The scanning laser Doppler vibrometer (SLDV) has been employed for
three-dimensional visualizations of acoustic wave interference with inclusions and flaws in
metallic structures, piezoelectric crystals, and piezo-ceramics [14,15]. Other, notable signal
processing techniques that are widely accepted in SHM applications are Singular Spectrum
Analysis, Frequency Domain Decomposition (FDD), the Auto-Regressive Model, and
Extended Kalman Filter Weighted Global Iteration techniques [16-21]. These techniques
provide a damage index parameter based on the spectral content or statistical evaluation of
the time series. Generally, processing the stationary signal is easier as, with the help of the
entire dataset, the statistics of a signal can be evaluated, and this information can be used
to derive a conclusion. In contrast, for non-stationary signals to derive any information,
algorithms must be adapted for use. Bordeaux and Golinval [22], Sohn et al. [23,24], and
Yao and Pakzad [25] have developed an adaptive feature extraction approach. These
approaches assume the behavior of the structure to be linear and detect the damage with
help of changes in extracted features or the proposed novel damage index derived from
these features [26].

In the last several years, a significant amount of effort has been devoted to improving
the point contact excitation and detection method to excite the acoustic waves in piezoelec-
tric crystals and ceramics [27-33]. The point contact excitation and detection method is
a unique way to generate acoustic waves in piezoelectric materials in the absence of cou-
pling media; mechanical, geometrical, and electrical resonances; and photolithography [34].
The working principle of this technique depends on the transfer of the electromagnetic
field to mechanical energy to excite phonon vibration in piezoelectric materials [28]. The
Coulomb coupling method and spectral decomposition technique have been implemented
for the localization of surface defects in piezo-ceramic structures wherein the signal pro-
cessing is performed using Fast Fourier Transform. Unlike Fast Fourier Transform, wavelet
transformation can define any type of signal in both the time and frequency domains
simultaneously and has fast computation.

2. Experimental Setup

Our group has previously provided a complete overview of the experimental setup for
the point contact excitation and detection method [27-35]. The point contact excitation and
detection scheme is based on the Coulomb coupling phenomenon [36]. This phenomenon
works on the transfer of electric energy to mechanical energy and vice versa. In this study,
a high voltage was applied to the sender probe (steel sphere) that acts as a Coulomb source.
In Coulomb coupling, the radius of the sender probe plays a vital role [28]. The spatial
derivatives of the electric field are not zero on the crystal’s surface or inside the sample
when the conductive sphere is considered to be an electrical point contact source. Thus, we
can assume that the surface terms dominate the coupling of the electric field to the strain
gradient under the first approximation. Therefore, the point contact excitation and detection
method is well suited for the detection of surface anomalies and surface defects/cracks.
The complete experimental setup consists of four basic processes, i.e., (1) probe fabrication
for both sending and receiving electrodes, (2) PZT sample preparation, (3) damage insertion
on the PZT sample, and (4) data acquisition.

The sender probe, which consists of a steel sphere at the point of a triangle made
of two fiber optic cables and a printed circuit board (PCB), is carefully pressed against
the PZT ceramic surface. This probe was used as a Coulomb exciter for the generation
of ultrasonic waves in the piezo-ceramics. For the purpose of receiving the transmitted
waves, a second similar probe is positioned on the opposing side of the sample. For the
continuous excitation and detection of acoustic waves in PZT ceramics, these dual probes
work together.
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Figure 1 represents the experimental setup used in this paper. In Figure 1a, a signal
generator of arbitrary functions (Agilent 81150A) delivered a chirp-coded signal of width
45 us (sampling frequency 200 MHz) to a radio frequency (RF) amplifier (Electronics &
Innovation: 403LA, New York, NY, USA) for signal amplification. These amplified signals
were then delivered to the steel sphere for the excitation of acoustic waves in the PZT sample.
Figure 1b presents a 3D illustration of the sender and receiver steel probe along with the
PZT sample. On the opposite side of the PZT, an identical probe was used to acquire
the propagated signal. The received signals were fed into a trans-impedance amplifier
(DHPCA-100) for signal amplification. Finally, the amplified signal was acquired using
an oscilloscope (Agilent 3024A) capable of digitizing with up to 12 bits. The oscilloscope
averages 256 pulse shots and digitizes the received signal, which is then saved in a personal
computer (PC) via a USB port. The PC also controls the mechanical scanner in the XY plane,
i.e., the step size is 50 um in both directions with a scanning area of 10 mm x 10 mm. The
excitation signal (a) and its Fourier spectrum (b) are shown in Figure 2.
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(Point Contact Sender)
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Y
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o
'
:

