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Abstract (150 words) 23 

Lead (Pb) is a non-essential metal naturally present in the environment and often complexed with other 24 

elements (e.g. copper, selenium, zinc). This metal has been used since ancient Egypt and its extraction has grown 25 

in the last centuries. It has been used until recently as a fuel additive and is currently used in the production of 26 

vehicle batteries, paint, and plumbing. Marine ecosystems are sinks of terrestrial contaminations; consequently, 27 

lead is detected in oceans and seas. Furthermore, lead is not biodegradable. It remains in soil, atmosphere, and 28 

water inducing multiple negative impacts on marine invertebrates (key species in trophic chain) disturbing 29 

ecological ecosystems. This review established our knowledge on lead accumulation and its effects on marine 30 

invertebrates (Annelida, Cnidaria, Crustacea, Echinodermata, and Mollusca). Lead may affect different stages of 31 

development from fertilization to larval development and can also lead to disturbance in reproduction and 32 

mortality. Furthermore, we discussed changes in the seawater chemistry due to Ocean Acidification, which can 33 

affect the solubility, speciation, and distribution of the lead, increasing potentially its toxicity to marine 34 

invertebrates.  35 

.  36 
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Introduction 56 

Marine invertebrates are recognized as good bioindicators in ecotoxicology (Rainbow 2002; Chiarelli et al. 57 

2014, 2019). Thus, various species in distinct subphyla or phyla (Annelida, Cnidaria, Crustacea, Echinodermata, 58 

and Mollusca) are commonly used in ecotoxicological investigations. For example, many studies focused on 59 

marine contamination use filter-feeding organisms (as mussel, Mytilus galloprovincialis, Azizi et al. 2018; and 60 

oyster, Crassostrea gigas, Liu et al. 2021), grazers (as gastropods, Patella caerulea, Aydm-Öhnen and Öztürk 61 

2017), detritivores (as sea urchins, Paracentrotus lividus, Rouane-Hacene et al. 2018) and predators (as crabs, 62 

Carcinus spp, Leignel et al. 2014) to investigate the effects on key species in the trophic chain.  63 

Metallic trace elements (MTE) are naturally present in the environment and their major sources are volcanic 64 

eruptions and rock erosion. Nevertheless, their extraction and use in industry lead to their massive release into the 65 

atmospheric, terrestrial and aquatic environments. MTE pollution has been a major concern since the industrial 66 

revolution because of increasing anthropogenic activities, making them the most studied pollutants (Ali et al. 67 

2019). Among these MTE, lead (Pb) has been widely studied for its impacts on terrestrial fauna and humans (Celis 68 

et al. 2015; Gomot-De Vaufleury 2000; Assi et al. 2016). Nevertheless, its toxicity to aquatic organisms, and more 69 

specifically marine animals, remains little studied and its negative impacts on fauna are probably highly underes-70 

timated. 71 

Lead (Atomic number : 82; atomic mass : 207.2; CAS number : 7439-92-1) is a bluish-grey metal that is 72 

naturally present in the Earth’s crust (Carocci et al. 2015) at an average concentration of 20 mg/kg of soil and 73 

including 4 major isotopes: 204Pb, 205Pb, 207Pb et 208Pb. The last three forms result from the radioactive decay 74 

of thorium and two isotopes of uranium (Flora et al. 2006). Lead can either be organic, inorganic, or metallic and 75 

it is mainly found in the environment in the form of salts (PbCO3, Pb(NO3), PbSO4), hydroxylated (Pb(OH)2) or 76 

ionized (Pb2+). Lead speciation in the form Pb2+ is very important in determining the bioavailability and behaviour 77 

of this metal. This major form is mainly complexed with an organic or inorganic ligand. Complexation with an 78 

organic ligand can be related to cations such as Ca2+, Mg2+, and Zn2+ (Capodaglio et al. 1990; Carocci et al. 2015). 79 

The inorganic phase of lead is dominated by two ligands, which are chloride and carbonate, thus allowing the 80 

metal to form complexes (Woosley and Millero 2013): 81 

Pb�� + nCl� 	↔ PbCl�
��� ou Pb�� +	nCO�

��
	↔ PbCO�

���� 82 

[Where n is the number of chloride ions (between 1 and 3) or a carbonate ion] 83 
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The main lead-bearing mineral is galena (PbS) but we also distinguish other ores such as anglesite (PbSO4) 84 

and cerussite (PbCO3) (Flora et al. 2006). Therefore, lead has been widely used since Ancient Egypt era (5000-85 

3000 BC) (Nriagu 1983) because of its own melting point, its malleability, and its corrosion resistance. For exam-86 

ple, it has been used for the manufacture of kitchen utensils and decorative items, in plumbing or the tableware 87 

factory (Flora et al. 2006). However, its use has dramatically increased since the 18th century with the implemen-88 

tation of the metal industry. Lead has been exploited for the manufacture of pipes, pigment, and as a biocide in 89 

antifouling paints but also for ceramics and building materials. Finally, lead has also been used as an additive in 90 

fuel (tetraethyl and tetramethyl), in some batteries, electrical components, and sometimes in drugs and cosmetics 91 

