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Abstract: Recent studies proposed the use of Total Correlation to describe functional connectivity
among brain regions as a multivariate alternative to conventional pairwise measures such as correla-
tion or mutual information. In this work, we build on this idea to infer a large-scale (whole-brain)
connectivity network based on Total Correlation and show the possibility of using this kind of
network as biomarkers of brain alterations. In particular, this work uses Correlation Explanation
(CorEx) to estimate Total Correlation. First, we prove that CorEx estimates of Total Correlation and
clustering results are trustable compared to ground truth values. Second, the inferred large-scale
connectivity network extracted from the more extensive open fMRI datasets is consistent with existing
neuroscience studies, but, interestingly, can estimate additional relations beyond pairwise regions.
And finally, we show how the connectivity graphs based on Total Correlation can also be an effective
tool to aid in the discovery of brain diseases.

Keywords: Total Correlation; CorEx; fMRI; functional connectivity; large-scale connectome; biomarkers

1. Introduction

The human brain is a complex system comprised of interconnected functional units.
Millions of neurons in the brain interact with each other at both a structural and functional
level to drive efficient inference and processing in the brain. Furthermore, the functional
connectivity among these regions also reveals how they interact with each other in specific
cognitive tasks. Functional connectivity refers to the statistical dependency of activation
patterns between various brain regions that emerges as a result of direct and indirect
interactions [1,2]. It is usually measured by how similar neural time series are to each other,
and it shows how the time series statistically interact with each other.

A variety of ways to analyze functional connectivity exist. A seedwise analysis can be
performed by selecting a seed-driven hypothesis and analyzing its statistical dependencies
with all other voxels outside its limits. It is a common tool for studying how different
parts of the brain are connected to one another. Connectivity is determined by calculating
the correlation between the time series of each voxel in the brain and the time series of
a single seed voxel. Another option is to perform a wide analysis of the voxel or Region
Of Interest (ROI), where statistical dependencies on all voxels or ROIs are studied [3].
Structural connectivity refers to the anatomical organization of the brain by means of
fiber tracts [4]. The sharing of communication between neurons in multiple regions is
coordinated dynamically via changes in neural oscillation synchronizations [5]. When it
comes to the brain connectome, functional connectivity refers to how different areas of the
brain communicate with one another during task-related or resting-state activities [6]. The
use of information-theoretic metrics can efficiently detect their interaction in dynamical
brain networks, and it is widely used in the field of neuroscience [7], for instance to
quantify information encoding and decoding in the neural system [8–11], measure visual
information flow in the biological neural networks [12,13] and color information processing
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in the neural cortex [14], and so on. However, although functional connectivity has already
become a hot research topic in neuroscience [15,16], systematic studies on the information
flow or the redundancy and synergy amongst brain regions remain limited. One extreme
type of redundancy is full synchronization, where the state of one neural signal may be
used to predict the status of any other neural signal, and this concept of redundancy is thus
viewed as an extension of the standard notion of correlation to more than two variables [17].
Synergy, on the other hand, is analogous to those statistical correlations that govern the
whole, but not its constituent components [18]. High-order brain functions are assumed
to require synergies, which give simultaneous local independence and global cohesion,
but are less suitable for them under high synchronization situations, such as epileptic
seizures [19]. Most functional connectivity approaches until now have mainly concentrated
on pairwise relationships between two regions. The conventional approach used to estimate
indirect functional connectivity among brain regions is the Pearson Correlation (CC) [20]
and Mutual Information (I) [8,21–23]. However, real brain network relationships are often
complex, involving more than two regions, and the pairwise dependencies measured by
correlation or mutual information cannot reflect these multivariate dependencies. Therefore,
recent studies in neuroscience focus on the development of information-theoretic measures
that can handle more than two regions simultaneously such as Total Correlation [24,25].

Total Correlation (TC) [26] (also known as multi-information [27–29]) mainly describes
the amount of dependence observed in the data and, by definition, can be applied to
multiple multivariate variables. Its use to describe functional connectivity in the brain was
first proposed as an empirical measure in [24], but in [25], the superiority of TC over mutual
information was proven analytically. The consideration of low-level vision models allows
deriving analytical expressions for TC as a function of the connectivity. These analytical
results show that pairwise I cannot capture the effect of different intra-cortical inhibitory
connections, while TC can. Similarly, in analytical models with feedback, synergy can be
shown using TC, while it is not so obvious using mutual information [25]. Moreover, these
analytical results allow calibrating computational estimators of TC.

In this work, we build on these empirical and theoretical results [24,25] to infer a
larger-scale (whole-brain) network based on TC for the first time. As opposed to [24,25],
where the number of considered nodes was limited to the range of tens and focused
on specialized subsystems, here, we consider wider recordings [30,31], so we use signals
coming from hundreds of nodes across the whole brain. Additionally, we apply our analysis
to data of the same scale for regular and altered brains (http://fcon_1000.projects.nitrc.
org/indi/ACPI/html/ accessed on 12 March 2021). We also show the possibility of using
this kind of wide-range networks as biomarkers. From the technical point of view, here,
we use Correlation Explanation (CorEx) [32,33] to estimate TC in these high-dimensional
scenarios. Furthermore, graph theory and clustering [15,16] are used here to represent the
relationships between the considered regions.

