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United Kingdom, 9Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA),
Instituto de Oceanografia, Universidade Federal do Rio Grande—FURG, Rio Grande, Brazil,
10Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service,
National Oceanic and Atmospheric Administration, Santa Cruz, CA, United States, 11Department of
Applied Math, University of California, Santa Cruz, Santa Cruz, CA, United States, 12Antarctic
Ecosystem Research Division, Southwest Fisheries Science Center, National Marine Fisheries
Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States, 13Institute of
Marine Research, Tromsø, Norway, 14UiT The Arctic University of Norway, Tromsø, Norway
Following their near extirpation by industrial whaling of the 20th century, the

population status of Southern Hemisphere fin whales (SHFW) remains

unknown. Systematic surveys estimating fin whale abundance in the

Southern Ocean are not yet available. Records of fin whale sightings have

been collected by a variety of organisations over the past few decades,

incorporating both opportunistic data and dedicated survey data. Together,

these isolated data sets represent a potentially valuable source of information

on the seasonality, distribution and abundance of SHFW. We compiled records

across 40 years from the Antarctic Peninsula and Scotia Sea from multiple

sources and used a novel approach combining ensemble learning and a

maximum entropy model to estimate abundance and distribution of SHFW in
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this region. Our results show a seasonal distribution pattern with pronounced

centres of distribution from January-March along theWest Antarctic Peninsula.

Our new approach allowed us to estimate abundance of SHFW for discrete

areas from a mixed data set of mainly opportunistic presence only data.
KEYWORDS

species distribution model, random forest classifier, opportunistic data analysis,
Balaenoptera physalus, Southern Ocean, data compilation
1 Introduction

Southern Hemisphere fin whales (Balaenoptera physalus

quoyi, SHFW) were the most numerously exploited whale

species in the Southern Ocean during 20th century industrial

whaling, with over 700,000 individuals killed (Clapham and

Baker, 2002). Today, the current population status of SHFW is

unknown, and knowledge about the spatio-temporal

distribution of SHFW is limited (Leaper and Miller, 2011;

Edwards et al., 2015). In their world-wide assessment of fin

whale distribution, (Edwards et al., 2015) identified the Southern

Hemisphere as a data gap region. SHFW are assumed to be

extensively distributed in latitudes between 40°S and 60°S, and

rare to absent in equatorial waters north of 20°S and in the ice-

covered waters south of 60°S (Edwards et al., 2015; Cooke, 2018).

Like most balaenopterids, their general migratory pattern

presumably is a movement between poleward feeding areas in

the summer months and lower latitudes in the winter months

(Mackintosh, 1966; Mizroch et al., 1984). However, foraging

areas have also been identified at low latitudes (Pérez et al., 2006;

Toro et al., 2016; Sepúlveda et al., 2018). Migratory routes and

the locations of Southern Hemisphere breeding grounds have

not yet been identified (Mizroch et al., 1984; Edwards et al., 2015;

Cooke, 2018) and SHFW population structure is not yet fully

understood (Archer et al., 2013; Archer et al., 2019; Cabrera

et al., 2019; Pérez-Alvarez et al., 2021; Wood and Širović, 2022).

Today, much of the understanding of circumpolar post-

whaling distribution and abundance of whales is based on the

International Whaling Commission’s (IWC) International

Decade of Cetacean Research (IDCR) and Southern Ocean

Whale Ecosystem Research (SOWER) cruise programmes,

carried out in three circumpolar sets of surveys between 1978

and 2004, and localised ‘experimental’ voyages until 2010. Based

on IDCR/SOWER data from surveys between 1991 and 1998,

circumpolar fin whale abundance south of 60°S was last

estimated at 5,445 individuals (95% CI 2,000–14,500) (Branch

and Butterworth, 2001). However, since some uncertain, but

potentially substantial, proportion of the population may range

north of 60°S during the summer months, surveyed areas did not
02
represent their complete summer distribution, therefore, this

estimate probably under-represents the total population size. For

the Scotia Arc and Antarctic Peninsula region, the last SHFW

abundance estimate is 4,672 (CV 42.37) based on data from the

dedicated CCAMLR/SOWER 2000 survey conducted in

February and March 2000 (Reilly et al., 2004). Dedicated

surveys to estimate abundance have also been carried out for

small discrete regions around the Antarctic Peninsula (Herr

et al., 2016; Viquerat and Herr, 2017; Herr et al., 2022).

High densities and large feeding aggregations of fin whales

have been reported from the Western Antarctic Peninsula

(WAP) in the past decade (Santora et al., 2010; Santora et al.,

2014; Herr et al., 2016; Viquerat and Herr, 2017; Herr et al.,

2022), indicating that some level of post-whaling population

recovery has begun (Herr et al., 2022). Systematic surveys

targeting fin whale distribution in the Atlantic sector of the

Southern Ocean, including areas north of 60°S, are not yet

available. However, in addition to smaller scale dedicated

surveys, data on fin whale occurrences have been collected

opportunistically during research and commercial expeditions

over the past few decades, incorporating both Antarctic and sub-

Antarctic latitudes. These datasets are held by a variety of

different organisations and data holders. Combining these

disparate data into a single comprehensive analysis, these

datasets represent a source of information on the seasonality,

distribution and abundance of SHFWs.

The main objective of this study was to predict the

distribution of fin whales in time and space across the

Antarctic Peninsula and Scotia Sea region using biological and

environmental data as predictors. To achieve this, we (i)

compiled sighting records of SHFW from the Antarctic

Peninsula and Scotia Sea region from multiple sources and

research groups; (ii) used an ensemble learning and a

maximum entropy approach to develop a workflow to

estimate a minimum abundance from non-standardised

opportunistically collected datasets; and (iii) provide insight

into the environmental correlates that may be associated with

the seasonality and distribution of SHFW across the Antarctic

Peninsula and Scotia Sea region across a 40-year period.
frontiersin.org
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2 Material and methods

2.1 Data integration and preparation

We compiled SHFW sighting records from datasets of ten

different data holders (Table 1; Table S1 for a detailed table

including all references for the data set and Figure S1 for a map

of all records by providers). In addition, we sourced data from

two mass online repositories (GBIF.org and OBIS.org; accessed

on the 6th of April 2021) for all SHFW records. In order to deal

with the potential redundancy with the mass online data

repositories, we excluded all duplicates based on location

(geographic coordinates rounded to 2 digits), year and month,

keeping the data that were submitted to us by data holders. Data

were restricted to records south of 50°S and between 90°W and

10°W. We only used definite fin whale sightings and excluded

fin-like type of sightings and any other identification with

uncertain species identification. Sighting records from non-

scientific personnel were based on photographic evidence. All

definite fin whale records were considered confirmed presences.