(Flora et al. 2006). The largest increase of lead release in the environment took place between 1950 and 2000, 92 

corresponding to the use of tetralethyllead as an additive in gasoline. This increasing use of lead generates an 93 

increasing accumulation of this nonbiodegradable metal in soils, air and drinking water, making it  a major concern 94 

for organism health. Because of the persistence and toxicity of lead to humans and the environment, national and 95 

international organizations have imposed strict regulations over the past 20 years on the use of lead in the industry 96 

(Annibaldi et al. 2009), including leaded gasoline, lead paint, lead welding in tin cans, or pesticides based on lead 97 

arsenate (Pb3(AsO4)2). An example of these regulations is the reduction of leaded gasoline, which began in the 98 

70’s in the US and the 90’s in Europe (Annibaldi et al. 2009). It was completely phased out in 2000 in France and 99 

in 2002 in Spain and Italy (Annibaldi et al. 2009). Another example concerns child’s products in the US, where an 100 

act set up in 2008 defined the lead limit for all of children’s products at 100 parts per million, unless it is not 101 

technologically feasible, in this case, the lead limit is 300 parts per million (Consumer Product Safety, Improve-102 

ment Act of 2008). These regulations caused the replacement of lead mainly by plastic for cable sheaths by tin for 103 

welding of drinking water system. Steel and zinc are also usual substitutes of lead (Brown et al. 2019). Furthemore, 104 

these various regulations have allowed a drastic reduction of lead emissions in the environment (Carocci et al. 105 

2015). 106 

However, despite the efforts made to reduce lead emissions, they remain present. Nowadays, the primary 107 

sources of lead production include mines and ore smelting, while secondary sources are recycled materials such 108 

as batteries and lead pipes (Flora et al. 2006). We also still find lead sources near incinerators and foundries, some 109 

paints for military or industrial use (Carocci et al. 2015; Flora et al. 2006). Moreover, total atmospheric emissions 110 

of lead vapour have increased in the past 15 years due to the increased demand for electrical energy and the uses 111 

of coal and natural gas (Carocci et al. 2015). A report published by the British Geological Survey in 2020 informs 112 

on global mineral production between 2014 and 2018 and indicates that China was the first country producer of 113 
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lead from 2014 to 2018 (Table 1, https://www.bgs.ac.uk/mineralsuk/statistics/worldStatistics.html). However, 114 

between 2014 and 2018, China's mine lead production decreased by 12.6%. As for the USA and Russia, 115 

respectively in second and fifth place behind China, they produced almost 8.7 and 10.6 times less lead than China. 116 

 117 

I/ Lead contamination in marine environments 118 

Lead enters the marine environment via precipitation, dry deposition, soil leaching, municipal and industrial 119 

waste discharges as well as runoff from fallout deposits from streets and surfaces (Carocci et al. 2015). Industrial 120 

activities represent an important source of lead in seawater. For instance, anti-fouling paints used on boats to 121 

prevent the growth of organisms on them, are a significant emission source of lead in the marine environment 122 

(Bhattacharyya et al. 2013). Once the lead is in the ocean, it undergoes long-range transport through ocean currents. 123 

For instance, Celis et al. (2015) demonstrated that it could reach polar areas.  124 

The bioavailability and toxicity of lead in water depend on the pH, water hardness, organic material concen-125 

tration, and the presence of other metals (Branica and Konrad 1977). In seawater, lead is in its ionic forms or 126 

complexed with organic ligands and this metal can precipitate when its solubility limit is exceeded (Flora et al. 127 

2006; Angel et al. 2016). Lead is mostly precipitated in lead acetate [Pb(C2H3O2)2] or cerussite (PbCO3). In aquatic 128 

systems, sediments adsorb a very large part of the lead, while only a minor fraction remains dissolved in water, 129 

due to the complexation of the inorganic phase of lead by ligands. Furthermore, organic compounds like tetrae-130 

thyllead (C8H20Pb, colorless oily liquid) or tetramethyllead (C4H12Pb) are bioavailable to organisms (Flora et al. 131 

2006). Moreover, Pb can complex with dissolved organic matter (DOM) and it has been suggested that the nature 132 

of the DOM could have different effects on Pb bioavailability and toxicity (Sánchez-Marín et al. 2011; Sánchez-133 

Marín and Beiras 2012). For example, according to Sánchez-Marín et al. (2007), Pb complexed with humic acids 134 

induces an increase of Pb uptake for Mytilus edulis gills and an increase of Pb toxicity for the embryos of Para-135 

centrotus lividus. However, the effects of humic acids on Pb toxicity would be more important than the effects of 136 

fulvic acids or DOM extracted from the Suwannee River also tested on P. lividus embryos concerning toxicity 137 

(Sánchez-Marín and Beiras 2012) and Mytilus edulis concerning gills uptake (Sánchez-Marín et al. 2011). The 138 

results of these studies suggest that the effects of DOM on Pb toxicity and bioavailability depend on DOM type 139 

and more precisely on physicochemical properties of DOM types (Sánchez-Marín et al. 2011; Sánchez-Marín and 140 

Beiras 2012). 141 
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Many studies have focused on the quantification of dissolved forms of lead concentrations in offshore and 142 

coastal waters (Table 2) (Patterson et al. 1976; Paulson and Feely 1985; Fowler 1990). Concentrations of these 143 

dissolved and particulate forms of lead in coastal waters are very heterogeneous ranging from 0.001176 µg/L 144 

