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1 INTRODUCTION

Throughout this paper, we let Γ ⊂ PSL2 ℝ be a non-elementary finitely generated discrete sub-
group of the group of orientation preserving isometries of the hyperbolic plane ℍ2. Suppose for
a moment that Γ is torsion free, let 𝑆 = ℍ2∕Γ be the associated hyperbolic surface, and let (𝑆)
be the set of free homotopy classes of closed unoriented primitive essential curves therein. Here
essential just means that the given homotopy class of curves is neither trivial nor peripheral. The
mapping class group Map(𝑆) of 𝑆 acts on (𝑆) and we say that two elements in the same orbit
are of the same type. Mirzakhani studied the asymptotic behavior, when 𝐿 → ∞, of the number of
elements in (𝑆) of some fixed type 𝛾0 and with at most length 𝐿. More concretely, she proved in
[13–15] that the limit

lim
𝐿→∞

1

𝐿6g−6+2𝑟
|{𝛾 of type 𝛾0 with 𝓁𝑆(𝛾) ⩽ 𝐿}| (1.1)

exists and is positive for every 𝛾0 ∈ (𝑆). Here g is the genus of 𝑆, 𝑟 is the number of ends, and
𝓁𝑆(𝛾) is the length of the hyperbolic geodesic in the homotopy class 𝛾.
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COUNTING CURVES ON ORBIFOLDS 57

The goal of this note is to prove that this statement remains true when Γ has torsion, that is,
when O = ℍ2∕Γ is an orbifold instead of a surface.

Theorem 1.1. Let Γ ⊂ PSL2 ℝ be a non-elementary finitely generated discrete subgroup and
O = ℍ2∕Γ the associated 2-dimensional hyperbolic orbifold. Then the limit

lim
𝐿→∞

1

𝐿6g−6+2𝑟
|{𝛾 of type 𝛾0 with 𝓁O(𝛾) ⩽ 𝐿}|

exists and is positive for any 𝛾0 ∈ or(O). Here g is the genus of the orbifoldO and 𝑟 is the sum of the
numbers of singular points and ends.

A few comments on the notation and terminology used in Theorem 1.1:

(1) The topological space underlying an orientable 2-dimensional hyperbolic orbifold is an ori-
entable topological surface. The genus of the orbifold is by definition the genus of that
surface.

(2) In the theorem, and also in the remaining of the paper, or(O) is the set of free homotopy
classes of closed unoriented primitive essential curves, where the homotopy is taken in the
category of orbifolds and where essential means that the curves in the given homotopy class
are neither peripheral nor represent finite-order elements in the orbifold fundamental group
𝜋or
1
(O). Accordingly, 𝓁O(𝛾) is the length of the shortest curve homotopic to 𝛾 in the category

of orbifolds. See Section 2.3 for details.
(3) As for surfaces, two elements in or(O) are of the same type if they differ by an element of the

mapping class group

Mapor(O) = Homeoor(O)∕Homeoor0 (O).

Here, Homeoor(O) is the group of homeomorphisms of O in the category of orbifolds, and
Homeoor

0
(O) is its identity component. The mapping class groupMapor(O) is infinite unless

O is exceptional, by what we mean that it has genus g = 0 and that 𝑟 = 3. See Section 2.6 for
more details on the mapping class group of an orbifold.

As was already the case for the proof that we gave in [7] of Mirzakhani’s (1.1), we will derive
Theorem 1.1 from the weak-*-convergence of certain measures on the space or(O) of currents,
which is the space of 𝜋or

1
(O)-invariant Radon measures on the set of geodesics on the orbifold

universal cover Õ of O. Trusting that the reader is familiar with currents, we just recall at this
point that the set ℝ⩾0

or(O) of weighted curves is a dense subset of or(O), that or(O) is a cone
in a linear space, and that the action ofMapor(O) on or(O) extends to a linear action on or(O).
We will recall a few facts about currents in Section 4.1 below, but we do already at this point refer
the reader to [1–4, 7] for details and background.

Theorem 1.2. Let O be a compact orientable non-exceptional hyperbolic orbifold with possibly
empty totally geodesic boundary and let or(O) be the associated space of geodesic currents. There is
a Radon measure𝔪Thu on or(O) such that for any 𝛾0 ∈ or(O), we have

lim
𝐿→∞

1

𝐿6g−6+2𝑟

∑
𝛾∈Mapor(O)⋅𝛾0

𝛿 1
𝐿
𝛾
= 𝐶(𝛾0) ⋅𝔪Thu
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58 ERLANDSSON and SOUTO

for some positive constant𝐶(𝛾0) > 0. Here g is the genus of the orbifoldO, 𝑟 is the sum of the numbers
of singular points and boundary components, and O is non-exceptional if (g , 𝑟) ≠ (0, 3). Moreover
𝛿 1

𝐿
𝛾
stands for the Dirac measure on or(O) centered at 1

𝐿
𝛾, and the convergence takes place with

respect to the weak-*-topology on the space of Radon measures on or(O).

Again a few comments:

(1) Theorem 1.2 remains true if we replace curves by multicurves, that is, if we replace 𝛾0 by
finite formal linear combinations (with positive coefficients) of elements in or(O). In fact,
the proof is just the same, only needing a bit more of notation to keep track of things, and the
interested reader will have no difficulties making the necessary tweaks.

(2) Also, as is the case for surfaces, the statement of Theorem 1.2 remains true if we replace
Mapor(O) by a finite index subgroup 𝐺, and the constant on the right side changes exactly
as it does in the case of surfaces — see [7, Exercise 8.2]. In fact, in the course of the proof of
Theorem 1.2, we will have to work with such a finite index subgroup, the pure mapping class
group.

(3) Themeasure𝔪Thu in the statement of Theorem 1.2 arises as the push-forward under a certain
map of the usual Thurston measure on the space of measured laminations of a surface. We
will, however, also give a short intrinsic description of𝔪Thu in Section 4.4.

(4) If one were to drop the assumption in Theorem 1.2 that the orbifold is non-exceptional,
then the limit would trivially exist because the mapping class group would be finite, but
the measure class of the obtained measure would obviously depend on 𝛾0. This is why we
do need this assumption in Theorem 1.2 but not in Theorem 1.1 above or in Theorem 1.3
below.

All of this is nice and well and cute, but a more substantial observation is that Theorem 1.2
implies that Theorem 1.1 also holds if we replace 𝓁O by many other notions of length: length with
respect to a variable curvature metric, word length, extremal length, and so on. In fact, we can
replace 𝓁O by any continuous homogenous function

𝐹 ∶ or(O) → ℝ⩾0

on the space of currents, where homogeneous means that 𝐹(𝑡 ⋅ 𝜆) = 𝑡 ⋅ 𝐹(𝜆). See [5, 12] for many
examples of such functions.

Theorem 1.3. LetO be a compact orientable hyperbolic orbifold with possibly empty totally geodesic
boundary and let or(O) be the associated space of geodesic currents. Then the limit

lim
𝐿→∞

1

𝐿6g−6+2𝑟
|{𝛾 of type 𝛾0 with 𝐹(𝛾) ⩽ 𝐿}|

exists and is positive for any 𝛾0 ∈ or(O) and any positive, homogenous, continuous function
𝐹 ∶ or(O) → ℝ⩾0. Here g is the genus of the orbifoldO, and 𝑟 is the sum of the numbers of singular
points and boundary components.

Let us now describe the strategy of the proof of our main result, Theorem 1.2. Instead of aiming
to give a stand-alone proof of the theorem along the lines of the proof in [7] of the corresponding
result for surfaces, we are going to use the latter to obtain that for orbifolds. Suppose for the sake of

 20524986, 2022, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.12043 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [09/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



COUNTING CURVES ON ORBIFOLDS 59

concreteness thatO has no boundary and a single cone point and let Σ be the surface obtained by
deleting fromO a small ball around that singular point. The inclusion Σ ↪ O induces a surjective
map

(Σ) → (O) ∪ {∗}, (1.2)

where ∗ is just a point where one maps all essential curves in Σ which are non-essential in O. In
fact, thismap is equivariant under the isomorphismMap(Σ) ≃ Mapor(O) between the correspond-
ingmapping class groups. Equivariance under this isomorphism implies thatwhenever 𝜂0 ∈ (Σ)

maps to 𝛾0 ∈ or(O), then the push-forward under (1.2) of the measure 1

𝐿6g−6+2𝑟

∑
𝜂∈Map(𝑆)⋅𝜂0

𝛿 1
𝐿
𝜂

is the measure 1

𝐿6g−6+2𝑟

∑
𝛾∈Mapor(O)⋅𝛾0

𝛿 1
𝐿
𝛾
. From the analog of Theorem 1.2 for surfaces, stated in

Section 4.2 below, we get that the limit

lim
𝐿→∞

1

𝐿6g−6+2𝑟

∑
𝜂∈Map(𝑆)⋅𝜂0

𝛿 1
𝐿
𝜂

exists. As we see, Theorem 1.2 would directly follow if the map (1.2) were to extend continuously
to a map

(Σ) → or(O). (1.3)

It is, however, easy to see that such an extension does not exist: for any three essential 𝛼, 𝛽, 𝛾 ∈

𝜋1(Σ)with 𝛽 ∈ Ker(𝜋1(Σ) → 𝜋or
1
(O)), we have that 1

2𝑛
[𝛼𝑛, 𝛽]𝛾 converges when 𝑛 → ∞ in (Σ) to

𝛼 but is mapped to 1

2𝑛
𝛾 ∈ or(O) which converges to 0. We bypass this problem by choosing the

representative 𝜂0 of 𝛾0 so that the currents of the form
1

𝐿
𝜂with 𝜂 ∈ Map(Σ) ⋅ 𝜂0 are all contained in

a closed subset of the set of currents on (Σ) to which themap (1.2) actually extends continuously.
We choose 𝜂0 to be as simple as possible in some precise sense given in Section 3. That the so-
chosen 𝜂0 has the desired property follows from Proposition 3.3, the technical result at the core of
this paper. This proposition basically asserts that the images in Õ of geodesics in Σ̃ which are as
simple as possible are uniformly quasigeodesic.

1.1 Non-orientable orbifolds

It is known that, at least as stated, the limit (1.1) does not hold for non-orientable surfaces [9,
11] and this is why we assumed in the theorems above that the orbifold is orientable. It is, how-
ever, worth noting that all results here remain true for non-orientable orbifolds whose underlying
topological space is an orientable surface. An example is 𝐷Σ∕𝜏 where 𝐷Σ is the double of Σ,
an orientable surface with boundary, and 𝜏 is the involution interchanging the copies of the
surface. The reason why the theorems remain true is that, up to passing to finite index sub-
groups, the mapping class group of such an orbifold is isomorphic to the mapping class group
of an orientable surface for which we know that the analog of Theorem 1.2 holds. Anyways, we
decided against extending the theorems above to this kind of non-orientable orbifolds because (1)
it would make the paper much harder to read and (2) we do not have any concrete applications
in mind.
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60 ERLANDSSON and SOUTO

1.2 Plan of the paper

In Section 2 we recall some facts and definitions about orbifolds, maps between orbifolds, the
mapping class group of orbifolds, and such. In Section 3 we state precisely what we mean by as
simple as possible and state, without proof, Proposition 3.3. In Section 4 we recall a few facts about
currents and, assuming Proposition 3.3, prove Theorem 1.2 and the other resultsmentioned above.
In Section 5 we prove a few facts needed in Section 6, where we prove Proposition 3.3.