Data sets in this study originated from dedicated surveys for

marine mammals and from opportunistic collection of sightings.

Of these, only dedicated survey data sets provided information

on search effort. We used stretches of survey effort without fin

whale detections from dedicated surveys as pseudo absence

records [‘pseudo’, because absences in marine mammal

surveys can never be considered ‘true’ absences (Barlow, 2015;

Hammond et al., 2021)]. All geographic information was

projected to IBCSO projection (EPSG: 9345; https://epsg.org/

crs_9354/WGS-84-IBCSO-Polar-Stereographic.html). The

pooled dataset contained the geographic position, estimated

group size (including information on number of groups
Frontiers in Marine Science 03
detected and the number of animals; for pseudo absences = 0),

the year and the month for each presence/pseudo

absence record.

We only considered data recorded after the introduction of

the IWC’s New Management Procedure (International Whaling

Commision, 1976) when all SHFW were classified as Protection

Stocks in 1976, setting the quota in the Southern Hemisphere to

zero (International Whaling Commision, 1978), i.e., marking the

end of commercial whaling on fin whales. Therefore, the dataset

starts with the first dedicated large whale survey in the Southern

Ocean (IDCR/SOWER) in 1978 and concludes with the

PHAROS surveys in January 2021. We pooled data across

years into seasonal quarters (at regular three-month intervals,

i.e. Q1: January –March, Q2: April – June, Q3: July – September

and Q4: October – December).
2.2 Creation of sample grids

We based the boundary of our analysis on a convex hull

around all presence records of the data set. This area was

extended by 100 km in order to include the neighbouring

environment for records near the boundary line. The Antarctic

Sound and the waters surrounding the Weddell Sea were

manually excluded from the analysis due to data sparsity. The

spatial extent of our study area comprised data within 80°W to

17°W and 50°S to 70°S, respectively, covering an area of app. 5.2

x 106 km².

We selected a set of nine candidate static and environmental

covariates based on their perceived ecological relevance for

cetaceans [e.g. (Sagnol et al., 2014; Claro et al., 2020)], which

were available across the extent of the survey area (Table 2). The
TABLE 1 Summary of data sources and number of provided records.

Source Type of data N I A

AWI Bridge observation by nautical officers collected during Polarstern cruises 73 233 –

BAS Collection of dedicated marine mammal surveys from the Scotia Arc by British Antarctic Survey 158 532 y

IMR/BAS Joint krill, marine mammal and seabird survey 2019 355 672 y

Fundación Cethus Photo ID and sighting data from Fundación Cethus surveys 245 507 y

GBIF Global Biodiversity Information Facility (www.gbif.org, accessed on 01.08.2021) 6 6 –

GERMAN SURVEYS Records from dedicated distance sampling surveys and opportunistic sightings during Antarctic expeditions 272 569 y

happywhale.org Crowd sourced online repository mainly of photographic evidence (happywhale.org) 18 18 –

IWC IDCR/SOWER Collection of dedicated visual survey data from IWC IDCR/SOWER cruises 187 830 –

OBIS Ocean Biodiversity Information System (www.obis.org, accessed on 01.08.2021) 1 1 –

FPV Pharos SG Collection of opportunistic records from around South Georgia/Islas Georgias del Sur 152 430 –

PROANTAR FURG Sighting surveys, Photo ID and opportunistic data from the Brazilian Antarctic Program PROANTAR/FURG surveys 382 1,148 –

SGHT Opportunistic sightings data reported to the South Georgia Heritage Trust 92 566 –

US AMLR Collection of dedicated visual survey data from US AMLR cruises 498 999 y

Total 2,439 6,511
fro
ntiersin.o
Source: data holder/data source (in case of online data repositories); Type of data: short description of original data type; N: Number of sightings (presence records); I: Number of individual
fin whales; A: indicates whether pseudo absences were available for the analysis.
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majority of static covariates used in this analysis originates from

depth data, for which we used the International Bathymetric

Chart of the Southern Ocean, version 2 [IBCSO v2 (Dorschel

et al., 2022)]. Slope, aspect (the direction that the slope is facing),

topographic position index (tpi; a measure used to classify the

structure of an area surrounding a point) and terrain ruggedness

index [tri; quantifying the variability of elevation (Riley et al.,

1999)] were calculated using the terrain function from the raster

package (Hijmans, 2017) in R 4.0.4 (R Core Team, 2021). The

implementation of tpi and tri followed (Wilson et al., 2007).

These seafloor features describe physical properties that in turn

may impact the ecological value of an area of ocean and are

therefore prime candidates for species distribution studies in the

Southern Ocean (El-Gabbas et al., 2021a; El-Gabbas et al., 2021b;
Frontiers in Marine Science 04
Reisinger et al., 2021) and elsewhere (Dıáz López and Methion,

2019; Claro et al., 2020). We calculated the absolute distance

from the continental shelf break (using the shelf break as

detected in (Herr et al., 2019) using spatial samples at a

regular 5 km intervals via spsample in R version 4.0.4 and

produced a regular grid with each cell containing the distance to

the nearest shelf edge line. For the set of dynamic covariates, we

extracted monthly averages of sea surface temperature (sst) and

chlorophyll-a (chla) for each year (starting from 2002) from

https://neo.sci.gsfc.nasa.gov/archive/geotiff.float/MY1DMM_

CHLORA/(chla) and https://neo.sci.gsfc.nasa.gov/archive/

geotiff.float/MYD28M/(sst) and used these as environmental

covariates. For data collected prior to 2002, monthly averages

from later years were used as a rough approximation for sst and
frontiersin.org
TABLE 2 Description of variables used in the analysis.