The rest of this paper is organized as follows: Section 2 introduces the necessary
information-theoretic concepts and explains CorEx. Sections 3 and 4 show two synthetic
experiments that prove that the CorEx results are trustable. Section 5 estimates the large-
scale connectomes with fMRI datasets that involve more than 100 regions across the whole
brain. Moreover, we show how the analysis of these large-scale networks based on TC may
indicate brain alterations. Sections 6 and 7 give a general discussion and the conclusion of
the paper, respectively.

2. Total Correlation as Neural Connectivity Descriptor
2.1. Definitions and Preliminaries

Mutual Information: Given two multivariate random variables X1 and X2, the mutual
information between them, I(X1; X2), can be calculated as the difference between the sum

http://fcon_1000.projects.nitrc.org/indi/ACPI/html/
http://fcon_1000.projects.nitrc.org/indi/ACPI/html/
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of individual entropies, H(Xi), and the entropy of the variables considered jointly as a
single system, H(X1, X2) [34]:

I(X1; X2) = H(X1) + H(X2)−H(X1, X2) (1)

where, for each (multivariate) random variable v, the entropy is H(v) = 〈− log2 p(v)〉
and the brackets represent expectation values spanning random variables. The mutual
information also can be seen as the information shared by the two variables or the reduction
of uncertainty in one variable given the information about the other [35].

Mutual information is better than linear correlation: For Gaussian sources, mutual
information reduces to linear correlation because the entropy factors in Equation (1) just
depend on |〈X1 ·X>2 〉|. However, for more general (non-Gaussian) sources, mutual informa-
tion cannot be reduced to covariance and cross-covariance matrices. In these (more realistic)
situations, I is better than the linear correlation because I captures nonlinear relations that
are ruled out by |〈X1 · X>2 〉|. For an illustration of the qualitative differences between I and
linear correlation, see the examples in Section 2.2 of [24].

As a result, mutual information has been proposed as a good alternative to linear
correlation for estimating functional connectivity [8,21]. However, mutual information
cannot capture dependencies beyond pairs of nodes. This may be a limitation in complex
networks [36].

Total Correlation: This magnitude describes the dependence among n variables, and
it is a generalization of the mutual information concept from two parties to n parties. The
Venn diagram in Figure 1 qualitatively illustrates this for three variables. The definition of
Total Correlation from Watanabe [26] can be denoted as:

Figure 1. Conceptual scheme of information-theoretic measures of neural information flow. The left
circle areas represent the amounts of information, and intersections represent shared information
among the corresponding variables, X0, X1, X2. Examples of entropy, H(X0), H(X1), H(X2), Total
Correlation (red color), and TC[X0, X1, X2] are given. The middle figures show some neural time
series extracted from brain regions, which correspond to the nodes in the right figure. The right figures
illustrate large-scale time series in the brain and how the coupled information is transmitted among
the brain regions. The blue and green lines show Linear Correlation (CC) and Mutual Information
(I), respectively, between different parts of the brain. The modules represent the lobes of the human
brain. Each module has specific brain regions, and each module works with the others.

TC(X1, . . . , Xn) ≡
n

∑
i=1

H(Xi)−H(X1, . . . , Xn) = DKL

(
p(X1, . . . , Xn)‖

n

∏
i=1

p(Xi)

)
(2)

where X ≡ (X1, . . . , Xn) and TC can also be expressed as the Kullback–Leibler divergence,
DKL, between the joint probability density and the product of the marginal densities. From
these definitions, if all variables are independent, then TC will be zero.

For the conditional Total Correlation, which is similar to the definition of Total Cor-
relation, but with a condition appended to each term, the Kullback–Leibler divergence of
the two conditional probability distributions can also be used to define the conditional
Total Correlation. The estimation method used in this work (CorEx presented in the next
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subsection) uses TC after conditioning on some other variable Y, which can be defined
as [34]:

TC(X|Y) = ∑
i

H(Xi|Y)− H(X|Y) = DKL(p(x|y)‖
n

∏
i=1

p(xi|y)) (3)

Total Correlation is better than mutual information: This superiority is not only due
to the obvious n-wise versus pairwise definitions in Equations (1) and (2). It also has to do
with the different properties of these magnitudes. To illustrate this point, let us recall one
of the analytical examples in [25]. Consider the following feedforward network:

X1 −→ X2 −→ e
f−→ X3 (4)

where the nodes X1, X2, e, and X3 can have any number of neurons, the first two trans-
forms, X1 −→ X2 −→ e, are linear and affected by additive noise, and the last transform,
f (·), is nonlinear, but deterministic. Imagine that, in this network, one is interested in
the connectivity between the neurons in the hidden layer, e; however, the nonlinear func-
tion f (·) is unknown, and one only has experimental access to the signal in the regions
X1, X2, and X3. In this situation, one could think of measuring I(X1, X3) = I(X1, f (e))
or I(X2, X3) = I(X1, f (e)). However, the invariance of I under arbitrary nonlinear re-
parametrization of the variables [35] implies that these measures are insensitive to f and
the connectivity therein. On the contrary, as pointed out in [25], using the expression
for the variation of TC under nonlinear transforms [13,37], the variation of H under non-
linear transforms [34], and the definition in Equation (2), one obtains TC(X1, X2, X3) =
[TC(X1, X2, e)− TC(e)] + TC(X3), where the term in the bracket does not depend on f (·),
but the last term definitely does, which proves the superiority of TC over I in describing
connectivity.

