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Abstract: Federated learning promises an elegant solution for learning global models across dis-
tributed and privacy-protected datasets. However, challenges related to skewed data distribution,
limited computational and communication resources, data poisoning, and free riding clients affect the
performance of federated learning. Selection of the best clients for each round of learning is critical in
alleviating these problems. We propose a novel sampling method named the irrelevance sampling
technique. Our method is founded on defining a novel irrelevance score that incorporates the client
characteristics in a single floating value, which can elegantly classify the client into three numerical
sign defined pools for easy sampling. It is a computationally inexpensive, intuitive and privacy
preserving sampling technique that selects a subset of clients based on quality and quantity of data
on edge devices. It achieves 50–80% faster convergence even in highly skewed data distribution in
the presence of free riders based on lack of data and severe class imbalance under both Independent
and Identically Distributed (IID) and Non-IID conditions. It shows good performance on practical
application datasets.

Keywords: federated learning; client selection; class imbalance; free-riders; active learning; faster
convergence; FedAvg; FSVRG; COOP

1. Introduction

In this era of artificial intelligence, machine learning algorithms are data hungry. Mod-
els require large volumes of data to generalize well to practical use cases [1]. In reality, data
are decentralized over different devices under privacy restrictions [2]. Federated learning
provides an elegant solution. It involves a global cloud model that collaborates with a
federation of devices called clients that carry private local data and execute a subroutine of
local refinements in each round of communication [3]. This preserves the privacy as well as
decentralizes learning to make better use of local resources while contributing to a global
cloud model.

There are multiple challenges in federated learning [4]. Data skewness is the most
popular among them. In ideal cases, Independent and Identically Distributed (IID) data
are desired, both in terms of features as well as classes. However, in real scenarios, non-IID
data varying from moderate to strongly skewed distribution is inevitable [5,6]. The global
class imbalance problem may prevail and adversely affect the performance of the global
model [7]. Further, communication challenges contribute towards cost and complexity
of learning. The clients have limited and unequal computational power, thereby limiting
the potential of learning at a local scale and affecting the global model as well [8]. There
is another challenge related to client behaviors, known as free riders. Free riders [9] use
the global model but do not contribute to learning. Free riders not only hog the limited
communication resources, but also deteriorate the performance by contributing fake or low
volume data in order to access the global model.
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State-of-the-art federated learning algorithms include synchronous Federated Averag-
ing (FedAvg) [10], Federated Stochastic Variance Reduced Gradient (FSVRG) [11] using
Stochastic Variance Reduced Gradient (SVRG) [12] and asynchronous Cooperative Learn-
ing (CO-OP) [13]. These perform well on most of the real-world datasets with FedAvg
outperforming FSVRG and CO-OP [14]. Federated multi-task learning has been shown
as an effective paradigm to handle real-world datasets. An effective multi-task learning
algorithm is VIRTUAL, which considers the federated system of server and clients as a
star-shaped Bayesian network, and learning is performed using variational inference with
unbiased Monte Carlo estimation [15]. However, the performance of all these methods
depends on the important step of client selection in each round of refinement. The problem
of client selection in an effective manner is the focus of this paper.

In an ideal situation, the best suited clients should be allowed to interact with the
global model such that performance deterioration due to data skewness, class imbalance,
and free riders can be minimized. The common approach is random client sampling.
Some other approaches have also been reported. The asynchronous COOP protocol relies
on age filters to allow merging of selected clients only. The age filters perform a prior
verification of whether the client is active or old and if it lies in the specified age bandwidth.
While age is a useful metric, it does not account for the data quality and quantity of
the client. The resource-based client selection protocol FedCS [16] actively manages
the clients based on resource constraints and accelerates the performance of the global
model with the aim of aggregating as many devices as possible within a pre-defined time
window. In [17], an optimal client selection strategy to update the master node is adopted
based on a formula for optimal client participation. Another approach in [18] is based on
adapting an online stochastic mirror descent algorithm to minimize the variance of gradient
estimation. The approach mentioned in [19] takes into account overheads incurred on each
device when designing incentive mechanisms to encourage devices with higher-quality
data to participate in the learning process. However, tackling the free riders remains an
open problem.

Some free riders’ attack and defense strategies were discussed in [9]. Free riders
were identified by constructing local gradients without any training on data. Gradients
based on random weights and delta weights are described as a possible free rider attack
strategy. Such attacks can be prevented using a deep autoencoding Gaussian mixture mode
(DAGMM) and standard deviation DAGMM [20]. More complex free riders disguising
schemes based on additive stochastic perturbations and time varying noise models are
discussed in [21]. In either of these schemes, a free rider client with zero data points can
participate by reporting fake gradients. Another problem is that there may be free riding
clients with small data volumes but with sufficiently large gradients to adversely affect
the global model. In order to counter this situation, free riders can be identified as the
clients with relatively small data volumes such that they do not have anything substantial
to contribute to the learning of the global model. This allows weighing down such clients
irrespective of other aspects. Active federate learning (AFL) [22] does use a client sampling
method that takes into account the data volume of clients, and therefore, it has some
cushion for free riders. Furthermore, its client sampling method includes consideration of
class imbalance in binary classification problems. In our own experience, AFL can support
multi-class, but the performance is bad when the free rider situation is present, and non-IID
conditions make it worse. It also cannot handle the issue of severe lack of data. In other
words, there is an unfulfilled need for client sampling schemes that handle the real-world
situation where the issues of free riders, multi-class imbalance, non-IID, and extreme data
skew coexist. To solve these issues and design a versatile and robust sampling approach,
we propose:

• A novel single floating point score, namely the irrelevance score, which is suffi-
cient for scoring the clients based on data volume, local class imbalance, as well as
IID and non-IID conditions. The score is further scalable in the future to include
other considerations.
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• A novel client sampling method, namely irrelevance sampling, which uses the irrel-
evance score in an effective manner in order to enable a selection of optimal subset
of clients for subsequent learning even in challenging imbalanced and free-rider
ridden environments.