Abbreviation Comment Unit Source

Static covariates

DIST2SHELF distance from each cell midpoint to closest shelf edge m (Herr et al., 2019)

aspect aspect of depth rad Extracted from IBCSO v2 (Dorschel et al., 2022)

depth depth m

roughness roughness index of seafloor –

slope slope of seafloor rad

tpi topographic position index –

tri terrain ruggedness index –

Environmental/biological covariates (per quarter)

chla satellite based chlorophyll-a concentration mg/m³ (Hu et al., 2012)

sst satellite based sea surface temperature °C https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MYD28M, accessed 2022/01/22
Column name as used in the data; Comment: short description of data; Unit: unit of data; Source: data origin/data source.
FIGURE 1

Number of fin whale groups (G; green bars); individuals (I; orange bars), Number of absence cells (Cabsence; blue bars); Number of presence cells
(Cpresence; pink bars) per year.

https://neo.sci.gsfc.nasa.gov/archive/geotiff.float/MY1DMM_CHLORA/(chla)
https://neo.sci.gsfc.nasa.gov/archive/geotiff.float/MY1DMM_CHLORA/(chla)
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https://neo.sci.gsfc.nasa.gov/archive/geotiff.float/MYD28M/(sst)
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chla. All covariates were resampled to a regular grid of 5x5km

resolution and projected to IBCSO (EPSG: 9354) to facilitate

the analysis.

We subdivided our study area into regular hexagonal

polygon cells with a grid spacing of 20 km, leading to a

regular and equidistant grid of approximately 320 km² cells.

We extracted the static and environmental covariates to each

grid cell based on the median of the respective covariate grid for

each cell and separately for each quarter.

All fin whale records (both presence and pseudo absences)

were aggregated to the grid cells for each seasonal quarter,

respectively, resulting in four seasonal sample grids containing

all covariates and a summary of fin whale records and pseudo

absences pooled across 1978 – 2021 (see Figure 2). Each seasonal

sample grid contained information on the grid centroid (i.e. the

midpoint coordinates of the hex cell), the observed number offin

whales, the number of fin whale groups and the average group

size per grid cell (where available) for the respective seasonal

quarter. We assigned presence and pseudo absence per sample

grid cell based on the observed number of fin whale groups,

adhering to the following rules:

Presence within a seasonal quarter and cell supersedes

pseudo absence – Since absences in marine mammals can

never be considered ‘true’ absences with certainty (hence the

term ‘pseudo absence’), any confirmed presence superseded

pseudo absence. All pseudo absences from a seasonal quarter

that were assigned to a cell that was also associated with a
Frontiers in Marine Science 05
presence record for the given seasonal quarter were therefore

discarded for this analysis.

Multiple pseudo absence records within a seasonal quarter

and cell were treated as a single record of pseudo absence –

During dedicated surveys, effort is recorded at discrete intervals.

Any number of pseudo absence records within a cell was

therefore treated as a single record of absence.
2.3 Stratification of survey area

In order to quantify fin whale numbers, we selected four sub

areas within the study area that provided a robust sample size

(i.e. good coverage across at least some quarters). We centred

these on four distinct island groups within the study area and

named them accordingly: (i) South Georgia (Islas Georgias del

Sur), (ii) South Orkney Islands, (iii) Elephant Island, and (iv)

South Shetland Islands (Figure 3).
2.4 Analysis

We checked for the spatial auto correlation of our sample

grid data using Moran’s I (Moran, 1950) in ape (Paradis et al.,

2018), noting any covariates that were spatially auto correlated.

In addition, we ran separate correlation tests per quarter based

on Spearman’s r, r² and a hierarchical clustering on variables
frontiersin.org
FIGURE 2

Number of fin whale groups (G; green bars); individuals (I; orange bars), Number of absence cells (Cabsence; blue bars); Number of presence cells
(Cpresence; pink bars) per quarter. Q1: Jan – Mar; Q2: Apr – Jun; Q3: Jul – Sep; Q4: Oct – Dec.
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(using Spearman’s r² as distance metric) in Hmisc (Harrell Jr.,

2018) in R version 4.0.4 (R Core Team, 2021). We used a

threshold of r² = 0.5 to decide which covariates to keep. For

each quarter, we assessed whether covariates are feasible based

on these metrics. If a covariate showed signs of collinearity or

correlation, it was rejected as a potential covariate for the

analysis of respective quarter (Figures S2–S5).

The model framework in this study can be summarised in

three steps: (1) fitting a species distribution model (SDM) to

obtain the spatial distribution of presence probabilities, (2)

fitting a random forest model using generalized least squares

(RF-GLS) to predict the spatial distribution of fin whale group

sizes and (3) combining the results of the SDM and RF-GLS step

to produce minimum abundance estimates for each of the

Island Groups.
Frontiers in Marine Science 06
2.4.1 Species distribution model
We estimated the probability of presence offin whales within

the survey area per quarter with a maximum entropy approach

(Phillips et al., 2020) as implemented in maxent version 3.4.0

(http://biodiversityinformatics.amnh.org/open_source/maxent)

via the dismo package (Hijmans et al., 2017) in R. Each model

ran 100 replicates using bootstrapping for sample selection

within each replicate. We used the spatially thinned data in

the sample grid as input data for the modelling step, with each

presence cell entering the model as an occurrence point (using

cell midpoints as location) and each pseudo absence cell as a

background point (if available). For each seasonal quarter, we

tested the same set of models. As environmental data on sst and

chla were not available in sufficient quality for Q2 (April – June)

and Q3 (July – September), models containing environmental
FIGURE 3

Sample grid as used in the SDM and RFGLS modelling step. Yellow cells: cells with confirmed presence of fin whales; black cells: cells with
pseudo absence; transparent cells: cells not covered by data in the respective quarter. Background bathymetry based on IBCSO v2 (Dorschel
et al., 2022). Q1: Jan – Mar, Q2: Apr – Jun, Q3: Jul-Sep; Q4: Oct – Dec.
frontiersin.org
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covariates were only run for Q1 and Q4 (October-December).

All models containing covariates that were discarded either due

to spatial autocorrelation or collinearity with other model terms

were skipped. Model diagnostics for each replicate were

extracted using the evaluate function in dismo (Hijmans

et al., 2017).

