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Abstract

We study which quadratic forms are representable as the local degree of a map f : An → An

with an isolated zero at 0, following the work of Kass and Wickelgren who established the
connection to the quadratic form of Eisenbud, Khimshiashvili, and Levine. Our main ob-

servation is that over some base fields k, not all quadratic forms are representable as a
local degree. Empirically the local degree of a map f : An → An has many hyperbolic sum-

mands, and we prove that in fact this is the case for local degrees of low rank. We establish

a complete classification of the quadratic forms of rank at most 7 that are representable as
the local degree of a map over all base fields of characteristic different from 2. The number

of hyperbolic summands was also studied by Eisenbud and Levine, where they establish

general bounds on the number of hyperbolic forms that must appear in a quadratic form
that is representable as a local degree. Our proof method is elementary and constructive in

the case of rank 5 local degrees, while the work of Eisenbud and Levine is more general. We

provide further families of examples that verify that the bounds of Eisenbud and Levine
are tight in several cases.

1. Introduction

The degree of a map in differential topology is a homotopy invariant that
completely classifies the homotopy classes of maps between spheres of the
same dimension. The work of Morel [8, Corollary 1.24] establishes an analog
of this calculation in the setting of motivic homotopy theory, where algebraic
varieties like P1 and An \ {0} can be viewed as spheres. Morel replaces the

degree of a map between spheres with the A1-degree, degA1

, a motivic version
that takes values in the Grothendieck–Witt ring of the base field k, rather
than merely the ring of integers. In differential topology, the degree of a map
f : Sn → Sn can be calculated as a sum of local degrees and one must wonder
if an analogous result could also be true in motivic homotopy theory as well.

If one assumes the existence of a global degree map deg : [Sn, Sn] → Z, it
is not hard to give an abstract definition of a local degree in topology. By
working with coordinate charts, one can reduce the problem to defining the
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local degree of a map f : Rn → Rn with an isolated zero at x ∈ Rn. From such

a map, we can find some ε > 0 and construct f−f(x)
|f−f(x)| : Sn−1(x; ε) → Sn−1.

We then define the local degree of f at x to be the global degree of f−f(x)
|f−f(x)| .

A modified construction works in motivic homotopy theory, which was
studied by Lannes and Morel (see [13]) and Kass and Wickelgren [4]. Let k be
a field with characteristic different from 2. Write MW(k) for the semiring of
isometry classes of non-degenerate quadratic forms over the field k and GW(k)
for the group completion of MW(k), i.e., the Grothendieck–Witt group of k.
We will use the notation 〈a1, ..., an〉 for the element of GW(k) represented
by the quadratic form q(x) =

∑n
i=1 aix

2
i where ai ∈ k× for 1 ≤ i ≤ n. For

any map f : An → An with an isolated zero at 0, Kass and Wickelgren [4,
Definition 11] construct a map f0 : Pn/Pn−1 → Pn/Pn−1 in the motivic ho-
motopy category. The space Pn/Pn−1 is a sphere in motivic homotopy theory
and the map f0 encodes the local behavior of f at 0, just like the local de-
gree in algebraic topology. We can then apply Morel’s A1-Brouwer degree

degA1

: [Pn/Pn−1,Pn/Pn−1]→ GW(k) to f0 to obtain the class of a quadratic
form in GW(k) that acts as the local degree of f at 0 in motivic homotopy

theory. We write degA1

0 (f) = degA1

(f0) for this motivic local degree. The main

result of Kass and Wickelgren in [4] is that the local degree degA1

0 (f) is equal
to the class of the Eisenbud–Khimshiashvili–Levine form of f at 0 (henceforth
EKL form of f at 0) in GW(k). With this result, one can turn algebraic results
about EKL forms into statements about Morel’s degree homomorphism and
motivic homotopy theory. In this paper, we study the structure of EKL forms
of a map f : An → An with isolated zero at 0 and give several applications to
motivic homotopy theory and the study of real singularities.

In topology it is simple to come up with explicit maps f : Rn → Rn when
n ≥ 2 with an isolated zero at 0 that have a prescribed local degree deg0(f) =
n. In this paper, we show that a similar statement in motivic homotopy theory
is false over a general field k. Precisely, for an arbitrary element q ∈ MW(k),

the equation degA1

0 (f) = q does not always admit a solution f : An → An.
Of course, the solvability of these equations depends on the base field. For
instance, if −1 is not a square in the field k, then we show that the quadratic
form q(x, y) = x2 + y2, is never representable as the local degree of a map
f : An → An at 0. In fact, we show something much stronger: every quadratic
form with rank at least 2 that is representable as a local degree contains the
hyperbolic form H(x, y) = x2 − y2 as a direct summand.

This theorem is proven by proving the corresponding result for EKL forms
at 0. That is, every EKL form at 0 that has rank at least 2 contains H as
a direct summand, see Theorem 2.2. This result, coupled with some explicit
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examples, gives a complete description of which quadratic forms of rank at
most 4 are representable as an EKL form at 0. It takes us considerably more
effort to produce a complete classification of EKL forms of rank 5, which is
Theorem 3.1: Any quadratic form of rank 5 that is representable as a local
degree at 0 is of the form 2H + 〈a〉 for some unit a. This result then can be
translated into motivic homotopy theory using Morel’s degree isomorphism to
say something about which maps of spheres are representable as local degree
maps. See Theorem 6.3 for a precise statement. The main tool we use in the
classification of the rank 5 EKL forms is a dimension reduction argument,
stated in Theorem 2.12. This generalizes an observation McKean had in the
2-variable case [6, Lemma 5.7]. The effect of our dimension reduction result
allows us to reduce the study of rank 5 EKL forms to maps f : A2 → A2. This
can then be checked directly by brute force using some properties of Gröbner
bases.

After discovering the results above about the representability of quadratic
forms as local degrees in motivic homotopy theory, we found that an analog-
ous question was originally studied by Eisenbud and Levine, using a technical
result of Teissier in their paper [2]. In this paper, Eisenbud and Levine tried
to understand how the local degree of a smooth map germ f : Rn → Rn could
be determined from the structure of the local ring Q0(f). They show that the
topological local degree of f at 0 is the signature of the EKL form of f at 0
and then investigate what kind of restrictions there are on the signature of an
EKL form when the dimension of Q0(f) is known. Without explicitly stating
it, they are simply obtaining bounds on the number of hyperbolic summands
that the EKL form must have for a fixed rank—exactly the question we set
out to study, albeit in a slightly different context. Eisenbud and Levine ulti-
mately establish a more general result on the minimal number of hyperbolic
forms that must appear in an EKL form of fixed rank using a fundamental
inequality of Teissier [2, Appendix, p. 38]. They show that an EKL form of

rank N arising from a map f : An → An must have at least N−N1−1/n

2 hyper-
bolic summands [2, Theorem 3.9(i)]. They also include the weaker statement
without a dependence on the dimension n that an EKL form of rank N must
contain at least N

4 hyperbolic summands [2, Theorem 3.9(ii)]. Their general
inequality gives an alternative proof that a rank 5 EKL form must be of the
form 2H + 〈a〉.