In [25], the network in Equation (4) specifically refers to the flow from the retina, X1,
to the LGN, X2, and finally, to the visual cortex, e and X3. However, the result of the
superiority of TC over I to describe the connectivity in the hidden layer is totally general
for every network with the generic properties listed after Equation (4).

2.2. Total Correlation Estimated from CorEx

Straightforward application of the direct definition of TC is not feasible in high-
dimensional scenarios, and alternatives are required [28,29]. A practical approach to
estimate Total Correlation is via latent factor modeling. A latent factor model is a statistical
model that relates a set of observable variables to a set of latent variables. The idea is to
explicitly construct latent factors, Y, that somehow capture the dependencies in the data. If
we measure dependencies via Total Correlation, TC(X), then we say that the latent factors
explain the dependencies if TC(X|Y) = 0. We can measure the extent to which Y explains
the correlations in X by looking at how much Total Correlation is reduced:

TC(X)− TC(X|Y) =
n

∑
i=1

I(Xi; Y)− I(X; Y) (5)

Total Correlation is always non-negative, and the decomposition on the right in terms
of mutual information can be verified directly from the definitions. Any latent factor model
can be used to lower-bound Total Correlation, and the terms on the right-hand side of
Equation (5) can be further lower-bounded with tractable estimators using variational
methods; Variational Autoencoders (VAEs) are a popular example [38].

Although latent factor models do not give a direct Total Correlation estimation as the
Rotation-based Iterative Gaussianization (RBIG) [28,29] and the matrix-based Rényi en-
tropy [39] did, the approach can be complementary because the construction of latent factors
can help in dealing with the curse of dimensionality and for interpreting the dependencies
in the data. Compared to CorEx, the main goal of (RBIG https://isp.uv.es/RBIG4IT.htm (ac-

https://isp.uv.es/RBIG4IT.htm
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cessed on 12 October 2022)) is to convert any non-Gaussian-distributed data into a Gaussian
distribution through marginal Gaussianization and rotation to obtain TC. The matrix-based
Rényi entropy (http://www.cnel.ufl.edu/people/people.php?name=shujian (accessed on
12 October 2022)) is mainly used for estimating multivariate information based on Shan-
non’s entropy, which is Rényi’s α-order entropy [40]. With these goals in mind, we now
describe a particular latent factor approach known as Total Correlation Explanation (CorEx
(https://github.com/gregversteeg/CorEx) (accessed on 12 October 2022)) [32].

CorEx constructs a factor model by reconstructing latent factors using a factorized prob-
abilistic function of the input data, p(y|x) = ∏m

j=1 p(yj|x), with m discrete latent factors, Yj.
This function is optimized to give the tightest lower bound possible for Equation (5).

TC(X) ≥ max
p(Yj |x)

n

∑
i=1

I(Xi; Y)− I(X; Y) =
m

∑
j=1

(
n

∑
i=1

αi,j I(Xi; Yj)− I(Yj; X)

)
(6)

The factorization of the latent factors leads to the terms I(X; Y) = ∑j I(Yj; X), which
can be directly calculated. The term I(Xi; Y) is still intractable and is decomposed using
the chain rule into I(Xi; Y) ≈ ∑ αi,j I(Xi; Yj). Each I(Xi; Yj) can then be tractably esti-
mated [32,33]. There are free parameters αi,j that must be updated while searching for
latent factors and achieving objective functions. When t = 0, the αi,j initializes and then
updates according to:

αt+1
i,j = (1− λ)αt

i,j + λα∗∗i,j (7)

The second term α∗∗i,j = exp
(
γ
(

I
(
Xi : Yj

)
−maxj I

(
Xi : Yj

)))
, and λ and γ are con-

stant parameters. This decomposition allows us to quantify the contribution to the Total
Correlation bound from each latent factor, which can aid interpretability.

CorEx can be further extended into a hierarchy of latent factors [33], helping to reveal
the hierarchical structure that we expect to play an important role in the brain. The latent
factors at layer k explain the dependence of the variables in the layer below.