We validate the utility of our irrelevance score and the performance of our client
sampling approach extensively using various numerical experiments, which include non-
IID conditions, highly imbalanced federated environments, and moderate-to-severe free-
riders’ repleted environments. We show the integrability and robust performance of
the proposed sampling approach in diverse learning schemes and illustrate the superior
performance over state-of-the-art sampling methods across three well-established simulated
datasets and two real-world practical application datasets.

2. Proposed Approach: Irrelevance Sampling

We first present the novel irrelevance score, which is the foundation of our sampling
method. The proposed novel scoring method performs well as compared to AFL and
random sampling methods in our experiments under coexistence of free riders (clients
with very less data samples), severe class imbalance and highly skewed distribution of
samples. We analyze the mathematical bounds and design insights of the irrelevance score.
Further, we present our sampling algorithm along with insights and complexity analysis of
the algorithm and privacy preservation of our approach.

2.1. The Irrelevance Score Υ
2.1.1. Definition

A single floating point measure is often a preferred, communication inexpensive,
manner of scoring the clients towards developing a client sampling strategy. The design
of such a score should account for class imbalance, non-IID data, as well as free riding
characteristics. Our novel irrelevance score Υ for an mth client is therefore defined as a
product of three components; namely, irrelevance score associated with free riders (ΥFR),
irrelevance score associated with class imbalance (ΥCI), and irrelevance score associated
with non-IID data (ΥNIID), as described below:

Υ = ΥFRΥCIΥNIID (1)

Here, we define the irrelevance score for free riders as:

ΥFR =
1

log(Vm)
(2)

where Vm is the data volume at the client. This is based on the consideration that free
riders are clients that contribute a small data volume to the global model for learning.
It is well-known that datasets with a large number of records are good for training and
statistical analysis, as the statistical soundness of results increases with the number of
observations. Therefore, Equation (2) non-linearly weighs the clients with small data
volume as highly irrelevant.

The irrelevance score for class imbalance is defined as:

ΥCI =
No

∑
n=1

Cn log
(

Vm

Vcn

)
(3)

where Vcn is the data volume for the nth class available at the client, Vm is the total data
volume at the client given by Vm = ∑Nc

n=1 Vcn , Nc is the number of categories available on the
client, and No is the total number of categories in the problem. Lastly, Cn refers to a boolean
value indicating whether the nth category is available on this client or not. Here, we explain
the working principle of this irrelevance score for the class imbalance. A class-imbalanced
dataset is a collection of data points where observations of classes are not equal while a
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balanced dataset is a collection of equal observations of classes. A statistical classifier has a
natural tendency to pick up the patterns in the most popular classes and ignore the least
popular ones, thereby contributing a bias to the global model as well. The logarithm of
Vm/Vcn for each class label accounts for local class imbalance at the client side. Further, the
use of Cn helps in identifying the relevance of the local dataset in the global context.

For defining the irrelevance component for the non-IID data, we introduce a function
f (x) below.

f (x) =

{
1 if x > 0
−1 otherwise

(4)

and define the irrelevance score for non-IID data as follows:

ΥNIID = N−1.75
c f (x) (5)

where x = Nc − (No − 1)/2. The definition of x and f (x) allow us to identify the clients
that represent at least half the number of classes in the global model. We have included a
modulating factor N−1.75

c in this term in order to make a good separation between good
clients and bad clients. We need to keep the scores low for those clients that have a large
number of categories in order to be as close as possible to the ideal IID situation in terms of
categories. The choice of 1.75 here is empirical based on our observation that it works well
for separating the scores well by a large difference.

2.1.2. Bounds of Irrelevance Score

The irrelevance score is a multivariate mathematical function. Here, we show that
this mathematical function is bounded under all circumstances. We know that the number
of classes is a natural number so Nc ≥ 1. We divide our analysis into two cases: Case A
(Nc ≥ 2) and Case B (Nc = 1).

Case A (Nc ≥ 2): Since Vcn ∈ N, hence Vcn ≥ 1 and the following conditions are
true: Vm/Vcn ∈ [1, Vm], and therefore, log(Vm/Vcn) ∈ [0, log(Vm)]. Consequently, using
Equation (3), the following also hold:

0 < ΥCI ≤
No

∑
n=1

Cn log(Vm) ≤ Nc log(Vm) (6)

Further, due to the nature of the function f (x) in Equations (4) and (5), the bounds on
ΥNIID are given as

ΥNIID ∈
[
− N−1.75

c , 0) ∪ (0, N−1.75
c

]
(7)

It is interesting to note that the range of ΥNIID comprises two mutually exclusive
sets, one with strictly negative values and the other with strictly positive values. Using
Equation (4), their common non-inclusive boundary is encountered at x = 0, i.e., when
No = 2Nc + 1. In order to be as close as possible to IID situations, the clients with number
of local classes more than or equal to half the number of global classes are automatically
assigned positive values indicating a more relevant client in terms of number categories.
The choice of 50% (half the number of classes) is empirically chosen based on our observa-
tions. Lastly, using Equations (1), (2), (6) and (7), the bounds on the irrelevance score Υ are
determined as:

Υ ∈
[
− N−0.75

c , 0) ∪ (0, N−0.75
c

]
(8)

Given the condition Nc ≥ 2, the bounds are specified by Nc = 2 and therefore
Υ ∈

[
− 2−0.75, 0) ∪ (0, 2−0.75].