We are pleased to see that our observations about the number of hyper-
bolic summands in EKL forms can indeed be generalized and refined to the
inequalities of Eisenbud, Levine, and Teissier [2]. We believe our method of
proof for establishing the exact number of hyperbolic forms that must appear
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in an EKL form of rank 5 can be of use to tighten the inequalities of Eisen-
bud and Levine. We hope that our observation that not all automorphisms
of spheres are representable as local degrees in motivic homotopy theory is of
interest to other researchers in the field.

We do believe we contribute some new results to the subject. It appears
that our verification that the bounds of Eisenbud and Levine are tight in
the specific case of EKL forms arising from maps of the plane f : A2 → A2

with rank 4n and 9n is new. The chain rule is the key idea to produce the
examples that show the bounds are tight. An algebraic proof of the chain
rule was given by [5], which we revisit with a few minor corrections. We also
obtain a complete classification of the quadratic forms that are realizable as
local degrees over finite fields of odd characteristic. The applications listed to
local degrees of real maps were certainly known to Eisenbud and Levine [2]
and Arnold [1], but we include them to round out the story.

Notation
We make heavy use of the notation and results from the work of Kass and
Wickelgren [4], and refer the reader there for a more thorough overview. Write
An = Ank for affine n-space over the field k. If f : An → An is a morphism of
affine spaces over k, we represent f with coordinate functions f = (f1, ..., fn)
where each fi is a polynomial fi ∈ k[x1, ..., xn]. We will write P = k[x1, ..., xn]
for the polynomial ring over k in n variables and m = (x1, ..., xn) for the
maximal ideal corresponding to the origin. The local ring of An at 0 is P0 =
k[x1, ..., xn]m, and we write Q0(f) = P0/(f1, ..., fn) for the local ring of f
at 0. The map f is said to have an isolated zero at 0 if Q0(f) is a finite
dimensional vector space over k. We write E = E(f) = E0(f) ∈ Q0(f) for
the distinguished socle element of f at the origin, which may be described as
follows. First find expressions fi(x) = fi(0) +

∑n
j=1 aijxj with polynomials

aij ∈ P , then define E to be the image of det(aij) in Q0(f).

2. Computations of local degrees

Let k denote a field with characteristic different from 2. Kass and Wickelgren
remark in [4, Remark 2 and Lemma 4] that the socle of Q0(f) is equal to the
annihilator of the maximal ideal. Moreover, E generates the socle of Q0(f)
if f has an isolated zero at the origin. This enables Kass and Wickelgren to
make the following definition [4, Lemma 6 and Definition 7].

Definition 2.1. Let f : An → An be a map with an isolated zero at 0 and
consider a linear function φ : Q0(f) → k that satisfies φ(E) = 1. Define the
symmetric bilinear βφ on Q0(f) by the formula βφ(x, y) = φ(x · y). The EKL
form of f at 0, denoted by w0(f), is the class of the symmetric bilinear form
βφ on Q0(f) in GW(k).
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The EKL form described above is in fact well defined. Any two linear
functions φ and φ′ which satisfy φ(E) = φ′(E) = 1 yield isometric bilinear
forms βφ ∼= βφ′ . Furthermore, when φ(E) = 1 it follows that the form βφ
is non-degenerate. We say the rank of w0(f) is the rank of the symmetric
bilinear form βφ, which is just the dimension of Q0(f) as a k-vector space.
As we assume the characteristic of k is not 2, symmetric bilinear spaces and
quadratic spaces are equivalent; we freely consider βφ as both a symmetric
bilinear form and a quadratic form without any distinction. As a quadratic
form, βφ is defined as βφ(x) = φ(x · x).

The observation that E generates the annihilator of Q0(f) leads to our first
result.

Theorem 2.2. Let f : An → An be a map with an isolated zero at 0. If
the dimension of Q0(f) as a k-vector space is at least 2, then H is a direct
summand of the EKL class w0(f).

Proof. The distinguished socle element E ∈ Q0(f) generates the annihil-
ator of the ideal m = (x1, ..., xn) in Q0(f). If we assume that E /∈ m, then E is
a unit in Q0(f). So as E annihilates each xi, the equations E ·xi = 0 in Q0(f)
imply xi = 0 in Q0(f). Hence Q0(f) is spanned by 1, and dimkQ0(f) ≤ 1. We
therefore conclude E ∈ m. Hence in choosing a k-linear function φ : Q0(f)→ k
we are free to take φ(1) = 0. Recall that βφ is a non-degenerate quadratic form
and observe that βφ(1) = φ(1 · 1) = 0, that is, 1 is a non-trivial isotropic vec-
tor. Witt proves in [15, Satz 5] that under these circumstances, the quadratic
form βφ admits H as a direct summand. This completes the proof.

In Lemmas 2.3 through 2.7 we collect some basic calculations of EKL
forms. These have appeared in the work of others, such as Pauli, Kass–
Wickelgren, McKean, etc. We include the statements and proofs for com-
pleteness as they provide, in particular, concrete examples of EKL forms in
low degrees. Lemma 2.4 shows that there is an EKL form w0(f) = H of rank
two and an EKL form of rank 3 with w0(f) = H⊕〈a〉 for a unit a ∈ k×, while
Lemma 2.3 shows that there are EKL forms of rank 4 of either form H⊕H or
H ⊕ 〈a, b〉 with arbitrary units a, b ∈ k×. We will extend this list in the next
section. Lemma 2.3 will provide examples for the study of EKL forms over
finite fields in section 6.2.

In the course of the calculations, we frequently encounter symmetric bilin-
ear forms with an anti-diagonal Gram matrix. Specifically, we encounter n×n
matrices A = (aij)

n
i,j=1 where aij = a 6= 0 when i + j = n + 1 and aij = 0

otherwise. The associated quadratic form of A is isometric to n
2H when n is

even and n−1
2 H ⊕ 〈a〉 when n is odd. For example, any 2 × 2 anti-diagonal

matrix with a1,2 = a2,1 = a is easily seen to be congruent to the diagonal
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matrix diag{1,−1}, and thus the associated quadratic form is isometric to
the hyperbolic form H.

Lemma 2.3. For any constants a, b ∈ k×, consider the map f : A2 → A2

given by f1 = xy and f2 = −ax2 + by2. If φ : Q0(f)→ k is a k-linear function
with φ(E) = 1, the associated quadratic form βφ is congruent to the diagonal
form 〈1,−1, a, b〉.

Proof. Use the graded reverse lexicographic ordering on k[x, y] with x >
y. The S-polynomial of f1 and f2 is S(f1, f2) = b

ay
3, which yields a Gröbner

basis (xy,−ax2 + by2, y3) for the ideal (f1, f2) ⊆ k[x, y]. As both x3 and
y3 are in the ideal (f1, f2), the quotient ring k[x, y]/(f1, f2) is a local ring
with maximal ideal (x1, x2). By basic Gröbner basis theory, the ring Q0(f) =
k[x, y]/(f1, f2) has {1, y, y2, x} as a k-basis. One calculates E = by2, and so
we may take φ(y2) = b−1 and declare φ to vanish on 1, x, and y. Using the
ordered basis {1, y, y2, x}, the matrix for the symmetric bilinear form βφ is

0 0 b−1 0
0 b−1 0 0
b−1 0 0 0
0 0 0 a−1

 , (2.1)

which is congruent to the diagonal form 〈1,−1, a, b〉.

