1	Inverse method applied to autonomous broadband hydroacoustic survey
2	detects higher densities of zooplankton in near-surface aggregations
3	than vessel-based net survey
4	Muriel Dunn ^{1,2*} , Geir Pedersen ³ , Sünnje L. Basedow ⁴ , Malin Daase ⁴ , Stig Falk-
5	Petersen ¹ , Loïc Bachelot ⁵ , Lionel Camus ¹ , and Maxime Geoffroy ^{2,4}
6	
7	¹ Akvaplan-niva AS, Fram Centre, Postbox 6606, Stakkevollan, 9296 Tromsø,
8	Norway
9	² Center for Fisheries Ecosystems Research, Fisheries and Marine Institute of
10	Memorial University of Newfoundland and Labrador, St. John's, A1C 5R3, NL,
11	Canada
12	³ Institute for Marine Research, 5005 Bergen, Norway
13	⁴ Department of Arctic and Marine Biology, UiT The Arctic University of Norway,
14	9019 Tromsø, Norway

¹⁵ ⁵ IFREMER, Laboratoire d'Océanographie Physique et Spatiale, 29280 Plouzané,

16 France

17 *Corresponding author (email: mbd@akvaplan.niva.no)

19 Abstract

Throughout all oceans, aggregations of zooplankton and ichthyoplankton appear as 20 horizontal sound scattering layers (SSLs) when detected with active acoustic 21 techniques. Quantifying the composition and density of these layers is prone to 22 sampling biases. We conducted a net and trawl survey of the epipelagic fauna in 23 northern Norway (70°N) in June 2018 while an autonomous surface vehicle equipped 24 with a broadband echosounder (283-383 kHz) surveyed the same region. Densities 25 from the autonomous hydroacoustic survey were calculated using forward estimates 26 from the relative density from the net and trawl, and inversion estimates with statistical 27 data-fitting. All four methods (net, trawl, acoustic forward and inverse methods) 28 identified that copepods dominated the epipelagic SSL, while pteropods, amphipods 29 and fish larvae were present in low densities. The density estimates calculated with 30 the inverse method were higher for mobile zooplankton, such as euphausiid larvae, 31 32 than with the other methods. We concluded that the inverse method applied to broadband autonomous acoustic surveys can improve density estimates of epipelagic 33

34 organisms by diminishing avoidance biases and increasing the spatio-temporal

35 resolution of ship-based surveys.

36

37 Keywords: broadband acoustics, inversion, machine learning, autonomous surface

38 vehicle, zooplankton

39 Introduction

40	Pelagic zooplankton and ichthyoplankton form dense horizontal aggregations
41	throughout all oceans and represent an easily accessible food source for higher
42	trophic levels. In the North Atlantic, these organisms funnel energy from primary
43	producers to top predators such as marine mammals, seabirds, and the pelagic early
44	life stages of larger fishes targeted by commercial fisheries, e.g., Atlantic cod (Gadus
45	morhua) (Falk-Petersen and Hopkins, 1981; Solvang et al. 2021). Accurate density
46	estimates of zooplankton and ichthyoplankton are thus needed to calculate and model
47	energy transfer in marine environments.
48	The density of zooplankton and ichthyoplankton can be calculated for large volumes
49	of water using hydroacoustic surveys because the aggregations appear as sound
50	scattering layers (SSLs) when detected with echosounders (Dietz, 1948; Barham,
51	1966; Proud et al., 2018). At high latitudes, for example in the Fram Strait, the
52	backscatter from the SSLs is usually much stronger in the epipelagic zone (< 200 m)
53	than in the mesopelagic zone (> 200 m), suggesting that there is a higher density of
54	biomass near the surface than below 200 m (Knutsen et al., 2017; Gjøsæter et al.,

55	2020). Epipelagic SSLs of zooplankton, mainly euphausiids, copepods, amphipods,
56	pteropods, and juvenile fish, have been detected with acoustics over high latitude
57	shelves (Knutsen et al., 2017, Bandara et al., 2022), in fjords in Northern Norway (Falk-
58	Petersen and Hopkins, 1981; Falk-Petersen and Kristiansen, 1985), and in deeper
59	basins of the Barents Sea (Gjøsæter et al., 2020). However, density estimates of
60	epipelagic organisms generally contain several biases because of 1) the draft of
61	research vessels and the near-field of acoustic instruments which form a blind zone in
62	the top ca. 10 m (e.g., Pedersen et al., 2019); 2) variation in detection probability with
63	density and range (Appenzeller and Leggett, 1992; Demer and Hewitt, 1995;
64	Simmonds and MacLennan, 2008); and 3) the sound and light emitted by research
65	vessels (Trevorrow et al., 2005; De Robertis et al., 2012; Peña, 2019; Berge et al.,
66	2020).

New technology can contribute to minimizing uncertainties in the detection and density estimates of epipelagic organisms. The recent development of autonomous surface and subsurface vehicles with compact and energy-efficient active acoustic systems reduces the blind zone as well as artificial noise and light sources compared to traditional acoustic surveys conducted from research vessels. These autonomous

72	platforms also have the potential to increase the temporal and spatial scale of acoustic
73	surveys (e.g., Mordy et al., 2017; De Robertis et al., 2019; Verfuss et al., 2019).
74	Concomitantly, the development of broadband echosounders (Andersen et al., 2021)
75	and scattering models for several taxonomic groups (Jech et al., 2015) have improved
76	our ability to detect and characterise small (<1 cm) acoustic targets at a high vertical
77	resolution.
78	Two methods can be used to estimate density from the acoustic signal scattered from
79	dense epipelagic aggregations of zooplankton and ichthyoplankton in SSLs: the
80	forward method and the inverse method. The forward method uses the relative density
81	of each taxonomic group based on net and trawl samples from the survey region to
82	allocate a proportion of the backscatter, the sound intensity reflected by the targets,
83	for a density estimate of each taxonomic group (Love, 1975; Simmonds and
84	MacLennan, 2008). However, each net or trawl is inherently selective (Skjoldal et al.,
85	2013) depending on mesh size, net/trawl opening, tow speed, and species density
86	(Pearcy et al., 1983; Battaglia et al., 2006; Moriarty et al., 2018). Ultimately, with the
87	forward method, biases from net and trawl selectivity are transferred to the species
88	density estimates. The inverse method rather directly calculates the density of each

102

89	taxonomic group from acoustic data by optimising the densities based on the received
90	backscatter and the scattering models of each species (Holliday, 1977). When
91	applying the inverse method to broadband acoustics, the spectrum of the acoustic
92	signal can be fully exploited to optimize the model fitting and calculations of density
93	for each taxonomic group. Applying the inverse method to broadband acoustic data
94	has the potential to reduce the bias from net and trawl selectivity and could increase
95	the value of datasets from autonomous or remotely operated platforms with sparse net
90	
97	This study assessed zooplankton and ichthyoplankton density estimates in a near-
97 98 99	This study assessed zooplankton and ichthyoplankton density estimates in a near- surface SSL using four different methods: mesozooplankton net (MultiNet),
97 98 99 99	This study assessed zooplankton and ichthyoplankton density estimates in a near- surface SSL using four different methods: mesozooplankton net (MultiNet), macrozooplankton trawl (Tucker trawl), and the forward and inverse methods applied to broadband acoustic data collected with an autonomous surface vehicle. The survey
97 98 99 100	This study assessed zooplankton and ichthyoplankton density estimates in a near- surface SSL using four different methods: mesozooplankton net (MultiNet), macrozooplankton trawl (Tucker trawl), and the forward and inverse methods applied to broadband acoustic data collected with an autonomous surface vehicle. The survey was conducted as a case study in the Tromsøflaket area, a bank north of the northern

Norwegian Sea (70° N). We deployed nets and trawls from a research vessel while an

autonomous surface vehicle equipped with a broadband echosounder surveyed the 103

same region (Camus et al., 2019). We also tested the applicability of using theoretical 104

scattering models (Chu and Ye, 1999; Khodabandeloo et al., 2021) to reduce the 105

dependence on relative density estimates from net and trawl sampling when
conducting autonomous hydroacoustic surveys. The limitations of each method are
discussed and we provide recommendations on combining sampling methods to
increase the accuracy of zooplankton and ichthyoplankton studies.

110 Materials and methods

111 I. Study area and survey design

Tromsøflaket is comprised of a plateau (150 - 250 m depth) located at the 112 southwestern entrance of the Barents Sea (Figure 1). The plateau is an area of high 113 biological activity; some bank areas are heavily trawled as they support a rich 114 community of commercially harvested fish (Olsen et al., 2010). It is a difficult region 115 for traditional ecosystem sampling activity despite the relatively shallow bank because 116 of the strong and variable currents (Bellec et al., 2008; Kedra et al., 2017). 117 Tromsøflaket was surveyed from June 20th to 29th, 2018, from the R/V Helmer 118 Hanssen and an autonomous surface vehicle (Sailbuoy, Offshore Sensing, Bergen, 119 Norway, www.sailbuoy.no). During the R/V Helmer Hanssen cruise, environmental 120

data and biological samples were collected at 11 stations to estimate zooplankton and 121 fish composition, density, and vertical distribution (Stations 7 to 17; Table 1). The 122 Sailbuoy was deployed from the vessel at Station 7 on June 21st. It was picked up from 123 Station 11 on June 22nd to fix issues with the storage of acoustic data and relaunched 124 on June 24th at Station 9. The Sailbuoy left the study area on June 29th and was 125 recovered south of Lofoten on August 22nd. The ship left the study area on June 25th. 126 For this study, we only used the data from the Tromsøflaket region as delimited in 127 Figure 1. 128

129 II. Biological sampling

Mesozooplankton were sampled by vertical hauls (towing speed 0.5 m s⁻¹) using a multiple opening/closing net (MultiNet, Hydro-Bios, Kiel, Germany, www.hydrobios.de; mouth opening 0.25 m², mesh size 180 μ m). Five depth strata (bottom-100, 100-30, 30-10, 10-5, and 5-0 m) were sampled at each station, but data below 100 m were not used in this study because it was outside the range of the echosounder mounted on the Sailbuoy. At station 13, samples were taken by a ring net (WP2 net, Hydro-Bios), with the same mouth opening, mesh size and depth strata as the MultiNet, but did not

137	include the 0-5 m depth stratum. All samples were preserved in 4% formaldehyde-in-
138	seawater solution buffered with hexamine. Taxonomic analyses were completed in the
139	laboratory. Large organisms (total length > 5 mm) were picked out using forceps,
140	identified, and counted from the whole sample. The remainder of the sample was
141	examined by sub-sampling with aliquots obtained with a 5 ml automatic pipette, with
142	the pipette tip cut at 5 mm diameter to allow a free collection of mesozooplankton. The
143	number of subsamples analysed was chosen so that at least 150 individuals of
144	copepods (Calanus spp.) and 300 other organisms were counted. To assess the
145	length frequency distribution of the Calanus population, the prosome length of all
146	counted individuals of Calanus spp. was measured from the tip of the cephalosome to
147	the distal lateral end of the last thoracic segment. In addition, body length of
148	euphausiids, amphipods, pteropods, and fish larvae were measured from subsamples
149	of Mulitnet samples taken at stations 8 through 17. Body length of euphausiids and
150	amphipods was measured on stretched animals along the dorsal line from the tip of
151	the rostrum (euphausiids) or the anterior edge of the eye (amphipods) to the tip of the
152	telson. Body length of pteropods was measured as the diameter of their shell. Total
153	length of fish larvae was measure the most forward point of the head to the farthest

Page 12 of 80

tip of the tail with the fish lying on its side. Zooplankton density (individuals per m³)
was estimated for each species by stratum by correcting for the mouth-opening area
of the net and vertical hauling distance of the statum, assuming 100% filtration
efficiency. The weighted mean density estimate for each species per station over the

158 0-100 m range was calculated using the following equation:

59
$$\rho = \frac{\sum_{i=1}^{n} \rho^{i} dz^{i}}{\sum_{i=1}^{n} dz^{i}},$$

160 (Equation 1)

where n is the number of strata, ρ^i is the density of the species in the stratum *i* in individuals per m³ (ind. m⁻³) and dz^i is the thickness of each stratum *i* in meters.