2 ORBIFOLDS

In this section, we recall a few basics about orbifolds such as definitions, (hyperbolic) orbifolds
as orbit spaces, and mapping class groups. We also fix some notation that we will use throughout
the paper. This is why we also encourage readers who already know all about orbifolds to at least
skim over this section.

2.1 Orbifolds per se

An orbifold O is a space which is locally modeled on the quotient space of euclidean space by a
finite group action.More precisely, an orbifold chart of aHausdorff paracompact topological space
O is a tuple (𝑈, �̂�, Γ, 𝜙)where𝑈 ⊂ O and �̂� ⊂ ℝ𝑛 are open, where Γ is a finite group acting on �̂�,
andwhere𝜙 ∶ �̂�∕Γ → 𝑈 is a homeomorphism.An orbifold atlas is a collection {(𝑈𝑖, �̂�𝑖, Γ𝑖, 𝜙𝑖)| 𝑖 ∈
𝐼} of orbifold charts such that {𝑈𝑖| 𝑖 ∈ 𝐼} is an open cover of O closed under intersections and
such that whenever 𝑈𝑖 ⊂ 𝑈𝑗 there are (1) a group homomorphism 𝑓𝑖,𝑗 ∶ Γ𝑖 → Γ𝑗 and (2) an
𝑓𝑖,𝑗-equivariant embedding

�̂�𝑖,𝑗 ∶ �̂�𝑖 → �̂�𝑗

such that the diagram

commutes. An orbifold is then a Hausdorff paracompact space endowed with an orbifold atlas.
The orbifold is orientable if all group actions Γ𝑖 ↷ �̂�𝑖 and all embeddings �̂�𝑖,𝑗 are orientation

preserving. Similarly if we replace orientable by smooth. An orbifold with boundary is defined in
the same way but this time the sets �̂�𝑖 are assumed to be open in ℝ⩽0 × ℝ𝑛−1. An 𝑛-dimensional
hyperbolic orbifold is one where the sets �̂�𝑖 are contained in ℍ𝑛, where the actions Γ𝑖 ↷ �̂�𝑖 pre-
serve the hyperbolic metric, and where the maps �̂�𝑖,𝑗 are isometric embeddings. To define what

 20524986, 2022, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.12043 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [09/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



COUNTING CURVES ON ORBIFOLDS 61

is a hyperbolic orbifold with totally geodesic boundary, then one copies what we just wrote, only
replacing ℍ𝑛 by a closed half-space therein.
As is the case in theworld ofmanifolds, orbifolds havemaximal orbifold atlases, orientable orb-

ifolds havemaximal orientable orbifold atlases, smooth orientable orbifolds havemaximal smooth
orientable orbifold atlases, and so on. We will always assume that our orbifolds (with adjectives)
are equipped with maximal atlases (with adjectives).
We refer to [18] for more on orbifolds.

2.2 Singular points

A point 𝑝 in an orbifold O is singular if there are an orbifold chart (𝑈, �̂�, Γ, 𝜙) and �̂� ∈ �̂� with
𝜙(�̂�) = 𝑝 and satisfying that StabΓ(�̂�) ≠ Id. A point which is not singular is regular. We denote by
sing(O) the set of singular points of O.
The singular set sing(O) is a closed subset of O. It might be empty, but also its complement

might be empty. It is actually sometimes really important to allow oneself to work with orbifolds
with sing(O) = O— not the simplest example one can find, but the moduli space2,0 of closed
Riemann surfaces of genus 2 is such an orbifold. However,

all orbifolds in this paper are such that sing(O) is a proper subset of O.

In the cases we are interested in, namely, compact orbifolds which are orientable, connected, and
2-dimensional, we have that sing(O) is, in fact, a finite set of points in the interior of O.

Remark. Whenever we need to choose a base point in our orbifoldO, for example, when working
with the fundamental group 𝜋or

1
(O), then we will assume without further mention that the base

point is regular. The reader might amuse themselves by thinking about what the right notion of
base point in the category of orbifolds would be if they allowed singular points to be base points.

2.3 Maps between orbifolds

A map 𝑓 ∶ O → O′ between two orbifolds is then a continuous map such that whenever
𝜙𝑖 ∶ �̂�𝑖∕Γ𝑖 → 𝑈𝑖 and 𝜙′

𝑖
∶ �̂�′

𝑖
∕Γ′

𝑖
→ 𝑈′

𝑖
are orbifolds charts for O and O′ with 𝑓(𝑈𝑖) ⊂ 𝑈′

𝑖
, then

there are a homomorphism Γ𝑖 → Γ′
𝑖
and an equivariant continuous map 𝑓𝑖 ∶ �̂�𝑖 → �̂�′

𝑖
such that

the obvious diagram

commutes. IfO andO′ are smooth orbifolds and if the 𝑓𝑖 are smooth, then 𝑓 is said to be smooth.
Orbifolds and maps between orbifolds form a category. And the same for smooth orbifolds and
smooth maps between them.
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62 ERLANDSSON and SOUTO

If (𝑈, �̂�, Γ, 𝜙) is an orbifold chart of an orbifold O, then ([0, 1] × 𝑈, [0, 1] × �̂�, Γ, Id ×𝜙) where
g ∈ Γ acts on [0, 1] × �̂� via g(𝑡, 𝑥) = (𝑡, g𝑥) is an orbifold chart of [0, 1] × O. The collection of all
so-obtained orbifold charts forms an orbifold atlas, giving [0, 1] × O the structure of an orbifold.
It thus makes sense to say that two orbifold maps

𝑓, 𝑓′ ∶ O → O′

are homotopic in the category of orbifolds if there is an orbifold map

𝐹 ∶ [0, 1] × O → O′, 𝐹(𝑡, 𝑥) = 𝐹𝑡(𝑥)

with 𝐹0 = 𝑓 and 𝐹1 = 𝑓′.
Anyways, armed with the notion of homotopy of orbifold maps, one can define the orbifold

fundamental group 𝜋or
1
(O) of O exactly as one does for the usual fundamental group, just replac-

ing homotopies by orbifold homotopies. One should note that any two orbifold maps which are
homotopic as orbifold maps are also homotopic as maps between topological spaces, but that
the converse does not need to be true. In fact, there are plenty of orbifolds which are simply
connected as topological spaces but whose orbifold fundamental group is non-trivial, meaning
that there are orbifold maps 𝛾 ∶ 𝕊1 → O which, as orbifold maps, are not homotopic to constant
maps. As is the case for manifolds, in the category of orbifolds, free homotopy classes of curves
𝛾 ∶ 𝕊1 → O correspond to conjugacy classes in the orbifold fundamental group. We make the
following convention:

IfO is a compact orbifold with boundary then we will say that a curve is essential if it
is not freely homotopic into the boundary and if the associated free homotopy class
is that of an infinite order element in the orbifold fundamental group. We will also
denote by or(O) the set of all free homotopy classes of essential curves in O.

2.4 Orbifolds as orbit spaces

Following word-by-word the usual construction of the universal cover of a manifold but replac-
ing homotopies by homotopies of orbifold maps, one gets the orbifold universal cover Õ of the
orbifold O. As is the case for manifolds, the fundamental group 𝜋or(O) acts discretely on the uni-
versal cover Õ. Similarly, orbifold maps 𝑓 ∶ O → O′ between orbifolds induce homomorphisms
𝑓∗ ∶ 𝜋or

1
(O) → 𝜋or

1
(O′) between the associated orbifold fundamental groups and lift to

𝑓∗-equivariant maps 𝑓 ∶ Õ → Õ′ between the universal covers.
Orbifolds whose universal cover is a manifold are said to be good. And they deserve that name

because working with them is much easier than working with general orbifolds. For example,
there is a pretty concrete description of the orbifold charts for good orbifolds O. They are namely
of the form

𝜙 ∶ �̂�∕𝐻 → 𝑈,

where 𝐻 ⊂ 𝜋or
1
(O) is a finite subgroup, where �̂� ⊂ Õ is an open connected subset with 𝐻�̂� = �̂�

and g�̂� ∩ �̂� = ∅ whenever g ∉ 𝐻, where 𝑈 is the image of �̂� under the universal covering map
𝜋 ∶ Õ → O, and where finally 𝜙 is the map given by 𝜙(𝑥𝐻) = 𝜋(𝑥).
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COUNTING CURVES ON ORBIFOLDS 63

Hyperbolic orbifolds, if one wants with geodesic boundary, are good. These are the orbifolds
we will be interested in. We fix now the notation that we will be using from this point on:

Notation. Let Õ ⊂ ℍ2 be a closed connected (2-dimensional) subset of the hyperbolic
plane with possibly empty geodesic boundary, let Γ ⊂ PSL2 ℝ be a discrete subgroup
which preserves Õ and such that the induced action Γ ↷ Õ is cocompact, and denote
by

O = Õ∕Γ

the associated hyperbolic orbifold. When needed, we will refer to the hyperbolic
metric on both O and Õ by 𝜌hyp. Finally, we also write

sing(Γ) = {𝑝 ∈ Õ with StabΓ(𝑝) ≠ Id}

for the set of points in Õ with non-trivial stabilizer, that is the preimage of sing(O)
under the map Õ → O.

In this setting, Õ is the orbifold universal cover of O and Γ = 𝜋or
1
(O) is its orbifold fundamen-

tal group.
It is not hard to see that the orbifolds O we are interested in are homeomorphic as topologi-

cal spaces to surfaces, that is, to 2-dimensional manifolds. Such homeomorphisms do, however,
destroy the orbifold structure. In fact, much more information is encoded in the surface that we
get by deleting the singular points ofO. Since we want to work with compact surfaces, we instead
delete small balls around the singular points.

2.5 The surface associated to a hyperbolic orbifold 𝐎

Continuing with the same notation, let O = Õ∕Γ be a compact orientable hyperbolic 2-orbifold
with possibly empty totally geodesic boundary. We choose now two positive constants 𝜖 and 𝛿

which will accompany us throughout the paper. Other than being very small, say 𝜖 < 10−10, here
are the conditions that 𝜖 has to satisfy:

(C1) 200𝜖 is less than the length of the shortest non-trivial periodic 𝜌hyp-geodesic in O,
(C2) 200𝜖 is less than the minimal distance between any two points in sing(Γ), and
(C3) 200𝜖 is less than the distance between any point in 𝜕Õ and any point in sing(Γ).