Computer Oscilloscope Current Amplifier

A
A
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<
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Figure 1. (a) Experimental setup for point contact excitation and detection scheme and (b) 3D
illustration of the arrangement of sender and receiver steel probe along with the PZT sample.
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Figure 2. The excitation signal (Chirp) used in the experiment, the excitation signal (a), and its Fourier
spectrum (b).

3. Methodology

The major challenge in structural health monitoring is the detection of micro-damages
in the solid structure. There are various techniques mentioned above by which one can
detect the damages, i.e., a combination of various signal processing and analytical tech-
niques. This paper focuses on the point contact excitation and detection method along with
two different signal processing techniques for damage detection: (i) analysis of the power
spectral density of the signals, and (ii) analyzing coefficients by Haar (db1) discrete wavelet
transformation (DWT) of the signals.

3.1. Power Spectral Density Analysis of the Signal

Fourier Transform decomposes time series data into a sum of infinite sine and cosine
functions of different amplitudes and frequencies. This process converts a waveform that
is difficult to describe mathematically into a more manageable series of trigonometric
functions which, added together, reproduces the original waveform. Fourier Transforms
are of two types: Discrete and Continuous, where, when distinct ordered pairs repre-
senting the original input function are equally spaced in their input variable (equal time
steps, in this case), this is called Discrete Fourier transform (DFT), while ordered pairs
with input variables with an infinitesimal difference between them is called Continuous
Fourier Transform.

Fourier Transform (F) of a function f(t) is given by the following expression:

Fw)= [ fhe > M

where t is time and w is the frequency in Hertz.
Discrete Fourier Transform (S) of a function f(x) is given by the following expression:

S(w) =Y i o e Ay, (iaf)At @)
where N is the total no. of equally spaced data points and y;(iAt) is the actual data recorded
at iy, time.

Many time series functions show complicated periodic behavior. Spectral analysis is
a technique that helps in discerning these underlying periodicities. To perform spectral
analysis, data are first transformed using Fast Fourier Transform (FFT) from the time
domain to the frequency domain. FFT is a computationally efficient algorithm for solving
DFT faster by reducing the number of redundant calculations. Power Spectral Density
of a signal analyses the distribution of power as a function of frequency over the entire
frequency range.
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The mathematical representation of PSD is:

Py = L [ S(w) d
=5 | S(w)du )

3.2. De-Noising by Wavelet Transformation (DWT) of the Signal

In Method 1, normalized FFT is used. Unlike FFT, Wavelet Transform (WT) can
extract information from both spectral and temporal regions, thus ensuring more resolute
signal processing. Wavelet Transform decomposes a signal into multiple lower-resolution
levels by varying the scaling and shifting factors of a single wavelet function (mother
wavelet). In the first step, the time series is decomposed into two high and low frequency
components. Then, high frequencies are retained, while low frequencies are decomposed
again into two high and low frequencies. High frequencies are called the details coefficient
and low frequencies are the approximation coefficient of the signal. Wavelet Transforms
are of two types, Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform
(DWT). CWT is very slow due to the extra data that overlap with its neighboring data
(duplicity). Therefore, DWT is used in this paper. This paper uses the first member of the
Daubechies family of orthogonal discrete wavelets, popularly known as the Haar Wavelet.
One of the main reasons behind choosing the Haar wavelet is that it is computationally
fast and memory efficient, as it can be calculated in place without the need for temporary
array allocation. A Haar wavelet is a discontinuous step function. These abrupt changes

in the function are beneficial for the analysis of signals with sudden transitions. The
half-band high-pass (G) and half-band low-pass (H) filters are given by G = {% %}
and H = [% %} . Chart 1 represents DWT over 4 scales.

