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1 Introduction

The definitions and notations used in this introduction can be found in the next section.
It is well known (see, e.g., the book [33]) that there exists an absolute constant c,, depending only on p,
such that

||Snf"p < Cp"f”p whenp > 1.

On the other hand, the boundedness does not hold for p = 1 (for details, see [7, 8, 29, 42—44]). The analogue
of Carleson’s theorem for the Walsh system was proved by Billard [3] for p = 2 and by Sj6lin [36]for 1 < p < oo,
and for the bounded Vilenkin systems by Gosselin [15]. For the Walsh—Fourier series, Schipp [31-33] gave
a proof by using the methods of martingale theory. A similar proof for the Vilenkin—-Fourier series can be
found in [34] by Schipp and Weisz and in [47] by Weisz. In each proof, they show that the maximal operator
of the partial sums is bounded on Ly, i.e. there exists an absolute constant ¢, such that

IS*flp < cplflly, whenfeLy, p>1.

Hence, if f € L,(Gp), where p > 1, then Spf — f a.e. on G,. Stein [37] constructed the integrable function
whose Vilenkin—Fourier (Walsh—Fourier) series diverges almost everywhere. In [33], it was proved that there
exists an integrable function whose Walsh—Fourier series diverges everywhere. The a.e. convergence of sub-
sequences of Vilenkin—Fourier series was considered in [5], where the methods of martingale Hardy spaces
were used.
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If we consider the restricted maximal operator S;‘; f := sup,en|Su, fl, we have aweak (1, 1) type inequality
for f € L1(Gn). Hence, if f € L1(G), then Sy, f — f a.e. on Gp,. Moreover, for any integrable function, it is
known that an a.e. point is a Lebesgue point, and for any such point x of the integrable function f, we have
that

Sm f(x) - f(x) asn — oo, foranyLebesgue pointxof f € L1(Gp). (1.1)

In the one-dimensional case, Yano [49] proved that
lonf =fllp >0 asn—oo (f €Lyp(Gp), 1<p<00).
If we consider the maximal operator of the Féjer means
o f = ilﬁlﬂglonfl,

then
Aufo*f > A} <clflh, feLi(Gm), A>0.

This result can be found in [50] by Zygmund for the trigonometric series, in [35] by Schipp and in [12, 26, 27,
38, 39, 41] for Walsh series and in [25] by Pal and Simon for bounded Vilenkin series (see also [47, 48] by
Weisz). The boundedness does not hold from the Lebesgue space L1(G,,) to the space L1(G,). The weak-(1, 1)
type inequality implies that, for any f € L1(Gp),

onf(x) > f(x) a.e. asn — oo.

Moreover, in [11] (see also [10]), it was proved that, for any integrable function, an a.e. point is the Vilenkin—
Lebesgue point, and for any such point x of an integrable function f, we have

onf(x) — f(x) asn — oo.

Moricz and Siddiqi [18] investigate the approximation properties of some special Nérlund means of the
Walsh—Fourier series of L, functions in norm. Similar results for the two-dimensional case can be found
in [19, 20] by Nagy, [21-24] by Nagy and Tephnadze, [13, 14] by Gogolashvili and Tephnadze (see also
[2, 17]). The approximation properties of general summability methods can also be found in [4, 6]. Fridli,
Manchanda and Siddiqi [9] improved and extended the results of Méricz and Siddiqi [18] to martingale Hardy
spaces. The a.e. convergence of Norlund means of Vilenkin—Fourier series with monotone coefficients of
f € Ly was proved in [28] (see also [30]). In [45], it was proved that the maximal operators of T means T*
defined by T*f := sup,,«n|Trnf| either with non-increasing coefficients, or with a non-decreasing sequence
satisfying the condition

dn-1

Qn
are bounded from the Hardy space H;,, to the space weak-L;,,. Moreover, there exist a martingale and such
T means for which the boundedness does not hold from the Hardy space H), to the space L, when0 < p < 1/2.

One of the most well-known means of T means is the Riesz summability. In [40] (see also [16]), it was
proved that the maximal operator of Riesz logarithmic means

= O(%) asn — oo, (1.2)

R*f := sup|Rnf]
nelN

is bounded from the Hardy space H;,, to the space weak-L/, and is not bounded from H, to the space L, for
0 < p < 1/2. It was also proved there that the Riesz summability has better properties than Fejér means.

In this paper, we derive the convergence of T means of Vilenkin—Fourier series with monotone coefficients
of integrable functions in Lebesgue and Vilenkin-Lebesgue points.