Due to the high number of diagnostic measures and model

replicates, we chose a dimension reduction approach,

condensing the number of diagnostic measures for each model

and quarters onto two principal component axes (each therefore

giving the relative importance of its loadings). This allowed for

visual model comparison, including the variability between

replicates of a model and variability between models. The final

selection of the best model for each season was based on the area

under the curve (AUC; summarising the ratio of true positive

rate and false negative rate with AUC values close to 1 indicating

excellent models and values close to 0 indicating inadequate

models) and Cohen’s Kappa (Liu et al., 2011). The selected

model for each quarter was re-run with the same data, number

of replicates and maxent settings (this was necessary due to

computational limitations, as we could not store all model

replicates for each model per quarter). We used the original

covariate raster sets (i.e. regular grids of our covariates raster

data with 5km spacing) as input data for the prediction step,

leading to 100 replicate predictions at 5x5 km cell size resolution

per quarter. We used these replicate predictions to create

summary statistics (mean, 25th and 75th percentile of predicted

probabilities per raster cell) based on the selected model for each

quarter at 5x5 km resolution.

As a last step, we ran a threshold model on each replicate as

implemented by the threshold function in dismo (Hijmans et al.,

2017) with a sensitivity of 90% using combined sensitivity (true

positive rate) and specificity (true negative rate) criterion

(Liu et al., 2011; Liu et al., 2013). In order to condense the

threshold values (discrete values of either 0 - absence and 1 -

presence) across all replicates, we chose to use a hard max

(favouring the most abundant threshold value per cell) to obtain

a binary masks of presence/absence predictions across the survey

area based (pthreshold).

2.4.2 Local abundance estimation
We estimated the number offin whales for each island group in

an independent step. Estimating abundance from opportunistically

collected data is challenging due to the lack of information on

search effort involved. We interpreted the number of observed fin

whales as a spatial stochastic process, i.e. driven by an unknown

functional link between the observed number of fin whales and the

observed covariate space. We also assume this functional link to

generate highly auto-correlated data across all spatial scales (i.e. we

assume an underlying neighbourhood effect). Therefore, we decided

to investigate the number of observed fin whales using a random

forest approach based on our candidate explanatory variables. As an
Frontiers in Marine Science 07
ensemble learning approach, traditional random forest models

work best with discrete classes and usually provide class

probabilities analogous to their traditional classification model

counterparts (Ho, 1995). However, a recent study shows that it is

possible to include the spatial structure of a data set (spatial lag,

autocorrelation and adjacency of data) into ensemble learning

models even for continuous responses (Saha et al., 2021). We

therefore applied a random forest approach using generalized

least squares in conjunction with a spatial dependency structure

(RF-GLS) to model group sizes (yi) from the presence only data of

the sample grid following:

yi = m xið Þ + w sið Þ + ϵi

With the observed response yi and the covariate effect m(xi)

corresponding to the observed location si, and the e~N(0,t2I).
denoting the underlying Gaussian noise process and w~C

(j,n,s2) the spatial Matérn covariance for each observed

location si. We used the BRISC estimator for model estimation

(Saha and Datta, 2018) via the RandomForestGLS package (Saha

et al., 2021).

The forest for each seasonal quarter was set up to contain

1,000 classification trees, with each tree including three variables

randomly selected from the set of available static and dynamic

variables, excluding x and y location (since these are included in

the model in a separate spatial neighbourhood matrix). The

latent spatial random surface (based on the cell midpoint

coordinates) considered 18 neighbours for the spatial

correlation effects and a maximum number of 20 leaf nodes

were allowed per tree. We scaled and centred the response

variable and the covariate matrix that was supplied to the RF-

GLS model between 0 and 1, based on the global centre,

minimum and maximum of each parameter across all quarters

and cells. We assessed the predictive capabilities of the RF-GLS

using the set of input data for each seasonal quarter and

comparing it to the prediction. For each input observation, we

calculated the summary statistics for the 1,000 classification tree

estimates to assess model accuracy. We used the ratio of

prediction accuracy (number of predicted fin whales/number

of observed fin whales; paccuracy) as model quality metric. We

then used the BRISC estimator to predict the estimated number

of fin whales on the stack of 5x5 km covariate raster for each

seasonal quarter rounded to the nearest integer (NRFGLS). For

this step, we used the same covariate stack for each quarter as in

the SDM step, cropped to each individual island group. We used

a buffer around the island groups to prevent edge effects, which

was removed for the next step.
2.5 Combination of SDM and RF-GLS

We multiplied the binary threshold mask for fin whale

presence from the SDM (pthreshold) with the predicted fin
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whale numbers from the RF-GLS (NRFGLS) to obtain adjusted

abundance estimates for each island group. Local densities of fin

whales per cell for each island group and quarter (Di) were

estimated using the (adjusted) number of predicted fin whales

per cell i (Ni) divided by the cell size (5x5 km):

Di =
Ni

25km2

We used the set of Di per quarter and island group to

estimate the average density Dadj and its 95% confidence

intervals for each island group and seasonal quarter. In the

final step, we multiplied Dadj with the total area of the respective

island group to obtain an estimate of the number of fin whales

we expect to observe in a given seasonal quarter if all cells in a

given island region were observed (Nadj). Error statistics for each

island region was based on the distribution of Nadj across all cells

within the island region boundary.
3 Results

3.1 Data distribution

A total of 2,428 sighting records comprising 6,473 fin whales

was available for the analysis after filtering. All these records

provided the required minimum information, i.e. geographic

position, estimate of group size, year and month of the record.

The distribution of data revealed an increase in sighting records

since 2000 (Figure 1). The majority (app. 88%) of presence data

were recorded during Q1 (Jan – Mar; Figures 2, 3).

Presences were recorded in 1,193 sample grid cells and

pseudo absences in 5,445 cells (Table 3). Absences were not

available for data before 2003. The distribution of data revealed
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consistent coverage gaps, as most records available for this

analysis were collected along established travel routes and

popular destinations for either scientific Antarctic expeditions

or touristic ventures (e.g. South Georgia (Islas Georgias del Sur),

Elephant Island). As a result, data coverage concentrated in

certain localities (i.e. the island groups) and was biased towards

the austral summer months January-March. The spatial

distribution of sighting records showed a strong positive bias

towards South Georgia (Islas Georgias del Sur) and the Antarctic

Peninsula (Figure 3).
3.2 Species distribution model

We tested 20 models with different covariate combinations

for each quarter using the covariates available for each quarter

(Table 4; Figures S3–S5).