Lemma 2.4. For any unit a ∈ k× let f : A1 → A1 be the map given by
x 7→ axn with n ≥ 2. Then the EKL class of f is w0(f) = n

2H when n is even

and w0(f) = n−1
2 H⊕ 〈a〉 when n is odd.

Proof. The local ring Q0(f) ∼= k[x]/(xn) has {1, x, . . . , xn−1} as a k-basis
and E = axn−1. Define φ by φ(xn−1) = a−1 and φ(xi) = 0 for i < n− 1. The
matrix of the bilinear form βφ is easily seen to be the anti-diagonal matrix

0 · · · 0 a−1

0 · · · a−1 0
...

...
a−1 · · · 0 0

 , (2.2)

which is congruent to the diagonal form claimed in the lemma.

Remark 2.5. Lemma 2.4 gives a map f : A1 → A1 in one variable, say
f(x1) ∈ k[x1], that yields the EKL form n

2H or n−1
2 H⊕〈a〉. We can extend f

to a map g : An → An for any n ≥ 2 as follows: take g1 = f(x1) and gi = xi for
all 2 ≤ i ≤ n. It is straightforward to verify that w0(f) ∼= w0(g), so although
w0(g) arises from a map of n-space, it is effectively a one dimensional example.
We give a general procedure for describing when an EKL form can be realized
as an EKL form using fewer variables in Theorem 2.12.
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The next lemma is a generalization of Lemma 2.3.

Lemma 2.6. Let n be an even natural number with n ≥ 2 and choose units
a, b ∈ k×. The map f : A2 → A2 given by f1 = xy, f2 = ayn − bx2 has EKL
class w0(f) = n

2H⊕ 〈a, b〉.

Proof. We give a proof for n ≥ 4 as Lemma 2.3 handles the case n = 2.
A Gröbner basis is determined by calculating S-polynomials, and we must
only add S(f1, f2) = b

ax
3 to the set {f1, f2} to get a Gröbner basis of the

ideal (f1, f2). We have Q0(f) ∼= k[x, y]/(f1, f2) as the latter ring is a local
ring, which is easily seen because both x3 and yn+1 are in the ideal (f1, f2).
A k-basis for Q0(f) is then given by {1, x, x2, y, y2, . . . , yn−1}. We calculate
E = ayn ≡ bx2 in Q0(f). Hence we define φ so that φ(x2) = b−1 and require
φ to vanish on the other elements in our chosen basis. The resulting matrix of
the bilinear form βφ consists of two blocks: a 3× 3 block that is anti-diagonal
with each anti-diagonal term equal to b−1 and an n−1×n−1 block that is anti-
diagonal with each anti-diagonal entry equal to a−1. It is now straightforward
to see that after diagonalizing this matrix, the resulting quadratic form is the
one claimed in the lemma.

Lemma 2.7. For any units a, b ∈ k×, the map f : A2 → A2 given by f1 = xy
and f2 = −bxn + aym with n ≥ m ≥ 2 and both n and m even has EKL class
w0(f) = m

2 H⊕
n−2
2 H⊕ 〈a, b〉.

Proof. The same line of argument used in the proofs of Lemmas 2.3
and 2.6 yields the result.

Lemma 2.8. Let f : An → An be a map with an isolated zero at 0, and sup-
pose that dimkQ0(f) = N ≥ 1. Then the ideal (f1, ..., fn) in P0 = k[x1, ..., xn](x1,...,xn)

contains (x1, ..., xn)N . The one variable case shows that N = M is the smal-
lest exponent that satisfies (x1, ..., xn)M ⊆ (f1 . . . , fn) in general.

Proof. Let xα = xi1xi2 · · ·xiN be a monomial of degree N , where the
indices may be repeated and 1 ≤ ij ≤ n. The set {1, xi1 , xi1xi2 , . . . , xα} must
be linearly dependent in Q0(f), as it contains N + 1 elements. Hence there is

some linear relation
∑N
j=0 ajxi1 · · ·xij = 0 in Q0(f). Let m be the smallest

index for which am is nonzero. We must have m ≥ 1 as dimQ0(f) ≥ 1. Then

xi1 · · ·xim

 N∑
j=m

aj
xα

xi1 · · ·xim

 = 0 (2.3)

implies that xi1 · · ·xim = 0 in Q0(f), as the other factor is a unit in the ring
k[x1, ..., xn](x1,...,xn). The result follows from this observation.
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Lemma 2.9. Let f : An → An be a map with an isolated zero at 0 and sup-
pose dimkQ0(f) = N . If the map g : An → An satisfies fi−gi ∈ (x1, . . . , xn)N+1

in P0 for all i, then the ideals (f1, ..., fn) and (g1, ..., gn) are equal in P0 and
the EKL classes of f and g agree, i.e., w0(f) = w0(g).

Proof. This result is essentially [4, Lemma 17]. To summarize their ar-
gument, the ideal (f1, ..., fn) is shown to be equal to (g1, ..., gn) by using
Nakayama’s lemma; hence Q0(f) = Q0(g). They then verify that the dis-
tinguished socle elements E(f) and E(g) are equal as follows. Write gi =∑
aij(g)xj so that E(g) = det(aij(g)), then the assumption that fi − gi ∈

(x1, . . . xn)N+1 implies that the matrices (aij(f)) and (aij(g)) agree modulo
(x1, . . . , xn)N , hence E(f) and E(g) agree. It now follows that the EKL classes
of f and g agree by the discussion following Definition 2.1.

Lemma 2.10. Let f = (f1, . . . , fn) : An → An be a map with an isolated
zero at 0. Then for any polynomial h ∈ k[x1, . . . , xn] and any distinct indices
i and j, the polynomial maps f and f ′ = (f1, . . . , fj + h · fi, . . . , fn) give
isomorphic EKL classes.

Proof. It is clear that the maps f and f ′ define the same local rings
Q0(f) = Q0(f ′), so it is only a matter of verifying that the maps f and f ′

yield the same distinguished socle element E. If we have fi =
∑
aijxj so that

E(f) = det(aij), then E(f ′) is determined by first performing the elementary
row operation of adding h times the ith row to the jth row to the matrix
(aij) and then taking the determinant. The elementary row operation does
not affect the determinant, so the distinguished socle elements of f and f ′ are
equal. Thus the EKL classes for f and f ′ agree.

Lemma 2.11. Let f = (f1, . . . , fn) : An → An be a map with an isolated zero
at 0 and let A : An → An be a linear isomorphism. Then Q0(f) ∼= Q0(A ◦ f)
and the EKL classes of f and A ◦ f differ by multiplication by det(A).

Proof. Express A as A = (a11x1 + . . .+ a1nxn, . . . , an1x1 + . . .+ annxn)
with aij ∈ k so that

A ◦ f =

(
n∑
`=1

a1`f`, . . . ,

n∑
`=1

an`f`

)
.

It is clear that the ideals (f1, ..., fn) and (
∑n
`=1 a1`f`, . . . ,

∑n
`=1 an`f`) agree

in P ; hence the local rings Q0(f) and Q0(A◦f) are equal. We now verify that
the distinguished socle elements of f and A ◦ f at 0 differ by det(A):
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Let bij ∈ P be polynomials such that fi(x) =
∑n
j=1 bijxj for each i. Com-

posing f with A then yields

(A ◦ f)i =

n∑
`=1

ai`f` =

n∑
`=1

ai`

n∑
j=1

b`jxj =

n∑
j=1

(
n∑
`=1

ai`b`j

)
xj .