10<n<1/2

Mother Wavelet of Haar ((n)) = ¢ —1 % <n<l1
0 otherwise

Sj—4
">
> T,
Sj1 > T, 7
S — T, —a -4
— Ta —a. i=3
b——» j—=2
d;_,

Chart 1. The above flowchart represents DWT over 4 scales, wherein j is the number of times the

transformation algorithm is applied to the original signal <S/~).

where:

Sj—Original input signal,

S;—1—Approximation coefficient at level 2,

dj_1—Details coefficient at level 2,

T,—Direct transform.

T, is the building block of DWT. The formulae used in a T, block of Haar
Transform are:

1. dj,l[i’l] = S] [21’1 + 1] — S]'[Zi’l],
2. Sjafn]=S2n) — 5 x dj4[n],
3. Sjan] =/2S;4[n],

. _ 1
4 djfl[ﬂ] = 24, 4[]
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4. Procedure
4.1. Power Spectral Analysis on Received Signal

A steel probe receives the signal in the form of time series data. For the same damage
state and size, 12 different datasets are measured from uniformly distributed axis points.
To extract meaningful information, power spectral (PS) analysis is performed. PS value is
calculated for each time series of 4000 data points, and 12 such values were obtained. This
was then converted into a box plot for that damage state as mentioned in Chart 2. Boxplots
of four damage states are then compared in Figure 3.

* For each signal of a feature, 4000 data points are recorded by the receiver. FFT
SN0 %sT  is applied on time-series input [x(t)].
TRANFORM

* FFT is multiplied by its complex conjugate to get the power spectral density.
| PSDisthe power stored in signal as a function of frequency. per unit frequency.
DENSITY

* ps remains constant for the central frequency but there are variations in ps for
the frequencies close to zero across different features. The variation of this

A magnitude is used to extract the pattern in the given data using box-plots.

INTERPRETATION

Chart 2. The flowchart explains the three steps (i.e., Fast Fourier Transformation, power spectral
density calculation, and data interpretation) performed to obtain the box plots from the experimental
data.

Signal Degradation

30,000 o

25,000 O

20,000 1 ‘

Magnitude

15,000
10,0004

5,000 1

1T
2 3 4
Damage State

Figure 3. The figure consists of four box plots, one of each damage state (damage size of 500 um).
The individual box plot computes the variation in the second maxima amplitude value of PSD plots.
As explained in Section 4.2, the plot approximately represents the power stored by those signals.
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De-Noising

4.2. Haar Wavelet Analysis on Received Signal

A steel probe receives the signal in the form of time series data. For the same damage
state and size, 12 different datasets are measured from uniformly distributed axis points.
To extract meaningful information from the data, de-noising is performed using Haar
discrete wavelet analysis. The final output is the summation of detailed and approximation
coefficients of all six levels (explained in Charts 1 and 3). Approximation coefficients are
equated to zero, and the average of the values thus obtained are considered 12 times to
develop the box plot of that damage size and damage state. For each damage state, four
box plots of different sizes are compared, and, in total, four such damage states are used in
this experiment.

Zero Padding must be done to have the total number of data points of the form 2N-

* In this case 4000 data points were padded to 4096 (2'2).

At every level the approximation coefficients have half the data points as the input signal,
and that in turn is the input for the next. After applying 6 levels of DWT the final
approximation coefficient of each feature is a vector of 64 data points (212/ 25)

The final output of DWT is the sum of final approximation coefficient and detail coefficients
of all the initial levels. De-noising is performed by setting the details coefficients’ threshold
of zero.

For each of the 4 defects diameter sizes in each 3 damage states, 12 signals are received.
Thus, 12 such final outputs of DWT are interpret using the box plotting technique. And all
the 12 box plots are compared.

Chart 3. The above flowchart explains the four steps (i.e., Zero-Padding, DWT Calculation, de-noising,
and data interpretation) performed to obtain the box plots from the experimental data.