When it comes to 𝛿, we will later give a fourth condition (see (C4) in Section 5) that it has to satisfy
but for now we just assume that 3𝛿 < 𝜖. Note that this implies that the 𝛿-balls around points in
sing(Γ) are disjoint of each other and do not meet 𝜕Õ. This means that

Σ̂ = Õ ⧵hyp(sing(Γ), 𝛿) (2.1)

is a smooth surface with boundary, where

hyp(𝑋, 𝑟) = {𝑝 ∈ Õ with 𝑑hyp(𝑝, 𝑋) < 𝑟}.
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64 ERLANDSSON and SOUTO

Note that the action of Γ = 𝜋or
1
(O) on Õ induces an action on Σ̂ which is not only discrete but

also free. We refer to the quotient surface

Σ = Σ̂∕Γ

as the surface associated to the orbifold O and denote its universal cover by Σ̃. By construction, it
is also the universal cover of Σ̂. In fact, Σ̂ is the cover of Σ corresponding to the normal subgroup
of 𝜋1(Σ) generated by all loops homotopic into 𝜕Σ ⧵ 𝜕 O.

Remark. We denote by 𝐵hyp(𝑞, 𝑟) ⊂ Õ the hyperbolic ball of radius 𝑟 around 𝑞. Equivalently,

𝐵hyp(𝑞, 𝑟) = hyp({𝑞}, 𝑟).

Also, abusing terminology, we will not distinguish between hyp(𝑋, 𝑟) or 𝐵hyp(𝑞, 𝑟) and their
closures. That is, both open balls and closed balls, and open neighborhoods and closed
neighborhoods are denoted using the same symbol.

2.6 Mapping class groups of the orbifold and of the associated surface

As is the case for manifolds, one can say anything one wants to say about the orbifold O = Õ∕Γ

in terms of Γ-equivariant objects in the universal cover Õ. For example, the groupHomeoor(O) of
orbifold self-homeomorphisms of O can be identified with

Homeoor(O) = HomeoΓ(Õ)∕Γ,

where

HomeoΓ(Õ) = {𝑓 ∈ Homeo(Õ) with 𝑓Γ𝑓−1 = Γ}

is the group of (topological) homeomorphisms of Õ conjugating Γ to itself. The mapping class
group, in the category of orbifolds, of O is then the group

Mapor(O) = Homeoor(O)∕Homeoor0 (O),

where Homeoor
0
(O) is the identity component of Homeoor(O).

The group HomeoΓ(Õ) acts on the set

sing(Γ) = {𝑝 ∈ Õ with StabΓ(𝑝) ≠ Id}

of points with non-trivial stabilizer. It also acts on the set 𝜋0(𝜕Õ) of boundary component of Õ.
It follows that the mapping class group acts on the finite sets sing(Γ)∕Γ and 𝜋0(𝜕Õ)∕Γ. The pure
mapping class group

PMapor(O) = {𝜙 ∈ Mapor(O) pointwise fixing sing(Γ)∕Γ and 𝜋0(𝜕Õ)∕Γ}

is the finite index subgroup ofMapor(O) consisting of mapping classes which act trivially on these
two sets.
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COUNTING CURVES ON ORBIFOLDS 65

Note now that the canonical inclusion Σ ↪ O into our orbifold of the associated surface is an
embedding in the category of orbifolds. We have, however, also other interesting maps Σ → O,
namely, those which are the identity outside of a small neighborhood of the boundary of Σ and
which map Σ ⧵ 𝜕Σ homeomorphically to O⧵ sing(O). Such maps are not homeomorphisms but
they induce homomorphisms between the group of homeomorphisms of Σ acting trivially on
𝜋0(𝜕Σ) and the group of orbifold homeomorphisms ofO. Any such map induces an isomorphism
between the pure mapping class groups

PMap(Σ) ≃ PMapor(O) (2.2)

of Σ and O, where

PMap(Σ) = {𝜙 ∈ Homeo(Σ) acting trivially on 𝜋0(𝜕Σ)}∕Homeo0(Σ).

It is well known that every mapping class inMap(Σ) can be represented by a diffeomorphism.
Although our definition of the mapping class group differs from theirs (we do not have twists

around the boundary), we refer to the book [8] by Farb and Margalit for background on the
mapping class group.

2.7 A metric on the associated surface �̂�

Although (locally) negatively curved from the point of view of comparison geometry, the restric-
tion of the hyperbolic metric 𝜌hyp to Σ̂ is not as nice as one would wish. The problem is that, since
the new boundary components are concave, geodesics are not uniquely determined by their tan-
gent vectors at a point. In particular, distinct geodesics do not need to be transversal to each other.
This is why we from now on endow Σ̂ with a smooth Riemannian metric 𝜌 with the following
properties.

∙ 𝜌 is negatively curved and Γ-invariant.
∙ The boundary of Σ̂ is totally geodesic with respect to 𝜌.
∙ Both 𝜌 and 𝜌hyp agree on the subset Õ ⧵hyp(sing(Γ), 2𝛿) of Σ̂.
∙ If 𝐼 ⊂ Õ is a 𝜌hyp-geodesic segment starting at a point sing(Γ) and with 𝜌hyp-length 3𝛿, then
𝐼 ∩ Σ̂ is a 𝜌-geodesic segment perpendicular to the boundary of Σ.

The reasonwhywe impose this final condition is that if𝑝 ∈ sing(Γ) and 𝑟 > 2𝛿 are such that 𝜌 and
𝜌hyp agree on 𝐵hyp(𝑝, 𝑟) ⧵ 𝐵hyp(𝑝, 2𝛿), then the 𝜌hyp radial foliation  of 𝐵hyp(𝑝, 𝑟) ⧵ 𝐵hyp(𝑝, 𝛿) is
𝜌-geodesic. It follows in particular that the restriction of the radial projection

𝐵hyp(𝑝, 𝑟) ⧵ 𝐵hyp(𝑝, 𝛿) → 𝜕𝐵hyp(𝑝, 𝑟)

to any 𝜌-geodesic segment 𝜂 which is not contained in a leaf of  is monotonic in the sense that
its derivative is never 0. We thus get that simple 𝜌-geodesic segments 𝜂 ⊂ 𝐵hyp(𝑝, 𝑟) ⧵ 𝐵hyp(𝑝, 𝛿)

whose endpoints are in 𝜕𝐵hyp(𝑝, 𝑟) andmeet each leaf of atmost once— see Figure 1.We record
this fact for later use:

Lemma 2.1. Suppose that 𝑝 ∈ sing(Γ) and 𝑟 > 2𝛿 are such that 𝜌 and 𝜌hyp agree on 𝐵hyp(𝑝, 𝑟) ⧵

𝐵hyp(𝑝, 2𝛿), and let 𝜂 ⊂ 𝐵hyp(𝑝, 𝑟) ⧵ 𝐵hyp(𝑝, 𝛿) be a 𝜌-geodesic segment whose boundary points are
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66 ERLANDSSON and SOUTO

F IGURE 1 Schematic representation of two 𝜌-geodesic segments in 𝐵hyp(𝑝, 3𝛿) ⧵ 𝐵hyp(𝑝, 𝛿)

contained in 𝜕𝐵hyp(𝑝, 𝑟). If 𝜂 is simple, then 𝜂 meets every 𝜌hyp-geodesic ray emanating out of 𝑝 at
most once. In particular, 𝜂 has at most length 2𝜋 sinh(𝑟).

We should comment on the existence of 𝜌. In fact, it is not hard to construct such a metric.
For example, when working in standard hyperbolic polar coordinates (𝑟, 𝜃) in the ball 𝐵hyp(𝑝, 3𝛿)

around 𝑝 ∈ sing(Γ), one can take any

𝜌 = 𝑑𝑟2 + 𝜙(𝑟)2 ⋅ 𝑑𝜃2, (2.3)

where 𝜙 ∶ [𝛿, 3𝛿) → (0,∞) is a smooth function satisfying

𝜙′′(⋅) > 0, 𝜙′(𝛿) = 0, and 𝜙(𝑠) = sinh(𝑠) for 𝑠 > 2𝛿.

The first condition on 𝜙 ensures that the sectional curvature 𝜅 =
−𝜙′′

𝜙
is negative, the second

that {𝑑hyp(𝑝, ⋅) = 𝛿} is totally geodesic, and the third that 𝜌 agrees with 𝜌hyp on 𝐵hyp(𝑝, 3𝛿) ⧵

𝐵hyp(𝑝, 2𝛿). In particular, if we use the same function 𝜙 on each 3𝛿-ball around points in sing(Γ)

and we set 𝜌 = 𝜌hyp outside those balls, then we obtain a Γ-invariant metric on the whole of
Σ̂. Finally, note that the curves 𝑡 ↦ (𝑡, 𝜃), that is, the 𝜌hyp-geodesic segments starting at 𝑝, are
𝜌-geodesic segments for any choice of 𝜙. In other words, also the fourth property we wanted our
metric to satisfy holds.
Note that Γ-invariance of 𝜌 implies that it descends to a metric on Σ which we once again call

𝜌. Similarly, we denote also by 𝜌 the induced metric on the universal cover Σ̃.

3 AS SIMPLE AS POSSIBLE REPRESENTATIVES

Continuing with the same notation, letO = Õ∕Γ be a compact orientable hyperbolic orbifold and
let Σ = Σ̂∕Γ with Σ̂ as in (2.1) be the associated surface, endowed with the metric 𝜌 we just fixed.
By construction, Σ̂ is a connected subset of the universal cover Õ ofO. It follows that the inclusion
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COUNTING CURVES ON ORBIFOLDS 67

F IGURE 2 Two geodesics (in black) in Σ̂ that differ by an element in Γ fixing the marked point: they are not
as simple as possible

Σ ↪ O induces a surjective homomorphism

𝜋1(Σ) → 𝜋or
1 (O) = Γ.

This means that every homotopically essential curve in O is freely homotopic (in the category
of orbifolds) to one contained in Σ. In this section, we describe how to pick for curves in O

representatives in Σ that are as simple as possible.

Definition. A 𝜌-geodesic 𝛼 ∶ ℝ → Σ̂ whose image is not contained in 𝜕Σ̂ is as simple as possible
if

(1) it is injective, and
(2) for all g ∈ Γ, the geodesics 𝛼 and g(𝛼) are either identical or meet at most once.

We say that a 𝜌-geodesic in Σ is as simple as possible if its lifts to Σ̂ are as simple as possible.
Similarly, a 𝜌-geodesic in the universal cover Σ̃ of Σ is as simple as possible if its images in Σ̂

are as simple as possible. Finally, a homotopy class in Σ is as simple as possible if its 𝜌-geodesic
representative is as simple as possible (Figure 2).

Before going any further, we note that non-trivial closed 𝜌hyp-geodesics 𝛾 ∶ 𝕊1 → O have repre-
sentatives 𝜂 ∶ 𝕊1 → Σ ⊂ O that are as simple as possible. It suffices to choose 𝜂 ⊂ Σ to be a shortest
representative of 𝛾. Indeed, the fact that 𝜂 is shortest implies that its lifts to Σ̂ have no bigons,
showing that 𝜂 is as simple as possible. We record this fact for later use:

Lemma 3.1. Every 𝜌hyp-geodesic 𝛾 ∶ 𝕊1 → O is freely homotopic, in the category of orbifolds, to a
𝜌-geodesic 𝜂 ∶ 𝕊1 → Σ ⊂ O which is as simple as possible.