Since we have E(f) = det(bij) by definition of E, it follows that E(A ◦ f) =
det(A · (bij)) = det(A)E(f). Note that det(A) ∈ k× is a unit. Now, given a

k-linear function φ : Q0(f)→ k so that φ(E(f)) = 1, define φ̃ : Q0(A ◦ f)→ k
by g 7→ det(A)−1φ(g). This is k-linear and maps E(A◦f) to 1, so we can use it
to compute the EKL-class of A◦f , and we get w0(A◦f) = det(A)−1w0(f).

We are now ready to prove a key technical result that will allow us to
reduce dimensions in the following sections.

Theorem 2.12. Suppose f : An → An is a map with an isolated zero at
0 and suppose that the rank of Q0(f) is N ≥ 1. If the ideal (f1, ..., fn) is
not contained in (x1, ..., xn)2 ⊆ k[x1, ..., xn], then we can eliminate a variable
in the description of Q0(f). That is, there is a map g : An−1 → An−1 with
isolated zero at 0 and Q0(g) ∼= Q0(f). Furthermore, the EKL classes of f and
g differ only by multiplication by a unit.

Proof. Recall that we write P for the polynomial ring k[x1, ..., xn], m for
the maximal ideal (x1, ..., xn), and P0 for the local ring P localized at m. We
study modifications of the generators of the ideal I = (f1, ..., fn) until we are
able to eliminate a variable. We can eliminate all terms of degree greater than
N in the polynomials f1, ..., fn without modifying the ideal or the EKL class

by Lemma 2.9. Assume this is done, and write fi =
∑N
j=1 fij where fij is a

homogeneous polynomial of degree j.
Without loss of generality, we may assume f11 is non-zero, as we have

assumed that some fi has a non-zero linear term. Find a linear isomorphism
A : An → An that will transform f11 into x1. The EKL classes of f and A ◦ f
differ only by multiplication of a unit by Lemma 2.11, so we may assume
f11 = x1 from now on.

By adding multiples of f1 to the other polynomials f2, ..., fn and then
removing all terms of degree greater than N , we may eliminate all of the
monomials that are divisible by x1 from f2, ..., fn. Write g2, ..., gn for the
resulting polynomials in k[x2, ..., xn] obtained from this procedure. It follows
that (f1, ..., fn) = (f1, g2, ..., gn) as ideals in P0 and also the EKL classes agree
by Lemmas 2.10 and 2.9.

We now produce a polynomial h ∈ k[x2, ..., xn] that satisfies x1 − h ∈ I.
We do this by showing that every monomial xα that is divisible by x1 admits
a polynomial hα ∈ k[x2, ..., xn] for which xα − hα ∈ I. We use a downward
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induction argument, observing that the claim is true when the degree of xα

is at least N by taking hα = 0 as mN ⊆ I.
Assume the result is now true for all monomials xα of total degree i + 1

that are divisible by x1 and consider xα of total degree i that is divisible by
x1. We can then consider the member of I

xα

x1
· f1 =

xα

x1
·

 N∑
j=1

f1j

 =
xα

x1
f1,N + · · ·+ xα.

All of the terms except xα have degree at least i + 1. Hence the induction
hypothesis may be used to replace all of the terms divisible by x1 with a
polynomial in k[x2, ..., xn]. This then yields an expression xα − hα ∈ I where
hα ∈ k[x2, ..., xn].

The ideals (f1, f2, ..., fn) and (x1−h, g2, ..., gn) agree in the local ring P0 =
k[x1, ..., xn]m. To see this, note that as x1−h ∈ (f1, ..., fn), there is an equation
x1 − h =

∑ ai
bi
fi, where ai, bi ∈ P and the bi are units. Multiply through

by a common denominator; upon relabeling coefficients, we get an equation
B(x1 − h) =

∑
aifi in P . Modulo (x2, ..., xn) the equation is equivalent to

Bx1 = a1f1. Since B is a unit, Bx1 has a non-zero linear term. Thus a1f1
must have a non-zero linear term too, and this can happen only if a1 has a
non-zero constant term. Thus a1 is a unit in P0. From this, we can finally
obtain the expression f1 = B

a1
(x1 − h)−

∑
i 6=1

ai
a1
fi.

Furthermore, the maps (f1, ..., fn) and (x1 − h, g2, ..., gn) define the same
distinguished socle element up to a unit in P0. It suffices to show that the
maps (f1, g2, ..., gn) and (x1−h, g2, ..., gn) define the same distinguished socle
element up to a unit by our initial reduction step. Write out the matrices that
define E in both cases. Only the first row of the two matrices can be different.
In both matrices, the first column has only one non-zero entry, and it is a unit
because both f1 and x1 − h have linear term x1.

The evaluation map ψ : P0 → k[x2, ..., xn](x2,...,xn) defined by φ(x1) = g1
and φ(xi) = xi otherwise induces an isomorphism on local rings φ : Q0(f)→
Q0(g), where g = (g2, ..., gn). It is now straightforward to see that the distin-
guished socle element E(x1−h, g2, ..., gn) maps under φ to u ·E(g2, ..., gn) for
some unit u. Thus the EKL classes agree up to a unit and we are done.

Remark 2.13. The previous theorem is inspired by the proof of [6, Lemma
5.7] and serves as a generalization of McKean’s result to higher dimensions.
We thank Sabrina Pauli for bringing McKean’s paper to our attention.

Lemma 2.14. Let f : An → An be a map with isolated zero at 0 and assume
that the ideal (f1, ..., fn) is contained in (x1, .., xn)2. Then the dimension of
Q0(f) is at least 2n.
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Proof. This result follows from [3, §12.4] and the relevant result is clearly
stated on [3, Chapter 12, Notes and References, page 234].

The two results above show that all EKL classes with rank less than 8 can
be reduced to the planar or 2-variable case.

3. EKL classes of fixed rank

We will now address the question of which quadratic forms are representable
as EKL forms. This question depends on the base field k, but we investigate
the question for a general field k below. We have already seen that any EKL
form w0(f) with rank at least 2 necessarily has a hyperbolic summand. We
have also seen that there are rank 4 EKL classes with exactly one hyperbolic
summand and also some with two hyperbolic summands by Lemma 2.3. What
then is the minimal number of hyperbolic forms that an EKL class of rank
n must contain as a summand over a general field? The next case to analyze
is when the rank of w0(f) is 5. The following table summarizes the cases we
know including our main result on rank 5 of Theorem 3.1.

Rank EKL form type
1 〈a〉
2 H
3 H + 〈a〉
4 H + 〈a, b〉
5 2H + 〈a〉
6 ?

Table 1. This is a list of the possible EKL forms of a given
rank. In the EKL form type, the constants a and b are ar-
bitrary units in the ground field. In particular, in the rank 4
case, it is possible to take b = −a so that the EKL class is
2H.

Theorem 3.1. Let f : An → An be a map with isolated zero at 0, and
suppose further that the rank of w0(f) is 5. Then w0(f) ∼= 2H⊕ 〈a〉 for some
unit a.