Case B (Nc = 1): Nc = 1 implies clients with single class, which results in Vcn = Vm.
Hence, according to Equation (3), ΥCI = 0. Consequently, using Equation (1), Υ = 0.

Taking the union of results from the cases A and B, we conclude that Υ ∈
[
−

2−0.75, 2−0.75].
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2.1.3. Design Insights

We summarize the inherent characteristics of the irrelevance score here. First, the
irrelevance score is zero for the clients that represent data of only one class in their local
dataset. This is a consequence of ΥCI defined in Equation (3). Second, as a consequence of
ΥNIID defined in Equation (5), the irrelevance score has positive values for the clients that
represent more than half the number of classes in the global model. Third, the clients with
less data volume are assigned a higher irrelevance score as a consequence of ΥFR defined in
Equation (2). Lastly, the class imbalance within the local dataset of the client also results in
high irrelevance score due to ΥCI . Hence, we consider good clients that have irrelevance
score closer to zero except for the case of Υ = 0.

We note that clients with more than half the number of categories (Υ > 0) are closer to
the ideal IID situation and therefore more preferable over other clients (Υ ≤ 0). However,
this may not hold true for some highly skewed distributions where few categories are
present only with clients that have a much lower number of categories (Υ < 0) or have only
a single category (Υ = 0). We note that in real-world scenarios, it is possible that certain
classes are very rare and present only on single category clients. Hence, it is not a good
decision to ignore clients with a single category. We use the irrelevance score intuitively to
handle such problems, as described in Section 2.2. We argue that there are indeed other
candidate functions of the three components. However, our design is motivated by two
main factors. First, a client that is a poor candidate in any of the three aspects is a poor
client irrespective of its suitability in terms of the other aspects. A multiplicative function
of their unsuitability (or irrelevance) is therefore a simple and effective solution. Second,
such a simple multiplicative design is easily scalable to include other aspects in the future
as the field of federated learning evolves and more concerns are identified in the matter of
client selection.

2.1.4. Insights of Varying Individual Components

We study the effect of various parts of the equation by using graphical and mathemati-
cal representations.

Figure 1 shows the variation of the free rider component of Irrelevance score (ΥFR)
with respect to total data volume (Vn). The value of ΥFR decreases with increasing data
volume making clients with a higher data samples more relevant.

Figure 1. Dependence of irrelevance score component ΥFR on data volume (Vn).
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Figure 2 shows the variation of the Non-IID component of Irrelevance score (ΥNIID)
with respect to the number of unique categories on a client for a problem with 20 global
classes. Clients falling in the zero pool (So have ΥNIID = 0 at Nc = 0. Clients with less
than half the number of categories (Nc < 10) have negative scores (negative pool S−)
while clients with more than half the number of categories (Nc ≥ 10) have positive scores
(positive pool S+). Furthermore, as the number of categories increases, the magnitude of
ΥNIID approaches zero, making clients with a higher amount of categories more relevant.

Figure 2. Dependence of irrelevance score component ΥNIID on Number of Categories (Nc) for a
problem with No = 20 global classes.

Ideally, clients with higher degree of imbalance are not relevant (higher Υ). Here, the
analysis of Υ under highest possible degree of imbalance is shown. Using Equation (6), we
can see that the maximum value of ΥCL is achieved when ΥCL = Nclog(Vn).

Using Equations (1), (2), (5) and (6):

Υ = N−0.75
c f (x) (9)

Figure 3 shows the variation of Equation (9). Under maximum imbalance, the client
has a higher magnitude of Υ, as shown in Figure 3 in comparison to Figure 2. This shows if
the client has a high degree of imbalance in that the class imbalance component outweighs
the benefit of a high number of classes, resulting in an overall high Υ score.

Figure 3. Variation of irrelevance score Υ under maximum imbalance condition.
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2.2. Sampling Algorithm

We have seen how the irrelevance score wraps up the information of a client based on
data volume, imbalance and number of classes into a single floating point value. In this
section, we present a sampling algorithm that leverages the irrelevance score of clients
to define the probability distribution of the selection of clients in subsequent rounds
of training.

In federated learning, M clients are associated with M datasets D1, . . . , DM, where Dm
denotes the dataset of the mth client. Dm is generated by a client-dependent probability
distribution function and is accessible by the respective client only. The volume of each
dataset at a particular client depends on the type of environment in which the client is
present, as described in section 3.1.2. In each round of training, we sample a fixed number
of K clients from a pool of M clients. Hence, the aggregation of weights in training is
highly dependent on which clients were sampled in each round. This selection of clients
is performed by the server model in each round. In order to simulate the real-world
characteristics we assume that the data keeps on changing at the client end.

In each round, we collect the scores Υ1, . . . , ΥM from all clients. Utilizing the charac-
teristics of the irrelevance score Υ discussed in the previous section, we make three pools
of clients named positive, negative and zero pool. They are denoted by S+, S− and So
and correspond to the clients with positive, negative, and zero values of Υ, respectively.
A tolerance parameter (φ = 3) is used to map the clients with the same score up to φ decimal
places in each pool separately. Clients with same scores are randomly shuffled in each pool
separately, which prevents biased training on any client. Based on the scores, clients are
sorted in ascending order of their magnitudes in each pool. We select a fraction of clients
from the top of each pool based on three parameters. In essence, we select the clients with
scores closest to zero, as shown in Figure 4. These parameters are α for positive pool, β for
negative pool and γ for zero pool, such that α + β + γ = 1 and α ≥ β ≥ γ. Let Cα, Cβ

and Cγ denote the subsets of S+, S− and So, which contain the selected clients for the next
round, respectively. They contain the top αK, βK and γK clients from the respective pools.
Proper selection of α, β, γ ensures smoother and faster convergence, as we demonstrate
later in our experiments.