The reader might be wondering why instead of simply speaking of shortest representatives we
choose something as clumsy as “as simple as possible.” The reason is that the latter property is
mapping class group invariant:
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68 ERLANDSSON and SOUTO

Lemma 3.2. If 𝜂 ⊂ Σ is as simple as possible, then 𝜙(𝜂) is also as simple as possible for every
𝜙 ∈ PMap(Σ).

Proof. Abusing notation, denote the 𝜌-geodesic freely homotopic to 𝜂 by the same letter. To deter-
mine 𝜙(𝜂) choose first a representative 𝜑 ∈ Dif f (Σ) of the mapping class 𝜙 and let 𝜑∗ ∶ 𝜋1(Σ) →

𝜋1(Σ) be the homomorphism induced by 𝜑—we can always choose 𝜑 so that it fixes some point
and take that point as the base point for the fundamental group. Note that 𝜑∗ preserves the nor-
mal subgroup of 𝜋1(Σ) generated by loops freely homotopic into 𝜕Σ ⧵ 𝜕 O and that 𝜋1(Σ̂) ⊂ 𝜋1(Σ)

is nothing other than this subgroup. We get that 𝜑 lifts to Σ̂, or more precisely, that there is a
𝜑∗-equivariant lift �̂� ∈ Dif f (Σ̂). Now, if 𝜂 is a lift of 𝜂 to Σ̂, then we have for all g ∈ Γ that

�̂�(𝜂) ∩ 𝜑∗(g)(�̂�(𝜂)) = �̂�(𝜂) ∩ �̂�(g𝜂) = �̂�(𝜂 ∩ g𝜂).

Since 𝜂 was as simple as possible, we get that �̂�(𝜂) is simple and that �̂�(𝜂) ∩ 𝜑∗(g)�̂�(𝜂) intersects
its individual Γ-translates at most once, and that if these intersections take place, then they are
transversal to each other.
It follows that the image of 𝜑(𝜂) in Σ has no bigons. The same is true for (𝜙(𝜂))∗, the geodesic in

(Σ, 𝜌) freely homotopic to 𝜑(𝜂). Now, [10, Theorem 2.1] implies that these two curves are not only
freely homotopic to each other but also transversely freely homotopic to each other. Thismeans in
particular that intersection points are neither destroyed nor created during the homotopy. Hence,
each lift of (𝜙(𝜂))∗ to Σ̂meets its individual Γ-translates in at most one point. In other words, 𝜙(𝜂)
is as simple as possible. □

The reason why we are interested in 𝜌-geodesics in Σ̂ which are as simple as possible is that,
as we will see shortly, this topological property implies that they are uniform quasigeodesics with
respect to the hyperbolic metric. Recall that a continuous curve 𝛼 ∶ ℝ → Õ is 𝐴-quasigeodesic if
we have

𝐴 ⋅ |𝑡 − 𝑠| + 𝐴 ⩾ 𝑑hyp(𝛼(𝑠), 𝛼(𝑡)) ⩾
1

𝐴
|𝑠 − 𝑡| − 𝐴

for all 𝑠, 𝑡 ∈ ℝ. It is quasigeodesic if it is 𝐴-quasigeodesic for some 𝐴 ⩾ 1.
We are now ready to state the key technical result of this paper.

Proposition 3.3. Let O be as in the statement of Theorem 1.2, Σ̂ as in (2.1), and 𝜌 the metric on Σ̂

constructed in Section 2.7. There exists𝐴 ⩾ 1 such that any unit speed 𝜌-geodesic 𝛼 ∶ ℝ → Σ̂which is
(1) a quasigeodesic in (Õ, 𝜌hyp) and (2) as simple as possible is actually𝐴-quasigeodesic in (Õ, 𝜌hyp).

Proposition 3.3 will be proved in Section 6. We just add now a few comments.

(1) Note that in Proposition 3.3 we cannot simply drop the assumption that 𝛼 is a quasigeodesic
in (Õ, 𝜌). For example, if 𝛼 is a lift of a simple geodesic in Σ which spirals in both directions
onto components of 𝜕Σ ⧵ 𝜕 O, then it is as simple as possible but not a quasigeodesic and in
particular not an𝐴-quasigeodesic for any choice of𝐴. However, this is basically the only case
we have to rule out because we could replace the condition that 𝛼 is a quasigeodesic in the
proposition by the assumption that 𝛼 does not accumulate on a compact component of 𝜕Σ̂ in
either direction. We leave it, however, as it is because the curves we will be interested in are
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COUNTING CURVES ON ORBIFOLDS 69

automatically quasigeodesics: they are lifts 𝜂 to Σ̂ of representatives 𝜂 in Σ of essential curves
𝛾 in O.

(2) Suppose that 𝛾 ∈ or(O) is an essential curve in O. Proposition 3.3 implies that we have

𝓁𝜌(𝜂) ⩽ 𝐴 ⋅ 𝓁hyp(𝛾)

for any 𝜌-geodesic representative 𝜂 ⊂ Σ of 𝛾 which is as simple as possible. It follows that 𝛾
only has finitely many such representatives.

(3) On the other hand, as simple as possible representatives are not unique. In fact, a primi-
tive closed geodesic in O which goes through 𝑘 cone points of odd order and none of even
order, has at least 2𝑘 representatives in Σ which are as simple as possible: at each one of
those 𝑘 points, steer slightly either right or left to avoid hitting the cone point. And this is
not optimal because perturbing the metric slightly one can get the geodesic off sing(O), and
representatives that were as simple as possible stay as simple as possible.

(4) The construction sketched in (3) shows that “shortest” and “as simple as possible” are not the
same thing.

4 MAIN RESULTS

In this section we prove Theorem 1.2 assuming Proposition 3.3. However, before doing so we have
to recall a few facts about currents and about Mirzakhani’s counting theorem.

4.1 Currents

Let𝑋 be a simply connected negatively curved surfacewith possibly empty totally geodesic bound-
ary, and let 𝐺 ⊂ Isom+(𝑋) be a discrete subgroup of orientation preserving isometries with 𝑋∕𝐺

compact. We will be interested in the following two possible cases:

∙ 𝑋 = Õ ⊂ ℍ2 is the universal cover of our compact hyperbolic orbifold O = Õ∕Γ and
𝐺 = 𝜋or

1
(O) = Γ is its fundamental group.

∙ 𝑋 = (Σ̃, 𝜌) is the universal cover of Σ endowed with the metric 𝜌 and 𝐺 = 𝜋1(Σ) is its
fundamental group.

Let (𝑋) be the set of all unoriented bi-infinite geodesics in 𝑋. The action 𝐺 ↷ 𝑋 induces an
action of 𝐺 on (𝑋). A current on 𝑋∕𝐺 is a 𝐺-invariant Radon measure on (𝑋). Let or(𝑋∕𝐺) be
the space of all currents on𝑋∕𝐺 endowed with the weak-*-topology. It is a Hausdorff, metrizable,
second countable, and locally compact space, and the projectivized space ℙor(𝑋∕𝐺) is compact.

Remark. We insist that 𝑋∕𝐺, and thus our orbifoldO, is compact because this is what guarantees
that the space or(𝑋∕𝐺) is locally compact.

There are plenty of currents. In fact there is a natural homeomorphism between or(𝑋∕𝐺) and
the space of geodesic flow invariant Radon measures on the projectivized unit tangent bundle
𝑃𝑇1𝑋∕𝐺 supported by the set of bi-infinite orbits. For example, every primitive closed unit speed
geodesic 𝛾 in (𝑋), or equivalently every unoriented periodic orbit of the geodesic flow, yields a
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70 ERLANDSSON and SOUTO

geodesic flow invariant measure on 𝑃𝑇1𝑋∕𝐺: the measure of 𝑈 is the arc length of 𝛾 ∩ 𝑈. The
current associated to this measure is called the counting current associated to the geodesic 𝛾. The
counting current determines the original geodesic 𝛾 — this justifies referring to the current and
the geodesic by the same letter — and the name is explained because, for a set of geodesics 𝑉 ⊂

(𝑋) the value of 𝛾(𝑉) is nothing other than the number of lifts of 𝛾 to 𝑋 which belong to 𝑉.
Note that every essential curve 𝛾 in 𝑋∕𝐺 (in the sense that we gave to the word essential at the

end of Section 2.3) is freely homotopic to a unique geodesic 𝛾∗ in 𝑋∕𝐺. In this case we denote the
associated counting current by 𝛾 instead of 𝛾∗. We hope that this will not cause any confusion.

Remark. If the action of 𝐺 on 𝑋 is free, then we drop the superscript “or.” For example, we write
(Σ) instead of or(Σ). We use this superscript to avoid mixing up currents for the orbifold 𝑋∕𝐺

and currents for the underlying topological surface.

Currents were introduced by Bonahon and we refer to his papers [2–4] for details and back-
ground. See also [1]. However, although all these sources are highly recommended, the reader
will not be surprised on hearing that we will mostly follow the same notation and terminology as
in our book [7].

4.2 Mirzakhani’s counting theorem

As we mentioned already in the introduction, Theorem 1.2 is well known in the case that we are
working with surfaces instead of orbifolds. In that case we have the following result [7, Theorem
8.1].

Mirzakhani’s counting theorem. LetΣ be a compact connected orientable surface of genus g and
with 𝑟 boundary components and suppose that 3g − 3 + 𝑟 > 0. Let also 𝜂0 ⊂ Σ be a homotopically
primitive essential curve. Then there are constants 𝔠PMap(𝜂0), 𝔟

PMap
g ,𝑟 > 0 such that

lim
𝐿→∞

1

𝐿6g−6+2𝑟

∑
𝜂∈PMap(Σ)⋅𝜂0

𝛿 1
𝐿
𝜂
=

𝔠PMap(𝜂0)

𝔟
PMap
g ,𝑟

⋅𝔪Σ
Thu

.

Here 𝛿 1
𝐿
𝜂
is the Dirac measure on (Σ) centered at the current 1

𝐿
𝜂, 𝔪Σ

Thu
is the Thurston measure

on (Σ), and the convergence takes place with respect to the weak-*-topology on the space of Radon
measures on (Σ).

Remark. The counting theorem remains true if we replace the pure mapping class group by any
other finite index subgroup of the mapping class group. However, the obtained multiple of the
Thurston measure depends on the subgroup in question. This explains the superscript PMap in
the constants 𝔠PMap(𝜂0) and 𝔟

PMap
g ,𝑟 . See [7, Exercise 8.2] for explicit formulas for the dependence

of the constants on the chosen subgroup of the mapping class group.

