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1 Introduction
The definitions and notations used in this introduction can be found in the next section.

It is well known (see, e.g., the book [33]) that there exists an absolute constant cp, depending only on p,
such that

‖Sn f ‖p ≤ cp‖f ‖p when p > 1.

On the other hand, the boundedness does not hold for p = 1 (for details, see [7, 8, 29, 42–44]). The analogue
of Carleson’s theorem for theWalsh systemwasprovedbyBillard [3] for p = 2andbySjölin [36] for1 < p <∞,
and for the bounded Vilenkin systems by Gosselin [15]. For the Walsh–Fourier series, Schipp [31–33] gave
a proof by using the methods of martingale theory. A similar proof for the Vilenkin–Fourier series can be
found in [34] by Schipp and Weisz and in [47] by Weisz. In each proof, they show that the maximal operator
of the partial sums is bounded on Lp, i.e. there exists an absolute constant cp such that

‖S∗f ‖p ≤ cp‖f ‖p when f ∈ Lp , p > 1.

Hence, if f ∈ Lp(Gm), where p > 1, then Sn f → f a.e. on Gm. Stein [37] constructed the integrable function
whose Vilenkin–Fourier (Walsh–Fourier) series diverges almost everywhere. In [33], it was proved that there
exists an integrable function whose Walsh–Fourier series diverges everywhere. The a.e. convergence of sub-
sequences of Vilenkin–Fourier series was considered in [5], where the methods of martingale Hardy spaces
were used.
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If we consider the restrictedmaximal operator ̃S∗# f := supn∈ℕ|SMn f|, we have aweak (1, 1) type inequality
for f ∈ L1(Gm). Hence, if f ∈ L1(Gm), then SMn f → f a.e. on Gm. Moreover, for any integrable function, it is
known that an a.e. point is a Lebesgue point, and for any such point x of the integrable function f , we have
that

SMn f (x)→ f (x) as n →∞, for any Lebesgue point x of f ∈ L1(Gm). (1.1)

In the one-dimensional case, Yano [49] proved that

‖σn f − f ‖p → 0 as n →∞ (f ∈ Lp(Gm), 1 ≤ p ≤∞).

If we consider the maximal operator of the Féjer means

σ∗f := sup
n∈ℕ
|σn f |,

then
λμ{σ∗f > λ} ≤ c‖f ‖1, f ∈ L1(Gm), λ > 0.

This result can be found in [50] by Zygmund for the trigonometric series, in [35] by Schipp and in [12, 26, 27,
38, 39, 41] for Walsh series and in [25] by Pál and Simon for bounded Vilenkin series (see also [47, 48] by
Weisz). The boundedness does not hold from the Lebesgue space L1(Gm) to the space L1(Gm). Theweak-(1, 1)
type inequality implies that, for any f ∈ L1(Gm),

σn f (x)→ f (x) a.e. as n →∞.

Moreover, in [11] (see also [10]), it was proved that, for any integrable function, an a.e. point is the Vilenkin–
Lebesgue point, and for any such point x of an integrable function f , we have

σn f (x)→ f (x) as n →∞.

Móricz and Siddiqi [18] investigate the approximation properties of some special Nörlund means of the
Walsh–Fourier series of Lp functions in norm. Similar results for the two-dimensional case can be found
in [19, 20] by Nagy, [21–24] by Nagy and Tephnadze, [13, 14] by Gogolashvili and Tephnadze (see also
[2, 17]). The approximation properties of general summability methods can also be found in [4, 6]. Fridli,
Manchanda and Siddiqi [9] improved and extended the results ofMóricz and Siddiqi [18] tomartingale Hardy
spaces. The a.e. convergence of Nörlund means of Vilenkin–Fourier series with monotone coefficients of
f ∈ L1 was proved in [28] (see also [30]). In [45], it was proved that the maximal operators of T means T∗

defined by T∗f := supn∈ℕ|Tn f | either with non-increasing coefficients, or with a non-decreasing sequence
satisfying the condition

qn−1
Qn
= O(1n) as n →∞, (1.2)

are bounded from the Hardy space H1/2 to the space weak-L1/2. Moreover, there exist a martingale and such
Tmeans forwhich the boundedness does not hold from theHardy spaceHp to the space Lp when0 < p ≤ 1/2.