Figure 4. Visualization of the three pools on a irrelevance score for a problem with No = 20 glo-
bal classes.

For demonstration purposes, we consider α = β = γ in Figure 5 with a total of
five classes in the classification problem colored in Green, Red, Orange, Yellow, and Violet.
Client C1 demonstrates a perfectly balanced client with four classes, C2 demonstrates a
free rider with four classes, C3 demonstrates a highly imbalanced client with two classes,
C4 is a single class client with a rare class, which is not present on any other client, C5
depict four-class highly imbalanced case and C6 depict a two-class nearly balanced case.
According to our method, C1, C2 and C5 belong to S+, C3, C5 belongs to S− and C4 belongs
to So pool. For sampling the best three clients with α = β = γ, our method will select C1,
C6 and C4 and reject the free rider case of C2 and imbalanced cases of C6 and C3.
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Figure 5. Non-IID condition (No = 5). No client has all categories. Sampling the best 3 out of 6 clients
with α = β = γ.

2.2.1. Design Insights of S+, S− and So Pools with Υ

Assigning ΥCL = 1 in Equation (1) results in the dependence of Υ only on ΥFR and
ΥNIID as shown below.

Υ = ΥFRΥNIID (10)

Using Equations (2), (5) and (10)

Υ =
N−1.75

c f (x)
log(Vm)

(11)

Figure 6 shows the variation of Υ under this condition. Curve below the x-axis corre-
sponds to clients in the negative pool (S−), while the curve above the x-axis corresponds to
positive pool (S+). In either case, the score approaches zero as the data volume and number
of categories are increased, resulting in a higher relevance of clients with high data volume
and number of categories.

Figure 6. Variation of irrelevance score Υ with (ΥCL = 1).
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2.2.2. Insights of Varying α, β, γ

The variation of three parameters of the irrelevance score is shown in Figure 7. We
note that the performance improves drastically with the increasing α parameter while the β
parameter shows a moderate increase in performance. The γ parameter shows an inverse
relation with performance. The following relations hold while considering variations of a
particular parameter.

Variation of parameter α.

α = x (12)

β = γ = (1− x)/2 (13)

Variation of parameter β.

β = x (14)

α = γ = (1− x)/2 (15)

Variation of parameter γ.

γ = x (16)

α = β = (1− x)/2 (17)

Considering equivalence of any two parameters, we obtain the following condition.

x = (1− x)/2 (18)

x = 1/3 ≈ 0.33 (19)

This condition is depicted by the approximate intersection of the three curves in
Figure 7.

Figure 7. Variation of irrelevance sampling parameters α, β and γ.
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2.3. Complexity Analysis

The algorithm is presented in Algorithm 1. Here, we analyze the time and space
complexity of the sampling algorithm in the worst case scenarios. In step (10), we sort the
clients into the three pools separately using the Timsort method [23]. This sorting method
is stable and beats every other sorting algorithm in time. It has a time complexity of Ω(M)
in the best case, θ(M log(M)) on an average and O(M log(M)) in the worst case. Apart
from this, the space complexity of Timsort is O(M). We store the scores for performing
operations on them, hence the space complexity is O(M).

Algorithm 1: Sampling Algorithm.
Input: scores Υ1 . . . ΥM, parameters α, β, γ, K, φ
Output: Client indices k1 . . . kK
for m← 1 to M do

if Υm > 0 then
S+ ← S+ ∪ {Υm};

else if Υm < 0 then
S− ← S− ∪ {Υm};

else
So ← So ∪ {Υm};

end
end
Compute Cα, Cβ and Cγ

Ck ← Cα ∪ Cβ ∪ Cγ

return Ck

2.4. Differential Privacy

Encapsulating information of client in a single floating point value preserves the
privacy of qualitative aspects of local data. Only a vague idea regarding relative goodness
of clients is revealed in terms of data volume and imbalance. The score resulting from
the product of the three components in (1) automatically hides the information regarding
whether the client is a free rider, imbalanced in terms of data or a combination of these.
The calculation of irrelevance score can be performed via a trusted method or applica-
tion that denies the access of the server and clients in the process of score calculation.
Hence, the authenticity of score is preserved by all means. However, both AFL and the
proposed sampling methods face limitations under the scenario when scores returned are
not trustable.

3. Experimental Evaluation

In this section, we report extensive performance evaluation of our client sampling
method for both IID and non-IID conditions for 5 datasets and also compare this with the
contemporary state-of-the-art sampling methods.

3.1. Experimental Settings

In our experimental evaluation, we not only consider 3 simulated and 2 practical
datasets (see Table 1), we also simulate different challenging environments and include
the consideration of learning algorithms as well (see Table 2). All the datasets represent
classification problems and the classification accuracy is used as a performance indicator.
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Table 1. Description of datasets used in the experiments. The numbers in parentheses in the first
column indicate the number of classes. The entries in the 2nd and 3rd columns represent the total
number of samples, mean number of samples per class ± standard deviation of number of samples
per class.

Dataset Training Samples Validation Samples

MNIST (10) 60,000, 6000 ± 322 10,000, 1000 ± 59
KMNIST (10) 60,000, 6000 ± 0 10,000, 1000 ± 0
FEMNIST (47) 112,800, 2400 ± 0 18,800, 400 ± 0

VSN (2) 41,057, 20,528 ± 1931 7246, 3623 ± 340
HAR (6) 8754, 1459 ± 164 1545, 257 ± 26
CTG (21) 1913, 293 ± 241 213, 30 ± 25

Table 2. Details of experimental variations considered for both IID and non-IID situations.