Since we named the above theorem after Maryam Mirzakhani while referring to our book [7],
we should add a brief comment on the genesis of this theorem. For simple curves, Mirzakhani
proved this theorem in [13, 14] but for general curves the history is slightly more complicated. To
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COUNTING CURVES ON ORBIFOLDS 71

explain why, note that the theorem implies that

lim
𝐿→∞

{𝛾 ∈ PMap(Σ) with 𝐹(𝛾) ⩽ 𝐿}

𝐿6g−6+2𝑟
=

𝔠PMap(𝛾0)

𝔟
PMap
g ,𝑟

⋅𝔪Σ
Thu

({𝐹(⋅) ⩽ 1})

whenever 𝐹 ∶ (Σ) → ℝ+ is a continuous, positive, and homogenous function (compare with [7,
Theorem 9.1] or with the proof of Theorem 1.3 below). In [15] Maryam proved the existence of the
latter limit in the case that 𝐹 is the hyperbolic length. At the same time, we were also investigating
the same problem and we proved in [6] that every sublimit of the sequence in the counting theo-
rem has a subsequence which converges to a multiple of the Thurston measure. The existence of
the limit in the counting theorem follows if one combines these two facts [6, 15]. This was clear
to both Mirzakhani and ourselves at the time. A problem with that state of affairs was that Mirza-
khani’s arguments and ours come fromdifferent places, and thismade things a bit too opaque. For
example, there was some confusion about the chosen normalization for the Thurston measure.
This meant that it was not obvious how the arising constants should be understood (this problem
was, to some extent, solved in [16, 17]). Finally, or maybe finally for the time being, a unified proof
of the counting theorem as stated above was provided in [7]. The constants 𝔠PMap(𝛾0) and 𝔟

PMap
g ,𝑟

in the statement of the counting theorem above are as given in [7, Chapter 8], and the Thurston
measure is defined to be the scaling limit

𝔪Σ
Thu

= lim
𝐿→∞

∑
𝛾∈ℤ

𝛿 1
𝐿
𝛾
. (4.1)

Anyways, let us return to the concrete topic of this paper.

4.3 Proof of Theorem 1.2

We prove now our main theorem assuming Proposition 3.3. As mentioned earlier, the proposition
will be proved in Section 6.

Theorem 1.2. Let O be a compact orientable non-exceptional hyperbolic orbifold with possibly
empty totally geodesic boundary and let or(O) be the associated space of geodesic currents. There is
a Radon measure𝔪Thu on or(O) such that for any 𝛾0 ∈ or(O) we have

lim
𝐿→∞

1

𝐿6g−6+2𝑟

∑
𝛾∈Mapor(O)⋅𝛾0

𝛿 1
𝐿
𝛾
= 𝐶(𝛾0) ⋅𝔪Thu

for some positive constant𝐶(𝛾0) > 0. Here g is the genus of the orbifoldO, 𝑟 is the sum of the numbers
of singular points and boundary components, and O is non-exceptional if (g , 𝑟) ≠ (0, 3). Moreover
𝛿 1

𝐿
𝛾
stands for the Dirac measure on or(O) centered at 1

𝐿
𝛾, and the convergence takes place with

respect to the weak-*-topology on the space of Radon measures on or(O).

As we already mentioned in the introduction, the idea of the proof is to show that our given
homotopy class 𝛾0 has a representative 𝜂0 in Σ such that the measures

1

𝐿6g−6+2𝑟

∑
𝜂∈PMap(Σ)⋅𝜂0

𝛿 1
𝐿
𝜂
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72 ERLANDSSON and SOUTO

inside the limit in Mirzakhani’s counting theorem are supported by a closed subset of (Σ)which
maps continuously to or(O). In fact we will choose 𝜂0 to be a representative of 𝛾0 which is as
simple as possible.
Anyways, with 𝐴 as in Proposition 3.3 let

(𝐴) ⊂ (Σ)

be the set of unit speed geodesics 𝛼 in (Σ̃, 𝜌)with the property that the composition of the maps

is an𝐴-quasigeodesic. In these terms, Proposition 3.3 asserts that if 𝛼 ∶ ℝ → (Σ̃, 𝜌) is a unit speed
geodesic whose image in (Σ̂, 𝜌) is as simple as possible, then 𝛼 ∈ (𝐴). Recalling now that by
Lemma 3.1 the homotopy class of every closed primitive and essential geodesic 𝛾0 inO can be rep-
resented by a 𝜌-geodesic 𝜂0 ∶ 𝕊1 → (Σ, 𝜌)which is as simple as possible, and that from Lemma 3.2
we get that the property of being as simple as possible is mapping class group invariant, then we
get the following fact that we state as a lemma for later reference:

Lemma 4.1. If 𝜂0 ∶ 𝕊1 → (Σ, 𝜌) is any essential 𝜌-geodesic which when considered as a map into
O is as simple as possible, then the measure ∑

𝜂∈PMap(Σ)⋅𝜂0

𝛿 1
𝐿

𝜂

is supported by (𝐴) for all 𝐿 > 0.

Now, the fact that the quasigeodesic constant 𝐴 is fixed implies that (𝐴) is a closed subset of
(Σ). Recall also that every 𝐴-quasigeodesic in Õ, and in particular the image under Σ̃ → Σ̂ ↪ Õ

of each element of(𝐴), is at bounded distance of a 𝜌hyp-geodesic where the bound just depends
on 𝐴. In this way we get a continuous map

(𝐴) → (Õ) (4.2)

equivariant under the homomorphism 𝜋1(Σ) → 𝜋or
1
(O) = Γ. Now, pushing currents forward with

(4.2) (at the end of the day currents are measures) we get a continuous map

Π ∶ {𝜆 ∈ (Σ) supported by (𝐴)} → or(O). (4.3)

from the closed subset of (Σ) consisting of currents supported by the closed set(𝐴) to the space
of currents on O.
The map Π given in (4.3) induces in turn a continuous map

Π∗ ∶ measures on

{
𝜆 ∈ (Σ)

supported by (𝐴)

}
→ measures on or(O) (4.4)

from the space of Radon measures on {𝜆 ∈ (Σ) supported by (𝐴)} to the space of Radon
measures on or(O).
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COUNTING CURVES ON ORBIFOLDS 73

For 𝛾0 as in the statement of Theorem 1.2, let 𝜂0 be as provided by Lemma 3.1, and note that
we get from Lemma 4.1 that the measure

∑
𝜂∈Map(Σ)𝜂0

𝛿 1
𝐿

𝜂 is supported by the domain of (4.3). Its
image under (4.4) is in fact nothing other than the measure

∑
𝛾∈Mapor(O)⋅𝛾0

𝛿 1
𝐿

𝛾. Applying Π∗ to
both sides of the limit in Mirzakhani’s counting theorem we get:

Π∗

(
𝔠PMap(𝜂0)

𝔟
PMap
g ,𝑟

⋅𝔪Σ
Thu

)
= Π∗

⎛⎜⎜⎝ lim𝐿→∞

1

𝐿6g−6+2𝑟

∑
𝜂∈PMap(Σ)⋅𝜂0

𝛿 1
𝐿
𝜂

⎞⎟⎟⎠
= lim

𝐿→∞

1

𝐿6g−6+2𝑟
Π∗

⎛⎜⎜⎝
∑

𝜂∈PMap(Σ)⋅𝜂0

𝛿 1
𝐿
𝜂

⎞⎟⎟⎠ (4.5)

= lim
𝐿→∞

1

𝐿6g−6+2𝑟

∑
𝛾∈PMapor(O)⋅𝛾0

𝛿 1
𝐿
𝛾
.

Now the Mapor(O)-orbit of 𝛾0 is a disjoint union of orbits under PMapor(O), more precisely of|Mapor(O)∕ PMapor(O)|| StabMapor(O)(𝛾0)∕ StabPMapor(O)(𝛾0)| orbits. Theorem 1.2 follows whenwe apply (4.5) to each one of these
orbits and we set

𝐶(𝛾0) =
|Mapor(O)∕ PMapor(O)|| StabMapor(O)(𝛾0)∕ StabPMapor(O)(𝛾0)| ⋅ 𝔠

PMap(𝜂0)

𝔟
PMap
g ,𝑟

and

𝔪Thu = Π∗

(
𝔪Σ

Thu

)
.

We have proved Theorem 1.2.
Rather, we have proved Theorem 1.2 while assuming Proposition 3.3. Anyways, before prov-

ing the proposition let us prove the other theorems mentioned in the introduction and comment
briefly on the measure𝔪Thu.

4.4 A comment on the measure𝖒𝐓𝐡𝐮

In the course of the proof of Theorem 1.2 we identified the measure 𝔪Thu as the push-forward
of the Thurston measure 𝔪Σ

Thu
associated to Σ under the map Π∗. We give now a slightly more

intrinsic interpretation of this measure. Note first that every simple essential geodesic in Σ is as
simple as possible in O. This means that the set ℝ⩾0 ⋅ℤ(Σ) of multiples of integral measured
laminations on Σ is contained in (𝐴). Since the latter is closed, we also have that the full space
of measured laminations on Σ is contained in(𝐴), that is,(Σ) ⊂ (𝐴). We thus get from the
construction (4.1) of the Thurston measure𝔪Σ

Thu
that

𝔪Thu = lim
𝐿→∞

1

𝐿6g−6+2𝑟

∑
𝛾∈ℤ(Σ)

𝛿 1
𝐿
�̂�
, (4.6)

where, for lack of better notation, we let �̂� be the geodesic representative in O of the homotopy
class represented by 𝛾 ∈ ℤ(Σ). The multicurve curve �̂� is simple in the sense that its lifts to
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74 ERLANDSSON and SOUTO

the universal cover Õ never cross each other. If we denote by ℤ(O) the set of, in this sense,
simple geodesic multicurves in O, then we can rewrite (4.6) as

𝔪Thu = lim
𝐿→∞

1

𝐿6g−6+2𝑟

∑
�̂�∈ℤ(O)

𝛿 1
𝐿
�̂�
. (4.7)

Yet another description of𝔪Thu can be given when we recall that O has a finite normal cover (in
the category of orbifolds) which is a surface. This means that there are a hyperbolic surface 𝑆 and
a finite group 𝐻 acting on 𝑆 by isometries such that O = 𝑆∕𝐻. The cover 𝜋 ∶ 𝑆 → O induces a
bijection between elements inℤ(O) and the setℤ(𝑆)

𝐻 of𝐻-invariant simple multicurves
in 𝑆. The reader familiar with the construction of the usual Thurston measure for surfaces will
have no difficulty proving that the limit

𝔪𝑆,𝐻
Thu

def
= lim

𝐿→∞

1

𝐿6g−6+2𝑟

∑
𝛾∈ℤ(𝑆)

𝐻

𝛿 1
𝐿
𝛾

exists, where g and 𝑟 are still the genus and the sum of the numbers of singular points and bound-
ary components of the orbifold O. Taking into account the identification betweenℤ(O) and
ℤ(𝑆)

𝐻 , we get

𝔪Thu = 𝔪𝑆,𝐻
Thu

.

Here the left measure lives in the space (Õ) of geodesics on the universal cover of O, and the
right one lives in the space (𝑆) of geodesics in the universal cover of 𝑆, and where the equality
makes sense because Õ = 𝑆.

Remark. It also seems probable that one can recover the measure𝔪𝑆,𝐻
Thu

as a multiple of the mea-
sure on (𝑆)𝐻 obtained by taking a suitable power of the restriction to that subspace of the
Thurston symplectic form on (𝑆). It would be interesting to do as in [16] and figure out the
precise multiple.

Anyways, the reader having just the present paper inmind can ignore these past comments and
just continue thinking of𝔪Thu as given in the proof of Theorem 1.2.