Macrozooplankton and ichthyoplankton were sampled with a Tucker trawl (1 m² opening and 1000 µm mesh size) towed for 15 minutes at 2 knots between 20 to 40 m depth. The targeted depth at each station was determined from the epipelagic SSL identified in the echogram from the vessel's echosounders (Kongsberg Maritime AS, Horten, Norway, www.kongsberg.com; Simrad EK60, 18 and 38 kHz, 1.024 ms pulse duration, 2 Hz pulse repetition). All samples were preserved in a 4% formaldehyde-inseawater solution buffered with hexamine. Density estimates from the Tucker trawl

183

170	samples were analysed per station. Each station was sub-sampled using a plankton
171	splitter and counted until at least 300 individuals were identified. The count of each
172	species was extrapolated to the entire sample size and converted to density by
173	accounting for the mount-opening area, deployment speed and time. To document the
174	length distribution of dominant macrozooplankton species captured with the Tucker
175	trawl, random subsamples of euphausiids, amphipods, pteropods and fish larvae were
176	taken from samples of stations 7, 8 and 9 and body length was measured as described
177	above.
178	For both MultiNet and Tucker trawl samples, species were grouped by taxon. Four
179	taxonomic groups were most abundant: copepods, euphausiid larvae, amphipods, and
180	pteropods. Additionally, fish larvae were included in the analysis because of the high
181	sonar reflectivity of their swimbladder and their socio-economic importance.

Ш. Acoustic sampling 182

Acoustic data processing Α.

The autonomous hydroacoustic survey was completed using a Sailbuoy equipped with 184

a WBT Mini (Kongsberg Maritime AS) with a 333 kHz transducer (ES333-7CDK split-185

GES ARKTISKE UNIVERSITET on 01/13/23 sition. It may differ from the final official version of record.	
com by UiT g and page c	
Insciencepub o copy editin	
aded from co script prior t	
Sci. Downlo ccepted manu	
Fish. Aquat rript is the a	
Can. J. I -IN manusc	
This Just	

199

186	beam) operating in broadband mode (283-383 kHz, 1.024 ms pulse duration, 0.5 Hz
187	pulse repetition, fast ramping) for 5 minutes every half hour. The transducer was
188	mounted on the bottom of the Sailbuoy keel at 0.5 m depth. The Sailbuoy keel was
189	always in the water and the transducer was always submerged. Echosounder
190	calibration was performed before the deployment and after the retrieval with a 22.0
191	mm tungsten carbide (6% cobalt binding) calibration sphere (Demer et al., 2015).
192	Broadband calibration parameters were calculated with the EK80 calibration wizard
193	(version 2.0.1, EK80 software, Kongsberg Maritime AS), and the parameter values
194	were linearly interpolated over the inhibition bands that covered the nulls. Data were
195	calibrated and processed in Echoview (version 12.1, Echoview Software Pty Ltd,
196	to 50 m (50 5 m depth) because the signal to background poise ratio diminished below
197	10 dB (for a signal of -70 dB) at greater ranges
150	

Sound scattering layer backscatter spectra Β.

Sound scattering layers forming discrete horizontal bands of backscatter above the 200 background noise (Proud et al., 2015) were identified using k-means clustering, an 201

202	unsupervised machine learning algorithm (Lloyd, 1982). Each raw data file output from
203	the echosounder was converted into a netCDF4 file with the open-source software
204	echopype (version 0.5.3; Lee et al., 2021; Figure 2a). Data analysis was restricted to
205	the region between the near-field (3 m range) and the signal-to-noise ratio limit (50 m
206	range). In all echograms, a maximum of one SSL was detected by the clustering
207	algorithm in the upper 50.5 m of the water column. The SSL varied in strength,
208	thickness, and depth. The pulse-compressed volume backscattering strength (S $_{\!v}$ in dB
209	re 1m ⁻¹) averaged over the frequency spectrum was pre-processed with a mean filter
210	to smooth the backscatter in time (35 pings; or 70 s) and depth (15 bins; or 0.09 m)
211	(Figure 2b). The pre-processing filter revealed the SSL on the depth/S $_{\!v}$ projection, as
212	shown in the comparison between the unfiltered data in Figure 2c and the filtered data
213	in Figure 2d.
214	After the pre-processing, we applied k-means clustering on the depth/S $_{\!v}$ dimensions
215	of each data file (between 3 to 5 minutes of data, depending on the file size). The k-

means clustering algorithm categorises all the data points into different groups (i.e.,

clusters). The only parameter adjusted for each SSL was the number of clusters. The

other k-means parameters stayed the same for each iteration (k-mean++ initialisation,

recor
n of
3/23 ersio
01/13 ial v
offic
ITET final
ERS the j
NIV from
KE U iffer
TISI ay d
ARK . It m
GES
NDRG
JiT N e coi
by L I pag
.com g and
epub sditin
cienc opy e
cdnse to ce
rom e
led f
nloae anuse
Dow ed m
Sci.
quat. he ac
th. Ac
J. Fis iscrip
Can.
t-IN
s Jus
Thi

÷

219	10 separate runs, tolerance of 1e ⁻⁴ , and a maximum of 300 iterations). Selecting the
220	optimal number of clusters is an intrinsic challenge with k-means clustering. Here, the
221	number of clusters was optimal when the entire SSL was grouped into one of the
222	clusters. The SSLs were easier to delineate by clustering when they were thick, had a
223	high S_{ν} and had a distinct separation from surface bubbles or entrained air (Anderson
224	et al., 2007). We typically selected between 3-7 clusters. For example, in Figure 2d
225	where Cluster 0 corresponds to the SSL, we chose to separate the backscatter profile
226	into 3 clusters because of the relatively high S_{ν} within the SSL (i.e., strong backscatter
227	in the SSL relative to the background level).
228	The upper and lower boundaries of the SSLs identified by the clustering algorithm

were imported to Echoview as editable line files to delineate SSL regions (e.g., red lines in Figure 2a which delimit the upper and lower boundaries of the SSL associated with Cluster 0). The broadband spectra of pulse-compressed volume backscattering strength (S_v (*f*)) was extracted from each identified SSL using Echoview's "Wideband Frequency Response" export option. Broadband frequency response values were converted to the linear domain (volume backscattering coefficient spectra, s_v (*f*)). We selected a Fourier transform window size of 0.4 m at a frequency resolution of 100 Hz

over the entire bandwidth for a total of 1001 values per SSL. The Fourier transform

window size was selected as a compromise between high frequency resolution and a Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by UiT NORGES ARKTISKE UNIVERSITET on 01/13/23 This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record. 237 high range resolution (Benoit-Bird and Waluk, 2020). The median and the interguartile 238 range of s_{ν} (f) from each SSL were calculated for further analysis. 239 Sound scattering models C. 240 241 We ran scattering model ensembles per taxonomic group to calculate the theoretical backscatter for the forward and inverse acoustic density estimates. The taxonomic 242 243 groups were selected from the net and trawl density data. 1. Weakly scattering fluid-like zooplankton 244 The weakly scatterers were copepods, euphausiid larvae, and amphipods, which 245 were modelled using a prolate spheroid for the copepods and a finite uniformly-bent 246 247 cylinder for the euphausiid larvae and amphipods. Weakly scatterers have a sound speed contrast (h) and density contrast (g) of $1 \pm 5\%$. A near-unity sound speed and 248 density contrast implies that the material properties of the scatterers are not 249 significantly different from the surrounding medium (seawater). We chose the phase-250 compensated distorted wave Born approximation (PC-DWBA) model for the weakly 251

Page 18 of 80

	252	scatterers in our domain because it is specifically adapted to densely aggregated
ecord.	253	zooplankton (Chu and Ye, 1999). Also, the PC-DWBA is adequate for the range of
3/23 ersion of r	254	fluid-like taxonomic groups in the Tromsøflaket epipelagic layer because the
T on 01/13 l official v	255	parameters are flexible to geometry, material properties, and acoustic frequency
VERSITE m the fina	256	changes (Chu and Ye, 1999; Gastauer et al., 2019). We identified the most abundant
ISKE UNI y differ fro	257	species of each taxonomic group to determine the model parameters. Copepods
ES ARKT tion. It ma	258	were modelled as <i>Calanus finmarchicus copepodite stage V (CV)</i> (61% of copepods
liT NORG e composit	259	in the MultiNet samples, Supplementary Materials Table S1), euphausiid larvae were
com by L ng and pag	260	modelled as Thyssanoessa inermis (100% of euphausiid larvae in the Tucker Trawl
scienceput copy editii	261	samples, Supplementary Materials Table S2) and amphipods were modelled as
l from cdn pt prior to	262	Themisto abyssorum (100% of amphipods in the MultiNet samples, Supplementary
ownloaded I manuscrij	263	Materials Table S1). We ran 1000 model simulations for each taxonomic group using
uat. Sci. D le acceptec	264	the ZooScatR package (version 0.5; Gastauer et al., 2019) with varying shape, size,
I. Fish. Aq ıscript is th	265	and material properties parameters. These parameters were selected based on
t-IN manu	266	literature or net and trawl samples (Table 2). The length distribution for euphausiid
This Jus	267	larvae was calculated using the measurements of Thyssanoessa inermis in the
	268	Tucker trawl subsamples from stations 7, 8 and 9 (Figure 1). The length distribution

F

269	for amphipods was identified by pooling measurements of Themisto abyssorum in
270	MultiNet samples from stations 8-17 and Tucker Trawl samples from stations 7, 8
271	and 9. We repeated 1000 model simulations with random sampling within the
272	distribution of each model parameter (Table 2) to calculate the variance in the cross-
273	sectional backscatter across the available frequency spectrum (283-383 kHz) of
274	each weakly scattering taxonomic group.
275	2. Elastic-shelled zooplankton
276	The pteropod taxonomic group was modelled (in Python version 3.7) with a viscous-
277	elastic model (Feuillade and Nero, 1998), as updated by Khodabandeloo et al.
278	(2021). The model is developed for shapes with four layers: gas layer (swimbladder),
279	thin elastic layer (swimbladder wall), thicker viscous layer (fish flesh) and the
280	surrounding medium (seawater). We adjusted the model for pteropods by reducing
281	the thickness of the viscous layer to zero, increasing the thickness of the elastic layer
282	to correspond with the shell thickness, and characterising the gas layer with the
283	material properties of internal soft tissue. The adjustments to the boundary
284	conditions fitted with the literature description of pteropods, a roughly spherical hard
285	aragonite elastic shell with soft and weakly reflecting internal tissue inside (Lavery et

al., 2007; MacLennan and Simmonds, 2008). The model is parameterised by the

ecord.	287	material properties and size of each layer, including the shape (thickness), density
ersion of r	288	and sound speed properties (Khodabandeloo et al., 2021). As with the weakly
l official v	289	scatterers, we identified the most abundant species to represent the taxonomic
m the fina	290	group in the scattering model. The pteropods were modelled as Limacina retroversa
y differ fro	291	(100% of pteropods in the Tucker trawl samples, Supplementary Materials Table
ion. It may	292	S2). We assumed a spherical target for the scattering model. To account for the
e composit	293	slightly elongated shape, we determined the radii distributions using both the width
ing and pag	294	and length of the subsampled Limacina retroversa from the Tucker Trawl samples at
copy editir	295	stations 7, 8 and 9. The other shape parameters (radius of viscous layer and radius
ot prior to	296	of gas layer; parameterised as a dense fluid layer) were calculated for each
manuscrip	297	ensemble based on the selected elastic shell radius (Table 3). The outer layer was
e accepted	298	parameterised as aragonite. The internal layer was parameterised as a dense fluid
script is th	299	representing the internal tissue with $g = 1.022$ and $h = 1.04$ (Lavery et al., 2007). The
t-IN manu	300	variance from the parameter space of the viscous-elastic model was assessed by
This Jus	301	repeating 1000 model iterations with random sampling within the distribution of the
	302	radius of the elastic shell parameter (Table 3).