One of the most well-known means of T means is the Riesz summability. In [40] (see also [16]), it was
proved that the maximal operator of Riesz logarithmic means

R∗f := sup
n∈ℕ
|Rn f |

is bounded from the Hardy space H1/2 to the space weak-L1/2 and is not bounded from Hp to the space Lp for
0 < p ≤ 1/2. It was also proved there that the Riesz summability has better properties than Fejér means.

In this paper,wederive the convergence of TmeansofVilenkin–Fourier serieswithmonotone coefficients
of integrable functions in Lebesgue and Vilenkin–Lebesgue points.

This paper is organized as follows. In order to provide the coherence of our further discussion, some
definitions andnotations arepresented inSection2. For theproofs of themain results,weneed someauxiliary
lemmas of which some are new and of independent interest. These results are presented in Section 3. The
main results and some of its consequences and detailed proofs are given in Section 4.
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2 Definitions and notation
Denote by ℕ+ the set of positive integers, ℕ := ℕ+ ∪ {0}. Let m := (m0,m1, . . . ) be a sequence of positive
integers not less than 2. Denote by

Zmk := {0, 1, . . . ,mk − 1}

the additive group of integers modulo mk.
Define the Vilenkin group Gm as the complete direct product of the groups Zmi with the product of the

discrete topologies of Zmj ’s (for details, see [46]). In this paper, we discuss bounded Vilenkin groups, i.e. the
case when supn mn <∞. The direct product μ of measures μk({j}) := 1/mk (j ∈ Zmk ) is the Haar measure on
Gm with μ(Gm) = 1. The elements of Gm are represented by sequences

x := (x0, x1, . . . , xj , . . . ) (xj ∈ Zmj ).

It is easy to give a basis for the neighborhoods of Gm,

I0(x) := Gm , In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1}, where x ∈ Gm , n ∈ ℕ.

If we define the so-called generalized number system based on m in the following way:

M0 := 1, Mk+1 := mkMk (k ∈ ℕ),

then every n ∈ ℕ can be uniquely expressed as n = ∑∞j=0 njMj, where nj ∈ Zmj (j ∈ ℕ+) and only a finite num-
ber of nj’s differ from zero.

We introduce on Gm an orthonormal system which is called the Vilenkin system. First, we define the
complex-valued function rk(x) : Gm → ℂ, which is the generalized Rademacher function, by

rk(x) := exp(2πixk/mk) (i2 = −1, x ∈ Gm , k ∈ ℕ).

Next, we define the Vilenkin system ψ := (ψn : n ∈ ℕ) on Gm by

ψn(x) :=
∞
∏
k=0

rnkk (x) (n ∈ ℕ).

Specifically, we call this system the Walsh–Paley system when m ≡ 2.
The norms (or quasi-norms) of the spaces Lp(Gm) and weak-Lp(Gm) (0 < p <∞) are respectively defined

by
‖f ‖pp := ∫

Gm

|f |p dμ, ‖f ‖pweak-Lp := supλ>0
λpμ(f > λ) < +∞.

The Vilenkin system is orthonormal and complete in L2(Gm) (see [46]).
Now, we introduce analogues of the usual definitions in Fourier analysis. If f ∈ L1(Gm), we can define

Fourier coefficients, partial sums and Dirichlet kernels with respect to the Vilenkin system in the usual man-
ner,

̂f (n) := ∫
Gm

f ψn dμ, Sn f :=
n−1
∑
k=0

̂f (k)ψk , Dn :=
n−1
∑
k=0

ψk (n ∈ ℕ+).

Recall that
∫
Gm

Dn(x) dx = 1, (2.1)

DMn−j(x) = DMn (x) − ψMn−1(x)Dj(x), j < Mn . (2.2)

The convolution of two functions f, g ∈ L1(Gm) is defined by

(f ∗ g)(x) := ∫
Gm

f (x − t)g(t) dt (x ∈ Gm).
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It is easy to see that if f ∈ Lp(Gm), g ∈ L1(Gm) and 1 ≤ p <∞, then f ∗ g ∈ Lp(Gm) and

‖f ∗ g‖p ≤ ‖f ‖p‖g‖1. (2.3)

Let {qk : k ≥ 0} be a sequence of non-negative numbers. The n-th Nörlund mean tn for a Fourier series of f is
defined by

tn f =
1
Qn

n
∑
k=1

qn−kSk f, where Qn :=
n−1
∑
k=0

qk . (2.4)

It is obvious that

tn f (x) = ∫
Gm

f (t)Fn(x − t) dμ(t), where Fn :=
1
Qn

n−1
∑
k=0

qkDk ,

is called the T kernel.
The next proposition can be found in [7, 28].