4.5 Actually counting curves

Now we prove Theorem 1.1 and Theorem 1.3 from the introduction. Let us start with the latter.

Theorem 1.3. LetO be a compact orientable hyperbolic orbifold with possibly empty totally geodesic
boundary and let or(O) be the associated space of geodesic currents. Then the limit

lim
𝐿→∞

1

𝐿6g−6+2𝑟
|{𝛾 of type 𝛾0 with 𝐹(𝛾) ⩽ 𝐿}|

exists and is positive for any 𝛾0 ∈ or(O) and any positive, homogenous, continuous function
𝐹 ∶ or(O) → ℝ⩾0. Here g is the genus of the orbifoldO, and 𝑟 is the sum of the numbers of singular
points and boundary components.

 20524986, 2022, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.12043 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [09/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



COUNTING CURVES ON ORBIFOLDS 75

The proof of this theorem is the same as that of the analogous result in the case of surfaces [5,
7, 17] but let us recap the argument anyways. Other than the fact that𝔪Thu is a Radon measure,
and as such locally finite, we will also need that

𝔪Thu(𝑡 ⋅𝑈) = 𝑡6g−6+2𝑟𝔪Thu(𝑈) (4.8)

for all 𝑈 ⊂ or(O) and all 𝑡 ⩾ 0. This equality holds true because it does so for the stan-
dard Thurston measure 𝔪Σ

Thu
and because the map (4.3) is homogeneous: Π(𝑡 ⋅ 𝜆) = 𝑡 ⋅Π(𝜆).

Alternatively (4.8) also follows directly from (4.7). Anyways, we are now ready to prove the
theorem:

Proof. Noting that there is nothing to prove if O is exceptional, suppose that this is not the case.
For any such homogenous function 𝐹 ∶ or(O) → ℝ we have

|{𝛾 of type 𝛾0 with 𝐹(𝛾) ⩽ 𝐿}|
𝐿6g−6+2𝑟

=
⎛⎜⎜⎝ 1

𝐿6g−6+2𝑟

∑
𝛾∈Mapor(O)⋅𝛾0

𝛿𝛾

⎞⎟⎟⎠ ({𝐹 ⩽ 𝐿})

=
⎛⎜⎜⎝ 1

𝐿6g−6+2𝑟

∑
𝛾∈Mapor(O)⋅𝛾0

𝛿 1
𝐿
𝛾

⎞⎟⎟⎠ ({𝐹 ⩽ 1}) .

Now, by Theorem 1.2 the measures in the last line converge, when 𝐿 → ∞, to the measure 𝐶(𝛾0) ⋅
𝔪Thu. Noting that local finiteness of𝔪Thu together with (4.8) implies that

𝐶(𝛾0) ⋅𝔪Thu({𝐹 = 1}) = 0,

we get that

𝐶(𝛾0) ⋅𝔪Thu({𝐹 ⩽ 1}) = lim
𝐿→∞

⎛⎜⎜⎝ 1

𝐿6g−6+2𝑟

∑
𝛾∈Mapor(O)⋅𝛾0

𝛿 1
𝐿
𝛾

⎞⎟⎟⎠ ({𝐹 ⩽ 1}) .

Taking all of this together we obtain that

𝐶(𝛾0) ⋅𝔪Thu({𝐹 ⩽ 1}) = lim
𝐿→∞

1

𝐿6g−6+2𝑟
|{𝛾 of type 𝛾0 with 𝐹(𝛾) ⩽ 𝐿}|,

and we are done. □

We come now to Theorem 1.1.

Theorem 1.1. Let Γ ⊂ PSL2 ℝ be a non-elementary finitely generated discrete subgroup and
O = ℍ2∕Γ the associated 2-dimensional hyperbolic orbifold. Then the limit

lim
𝐿→∞

1

𝐿6g−6+2𝑟
|{𝛾 of type 𝛾0 with 𝓁O(𝛾) ⩽ 𝐿}|
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76 ERLANDSSON and SOUTO

exists and is positive for any 𝛾0 ∈ or(O). Here g is the genus of the orbifoldO and 𝑟 is the sum of the
numbers of singular points and ends.

Proof. Wemight once again assume thatO is not exceptional. Let then Ō be a compact hyperbolic
orbifold with interior homeomorphic to O, consider 𝛾0 ∈ or(O) as an element in or(Ō), and
apply Theorem 1.2 to get

lim
𝐿→∞

1

𝐿6g−6+2𝑟

∑
𝛾∈Mapor(Ō)⋅𝛾0

𝛿 1
𝐿
𝛾
= 𝐶(𝛾0) ⋅𝔪Thu. (4.9)

Now note that the same argument that proves it for surfaces shows that there is a compact subset
𝐾 ⊂ Ō ⧵ 𝜕Ō which contains the geodesic 𝜙(𝛾0) for all 𝜙 ∈ Mapor(Ō) (see, for example, [5, 7]). It
follows that the measures in (4.9) are all supported by the set or

𝐾
(Ō) of currents in or(O) whose

support projects to a subset of 𝐾. Now, as was first proved by Bonahon [2] (see also [7, Exercise
3.9]) we have that hyperbolic length function 𝓁O extends continuously to or

𝐾
(Ō). The claim of

Theorem 1.1 follows whenwe repeat word-by-word the argument in the proof of Theorem 1.3. □

5 THE KEY OBSERVATIONS

In this section we get the tools needed to prove Proposition 3.3 in the next section. Notation will
be as in the proposition:O = Õ∕Γ is a compact orientable hyperbolic orbifold with possibly empty
totally geodesic boundary,

Σ̂ = Õ ⧵hyp(sing(Γ), 𝛿)

is as in (2.1), and 𝜌 is the metric on Σ̂ constructed in Section 2.7.

5.1 Choosing 𝜹

So far, the only condition we have imposed on 𝛿 > 0 is that it is smaller than 1

3
𝜖 where 𝜖 > 0

satisfies conditions (C1)–(C3) from Section 2.5.We aremomentarily going to give amore stringent
condition on 𝛿, but first recall that the convex hull of a connected set 𝑋 in a negatively curved
manifold is the smallest closed connected set 𝑋′ with the following property: any path in 𝑋 is
homotopic relative to its endpoints to a geodesic path contained in 𝑋′. With this language we fix
𝛿 so that, with 𝜖 > 0 as fixed in Section 2.5, the following holds whenever 𝛾 ⊂ Õ is a 𝜌hyp-geodesic
segment:

If 𝑟 ⩾ 50𝜖 and if 𝑝 ∈ Õ is such that 𝑑hyp(𝑝,hyp(𝛾, 𝑟)) ⩽ 2𝛿,
then the 𝜌hyp-convex hull ofhyp(𝛾, 𝑟) ∪ 𝐵hyp(𝑝, 2𝛿) is contained
inhyp(𝛾, 𝑟) ∪ 𝐵hyp(𝑝,

𝜖

2
).

(C4)

The lower bound on 𝑟 guarantees thathyp(𝛾, 𝑟) is uniformly convex. In particular, the existence
of such a 𝛿 is evident when one considers the limit case 𝛿 = 0. In any case, a computation shows
that any 𝛿 < ( 𝜖

4
)3 works. See Figure 3 for a schematic representation of (C4).
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COUNTING CURVES ON ORBIFOLDS 77

F IGURE 3 Schematic representation of (C4). If a point is close enough to the boundary of the uniformly
convex sethyp(𝛾, 𝑟), then its distance to the horizon is really small. The darker line represents the boundary of
the convex hull ofhyp(𝛾, 𝑟) ∪ 𝐵hyp(𝑝, 2𝛿).

The reason for imposing (C4) will be clear shortly, but first we need some more notation. If
𝛾 ⊂ Õ is a 𝜌hyp-geodesic (always compact) segment, consider for 𝑟 > 0 the set

(𝛾, 𝑟) = {𝑝 ∈ sing(Γ) with 𝑑hyp(𝑝, 𝛾) ⩽ 𝑟 + 2𝛿} (5.1)

of points which are at most at distance 2𝛿 from the 𝑟-neighborhoodhyp(𝛾, 𝑟) around 𝛾, and for
𝑡 > 0 let

 (𝛾, 𝑟, 𝑡) = hyp(𝛾, 𝑟) ∪

( ⋃
𝑝∈(𝛾,𝑟)

𝐵𝑝(𝑡, 𝑑hyp)

)
(5.2)

be the union of that 𝑟-neighborhood and the 𝑡-balls around each point in (𝛾, 𝑟). The following
lemma gives us, for 𝑡 = 2𝛿, some control of the convex hull of this set with respect to the metric
𝜌:

Lemma 5.1. If 𝛾 ⊂ Õ is a 𝜌hyp-geodesic segment, then we have(
𝜌-convex hull of (𝛾, 𝑟, 2𝛿) ∩ Σ̂

)
⊂
(

(
𝛾, 𝑟,

𝜖

2

)
∩ Σ̂

)
for all 𝑟 ⩾ 50𝜖. Here (𝛾, 𝑟, 𝑡) is as in (5.2).

Before launching the proof recall that convexity of a closed set 𝑋 is a local property of its
boundary. We thus get the following useful property (Figure 4):

If (𝑋0, 𝑋1, …) is a countable locally finite collection of closed subsets
of a negatively curved manifold with 𝑋0 ∪ 𝑋𝑖 convex for all 𝑖 and with
𝑋𝑖 ∩ 𝑋𝑗 = ∅ for all 𝑖 ≠ 𝑗 ⩾ 1, then ∪∞

𝑖=0
𝑋𝑖 is convex.

(*)

We now prove the lemma.