This paper is organized as follows. In order to provide the coherence of our further discussion, some
definitions and notations are presented in Section 2. For the proofs of the main results, we need some auxiliary
lemmas of which some are new and of independent interest. These results are presented in Section 3. The
main results and some of its consequences and detailed proofs are given in Section 4.
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2 Definitions and notation

Denote by IN, the set of positive integers, N := N, U {0}. Let m := (mp, my, ...) be a sequence of positive
integers not less than 2. Denote by
Zm, i=1{0,1,...,mg—1}

the additive group of integers modulo myg.

Define the Vilenkin group G, as the complete direct product of the groups Z,,, with the product of the
discrete topologies of Z;;’s (for details, see [46]). In this paper, we discuss bounded Vilenkin groups, i.e. the
case when sup, m, < co. The direct product y of measures pr({j}) := 1/my (j € Zy,) is the Haar measure on
Gm with u(Gp,) = 1. The elements of G, are represented by sequences

X = (X0, X15 v+ 5 Xjs oo n) (X5 € Ziyy)e
It is easy to give a basis for the neighborhoods of G,
Io(x) := Gm, In(x) :={y € Gm | Yo = X05 -+ .+ Yn-1 = Xn-1}, wherex € Gy, n € N.
If we define the so-called generalized number system based on m in the following way:
Mo :=1, My :=mMy; (keN),

then every n € IN can be uniquely expressed as n = Z}fo njM;, where n; € Zm; (j € N,) and only a finite num-
ber of nj’s differ from zero.

We introduce on G, an orthonormal system which is called the Vilenkin system. First, we define the
complex-valued function ri(x): G, — C, which is the generalized Rademacher function, by

ri(x) := exp(2mixi/my) (2 =-1, x € Gy, k € N).

Next, we define the Vilenkin system 1 := (i, : n € N) on G, by
(o)
Yn(0) =[]0 (neN).
k=0

Specifically, we call this system the Walsh—Paley system when m = 2.
The norms (or quasi-norms) of the spaces L,(Gp) and weak-L,,(G,) (0 < p < 0o) are respectively defined
by
15 = [P dp U¥r, = SUPAPH(T > ) < o,
>0
Gm

The Vilenkin system is orthonormal and complete in L, (G,) (see [46]).

Now, we introduce analogues of the usual definitions in Fourier analysis. If f € L1(G,), we can define
Fourier coefficients, partial sums and Dirichlet kernels with respect to the Vilenkin system in the usual man-
ner,

_ n-1 R n-1
fou = [ fudu Suf = Y fOe Dui= Y ¥ (meN.).
k=0 k=0

Gm
Recall that
j D,(x)dx=1, (2.1)
Gm
Du,—j(x) = D, (%) = Ym,-100Dj(x),  j < Mp. (2.2)

The convolution of two functions f, g € L1(Gy,) is defined by

(f * 9)00) = jf(x— DEB dt (X € Gp).

Gm
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It is easy to see thatif f € L,(Gm), g8 € L1(Gm)and 1 < p < oo, then f « g € L,(Gy,) and

If = gllp < Ifllplgllz- (2.3)

Let {qx : k > O} be a sequence of non-negative numbers. The n-th Nérlund mean t,, for a Fourier series of f is
defined by

1 n n-1
taf = = ) qnxSkfy Where Qn = ) gi. (2.4)
Qn k=1 k=0
It is obvious that .
1 e
6af 00 = [ FOFa(x- 0 du(t),  where Fy = - 5" aiD,
n k=0
Gm

is called the T kernel.
The next proposition can be found in [7, 28].

Proposition 2.1. Let {qx : k € N} be a sequence of non-increasing numbers. Then, for any n, N € N,,

J Fu,(x) du(x) =1,
Gm

sup [ 1F, (0] da) < ¢ < oo,
nelN

m

sup J |[Fp,(x) du(x) -» 0 asn — oo.
nelN

Gm\Iy
Let {gk : k > 0} be a sequence of non-negative numbers. The n-th T means T, for a Fourier series of f are

defined by

1 n-1 n-1
Tnf = — Z qxSxf, where Q, := z qk- (2.5)
Qn k=0 k=0
It is obvious that .
1<
Tuf00) = [ FOF; 0= 0 du(o),  where Fyl == - 3" D,
m k=0
Gm

is called the T kernel. We always assume that {qx : k > 0} is a sequence of non-negative numbers and g > O.
Then the summability method (2.5) generated by {gy : k > 0} is regular if and only if lim,_,o, Q, = co.