Proposition 2.1. Let {qk : k ∈ ℕ} be a sequence of non-increasing numbers. Then, for any n, N ∈ ℕ+,

∫
Gm

FMn (x) dμ(x) = 1,

sup
n∈ℕ
∫
Gm

|FMn (x)| dμ(x) ≤ c <∞,

sup
n∈ℕ
∫

Gm\IN

|FMn (x)| dμ(x)→ 0 as n →∞.

Let {qk : k ≥ 0} be a sequence of non-negative numbers. The n-th T means Tn for a Fourier series of f are
defined by

Tn f :=
1
Qn

n−1
∑
k=0

qkSk f, where Qn :=
n−1
∑
k=0

qk . (2.5)

It is obvious that

Tn f (x) = ∫
Gm

f (t)F−1n (x − t) dμ(t), where F−1n := 1
Qn

n−1
∑
k=0

qkDk ,

is called the T kernel. We always assume that {qk : k ≥ 0} is a sequence of non-negative numbers and q0 > 0.
Then the summability method (2.5) generated by {qk : k ≥ 0} is regular if and only if limn→∞ Qn =∞.

It is easy to show that, for any real numbers a1, . . . , am, b1, . . . , bm and ak = Ak − Ak−1, k = n, . . . ,m,
we have the so-called Abel transformation

n
∑
k=m

akbk = Anbn − Am−1bm +
n−1
∑
k=m

Ak(bk − bk+1).

For aj = Aj − Aj−1, j = 1, . . . , n, if we invoke the Abel transformations
n−1
∑
j=1
ajbj = An−1bn−1 − A0b1 +

n−2
∑
j=0
Aj(bj − bj+1), (2.6)

n−1
∑
j=MN

ajbj = An−1bn−1 − AMN−1bMN +
n−2
∑
j=MN

Aj(bj − bj+1), (2.7)

then, for bj = qj, aj = 1 and Aj = j for any j = 0, 1, . . . , n, we get the following identities:

Qn =
n−1
∑
j=0
qj = q0 +

n−1
∑
j=1
qj = q0 +

n−2
∑
j=1
(qj − qj+1)j + qn−1(n − 1), (2.8)

n−1
∑
j=MN

qj =
n−2
∑
j=MN

(qj − qj+1)j + qn−1(n − 1) − (MN − 1)qMN .
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Moreover, ifweuseD0 = K0 = 0 for any x ∈ Gm and invoke theAbel transformations (2.6) and (2.7) for bj = qj,
aj = Dj and Aj = jKj for any j = 0, 1, . . . , n − 1, then we get the identities

F−1n =
1
Qn

n−1
∑
j=0
qjDj =

1
Qn
(
n−2
∑
j=1
(qj − qj+1)jKj + qn−1(n − 1)Kn−1), (2.9)

1
Qn

n−1
∑
j=MN

qjDj =
1
Qn
(
n−2
∑
j=MN

(qj − qj+1)jKj + qn−1(n − 1)Kn−1 − qMN (MN − 1)KMN−1). (2.10)

Analogously, if we use S0f = σ0f = 0 for any x ∈ Gm and invoke the Abel transformations (2.6) and (2.7) for
bj = qj, aj = Sj and Aj = jσj for any j = 0, 1, . . . , n − 1, then we get the identities

Tn f =
1
Qn

n−1
∑
j=0
qjSj f =

1
Qn
(
n−2
∑
j=1
(qj − qj+1)jσj f + qn−1(n − 1)σn−1f),

1
Qn

n−1
∑
j=MN

qjSj f =
1
Qn
(
n−2
∑
j=MN

(qj − qj+1)jσj f + qn−1(n − 1)σn−1f − qMN (MN − 1)σMN−1f).

If qk ≡ 1 in (2.4) and (2.5), we respectively define the Fejér means σn and Fejér kernels Kn as follows:

σn f :=
1
n

n
∑
k=1

Sk f, Kn :=
1
n

n
∑
k=1

Dk .

It is well known that (for details, see [1])

n|Kn| ≤ c
|n|
∑
l=0
Ml|KMl |, (2.11)

and for any n, N ∈ ℕ+,
∫
Gm

Kn(x) dμ(x) = 1,

sup
n∈ℕ
∫
Gm

|Kn(x)| dμ(x) ≤ c <∞, (2.12)

sup
n∈ℕ
∫

Gm\IN

|Kn(x)| dμ(x)→ 0 as n →∞. (2.13)

The well-known example of the Nörlund summability is the so-called (C, α) means (Cesàro means) for
0 < α < 1, which are defined by

σαn f :=
1
Aαn

n
∑
k=1

Aα−1n−kSk f, where Aα0 := 0, Aαn :=
(α + 1) ⋅ ⋅ ⋅ (α + n)

n! .