TC(X) ≥
r

∑
k=1

(
m

∑
j=1

(
n

∑
i=1

αk
i,j I(Y

k−1
i ; Yk

j )−
m

∑
j=1

I(Yk
j ; Yk−1)

))
(8)

Here, k gives the layer and Y0 ≡ X denotes the observed variables. Ultimately, we
have a bound on TC that becomes tighter as we add more latent factors and layers and
for which we can quantify the contribution for each factor to the bound. We exploit this
decomposition for interpretability [41], as illustrated in Figure 2. CorEx prefers to find
modular or tree-like latent factor models, which are beneficial for dealing with the curse
of dimensionality [42]. For neuroimaging, we expect this modular decomposition to be
effective because functional specialization in the brain is often associated with spatially
localized regions. We explore this hypothesis in the experiments.

http://www.cnel.ufl.edu/people/people.php?name=shujian
https://github.com/gregversteeg/CorEx
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Figure 2. CorEx learns a hierarchical latent factor as illustrated above. Edge thickness indicates
strength of the relationship between factors, and node thickness indicates how much Total Correlation
is explained by each latent factor.

3. Experiment 1: Total Correlation for Independent Mixtures

In this experiment, we estimated the Total Correlation of three independent vari-
ables X, Y, and Z, and each follows a Gaussian distribution. For this setup, the ground
truth of TC should satisfy TC(X, Y, Z) = 0, and we generated various samples with
different lengths. Then, the estimated Total Correlation values are shown in Figure 3.
Here, we compared CorEx with other different Total Correlation estimators, such as
RBIG [28,29], matrix-based Rényi entropy [39], Shannon discrete entropy (https://github.
com/nmtimme/Neuroscience-Information-Theory-Toolbox accessed on 12 October 2022),
and the ground truth. The left figure (2-dimensional) is mutual information, and the
middle (3-dimensional) and right figure (4-dimensional) are Total Correlation. As we
mentioned above, the simulation data are totally Gaussian-distributed. Therefore, their
dependency should be zero. We find that CorEx and RBIG both perform very well and
are very stable, and matrix-based Rényi entropy’s performance becomes more and more
nice with increased dimensions, while Shannon discrete entropy becomes more and more
accurate with an increase of the samples. All these make sense, and it also explains the
accuracy of Total Correlation estimation with CorEx. Here, compared to other estimators,
the main functionality goal of CorEx is to cluster statistical dependency variables based on
Total Correlation. However, other estimators mainly focus on directly obtaining the Total
Correlation value and do not supply very nice visualization results. The CorEx gives us a
nice connection with graph theory to visualize and show their functional relationship.

Figure 3. The estimated Total Correlation values for three independent variables. The various Total
Correlation estimators are compared with the ground truth value (red line), for example matrix-based
Rényi entropy (black line), Shannon discrete entropy (cyan line), RBIG (magenta line), and CorEx
(green line). See the main text for more information.

4. Experiment 2: Clustering by Total Correlation for Dependent and
Independent Mixtures

To evaluate the performance of CorEx in clustering tasks. The elements in group X
include X1, X2, and X3, which satisfy Gaussian distributions and are completely indepen-
dent of each other and of group Y, and the variables in group Y include Y1, Y2 from Y1,

https://github.com/nmtimme/Neuroscience-Information-Theory-Toolbox
https://github.com/nmtimme/Neuroscience-Information-Theory-Toolbox
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and Y3 from Y2, which are connected to each other. Then, we compared the CorEx cluster
results with the pairwise Pearson correlation, pairwise mutual information, and partial
correlation, which consider confounding effects to find the groups.

In Figure 4, we find that CorEx based on Total Correlation has high accuracy in estimat-
ing their dependencies (Figure 4e) compared to pairwise Pearson correlation (Figure 4b),
pairwise mutual information (Figure 4c), and partial correlation (Figure 4d). As we es-
tablished in this experiment, the elements in group Y should be clustered together, and
the elements in group X should be completely independent of each other and of group Y.
The ground truth is presented in Figure 4a. Then, we estimated the cluster result with the
pairwise Pearson correlation with a threshold of 0.1, pairwise mutual information with
a threshold of 0.4, and partial correlation without a threshold. Obviously, we found that
pairwise approaches have high errors in accurately estimating their statistical dependencies,
and pairwise mutual information is better than pairwise Pearson correlation, but still has
high errors in correctly clustering tasks. When we considered the confounding effect of the
third variables, we still did not obtain a better clustering result compared to TC. Therefore,
the clustering results with CorEx by Total Correlation obtain the best performance com-
pared to pairwise approaches. Moreover, we used purity as a criterion of clustering quality
to qualify the performance of clustering because it is a straightforward and transparent
evaluation metric [43]. To calculate purity, each cluster is allocated to the class that occurs
most frequently within it, and the accuracy of this assignment is determined by counting
the number of correctly assigned elements and dividing by N(N = 6). Formally:

Purity(X, Y) =
1
N ∑

i
max

j

∣∣Xi ∩Yj
∣∣ (9)

where X = {X1, X2, X3} is the set of clusters and Y = {Y1, Y2, Y3} is the set of classes.
Figure 4f presents the clustering performance of pairwise approaches and CorEx with
purity as a criterion. Poor clusters have near-zero purity ratings (lower bound). A perfect
cluster possesses a purity of one (maximum value). Based on Equation (9), we obtain purity
values of 0.17 and 0.33 for pairwise approaches and partial correlation, and the purity value
for CorEx is 0.83. All in all, we show that CorEx based on Total Correlation has the best
performance compared to pairwise approaches.