It is easy to show that, for any real numbers a4, ..., am, b1,...,byn and ax = Ax — Ax-1, k=n,...,m,
we have the so-called Abel transformation

n n-1
Z aiby = Apby — Ap_1bm + z Ay(bk = brs1).

k=m k=m
Foraj = Aj - Aj_1,j=1,...,n, if we invoke the Abel transformations
n-1 n-2
ajbj = Ap_1bn-1 — Aob1 + Z Aj(bj — bjs1), (2.6)
j=1 j=0
n-1 n-2
Z ajbj = Ap-1bn-1 — Amy-1bmy + z Aj(bj - bjs1), (2.7)
j=Mn j=Mn
then, for b; = gj, aj = 1and A; = jforanyj =0, 1, ..., n, we get the following identities:
n-1 n-1 n-2
Qn=) gj=qo+ Y gj=qo+ Y (g~ gjs1)j +qn-1(n—1), (2.8)
j=0 j=1 j=1

n-2

n-1
Y gi= Y (@ qp1)i+ qnan—1) ~ (My — D)qu,.
j=My j=My
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Moreover, if we use Do = Ko = Oforany x € Gp, and invoke the Abel transformations (2.6) and (2.7) for b; = g;j,
aj = Djand Aj = jK;foranyj=0,1,...,n- 1, then we get the identities

1 n-2

Fy! Q}ﬁm—a(y%qmw+%unnm0, (2.9)
n-2

Z q;D; = ( Y (G~ gj+1)iKj + qn-1(n = )Kn-1 = qar, (My — DKy - 1) (2.10)
n j=My Q j=Mn

Analogously, if we use Sof = 0of = 0 for any x € G, and invoke the Abel transformations (2.6) and (2.7) for
bj = gj, aj = Sjand Aj = joj foranyj =0, 1, ..., n - 1, then we get the identities

1 n-1 1 n-2
Tof = Q_ Z QjS] 0 <Z(QJ gj+1 ]0)f+Qn 1(n—-1)0n- 1f>

n-2
Z q;Sif = ( > (@) - 4j+1)i0if + qn-1(n = 1)0n1f = g, (My - 1)UMN—1f)-
" j=My Qn j=Mn
If gx = 1in (2.4) and (2.5), we respectively define the Fejér means ¢, and Fejér kernels K, as follows:
Gf'—lef K -—1§n:D
n) = E kJ>s n = E k-

It is well known that (for details, see [1])

In|
nlKnl < ¢ )" Mi|Kul, (2.11)
=0

and for any n, N € N,
[ Ka0 duco - 1.

Gm
sup I |Kn ()| dp(x) < ¢ < oo, (2.12)
nelN
sup J |Kn(x)| dpu(x) — 0 asn — oo. (2.13)
nelN
Gm\IN

The well-known example of the N6rlund summability is the so-called (C, «) means (Cesaro means) for
0 < a < 1, which are defined by
_(a+1)---(a+n)

of = a._ a.
onf = ac kzlA ¥Sf, where A3 :=0, A%:= -

We also consider the “inverse” (C, a) means, which are examples of T means,

1 n-1

. ZAﬁ‘lskf, O<a<l.
A"ko

Usf o= —

Let V§ denote the T mean, where {go = 0, g = k%1 : k € N,}, that s,

n-1

Vef = ! KIS f, O<a<1.
Qn k=1

The n-th Riesz logarithmic mean R, and the N6rlund logarithmic mean L, are defined by

| =

1 n-1 S 1 n-1 S n-1
Ruf = = ”zf nd Lyf := Z "fk, where I := Y.
" =1 njo M k=1
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Up to now, we have considered T means in the case where the sequence {gj : k € N} is bounded, but now we
consider T summabilities with an unbounded sequence {q : k € IN}. We also define the class B, of T means
with non-decreasing coefficients,

1 n-1
Bof i= — ) log kSf.
Qn k:l

3 Auxiliary lemmas

First, we consider the kernels of T means with non-increasing sequences.

Lemma 3.1. Let {qx : k € N} be a sequence of non-increasing numbers satisfying the condition

g—i=0<%) asn — oo.