286

Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by UiT NORGES ARKTISKE UNIVERSITET on 01/13/23 This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

3. Gas-bearing organisms

304	The fish larvae taxonomic group was modelled with the viscous-elastic model as
305	juvenile/larvae of <i>Gadus morhua</i> (70% of fish larvae in the Tucker Trawl,
306	Supplementary Materials Table S2). The main scattering component of a gas-
307	bearing organism is the gas enclosure, in this case the swimbladder. The radius of
308	the elastic shell, the swimbladder including the swimbladder wall, was calculated by
309	converting total length measurements to swimbladder length using relationships from
310	juvenile and larval Gadus morhua studied by Chu et al., 2003 (Supplementary
311	Materials Figure S1). The corresponding swimbladder widths were also calculated
312	through a swimbladder length-to-volume linear relationship, assuming a prolate
313	spheroid swimbladder shape (Chu et al., 2003). The viscous-elastic model
314	comparison of a sphere and a prolate spheroid at a range of incident angles
315	indicates that the magnitude of the frequency response is dependent on the local
316	radius at the angle of incidence (Figure 10 in Khodabandeloo et al., 2021). The
317	peaks and nulls are horizontally translated, but these are eliminated through
318	averaging for the volume backscatter of an aggregation. Therefore, we assumed a
319	spherical target and determined the distribution of radii of the fish larvae using

swimbladder length and width (R3 in Table 3). The radii distributions were 320 determined from the measured juvenile/larvae Gadus morhua from the Tucker Trawl 321 samples at stations 7, 8 and 9. 322 323 The other shape parameters (radius of the viscous layer and the gas layer) were 324 calculated for each model simulation iteration based on the randomly selected elastic shell radius (Table 3). The variance from the parameter space of the viscous elastic 325 model was assessed by repeating 1000 model iterations with a random selection of 326 parameters given the distributions in Table 3. 327 **Density estimates** D. 328

329 The acoustic density estimates are based on the linearity principle that the total

330 scattered energy from a volume is equal to the sum of the scattered energy of each

randomly distributed individual scatterers within that volume (Foote, 1983; Greenlaw,

332 1979; Lavery et al., 2007), given by:

$$s_{v}(f) = \sum_{i=1}^{N} \sigma_{bs}^{i}(f) * \rho^{i}$$

333

334 (Equation 2)

335	Where $s_v(f)$ is the volume backscattering coefficient spectra in m ² per m ³ with
336	measurements at all frequencies f in Hz, N is the number of taxonomic groups in the
337	sampled volume, $\sigma^{i}_{bs}(f)$ is the cross-sectional backscatter spectra of a given
338	taxonomic group <i>i</i> at all frequencies <i>f</i> in m ² , and ρ^i is the density in individuals per m ³
339	(ind. m ⁻³) for each taxonomic group <i>i</i> .
340	Estimates based on this equation assume that the entire volume backscatter is
341	formed by the species or taxonomic groups included in the cross-sectional
342	backscatter term. For the forward and inverse methods, we assumed the intensity of
343	the backscattered signal was solely from the five modelled taxonomic groups.
344	1. Forward method
345	The forward method is an approach to calculate density or biomass estimates of
346	taxonomic groups from hydroacoustic-trawl survey data (Love, 1975; Davison et al.,
347	2015; Dornan et al., 2022). The forward method for density estimates, as described
348	in MacLennan and Simmonds, 2008, was computed at the nominal frequency (333
349	kHz) to emulate the results from a narrowband (single frequency) survey, which
350	simplifies Equation 2 to:

$$s_v = \langle \sigma_{bs} \rangle * \rho^{total}$$

352 (Equation 3)

353	where s_v is the volume	e backscattering	coefficient at a	given frequency	$\prime, \langle \sigma_{bs} \rangle$ is the
-----	---------------------------	------------------	------------------	-----------------	--

354	average predicted	cross-sectional	backscatter	weighted by	the relative of	density from

net and trawl sampling, and ρ^{total} is the total density in individuals per m³ (ind. m⁻³).

We extracted the median s_v at the nominal frequency from the median $s_v(f)$ of each

357 SSL. From the scattering model simulations for each taxonomic group, we extracted

the weighted average (σ_{bs}) at the nominal frequency. The weights were calculated by

359 the mean of the relative densities from the MultiNet and Tucker trawl samples

360 (Supplementary Materials Table S3 and Table S4). The calculated ρ^{total} for each SSL

361 was divided among the taxonomic groups based on the relative density.

2. Inverse method

Alternatively, the inversion of the broadband scattering data can be used to solve Eq.

1 with a least-squares data fitting solver, as in Lavery et al., 2010 (Greenlaw, 1979;

Lavery et al., 2007). From the scattering model simulations for each taxonomic

group, we calculated the median cross-sectional backscatter, $\sigma_{bs}^{i}(f)$ (Eq. 2) and 90%

bootstrap interval of the median across the frequency spectrum. To calculate the

density of each taxonomic group for the autonomous hydroacoustic survey with the inverse method, we solved Equation 2 for density ρ^i as a linear least-squares problem by using a Trust Region Reflective algorithm as described in Branch et al. (1999). The optimiser (Python version 3.7, scipy.optimise.lsq_linear) determined the best solution by minimising the following problem with the following bounds (0 <= ρ^i

374
$$0.5 * ||\sigma_{bs}^{i}(f) * \rho^{i} - s_{v}(f),||^{2}$$

375 (Equation 4)

A sensitivity analysis was conducted to quantify the effect of altering species shape and material properties on the variability of the inverse method density estimates. We ran 500 random permutations of Eq. 3 with replacement. The cross-sectional backscatter spectra of each species varied between the median, the 5th and 95th percentiles. The $s_v(f)$ of each SSL varied between the median and the interquartile range.

382 IV. Comparison analysis

383	For comparison across all four methods, we performed a Kruskal-Wallis <i>H</i> test. For
384	non-parametric pairwise comparisons, Dunn's tests were computed with p-values
385	adjusted with the Benjamini-Hochberg adjustment (non-negative) to assess the
386	significance of the difference in density estimates between each method pair for
387	each taxonomic group.
388	Results
389	I. Biological sampling
390	Copepods dominated the mesozooplankton community sampled with the MultiNet
391	with a mean density with standard error (± SE) of 1800 ± 300 ind. m ⁻³ (95% of the
392	density, Figure 3). Pteropods were the second most abundant taxonomic group in
393	the MultiNet samples, with a mean density of 50 ± 30 ind. m ⁻³ . Euphausiid larvae had
394	a low density (9 \pm 2 ind. m ⁻³ , 0.5% of the community); most of these were
395	represented by euphausiid larvae in <i>furcilia</i> stages (89% of euphausiid larvae over all
396	MultiNet samples). Other species, such as siphonophores and meroplankton, not

397	included in the selected taxonomic group for this study, accounted for 30 ± 5 ind. m ⁻
398	³ , or 2%, of the MultiNet catch in the study region. Detailed MultiNet density data are
399	presented in Supplementary Materials Table S1 and Table S3.
400	Like the MultiNet samples, the Tucker trawl samples were primarily composed of
401	copepods (54% of the community, Figure 4), but the average density was much
402	lower with 19 \pm 5 ind. m ⁻³ (Figure 3). Small pteropods (mean length = 1.2 mm, Table
403	4) were the second most abundant taxonomic group in the trawl samples, with a
404	mean density of 5 \pm 1 ind. m ⁻³ (17% of the community). Euphausiid larvae had
405	comparable density (3.5 \pm 0.7 ind. m ⁻³ , 16% of the community); most of these larvae
406	were Thyssanoessa inermis (99.8% of euphausiid larvae in the Tucker Trawl
407	sample). The mean length of the larvae was 4.7 mm suggesting they were still young
408	of the year, like the furcilia stages from the MultiNet samples (mean length 4.0 mm;
409	Table 4). Other species not included in the selected taxonomic group for this study,
410	such as siphonophores and decapod crustaceans, accounted for 7% of the Tucker
411	trawl catch in the study region. Detailed Tucker trawl density data are available in
412	Supplementary Materials Table S2 and Table S4.

413 II. Acoustics

A. Sound scattering layer detection

The k-means clustering algorithm identified a total of 70 SSLs over the autonomous

416	acoustic survey period. Th	e SSLs varied between	1 m to 29 m (min	and max.) in
-----	----------------------------	-----------------------	------------------	--------------

thickness, with the layers centred at an average depth of 20.6 m. The median

volume backscattering strength spectra from all the SSLs varied between -75 to -50

dB re 1 m⁻¹ (min. and max.). At the nominal frequency, the median Sv (f) varied

420 between -73 and -56 dB re 1 m^{-1} (min. and max.).

B. Scattering models

The target strength (TS) frequency response varied in strength and shape across the taxonomic groups. The median broadband TS ranged from a minimum of -100 dB re 1 m² at the lowest frequency, 283 kHz, for the smallest fluid-like weakly scatterer, copepod taxonomic group, to a maximum of -65 dB re 1 m² at 345 kHz from the gasbearing taxonomic group, fish larvae (Figure 5). Copepods, euphausiid larvae and fish larvae TS spectra had a positive slope with TS increasing with frequency,

428	whereas amphipods and pteropods had a negative sloping TS(f) (Supplementary
429	Materials Figure S2, shown as cross-sectional backscatter spectra, i.e., linear form
430	of TS). The cross-sectional backscatter matrix had a rank of 5, suggesting the
431	taxonomic groups were linearly independent and can be distinguished by the least-
432	squares algorithm.
433	C. Forward method density estimates
434	Based on the relative density results from the MultiNet and Tucker trawl, the forward
435	method estimated SSLs dominated by copepods (56 \pm 6 ind. m ⁻³) followed by
436	pteropods (7.0 \pm 0.7 ind. m ⁻³), euphausiid larvae (4.3 \pm 0.5 ind. m ⁻³), amphipods (1.6
437	\pm 0.2 ind. m ⁻³) and fish larvae (0.40 \pm 0.04 ind. m ⁻³) (Figure 3). The relative density
438	was a fixed input parameter in the calculation; therefore, the forward method was not
439	included in Figure 4.
440	D. Inverse method density estimates

The density estimates measured from the inversion of the autonomous acoustic survey showed an SSL dominated by the copepods (3700 \pm 200 ind. m⁻³; 77% of

443 acoustic density estimates), which agreed with the MultiNet results. The second

444	most abundant group in the acoustic results was euphausiid larvae (modelled as
445	<i>Thyssanoessa inermis</i> from Tucker trawl), with 1300 ± 200 ind. m ⁻³ , representing
446	23% of the total taxonomic composition. In the inverse method estimates, amphipods
447	had a higher density than pteropods with 10.3 \pm 0.5 ind. m ⁻³ (0.2%) and 3.9 \pm 0.2
448	ind. m ⁻³ (0.08%), respectively. The fish larvae had the lowest density as with the
449	other sampling methods, 0.126 \pm 0.001 ind. m ⁻³ ; 0.002% of the total composition.
450	The sensitivity analysis showed the variability in the density estimates compared to
451	the variation in the model parameters and the volume backscatter within each SSL
452	(standard deviation). The sensitivity of density estimates was compared to the
453	distribution of densities of the 70 SSLs. For the copepods and euphausiid larvae, the
454	effect of the dispersion in the model parameters and volume backscatter variability
455	was smaller than the standard deviation from the density estimates of all the SSLs
456	(Figure 6 a, b). Conversely, amphipods, fish larvae and pteropods density estimates
457	had a larger sensitivity to the model parameters and volume backscatter than the
458	variability in density estimates across the study region (Figure 6 c, d, e). Density
459	estimates of all species showed higher variability in the case of SSLs with high
460	backscatter (e.g., SSL n° 47-48; Figure 6).

Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by UiT NORGES ARKTISKE UNIVERSITET on 01/13/23 This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

461 III. Density analysis across methods

462	All four methods compared in this analysis (MultiNet, Tucker trawl, and forward and
463	inverse method with autonomous acoustic survey data) showed that copepods
464	dominated the epipelagic SSL across the study area (> 50% density for all sampling
465	methods, Figure 4). However, comparisons of density estimates for all methods were
466	significantly different for each taxonomic group as revealed by a Kruskal-Wallis H
467	test, denoted with degrees of freedom in parenthesis (copepods: $H(3) = 127.87$,
468	p<0.0001; euphausiid larvae: H(3) = 121.24, p<0.0001; amphipods: H(3) = 115.14,
469	p<0.0001; fish larvae: H(3) = 118.10, p<0.0001; pteropods: H(3) = 31.89, p<0.0001)
470	(Figure 3).
471	Density estimates were significantly different between the MultiNet and Tucker trawl
472	for copepods, pteropods, and fish larvae (Dunn's test; p<0.01). No significant
473	differences in density estimates between the net and trawl were found for the other
474	taxonomic groups (euphausiid larvae: p=0.19 and amphipods: p=0.79). Results from
475	pairwise comparisons from Dunn's tests are shown in Figure S3 (in Supplementary
476	Materials). Density estimates of euphausiid larvae were almost three times higher

Can. J. Fish. Aquat. Sci. Downloaded from conscience pub.com by UiT NORGES ARKTISKE UNIVERSITET on 01/13/23 This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

ord.
rec
n of
23 rsio
/13/ 1 ve
n 01 Jicia
T of 1 off
ITE fina
the
VIV
er f
SKI
KTI may
AR It
GES
DRC
L N(
Ui
n by
.cor Ig ar
spub ditir
ence py e
nsci o coj
n cd
fron t pri
ded
nloa
lowi 1 ma
ci. D
it. Se acce
vqua the
sh. A ot is
. Fis
an. J anu
ВÜ
ıst-I
is Ju
Th

477	based on the MultiNet samples than the Tucker trawl samples. However, the relative
478	density of euphausiid larvae in the Tucker trawl samples was higher (11.1%) than in
479	the MultiNet samples (0.5%) (Figure 4). As with the euphausiids, pteropods density
480	was eleven times higher in the MultiNet samples than in the Tucker trawl samples,
481	but pteropods had a lower relative density in the MultiNet (2.8% of the community)
482	than in the Tucker Trawl (16.1%). For amphipods, similar densities were sampled by
483	net and trawl (1.2 \pm 0.3 ind. m ⁻³ for MultiNet and 1.4 \pm 0.3 ind. m ⁻³ for Tucker trawl).
484	Fish larvae were found in low densities, on average 0.05 \pm 0.02 ind. m ⁻³ in the
485	MultiNet and 0.3 \pm 0.2 ind. m ⁻³ in the Tucker trawl, and had low relative densities in
486	both net and trawl (<1% of the total catch in both direct sampling methods).
487	A pairwise comparison of the forward method for acoustic data analysis showed that
488	these density estimates were not statistically different from the Tucker trawl
489	estimates for all taxonomic groups (copepods: p=0.08; euphausiid larvae: p=0.77;
490	amphipods: p=0.79; fish larvae: p=0.31; pteropods: p=0.07). In contrast, density
491	estimates from the forward method were statistically different from estimates from
492	the MultiNet samples for copepods (p<0.01), fish larvae (p<0.001) and pteropods
493	(p<0.01), but not for the euphausiid larvae (p=0.18) and amphipods (p=0.76). The

494	density estimates calculated from the autonomous acoustic survey data by the
495	forward and inverse methods were statistically different for all taxonomic groups
496	(p<0.01).
497	Pairwise comparisons indicated that the autonomous acoustic survey density
498	estimates calculated through inversion differed significantly from the other sampling
499	methods for the euphausiid larvae and amphipods (Dunn's test; p<0.001). However,
500	for the copepods, the inverse results were not statistically different from the MultiNet
501	(p=0.06) but statistically different from Tucker trawl (p<0.001). The results from the
502	inverse method were not statistically different from densities measured from the
503	Tucker trawl for pteropods (p=0.92) but were statistically different from the results of
504	the MultiNet and forward method (p<0.01). For fish larvae, the densities measured
505	from the MultiNet were not statistically different from the results of the inverse
506	method (p=0.58) but were statistically different from the densities measured from the
507	Tucker trawl and forward method (p<0.001).

508 Overall, the inverse method reported the highest total average density of 4987 ind.

509 m⁻³, followed by the MultiNet samples (1931 ind. m⁻³), the forward method (70 ind. m⁻

³) and the Tucker trawl samples (29 ind. m⁻³).

511 Discussion

512 I. Comparison of sampling methods

513	To our knowledge, this study is one of the first implementations of the inverse
514	method from an autonomous broadband acoustic survey with TS estimates informed
515	by locally derived measurements of shape properties. The inverse method yielded
516	higher density estimates. These density estimates are most likely a more accurate
517	representation of the sound scattering layers for the five dominant plankton
518	taxonomic groups in the Norwegian Sea. Net and trawl sampling likely
519	underestimated zooplankton densities within the SSL because of gear-specific
520	biases when assessing species composition across size classes (Skjoldal et al.,
521	2013; Hetherington et al., 2022).

522	All sampling methods determined that copepods dominated the epipelagic SSL in
523	Tromsøflaket. The relative density of copepods calculated from the inverse method
524	(77%) was between the MultiNet (95%) and Tucker trawl (54%). We suspect that
525	because the copepods were relatively large individuals (mainly Calanus finmarchicus
526	\mathcal{CV} with a mean length of 2.6 mm) organised in dense swarms, the high frequency
527	and high bandwidth (283-383 kHz) of the acoustic instrument detected most of these
528	copepods. The agreement of the density estimates from the inverse method and
529	MultiNet suggests that the high vertical resolution of the broadband acoustic data
530	could be used to increase the accuracy of copepod density estimates within the
531	epipelagic layer. In the future, satellite observations of ocean colour could
532	compensate for the blind zone of acoustic measurements near the surface and
533	measure the near-surface density of copepods (Basedow et al., 2019).
534	Variations in organism size and swimming abilities must be considered when
535	designing surveys and selecting sampling methods. The MultiNet targets small
536	zooplankton species (>0.3 mm), especially weak swimmers aggregating in high
537	densities. The Tucker trawl is designed to catch larger, fast-swimming zooplankton
538	and ichthyoplankton species in the epipelagic layer. Therefore, we did not expect to

loaded from cdnsciencepub.com by UIT NORGES ARKTISKE UNIVERSITET on 01/13/23 nuscript prior to copy editing and page composition. It may differ from the final official version of record.
.com by U g and page
ciencepub opy editin
from cdns of prior to c
ownloaded I manuscrip
quat. Sci. D he accepted
. J. Fish. A nuscript is 1
Can This Just-IN mar

539	find higher densities of euphausiid larvae in the MultiNet compared to the Tucker
540	trawl since they are known to avoid MultiNets and similar gear (Brinton, 1967;
541	Greenlaw, 1979). The inverse method estimated densities of euphausiid larvae as
542	more than 100 times higher than the net, trawl, and forward method. Because of the
543	well-known ability of euphausiids to avoid capture by standard oceanographic nets
544	(Wiebe et al., 1982), we suggest that the density estimates of euphausiid larvae
545	based on the inverse method are likely closer to reality than the estimates based on
546	the compared methods. Both the MultiNet and Tucker trawl captured small
547	euphausiids (mean length in MultiNet = 4.0 mm and mean length in Tucker trawl =
548	4.7 mm, Table 4), which did not have the backscattering properties of adults. Young
549	euphausiids have less than 30% of the lipid content of adults, which reduces their
550	density contrast (Kögeler et al., 1987). We expect the density difference of the net,
551	trawl, and forward method to the inverse method to be even larger in the case of
552	adult euphausiids because of their increased avoidance abilities and stronger sound
553	scattering properties.
554	The relatively high densities of both small (copepods) and larger mobile (amphipods

and euphausiids) zooplankton measured with the inverse method suggests that this
Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by UiT NORGES ARKTISKE UNIVERSITET on 01/13/23 This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

556	approach can accurately sample a larger size spectrum of targets than the other
557	methods. Similar to euphausiids, density estimates of amphipods were higher when
558	calculated with the inverse method. Amphipods are also fairly strong scatterers and
559	mobile swimmers (Skjoldal et al., 2013). We conclude that the inverse method from
560	autonomous acoustic surveys provided the best density estimates for agile
561	organisms that avoid nets and trawls.
562	The inverse acoustic method could be applied to larger organisms than zooplankton,
563	such as pelagic fish. Sampling efficiency for fish and their vertical distribution in the
564	water column has been widely studied because of the socio-economic importance of
565	fisheries (Handegard and Tjøstheim, 2005). A net comparison study from June 1993
566	in Storfjorden, Norway, has reported a higher density of ichthyoplankton between 50-
567	100 m than between 0 – 50 m (Skjoldal et al., 2013). The autonomous acoustic
568	monitoring system used in this study had a maximum depth of 50.5 m, limiting the
569	detection of fish larvae in deeper regions of the epipelagic layer. Yet, ichthyoplankton
570	densities were comparable between methods. One way of improving estimates of
571	density and vertical distribution pattern of fish larvae in high latitude shelf areas could
572	be to use the inverse method with a transducer with a deeper detection range (lower

573	frequency band or longer pulse length) or using both surface and underwater
574	vehicles, such as gliders. A lower frequency bandwidth (for example, 185-255 kHz)
575	would also be beneficial for measuring the density of ichthyoplankton and pteropods
576	because they have a stronger acoustic backscatter at lower frequencies.
577	Zooplankton layers are known to exhibit patchiness; therefore, variability in relative
578	density across the sampling region is expected (Trevorrow et al., 2005, Basedow et
579	al., 2006, Trudnowska et al., 2016). For example, we found high variability in
580	pteropod densities based on net samples between stations (maximum at station 13
581	with 379 ind. m ⁻³ and minimum at station 17 with 2 ind. m ⁻³), which likely results from
582	their patchy distribution (Elizondo and Vogt, 2022). The Tucker trawl did not capture
583	such a broad variability in densities (maximum at station 8 with 16 ind. m ⁻³ and a
584	minimum at station 17 with 0.5 ind. m ⁻³), which may be due to the larger mesh
585	underestimating the small pteropods (mean length of 1.2 mm; Table 4). Because the
586	net and trawl sampling and the acoustic measurements are not coincident in time
587	and space in this study, we used a static average relative density to reflect the
588	species composition of the region. In contrast, the inverse method provides
589	continuous measurements and is not dependant on punctual sampling.