Figure 4. Clustering performance for dependent and independent mixtures. The top row: (a) displays
the ground truth of variable clustering in two groups. (f) shows the purity value of each approach.
The second row: (b) shows the clustering result based on Pearson correlation. (c) shows the clustering
result by pairwise mutual information. (d) shows the clustering result by partial correlation. (e) shows
clustering results by CorEx based on Total Correlation.
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5. Experiment 3: Brain Functional Connectivity Analysis Using Total Correlation

A network is a collection of nodes and edges, where nodes represent fundamental
elements (e.g., brain regions) within the system of interest (e.g., the brain) and edges repre-
sent the dependencies that exist between those fundamental elements with the considered
weights. Typically, the threshold is chosen based on the visual effect on functional connec-
tivity, and here, we set the optimal threshold for community detection in brain connectivity
networks. We used it to identify a threshold that maximizes information on the network
modular structure, removes the weakest edges, and keeps the largest connected component.
Figure 5 illustrates the schematic representation of network construction using fMRI. Firstly,
the time series were extracted from fMRI data based on a selected structural atlas, and then,
functional connectivity was estimated with CC, I, and CorEx, respectively. The results are
presented with a graph that includes both brain nodes and their functional connectivity
with weight edges.

Figure 5. A flowchart for the construction of a functional brain network by fMRI. 1© Time series
extraction from fMRI data within each anatomical unit (i.e., network node). 2© Estimation of
functional connectivity with CC, I, and TC (CorEx), respectively. 3© Visualization of functional
connectivity as tree and circle graphs (i.e., network edges and network nodes).

5.1. First Total-Correlation-Based Clustering Example from fMRI Data

The data were taken from a resting-state fMRI experiment in which a subject was
watching and maintaining alert wakefulness, but not performing any other behavioral
task. Meanwhile, the BOLD signal was recorded. These data were downloaded from
Nitime (https://nipy.org/nitime/index.html accessed on 12 October 2022). The data were
preprocessed, and time series were extracted from different Regions Of Interest (ROIs)

https://nipy.org/nitime/index.html
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in the brain. The ROIs’ abbreviations and related full names are listed as follows: Cau,
Caudate; Pau, Paudate; Thal, Thalamus; Fpol, Frontal pole; Ang, Angular gyrus; SupraM,
Supramarginal gyrus; MTG, Middle Temporal Gyrus; Hip, Hippocampus; PostPHG, Poste-
rior Parahippocamapl Gyrus; APHG, Anterior Parahippocamapl Gyrus; Amy, Amygdala;
ParaCing, Paracingulate gyrus; PCC, Posterior Cingulate Cortex; Prec, Precuneus; R, Right
hemisphere; L, Left hemisphere. First, we estimated the pairwise functional connectivity
metrics with Pearson correlation, mutual information, and the corresponding functional
connectivity, a circle-weighted graph used to visualize the outcome of pairwise functional
connectivity. In Figure 6, top row (left and right), Pearson correlation and mutual infor-
mation estimate the same pairwise dependencies, but later approaches capture stronger
weights between ROIs, such as LPCC and RPCC, LThal and RThal, and LAmy and RAmy.

(a)

(b)

Figure 6. Functional connectivity representation with graph-based networks. The functional connec-
tivity is represented in the cycle (a) and tree (b) graphs. Top row: the left and right figures correspond
to Pearson correlation with a threshold of 0.14 and mutual information with a threshold of 0.02,
respectively. Bottom row: the figures show the Total Correlation with a threshold of 0.16 that was
estimated by CorEx. To more directly display the statistical dependencies of brain regions, we here
converted the circle graph to a tree graph. The weights are shown by the thickness of the edges,
which shows how strongly information is coupled between or among brain regions.

Meanwhile, we also used weighted graph theory to cluster dependence among ROIs,
and we thresholded edges with a weight of less than 0.16 for legibility with the CorEx
approach. As we mentioned above, mutual information only estimates a more robust
relationship between ROIs compared to correlation. However, when we go beyond pairwise



Entropy 2022, 24, 1725 10 of 23

ROIs, CorEx captures richer information among all ROIs (see Figure 6 (bottom row)). Here,
we selected m1 = 10, m2 = 3, m3 = 1 as the latent dimension for each layer in our estimate
of TC with CorEx, and their corresponding convergent curves are plotted in Figure 7; it
shows the Total Correlation lower bound stops increasing. Figure 6 (bottom row) shows
the overall structure of the learned hierarchical model. Edge thickness is determined by
αi,j I

(
Xi : Yj

)
. The size of each node is proportional to the Total Correlation that a latent

factor explains about its children. The discovered structure captures several significant
relationships among ROIs that are consistent with correlation and mutual information
results, e.g., LPCC and RPCC, LThal and RThal, LParaCing and RParaCing, and LPut
and RPut. Furthermore, TC discovered some beyond pairwise unknown relationships;
for example, LCau, RCau, LFpol, and RFpol are clustered under Node 0, which explains
why they have dense dependency during this cognitive task compared to other ROIs in
the brain.