Sampling Approaches Learning Approaches

R: Random sampling FedAvg: Federated averaging
A: AFL sampling FSVRG: Naive federated SVRG
I: Irrelevance sampling COOP: Cooperative Learning

Simulated Environments

E1: highly balanced environment
E2: highly imbalanced environment
E3: moderately free-rider repleted environment
E4: general real-world user environment
E5: severe free-rider repleted environment
E6: extreme free-rider repleted environment

3.1.1. Balanced and Imbalanced

We performed our experiments based on different federated environments under both
balanced and imbalanced conditions. Here, balanced conditions mean that all of the classes
of the classification problem being solved have equal amount of training and validation
samples, while in the case of the imbalanced scenario, a certain number of classes have
significantly less training and validation samples. More specifically, four, four, eighteen,
one and two classes are imbalanced in the MNIST, KMNIST, FEMNIST, VSN and HAR
datasets, respectively.

3.1.2. IID and Non-IID Conditions

IID stands for independent and identically distributed data, while Non-IID stands
for non-independent and non-identically distributed data. The distribution of data among
clients can be described in terms of feature distribution as well as class distribution. MNIST,
KMNIST and EMNIST-47 describe the IID features across the data points while VSN
strongly describes non-IID feature distribution. In the real-world, Non-IID data on clients
both in terms of feature and class distribution is inevitable and hampers the performance
of the global model. We simulate the label wise Non-IID distribution of the mentioned
datasets in the experiments.

For IID conditions, all clients have all categories present in their local data, while in
the Non-IID condition, a variable number of categories ranging from a single category to
70% of total categories are present on the clients. More specifically, an equal number of four
types of clients with 70%, 50%, 30% and 10% classes in case of MNIST, KMNIST, FEMNIST
and Cardiotocography(CTG) are simulated. In the case of the VSN dataset, clients equal
number of one and two classes are simulated, and in the HAR dataset, clients with an
equal number of two, three and four classes are simulated. Depending on the type of
environments (E1-E6), the volume of datasets on each client also varies, as mentioned in
Table 3.
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Table 3. Definition of datasets associated with each client under different environments.

Type Nature Training Data:Validation Data Free Riders?

I Balanced 400:60 No
II Imbalanced 400:60 No
III Balanced 100:20 No
IV Imbalanced 100:20 No
V Balanced 50:10 Yes
VI Balanced 20:4 Yes

3.1.3. Federated Environments

In all of our experiments we use a federated system of 100 clients and sample 10 clients
in each round of training unless stated otherwise. We create clients of six types and
use different proportions of these types of clients to create different environments. The
environments and types are presented in Table 4. We note that Type V and VI demonstrate
the behavior of a free rider in terms of lack of data and contributing significantly less
towards the global model. E1 to E4 are used for generating results for individual datasets.
Further, E5-E6 are used in ablation and convergence studies.

Table 4. Definition of different federated environments.

Type of Client

I II III IV V VI

E1 0.90 0.02 0.02 0.02 0.02 0.02
E2 0.02 0.90 0.02 0.02 0.02 0.02
E3 0.04 0.04 0.04 0.04 0.40 0.40
E4 0.17 0.17 0.17 0.17 0.16 0.16
E5 0.02 0.02 0.04 0.04 0.44 0.44
E6 0.01 0.01 0.01 0.01 0.48 0.48

3.1.4. Architectures

In the experiments, multilayer perceptrons (MLP) are employed. In the case of MNIST
and VSN datasets, two hidden dense flipout layers each of 100 units and an ReLU activation
function with a final layer of 10 and 2 units, respectively, were used. In the case of KMNIST,
FEMNIST and HAR datasets single hidden dense flipout layer of 512 units and ReLU
activate function with final layer of 10, 47 and 6 units respectively were used. In the
Cardiotocography dataset, 5 hidden layers of 21 units each are used with the final output
layer of 10 units. In all cases, softmax activation is applied on the final layer.

3.1.5. Learning Parameters

The learning rate is kept at 0.003 for all cases. We perform 50 rounds of refinement
in the global model and in each round of training, 10 clients are used to update the global
model based on the sampling method with a single refinement per client. Some relevant
details of the learning algorithms are presented here. We have used the naive Federated
SVRG (FSVRG) as described in Algorithm 3 of [11]. The step size parameter h is set as
1.0. The CO-OP algorithm, as described in Algorithm 3.1 of [13], is used with age filter
parameters a and b as 7 and 21, respectively.

3.1.6. Parameters of the Proposed Irrelevance Sampling Method

The parameters of the proposed algorithm are set as α = 1.0, β = 0.0 and γ = 0.0 for
IID and α = 0.5, β = 0.3 and γ = 0.2 for non-IID settings unless stated otherwise.
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3.2. Results for Individual Datasets

Results for MNIST dataset: It comprises gray scale images of handwritten single
digits between 0 and 9, each of size 28× 28 pixels. The problem is to classify the image as
belonging to the class of the digit [24]. The results for this dataset are presented in Table 5.

Table 5. Classification accuracies for dataset MNIST.