Proof. By Theorem 2.12, Lemma 2.14, and our assumption that the rank
of w0(f) is 5, we need only analyze the case of a function f : An → An where
n is 1 or 2. The one variable case was handled in Lemma 2.4, so we assume
now that f = (f1, f2) : A2 → A2 has an isolated zero at 0, the rank of w0(f)
is 5, and (f1, f2) ⊆ m2.
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The local ring Q0(f) is isomorphic to the ring P/((f1, f2) +m5), and so we
may study its structure by studying the structure of a Gröbner basis for the
ideal (f1, f2) +m5. There are only a few possibilities of the leading terms in a
Gröbner basis in the 2 variable case that give a dimension of 5. We list them
in Figure 1.

Figure 1. From left to right, top to bottom, we list the
leading terms of generators for the Gröbner basis. (1) y5, x;
(2) y4, xy, x2; (3) y3, xy2, x2; (4) y3, xy, x3; (5) y2, x2y, x3;
(6) y2, xy, x4; (7) y, x5.

The crux of the argument is to find a subspace Span{h1, h2} ⊆ Q0(f)
that is totally isotropic, which then guarantees that 2H is a summand of
w0(f) (see Scharlau for a more general result [11, Theorem 4.5.]). In our case,
the two-dimensional subspace Span{h1, h2} is totally isotropic if φ(h1 · h1) =
φ(h1 · h2) = φ(h2 · h2) = 0. We manage to do one better and find {h1, h2}
which satisfy

h21 = h22 = h1h2 = 0 in Q0(f). (3.1)

The proof now proceeds by a case-by-case analysis in Lemma 3.2.
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Lemma 3.2. We consolidate a case-by-case analysis of the ring structure
of the local rings with Gröbner basis of type (1)–(7) found in figure 1. In
particular, the local ring Q0(f) contains a linearly independent subset {h1, h2}
which satisfies h21 = h22 = h1h2 = 0.

Proof. As described above, we only need to consider maps f : A2 → A2

with (f1, f2) ⊆ m2. Express the polynomials f1 and f2 as a sum of homogen-
eous polynomials as follows: f1 = f1,5 + · · · + f1,2 and f2 = f2,5 + · · · + f2,2.
We are assuming that the intersection multiplicity of V (f1) and V (f2) at 0 is
5. This can only happen when the projective tangent cones meet in exactly
one point. If the projective tangent cones were disjoint and f1,2 and f2,2 are
non-zero, then the intersection multiplicity is exactly 4. If the projective tan-
gent cones are identical, then f1,2 and f2,2 differ only by a scalar, and thus we
can eliminate f2,2 by adding some multiple of f1 to f2 without changing the
intersection multiplicity. But then the intersection multiplicity is at least 6 in
this case. Thus the only possibility is that f1,2 and f2,2 are both non-zero,
split over k, and share a common factor. This necessitates that both f1,2 and
f2,2 split as a product of lines defined over the ground field and share exactly
one factor. We can thus compose with an invertible linear transformation to
modify f1,2 to xy and f2,2 to x(αx + βy). This modification will only affect
the EKL class by scalar multiplication by a unit by Lemma 2.11.

We now assume that f1,2 = xy and f2,2 = αx2 +βxy. But by adding −βf1
to f2 we do not change the EKL class and obtain f1,2 = xy and f2,2 = αx2.
It must be that α 6= 0 for otherwise the rank of the EKL class would be at
least 6.

We now proceed to our case-by-case analysis with the reduction above
performed. Recall that we use the graded reverse lexicographic ordering on
monomials xiyj with x > y.

First note that cases (1) and (7) are not permitted as the Gröbner basis
structure implies I = (f1, f2) + m5 is not contained in m2.

Case (2): We know that the ideal (f1, f2) + m5 has a Gröbner basis of the
form

g1 = y4 + ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2

g2 = xy + hy2

g3 = x2 + ixy + jy2.

Hence the ideal I = (f1, f2) ⊆ P0 is equal to (g1, g2, g3), which we now invest-
igate. The dimension of I/mI must be at most 2 as the ideal I is generated
by (f1, f2) (this is a consequence of Nakayama’s Lemma). Thus the image
of I/mI in m2/m3 is at most 2 dimensional, and our assumptions show that
{x2, xy} is in the image. So there can be no y2 term in g2 or g3. Thus the
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generators (g1, g2, g3) can be modified to give a new generating set of I of the
form

g1 = y4 + ay3

g2 = xy

g3 = x2.

for some new constant a. Now observe that yg1 ∈ I too, that is, y5 + ay4 ∈ I
and we also know y5 ∈ I. In any event, y4 ∈ I. Thus we conclude m4 ⊆ I.
Hence we have {x, y2} a linearly independent subset of Q0(f) satisfying (3.1),
i.e., that it is totally isotropic.

Case (3): The ideal (f1, f2) + m5 has a Gröbner basis of the form

g1 = y3 + ax2 + bxy + cy2

g2 = xy2 + dy3 + ex2 + fxy + gy2

g3 = x2 + hxy + iy2.

Thus I = (f1, f2) = (g1, g2, g3) in P0. By our assumption that the image of
I/mI in m2/m3 is generated by {x2, xy}, we can simplify the Gröbner basis
to

g1 = y3 + axy

g2 = xy2 + bxy

g3 = x2 + cxy.

for some constants a, b, c. Observe now that g2 factors as xy(y + b). If b 6= 0,
then (y + b) is invertible in Q0(f), hence we may conclude that {xy, x2, y3}
generates I, from which it follows that dimkQ0(f) < 5. Thus we need only
consider the case when b = 0. Now as yg1 = y4 + axy2 ∈ I and xy2 ∈ I it
follows that y4 ∈ I. But now, x2y2 ∈ I and the set {y2, xy} satisfies (3.1) and
is totally isotropic in Q0(f).

Case (4): The ideal (f1, f2) + m5 has a Gröbner basis of the form

g1 = y3 + ax2 + bxy + cy2

g2 = xy + dy2

g3 = x3 + ex2y + fxy2 + gy3 + hx2 + ixy + jy2.

Thus I = (f1, f2) = (g1, g2, g3) in P0. Because both xy and x2 are in the image
of the map I/mI → m2/m3, we conclude that no y2 terms are permitted. Thus
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g2 = xy and we may simplify the generators to

g1 = y3 + ax2

g2 = xy

g3 = x3 + bx2.

with a and b redefined constants. We now observe that yg1 = y4 + ax2y is in
the ideal, and thus so too is y4. Observe that g3 = x2(x+ b) ∈ I implies that
x3 ∈ I if b = 0 or x2 ∈ I if b 6= 0, as in the local ring x+ b is a unit. In either
case, it follows that x4 ∈ I. Thus m4 ⊆ I. Hence we have {x2, y2} satisfies
(3.1) and is a totally isotropic subset of Q0(f).

Cases (5) and (6): In these cases, we are forced to have y2 as a member of
the Gröbner basis, which is not permitted by our assumption that the image
of I/mI in m2/m3 is generated by {xy, x2}.