(Beagle Channel, Patagonia, Argentina; Conti et al. 2012) to 1015 µg/L (Gulf of Gabes, Tunisia; Drira et al. 2017). 145 

The Gulf of Gabes, situated in the Southeast of Tunisia, has been reported heavily polluted because of the increase 146 

in urbanization, industrialization, tourism, and intensive fishing activity (Drira et al. 2017). Lead concentrations 147 

in offshore waters are ranging from 0.0035 (American Samoa, South Pacific Ocean) to 0.150 µg/L (Western 148 

Mediterranean Sea; Copin-Montegut et al. 1986). The large discrepancy between coastal and offshore levels in 149 

lead may be related to a dilution gradient in lead sources and emissions from terrestrial to offshore environments 150 

(Davis 1993; Espejo et al. 2019). 151 

In order to limit the negative effects of lead on organisms in the marine environment, water quality guidelines 152 

indicating the concentration thresholds not to be exceeded for a given pollutant in a given compartment have been 153 

developed in different countries, such as Australia and New Zealand.  For lead, the recommended value in marine 154 

waters to protect 95% of the species present in the study area is 4.4 µg/L (https://www.waterquality.gov.au/anz-155 

guidelines/guideline-values/default/water-quality-toxicants/search). This threshold is established from 25 data of 156 

LOEC (Low Observed Effect Concentration), NOEC (No Observed Effect Concentration) and EC50 (Half-maxi-157 

mal Effective Concentration) divided into the following taxonomic groups: algae, annelids, crustaceans, and mol-158 

luscs. However, this water quality guideline (https://www.waterquality.gov.au/anz-guidelines/guideline-val-159 

ues/default/water-quality-toxicants/search) has been established using tropical and temperate marine species and 160 

thus could not be valid for all marine organisms. 161 

 162 

II/ Lead concentrations in marine invertebrates 163 

As said earlier, when lead particles are present in seawater, a fraction is released in soluble form which can 164 

enter the marine food web. Filter feeders or scavengers are prone to bioaccumulate important levels of lead (Table 165 

3). Nevertheless, for the same species, differences of several orders of magnitude can be observed among studies 166 

(Table 3); that may be related to contamination levels in surrounding waters as well as biological factors (e.g. age, 167 

diet, metabolism, sex) and abiotic parameters (temperature, salinity, pH…). ¨Pb accumulation seems preferential 168 

in kidney and muscle (Jakimska et al. (2011). Noël et al. (2010) showed lead concentration values ranging from 169 

0.040 to 0.247 µg/g of dry weight for sea urchin Paracentrotus lividus collected in the same location. And finally, 170 
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lead concentrations can fluctuate importantly among life stages, such as in the horseshoe crab Limulus polyphemus 171 

with levels ranged from 0.02 to 0.59 µg/g of dry weight from the stage egg to embryo respectively (Bakker et al. 172 

2017). The Pb content in invertebrate tissues depend of seasons and anthropogenic activities, as showed by Scu-173 

diero et al. (2014) in mussels from Campania coast (Italy).   174 

The potentially high levels of lead bioaccumulation in marine invertebrates present a potential 175 

ecotoxicological risk for human food consumption (Sioen et al. 2008; Cabral-Oliveira et al. 2015). In Europe, the 176 

maximum concentrations of lead allowed in commercialized bivalves, such as mussels or oysters, is 1.5 mg/kg of 177 

fresh weight by the Commission Regulation (EC) no. 1881/2006 (European Commission 2006; Cabral-Oliveira et 178 

al. 2015). However, this limit is not always respected as shown by Cabral-Oliveira et al. (2015) who assessed 179 

concentrations of lead of 4.6 mg/kg of fresh weight in mussel Mytilus galloprovincialis on the Portuguese coast. 180 

In 2015, the World Health Organization (WHO) established the level of tolerable weekly intake for lead to 25 181 

µg/kg of body weight. Abdallah (2013) showed that the estimated weekly intake of lead for bivalve Ruditapes 182 

decussatus along the Alexandria coast of the Mediterranean Sea exceeds the level indicated by the WHO. These 183 

examples show the importance of evaluating levels of lead in the environment and in edible seafood, in order to 184 

limit chronic exposure to metals for human populations. 185 

 186 

III/ Effects of lead on marine invertebrates 187 

As mentioned before, lead does not possess any biological function in organisms (vegetal or animal). In con-188 

trast, it is known to induce damage to the central nervous system, kidneys and hematopoietic system in vertebrates 189 

(Flora et al. 2006). Its toxicity mechanism is probably the most studied among the MTE and its effects have already 190 

been reviewed by Flora et al. (2006, 2012). Nevertheless, although studied in superior organisms, it seems that no 191 

reviews have been written about lead effects on different groups of marine invertebrates. The acute effects (Effec-192 

tive Concentration at 50% [EC50]) of lead have mainly been measured in bivalves and sea urchins (Table 4). 193 

Indeed, lead contamination has negative consequences on various phyla and these effects are also diversified even 194 

though studies mainly focused on the effects of this metal on early life stages. If we compare the EC50 in various 195 

marine organisms (Table 4) and lead environmental coastal concentrations (Table 2), we can see that EC50 values 196 

for molluscs and echinoderms (except for Sea urchin Arbacia punctulata) are lower than the highest concentration 197 
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found in the literature (1015 µg/L, Gulf of Gabes, Tunisia; Drira et al. 2017). Therefore, we can hypothesize that 198 

these marine organisms and potentially others could be affected by current lead environmental concentrations in 199 

coastal areas. Thus, despite the efforts made to decrease lead emissions during the past decades, this metal is still 200 

representing an ecotoxicological risk today for marine ecosystems. 201 

III.1. Effects on Echinodermata 202 

Echinoderms represent a relevant model system for investigating environmental pollution (Chiarelli et al. 203 