Figure 7. The Total Correlation convergence curve of CorEx in Layers 1, 2, and 3 is shown above.
From left to right, their corresponding Layer 1, Layer2, and Layer3 parameters are selected in event-
related experiments, and it shows that the Total Correlation lower bound stops increasing and tends
to converge.

5.2. Large-Scale Connectome with Resting-State fMRI
5.2.1. A Selection of Pre-Defined Atlas

We used the Automated Anatomical Labeling (AAL) atlas [44], a structural atlas with
116 ROIs identified from the anatomy of a reference subject (see Figure 8).

Figure 8. Automated Anatomical Labeling (AAL) atlas. The graph shows the volume of AAL
(116 regions) mapped to the smoothed Colin27 brain surface template. The different brain areas are
labeled on the brain surface with different colors, and detailed ROI/purple node information can be
found in the Appendix A with Table A1.
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5.2.2. Time Series Signals Extraction

The HCP and ACPI can access raw and preprocessed data, as well as phenotypic
information about data samples. The raw rs-fMRI data were preprocessed using the
Configurable Pipeline for the Analysis of Connectomes, an open-source software pipeline
that allows for automated rs-fMRI data preprocessing and analysis. We extracted time
series for each ROI in each subject after defining anatomical brain ROIs with the AAL atlas.
We calculated the weighted average of the fMRI BOLD signals across all voxels in each
region. Furthermore, the BOLD signal in each region was normalized and subsampled by
the repetition time. Finally, we averaged all of the subjects’ time series signals in each ROI.

5.2.3. HCP900

The Human Connectome Project contains imaging and behavioral data from healthy
people [30]. To investigate resting-state functional connectivity, we used preprocessed rest-
fMRI data from the HCP900 (https://www.humanconnectome.org/ (accessed on 12 March
2021)) release [31]. Here, we selected m1 = 10, m2 = 5, m3 = 1 as the latent dimension for
each layer in our estimate of TC with CorEx. We thresholded edges with a weight of less
than 0.16 for legibility. Figure 9 shows that whole-brain resting-state functional connectivity
is estimated with CorEx compared to Pearson correlation and mutual information. It mostly
captures relationships among brain regions, and neighboring brain regions cluster together
and communicate with other areas, e.g., Node 0 has a bigger node size than other nodes.

From Figure 9, we found that brain regions are functionally clustered together, which
is also consistent with structure connectivity based on their physical connectivity distance.
For example, under Node 0, the cerebellum and vermis regions densely cluster together,
while under Node 1, the frontal lobes cluster together and are also densely functionally
connected with the temporal lobe, and so on. The different colors indicate different brain
regions, which are based on Table A1. In addition, we can see that functional integration
and separation exist in our brain from Figure 9.

https://www.humanconnectome.org/
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(a)

(b) (c)

Figure 9. Large-scale functional connectivity with the HCP900. The functional connectivity is
represented in the tree (a) and cycle (b,c) graphs. Top row: A weighted threshold graph with a
max of 86 edges showing the overall structure of the representation learned from AAL ROIs (a
high-resolution figure is represented in the appendix with Figure 10). Edge thickness is proportional
to mutual information, and node size represents Total Correlation among children. In the node with
red color, the frontal lobe is represented, while green color represents the insula and cingulate regions,
blue color the temporal lobe, cyan color the central areas, gold color the occipital lobe, purple color
the parietal lobe, and deep pink color the cerebellum and vermis. Bottom row: Two representative
connectomes are presented in the form of a circular chord that shows the connections of all 116 nodes
with (b) correlation and (c) mutual information of the HCP dataset. Each lobe was labeled with a
different color.
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Figure 10. Functional connectivity of HCP900.
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5.2.4. Computational Psychiatry Applications with ACPI

The Addiction Connectome Preprocessed Initiative is a longitudinal study to inves-
tigate the effects of cannabis use among adults with a childhood diagnosis of ADHD. In
particular, we used readily preprocessed rest-fMRI data from the Multimodal Treatment
Study of Attention Deficit Hyperactivity Disorder (MTA).We attempted to use functional
connectivity as a bio-marker to discriminate whether individuals have consumed marijuana
or not (62 in the marijuana group vs 64 in the control group). In a comparison of whole-
brain functional connectivity between the control and patient groups, we found altered
functional connectivity in the patient group compared to the healthy group (see Figure 11).
We quantified the difference between the patient group and the healthy group, and the
purity of the patient group compared to the control group was 0.85± 0.23. The significant
altered functional connectivity happened between the frontoparietal and motor regions.
Meanwhile, we found sparse functional connectivity in the patient group compared to
the control group in general. Meanwhile, we also discovered that marijuana users had
more interaction between neural time series in particular ROIs such as the cerebellum,
frontoparietal, and default model regions than controls, e.g., cerebellum regions mainly
densely cluster around Node 0 compared to the control group. It also may explain differ-
ences in behavior in marijuana users because the frontoparietal network controls cognitive
behavior execution and decision-making, cerebellum-related action, and default model
network dysfunction in addicted users. All the above results are consistent with previous
related research [45–47]. Moreover, we found some unknown disconnect between some
visual regions and other brain areas. Based on related research [48,49], we suggest that
marijuana patients may have altered visual perception as well.
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Figure 11. Functional connectivity between healthy group and patient group. A weighted threshold graph showing the overall structure of the representation
learned from ALL ROIs. Edge thickness is proportional to mutual information, and node size represents Total Correlation among children. Here, we selected
m1 = 20, m2 = 3, m3 = 1 as the latent dimension for each layer in our estimate of TC with CorEx. (a) refers to normal people’s functional connectivity, and (b) shows
the marijuana group’s functional connectivity in the brain. Both groups were measured with a TC that used the same parameters in the model. In comparison with
the healthy group, we found less functional connectivity happened in the patient group, e.g., frontoparietal lobe and default model regions. (A high-resolution
figure is represented in the appendix with Figures 12 and 13).
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Figure 12. Functional connectivity of healthy group.
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6. Discussion