We used AUC and Cohen’s Kappa for model selection

(Figures 4, 5; Tables S2, S3). The high overall number and good

coverage in Q1 (Jan – Mar) was reflected in consistent ROC AUC

values around 0.7, whereas the widest range in AUC values were

found for models for the spring quarter Q4 (Oct –Dec). For quarter

Q2 (Apr – Jun), the exclusion of sst and chla led to few remaining

model runs for that season. Similarly, Cohen’s Kappa followed a

similar trend, with high values in Q1 and a wide range in Q4. Data

sparsity (presence cells n= 15, Table 3) led us to remove quarter Q3

from all subsequent analysis.

The best model for each quarter is given in Table 5

(diagnostics are shown in supplement Table S4 and Figures

S6–S8, S12).

Using the selected models (Table 5), we predicted the

probability of SHFW presence (ppresence) for each seasonal

quarter (Figure 6) and the threshold mask based on the
TABLE 3 Summary of records and number of sighted individuals and across months, aggregated on sample grid cells.

Quarter Month G Ind gs Cpresence Cabsence

Q1 Jan 666 1,479 2.22 367 2,783

Feb 1,079 2,979 2.76 417 1,715

Mar 380 1,129 2.97 184 648

Q2 Apr 125 260 2.08 71 136

May 38 74 1.95 35 43

Jun 6 63 10.5 6 0

Q3 Jul 6 14 2.33 6 0

Aug 10 10 1 6 0

Sep 4 7 1.75 3 0

Q4 Oct 17 44 2.59 16 0

Nov 30 144 4.8 28 0

Dec 67 270 4.03 54 120

Total 2,428 6,473 2.67 1,193 5,445
front
G: number of fin whale groups; Ind: number of individual fin whales aggregated in all cells; gs: average group size per month; Cpresence: number of cells containing presence data; Cabsence:
number of cells containing pseudo absence data.
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combined sensitivity (true positive rate) and specificity (true

negative rate) (Figure 7). In Q1 (Jan - Mar), high SHFW

presences were predicted on the shelf along the Antarctic
Frontiers in Marine Science 09
Peninsula. In Q2 (Apr - Jun), no apparent pattern could be

observed. For Q4 (Oct - Dec), we predicted highest probabilities

of SHFW presence further offshore, beyond the shelf.
3.3 Local abundance estimastion
(RF-GLS)

The sample grid for Q1 provided the highest number of

input cells for the RF-GLS. Predictive model accuracy was

highest for Q4, with a median accuracy of 0.6332 (95% CI:

0.3426 - 0.9916), followed by Q1 with 0.5834 (95% CI: 0.2767 -

1.2015) and Q2 with 0.535 (95% CI: 0.3186 - 0.8789). The widest

margin for paccuracy was observed for model predictions in Q1,

with an interquartile range of 0.9247 compared to Q2 (0.6490)

and Q4 (0.5603; Table 6; Figures S9–S11).

In Q1, the RF-GLS predicted very high numbers of fin

whales throughout the sub areas of Elephant Island, the South

Orkney and the South Shetland Islands. In the sub area of South

Georgia (Islas Georgias del Sur) a heterogeneous distribution

pattern was predicted. In Q2, fewer animals were predicted in

the three sub areas of Elephant Island, the South Orkney and the

South Shetland Islands, still with local highs in abundances,

albeit more dispersed than in the other quarters. South Georgia

(Islas Georgias del Sur) showed a heterogeneous distribution,

with the higher numbers of predicted fin whales close to the

shoreline in Q1 and Q2 and a more dispersed distribution of

high abundance cells in Q4 seemingly further away from the

shelf. Q4 shows a distinct increase in numbers around Elephant

Island and South Georgia (Islas Georgias del Sur) and low

numbers in the other two sub areas (Figure 8).
FIGURE 4

Summary of AUC (area under curve) for all maxent models in quarters Q1 (Jan-Mar), Q2 (Apr -Jun) and Q4 (Oct – Dec). Violins based on kernel density
of 100 replicate AUC values.
TABLE 4 Model definition for the SDM model of fin whale presence/
pseudo absence records.

Model Predictors

m01* sst

m02* chla

m03* sst + chla

m04 depth

m05* depth + chla

m06* depth + sst

m07 depth + DIST2_SHELF

m08* depth + sst + chla

m09 depth + slope

m10* depth + slope + sst

m10* depth + slope + sst + DIST2_SHELF

m12* depth + slope + chla

m13* depth + slope + chla + DIST2_SHELF

m14* depth + slope + chla + sst

m15* aspect + depth + tpi + chla + sst + DIST2_SHELF

m16* aspect + tri + chla + sst + DIST2_SHELF

m17 aspect + tri + DIST2_SHELF

m18 aspect + slope + DIST2_SHELF

m19 aspect + slope

m20 slope
Model: model name as used throughout rest of document (Model names marked with *
indicate models that could not be run for all seasonal quarters due to lack of data on sst
and chlorophyll-a); Predictors: covariate terms considered for this model (for a short
description of the covariate and all other abbreviations, see Table 2).
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3.4 Combination of SDM and RF-GLS

We multiplied the binary threshold mask from the SDM

threshold (Figure 7) with the RF-GLS results (Figure 8) in order

to mask the predicted abundances by the presence absence

prediction from the SDM (Figure 9). Low probabilities for

ppresence from the SDM set areas for which fin whales were

predicted by the RF-GLS to zero. Predicted abundances in Q1

(Jan – Mar) were moderately high in the three sub areas of

Elephant Island, the South Orkney Islands and the South

Shetland Islands. Almost no fin whales remained within the

sub area of South Georgia (Islas Georgias del Sur) after masking

for presence. Distinct small areas of higher concentration of fin
Frontiers in Marine Science 10
whale numbers were predicted within the sub area of the South

Orkney Islands and Elephant Island in Q2. In the sub area of

South Geogia (Islas Georgias del Sur), a heterogeneous

distribution with no visible centre of concentration was

observed in Q2. In Q4 (Oct – Dec) a centre of concentration

of high fin whale numbers was predicted in the sub area of South

Georgia (Islas Georgias del Sur). Few SHFW were predicted in

the other three sub areas. Abundance and density estimates for

all sub areas are shown in Table 7.