⁵⁹⁰ II. Assessment of the autonomous acoustic survey and

⁵⁹¹ inverse method for density estimates

592	Autonomous acoustic surveys require effective data processing methods that limit
593	the introduction of biases and can quickly be applied to large datasets. The results of
594	the k-means clustering algorithm revealed that, despite being ubiquitous over the
595	study area, the sound scattering layer varied in thickness, volume backscattering
596	strength, and depth over time and space. This algorithm restricted the user bias of
597	identifying boundaries and increased reproducibility because the only subjective
598	parameter in this machine learning algorithm was the number of clusters. The
599	successful application of the k-means clustering method for identifying SSLs in the
600	Tromsøflaket area suggests that it can now be tested on more complex vertical
601	structures with multiple discrete SSLs in different regions.
602	Density estimates were corrected for the sampling volume for each method;
603	however, the differences in sampling depths could influence the results. The acoustic
604	estimates were bounded by the edges of the epipelagic SSLs which were
605	determined by k-mean clustering and typically found between 3.5 – 50 m, whereas

606	the Tucker trawl sampled 0 – 20 or 40 m and the MultiNet sampled 0 – 100 m. The
607	acoustic density estimates did not incorporate volumes with lower densities above
608	and below the epipelagic SSL. In contrast, the densities calculated from nets and
609	trawls were averaged over the entire sampling range. The acoustic inversion was
610	only applicable within the boundaries of the SSL where the density of scatterers is
611	high. If the density of scatterers is too low, the echo statistics are dependent on the
612	target's location in the beam rather than the intensity summation process (Holliday
613	and Pieper, 1995). Under such low-density scenarios, single echo detections and
614	echo counting (Keiser and Mulligan, 1984; Simmonds and MacLennan, 2008) should
615	be used instead of the inverse method. However, if differences in density estimates
616	were driven by differences in sampling depths, we would expect high densities from
617	both acoustic methods, not just the inverse method.
618	In this study, we relied on the size distribution of the dominant species locally derived
619	from nets and trawls to inform the scattering models because the 283-383 kHz
620	bandwidth only detected the geometric scattering of the targets (ka>1; Lavery et al.,
621	2010). However, with a broader frequency spectrum that captures the Rayleigh-to-
622	geometric scattering transition of all taxa, the size classes can be identified within the

623	inverse method (Greenlaw, 1979; Lavery et al., 2007; Cotter et al., 2021). In that
624	case, the scattering transition point determines the resonance frequency, which is
625	inversely proportional to the size of the scatterers and can increase the ability to
626	differentiate among taxa (Holliday and Pieper, 1995; Warren et al., 2003; Benoit-
627	Bird, 2009). Capturing the Rayleigh-to-geometric transition would thus improve the
628	method because it produces a frequency response curve with a more identifiable
629	shape (Cotter et al., 2021). Nonetheless, we demonstrated that relying on a
630	bandwidth covering the transition point is not necessary to determine the density of
631	epipelagic organisms using the inverse method when size distributions are provided
632	by net and trawl samples.
633	The sensitivity analysis tested the variability in the frequency-response curves
634	compared to the variability in the model parameters and showed that the density
635	estimates of the stronger scatterers (amphipods, fish larvae and pteropods) had a
636	larger sensitivity to the model parameters than the weaker scatterers (copepods and
637	euphausiid larvae). The inverse method is based on absolute scattering levels, which
638	rely heavily on calibration (Lavery et al., 2007). A two-sphere calibration covering the
639	entire broadband signal should be carefully completed for future density calculations

640	using the inverse method. Careful calibration across the bandwidth is critical, as with
641	multi-frequency analysis, to avoid artificial trends in the frequency-response curves.
642	In addition, the inverse method requires knowledge of the scattering model
643	parameters for each taxonomic group. Here, some of these parameters were
644	informed by the net and trawl data but others were defined based on previous
645	literature values. Variability in model parameters like orientation or material
646	properties can affect the density estimates, especially for the stronger scatterers as
647	shown by the sensitivity analysis. In situ measurements of material properties, sound
648	speed, and density contrasts, and more knowledge about the orientation of the
649	scatterers would restrict the variability of model simulation results and improve the
650	accuracy of the density estimates.
651	Because of their low taxonomic resolution, both the forward and inverse acoustic
652	methods are dependent on the initial taxonomic group selection. Different statistical
653	or data-fitting approaches with an error term could better account for non-dominant
654	species, such as meroplankton and decapod larvae. In the current study, errors in
655	the taxonomic classification would lead to a positive bias in the density estimates
656	from the acoustic methods. The limited taxonomic resolution of the acoustic

Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by UiT NORGES ARKTISKE UNIVERSITET on 01/13/23 This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

657	inversion method could be improved by the addition of imaging sensors which are
658	already being integrated on autonomous platforms equipped with a wideband
659	echosounder (Whitmore et al., 2019; Reiss et al., 2021). Optical sensors could also
660	provide information on the size and, to some extent, the orientation of the scatterers
661	(Ohman et al., 2019), which would improve the <i>in situ</i> scattering models.
662	Conclusion
663	The inverse method was used to quantify aggregations of zooplankton and
664	ichthyoplankton with a broadband autonomous hydroacoustic survey and detected
665	higher densities of abundant mobile zooplankton than the net, trawl, and forward
666	acoustic method. The inverse method also detected similar densities of smaller
667	mesozooplankton to the net samples. We conclude that it is the most accurate
668	method to measure the density of a broad size spectrum of zooplankton, and most
669	likely of ichthyoplankton and pelagic fish. This work built on studies on the inverse
670	method for zooplankton layers (Lavery et al., 2007), autonomous hydroacoustic
671	surveys (De Robertis et al., 2019) and broadband data processing (Basset et al.,
672	2019, Benoit-Bird and Waluk et al., 2020) in recent years. We further advanced the

673	field by offering a solution for the limitation of sparse coexisting biological sampling
674	from autonomous acoustic surveys by using the inverse method with locally derived
675	size measurements.
676	Accurate density estimates of pelagic organisms with high spatio-temporal resolution
677	are critical to conducting stock assessment surveys and understanding the impact of
678	changes in the epipelagic zone and their effects on food supply to deeper water
679	ecosystems (Rogers, 2015). To this end, we conclude that applying the inverse
680	method to broadband hydroacoustic data can improve the accuracy of acoustic-trawl
681	surveys. We further envision that applying the inverse method to acoustic data
682	collected from autonomous platforms could supplement and extend the spatial
683	resolution of vessel-based surveys at a lower cost than additional ship time.
684	
685	
686	
687	
688	
689	Acknowledgement
690	The authors thank Babak Khodabandeloo and Sven Gastauer for providing
691	scattering model software and advice. Also, we thank Jennifer Herbig for reading

	692	and editing an early draft of the manuscript and for her statistical expertise. We
croin.	693	acknowledge the valuable comments and suggestions from the reviewers, which
	694	helped us to improve the quality of the manuscript.
	695	Author contribution statement
	696	MDu: Conceptualisation, Methodology, Software, Formal Analysis, Visualisation,
uiay uillei i	697	Writing – original draft
upostuon. 11	698	GP: Conceptualisation, Supervision, Writing – review & editing
uiu page cui	699	SB: Investigation, Writing – review & editing
opy cumig .	700	MDa: Conceptualisation, Investigation, Writing – review & editing
n ni ni ni n	701	SFP: Investigation, Writing – review & editing
red IIIaliusu	702	LC: Funding Acquisition, Resources
is use arcep	703	LB: Software, Visualisation
A IIIaIIusuip	704	MG: Conceptualisation, Supervision, Writing – review & editing
11-19		

705 Funding statement

706	This research was funded by GLIDER Phase I project, which was funded by the
707	DEMO2000 research program (Norwegian Research Council and ConocoPhillips
708	Skandinavia AS, project no. 269188, "Unmanned ocean vehicles, a flexible and cost-
709	efficient offshore monitoring and data management approach") and by Glider Phase
710	II financed by ConocoPhillips Skandinavia AS. The research survey was funded by
711	"Collaborative Studies of Two Resource Ecosystems in Shelf, Slope an Oceanic
712	Regions of the Norwegian and South China Seas (Stressor)", funded by the
713	Norwegian Research Council (project no. 287043). Maxime Geoffroy's participation
714	is financially supported by the Discovery Grant program of the Natural Science and
715	Engineering Research Council of Canada. Geir Pedersen's participation was co-
716	funded by CRIMAC (Norwegian Research Council project no. 309512).
717	Competing interests
718	The authors declare that they have no known competing financial interests or
719	personal relationships that could potentially influence the research reported in this

720

paper.

721 Data availability statement

- Acoustic data generated or analysed during this study are available in the "EK80
- raw data collected by autonomous sailbuoy in Lofoten/Vesterålen, 2018-06-18–2018-
- 724 06-30" repository (<u>https://doi.org/10.5281/zenodo.6786851</u>). Location and other
- sensor observations from the autonomous surface vehicle data generated or
- analysed during this study are available in the "Real-time oceanography captured by
- autonomous sailbuoy in Lofoten/Vesterålen 2018" repository
- 728 (https://doi.org/10.5281/zenodo.6786919)

729 References

Andersen, L.N., Chu, D., Heimvoll, H., Korneliussen, R., Macaulay, G.J. and Ona, E.,

731 2021. Quantitative processing of broadband data as implemented in a scientific

r32 splitbeam echosounder. arXiv preprint arXiv:2104.07248.

733 doi.org/10.1121/10.0002943

Anderson, C.I.H., Horne, J.K. and Boyle, J., 2007. Classifying multi-frequency

fisheries acoustic data using a robust probabilistic classification technique. *The*

Journal of the Acoustical Society of America, *121*(6), pp.EL230-EL237.

737 doi.org/10.1121/1.2731016

Appenzeller, A.R. and Leggett, W.C., 1992. Bias in hydroacoustic estimates of fish

abundance due to acoustic shadowing: evidence from day–night surveys of vertically

740 migrating fish. *Canadian Journal of Fisheries and Aquatic Sciences*, 49(10),

741 pp.2179-2189. doi.org/10.1139/f92-240

742 Bandara, K., Basedow, S.L., Pedersen, G. and Tverberg, V., 2022. Mid-summer

vertical behavior of a high-latitude oceanic zooplankton community. *Journal of*

744 *Marine Systems*, *230*, p.103733. doi.org/10.1016/j.jmarsys.2022.103733

745	Barham, E.G., 1966. Deep scattering layer migration and composition: observations
746	from a diving saucer. Science, 151(3716), pp.1399-1403. doi.org/10.1126/
747	science.151.3716.1399w, S.L., Edvardsen, A. and Tande, K.S., 2006. Spatial
748	patterns of surface blooms and recruitment dynamics of Calanus finmarchicus in the
749	NE Norwegian Sea. Journal of plankton research, 28(12), pp.1181-1190.
750	doi.org/10.1093/plankt/fbl048
751	Basedow, S.L., McKee, D., Lefering, I., Gislason, A., Daase, M., Trudnowska, E.,
752	Egeland, E.S., Choquet, M. and Falk-Petersen, S., 2019. Remote sensing of
753	zooplankton swarms. <i>Scientific reports</i> , <i>9</i> (1), pp.1-10. doi.org/10.1038/s41598-018-
754	<u>37129-x</u>
755	Bassett, C., Lavery, A.C. and Stanton, T.K., 2019. Broadband measurements of the
756	acoustic target strength of mesopelagic fishes. The Journal of the Acoustical Society
757	<i>of America</i> , <i>146</i> (4), pp.2772-2772. doi.org/ 10.1121/1.5136601
758	Battaglia, A., Trenkel, V.M. and Rochet, M.J., 2006. Estimating end effects in trawl
759	catches. ICES Journal of Marine Science, 63(5), pp.956-959.