4. The inequalities of Eisenbud, Levine, and Teissier

As was mentioned in the introduction, our calculations in Theorems 2.2 and 3.1
can be explained by the inequalities of Eisenbud, Levine, and Teissier in [2].
Throughout the section, k is a field with characteristic different from 2. We
present their results now and consider the implications for the use of EKL
forms in motivic homotopy theory.

Eisenbud and Levine show that an EKL form has n hyperbolic summands
if and only if the local ring Q0(f) contains an ideal I of dimension n which
satisfies I2 = 0. When such an ideal is found, the dual ideal for I, denoted
by I∗, is used to produce the hyperbolic subspace I ⊕ I∗ of the EKL form.
Thus the quadratic space Q0(f) with the quadratic form w0(f) decomposes
as Q0(f) = I ⊕ I∗ ⊕ D, where D is an anisotropic subspace, meaning that
it contains no isotropic subspaces. Note that dimk I is the number of hyper-
bolic summands of the quadratic form w0(f). Eisenbud and Levine state their
results by describing how large the dimension of D can possibly be.

Theorem 4.1. Let k be a field with characteristic different from 2. The
Eisenbud–Levine–Teissier inequality states that if f : Ank → Ank is a polyno-
mial map which has an isolated zero at 0 so that dimkQ0(f) ≥ 1, then the
dimension of the anisotropic part of the quadratic space (Q0(f), w0(f)) is
bounded by:

dimkD ≤ dimkQ0(f)1−1/n (4.1)

dimkD ≤
dimkQ0(f)

2
. (4.2)
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The first inequality is tighter, but the latter has the advantage of being inde-
pendent of n.

Corollary 4.2. For a map f : Ank → Ank with an isolated zero at 0, it is
an immediate consequence of the ELT inequality that the number of hyperbolic
summands in (Q0(f), w0(f)) must at least be:

dimk I ≥
dimkQ0(f)− dimkQ0(f)1−1/n

2

dimk I ≥
dimkQ0(f)

4
.

With these inequalities, we can extend the chart in Table 1 with the values
in Table 2. Unfortunately, the case of rank 8 is unclear. It is possible that there
is a 3 variable example with EKL form 2H ⊕ 〈a, b, c, d〉. In the two variable
case, the ELT inequality says that the only possible EKL forms are 3H⊕〈a, b〉.

Rank EKL form type
6 2H⊕ 〈a, b〉
7 3H⊕ 〈a〉
8 ?

Table 2. This is a list of the possible EKL forms of a given
rank. In the EKL form type, the constants a and b are arbit-
rary units in the ground field.

It is unclear what exactly happens in rank 9. We have found an example
over R with EKL form 3H ⊕ 〈1, 1, 1〉, see Example 5.4. But does this mean
that over a general field 3H ⊕ 〈a, b, c〉 is also always realizable as an EKL
form, or only some proper subset of these? E.g., over Q we may indeed have
3H ⊕ 〈3, 3, 3〉 representable as an EKL form, but that does not mean that
3H⊕ 〈3, 5, 7〉 is representable too. Can we fully describe the set of quadratic
forms representable by EKL forms at 0?

5. Computational results

The process of computing the EKL class of a map f : An → An can be auto-
mated and performed by a computer. Sabrina Pauli [9] uses Macaulay2 to
perform such computations over finite fields, for example. We have written
a simple python program that calculates the EKL class of a map, which is
available on Github [14]. In this section, we provide some experimental results
that give upper bounds for the minimal number of hyperbolic summands that
must appear in an EKL form of rank n. Table 1 gives the complete information
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of EKL forms up to rank 5, and in this section we will see how complicated
it may be to extend this table in general.

Definition 5.1. Let m and n be positive natural numbers and k a field.
WriteM(m,n; k) for the minimum number of hyperbolic summands appearing
in rank m EKL forms w0(f) for all possible maps f : An → An over the field k,
and define M(m) to be the minimum of M(m,n; k) over the set of all possible
n and k. We also consider the numbers N(m,n; k) = m − 2M(m,n; k) and
N(m) = m−2M(m), which tell us the largest possible rank of a representative
of w0(f) in the Witt ring, i.e., the rank of the “Grundform” of w0(f) [15, page
35].

Our work up until now has established the values of M(m) for m ≤ 7,
which are: M(1) = 0, M(2) = 1, M(3) = 1, M(4) = 1, M(5) = 2, M(6) = 2,
M(7) = 3.

Morel’s A1-degree gives a ring map degA1

: [Pn/Pn−1,Pn/Pn−1]→ GW(k)
by his work in [7, Theorem 6.3.3 and p. 427]. Because Morel’s A1-degree and
EKL form agree in GW(k) for the local degree at a k-point, it follows that
EKL forms must satisfy a chain rule. An algebraic proof of the chain rule
for EKL forms was established by Knight, Swaminathan, and Tseng in [5,
Theorem 13]. We believe that their argument to establish the chain rule is
correct, however, we noticed a few inaccuracies in the written proof in [5,
Theorem 13, page 80]. We provide a proof of the chain rule following their
argument for completeness. We do not claim any originality.

Theorem 5.2. Let f, g : An → An be maps with isolated zeros at the origin.
The EKL form of the composition f ◦ g is the product of the EKL forms of f
and g, i.e.,

w0(f ◦ g) = w0(f) · w0(g) in GW(k).

Proof. We follow the proof by Knight, Swaminathan and Tseng with a
minor correction. The idea is to add further variables and to compose with
appropriate linear transformations to make f and g act on separate variables.
So let f̃ , g̃ : An × An → An × An be defined by sending (x, y) to (f(x), y)
and (g(x), y), respectively, where we write (x, y) for (x1, . . . , xn, y1, . . . , yn). It
is straightforward to compute that the EKL class of a product of two maps
An → An is the product of the EKL classes. Since f̃ ◦ g̃ equals f ◦ g on the
first component and is the identity on the second component, we get

w0(f̃ ◦ g̃) = w0(f ◦ g)

in GW(k). Hence it suffices to show w0(f̃ ◦ g̃) = w0(f) · w0(g). The key tool
is [5, Lemma 12] which states that for maps f and g as in the theorem and a
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unipotent linear transformation L : An → An we have

w0(f ◦ L ◦ g) = w0(f ◦ g). (5.1)

Note that this statement agrees with Lemma 2.11 for the case that A = L is
unipotent (and thus has determinant equal 1) and f being the identity.

Let In denote the n× n-identity matrix. Consider the following three uni-
potent matrices:

L1 =

(
In 0
−In In

)
, L2 =

(
In In
0 In

)
, L3 =

(
In 0
−In In

)
.

Then it follows from (5.1), i.e., [5, Lemma 12], that the following two com-
positions have the same EKL forms:

f̃ ◦ g̃ : (x, y) 7→ (f(g(x)), y) and f̃ ◦ L1 ◦ g̃ : (x, y) 7→ (f(g(x)),−g(x) + y).