The highest density across all quarters and island groups was

predicted for Elephant Island in Q1 (0.5366 ind./km2) followed

by the South Shetland Islands in Q1 (0.5054 ind./km2). South

Georgia (Islas Georgias del Sur) showed a slight increase of
FIGURE 5

Summary of Cohen’s kappa for all maxent models in quarters Q1 (Jan-Mar), Q2 (Apr -Jun) and Q4 (Oct – Dec). Violins based on kernel density
of 100 replicate Cohen’s kappa.
TABLE 5 Model parameters for the selected maxent models.

model covar O A AUC Cohen’s k

Q1 m07 depth + DIST2_SHELF 630 2,032 0.7297 0.7004

(0.7271 - 0.732) (0.6932 - 0.7096)

Q2 m18 aspect + slope + DIST2_SHELF 109 155 0.7495 0.6298

(0.7448 - 0.7538) (0.6006 - 0.6715)

Q4 m10 depth + slope + sst + DIST2_SHELF 90 115 0.9316 0.4745

(0.9276 - 0.9353) (0.4301 - 0.5076)
Covar: covariates used in the model; O: number of sample grid cells providing observations (presence points); A: number of sample grid cells providing pseudo absences; AUC: ROC area
under curve including 25% - 75% confidence interval in brackets (based on 100 replicates); Cohen’s k: Cohen’s Kappa including 25% - 75% confidence interval in brackets (based on 100
replicates).
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densities between quarters Q1 to Q4. In some areas, our

abundance model predicted no SHFW due to low estimates of

ppresence (and therefore a pthreshold of zero within these areas).
4 Discussion

Fin whales are one of the most understudied baleen whales,

yet were the most heavily hunted in the Southern Hemisphere

(Rocha et al., 2015), and are now being seen in high densities at

high latitudes again (Herr et al., 2022). Historically, the Scotia

Arc was at the epicentre of commercial whaling, with fin whales

particularly heavily hunted (Leaper and Miller, 2011; Calderan

et al., 2020; Jackson et al., 2020), highlighting the historical

importance of the region for this species.

The data compiled for this analysis represents the most

comprehensive set of fin whale sighting records from the Scotia

Arc to date, and provides the first overview of fin whale

distribution in the area since the CCAMLR and IDCR/

SOWER surveys in the early 2000s (Branch and Butterworth,

2001; Reilly et al., 2004). Using our approach of combining an

ensemble learning model with the results of a maximum entropy
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model, we were able to update this estimate based on more

recent opportunistic data. The 2000 CCAMLR survey estimated

summer fin whale abundance across the Scotia Sea and Antarctic

Peninsula at 4,672 [CV 42.37, (Reilly et al., 2004)]; our summer

abundance estimates combined are over 1.5x this estimate; these

new data are opportunistic and do not include all areas in the

Scotia Arc, but still point to an increase in overall abundance of

fin whales across the Scotia Sea and Antarctic Peninsula region.

This study proposes a new method to use opportunistic

sighting records (if associated with critical information, i.e.

species identification, group size, geographic position and the

sighting date) as a data source for information on distribution

and orders of magnitude of abundance.
4.1 Seasonal and regional distribution
of SHFW

Our modelling suggests the highest fin whale presence

changes offshore of the islands and away from the shelf break

between October and December to closer to the Antarctic

Peninsula from January to March. In Q4 (October-December)
FIGURE 6

Predicted probability of fin whale presence per seasonal quarter (ppresence). Parts of the study area that did not provide presence records for a given
seasonal quarter are dimmed. Quarter Q3 (July – September) was excluded due to lack of data. Q1: Jan – Mar, Q2: Apr – Jun, Q4: Oct – Dec.
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predictions show highest probabilities of fin whale presence off

the islands and further away from the shelf break. In Q1

(January-March), the observed distribution shifts closer to the

Antarctic Peninsula and concentrates around the Islands along

the Peninsula. In Q2 (April-June) the distribution is more

dispersed with no clear pattern of concentration. We

hypothesise that these patterns may at least partly be

explained by migratory movements to and from known

feeding areas along the Antarctic Peninsula (Kemp and
Frontiers in Marine Science 12
Bennett, 1932), with fin whales migrating from lower latitudes

at the onset of austral spring (October), reaching the feeding

grounds in austral summer (January-March), starting to leave

them again in autumn (April) and rarely seen in winter. This is

further supported by the covariates selected in the models. Sea

surface temperature was a good predictor during Q4 (October-

December) when fin whales are likely migrating into the area. In

the quarters Q1 and Q2, bathymetry was the main driver for the

modelled distribution, although it has to be noted that for Q2,
TABLE 6 Diagnostics for the RF-GLS model using the set of input data as test set.

Quarter Nobs ∑Iobs ∑Ipred paccuracy IQR

Q1 615 5,466 5,471 0.5834 0.9247

(0.2767 - 1.2015)

Q2 35 211 224 0.5345 0.6490

(0.3186 - 0.8789)

Q4 89 454 479 0.6332 0.5603

(0.3426 - 0.9916)
frontiers
Nobs: Number of fin whale observations used in the RF-GLS model per quarter; ∑Iobs: Sum of all observed fin whales across all observations in quarter; ∑Ipred: Sum of all predicted fin whales
across all observations in quarter; paccuracy: median accuracy of predicted number of fin whales across all classification trees (95% CI in brackets); IQR: range of the 95% CI.
FIGURE 7

Predicted presence/absence of SHFW presence per seasonal quarter (pthreshold). Parts of the study area that did not provide presence records for
a given seasonal quarter are dimmed. Quarter Q3 (July – September) was excluded due to lack of data. Q1: Jan – Mar, Q2: Apr – Jun,
Q4: Oct – Dec.
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SST and CHLA were not available. Q1 showed a positive

correlation of presence probabilities with proximity to the

shelf break, when fin whales are feeding at their presumed

feeding grounds (Herr et al., 2022). For winter (late Q2 and

Q3), data coverage in this study was too low to shed any light on

the effects of migratory timing on fin whale distribution. The

scarcity of sightings in austral autumn and winter must partly be

attributed to lower effort, since most scientific and tourist

expeditions collect data during the austral spring and summer

months. Limited daylight hours additionally reduce sighting

effort considerably during autumn and winter months.