760 <u>doi.org/10.1016/j.icesjms.2006.03.002</u>

761	Bellec, V., Wilson, M., Bøe, R., Rise, L., Thorsnes, T., Buhl-Mortensen, L. and Buhl-
762	Mortensen, P., 2008. Bottom currents interpreted from iceberg ploughmarks
763	revealed by multibeam data at Tromsøflaket, Barents Sea. Marine Geology, 249(3-
764	4), pp.257-270. <u>doi.org/10.1016/j.margeo.2007.11.009</u>
765	Benoit-Bird, K.J. and Waluk, C.M., 2020. Exploring the promise of broadband
766	fisheries echosounders for species discrimination with quantitative assessment of
767	data processing effects. The Journal of the Acoustical Society of America, 147(1),
768	pp.411-427. <u>doi.org/10.1121/10.0000594</u>
769	Benoit-Bird, K.J., 2009. The effects of scattering-layer composition, animal size, and
770	numerical density on the frequency response of volume backscatter. ICES Journal of
771	<i>Marine Science</i> , <i>66</i> (3), pp.582-593. <u>doi.org/10.1093/icesjms/fsp013</u>
772	Berge, J., Geoffroy, M., Daase, M., Cottier, F., Priou, P., Cohen, J.H., Johnsen, G.,
773	McKee, D., Kostakis, I., Renaud, P.E. and Vogedes, D., 2020. Artificial light during
774	the polar night disrupts Arctic fish and zooplankton behaviour down to 200 m
775	depth. <i>Communications biology</i> , <i>3</i> (1), pp.1-8. <u>doi.org/10.1038/s42003-020-0807-6</u>

Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by UiT NORGES ARKTISKE UNIVERSITET on 01/13/23 This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

	776	Blanluet, A., Doray, M., Berger, L., Romagnan, J.B., Le Bouffant, N., Lehuta, S. and
	777	Petitgas, P., 2019. Characterisation of sound scattering layers in the Bay of Biscay
	778	using broadband acoustics, nets and video. <i>PloS one</i> , <i>14</i> (10), p.e0223618.
	779	doi.org/10.1371/journal.pone.0223618
	780	Branch, M. A., Coleman, T. F., & Li, Y. 1999. A subspace, interior, and conjugate
	781	gradient method for large-scale bound-constrained minimisation problems. SIAM
	782	Journal on Scientific Computing, 21(1), 1-23. doi.org/10.1137/s1064827595289108
Juros sond -	783	Brinton, E., 1967. Vertical migration and avoidance capability of euphausiids in the
0	784	California Current. Limnology and Oceanography, 12(3), pp.451-483.
	785	doi.org/10.4319/lo.1967.12.3.0451
	786	Camus, L., Pedersen, G., Falk-Petersen, S., Dunlop, K., Daase, M., Basedow, S.L.,
	787	Bandara, K., Tverberg, V., Pederick, J., Peddie, D. and Langeland, T., 2019.
	788	Autonomous surface and underwater vehicles reveal new discoveries in the Arctic
	789	Ocean. OCEANS 2019-Marseille, pp.1-8. doi.org/10.1109/oceanse.2019.8867089

790	Chu, D. and Wiebe, P.H., 2005. Measurements of sound-speed and density
791	contrasts of zooplankton in Antarctic waters. ICES Journal of Marine Science, 62(4),
792	pp.818-831.
793	Chu, D., and Ye, Z. 1999. A phase-compensated distorted wave born approximation
794	representation of the bistatic scattering by weakly scattering objects: Application to
795	zooplankton. The Journal of the Acoustical Society of America, 106(4), 1732-1743.
796	doi.org/10.1016/j.icesjms.2004.12.020
797	Chu, D., Wiebe, P.H., Copley, N.J., Lawson, G.L. and Puvanendran, V., 2003.
798	Material properties of North Atlantic cod eggs and early-stage larvae and their
799	influence on acoustic scattering. ICES Journal of Marine Science, 60(3), pp.508-515.
800	doi.org/10.1016/s1054-3139(03)00047-x
801	Cotter, E., Bassett, C. and Lavery, A., 2021. Classification of broadband target
802	spectra in the mesopelagic using physics-informed machine learning. The Journal of
803	<i>the Acoustical Society of America</i> , 149(6), pp.3889-3901. <u>doi.org/10.1016/s1054-</u>
804	<u>3139(03)00047-x</u>

805	Davison, P.C., Koslow, J.A. and Kloser, R.J., 2015. Acoustic biomass estimation of
806	mesopelagic fish: backscattering from individuals, populations, and communities.
807	ICES Journal of Marine Science, 72(5), pp.1413-1424.
808	doi.org/10.1093/icesjms/fsv023
809	De Robertis, A., Wilson, C.D. and Williamson, N.J., 2012. Do silent ships see more
810	fish? Comparison of a noise-reduced and a conventional research vessel in Alaska.
811	In The Effects of Noise on Aquatic Life (pp. 331-334). Springer, New York, NY.
812	doi.org/10.1007/978-1-4419-7311-5_74
813	De Robertis, A., Lawrence-Slavas, N., Jenkins, R., Wangen, I., Mordy, C.W., Meinig,
814	C., Levine, M., Peacock, D. and Tabisola, H., 2019. Long-term measurements of fish
815	backscatter from Saildrone unmanned surface vehicles and comparison with
816	observations from a noise-reduced research vessel. ICES Journal of Marine
817	<i>Science</i> , 76(7), pp.2459-2470. <u>doi.org/10.1093/icesjms/fsz124</u>
818	Demer, D.A. and Hewitt, R.P., 1995. Bias in acoustic biomass estimates of
819	Euphausia superba due to diel vertical migration. Deep Sea Research Part I:

820 Oceanographic Research Papers, 42(4), pp.455-475. doi.org/10.1016/0967-

821 <u>0637(94)e0005-c</u>

Demer, D.A., Berger, L., Bernasconi, M., Bethke, E., Boswell, K., Chu, D., Domokos,

R., Dunford, A., Fassler, S., Gauthier, S. and Hufnagle, L.T., 2015. Calibration of
acoustic instruments. doi.org/10.23919/oceans40490.2019.8962778

Dietz, R.S., 1948. Deep scattering layer in the Pacific and Antarctic Oceans. *Journal*

of marine research, 7(3), pp.430-442.

Dornan, T., Fielding, S., Saunders R.A. and Genner, M.J., 2022. Large mesopelagic

fish biomass in the Southern Ocean resolved by acoustic properties. Proceedings of

829 the Royal Society B, 289(1967), p.20211781. <u>https://doi.org/10.1098/rspb.2021.1781</u>

Elizondo, U.H. and Vogt, M., 2022. Individual-based modeling of shelled pteropods.

831 *Ecological Modelling, 468*, p.109944. doi.org/10.1016/j.ecolmodel.2022.109944

Falk-Petersen, S., Gatten, R.R., Sargent, J.R. and Hopkins, C.C.E., 1981. Ecological

investigations on the zooplankton community in Balsfjorden, Northern Norway:

seasonal changes in the lipid class composition of *Meganyctiphanes norvegica* (M.

835 Sars), *Thysanoessa raschii* (M. Sars), and *T. inermis* (Krøyer). *Journal of*

836	Experimental Marine Biology and Ecology, 54(3), pp.209-224. doi.org/10.1016/0022-
837	<u>0981(81)90158-1</u>
838	Falk-Petersen, S. and Kristensen, Å., 1985. Acoustic assessment of krill stocks in
839	Ullsfjorden, north Norway. <i>Sarsia, 70</i> (1), pp.83-90.
840	doi.org/10.1080/00364827.1985.10420620
841	Feuillade, C. and Nero, R.W., 1998. A viscous-elastic swimbladder model for
842	describing enhanced-frequency resonance scattering from fish. The Journal of the
843	Acoustical Society of America, 103(6), pp.3245-3255. doi.org/10.1121/1.423076
844	Foote, K.G., 1983. Linearity of fisheries acoustics, with addition theorems. The
845	Journal of the Acoustical Society of America, 73(6), pp.1932-1940.
846	doi.org/10.1121/1.389583
847	Gastauer, S., Chu, D. and Cox, M.J., 2019. ZooScatR—An r package for modelling
848	the scattering properties of weak scattering targets using the distorted wave Born
849	approximation. The Journal of the Acoustical Society of America, 145(1), pp.EL102-
850	EL108. doi.org/10.1121/1.5085655

	851	Gjøsæter, H., Ingvaldsen, R. and Christiansen, J.S., 2020. Acoustic scattering layers
Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by UIT NORGES ARKTISKE UNIVERSITET on 01/13/23 N manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.	852	reveal a faunal connection across the Fram Strait. Progress in Oceanography, 185,
	853	p.102348. doi.org/10.1016/j.pocean.2020.102348
	854	Greenlaw, C.F., 1979. Acoustical estimation of zooplankton populations 1. <i>Limnology</i>
	855	and Oceanography, 24(2), pp.226-242. doi.org/10.4319/lo.1979.24.2.0226
	856	Handegard, N.O. and Tjøstheim, D., 2005. When fish meet a trawling vessel:
	857	examining the behaviour of gadoids using a free-floating buoy and acoustic split-
	858	beam tracking. Canadian Journal of Fisheries and Aquatic Sciences, 62(10),
	859	pp.2409-2422. <u>doi.org/10.1139/f05-131</u>
	860	Holliday, D.V., 1977. Extracting bio-physical information from the acoustic signature
	861	of marine organisms. Oceanic sound scattering prediction, pp.619-624.
	862	Holliday, D.V. and Pieper, R.E., 1995. Bioacoustical oceanography at high
	863	frequencies. ICES Journal of Marine Science, 52(3-4), pp.279-296.
	864	doi.org/10.1016/1054-3139(95)80044-1
This Just-]	865	Hetherington, E.D., Choy, C.A., Thuesen, E.V. and Haddock, S.H., 2022. Three

866 Distinct Views of Deep Pelagic Community Composition Based on Complementary

867 Sampling Approaches. Frontiers in Marine Science, 9.

868 <u>doi.org/10.3389/fmars.2022.864004</u>

- Jech, J.M., Horne, J.K., Chu, D., Demer, D.A., Francis, D.T., Gorska, N., Jones, B.,
- Lavery, A.C., Stanton, T.K., Macaulay, G.J. and Reeder, D.B., 2015. Comparisons
- among ten models of acoustic backscattering used in aquatic ecosystem research.

The Journal of the Acoustical Society of America, 138(6), pp.3742-3764.

873 doi.org/10.1121/1.4937607

Kędra, M., Renaud, P.E. and Andrade, H., 2017. Epibenthic diversity and

productivity on a heavily trawled Barents Sea bank

876 (Tromsøflaket). *Oceanologia*, *59*(2), pp.93-101.

877 doi.org/10.1016/j.oceano.2016.12.001

Kieser, R., and Mulligan, T. J., 1984. Analysis of echo counting data: a model.

879 Canadian Journal of Fisheries and Aquatic Sciences, 41(3), pp.451-458.

880 doi.org/10.1139/f84-054

Khodabandeloo, B., Agersted, M.D., Klevjer, T., Macaulay, G.J. and Melle, W., 2021.

882 Estimating target strength and physical characteristics of gas-bearing mesopelagic

fish from wideband in situ echoes using a viscous-elastic scattering model. *The*

Journal of the Acoustical Society of America, *149*(1), pp.673-691.