Then, for some constant c, we have
In|
_ c
IF ' < ;{Z M,-|I<M,.|}.
j=0
Proof. Let the sequence {gy : k € IN} be non-increasing. Then, by using (1.2), we get that
1 n-2 1 n-2 do c
— i—Qis1l + qn-1 | < — i—qi+1) +qn-1 | < =— < —.
Qn(};l% Qj+1l + qn 1) Qn<];(% gj+1) + qn 1) Q. =7
Hence, if we apply (2.11) and use equalities (2.8) and (2.9), we immediately obtain
1 /el In| c In|
IF, ' < (—< Y lgj - gjal + qn_1)> > MilKy,l < =) MilK,l.
Q\ 5 i<0 nis
The proof is completed by just combining the estimates above. O

Lemma 3.2. Let {qx : k € N} be a sequence of non-increasing numbers. Then, for any n, N € IN,,

j Fl(0) du(x) = 1, (3.1)
Gm
sup JlF;l(x)l du(x) < oo, (3.2)
nelN

m

sup J |F,Y ()| du(x) - 0 asn — co.
nelN

Gm\In
Proof. According to (2.1), we easily obtain the proof of (3.1). By using (2.12) combined with (2.8) and (2.9),

we get that

1 n-2 )
—( 2 (a5 - gy j Kj| dpt + gn-1(n - 1) j |Kn-1l dy)
j=0

Qn
Gm Gm
c n-2
= Q_(z(qi = gj+1)j + gn-1(n - 1)) < € < 00,
n\j3%

so (3.2) is also proved. By using (2.13) and inequalities (2.8) and (2.9), we can conclude that

n-2

~ 1 . 1(n-1
[ Etans o Y@ ani | maps P
Qn & Qn
Gm\Iy J Gm\Iy Gm\In
1 "2 1(n-Day_
< — (qj_qj+1)jaj+wzl+ll’

Qn & Qn
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where a,, —» 0 as n — oo. Since the sequence is non-increasing, we can conclude that

q1(n-1Da,-
II:Msan_leO asn — oo.

Qn

Moreover, for any € > 0, there exists Ny € IN such that a,, < € when n > Ny. Furthermore,

n-2 n-2
1
Q Z(QJ gj+1)jej = Z(QJ qj+1)ja; + Q Z (g; - gj+1)jaj =11 + .
M j=Ny+1

The sequence {gj : k € N} is non-increasing, and therefore, |g; — gj.1| < 290,

2qoN
I < 2900 —0 asn - oo
n
and
1 n-2 -
I, = Q_ Z (g5 - gj+1)ja; < Q_ Z (g5 - gj+1)j < Z - gj+1)j < &,
M j=Ny+1 j=No+1 j=0
and we can conclude that I — 0, so the proof is complete. O

Next, we consider the kernels of T means with non-decreasing sequences.
Lemma 3.3. Let {qk : k € N} be a sequence of non-decreasing numbers satisfying the condition

qn-1

o _o( ) asn — oo. (3.3)

Then, for some constant c,
In|
|F; < —{ZM |K ;| }
j=0

Proof. Since the sequence {qi : k € N} is non-decreasing, if we apply condition (3.3), we find that

1 n-2 1 n-2 ZQn—l c
Q_n ];Wj —gjs1l + qn-1 ) = Q_n ); (gj+1 — qj) + qn-1 | < Q—n < n (3.4)

If we apply the Abel transformation (2.10) combined with (2.11) and (3.4), we get that

In| InI

- 1 n-1
IFo'l < (Q—n(2|q,~ — gjr1l + qn-1 + qo)) Y MilKy,| < — ZM,|I<M B O
j=1

i=0

Lemma 3.4. Let {qx : k € N} be a sequence of non-decreasing numbers satisfying condition (3.3). Then, for
some constant c,

| Frteo duco - 1.

Gm
sup j |F;1 ()] du(x) < ¢ < oo, (3.5)

nelN
m

sup J IF,1(x)| du(x) - 0 asn — co.
nelN

Gm\IN
Proof. If we compare the estimation of F,, in Lemma 3.2 with the estimation of F,, in Lemma 3.3, we find that
they are quite the same. It follows that the proof is analogical to Lemma 3.2. So we leave out the details. [
Finally, we study some special subsequences of kernels of T means.

Lemma 3.5. Let n € N. Then
Fyi- (0) = Dy, (X) =Yg, -1 00 F g, (X).
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Proof. By using (2.2), we get that

Flo0- -3 b0 = == 3 g eDas, 10
! ., o =t
1 M1 _ —
= on M, -k(Dp, () = Y 1,1 (X)Die(x)) = D, (X) — Pag,—1 (X)F g, (X). O
n k=1

Corollary 3.6. Let {qx : k € N} be a sequence of non-decreasing numbers. Then, for some constant c,

| Fi oo dueo = 1,

Gm
sup j IFX,[ln(x)l du(x) < ¢ < oo,
nelN

m

sup I |F)f (0l du(x) - 0 asn— oo, forany N e N,.
neN "
Gm\In

Proof. The proofis a direct consequence of Proposition 2.1 and Lemma 3.5. O

4 Proof of main result

Theorem 4.1. The following statements hold.