IID Non-IID

R A I R A I

Learning method FedAvg

E1 0.95 0.95 0.96 0.85 0.91 0.91
E2 0.76 0.86 0.88 0.87 0.88 0.90
E3 0.88 0.66 0.91 0.84 0.72 0.88
E4 0.91 0.84 0.94 0.88 0.87 0.91

Learning method FSVRG

E1 0.94 0.94 0.95 0.88 0.88 0.89
E2 0.78 0.88 0.85 0.79 0.81 0.82
E3 0.88 0.83 0.91 0.75 0.53 0.80
E4 0.89 0.87 0.93 0.85 0.81 0.88

Learning method COOP

E1 0.90 0.83 0.90 0.79 0.72 0.87
E2 0.64 0.61 0.86 0.53 0.58 0.86
E3 0.61 0.17 0.90 0.54 0.14 0.86
E4 0.74 0.32 0.92 0.72 0.30 0.84

Learning method Virtual MTL

E1 0.84 0.86 0.87 0.66 0.73 0.75
E2 0.60 0.85 0.86 0.51 0.72 0.74
E3 0.32 0.77 0.86 0.28 0.39 0.71
E4 0.66 0.79 0.85 0.48 0.57 0.68

We notice that the environment E3 (free riders replete) is generally quite challenging
for the AFL sampling, where it performs the poorest irrespective of the algorithm. The
random sampling approach finds the imbalanced environment (E2) the most challenging
for the IID condition and the free-riders repleted environment (E3) for the Non-IID condi-
tions. Generally, both random and AFL sampling perform poorer when used in a COOP
learning scheme while provide comparable performance for FedAvg and FSVRG learning
schemes. We do notice the better performance of FedAvg than FSVRG for the Non-IID
condition. As compared to random and AFL sampling, the proposed ’irrelevance’-based
sampling approach performs the best among the three sampling methods irrespective of
the environment, learning scheme, or the conditions (IID versus Non-IID). It provides
the most balanced performance with small variations over different environments as well
as different learning schemes. This demonstrates the robustness and versatility of the
proposed sampling method. In the realistic environment E4, the clear edge of the proposed
‘irrelevance’-based sampling is evident, with at least 3% better classification accuracy than
its contemporary in any environment, any condition, and with any learning scheme.

The poor performance of COOP and Virtual MTL for both AFL and random sampling
is consistent through all the datasets. At the same time, there is no new insight about the
proposed method specific for these schemes except that the performance of the proposed
method is superior to that of the other sampling methods. Therefore, the results of these
learning methods for the other datasets are not shown hereon.
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3.2.1. Results for KMNIST Dataset

It is similar to MNIST, except that instead of digits, it represents hand-written Japanese
characters of Hiragana [25]. The results for this dataset are presented in Table 6. The
KMNIST dataset is generally more challenging than the MNIST dataset, as witnessed in
the poorer performance for any experiment. Nonetheless, the well-balanced environment
(E1) is a relatively simpler environment and all sampling methods perform similarly to
each other, although the proposed ‘irrelevance’ sampling method has a slight nominal
edge. Further, for the imbalanced environment (E2), AFL sampling shows a clear ad-
vantage over random sampling, and the proposed sampling method provides a further
better performance by a small margin. On the other hand, the advantage of the proposed
‘irrelevance’-based sampling is clearly evident in E3 and E4, where a performance superior
by an average of 5% is observed over its contemporaries across all the cases.

Table 6. Classification accuracies for dataset KMNIST.

IID Non-IID

R A I R A I

Learning method FedAvg

E1 0.83 0.83 0.84 0.76 0.76 0.76
E2 0.50 0.65 0.66 0.66 0.66 0.67
E3 0.66 0.59 0.71 0.64 0.49 0.69
E4 0.73 0.61 0.79 0.61 0.66 0.71

Learning method FSVRG

E1 0.78 0.78 0.80 0.68 0.73 0.73
E2 0.49 0.64 0.66 0.61 0.63 0.67
E3 0.68 0.63 0.71 0.63 0.59 0.67
E4 0.70 0.67 0.77 0.65 0.64 0.70

3.2.2. Results for FEMNIST Dataset

The FEMNIST dataset is a federated version of the EMNIST dataset, containing both
characters and digits. We used the balanced version with 10 single digit classes between
0 and 9 inclusive, 26 uppercase alphabets and 11 lowercase alphabets [26]. The results for
this dataset are presented in Table 7. With a significantly larger number of classes, this
is a significantly challenging dataset and an ideal simulated scenario to investigate the
performance of federated learning. The effect is observed in the poorer performance of
all the sampling methods for this dataset in comparison to MNIST and KMNIST datasets.
Further, in general, the proposed irrelevance sampling method provides a significant
advantage (7% to 14%) for the challenging E3 and E4 environments.

3.2.3. Results for the Vehicle Sensor Network (VSN) Dataset

A network of 23 different sensors (including seismic, acoustic and passive infra-
red sensors) are placed around a road segment in order to classify vehicles driving past
them [27]. The raw signal is processed into 50 acoustic and 50 seismic features. We consider
every sensor as a client and perform binary classification of amphibious assault vehicles
and dragon wagon vehicles. Being a real dataset for a practical application, it provides the
challenges of real measurements. However, the problem involves only two classes and
features a large dataset and, therefore, a relatively simpler situation than the three previous
datasets. This dataset provides the performance of the proposed sampling method in the
use cases where the number of categories is much less. The results for this dataset are
presented in Table 8. In general, the proposed irrelevance sampling either performs on par
with or better than the other two sampling methods. Its clear advantage is evident for E2, E3
and E4 environments irrespective of the IID or Non-IID conditions or the learning scheme.



AI 2022, 3 138

Table 7. Classification accuracies for dataset FEMNIST.