2019). It has been evidenced that different Sea urchin species are able to survive in polluted environments and 204 

accumulate high levels of metals in their tissues via physiological uptake of nutrients (Burić et al. 2015; Chiarelli 205 

et al. 2019) . Heavy metals mainly affect fertilization, skeletogenesis, gut elongation, growth or tolerance to tem-206 

perature stress (Kobayashi and Okamura 2004; Roccheri et al. 2004; Anselmo et al. 2011; Burić et al. 2015). The 207 

larval skeleton is highly sensitive to environmental stressors and so is often used as a marker of metal pollution in 208 

ecotoxicology (Matranga et al. 2013; Martino et al. 2018). Therefore, Sea urchins provide a valuable and attractive 209 

model to evaluate the toxicity of pollutants (Chiarelli et al. 2019). The Sea urchin Paracentrotus lividus is an 210 

echinoderm species used in toxicological studies concerning trace metals. Furthermore, its early stages are of in-211 

terest because they present qualities such as an important amount of gametes or external fertilization (Chiarelli et 212 

al. 2014). Geraci et al. (2004) found that short-term exposure of P. lividus embryos to lead causes stress to this 213 

organism translated by the increase of Hsp70/72 expression, a marker of cellular stress. However, a longer expo-214 

sure, which continued until the pluteus stage, induces the decrease of these protein levels(HSP70) from the blastula 215 

stage. Also, this study showed that an exposure to lead during development induced the decrease of the protein 216 

HSC70 at the blastula and gastrula stages, followed by an increase of its level at the pluteus stage (Geraci et al. 217 

2004). Geraci et al. (2004) also observed that exposure of P. lividus embryos to Pb caused irregular morphology 218 

at the gastrula and pluteus stages. Furthermore, Fernández and Beiras (2001) reported that lead is responsible for 219 

disrupting the embryo development of Sea urchin Paracentrotus lividus, and particularly the growth of its larvae, 220 

with a negative correlation between lead concentrations and development (inhibition and arrest). For example, at 221 

500 µg/L, the embryo reaches the stage of pluteus larvae, while at 1000 µg/L its embryogenesis stops at the gastrula 222 

stage. Moreover, at 250 µg/L, the length of the larvae decreased by 5.3% and 13% at 500 µg/L. This work then 223 

provided a 48h-EC50 value of 509 µg/L for this species (Fernández and Beiras 2001). Another study found that 224 

lead caused abnormal development of Evechinus chloroticus larvae, with skeletal anomalies appearing at concen-225 

trations of 10 and 20 µg/L of lead, as well as stunted growth and even growth arrest at the pluteus larvae from 50 226 
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µg/L of lead (7% growth inhibition) (Rouchon and Phillips 2016). Effects of lead on growth of Echinodermata 227 

have also been assessed on A. punctulata embryos with a 4h-EC50 value from 32 to 500 µg/L measured by Nacci 228 

et al. (1986), and also on S. purpuratus larvae with a 72h-EC50 of 74 µg/L (Nadella et al. 2013). The negative 229 

effects of lead on Echinodermata do not only concern the growth of these organisms but also their reproduction 230 

processes. Indeed, Warnau and Pagano (1994) focused on the effects of PbCl2 on the sperm fertilization of Para-231 

centrotus lividus and on offspring quality. No significant effect was observed on the fertilization rate; nevertheless, 232 

offspring quality seems to be weathered by lead concentrations. We can observe from Table 4 that, in Echinoder-233 

mata, the EC50 values range concerning the development of larvae of E. chloriticus and S. purpuratus for 72h 234 

overlap, showing that the sensitivity of these species to lead wouldn’t be very different. However, Table 4 also 235 

shows that EC50 values of all Echinodermata species presented are below the highest lead concentration measured 236 

in coastal environments (1015 µg/L; Table 2), which could indicate that these species could be affected by current 237 

lead concentrations and particularly at their early life stages. 238 

III.2. Effects on Mollusca 239 

As for the effects in Echinodermata species, the impacts of lead on molluscs have been assessed on various 240 

species, also focusing on larval development. Beiras and Albentosa (2004) demonstrated for clam Meretrix 241 

meretrix, that embryos reached the D-shaped form (“normal form”) when they were exposed to 197 µg/L lead. 242 

Meanwhile, only gastrula and blastula stages were maintained after exposition to 1016 µg/L lead. The same authors 243 

reported that mussel Mytillus galloprovincialis seemed to be the most sensitive among all bivalve species showing 244 

the inhibition of embryogenesis at an EC50 value of 221 µg/L. Fathallah et al. (2013) also studied the inhibition of 245 

embryogenesis on Ruditapes decussatus, and found that embryogenesis was affected at 256 µg/L with a 50% 246 

decrease in the number of D-shaped larvae. Similarly, Xie et al. (2017) observed that a lead concentration of 8948.4 247 