Proof. Set 𝑋0 = hyp(𝛾, 𝑟) and for 𝑝 ∈ (𝛾, 𝑟) let 𝑌𝑝 be the 𝜌hyp-convex hull of the union
of hyp(𝛾, 𝑟) ∩ Σ̂ and 𝐵hyp(𝑝, 2𝛿). Since 𝑟 ⩾ 50𝜖 then we get from (C4) that 𝑋𝑝 = 𝑌𝑝 ⧵ 𝑋0 ⊂

𝐵hyp(𝑝,
𝜖

2
). This implies that the collection of sets {𝑋𝑝 with 𝑝 ∈ (𝛾, 𝑟)} is locally finite and that
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78 ERLANDSSON and SOUTO

F IGURE 4 Schematic representation of Lemma 5.1

𝑋𝑝 ∩ 𝑋𝑞 = ∅ for all distinct 𝑝, 𝑞 ∈ (𝛾, 𝑟). We get thus from (*) that

𝑋 = 𝑋0 ∪

( ⋃
𝑝∈(𝛾,𝑟)

𝑋𝑝

)

is 𝜌hyp-convex, meaning that its boundary is 𝜌hyp-convex. However, we have by construction that

𝜕𝑋 ⊂ hyp(𝛾, 𝑟) ∪

( ⋃
𝑝∈(𝛾,𝑟)

(
𝐵hyp(𝑝,

𝜖

2
) ⧵ 𝐵hyp(𝑝, 2𝛿)

))
,

which means that 𝜕𝑋 is not only contained in Σ̂ but even contained in the part of Σ̂ where the
metrics 𝜌 and 𝜌hyp agree. This means that 𝜕𝑋 is not only 𝜌hyp-convex but also 𝜌-convex. It follows
that 𝑋 ∩ Σ̂ is a 𝜌-convex set containing (𝛾, 𝑟, 2𝛿) ∩ Σ̂ but contained in (𝛾, 𝑟, 𝜖

2
) ∩ Σ̂. The claim

follows. □

5.2 Heights and outgoing rays

Continuing with the same notation, let 𝛾 ⊂ Õ be a 𝜌hyp-geodesic segment and let 𝑝 ∈ Õ ⧵ 𝛾 be a
point not on 𝛾. Under the 𝛾-outgoing ray at 𝑝 we understand the 𝜌hyp-geodesic ray starting at 𝑝
in the direction of the gradient of the function 𝑑hyp(𝛾, ⋅)— that is, the ray that 𝑝 would follow to
escape from 𝛾 at the fastest possible rate.
Now let 𝜂 be a 𝜌-geodesic segment in Σ̂ whose endpoints lie on 𝛾. The 𝛾-height of 𝜂

ℎ𝛾(𝜂) = max

{
𝑑hyp(𝛾, 𝑝)

||||| where 𝑝 ∈ sing(Γ) ⧵ 𝛾 is such that
the 𝛾-outgoing ray at 𝑝 meets 𝜂

}

is the maximum hyperbolic distance from 𝛾 to a cone point 𝑝 ∈ sing(Γ) whose 𝛾-outgoing ray
intersects 𝜂—here we take ℎ𝛾(𝜂) = 0 if we are taking the maximum over the empty set.
The following lemma asserts that the 𝛾-height of 𝜂 agrees, up to a small error, with themaximal

𝑑hyp-distance to 𝛾 from points in 𝜂.
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COUNTING CURVES ON ORBIFOLDS 79

Lemma 5.2. Let 𝛾 ⊂ Õ and 𝜂 ⊂ Σ̂ be a 𝜌hyp-geodesic segment and a 𝜌-geodesics segment, both with
the same endpoints. Then we have

𝜂 ⊂ hyp(𝛾, 𝑟),

where 𝑟 = max{50𝜖, ℎ𝛾(𝜂)} + 𝜖.

Proof. Let  be the set of those singular points 𝑝 ∈ sing(Γ) whose 𝛾-outgoing ray meets 𝜂. Set
𝑟0 = max{50𝜖, ℎ𝛾(𝜂)} andnote that ⊂ (𝛾, 𝑟0). The geodesic 𝜂 is homotopic in Σ̂ andwhile fixing
its endpoints to a curve contained in

 (𝛾, 𝑟0, 2𝛿) ∩ Σ̂ =

(
hyp(𝛾, 𝑟0) ∪

(⋃
𝑝∈

𝐵hyp(𝑝, 2𝛿)

))
∩ Σ̂.

The 𝜌-geodesic 𝜂 is then contained in the 𝜌-convex hull of  (𝛾, 𝑟0, 2𝛿) ∩ Σ̂ and hence in
 (𝛾, 𝑟0,

𝜖

2
) ∩ Σ̂ ⊂ hyp(𝛾, 𝑟0 + 𝜖) by Lemma 5.1. We are done. □

5.3 The main observation

Our next goal is to establish the following fact.

Lemma 5.3. Let 𝛾 ⊂ Õ and 𝜂 ⊂ Σ̂ be, respectively, a 𝜌hyp-geodesic segment and a simple 𝜌-geodesic
segment, such that both segments have the same endpoints 𝜕𝛾 = 𝜕𝜂. Suppose that at least one of the
following holds:

(a) ℎ𝛾(𝜂) > 1, or
(b) 𝓁hyp(𝛾) < 𝜖 and ℎ𝛾(𝜂) > 50𝜖.

Then there is g ∈ Γ ⧵ Id such that 𝜂 and g𝜂 transversely intersect at least twice.

Remark. It follows by a limiting argument and Lemma 5.3 that, if we replace the “max” in the
definition of ℎ𝛾(𝜂) by a “sup,” then the lemma also holds when 𝛾 and 𝜂 are a complete 𝜌hyp-
geodesic and a complete simple 𝜌-geodesic which have the same endpoints in 𝜕∞Õ, the boundary
at infinity of Õ. To see that this is the case parametrize 𝜂 ∶ ℝ → Σ̂, let 𝛾𝑛 be the 𝜌hyp-geodesic
segment with endpoints 𝜂(−𝑛) and 𝜂(𝑛), set 𝜂𝑛 = 𝜂([−𝑛, 𝑛]), and note that

ℎ𝛾(𝜂) ⩽ lim inf
𝑛→∞

ℎ𝛾𝑛(𝜂𝑛).

It thus follows from the lemma that if ℎ𝛾(𝜂) > 1, then there are 𝑛 > 0 and g ∈ Γ ≠ Id such that
𝜂𝑛 and g𝜂𝑛 transversely intersect at least twice. This means a fortiori that 𝜂 and g𝜂 also meet
transversely at least twice.

Proof. Starting with the proof of Lemma 5.3, suppose that 𝛾 and 𝜂 satisfy one of the two possible
conditions in the statement. As a first observation note that if 𝛾 and 𝜂 satisfy (a) (respectively, (b))
and meet in a point other than in their end points, then there are subsegments 𝛾′ ⊂ 𝛾 and 𝜂′ ⊂ 𝜂

with 𝜕𝛾′ = 𝜕𝜂′, which still satisfy (a) (respectively, (b)) and such that 𝛾′ and 𝜂′ meet only at their
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80 ERLANDSSON and SOUTO

F IGURE 5 Proof of Claim 1

endpoints. This means that we can assume without loss of generality that the loop obtained by
concatenating 𝛾 and 𝜂 is simple. Or said differently that 𝛾 and 𝜂 bound a disk Δ in ℍ2.

Claim 1. There are a 𝜌hyp-geodesic segment �̄� and a subsegment 𝜂 ⊂ 𝜂 satisfying the following
properties.

(1) The two segments �̄� and 𝜂 have the same endpoints and disjoint interiors.
(2) The pair (�̄�, 𝜂) satisfies one of the two conditions (a) and (b) in the statement of the lemma.
(3) The disk Δ̄ with boundary �̄� ∪ 𝜂 contains a point 𝑝 ∈ sing(Γ) ∩ Δ̄ with 𝑑hyp(𝑝, �̄�) = ℎ�̄�(𝜂).

We suggest that at first, instead of studying the proof of the claim, the reader spends some time
looking at Figure 5.

Proof of Claim 1. If the disk Δ bounded by the concatenation of 𝛾 and 𝜂 satisfies (3), then we
have nothing to prove. If this is not the case, then we will find a hyperbolic geodesic segment 𝛾′
and a subsegment 𝜂′ ⊂ 𝜂 satisfying (1) and (2), and such that 𝜂′ is at least 𝜖-shorter than 𝜂, that
is, 𝓁𝜌(𝜂′) ⩽ 𝓁𝜌(𝜂) − 𝜖. Now, if the disk Δ′ associated to 𝛾′ and 𝜂′ satisfies (3), then we are done.
Otherwise we iterate our procedure. But this process can only be repeated finitely many times
because at each step we lose a definite amount of length, and the length of the original segment
𝜂 is finite.
Let us see howwe find 𝛾′ and 𝜂′.We start by taking a point𝑝 ∈ sing(Γ) such that the 𝛾-outgoing

ray 𝜎 at 𝑝meets 𝜂 and with 𝑑hyp(𝑝, 𝛾) = ℎ𝛾(𝜂). Note that Lemma 5.2 implies that all intersections
of 𝜎 and 𝜂 happen in the annulus 𝐵hyp(𝑝, 𝜖) ∩ Σ̂ = 𝐵hyp(𝑝, 𝜖) ⧵ 𝐵hyp(𝑝, 𝛿). Since the outgoing ray
𝜎 intersects 𝜂 and we are assuming that 𝑝 ∉ Δ, 𝜎 must intersect 𝜂 at least twice. We deduce that
there is a closed subsegment

𝛾′ ⊂ 𝜎 ∩ (𝐵hyp(𝑝, 𝜖) ∩ Σ̂)

with 𝛾′ ∩ 𝜂 = 𝜕𝛾′. Let 𝜂′ ⊂ 𝜂 be the subsegment of 𝜂 bounded by 𝜕𝛾′ ⊂ 𝜂.
By construction the pair 𝛾′, 𝜂′ satisfies (1). Moreover, since 𝜂 has to travel at least distance 49𝜖

to go from 𝛾 to 𝐵hyp(𝑝, 𝜖) and since the metrics 𝜌 and 𝜌hyp agree on 𝐵hyp(𝑝, 50𝜖) ⧵ 𝐵hyp(𝑝, 𝛿), we
get that

𝓁𝜌(𝜂
′) ⩽ 𝓁𝜌(𝜂) − 98𝜖,

which beats our established goal of reducing the length by 𝜖 by a proud 97𝜖. It just suffices to prove
that the pair (𝛾′, 𝜂′) satisfies (2), meaning that one of the conditions (a) or (b) holds. Actually, we
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COUNTING CURVES ON ORBIFOLDS 81

are going to argue that they satisfy (b). First, 𝛾′ is shorter than 𝜖 by construction. It thus suffices
to check that ℎ𝛾′(𝜂′) > 50𝜖. By Lemma 5.2 it suffices to prove that 𝜂′ exitshyp(𝛾

′, 51𝜖), or even
better, that it exits the ball 𝐵hyp(𝑝, 52𝜖). Indeed, since 𝜂′ has both endpoints in 𝜎, a hyperbolic ray
emanating from 𝑝, since 𝜂′ is contained in 𝜂, a simple geodesic which exists 𝐵hyp(𝑝, 52𝜖) in both
directions, and since the metrics 𝜌 and 𝜌hyp agree by construction on 𝐵hyp(𝑝, 52𝜖) ⧵ 𝐵𝑝(2𝛿, 𝑑hyp),
we get fromLemma 2.1 that 𝜂′ cannot be contained in𝐵hyp(𝑝, 52𝜖).We have proved the claim. □

Continuing with the proof of Lemma 5.3 and with notation as in Claim 1, choose g ∈ StabΓ(𝑝)

with rotation angle 𝜃 ∈ [2𝜋
3
, 4𝜋

3
]. Note that such g always exists.

Claim 2. We have g±1(�̄�) ∩ Δ̄ = ∅.

Proof of Claim 2. Suppose first that the pair (�̄�, 𝜂) satisfies (a), meaning that

𝑑hyp(𝑝, �̄�) = ℎ�̄�(𝜂) > 1.

A computation using standard hyperbolic trigonometry implies that

𝑑hyp(�̄�, g
±1�̄�) = 2 cosh−1

(√
3

2
cosh(𝑑hyp(𝑝, �̄�))

)
⩾

3

2
𝑑hyp(𝑝, �̄�) > ℎ�̄�(𝜂) + 𝜖.