We also consider the “inverse” (C, α)means, which are examples of T means,

Uαn f :=
1
Aαn

n−1
∑
k=0

Aα−1k Sk f, 0 < α < 1.

Let Vαn denote the T mean, where {q0 = 0, qk = kα−1 : k ∈ ℕ+}, that is,

Vαn f :=
1
Qn

n−1
∑
k=1

kα−1Sk f, 0 < α < 1.

The n-th Riesz logarithmic mean Rn and the Nörlund logarithmic mean Ln are defined by

Rn f :=
1
ln

n−1
∑
k=1

Sk f
k

and Ln f :=
1
ln

n−1
∑
k=1

Sk f
n − k

, where ln :=
n−1
∑
k=1

1
k
.
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Up to now, we have considered T means in the case where the sequence {qk : k ∈ ℕ} is bounded, but nowwe
consider T summabilities with an unbounded sequence {qk : k ∈ ℕ}. We also define the class Bn of T means
with non-decreasing coefficients,

Bn f :=
1
Qn

n−1
∑
k=1

log kSk f.

3 Auxiliary lemmas
First, we consider the kernels of T means with non-increasing sequences.

Lemma 3.1. Let {qk : k ∈ ℕ} be a sequence of non-increasing numbers satisfying the condition
q0
Qn
= O(1n ) as n →∞.

Then, for some constant c, we have

|F−1n | ≤
c
n{
|n|
∑
j=0
Mj|KMj |}.

Proof. Let the sequence {qk : k ∈ ℕ} be non-increasing. Then, by using (1.2), we get that

1
Qn
(
n−2
∑
j=1
|qj − qj+1| + qn−1) ≤

1
Qn
(
n−2
∑
j=1
(qj − qj+1) + qn−1) ≤

q0
Qn
≤
c
n
.

Hence, if we apply (2.11) and use equalities (2.8) and (2.9), we immediately obtain

|F−1n | ≤ (
1
Qn
(
n−1
∑
j=1
|qj − qj+1| + qn−1))

|n|
∑
i=0
Mi|KMi | ≤

c
n

|n|
∑
i=0
Mi|KMi |.

The proof is completed by just combining the estimates above.

Lemma 3.2. Let {qk : k ∈ ℕ} be a sequence of non-increasing numbers. Then, for any n, N ∈ ℕ+,

∫
Gm

F−1n (x) dμ(x) = 1, (3.1)

sup
n∈ℕ
∫
Gm

|F−1n (x)| dμ(x) <∞, (3.2)

sup
n∈ℕ
∫

Gm\IN

|F−1n (x)| dμ(x)→ 0 as n →∞.

Proof. According to (2.1), we easily obtain the proof of (3.1). By using (2.12) combined with (2.8) and (2.9),
we get that

1
Qn
(
n−2
∑
j=0
(qj − qj+1)j ∫

Gm

|Kj| dμ + qn−1(n − 1) ∫
Gm

|Kn−1| dμ)

≤
c
Qn
(
n−2
∑
j=0
(qj − qj+1)j + qn−1(n − 1)) ≤ c <∞,

so (3.2) is also proved. By using (2.13) and inequalities (2.8) and (2.9), we can conclude that

∫
Gm\IN

|F−1n | dμ ≤
1
Qn

n−2
∑
j=0
(qj − qj+1)j ∫

Gm\IN

|Kj| dμ +
qn−1(n − 1)

Qn
∫

Gm\IN

|Kn−1|

≤
1
Qn

n−2
∑
j=0
(qj − qj+1)jαj +

qn−1(n − 1)αn−1
Qn

= I + II,
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where αn → 0 as n →∞. Since the sequence is non-increasing, we can conclude that

II = qn−1(n − 1)αn−1
Qn

≤ αn−1 → 0 as n →∞.

Moreover, for any ε > 0, there exists N0 ∈ ℕ such that αn < ε when n > N0. Furthermore,

I = 1
Qn

n−2
∑
j=0
(qj − qj+1)jαj =

1
Qn

N0

∑
j=0
(qj − qj+1)jαj +

1
Qn

n−2
∑

j=N0+1
(qj − qj+1)jαj := I1 + I2.