This manuscript presents a higher-order information-theoretic measure to estimate
functional connectivity. We estimated Total Correlation with CorEx under different sit-
uations. However, the approach has its own pros and cons, which we will discuss later.
Furthermore, we found that Total Correlation can be a metric to estimate functional connec-
tivity in the human brain. It can identify some well-known functional connectivities and
capture a few unknown nonlinear relationships among brain regions as well. To the best of
our knowledge, this is the first time that Total Correlation has been used to estimate larger-
scale functional connectivity for a whole-brain AAL atlas with 116 structural ROIs. Total
Correlation can also be a tool to find biomarkers to help us diagnose brain-related diseases.

Here, we discuss some advantages and limitations of this research now. Firstly, given
the curse of dimensionality of fMRI, we need to find a low-dimensional representation that
helps us characterize the connectivity. Traditional General Linear Models (GLMs), such
as expert-defined ROIs or the ALL atlas, are frequently used to find ROIs in resting-state
experiments. However, we should be able to do better with a data-driven approach. Sample
sizes and statistical thresholds are known to have a major impact on the statistical power
and accuracy of GLM-based ROI selection. Previous research has revealed that the GLM
has limited statistical power when inferring from fMRI data [50,51]. However, we used
GLM-based ROI selection in the real fMRI datasets, which may affect the final result when
we estimate functional connectivity.

Second, CorEx is model-independent, which means no anatomical or functional prior
knowledge is required to estimate the ROIs. The method is entirely data-driven; this
way, it is possible to analyze networks that have not been investigated and could be a
future extension of work. It is also possible to use Total Correlation as a pre-analysis for
other techniques such as dynamic causal modeling, which need constraints about the
underlying network [52]. What differentiates the CorEx algorithm is that it tries to break
the variables into clusters with high TC. In other words, CoRex finds a tree of latent factors
that explain Total Correlation, so this tree of clusters based on TC is a more data-driven way
to define regions and then connectivity than ROIs predefined by hand. This prioritization
of “modular” solutions in CorEx was not realized or emphasized in the original research.
The second reason why we used CorEx to estimate functional connectivity on larger-scale
fMRI datasets is that it is a clustering approach via TC. Furthermore, CorEx estimates Total
Correlation via hierarchical maximization correlation between previous layer and current
layer variables with a tight information bound that estimates a more accurate relationship
among variables in real neural signals.

Third, TC is an indirect information quantitative tool that cannot determine the direc-
tion of information flow between brain regions. Meanwhile, we discovered some unknown
functional connectivity in the real fMRI dataset before.

Fourth, given the irregularity of neural time series and the difficulties in quantifying
graph signals when brain networks are represented by graphs, we should avoid quantifying
too many graph signals. However, there is a metric called permutation entropy that gives
us the possibility to quantify the graph signal in complex systems [36]. It could be very
interesting to apply this metric to brain networks to check how much information could
be obtained from the complex graph signals, which could then help us more deeply
understand brain networks in the future. Moreover, as we mentioned the complexity of
neural time series, one of the important potential problems is the length of time series,
except for the additional dimensional problem. It is a significant challenge when you are
processing long lengths of time series, but it could be solved by transforming the time series
into embedding space or segmenting the long time series into specific time windows [53].

Finally, we applied TC to estimate large-scale functional connectivity with the real
fMRI dataset across the HCP and ACPI. The functional connectivity with the HCP900
gives us the potential to estimate a full brain atlas with TC in the future, and our result
shows that TC can capture the right functional connectivity; beyond this, it could also
give us some unknown functional connectivity. Therefore, it could be a future extension
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project. Furthermore, we used TC as a possible method to find biomarkers of brain
disease with the ACPI dataset. We compared whole-brain functional connectivity between
control and patient groups. We found altered functional connectivity in the patient group
compared to the healthy group, and we quantified this difference with purity metrics
because it is a simple and transparent evaluation measure. The purity in the patient group
compared to the control group is not too large, and it shows that there is some altered
functional connectivity in the patient group; for instance, we mentioned brain networks in
the cerebellum, frontoparietal, and default model regions. However, it was just examined
with one dataset with a small number of subjects and does not consider within-subject
variability, and it could be extended with more large datasets in the future.