µg/L induced abnormalities in 88.7% larvae (no D-shape) in oyster Crassostera gigas. Indeed, lead’s effects are 248 

mainly observed at the beginning of embryogenesis in the animals (Wang et al. 2009). The most sensitive larvae 249 

species to lead seems to be Mytilus trossolus and the less sensitive seems to be C. gigas (Table 4). Furthermore, 250 

all of the molluscan species presented in Table 4 have an EC50 value lower than the highest current concentration 251 

of lead measured in coastal environments, meaning that all of these species, at least at their early life stages, could 252 

already be affected by these lead concentrations. 253 

III.3. Effects on Annelida and Cnidaria 254 
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The polychaete annelid Hydroides elegans has its fertilization rate reduced by 71.2% in the presence of 100 255 

µg/L of lead after 20 min of exposure (Gopalakrishnan et al. 2008). Furthermore, tentacle retraction of the cnidar-256 

ian Aiptasia pulchella in presence of PbCO3 has been studied as a sublethal parameter to estimate EC50 values for 257 

lead (Howe et al. 2014, Table 4). At 96h, a massive loss of its symbiont, Symbiodinium pulchrorum (Dinoflagel-258 

late), has been observed on 80 to 90% of anemone exposed to lead concentration of 688 000 µg/L. 259 

III.4. Effects on Crustacea 260 

Ecotoxicological studies showing the LC50 Pb for various marine organisms revealed that the metal toxicity 261 

depends on the lead form used in the experimentation (Lead nitrate, tetramethyllead, tetraethyllead) (Table 5). For 262 

example, tetraethyllead was more toxic to the shrimp Crangon crangon (96h-LC50 of 100 µg/L) than 263 

tetramethyllead (96h-LC50 of 270 µg/L) (Maddock and Taylor 1980). Similarly, for the same form of lead used, 264 

there are species-specific differences in the LC50 values. Some of the species present LC50 Pb values below the 265 

higher lead concentration measured in the coastal environment, such as annelid Hydroides elegans, arthropod 266 

Crangon crangon, and mollusc Mytilus edulis, showing that they could be affected by current lead environmental 267 

concentrations (Table 5). 268 

 269 

IV/ Conclusions and future perspectives 270 

Lead is a MTE found in some coastal areas but also in pelagic zones. This metal comes from natural (volcanic 271 

eruption, soil erosion) and anthropogenic (paint, fuel additives ...) sources. The lead entering the marine 272 

environment from these sources can then be accumulated in various marine invertebrates, which can then be used 273 

as bioindicators to monitor the evolution of lead contamination in several regions of the world. In addition to its 274 

accumulation in marine invertebrates tissues, lead causes also several negative effects on these organisms. These 275 

effects have been widely investigated on terrestrial animals but the bibliography concerning marine invertebrates 276 

is more restricted and needs to be extended to more marine invertebrate species to draw a more accurate picture of 277 

the impacts of this metal on these organisms. However, studies available show that, in marine invertebrates, lead 278 

can affect early life stages by inducing growth (inhibition or arrest of growth, morphological anomalies), and 279 

reproduction disruption (offspring quality, fertilization rate), which could lead to negative effects on populations 280 

and communities. Therefore, the follow-up of lead contamination levels in marine environments is of great 281 
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importance to better assess the threats to the survival and vitality of marine invertebrates and more globally of 282 

marine organisms.  283 

Since the beginning of the industrial revolution, human industrial activities have become major problem af-284 

fecting marine ecosystems by multiple processes such as climate change and pollution. Factors associated with 285 

global warming mainly involve temperature and ocean acidification (OA), which could considerably modulate the 286 

impacts of pollution on coastal and estuarine ecosystems (Ivanina and Sokolova 2015). Fossil fuel and biomass 287 

combustion as well as cement production result in greater CO2 assimilation by ocean (Gattuso et al. 1998). High 288 

levels of dissolved CO2 in oceans induce the increase in CO2 partial pressure (PCO2) leading to pH and ocean 289 

carbonate chemistry changes (Ivanina and Sokolova 2015). When carbonate dissolved in the seawater, it reacts 290 

with water molecules to transform into carbonic acid (H2CO3). Then, carbonic acid dissociates into hydrogen and 291 

bicarbonate (HCO3
-), which leads to a decrease in pH and carbonate ion concentration (CO3

2-) (Gazeau et al. 2011). 292 

In marine environments, dissolved metal levels are generally low because of the low solubility of the MTE in 293 

seawater and their adsorption in sediments. Despite this fact, changes in the seawater chemistry due to OA can 294 

affect the solubility, speciation, and distribution of the MTE in water and sediments, affecting potentially their 295 

toxicity to marine organisms (Ivanina and Sokolova 2015). Indeed, a metal is present in various forms in the marine 296 

environment and these various forms have a different availability for organisms. The acidification can, therefore, 297 

influence interactions between metals and organisms in two ways. In fact, the decrease in pH modifies the metal 298 

form occurrence and could make trace metals to be more toxic (Han et al. 2013). Metals complex with organic and 299 

inorganic ligands and as the pH decreases, these metals tend to dissociate from the complexes resulting in increased 300 

concentrations of free ions, which become therefore more bioavailable and toxic to organisms (Campbell et al. 301 