885 doi.org/10.1121/10.0003341

Knutsen, T., Wiebe, P.H., Gjøsæter, H., Ingvaldsen, R.B. and Lien, G., 2017. High

887 latitude epipelagic and mesopelagic scattering layers—A reference for future Arctic

ecosystem change. *Frontiers in Marine Science*, *4*, p.334.

889 doi.org/10.3389/fmars.2017.00334

Kögeler, J.W., Falk-Petersen, S., Kristensen, Å., Pettersen, F. and Dalen, J., 1987.

Density-and sound speed contrasts in sub-Arctic zooplankton. *Polar Biology*, 7(4),

892 pp.231-235. doi.org/10.1007/bf00287419

Lavery, A.C., Wiebe, P.H., Stanton, T.K., Lawson, G.L., Benfield, M.C. and Copley,

N., 2007. Determining dominant scatterers of sound in mixed zooplankton

populations. *The Journal of the Acoustical Society of America*, *122*(6), pp.3304-

896 3326. <u>doi.org/10.1121/1.2793613</u>

897	Lavery, A.C., Chu, D. and Moum, J.N., 2010. Measurements of acoustic scattering
898	from zooplankton and oceanic microstructure using a broadband echosounder. ICES
899	Journal of Marine Science, 67(2), pp.379-394. doi.org/10.1093/icesjms/fsp242
900	Lee, W.J., Staneva, V., Mayorga, E., Nguyen, K., Satiewan, L. and Majeed, I., 2021.
901	Echopype: Enhancing the interoperability and scalability of ocean sonar data
902	processing. The Journal of the Acoustical Society of America, 149(4), pp.A63-A63.
903	doi.org/10.1121/10.0004522
904	Love, R.H., 1975. Predictions of volume scattering strengths from biological trawl
905	data. The Journal of the Acoustical Society of America, 57(2), pp.300-306.
906	doi.org/10.1121/1.380460
907	Liu, L.G., Chen, C.C., Lin, C.C. and Yang, Y.J., 2005. Elasticity of single-crystal
908	aragonite by Brillouin spectroscopy. <i>Physics and Chemistry of Minerals</i> , 32(2),
909	pp.97-102. <u>doi.org/10.1007/s00269-005-0454-y</u>
910	Lloyd, S., 1982. Least squares quantisation in PCM. IEEE transactions on
911	<i>information theory</i> , <i>28</i> (2), pp.129-137. <u>doi.org/10.1109/tit.1982.1056489</u>

Mordy, C.W., Cokelet, E.D., De Robertis, A., Jenkins, R., Kuhn, C.E., Lawrence-

Slavas, N., Berchok, C.L., Crance, J.L., Sterling, J.T., Cross, J.N. and Stabeno, P.J., 913 2017. Advances in ecosystem research: Saildrone surveys of oceanography, fish, 914 and marine mammals in the Bering Sea. Oceanography, 30(2), pp.113-115. 915 doi.org/10.5670/oceanog.2017.230 916 Moriarty, M., Sell, A.F., Trenkel, V.M., Lynam, C.P., Burns, F., Clarke, E.D., 917 Greenstreet, S.P.R. and McGonigle, C., 2018. Resolution of biodiversity and 918 assemblage structure in demersal fisheries surveys: the role of tow duration. ICES 919 Journal of Marine Science, 75(5), pp.1672-1681. doi.org/10.1093/icesjms/fsy050 920 Ohman, M.D., Davis, R.E., Sherman, J.T., Grindley, K.R., Whitmore, B.M., Nickels, 921 C.F., and Ellen, J.S., 2019. Zooglider: an autonomous vehicle for optical and 922 acoustic sensing of zooplankton. Limnology and Oceanography: Methods, 17(1), 69-923 86. doi.org/10.1002/lom3.10301 924 Olsen, E., Aanes, S., Mehl, S., Holst, J. C., Aglen, A., & Gjøsæter, H. 2010. Cod, 925 926 haddock, saithe, herring, and capelin in the Barents Sea and adjacent waters: a

912

© The Author(s) or their Institution(s)

927 review of the biological value of the area. ICES Journal of Marine Science, 67(1), 87-

928 101. <u>doi.org/10.1093/icesjms/fsp229</u>

- 929 Pearcy, W.G., Greenlaw, C.F. and Pommeranz, T., 1983. Assessment of
- 930 euphausiids with five nets and a 120-kHz echosounder in fjords of northern

Norway. *Biological Oceanography*, 2(2-4), pp.151-177.

932 <u>doi.org/10.1080/00364827.1968.10411128</u>

Pedersen, G., Falk-Petersen, S., Dunlop, K., Camus, L., Daase, M., Basedow, S.L.,

Bandara, K., Tverberg, V., Pederick, J. and Peddie, D., 2019, June. Autonomous

surface vehicles for persistent acoustic monitoring of zooplankton in a highly

productive shelf area. In *OCEANS 2019-Marseille.* pp. 1-7. IEEE.

937 doi.org/10.1109/oceanse.2019.8867089

Peña, M., 2019. Mesopelagic fish avoidance from the vessel dynamic positioning

939 system. *ICES Journal of Marine Science*, *76*(3), pp.734-742.

940 doi.org/10.1093/icesjms/fsy157

Proud, R., Cox, M.J., Wotherspoon, S. and Brierley, A.S., 2015. A method for 941 identifying sound scattering layers and extracting key characteristics. Methods in 942 *Ecology and Evolution*, 6(10), pp.1190-1198. doi.org/10.1111/2041-210x.12396 943 Proud, R., Cox, M.J., Le Guen, C. and Brierley, A.S., 2018. Fine-scale depth 944 945 structure of pelagic communities throughout the global ocean based on acoustic sound scattering layers. Marine Ecology Progress Series, 598, pp.35-48. 946 doi.org/10.3354/meps12612 947 Reiss, C.S., Cossio, A.M., Walsh, J., Cutter, G.R. and Watters, G.M., 2021. Glider-948 Based estimates of meso-zooplankton biomass density: a fisheries case study on 949 antarctic krill (Euphausia superba) around the northern antarctic peninsula. Frontiers 950 in Marine Science, 8, p.256. doi.org/10.3389/fmars.2021.604043 951 Rogers, A. D., 2015. Environmental change in the Deep Ocean. Annual Review of 952 Environment and Resources. 40(1), pp. 1-38. doi.org/10.1146/annurev-environ-953 102014-021415 954

	955	Santana Hernández, N., 2019. A patch of Calanus finmarchicus in the Lofoten-
ccord.	956	Vesterålen Region. Characteristics and determining factors (Master's thesis, UiT
	957	Norges arktiske universitet).
	958	Simmonds, J. and MacLennan, D.N., 2008. Fisheries acoustics: theory and practice
	959	John Wiley & Sons. <u>doi.org/10.1002/9780470995303</u>
nay unior i	960	Skjoldal, H.R., Wiebe, P.H., Postel, L., Knutsen, T., Kaartvedt, S. and Sameoto,
I II TIONIO	961	D.D., 2013. Intercomparison of zooplankton (net) sampling systems: Results from
page comp	962	the ICES/GLOBEC sea-going workshop. <i>Progress in oceanography</i> , 108, pp.1-42.
unug anu l	963	doi.org/10.1016/j.pocean.2012.10.006
u tu tupy t	964	Solvang, H.K., Haug, T., Knutsen, T., Gjøsæter, H., Bogstad, B., Hartvedt, S., Øien,
und udrigent	965	N. and Lindstrøm, U., 2021. Distribution of rorquals and Atlantic cod in relation to
cepted mai	966	their prey in the Norwegian high Arctic. <i>Polar Biology</i> , 44(4), pp.761-782.
ipt is the ac	967	doi.org/10.1007/s00300-021-02835-2
	968	Stanton, T.K., Chu, D., Wiebe, P.H., Eastwood, R.L. and Warren, J.D., 2000.
T-1en c ettt t	969	Acoustic scattering by benthic and planktonic shelled animals. The Journal of the
	970	Acoustical Society of America, 108(2), pp.535-550. doi.org/10.1121/1.429584

Trevorrow, M.V., Mackas, D.L. and Benfield, M.C., 2005. Comparison of 971 multifrequency acoustic and in situ measurements of zooplankton abundances in 972 Knight Inlet, British Columbia. The Journal of the Acoustical Society of America, 973 117(6), pp.3574-3588. doi.org/10.1121/1.1920087 974 975 Trudnowska, E., Gluchowska, M., Beszczynska-Möller, A., Blachowiak-Samolyk, K. and Kwasniewski, S., 2016. Plankton patchiness in the Polar Front region of the 976 West Spitsbergen Shelf. Marine Ecology Progress Series, 560, pp.1-18. 977 doi.org/10.3354/meps11925 978 Verfuss, U.K., Aniceto, A.S., Harris, D.V., Gillespie, D., Fielding, S., Jiménez, G., 979 Johnston, P., Sinclair, R.R., Sivertsen, A., Solbø, S.A. and Storvold, R., 2019. A 980 review of unmanned vehicles for the detection and monitoring of marine fauna. 981 Marine pollution bulletin, 140, pp.17-29. doi.org/10.1016/j.marpolbul.2019.01.009 982 Wiebe, P.H., Boyd, S.H., Davis, B.M. and Cox, J.L., 1982. Avoidance of towed nets 983 by the euphausiid Nematoscelis megalops [Fish behavior]. Fishery bulletin-United 984 States, National Marine Fisheries Service (USA). 985

Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by UiT NORGES ARKTISKE UNIVERSITET on 01/13/23	Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.	
	Ę	

Warren, J.D., Stanton, T.K., Wiebe, P.H. and Seim, H.E., 2003. Inference of

987 biological and physical parameters in an internal wave using multiple-frequency,

988 acoustic-scattering data. *ICES Journal of Marine Science*, *60*(5), pp.1033-1046.

989 <u>doi.org/10.1016/s1054-3139(03)00121-8</u>

990 Whitmore, B.M., Nickels, C.F. and Ohman, M.D., 2019. A comparison between

992 Journal of Plankton Research, 41(4), pp.521-533. doi.org/10.1093/plankt/fbz033

Page 66 of 80

994 Figure captions

995	Figure 1: Map of the Norwegian Sea and Norway's coasts. The red box in the inset
996	indicates the area shown in the large bathymetric map of Tromsøflaket. The
997	Tromsøflaket map indicates the vessel-based research cruise track in red as it
998	travelled between sampling stations (black stars). Time and GPS location of stations
999	are described in Table 1, and Sailbuoy track in purple is the autonomous acoustic
1000	survey. Map produced with cartopy (ver. 0.18.0; scitools.org.uk/cartopy) in
1001	orthographic projection and the inset in plate carrée projection (UTM coordinate
1002	system).
1003	Figure 2: Example of a) raw pulse-compressed volume backscattering strength (S $_{\!v}\!)$
1004	echogram data upper and lower boundaries of Cluster 0 in red; b) echogram after
1005	the mean filtering in time and depth (70 s and 0.09 m filter, respectively); c)
1006	projection of raw data by removing the time dimension; and d) projection of filtered
1007	data in the depth/S $_{\rm v}$ dimensions classified into clusters (k=3 in this example)
1008	obtained by k-means clustering. In this example, the cluster corresponding to the
1009	SSL is Cluster 0.