The sequence {qk : k ∈ ℕ} is non-increasing, and therefore, |qj − qj+1| < 2q0,

I1 ≤
2q0N0
Qn
→ 0 as n →∞

and

I2 =
1
Qn

n−2
∑

j=N0+1
(qj − qj+1)jαj ≤

ε
Qn

n−2
∑

j=N0+1
(qj − qj+1)j ≤

ε
Qn

n−2
∑
j=0
(qj − qj+1)j < ε,

and we can conclude that I2 → 0, so the proof is complete.

Next, we consider the kernels of T means with non-decreasing sequences.

Lemma 3.3. Let {qk : k ∈ ℕ} be a sequence of non-decreasing numbers satisfying the condition

qn−1
Qn
= O(1n ) as n →∞. (3.3)

Then, for some constant c,

|F−1n | ≤
c
n{
|n|
∑
j=0
Mj|KMj |}.

Proof. Since the sequence {qk : k ∈ ℕ} is non-decreasing, if we apply condition (3.3), we find that

1
Qn
(
n−2
∑
j=1
|qj − qj+1| + qn−1) =

1
Qn
(
n−2
∑
j=1
(qj+1 − qj) + qn−1) ≤

2qn−1
Qn
≤
c
n
. (3.4)

If we apply the Abel transformation (2.10) combined with (2.11) and (3.4), we get that

|F−1n | ≤ (
1
Qn
(
n−1
∑
j=1
|qj − qj+1| + qn−1 + q0))

|n|
∑
i=0
Mi|KMi | ≤

c
n

|n|
∑
i=0
Mi|KMi |.

Lemma 3.4. Let {qk : k ∈ ℕ} be a sequence of non-decreasing numbers satisfying condition (3.3). Then, for
some constant c,

∫
Gm

F−1n (x) dμ(x) = 1,

sup
n∈ℕ
∫
Gm

|F−1n (x)| dμ(x) ≤ c <∞, (3.5)

sup
n∈ℕ
∫

Gm\IN

|F−1n (x)| dμ(x)→ 0 as n →∞.

Proof. If we compare the estimation of Fn in Lemma 3.2 with the estimation of Fn in Lemma 3.3, we find that
they are quite the same. It follows that the proof is analogical to Lemma 3.2. So we leave out the details.

Finally, we study some special subsequences of kernels of T means.

Lemma 3.5. Let n ∈ ℕ. Then
F−1Mn
(x) = DMn (x) − ψMn−1(x)FMn (x).
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Proof. By using (2.2), we get that

F−1Mn
(x) = 1

QMn

Mn−1
∑
k=0

qkDk(x) =
1
QMn

Mn

∑
k=1

qMn−kDMn−k(x)

=
1
QMn

Mn1
∑
k=1

qMn−k(DMn (x) − ψMn−1(x)Dk(x)) = DMn (x) − ψMn−1(x)FMn (x).

Corollary 3.6. Let {qk : k ∈ ℕ} be a sequence of non-decreasing numbers. Then, for some constant c,

∫
Gm

F−1Mn
(x) dμ(x) = 1,

sup
n∈ℕ
∫
Gm

|F−1Mn
(x)| dμ(x) ≤ c <∞,

sup
n∈ℕ
∫

Gm\IN

|F−1Mn
(x)| dμ(x)→ 0 as n →∞, for any N ∈ ℕ+.

Proof. The proof is a direct consequence of Proposition 2.1 and Lemma 3.5.

4 Proof of main result
Theorem 4.1. The following statements hold.
(a) Let p ≥ 1, and let {qk : k ∈ ℕ} be a sequence of non-increasing numbers. Then ‖Tn f − f ‖p → 0 as n →∞,

for all f ∈ Lp(Gm). Let a function f ∈ L1(Gm) be continuous at a point x. Then Tn f (x)→ f (x) as n →∞.
Moreover, limn→∞ Tn f (x) = f (x) for all Vilenkin–Lebesgue points of f ∈ Lp(Gm).

(b) Let p ≥ 1, and let {qk : k ∈ ℕ} be a sequence of non-decreasing numbers satisfying condition (3.3). Then
‖Tn f − f ‖p → 0 as n →∞, for all f ∈ Lp(Gm). Let a function f ∈ L1(Gm) be continuous at a point x. Then
Tn f (x)→ f (x) as n →∞. Moreover, limn→∞ Tn f (x) = f (x) for all Vilenkin–Lebesgue points of f ∈ Lp(Gm).