1985). Concerning effects on the inorganic speciation, metals forming strong complexes with carbonate and chlo-302 

rine, such as lead, could, therefore, be affected by the decrease in seawater pH (Millero et al. 2009). The scenario 303 

of the pH decrease according to Caldeira and Wickett (2003) will lead to a seawater pH, which could reach 7.7 in 304 

2100 and 7.4 in 2250. If these predictions prove to be correct, as pH decreases, free forms of lead will increase by 305 

10% as well as its complexation with chlorine leading to a 15% increase in the forms PbCl+, PbCl2, and PbCl-
3 306 

(Millero et al. 2009). Only a few studies have studied the effects of decreasing pH on lead toxicity. For instance, 307 

Han et al. (2013) studied the effects of pH (6.2, 7.7, and 8.2) on heavy metal (Cd, Cu, and Pb) toxicity in mussel 308 

Mytilus edulis. For these metals, a lower pH leads to a higher mortality rate in this mussel. Furthermore, at pH 6.2 309 

and during a lead pre-treatment, a decrease in the synthesis of metallothioneins has been noticed (Han et al. 2013). 310 

Other studies on cadmium (Shi et al. 2016) and copper (Ivanina and Sokolova 2015) showed that a lower pH 311 
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increases the solubility of these two metals. Therefore, we can hypothesize that lead could behave the same way 312 

and become more available to the marine organisms. Thus, OA could worsen the toxicity of MTE such as lead for 313 

marine organisms, in semi-enclosed areas (like bays or lakes) where the effect would be accentuated. However, 314 

more studies need to be done to assess whether or not the toxicity of lead in the marine environment would be 315 

greater with OA. It will be interesting to develop an Adverse Outcome Pathways Framework to collect mechanistic 316 

knowledge on synergic effects of OA and lead accumulation on different levels of biological organization in ma-317 

rine ecosystem. Thus, a global investigation including the estimation of lead bioaccumulation in tissues and bio-318 

magnification from photosynthetic producers (as diatoms), filter-feeding organisms to predators and scavengers 319 

would allow to understand the additive or synergic effects of OA (distinct pH tested) and lead on trophic network. 320 

Epigenetic modifications, biomarkers expression (transcriptomic and RT-qPCR), and biochemical responses carry 321 

out on distinct species models (producers, filter-feeding organisms, predators, and scavengers) could be informa-322 

tive to detect the incidence of OA and lead fluctuation on the integrity of the trophic chain. Therefore, ecotoxico-323 

genomics (allelic selection...) and Genome Wide Assocation (SNP detection), and Ecotoxicoproteomic analysis 324 

(identification of metabolomic pathway alteration) could be very interesting to detect precisely the cellular 325 

disturbances.  326 

 327 

 328 

 329 

 330 

 331 

 332 
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 334 

 335 
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 703 

Table 1. Lead production (Ton/year) in different countries in 2014 and 2018 704 

Sources of lead Country 2014 2018 References 

 Lead mining  

  China 2 608 619 2 280 000 https://www.bgs.ac.
uk/mineralsuk/statis
tics/worldStatistics.

html 

 USA 378 000 260 000 
 Peru 277 294 289 195 

 Mexico 250 462 230 869 
 Russia 196 000 215 000 

 Refined lead production  

  China 4 704 000 5 112 850 https://www.bgs.ac.
uk/mineralsuk/statis
tics/worldStatistics.

html 

 USA 1 020 000 1 300 000 
 Republic of Korea 634 700 801 000 

 India 475 000 620 000 
 Germany 380 000 315 000 

 705 

  706 



28 

 

 707 

Table 2. Lead concentrations (µg/L) in offshore and coastal waters reported in the world before 2000. 708 

Note: numbers indicated are average and range (in square brackets) and the symbol ± indicates the standard 709 

deviation 710 

Regions Lead concentrations (µg/L) References 

 Offshore waters 

  Baltic Sea 0.016 [0.0115; 0.0205] Danielsson and Westerlund 1984 
  0.041-0.083 Kremling 1987 
  0.050 Brügmann 1988 
  North Sea 0.052 Kremling 1987 

  0.031 Balls 1985b 
  Mediterranean Sea 0.030-0.150 Copin-Montegut et al. 1986b 
  Northwestern Atlantic Ocean 0.033 Schaule et Patterson 1983 
  0.046 Nurnberg et al. 1983 
  0.026 [0.022;0.030] Boyle et al. 1986 
  Northeastern Atlantic Ocean 0.033 Copin-Montegut et al. 1986a, b 
  Arctic Ocean 0.0148 [0.0113;0.0183] Mart et al. 1984 
  Indian Ocean 0.030 Danielsson 1980 
  Northeastern Pacific Ocean 0.014 Schaule and Patterson 1983 
  0.005-0.015 Schaule and Patterson 1981 
  South western Pacific Ocean 0.0046 [0.0045;0.0047] Flegal and Patterson 1983 
  South eastern Pacific Ocean 0.016 Nurnberg et al. 1983 
 Coastal waters 