	1010	Figure 3: a-e) Density estimates in the logarithmic domain for each dominant
	1011	taxonomic group in Tromsøflaket, in units of base 10 logarithm of individuals per m ³ .
	1012	Each box summarises the density measurement from Net (MultiNet; n=11, blue),
	1013	Trawl (Tucker trawl; n=11, orange), Forward (acoustic forward method; n=70, green)
	1014	or Inverse (acoustic inverse method; n=70, red). Significant differences are denoted
and the provided of the accepted management of the to cold an and back compositions in the second second second	1015	by the number of asterisks (*), with *** p < 0.001, ** p < 0.01 and * p < 0.05 from
	1016	pairwise Dunn's tests. f) is the total density estimate (sum of all species) for all
	1017	stations (Net and Trawl) and all SSLs (sound scattering layers) (Forward and
	1018	Inverse). Note the different y-axis scale in subplot f.
	1019	Figure 4: Relative density of each taxonomic group as calculated by each sampling
	1020	method across the whole survey region of Tromsøflaket with standard deviation error
	1021	bars representing variability between stations (Net and Trawl) or SSLs (Inverse).
	1022	Taxonomic groups are ordered from smallest (left) to largest (right). Size details of
	1023	each taxonomic group are described in Table 4.
	1024	Figure 5: Median target strength results of ensemble simulations from the scattering
-	1025	models for each dominant taxonomic group in Tromsøflaket, including the 90%

1026	bootstrap confidence intervals of the median as the shaded region. Vertical grey
1027	gashed line indicates the nominal frequency (333 kHz).
1028	Figure 6: The sensitivity analysis results for predicted density estimates of each
1029	taxonomic group (a-e) for the inversion of acoustic data with scattering model results
1030	varying randomly between median, the 5 th and 95 th percentiles and the volume
1031	backscatter spectra varying randomly between median, and interquartile range for
1032	each SSL (x-axis). The blue line in each panel is the median of the sensitivity
1033	analysis, the shaded region displays the extent of the 5 th and 95 th percentile. The red
1034	lines indicate the standard deviation of the density estimates for all the SSLs. Note
1035	the difference in scale of the y-axis.
1036	
1037	

Table 1: The location and time of sampling stations within the Tromsøflaket region
during the SeaPatches research cruise with R/V Helmer Hanssen.

Station	Date	Time (UTC)	Latitude (°N)	Longitude (°E)
S7	21/06/2018	03:53:00	70.836	17.996
S8	22/06/2018	03:48:00	70.345	19.028
S9	22/06/2018	17:15:00	70.636	18.595
\$10	23/06/2018	01:01:00	70.831	18.988
S11	23/06/2018	05:50:00	70.833	18.597
S12	23/06/2018	13:40:00	70.606	18.999
S13	23/06/2018	22:45:00	70.268	18.581
S14	24/06/2018	02:14:00	70.091	18.169
\$15	24/06/2018	10:57:00	70.525	18.166
S16	25/06/2018	05:35:00	70.500	16.936
S17	25/06/2018	20:26:00	70.493	17.636

Table 2: PC-DWBA model parameter distributions for each taxonomic group. The distribution used are gamma: Γ(shape, rate), log normal: L(meanlog, sigmalog) and normal: N(mean, sigma).

Parameters	Copepods	Euphausiid larvae	Amphipods
Scattering model	DWBA Prolate	DWBA Uniformly-	DWBA
	spheroid	bent cylinder	Uniformly-bent
			cylinder
Length	N(2.62, 0.09) ^a	L(1.5,0.3) ^b	Г(10.3, 2.3) ^с
Length-to-width	N(2.7, 0.2) ^a	N(10.5, 0.3) ^d	N(3, 0.5) ^d
ratio			
Density contrast (g)	N(0.996, 0.003) ^{<i>e</i>, <i>f</i>}	N(1.036, 0.005) ^e	N(1.058, 0.005) ^d
Sound speed	N(1.027, 0.005) ^e	N(1.026, 0.005) ^e	N(1.058, 0.005) ^d
contrast (h)			
Orientation	N(90, 30) ^g	N(20, 20) ^d	N(0, 30) ^d

^aSantana Hernández (2019)

^{*b*}Fit for the length measurements from the Tucker trawl subsamples. The distribution was assessed as the best fit based on a 1:1 line between theoretical and empirical quantile in Q-Q plots.

^{*c*}Fit for the length measurements from MultiNet and Tucker trawl subsamples. The distribution was assessed as the best fit based on a 1:1 line between theoretical and empirical quantile in Q-Q plots.

dLavery et al. (2007)

^eKögeler et al. (1987)

^fChu and Wiebe (2005)

^gBlanluet et al. (2019)

Table 3: Viscous elastic model ensemble shape and material properties parametersfor pteropods and fish larvae in Tromsøflaket.

Shape (mm)	Pteropods (two-layer	Fish larvae (three-layer	
	sphere)	sphere)	
Radius of elastic shell - R_3	Г(shape= 5.4, rate=	Lognormal(-1.46,0.45) ^b	
	9.17) <i>a</i>		
Radius of viscous layer - R_2	R ₃	(8.77*R ₃)+1.62 ^{<i>c</i>}	
Radius of gas layer – R_4	R ₃ -(0.023*R ₃) ^d	R ₃ -0.01 ^e	
Density (kg/m ³)			
Surrounding medium – ρ_1	1027 <i>^d</i>	1027 ^{<i>d</i>}	
Viscous layer – ρ_2	n/a	1040 ^e	
Elastic layer – ρ_3	2920 ^f	1141 ^{<i>g</i>}	
Gas layer – ρ_4	1050 ^{<i>h</i>}	325.1 ^{<i>e</i>}	
Sound speed (m/s)			
Surrounding medium – c_1	1480 ^{<i>i</i>}	1480 ^{<i>i</i>}	
Viscous layer – <i>c</i> ₂	n/a	1522.92 ^{<i>e</i>}	
Elastic layer – c_3	5219 ^{<i>e,j</i>}	1450 ^{<i>e</i>}	
Gas layer – c_4	1522.92 ^{<i>h,j</i>}	325.1 ^{<i>e</i>}	
Shear viscosity (N/m ²) - μ_2	n/a	0.8571 ^{<i>e</i>,<i>g</i>}	
Shear modulus (MPa) of	35800 [/]	0.17 ^e	
swimbladder wall - μ_3			

^{*a*} Fit for the length measurements and corresponding widths using length-to-width ratio from Stanton et al. (2000) (L/a = 1.5). The distribution was assessed as the best fit based on a 1:1 line between theoretical and empirical quantile in Q-Q plots.

^{*b*}Swimbladder radius was calculated based on the measured total length and the calculated widths using the relationship described by the data in Chu et al. (2003) and assuming a linear relationship ($R^2 = 0.98$), as shown in Figure S1. The distribution was assessed as the best fit based on a 1:1 line between theoretical and empirical quantile in Q-Q plots.

^cLinear regression (Supplementary material; Figure S1) established from swimbladder length-to-total length relationship using data from Chu et al. (2003).
^dSubtracted shell layer thickness (2.3% of radius) from elastic shell radius based on value from Lavery et al. (2007)
^eKhodabandeloo et al. (2021)
^fStanton et al. (2000)

^gFeuillade and Nero (1998)

^hLavery et al. (2007)

'Ship-based CTD measurements

^{*j*}Liu et al. (2005)
Table 4: The size distribution of the dominant species from each taxonomic group. MultiNet and Tucker trawl length measurements were taken from subsamples. The "acoustics" sampling method shows the mean length and standard deviation used in the scattering models for the forward and inverse methods.

Taxonomic	Sampling	Species	Ν	Mean	Sd of
group	method			length	length
				(mm)	(mm)
Pteropods	MultiNet	Limacina retroversa	157	1.5	0.6
	Tucker trawl	Limacina retroversa	70	1.2	0.3
	Acoustics	Limacina retroversa	229	1.4	0.6
Copepods	MultiNet	<i>Calanus finmarchicus CV</i>	а	2.62 ^b	0.09
	Tucker trawl	<i>Calanus finmarchicus CV</i>	n/a	n/a	n/a
	Acoustics	<i>Calanus finmarchicus CV</i>	а	2.62 ^b	0.09
Euphausiid	MultiNet	Euphausiacea furcilia	105	4.0	1.0
larvae	Tucker trawl	Thyssanoessa inermis	108	4.7	1.6
	acoustics	Thyssanoessa inermis	108	4.7	1.6
Amphipods	MultiNet	Themisto abyssorum	75	4.6	1.4
	Tucker trawl	Themisto abyssorum	108	4.3	1.2
	Acoustics	Themisto abyssorum	183	4.4	1.3
Fish larvae	MultiNet	Pisces larvae	8	8.3	5.8
	Tucker trawl	juvenile/larvae <i>Gadus</i> <i>morhua</i>	61	9.3	3.2
	Acoustics	juvenile/larvae <i>Gadus</i> <i>morhua</i>	61	7.6	3.1

Note: All measurements are of full length unless otherwise specified. ^a Santana Hernández (2019) ^b Prosome Length (PL)

Figure 1: Map of the Norwegian Sea and Norway's coasts. The red box in the inset indicates the area shown in the large bathymetric map of Tromsøflaket. The Tromsøflaket map indicates the vessel-based research cruise track in red as it travelled between sampling stations (black stars). Time and GPS location of stations are described in Table 1, and Sailbuoy track in purple is the autonomous acoustic survey. Map produced with cartopy (ver. 0.18.0; scitools.org.uk/cartopy) in orthographic projection and the inset in plate carrée projection (UTM coordinate system).

198x173mm (300 x 300 DPI)

Figure 2: Example of a) raw pulse-compressed volume backscattering strength (Sv) echogram data upper and lower boundaries of Cluster 0 in red; b) echogram after the mean filtering in time and depth (70 s and 0.09 m filter, respectively); c) projection of raw data by removing the time dimension; and d) projection of filtered data in the depth/Sv dimensions classified into clusters (k=3 in this example) obtained by k-means clustering. In this example, the cluster corresponding to the SSL is Cluster 0.

255x261mm (300 x 300 DPI)

Figure 3: a-e) Density estimates in the logarithmic domain for each dominant taxonomic group in Tromsøflaket, in units of base 10 logarithm of individuals per m³. Each box summarises the density measurement from Net (MultiNet; n=11, blue), Trawl (Tucker trawl; n=11, orange), Forward (acoustic forward method; n=70, green) or Inverse (acoustic inverse method; n=70, red). Significant differences are denoted by the number of asterisks (*), with *** p < 0.001, ** p < 0.01 and * p < 0.05 from pairwise Dunn's tests. f) is the total density estimate (sum of all species) for all stations (Net and Trawl) and all SSLs (sound scattering layers) (Forward and Inverse). Note the different y-axis scale in subplot f.

299x191mm (300 x 300 DPI)

Figure 4: Relative density of each taxonomic group as calculated by each sampling method across the whole survey region of Tromsøflaket with standard deviation error bars representing variability between stations (Net and Trawl) or SSLs (Inverse). Taxonomic groups are ordered from smallest (left) to largest (right). Size details of each taxonomic group are described in Table 4.

198x115mm (300 x 300 DPI)

Figure 5: Median target strength results of ensemble simulations from the scattering models for each dominant taxonomic group in Tromsøflaket, including the 90% bootstrap confidence intervals of the median as the shaded region. Vertical grey gashed line indicates the nominal frequency (333 kHz).

108x134mm (300 x 300 DPI)

Figure 6: The sensitivity analysis results for predicted density estimates of each taxonomic group (a-e) for the inversion of acoustic data with scattering model results varying randomly between median, the 5th and 95th percentiles and the volume backscatter spectra varying randomly between median, and interquartile range for each SSL (x-axis). The blue line in each panel is the median of the sensitivity analysis, the shaded region displays the extent of the 5th and 95th percentile. The red lines indicate the standard deviation of the density estimates for all the SSLs. Note the difference in scale of the y-axis.

303x196mm (300 x 300 DPI)