5. Experimental Observation
5.1. Power Spectral Density Analysis

It can be observed from Figure 3 that with the increase in the damage state, the
statistical median of power reduces. Observations of the figures shown above are as per
the expectations because, with the increase in damage in the sample, the signal will be
interrupted to a greater extent, leading to a loss of information and reduction in power. A
similar trend is observed for damage sizes of 600 um, 800 pum, and 900 pm. This variation in
median values is distinct enough to distinguish between the different damage states. Thus,
it can be concluded that the PSD analysis method can be effectively used for understanding
the degree of damage in PZT ceramics.

5.2. Discrete Wavelet Transformation

Figure 4 represents the health and damage state for the 500 um damage size. Here, it
is represented as damage state 1.

Figure 5 represents the different damage sizes for different damage states. Here, dam-
age sizes 1, 2, 3, and 4 correspond to damage sizes 500, 600, 800, and 900 um, respectively.

Figure 5a shows damage state 1, which includes four different damage sizes.
Figure 5b—d represents damage states 2, 3, and 4, respectively. A clear distinction can
be observed in the statistical medians of the box plots in Figures 4 and 5. Figure 4 proves
that the Haar DWT de-noising method is efficient for damage detection. Figure 5 is used as
a comparison chart between all the 12 damage states. Damage of multiple sizes (500, 600,
800, and 900 um) and multiple locations (damage states 1, 2, 3, and 4) is represented to-
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gether, and the observable distinction in their amplitude values can prove that this method
is successful in distinguishing between all of them.

T

-0.32

-0.33 A

-0.34

-0.35

Wavelet Magnitude

—-0.36

-0.37 A

==

o

Healthy

—-0.38 1

Damagé state (500um)

Figure 4. The above box plots are of the de-noised signal, as described in the procedure. The plot on
the left is of a healthy PZT sample, and the one on the right is of a PZT ceramic sample with 500 um
damage size in the 1st damage state.

Damage State 1 Damage State 2

-0.36
(a) T 5] (D) =
=
Z -0.42 1
=
g
= -0.44 1
ket
g 0461
© = _p.a8
=0.50 1
° ==
T T T —-0.52 4 T T T T
2 3 4 1 2 3 4
Damage Size Damage Size
Damage State 3 Damage State 4
(C) -0.381 (d) I:__;i
-0.39
¥
3 -0.40
E
7 ~0.41
=
5 042
T e
2 43
l —0.44 °
~0.45 $
2 3 a 1 2 3 a

Damage Size Damage Size

Figure 5. Damage sizes 1, 2, 3, and 4 correspond to damage sizes 500, 600, 800, and 900 pm,
respectively. Each of the subplots in the figure (a—d) shows the comparison between the different
damage sizes of a particular damage state. The boxplot of all four damage states is shown above, in
ascending order of progression.

It can also be concluded from Figure 4 that DWT is more efficient compared to PSD
analysis. PSD was successful in distinguishing between the damage states of the PZT
sample, while DWT can also distinguish between different damage sizes (with 100 um
variation in dimension) within the same damage state.

6. Conclusions

This paper targets a common but challenging problem of damage detection and
damage classification for small differences in damage size. The point contact excitation
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and detection method is used in this experiment to extract raw data. As the signals are
very sensitive to noises, it was challenging to interpret the raw data. Therefore, a couple of
signal processing techniques (i.e., power spectral analysis and wavelet transformation) are
used to extract meaningful information from the main signal. In power spectral analysis,
the phenomenon that structural damage leads to power reduction is used to discern
different damage states. The discrete wavelet transformation with greater resolution is
used to distinguish between the damage states as well as between damage sizes up to
a difference of only 100 pm for the same damage state. Thus, according to the results,
the proposed methods were successful in distinguishing PZT ceramic samples based on
structural damage severity. The experimental method (point contact) presented here is
limited to only piezoelectric materials. A deposited thin layer of piezoelectric film (AIN or
ZnO) on the sample surface would be a good option to overcome such a problem. In such
an experimental condition, the point contact method can open up a new avenue in the field
of SHM of multi-defects detection and localization of structures.
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