  Fjord Framvaren, Norway 0.073 Haraldsson and Westerlund 1988 

  Kattegat/Skagerrak, North Sea 0.050 Magnusson and Westerlund 1983 
  England [0.030-0.265] Balls 1985a 
  Rhône delta, France 0.077 Huynh Ngoc et al. 1988 
  Corsica, France 0.048 Lafabrie et al. 2007 
  Cape Cod, USA 0.021 Boyle and Huested 1983 
  South atlantic bay, USA 0.025 [0.015;0.035] Windom et al. 1985 
  Monterey Bay, California, USA 0.0076 Schaule and Patterson 1981 
  Puget Sound, Seattle, USA 0.020-0.110 Paulson and Feely 1985 
  Southern California Bight, USA 0.025-0.150 Patterson et al. 1976 
  Al-Khobar, Persian Gulf, Saudi Arabia 0.04 [0.017-0.095] Alharbi et al. 2017 
  Al-Khafji, Persian Gulf, Saudi Arabia 0.28 [0.09-0.43] Alharbi and El-Sorogy 2019 
  Gulf of Aqaba, Saudi Arabia 0.202 [0.020-0.450] Al-Taani et al. 2014 
  Land of Fire, Beagle Channel, Patagonia, 

Argentina 
0.001176 ± 0.001243 Conti et al. 2012 

  South Coast, Australia 20.64 [0.4-55] Chakraborty and Owens 2013 
  Ship breaking area of Sitakund Upazilla, 

Chittagong, Bangladesh 
113 [0.06-0.15] Hasan et al. 2013 

  Bay of Bengal, Bangladesh 452 [96.4-694] Hasan et al. 2016 
  San Jorge Gulf, Antofagasta, Northern 

Chile 
0.04 [0.02-0.09] Valdes et al. 2011 

  Bay of Jinzhou, China 0.61 [0.21-1.39] Wang et al. 2012 
  Bay of Jinzhou, China 1.16 Wan et al. 2008 
  Estuary of the Pear River, China 1.61 [0.8-3.08] Zhang et al. 2012 
  Estuary of the Yellow River, China 0,51 Tang et al. 2010 
  Bohai Sea, China 1.1 ± 0.4 Wang and Wang 2007 
  Laizhou Bay, Bohai Sea, China 0.88 ± 0.32 [0.56-2.07] Lü et al. 2015 
  Bohai Bay, Tianjin, China 7.18 ± 2.57 [3.63-12.65] Meng et al. 2008 
  Bohai Bay, China 1.63 [1.25-2.02] Zhang et al. 2010 
  

Guangdong, China 
1.32 
2.55 

Zhang et al. 2016 

  Damietta Port, Egypt 2.44 [1.33-4.12] El-Gohary et al. 2017 
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  Gulf of Suez, Red Sea, Egypt 0.56-3.17 Mirnategh et al. 2018 
  Gulf of Suez, Red Sea, Egypt 1.84-2.57 El-Moselhy and Gabal 2004 
  

Gulf of Aqaba, Red Sea, Egypt 
0.36 [0.29-0.43] 
0.36 [0.33-0.39] 

Shriadah et al. 2004 

  Estuary of Vigo, Spain 0.98 [0.17-2.05] Pérez-Lopez et al. 2003 
  Bay of Malaga, Andalusia, Spain [0.20-680] Alonso Castillo et al. 2013 
  Saronic Gulf, Anavissos, Greece 2.85 [0.37-6.51] Ladakis et al. 2007 
  Gulf of Chabahar, Arabian Sea, Iran  2.224 [0.98-4.52] Bazzi 2014 
  Persian Gulf, Qeshm Island, Iran 15.4 [12-20] Karbassi et al. 2018 
  Bay of Aughinish, Ireland 0.021-0.038  Reis et al. 2017 
  Venice, Italy 2.59 [0.1-0.59] Giusti and Zhang 2002 
  Porto Torres, Sardinia, Italy 0.075  Lafabrie et al. 2007 
  Livorno, Tuscany, Italy 0.038  Lafabrie et al. 2007 
  Pasir Gudang, Malaysia 362 ± 210 Mahat et al. 2018 
  Tuaran, Sabah, Malaysia 5.56 [3.32-10.5] Tan et al. 2016 
  Indian Ocean, Mauritus 57 [10-247] Daby 2006 
  Montenegro 1.963 [0-3.66] Dukic et al. 2019 
  Baltic Sea, Poland 0.0165 [0.004-0.088] Pempkowiak et al. 2000 
  Kranji and Pulau Tekong, Singapore 0.009-0.062 Cuong et al. 2008 
  Port of Kaohsiung, Taiwan  0.2-0.7 Lin et al. 2013 
  South Coast of the Gulf of Gabes, 

Tunisia 
765 [569-1015] Drira et al. 2017 

  North Coast of the Gulf of Gabes, 
Tunisia 

638 [386-961] Drira et al. 2017 

  Ghannouch, Gulf of Gabes, Tunisia 467 [383-567] Drira et al. 2017 
  Rize, Black Sea, Turkey 8.8 [6-13] Baltas et al. 2017 
  Red Sea, Yemen 0.057 ± 0.011 

0.044-0.07 
Al-Shiwafi et al. 2005 
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 713 

Table 3. Lead concentrations (µg/g of dry weight, whole body) in various marine invertebrate species. 714 

Note: numbers indicated are average, range (in square brackets) and symbol ± indicated the standard deviation 715 

 716 

Phylum Species 
Lead concentrations 

(µg/g of dry weight) 
Reference 

Arthropoda Cancer pagurus 1.23 ± 1.57 Connan and Tack 2008 

Fenneropenaeus indicus 2.20-23.10 Bhattacharyya et al. 2013 
Fenneropenaeus indicus 0.008 ± 0.01 Salam et al. 2019 
Portunus pelagicus 0.015 ± 0.01 Salam et al. 2019 