Now we apply [5, Lemma 12] to the maps f̃ and (L1 ◦ g̃) and the unipotent
transformation L2. This shows that the EKL forms of the maps

f̃ ◦ L1 ◦ g̃ : (x, y) 7→ (f(g(x)),−g(x) + y)

f̃ ◦ L2 ◦ (L1 ◦ g̃) : (x, y) 7→ (f(y),−g(x) + y)

are equal. Next we apply [5, Lemma 12] to the maps f̃ and (L2 ◦ L1 ◦ g̃) and
the unipotent transformation L3. This shows that the EKL forms of the maps

f̃ ◦ L2 ◦ (L1 ◦ g̃) : (x, y) 7→ (f(y),−g(x) + y)

f̃ ◦ L3 ◦ (L2 ◦ L1 ◦ g̃) : (x, y) 7→ (f(y),−g(x))

are equal as well. Denote the map (x, y) 7→ (f(y),−g(x)) by f × (−g). We

have shown that w0(f̃ ◦ g̃) equals w0(f × (−g)).

Now we compose f × (−g) with the matrix A =

(
0 −In
In 0

)
and deduce

from Lemma 2.11 that f × (−g) and A ◦ (f × (−g)) = g × f have the same
EKL class.1 Hence we have

w0(f ◦ g) = w0(f̃ ◦ g̃) = w0(g × f).

To conclude, it is straightforward to check that the EKL class of the product
g×f satisfies w0(g×f) = w0(g)·w0(f) in GW(k). This concludes the proof.

From this, we can obtain some simple bounds forM(m, 2; k) andN(m, 2; k).

1Alternatively, one can apply [5, Lemma 12] in three successive steps to the composition

L6 ◦ L5 ◦ L4 ◦ (f × (−g)) = g × f where L4, L5, L6 denote the unipotent matrices

L4 =

(
In −In
0 In

)
, L5 =

(
In 0

In In

)
, L6 =

(
In −In
0 In

)
such that their composition is L6 ◦ L5 ◦ L4 = A.
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Corollary 5.3. The set of quadratic forms that are realizable as EKL
forms at 0 over k is a multiplicative submonoid of GW(k).

Proof. The claim follows immediately from the chain rule.

Example 5.4. Consider the polynomials f = −x3 − x2y+ 4xy2 + 2y3 and
g = 2x3 − x2y − 5xy2 − y3. The EKL form of the map (f, g) : A2 → A2 con-
sidered over the base field Q is the quadratic form 〈6, 6, 3,−6,−6, 6, 3,−6, 3〉 ∼=
3H + 〈3, 3, 3〉, which was computed with the assistance of a computer. Hence
for rank 9 EKL forms, we may only have 3 hyperbolic summands. Hence
M(9, 2; k) ≤ 3, i.e., N(9, 2; k) ≥ 3.

Proposition 5.5. Consider the map f = (xy, y2−x2) studied in Lemma 2.3.
Then the iterated composition f (n) has EKL form

w0(f (n)) = 2n−1(2n − 1)H + 2n〈1〉
In particular, M(4n, 2; k) ≤ 2n−1(2n − 1), i.e., N(4n, 2; k) ≥ 2n.

Likewise, using the map f in Example 5.4, the chain rule shows

w0(f (n)) =
9n − 3n

2
H + 3n〈1〉;

hence N(9n, 2; k) ≥ 3n.

Proof. The calculations follow immediately from the chain rule.

Computational evidence for small values of n suggest that the bounds in
Proposition 5.5 are in fact equalities: N(9n, 2; k) = 3n and N(4n, 2; k) = 2n,
suggesting the equation N(p2n, 2; k) = pn holds. In fact, the general result of
Eisenbud and Levine in [2, Theorem 3.9 (i)] gives the bound N(n, 2; k) ≤

√
n,

which when combined with Proposition 5.5 gives the results N(9n, 2; k) = 3n

and N(4n, 2; k) = 2n that we anticipated. Furthermore, we have observed
that N(3) = N(5) = 1 and computational experiments suggest N(7) = 1 and
N(11, 2; k) = 1 too. It is reasonable to conjecture that for odd primes p that
N(p, 2; k) = 1, and perhaps N(p) = 1 holds more generally.

Eisenbud and Levine show that the bounds above are not tight when maps
f : An → An are allowed for n ≥ 3. In [2, Example, page 24] they produce
an example f : A4

R → A4
R where dimQ0(f) = 16 where the signature of w0(f)

is 6. That is, N(16, 4;R) ≥ 6 whereas our bound in the planar case is only
N(16, 2; k) ≥ 4.

6. Applications

6.1. Representability in motivic homotopy theory
For any map f : An → An with an isolated zero at 0, Kass and Wickel-
gren [4, Definition 11] construct a map in the motivic homotopy category
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f0 : Pn/Pn−1 → Pn/Pn−1 that encodes the local behavior of f at 0. To obtain
a local degree in motivic homotopy theory, Kass and Wickelgren apply Morel’s

A1-Brouwer degree degA1

: [Pn/Pn−1,Pn/Pn−1]→ GW(k) to f0 to obtain the

class of a quadratic form, which we write as degA1

0 (f) = deg(f0). The main

result of Kass and Wickelgren in [4] is that the local degree degA1

0 (f) defined
using Morel’s degree map is equal to the class of the EKL form of f at 0 in
GW(k). Note that Morel’s degree map is in fact an isomorphism when n ≥ 2,
so that algebraic results about EKL forms can be translated into statements
about motivic homotopy theory.

Theorem 6.1. Suppose q ∈ GW(k) is represented by a quadratic form with
rank at least 2 that does not represent 0, that is, q admits no non-zero vector
v for which q(v) = 0. Then there is no map f : An → An with an isolated zero

at 0 for which degA1

0 (f) = q in GW(k).

Proof. This follows immediately from the identification of the local A1-
Brouwer degree with the EKL form of a map by Kass and Wickelgren, com-
bined with Theorem 2.2.

Corollary 6.2. If −1 is not a square in k, then the quadratic form 〈1, 1〉
is not representable as a local degree map under Morel’s A1-Brouwer degree
isomorphism.

Because Morel’s degree homomorphism deg : [Pn/Pn−1,Pn/Pn−1]→ GW(k)
is an isomorphism for n ≥ 2, we can translate our results into statements about
the set of motivic homotopy classes [Pn/Pn−1,Pn/Pn−1]. We give an example
using our result about rank 5 EKL forms.

Theorem 6.3. Let k be a field and consider a map g : Pn/Pn−1 → Pn/Pn−1
with n ≥ 2. If the motivic Brouwer degree of g is represented by a quadratic
form q of rank 5, then g is A1-homotopy equivalent to a local degree map f0
for some map f : An → An if and only if q is of the form 2H + 〈a〉.

Proof. This follows from the fact that Morel’s degree map is an isomorph-
ism when n ≥ 2 [8, Corollary 1.24] and our result on rank 5 EKL forms in
Theorem 3.1.

Of course, similar results in rank 6 and 7 follow directly from the inequality
of Eisenbud, Levine, and Teissier described in Theorem 4.1. In particular, in
ranks 1, 3, 5, and 7 the discriminant of the EKL form contains all of the
information of the local degree.
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6.2. Finite fields

Over a finite field with odd characteristic, the problem of identifying the
isometry class of a quadratic form in GW(k) ∼= Z⊕Z/2 is resolved simply by
considering the rank and discriminant of the quadratic form. With this simple
characterization, the lemmas of section 2 allow us to completely classify which
quadratic forms arise as EKL classes.