However, acoustic recording show a steep decrease in fin

whale calling activity around Elephant Island from July/August

onwards (Širović et al., 2004; Širović et al., 2009; Burkhardt et al.,

2021), suggesting a withdrawal of fin whales from that area.

The observed distribution of fin whales from the SDM also

reflects historic observations from this region. Whalers of the

20th century described a peak in whale sightings in Antarctic

waters from January to March, and lowest numbers in July and

August (Mackintosh et al., 1966). Whaling for fin whales was

carried out around South Georgia (Islas Georgias del Sur) from

September to May, with most catches taken between December
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and February, peaking in January. Around the South Shetland

Islands, whaling for fin whales was carried out from December

(rarely November) to April with high catch numbers from

January to April, peaking in March (Kemp and Bennett, 1932).

Catch rates and distribution of whaling effort likely reflect

abundance (de la Mare, 2014), but at the same time coincide

with best weather and daylight conditions for spotting and

hunting whales. Therefore, using historic whaling records as

proxy for historic abundance and distribution are likely biased

by effort to a certain degree.
4.2 Local abundance estimates

Comparison of the adjusted abundance estimates from the

combined SDM and RF-GLS in the sub areas with published

estimates from local surveys indicate that our estimates for

Elephant Island, the South Shetlands and the South Orkneys

are consistent with estimates from dedicated surveys. In

January-March 2013, high fin whale densities were predicted

in an area encompassing Elephant Island, and the South

Shetland Islands [DP - Drake Passage in (Herr et al., 2016)].
FIGURE 8

Number of fin whales per cell and seasonal quarter as predicted by the RF-GLS mode (NRFGLS). Parts of the study area that did not provide
presence records for a given seasonal quarter are dimmed. Quarter Q3 (July – September) was excluded due to lack of data. Q1: Jan – Mar,
Q2: Apr – Jun, Q4: Oct – Dec.
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Densities of fin whales were estimated at 0.117 (95% CI: 0.053–

0.181) fin whales/km² and a total of 4,898 (95% CI 2,221 - 7,575)

fin whales/km². In February-March 2016, minimum average

densities of fin whales were estimated at 0.0268 ± 0.0183 fin

whales/km² in a 19,750 km² area around Elephant Island and a

minimum density of 0.0588 ± 0.0381 fin whales/km² in a 13,550

km² area around the South Orkney Islands (Viquerat and Herr,

2017). For March-April 2018, (Herr et al., 2022) report 0.1688

(95% CI: 0.0922 – 0.3498) fin whales/km², corresponding to

3,436 (1876 – 7,130) individuals within a 20,375 km² area

divided across three distinct hotspots around Elephant Island

and the South Shetland Islands. These density and abundance
Frontiers in Marine Science frontiersin.org14
estimates are lower than our predictions of 0.5368 (Elephant

Island), 0.4430 (South Orkney Islands) and 0.503 (South

Shetland Islands) fin whales/km² in the summer (Q1) period.

However, the abundance estimates presented here must be

treated with caution. Compared to results from a conventional

survey design, our abundances are associated with very narrow

confidence intervals that represent the noise around the

expected means of the model parameters rather than the

difference between observed and predicted fin whale numbers.

Furthermore, our results are likely biased by data availability. For

example, an abundance estimate of zero (as seen in Q4 for the

South Orkney Islands) is highly unlikely. While this bias in data
FIGURE 9

Number of fin whales per cell and seasonal quarter (Nadj) based on combined results from the SDM and RF-GLS. From top to bottom: South
Georgia (Islas Georgias del Sur), South Orkney Islands, Elephant Island, South Shetland Islands. Parts of the study area that did not provide
presence records for a given seasonal quarter are dimmed. Quarter Q3 (July – September) was excluded due to lack of data. Q1: Jan – Mar,
Q2: Apr – Jun, Q4: Oct – Dec.
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availability is a strong argument to focus on the results of Q1

(January-March), results for seasons Q2 and Q4 seem well

within the range that we would consider reasonable for most

of the investigated island groups. If some of these areas serve as

feeding areas, migratory guideposts or resting spaces, we do not

expect animals to be evenly distributed, but instead in local

clusters as predicted here and observed in other studies (Joiris

and Dochy, 2013; Burkhardt et al., 2021; Herr et al., 2022). Based

on a recent snapshot survey, (Herr et al., 2022) predicted a

clustered distribution of fin whales in Q1, that likely coincides

with the distribution of available prey (Santora et al., 2010;

Santora et al., 2014; Herr et al., 2016). This observation might

explain the high densities we report for our sites, which are

considerably smaller in scale and might therefore not include the

steep falloff in abundance observed in (Herr et al., 2022); these

areas of lower abundances were probably included in the area

estimates from 2013 and 2016 (Herr et al., 2016; Viquerat and

Herr, 2017). Considering that the abundances reported here are

not traditional estimates based on snapshot surveys, they are not

suited to base concrete management actions on, like the

determination of potential biological removal. We consider the

true abundance of the three areas combined to fall somewhere

between the estimates for Q1. This is further emphasised by the
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fact that fin whales seem to be ubiquitous along the Western

Antarctic Peninsula as predicted by the SDM. This result is likely

biased by the high frequency of visits from scientific and touristic

cruises, leading to an inflated ppresence in these areas throughout

the summer (Q1). For the remaining seasons, there are few

studies that allow comparisons to our estimates.
4.3 Method discussion

The combination of species distribution models and machine

learning methods is an emerging field in ecology [e.g. (Effrosynidis

et al., 2020; Beery et al., 2021)]. In our study, the combination of

SDM and a random forest ensemble learning algorithm enabled us

to derive information on abundance from a multi-source

heterogeneous data set of mainly opportunistic sighting records

and to present an additional set of abundance estimates for some of

the most frequently visited research areas in the Southern Ocean.