7. Conclusions

We introduced Total Correlation to capture multivariate large-scale interactions within
brain regions. They were experimentally verified as effective steps for reconstructing
multivariate relationships in the brain. In this study, CorEx was adopted to estimate Total
Correlation. The CorEx approach can capture functional connectivity characteristics when
going beyond pairwise brain regions. On the other hand, we evaluated the method with
resting-state fMRI datasets. We found that multivariable relationships cannot be detected if
we use pairwise correlation and mutual information quantities only. More generally, multi-
variable relationships can be clustered only if we use Total Correlation. Therefore, Total
Correlation measures are significant to find complicated functional connectivity among
brain regions. Furthermore, we showed that Total Correlation can estimate functional
connectivity in the real neural dataset and find biomarkers for diagnosing brain diseases.

In the future, we plan to use the functional connectivity relationships discovered
by Total Correlation as an input to existing Graph Neural Networks (GNNs) [54] for the
purpose of interpretable brain disease diagnosis, such that practitioners or doctors can
identify the most informative subgraphs (or modules) to the decision (e.g., autism patients
or healthy control groups). In this regard, quantitative measures to define differences be-
tween graphs [55] and the extension of analytical results in [25] to a larger number of nodes
will be critical to assess and improve the qualitative results presented here. The recently
proposed approaches (e.g., [56,57]) all rely on pairwise relationships estimated by the linear
correlation coefficient as the input, which ignores high-order dependence essentially. In this
sense, we believe our approach has the potential to improve the explanation performances
of existing GNNs on brains.
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Abbreviations

TC Total Correlation
CorEx Correlation Explanation
CC Linear Correlation
I Mutual Information
VAEs Variational Autoencoders
fMRI functional Magnetic Resonance Imaging
BOLD Blood-Oxygen-Level-Dependent Imaging
DCM Dynamic Causal Modeling
GLM General Linear Model
ROI Region Of Interest
HCP Human Connectome Project
MTA Multimodal Treatment of Attention Deficit Hyperactivity Disorder
GNNs Graph Neural Networks

Appendix A

Table A1. Information of 116 brain regions that comprises the AAL atlas.

Brain Area AAL Regions AAL Index No.

Precentral gyrus 1, 2
Superior frontal gyrus, dorsolateral 3, 4
Superior frontal gyrus, orbital part 5, 6
Middle frontal gyrus 7, 8
Middle frontal gyrus, orbital part 9, 10
Inferior frontal gyrus, opercular part 11, 12
Inferior frontal gyrus, triangular part 13, 14

Frontal Lobe Inferior frontal gyrus, orbital part 15, 16
Rolandic operculum 17, 18
Supplementary motor area 19, 20
Olfactory cortex 21, 22
Superior frontal gyrus, medial 23, 24
Superior frontal gyrus, medial orbital 25, 26
Gyrus rectus 27, 28
Paracentral lobule 69, 70

Insula 29, 30
Insula and Anterior cingulate and paracingulate gyri 31, 32
Cingulate Median cingulate and paracingulate gyri 33, 34

Posterior cingulate gyrus 35, 36

Hippocampus 37, 38
Parahippocampal gyrus 39, 40
Amygdala 41, 42
Fusiform gyrus 55, 56

Temporal Heschl gyrus 79, 80
Lobe Superior temporal gyrus 81, 82

Temporal pole: superior temporal gyrus 83, 84
Middle temporal gyrus 85, 86
Temporal pole: middle temporal gyrus 87, 88
Inferior temporal gyrus 89, 90
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Table A1. Cont.

Brain Area AAL Regions AAL Index No.

Caudate nucleus 71, 72
Central Lenticular nucleus, putamen 73, 74
Structures Lenticular nucleus, pallidum 75, 76

Thalamus 77, 78

Calcarine fissure and surrounding cortex 43, 44
Cuneus 45, 46

Occipital Lingual gyrus 47, 48
Lobe Superior occipital gyrus 49, 50

Middle occipital gyrus 51, 52
Inferior occipital gyrus 53, 54

Postcentral gyrus 57, 58
Superior parietal gyrus 59, 60

Parietal Inferior parietal, but supramarginal and angular
gyri 61, 62

Lobe Supramarginal gyrus 63, 64
Angular gyrus 65, 66
Precuneus 67, 68

Cerebellum Crus 1 91, 92
Cerebellum Crus 2 93, 94
Cerebellum 3 95, 96
Cerebellum 4, 5 97, 98
Cerebellum 6 99, 100
Cerebellum 7b 101, 102
Cerebellum 8 103, 104
Cerebellum 9 105, 106

Cerebellum
and Vermis Cerebellum 10 107, 108

Vermis 1, 2 109
Vermis 3 110
Vermis 4, 5 111
Vermis 6 112
Vermis 7 113
Vermis 8 114
Vermis 9 115
Vermis 10 116
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