Theorem 6.4. Let Fq be a finite field of odd characteristic. Every quadratic
form over Fq is representable as an EKL class except for the rank 2 form with
discriminant not equal to −1 ∈ k×/k×2.

Proof. Lemma 2.4 shows that there is a map f : A1 → A1 with EKL
class w0(f) = 〈a〉 for any unit a, which covers the rank 1 case. In rank 2,
Theorem 2.2 shows that the only EKL class is H, which has discriminant
-1. Thus when q ≡ 3 mod 4, the unit −1 is not a square, and so 〈1, 1〉 is
not representable as an EKL class. When q ≡ 1 mod 4, the unit −1 is a
square class, and thus any rank 2 form with discriminant a non-square is not
representable as an EKL class.

Any quadratic form of rank 2n + 1 ≥ 3 is representable as an EKL class
because Lemma 2.4 shows that we can choose a map f : A1 → A1 so that
w0(f) has rank 2n+ 1 and discriminant a for any unit a ∈ k×.

For a quadratic form of rank 2n ≥ 4, Lemma 2.7 shows that we can
construct a map f : A2 → A2 of rank 2n such that w0(f) has discrimin-
ant (−1)n−1ab for any choice of units a, b ∈ k×. Hence we can realize both
isometry classes of quadratic forms of rank 2n as EKL classes.

6.3. Singularities with specified Milnor number

Another avenue for applications for the structure of EKL forms that we have
observed is to the study of isolated hypersurface singularities, following the
work of Kass and Wickelgren [4]. In particular, our results produce restrictions
on the way singularities can degenerate into nodes just by knowing the Milnor
number of the singularity in the cases where the Milnor number is at most 5.
We require the base field to have characteristic different from 2 in this section.

We refer the reader to Kass and Wickelgren [4, §8] and Pauli and Wickel-
gren [10, §6.2] for a more thorough discussion, but we summarize one kind of
deformation here. Let X = {f = 0} be a hypersurface in An and assume that
0 is an isolated zero of its gradient, grad(f) : An → An. We can then look at
the local degree of grad(f) at 0 as an invariant of the singularity of f at 0.
Over the field k = C, the Milnor number of f at 0 is µ(f) = dimkQ0(grad(f)).
This definition may be enriched in motivic homotopy theory by defining the

A1-Milnor number of f at 0 to be µA1

(f) = degA1

0 (grad(f)).
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Kass and Wickelgren study the family of deformations of the hypersurface
f that take the form {f(x1, ..., xn) +

∑
i aixi = t}, i.e., the fibers of the

map F = f +
∑
i aixi : An → A1. For a generic choice of k-point (a1, ..., an) ∈

An(k), the hypersurfaces in this family (the fibers of the map) have only nodal
singularieties. Kass and Wickelgren prove in [4, Equation (6) and Corollary

45] that µA1

(f) counts the number of nodal fibers of this family. To be more
precise, if f : An → A1 is such that grad(f) is finite and separable and 0 is
the only singularity of f , then

µA1

(f) =
∑

x node of F

Trk(x)/ktype(x, f) (6.1)

where type(x, f) is the A1-Milnor number of the singular point of the nodal
fiber of F corresponding to x.

Pauli and Wickelgren [10, §6.2] extend the previous result to more general
deformations. For a hypersurface X = {f = 0} ⊆ An, Pauli and Wickelgren
are able to obtain the same stability result on the bifurcation of an isolated
singularity of f under more general deformations, which take the form of a
fiber of the map f+ tg : Ank[[t]] → A1

k[[t]], for g ∈ k[x1, ..., xn][[t]]. We encourage

the reader to see their paper for a more thorough exposition.

Our results can now be applied by making assumptions on the Milnor
number of the singularity of f at 0 and inferring restrictions on what kinds
of families of nodes the singularity can degenerate into. The next theorem
is the evident generalization of [10, Example 14] from the cusp—which has
A1-Milnor number H—to the case of any singularity with Milnor number 2.

Theorem 6.5. Assume the characteristic of k is not 2 and assume −1
is not a square in k. Consider any hypersurface X = {f = 0} in An for
which grad(f) has an isolated zero at 0. If the Milnor number of f at zero

µA1

(f) = dimkQ0(grad(f)) is equal to 2, then if the singularity degenerates
into a pair of k-rational nodes, it must be that the nodes have type 〈a〉 and
〈−a〉 for some unit a ∈ k×.

Proof. This follows from [10, Theorem 4] and Theorem 2.2.

Over the field of real numbers, the signature of the A1-Milnor number of
a singularity encodes topological information about the Milnor fibers of the
singularity. The work of Arnold [1] presents the relevant terminology and gives
several results, which we briefly summarize here. We also suggest the reader
look at van Straten and Warmt for an introduction and related results [12].

For f : AnR → A1
R a map with an isolated singularity at 0 and f(0) = 0,

let B(0; ε) be a sufficiently small ball about the origin and 0 < |η| sufficiently
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small, so that η ∈ im(f), in particular. The real Milnor fibers of f are the
sets:

Fη = B(0; ε) ∩ f−1(η)

The topology of such a fiber is controlled by the signature of the A1-Milnor
number of the singularity of f at 0. In particular, Arnold [1, Sections 1–2]
(compare with [12, Theorem 1.3]) calculates the reduced Euler characteristic
(Euler characteristic minus 1) of the Milnor fibers to be:

signature(µA1

0 (f)) = −χ̃(F−η) = (−1)n−1χ̃(Fη)

when η > 0.
From this result, the reduced Euler characteristics of the fibers Fη must

be between −µ(f) and µ(f). Our characterization of EKL forms shows that
this naive bound can be improved, and for small enough Milnor numbers, the
reduced Euler characteristic of these Milnor fibers can be completely determ-
ined.

Theorem 6.6. Let f : AnR → A1
R be a polynomial map with isolated singu-

larity at 0 with Milnor number m ≥ 2. Then the reduced Euler characteristic
of the Milnor fibers is bounded in absolute value by m − 2. If µ(f) = 2, then
the reduced Euler characteristic of the Milnor fibers is 0. If the Milnor number
is 3, 5, or 7, then the reduced Euler characteristic of the Milnor fibers is ±1.

Proof. This follows from the result of Arnold, stated in [12, Theorem 1.3]
along with our main theorems 2.2, 3.1, and the ELT inequality in theorem 4.1.

The setup to this theorem was certainly known to Eisenbud and Levine
in [2] and Arnold [1]. We do not claim any originality for this result. Similarly,
the following theorem is one of the main results that Eisenbud and Levine
sought to prove in their foundational paper [2].

Theorem 6.7. Let f : AnR → AnR be a polynomial map with an isolated
zero at 0. If the rank of the EKL form of f at 0 is 3, 5, or 7 then the local
topological degree of f at 0 is ±1. And if the rank of the EKL form of f at 0
is 2, then the local topological degree of f at 0 is 0.

Proof. This follows from Eisenbud and Levine’s main result [2, Theorem
1.2], our main results, theorems 2.2, 3.1, and the Eisenbud–Levine–Teissier
inequality in rank 7, see theorem 4.1.

The Eisenbud–Levine–Teissier inequality can of course be used to obtain
more general bounds for the degree. Explicitly, Eisenbud and Levine state this
in [2, Theorem 2.1] and give further geometric interpretations in [2, §2].
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