While abundance estimates from opportunistic sighting data that

include at least some information on search effort have been

explored before (Ver Hoef et al., 2021), presence-only (or

presence-absence) data that do not contain any information on

search effort have not been used to quantify abundances yet. By
TABLE 7 Summary for each sub area.

Name Area Quarter Nadj (95% CI) Dadj (95% CI)

Elephant Island 2,630 Q1 1,412 0.5368

(1,341 - 1,483) (0.5097 - 0.5639)

Q2 76 0.0287

(72 - 79) (0.0273 - 0.0301)

Q4 63 0.024

(59 - 67) (0.0225 - 0.0255)

South Georgia
(Islas Georgias del Sur)

42,044 Q1 358 0.0085

(331 - 385) (0.0079 - 0.0092)

Q2 4,596 0.1093

(4,332 - 4,859) (0.103 - 0.1156)

Q4 8,939 0.2126

(8,429 - 9,450) (0.2005 - 0.2248)

South Orkney
Islands

5,801 Q1 2,570 0.4430

(2,460 - 2,680) (0.424 - 0.462)

Q2 171
(162 - 180)

0.0295
(0.028 - 0.031)

Q4 0 0

(0 - 0) (0 - 0)

South Shetland
Islands

5,852 Q1 2,959 0.5056

(2,829 - 3,089) (0.4834 - 0.5278)

Q2 50 0.0085

(47 - 52) (0.0081 - 0.0089)

Q4 197 0.0337

(185 - 210) (0.0316 - 0.0359)
Name: Name of the island group; Area: area of island region in km²; Quarter: seasonal quarter (Q1: Jan-Mar; Q2: Apr-Jun; Q4: Oct – Dec). Nadj: Total number of fin whales across all grid
cells of sub area (including 95% CI in brackets); Dadj: density estimate of fin whales/km² (including 95% CI in brackets).
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combining results from both methods based on the same data set,

we were able to produce rough estimates of abundance that align

with dedicated surveys in select regions and seasons. For

populations for which comprehensive survey data are not

available, this method may provide the only means to obtain

information on abundance. Without the prerequisites for a

dedicated distance sampling survey, considering the observed

group sizes a spatial stochastic process is a good approximation

for uncorrected group size abundances across an area covered by

opportunistic sightings. However, the lack of information on

search effort prevents reasonable correction for pseudo absences,

which is further complicated by the lack of information on the

availability bias of each sighting record. Ensemble learning models

offer an unsupervised method to model data ‘as is’, i.e. hypothesis

free and based on bootstrapped permutations of the observed data.

Model selection is an internal feature of ensemble learning

approaches, in which the ensemble group (in our case the group

of 1,000 individual trees each seeded with random covariate

combinations along their nodes) is tasked with finding the

optimal solution for one observation by finding the best solution

for all observations by numerical optimisation. In our case, it was

not possible to compare different random forest models with each

other, as all would converge to similar results (limited by the

variation of our input data permutations). We therefore considered

our RFGLS estimates as valid and optimal solutions to our input

data, which was confirmed by the predictive capability for all

quarters. We did not include absences in the RFGLS, since our data

were zero inflated due to the large number of absences compared

to presences. We were able to mitigate the lack of predicted zeroes

in the RFGLS by combining its predictions with the threshold of fin

whale presence derived from the SDM. In our setup, we used a

threshold to limit the prediction of fin whale presence from the

SDM to the information conveyed by our observed data. A

threshold sensitivity of 90% and the combined sensitivity

criterion (true positive rate) and specificity (true negative rate)

(Liu et al., 2011; Liu et al., 2013) can be considered very strict, as it

is purely based on the covariate space that was covered by the

respective observed data. This also explains the narrow confidence

bands for the abundance estimates, since they were mostly driven

by the results of the maxent modelling (and hence are based on 100

replicates of models containing mostly static covars and thus little

uncertainty). As such, these should be treated as uncertainties of

the posterior distribution of abundances and not be used to run

comparison metrics with other abundance estimates.

We therefore consider our threshold masks very conservative

estimates of fin whale presence. If we consider that we are also

dealing with a very conservative estimate of presence versus

pseudo absences, our results are underestimates rather than

overestimates of the true number. Using the observed data in

larger spatial bins simplified the estimation of the spatial

neighbourhood structure in the SDM and RFGLS approach,

while predicting on the regular 5 km stack of covariates enabled

fine scale implementation of said spatial effects in the results.
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4.4 Data gaps and limitations

The limited accessibility of the study area due to adverse

conditions during certain periods of the year is reflected in the

data availability of the two environmental covariates

(chlorophyll-a and SST) used in this study. Cloud cover,

daylight times and ice extent during the austral winter

severely impacted chlorophyll-a and sea surface temperature

data availability for Q2 and Q3, leading to gaps in the

prediction for given months. In addition, satellite borne data

for SST and chlorophyll- a was not available at a sufficient

spatial resolution for the years prior to 2002. While most of our

data was collected after 2000, some records had to be assigned

averaged SST and chlorophyll-a from subsequent years. This

was particularly relevant for the area around South Georgia

(Islas Georgias del Sur), where regular observation data since

1978 (the cut-off year for this study) was provided by the South

Georgia Heritage Trust. Increased data collection in the central

and eastern Scotia Arc, areas further offshore from the western

Antarctic Peninsula, and the Drake Passage would improve

confidence in fin whale distribution in those areas currently

characterised by significant data gaps, especially during

months with less data (e.g. June to November). Given the

difficulty of executing a dedicated survey for cetaceans in these

remote areas, advances in monitoring whale populations such

as remote sensing data may help with some of these data gaps,

although there are still challenges in distinguishing between

species in areas with mixed species aggregations (Fretwell et al.,

2014; Cubaynes et al., 2018; Borowicz et al., 2019; Bamford

et al., 2020; Höschle et al., 2021).
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(2006). Fin whales (Balaenoptera physalus) feeding on Euphausia mucronata in
nearshore waters off north-central Chile. Aquat. Mamm. 32, 109–113. doi: 10.1578/
AM.32.1.2006.109
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