Echinodermata Paracentrotus lividus 0.065 [0.040 ; 0.247] Noël et al. 2011 
Mollusca Buccinum undatum 0.043 [0.040 ; 0.132] Noël et al. 2011 

Heliocidaris tuberculata 0.040 [0.040 ; 0.040] Noël et al. 2011 
Littorina littorea 0.063 [0.040 ; 0.140] Noël et al. 2011 

Littorina littorea 10 Bryan et al. 1983 

Littorina obtusata 7.8 Bryan et al. 1983 

Littorina saxatilis 13 Bryan et al. 1983 

Littorina saxatilis 2.3-16.6 Daka et al. 2004 

Littorina saxatilis 0.468 Daka 2005 

Monodonta mutabilis 0.12-0.15 Cubadda et al. 2001 

Monodonta turbinata 0.13-0.47 Cubadda et al. 2001 
Monodonta turbinata 0.69 [0.39 ; 1.06] Conti et al. 2007 
Murex brandaris 0.078 [0.040 ; 0.157] Noël et al. 2011 

Mytilus edulis 2.53-5.97 Noël et al. 2011 

Mytilus edulis 16-309 Daka et al. 2004 
Nacella magellanica 3.09-5.91 Comoglio et al. 2011 
Nacella magellanica 0.13 ± 0.16 Conti et al. 2012 

Patella caerulea 1.02 [0.85; 1.30] Conti et al. 2007 

Patella caerulea 1.39 [0.81; 1.97] Conti et al. 2017 

Patella caerulea 0.10-1.42 Cubadda et al. 2001 

Patella lusitanica 0.14-0.71 Cubadda et al. 2001 

Patella sp 0.93-1.34 Connan et Tack 2008 
Porifera Spheciospongia vagabunda 0.26-2.55 Padovan et al. 2012 
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 719 

Table 4. Lead EC50 values (µg/L) in various marine invertebrate species 720 

Note: numbers indicated are average and range (in square brackets) 721 

Phylum Species Test endpoint 

Test 

durat

ion 

EC50 (µg/L) Reference 

Cnidaria Aiptasia pulchella Retractation of tentacles 12h 1 740 [1 310 ;3 850] Howe et al. 2014 

Echinodermata Paracentrotus lividus Growth of larvae 48h 509 Fernández and Beiras 2001 

 Arbacia punctulata Growth of embryos 4h 32 500 Nacci et al. 1986 

 
Strongylocentrotus 

purpuratus 
Development of larvae 72h 74 [50-101] Nadella et al. 2013 

 Evechinus chloroticus Development of larvae 72h 52.2 [39.6-73] Rouchon and Phillips 2016 

Mollusca Crassostrea gigas Development of larvae 48h 380-550 
Chapman and McPherson 
1993 

 Mytilus edulis Development of embryos 48h 476 Martin et al. 1981 
 Mytilus galloprovincialis Development of larvae 48h 63 [36-94] Nadella et al. 2013 
 Mytilus trossolus Development of larvae 48h 45 [22-72] Nadella et al. 2013 
 Mytilus trossolus Development of larvae 48h 67 [37-100] Nadella et al. 2013 
 Crassostrea gigas Development of larvae  660.3 [453.5-1062.4] Xie et al. 2017 

 Ruditapes decussatus 
Embryogenesis 
inhibition 

48h 156-312 Beiras and Albentosa 2004 

 Mytilus galloprovincialis 
Embryogenesis 
inhibition 

48h 221 [58.9-346.3] Beiras and Albentosa 2004 

 Metrix metrix 
Embryogenesis 
inhibition 

24h 296 [246-501] Wang et al. 2009 

 Metrix metrix Development of larvae 24h 199 [85-4 175] Wang et al. 2009 

 Ruditapes decussatus 
Embryogenesis 
inhibition 

24h 256.5 [145.4-385.7] Fatthallah et al. 2013 
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 725 

Table 5. Lead LC50 value (µg/L) in various marine invertebrate species. 726 

Notes: numbers indicated are average and range (in square brackets).  727 

 728 

Phylum Species Lead form 
Test 

duration 
LC50 (µg/L) Reference 

Annelida 
Hydroides elegans PbCl2 96h 946.05 [796.29; 1150.41] Howe et al. 2014 

Arthropoda 
Crangon crangon 

Tetramethyllead 96h 270 [330.2 ; 597.1] 
Maddock and Taylor 1980 

 Tetraethyllead 96h 100 

 
Palaemon adspersus Pb(NO3)2 96h 

68 000 
[55 000 ; 74 000] 

Bat et al. 2001 

Cnidaria 
Aiptasia pulchella PbCO3 96h 

8 050 
[0 ; 11 700] 

Howe et al. 2014 

Mollusca 

Babylonia aerolata Pb(NO3)2 

24h 22 210 

Supanopas et al. 2005 
 48h 14 860 [13 950 ; 15 760] 
 72h 12 440 [11 520 ; 13 250] 
 96h 10 500 [9 560 ; 11 170] 
 

Mytilus edulis 
Tetramethyllead 96h 110 

Maddock et Taylor. 1980 
 Tetraethyllead 96h 20 
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