Proof. Let {qk : k ∈ ℕ}be anon-increasing sequence. Lemma3.2 immediately implies statednormandpoint-
wise convergences. Suppose that x is either a point of continuity or a Vilenkin–Lebesgue point of a function
f ∈ Lp(Gm). Then limn→∞|σn f (x) − f (x)| = 0. Hence,

|Tn f (x) − f (x)| ≤
1
Qn
(
n−2
∑
j=0
(qj − qj+1)j|σj f (x) − f (x)| + qn−1(n − 1)|σn−1f (x) − f (x)|)

≤
1
Qn

n−2
∑
j=0
(qj − qj+1)jαj +

qn−1(n − 1)αn−1
Qn

:= I + II, where αn → 0 as n →∞.

Toprove I→ 0 as n→∞ and II→ 0 as n→∞, we just have tomake analogous steps of the proof of Lemma3.2.
It follows that part (a) is proved.

Now,we assume that the sequence is non-decreasing and satisfying condition (3.3). According to (3.5) in
Lemma 3.4, we define the norm and pointwise convergence. To prove the convergence in Vilenkin–Lebesgue
points, we use the estimation

|Tn f (x) − f (x)| ≤
1
Qn

n−2
∑
j=0
(qj+1 − qj)jαj +

qn−1(n − 1)αn
Qn

:= III + IV, where αn → 0 as n →∞.

It is evident that
IV ≤ qn−1(n − 1)αn

Qn
≤ αn → 0 as n →∞.

On the other hand, for any ε > 0, there exists N0 ∈ ℕ such that αn < ε/2 when n > N0. We can write that

1
Qn

n−2
∑
j=1
(qj+1 − qj)jαj =

1
Qn

N0

∑
j=1
(qj+1 − qj)jαj +

1
Qn

n−2
∑

j=N0+1
(qj+1 − qj)jαj = III1 + III2.
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Since the sequence {qk} is non-decreasing, we obtain that |qj+1 − qj| < 2qj+1 < 2qn−1. Hence,

III1 ≤
2q0N0
Qn
→ 0 as n →∞

and

III2 ≤
1
Qn

n−2
∑

j=N0+1
(qn−j−1 − qn−j)jαj ≤

ε(n − 1)
Qn

n−2
∑
j=N0+
(qn−j − qn−j−1)

≤
ε(n − 1)
Qn
(q0 − qn−N0 ) ≤

2q0ε(n − 1)
Qn

< ε.

Therefore, III→∞ too so that the proof of part (b) is also complete.

Corollary 4.2. Let f ∈ Lp, where p ≥ 1. Then

Rn f → f a.e. as n →∞, Uαn f → f a.e. as n →∞,
Vαn f → f a.e. as n →∞, Bn f → f a.e. as n →∞.

Theorem 4.3. Let p ≥ 1, and let {qk : k ∈ ℕ} be a sequence of non-decreasing numbers. Then ‖TMn f − f ‖p → 0
as n →∞, for all f ∈ Lp(Gm). Let a function f ∈ L1(Gm) be continuous at a point x. Then TMn f (x)→ f (x)
as n →∞. Moreover, limn→∞ TMn f (x) = f (x) for all Lebesgue points of f ∈ Lp(Gm).

Proof. Corollary 3.6 immediately implies thenormandpointwise convergence. Toprove the a.e. convergence,
we use first the identity in Lemma 3.5 to write

TMn f (x) = ∫
Gm

f (t)F−1n (x − t) dμ(t) = ∫
Gm

f (t)DMn (x − t) dμ(t) − ∫
Gm

f (t)ψMn−1(x − t)FMn (x − t) = I − II.

By applying (1.1), we can conclude that I = SMn f (x)→ f (x) for all Lebesgue points of f ∈ Lp(Gm). By using
ψMn−1(x − t) = ψMn−1(x)ψMn−1(t), we can conclude that

II = ψMn−1(x) ∫
Gm

f (t)FMn (x − t)ψMn−1(t) d(t).

By combining (2.3) and Proposition 2.1, we find that the function

f (t)FMn (x − t) ∈ Lp , where p ≥ 1, for any x ∈ Gm ,

and II are Fourier coefficients of an integrable function. According to the Riemann–Lebesgue lemma, we get
that II→ 0 for any x ∈ Gm.
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