IID Non-IID

R A I R A I

Learning method FedAvg

E1 0.76 0.72 0.76 0.66 0.70 0.72
E2 0.41 0.56 0.54 0.58 0.59 0.59
E3 0.54 0.41 0.64 0.45 0.25 0.59
E4 0.64 0.50 0.72 0.58 0.48 0.66

Learning method FSVRG

E1 0.71 0.70 0.72 0.67 0.67 0.68
E2 0.41 0.50 0.46 0.59 0.60 0.62
E3 0.58 0.52 0.59 0.51 0.25 0.61
E4 0.60 0.58 0.68 0.59 0.52 0.65

Table 8. Classification accuracies for dataset VSN.

IID non-IID

R A I R A I

Learning method FedAvg

E1 0.90 0.90 0.91 0.86 0.89 0.89
E2 0.69 0.80 0.85 0.66 0.77 0.85
E3 0.79 0.79 0.89 0.70 0.72 0.87
E4 0.80 0.81 0.91 0.78 0.79 0.89

Learning method FSVRG

E1 0.90 0.89 0.90 0.87 0.89 0.90
E2 0.56 0.84 0.83 0.53 0.81 0.82
E3 0.86 0.85 0.89 0.86 0.85 0.87
E4 0.86 0.84 0.89 0.86 0.82 0.89

3.2.4. Results for Human Activity Recognition (HAR) Dataset

Recordings of 30 subjects performing daily activities are collected using smartphones
with inertial sensors. The raw signal is divided into windows and processed into a
561-length vector [28]. Every individual corresponds to a different client, and we perform
a classification of 6 different activities (walking, walking upstairs, walking downstairs,
sitting, standing, laying). With 6 classes and relatively few samples per class (see Table 1),
this dataset is quite challenging. The results are presented in Table 9. The significant advan-
tage of the proposed irrelevance sampling is evident in all the challenging environments
(E2–E4), providing an improvement in classification accuracy of 3–18% for E2 and E3 and
1–14% for E4.

3.2.5. Results for Cardiotocography Dataset

The dataset consists of measurements of fetal heart rate (FHR) and uterine contraction
(UC) features on cardiotocograms classified by expert obstetricians as described in [29,30].
Total 2126 fetal cardiotocograms (CTGs) were automatically processed and the respective
diagnostic features measured with 21 training attributes. The CTGs were also classified
by three expert obstetricians and a consensus classification label assigned to each of them.
Classification was both with respect to a morphologic pattern (A, B, C. ...) and to a fetal
state (N, S, P). Therefore, the dataset can be used either for 10-class or 3-class experiments.
This dataset has few samples per class and being a real-world problem in the medical field
makes it very suitable for utilizing the proposed method under federated settings. Table 10
shows the classification accuracies of using various sampling methods on this dataset using
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10 morphological pattern categories. There is a significant advantage of using the proposed
irrelevance sampling method under all challenging situations (E1–E6). The irrelevance
sampling method outperforms other sampling methods by 2–10%.

Table 9. Classification accuracies for dataset HAR.

IID Non-IID

R A I R A I

Learning method FedAvg

E1 0.93 0.95 0.92 0.73 0.81 0.82
E2 0.70 0.86 0.91 0.31 0.61 0.69
E3 0.90 0.87 0.94 0.75 0.74 0.93
E4 0.93 0.79 0.94 0.59 0.77 0.91

Learning method FSVRG

E1 0.90 0.85 0.91 0.87 0.87 0.87
E2 0.82 0.83 0.87 0.63 0.73 0.85
E3 0.86 0.81 0.89 0.74 0.64 0.80
E4 0.85 0.86 0.90 0.74 0.69 0.85

Table 10. Classification accuracies for dataset cardiotocography.

IID Non-IID

R A I R A I

Learning method FedAvg

E1 0.70 0.69 0.72 0.61 0.59 0.61
E2 0.32 0.55 0.65 0.51 0.52 0.55
E3 0.56 0.57 0.68 0.51 0.47 0.53
E4 0.48 0.52 0.69 0.58 0.55 0.60
E5 0.54 0.49 0.56 0.46 0.45 0.51
E6 0.51 0.46 0.54 0.44 0.41 0.49

3.3. Ablation Study

We perform an ablation study to validate the effectiveness of the proposed algorithm.
First, we describe the affect of variation of the parameters α, β and γ on validation accuracy
of the global model. Second, we describe the effectiveness of the proposed algorithm under
moderate to severe free rider density through environments E5 and E6, respectively.

3.3.1. Variation of Parameters α, β, γ

As described in Section 3.1, the parameters α, β and γ control the distribution of
selected clients. In Table 11, we study the effect of various choices of the parameters. We
clearly observe that as α is increased, the accuracy also improves rapidly. The variation of
β shows a moderate increase, while the variation of γ is inversely related to accuracy.

Table 11. Effect of varying α, β and γ using Non-IID MNIST under FedAvg.

x 0.0 0.2 0.4 0.6 0.8

α = x, β = γ = 1−x
2 0.54 0.67 0.75 0.83 0.87

β = x, α = γ = 1−x
2 0.65 0.69 0.70 0.71 0.78

γ = x, α = β = 1−x
2 0.81 0.78 0.64 0.36 0.32
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3.3.2. Free Rider Density

The performance of the proposed sampling algorithm is compared with AFL and ran-
dom sampling methods under severe (E5) and extreme (E6) conditions of free riders. From
Table 12, it is evident that as the density of the free rider increases, there is a deterioration
in the performance of all sampling methods. However, the proposed sampling method
maintains the best performance in all cases.

Table 12. Accuracy comparison under severe to extremely severe free rider density environments.
FedAvg learning algorithm and Non-IID conditions are used.