(@) Letp > 1, and let {qy : k € N} be a sequence of non-increasing numbers. Then |Tnf — fl, — 0 as n — oo,
for all f € Ly(Gp). Let a function f € L1(Gp) be continuous at a point x. Then Tyf(x) — f(x) as n — co.
Moreover, limy,_.oo Tnf () = f(x) for all Vilenkin—Lebesgue points of f € Ly(Gp).

(b) Letp =1, and let {q : k € N} be a sequence of non-decreasing numbers satisfying condition (3.3). Then
ITnf = fll, = 0 asn — oo, for all f € L,(Gn). Let a function f € L1(Gp) be continuous at a point x. Then
Thf(x) — f(x) asn — co. Moreover, lim_,o, Tnf(x) = f(x) for all Vilenkin—-Lebesgue points of f € L,(Gm).

Proof. Let{qy : k € N} be anon-increasing sequence. Lemma 3.2 immediately implies stated norm and point-
wise convergences. Suppose that x is either a point of continuity or a Vilenkin—-Lebesgue point of a function
f € Lp(Gm). Then limy_,oo|0nf (x) - f(x)| = 0. Hence,

n-2
ITnf 00 = f(X)] < Qi( Y (@) — g jloif () = fOO)] + gn-1(n = 1|01 f(X) —f(X)I)
n\jzo

n-2

< — Y (gj - gjr1)iaj +
Qn ]'=0

qn-1(n— Dan_1

Qn

:=1+1I, wherea, -0 asn — oco.

Toprovel — 0asn — coand I — 0 as n — oo, we just have to make analogous steps of the proof of Lemma 3.2.
It follows that part (a) is proved.

Now, we assume that the sequence is non-decreasing and satisfying condition (3.3). According to (3.5) in
Lemma 3.4, we define the norm and pointwise convergence. To prove the convergence in Vilenkin-Lebesgue
points, we use the estimation

qn-1(n - Day
Qn

1 n-2
ITf(X) - ()] < o Y (@je1 - gpia + :=I11+1V, wherea, >0 asn— oo.
n ]'=0

It is evident that
< qn-1(n - Day

n
On the other hand, for any € > 0, there exists Ny € IN such that a, < £/2 when n > Ny. We can write that

I\Y% <anp—0 asn — oo.

1 n-2 1 Nyo 1 n-2
o Z (gj+1 - gj)jaj = o Z(q]'+1 - gjjaj + % Z (gj+1 - gj)ja; = I + 1T,
nj=1 nj=1 M j=No+1
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Since the sequence {gi} is non-decreasing, we obtain that |gj.1 — gj| < 2gj+1 < 2gn-1. Hence,

iy < 22 L6 asn o oo
n
and
1 n-2 . en-1 n-2
M < — Y (gnj1-qniaj < (Q—) Y (nj—qnj-1)
M j=No+1 n j=No+
en-1) 2goe(n—-1)
< — —qn- < ———<¢&
o (90 = qn-n,) .
Therefore, III — co too so that the proof of part (b) is also complete. O

Corollary 4.2. Letf € Ly, where p > 1. Then

Rof > f ae. asn— oo, Uif—f ae asn— oo,

Vif - f ae asn—oo, Byf—>f ae asn— oo.

Theorem 4.3. Letp > 1, and let {qy : k € N} be a sequence of non-decreasing numbers. Then | Ty, f - fllp, — O
as n — oo, for all f € Ly(Gp). Let a function f € L1(Gn) be continuous at a point x. Then Ty, f(x) — f(x)
as n — oo. Moreover, limy_,«, Tum,f(x) = f(x) for all Lebesgue points of f € Ly(Gn).

Proof. Corollary 3.6 immediately implies the norm and pointwise convergence. To prove the a.e. convergence,
we use first the identity in Lemma 3.5 to write

T f00 = [ FOF; 0~ 0du(®) = [ FODu, 0= 0.d0) - [ FOpw1(x - 0F, (x- 0 =1-10

Gm Gm Gm

By applying (1.1), we can conclude that I = Sy, f(x) — f(x) for all Lebesgue points of f € L,(Gp). By using
Yu,—1(x—t) = lpM"_l(x)lpM"_l(t), we can conclude that

1= 1,100 [ FOF, (6= Oy, 1 (0 dCO).

Gm

By combining (2.3) and Proposition 2.1, we find that the function
f(6)Fy,(x—t)€L,, wherep>1, foranyx e Gp,

and II are Fourier coefficients of an integrable function. According to the Riemann-Lebesgue lemma, we get
that Il — O for any x € Gy,. O
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