The claim follows thus because Δ̄ ⊂ hyp(�̄�, ℎ�̄�(𝜂) + 𝜖) byLemma5.2.We are done if the pair (�̄�, 𝜂)
satisfies (a). Suppose now that it satisfies (b) and let 𝑝∗ be projection of 𝑝 to �̄�. Now, either again
a hyperbolic geometry computation, or just plainly comparing with the comparison euclidean
triangle one gets that

𝑑hyp(𝑝
∗, g±1𝑝∗) ⩾

√
3 ⋅ 𝑑hyp(𝑝, 𝑝

∗) ⩾
√
3 ⋅ ℎ�̄�(𝜂) > ℎ�̄�(𝜂) + 3𝜖.

Again the claim follows from Lemma 5.2. □

We are now ready to conclude the proof of the lemma. First note that

gΔ̄ ∩ Δ̄ ≠ ∅,

because g𝑝 = 𝑝. Since gΔ̄ can neither be contained in Δ̄ nor contain Δ̄, we deduce that |g(𝜕Δ̄) ∩
𝜕Δ̄| ⩾ 2. Since 𝜕Δ̄ = �̄� ∪ 𝜂, we get from Claim 2 that

g �̄� ∩ (𝜕Δ̄) = ∅ and �̄� ∩ g(𝜕Δ̄) = ∅.

It follows that g(𝜕Δ̄) ∩ (𝜕Δ̄) = g𝜂 ∩ 𝜂 and hence that |g𝜂 ∩ 𝜂| ⩾ 2. The lemma then follows
because 𝜂 ⊂ 𝜂. □

6 PROOF OF PROPOSITION 3.3

We are now finally ready to prove the remaining proposition.

 20524986, 2022, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.12043 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [09/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



82 ERLANDSSON and SOUTO

Proposition 3.3. Let O be as in the statement of Theorem 1.2, Σ̂ as in (2.1), and 𝜌 the metric on
Σ̂ constructed in Section 2.7. There exists 𝐴 ⩾ 1 such that any unit speed 𝜌-geodesic 𝛼 ∶ ℝ → Σ̂

which is (1) a quasigeodesic in (Õ, 𝜌hyp) and (2) as simple as possible is actually 𝐴-quasigeodesic in
(Õ, 𝜌hyp).

Proof. Note first that compactness of Σ̂∕Γ, together with Γ-invariance of the metric 𝜌, implies that
the inclusion (Σ̂, 𝜌) ↪ (Õ, 𝜌hyp) is locally𝐴0-bi-Lipschitz for some𝐴0. It follows in particular that
for all 𝑠, 𝑡 ∈ ℝ we have

𝐴0 ⋅ |𝑠 − 𝑡| ⩾ 𝑑hyp(𝛼(𝑠), 𝛼(𝑡)). (6.1)

The remaining of the proof is devoted to showing that the other inequality in the definition of
quasigeodesic holds for some constant independent of the concrete 𝛼.
As a first step we choose a Γ-invariant triangulation  of Õ whose edges  are 𝜌hyp-geodesic

segments of length at most 𝜖. Consider the set

 = {simplices of  contained inhyp(sing(Γ), 60𝜖)}

and let || = ∪𝜎∈𝜎 ⊂ Õ be the union of all those simplexes. Let also

 = {edges of  contained in the closure of Õ ⧵ ||},
and let || = ∪𝑒∈𝑒 ⊂ Õ be the graph obtained by taking the union of all the edges of  which
are disjoint of the interior of ||. Note that the elements in  are not only 𝜌hyp-geodesic but also
𝜌-geodesic because the metrics 𝜌 and 𝜌hyp agree away from a very small neighborhood of sing(Γ).
Note also that compactness of O = Õ∕Γ and Γ-invariance of  imply that there is 𝐶 such that the
following holds for all 𝑝 ∈ Õ.

(a) Less than 𝐶 elements of  intersect the ball 𝐵hyp(𝑝, 4).

We care about all of this because we will estimate the 𝜌-length of subsegments of 𝛼 as in the state-
ment of Proposition 3.3 in terms of the number of edges in  that they meet. The key observation
is that, since 𝛼 as in the statement is as simple as possible and hence also simple, and since it
cannot spend infinite time in any single ball since it is quasigeodesic, we get from Lemma 2.1 that
there is some 𝐷 > 𝜖 such that:

(b) if 𝛼 ∶ ℝ → Õ is as in the statement of the proposition and if [𝑠, 𝑡] ⊂ ℝ is such that 𝛼[𝑠, 𝑡] ∩|| = ∅, then |𝑠 − 𝑡| < 𝐷.

We get from (b) that a geodesic 𝛼 as in the statement never spends much time without meeting
one of the edges in  .We prove next that once such an𝛼 ∶ ℝ → Σ̂ leaves 𝑒 ∈  , it never comes back
to 𝑒. Indeed, suppose that 𝑠 < 𝑡 are such that 𝛼(𝑠), 𝛼(𝑡) ∈ 𝑒 for some 𝑒 ∈  . Denote by 𝛾 the subseg-
ment of 𝑒 between𝛼(𝑠) and𝛼(𝑡) and let 𝜂 = 𝛼[𝑠, 𝑡].We claim first that 𝜂 ⊂ hyp(𝛾, 55𝜖). Otherwise
we get from Lemma 5.2 that ℎ𝛾(𝜂) > 50𝜖 and then from Lemma 5.3 that there is g ∈ Γ such that|𝜂 ∩ g𝜂| ⩾ 2, contradicting the assumption that 𝛼 is as simple as possible. We have thus proved
that 𝜂 ⊂ hyp(𝛾, 55𝜖). But noting that hyp(𝛾, 55𝜖) ⊂ hyp(𝑒, 55𝜖) ⊂ Σ̂ is contractible and that
both metrics 𝜌 and 𝜌hyp agree thereon, we deduce that 𝛾 = 𝜂 because both are geodesic segments
with the same endpoints. We have established the following key fact.
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COUNTING CURVES ON ORBIFOLDS 83

(c) If𝛼 ∶ ℝ → Õ is as in the statement of the proposition and if 𝑠 < 𝑡 ∈ ℝ are such that𝛼(𝑠), 𝛼(𝑡) ∈
𝑒 for some 𝑒 ∈  , then 𝛼[𝑠, 𝑡] ⊂ 𝑒.

The reader surely can at this point imagine how (b) and (c) interplay, but might still be wonder-
ing whywe bothered to state (a) at all. Well, the reason is coming. Still assuming that 𝛼 ∶ ℝ → Σ̂ is
a 𝜌-geodesic as in the statement, suppose that 𝑠, 𝑡 ∈ ℝ are such that 𝑑hyp(𝛼(𝑠), 𝛼(𝑡)) ⩽ 4, let 𝛾 ⊂ Õ

be the 𝜌hyp-geodesic segment joining 𝛼(𝑠) and 𝛼(𝑡), and finally let 𝑝 be the midpoint of 𝛾. Since 𝛼
is as simple as possible, we get from Lemma 5.3 that ℎ𝛾(𝛼[𝑠, 𝑡]) ⩽ 1. Lemma 5.2 yields then that

𝛼([𝑠, 𝑡]) ⊂ hyp(𝛾, 1 + 𝜖) ⊂ 𝐵hyp(𝑝, 4).

We thus get from (a) that 𝛼[𝑠, 𝑡]meets at most 𝐶 elements of  , and from (c) that, if we cut 𝛼[𝑠, 𝑡]
at all the points where we enter an element of  , then we produce at most 𝐶 + 1 segments. Since
all of them have at most length 𝐷 by (b), we obtain:

(d) If 𝛼 ∶ ℝ → Õ is as in the statement of the proposition and if 𝑠, 𝑡 ∈ ℝ are such that
𝑑hyp(𝛼(𝑠), 𝛼(𝑡)) ⩽ 4, then |𝑠 − 𝑡| ⩽ (𝐶 + 1) ⋅ 𝐷.

We are almost at the end of the proof of the proposition. Recalling that 𝛼 as in the statement of
the proposition is a quasigeodesic, let 𝛾 ⊂ Õ be the hyperbolic geodesic with the same endpoints
as 𝛼, and let

𝜋 ∶ ℍ2 → 𝛾

be the nearest point projection. From Lemma 5.3, or rather from the comment following the said
lemma, we get that ℎ𝛾(𝛼(ℝ)) ⩽ 1. Lemma 5.2 implies that 𝑑hyp(𝛼(𝑠), 𝜋(𝛼(𝑠)) ⩽ 1 + 𝜖 for all 𝑠. Now,
if we have 𝑠, 𝑡 ∈ ℝ with 𝑑hyp(𝜋(𝛼(𝑠)), 𝜋(𝛼(𝑡))) = 1, we get 𝑑hyp(𝛼(𝑠), 𝛼(𝑡)) ⩽ 3 + 2𝜖 < 4. We thus
get from (d) that:

(e) if 𝛼 ∶ ℝ → Õ is as in the statement of the proposition, if 𝛾 is the 𝜌hyp-geodesic at bounded
distance of 𝛼, and if 𝜋 ∶ Õ → 𝛾 is the nearest point projection, then we have

|𝑠 − 𝑡| ⩽ (𝐶 + 1) ⋅ 𝐷
def
= 𝐴1

for all 𝑠, 𝑡 ∈ ℝ with 𝑑hyp(𝜋(𝛼(𝑠)), 𝜋(𝛼(𝑡))) ⩽ 1.

Now, if we have 𝑠 < 𝑡 ∈ ℝ arbitrary let 𝑠0 = 𝑠 and, as long as 𝑠𝑘 < 𝑡, define iteratively 𝑠𝑘+1 > 𝑠𝑘 as
follows:

∙ If 𝑑hyp(𝜋(𝛼(𝑠𝑘)), 𝜋(𝛼(𝑡))) < 1, then set 𝑠𝑘+1 = 𝑡.
∙ Else 𝑠𝑘+1 = max{𝑠′ ∈ [𝑠, 𝑡] with 𝑑hyp(𝜋(𝛼(𝑠𝑘)), 𝜋(𝛼(𝑠

′))) = 1}.

In this way we get a sequence

𝑠 = 𝑠0 < 𝑠1 < 𝑠2 < … < 𝑠𝑁−1 < 𝑠𝑁 = 𝑡,

where 𝑁 satisfies

𝑑hyp(𝜋(𝛼(𝑠)), 𝜋(𝛼(𝑡))) ⩾ 𝑁 − 1.
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On the other hand, we get from (e) that |𝑠𝑘 − 𝑠𝑘+1| ⩽ 𝐴1. This means that

𝑁 ⩾
|𝑠 − 𝑡|
𝐴1

.

Taking all of this together we have that for any 𝛼 ∶ ℝ → Σ̂ as in the statement of the Proposition,
we will have

𝑑hyp(𝛼(𝑠), 𝛼(𝑡)) ⩾ 𝑑hyp(𝜋(𝛼(𝑠)), 𝜋(𝛼(𝑡))) ⩾
|𝑠 − 𝑡|
𝐴1

− 1 (6.2)

for all 𝑠, 𝑡 ∈ ℝ.
The claim follows then from (6.1) and (6.2) with 𝐴 = max{𝐴0, 𝐴1, 1}. □
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