Dataset
E5 E6

R A I R A I

MNIST 0.77 0.65 0.88 0.65 0.55 0.87
KMNIST 0.51 0.46 0.65 0.46 0.43 0.61
FEMNIST 0.41 0.24 0.53 0.38 0.20 0.53

VSN 0.74 0.81 0.86 0.72 0.80 0.84
HAR 0.61 0.69 0.89 0.57 0.68 0.80

3.4. Effect of Data Volume Vn

Figure 8 shows the effect of varying data volume on the performance of FedAvg using
the MNIST dataset. We see that for lower volumes of data, the performance is very poor,
representing the characteristics of a real-world free rider as a client participating with a
very small volume of data. As the data volume is increased, the performance improves,
depicting a higher relevance for clients with higher data volume.

Figure 8. Performance of FedAvg using random sampling with different data volume (Vn).

3.5. Effect of Number of Categories Nc

The effect of varying the number of categories on clients is shown in Figure 9. Each of
the curves correspond to using FedAvg for 15 rounds of refinement using an environment
with all clients having Nc number of categories. We can see that clients with a single
category perform the poorest and did not learn anything. This explains the γ parameter
variation, as shown in Figure 7. As the number of clients increases, the performance of
FedAvg improves.
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Figure 9. Performance of FedAvg with environement of clients having different number of categories
using the MNIST dataset.

3.6. Highly Skewed Case

We investigated the performance of the three sampling methods on a specially created
highly skewed environment using the MNIST dataset. It consists of a few clients with high
class imbalance, and moderate free rider repletion is present in the environment. Moreover,
three classes of digits 7, 8 and 9 are available with clients having less than three classes only
(zero pool and negative pool). This environment shows the importance of the zero pool
and negative pool. Figure 10 shows the performance comparison of the three sampling
methods in this environment. We can clearly see that the irrelevance sampling method is
performing better than AFL and random sampling methods. The parameters used for the
irrelevance sampling method are α = 0.5, β = 0.3, γ = 0.2. The smoothness of irrelevance
sampling is slightly affected due to the involvement of clients from the zero pool.

Figure 10. Performance comparison on a highly skewed, moderately free rider repleted and class
imbalance environment with 3 classes present only on clients with less than 3 categories.
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3.7. Convergence Analysis

A convergence analysis is presented in Figure 11 for the FEMNIST dataset for the three
sampling methods using the FedAvg learning scheme. Smoother and quicker convergence
is observed for the proposed sampling method in comparison with random and AFL
sampling for all the environments and under both IID and Non-IID conditions. The results
clearly indicate the effectiveness of the proposed method in selecting the optimal subset of
clients to update the global model.

(a) E1 (b) E2 (c) E3

(d) E4 (e) E5 (f) E6

(g) E1 (h) E2 (i) E3

(j) E4 (k) E5 (l) E6

Figure 11. Convergence analysis of different sampling methods. Green: Irrelevance sampling;
Blue: Random sampling; Orange: AFL sampling. (a–f): IID condition and (g–l): Non-IID condition.
FEMNIST dataset and FedAvg learning schemes are used.

4. Observations
4.1. Resistant to Free Riders

Under free rider environments E3–E6, the performance of random and AFL sampling
methods reduces drastically while the proposed method maintains the top performance
across the spectrum.

4.2. Handling Imbalance

The proposed method tries to sample clients with the least degree of imbalance and
maximizes the probability of having a set of client models with training experience covering
all categories to be included in each iteration of updating the global model. The copies of
this updated global model are sent to clients in the next round, and hence, both local and
global imbalance is handled. In an extremely imbalanced environment E2, the performance
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of the random sampling method reduces drastically while the AFL sampling method
handles the imbalance case well. The proposed sampling method handles the imbalance
by picking up the clients with the least degree of imbalance and shows an extra edge in
performance over the AFL sampling method.

4.3. IID and Non-IID

The proposed sampling method performs at par with the contemporary sampling
methods under both IID and Non-IID conditions in all environments E1–E6. The Cγ clients
introduce slight instability but are important in handling highly skewed environments
such as covering rare categories from single category clients. There could be a possibility
that hard samples are present from Cγ clients and hence the parameter γ is also of much
importance while selecting the parameters of irrelevance sampling. Another case could
be that some of the clients are never sampled. In such scenario, it would be useful to
select a high fraction of clients based on the irrelevance sampling method and sample the
remaining lower fraction randomly. In this way, all clients will become sampled at least
once when covered under the random sampling mode.

5. Conclusions

In conclusion, the proposed irrelevance score and the irrelevance sampling strategy
is quite robust in a variety of challenging situations, including Non-IID data, a highly
imbalanced federated environment and federated environment replete with free-riders. Its
versatility is further demonstrated on multiple datasets with varying challenges even when
different learning approaches may be employed. Further, the proposed irrelevance score
is effective in preserving client privacy. Therefore, the irrelevance score and the proposed
sampling method may open new doors of research.

Our experiments use simulations of possible real-world environments. Nonetheless,
some specific unexplored environments may pose new challenges. One such challenge is
the scenario where the irrelevance score returned by a client is invalid. Another challenge
could be a rapid increase in the number of clients coming onto the server (M). Scalability
could be an issue, but initially limiting the number of clients coming onto the server
depending on the severity of the use case can be a solution. However, these cases are
challenges faced by the AFL sampling method as well. Other disguised schemes of free
riders are currently out of the scope of the proposed method and future research work
is required on this to resolve issues under these scenarios. In the future, we would like
to consider more challenging problems, such as clinical-record-based diagnosis using
pathology labs as clients in a federated environment.
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