
  

  

Abstract— To maximize the value and material recovery from 

waste products, smart reverse logistics aims at managing the 

complex flows of physical items, cash, data, and information. 

The effective management of these flows requires optimal 

decision making at strategic, tactical, and operational levels. To 

support the decision making, predictive, prescriptive, and 

descriptive analytics have been proved to be valuable at all three 

levels. However, because these analytical tools require different 

software packages, different coding languages, and different 

structures of data, the decision support for complex problems 

combining various analytical methods is usually an ad-hoc 

process and requires thus significant efforts. There is a lack of 

standardized solutions that comprise all the necessary modules 

for smart reverse logistics management. Thus, this paper 

proposes a conceptual framework with the purpose of guiding 

the next-generation system integration for smart reverse 

logistics management. It goes further with the design of six 

criteria for evaluating the integration maturity of a system. The 

initial concept is shown with existing software solutions through 

a case study in Norway, and several challenges are identified for 

future improvements. 

I. INTRODUCTION 

Today, the rapid pace of technological innovation and the 
ever-changing consumer demands have led to higher 
requirements of customization with shortened product 
lifecycles. This further leads to largely increased waste 
generation. In 2019, the volume of waste electrical and 
electronic equipment (WEEE) generation has reached a record 
high level of 53.6 million metric tons which represented an 
increase of 21% in five years [1]. This trend is expected to 
continue with an estimated 30% increase by 2030 [2]. 
Sustainable management of this rapidly increasing waste has 
become a global challenge. With the focuses on function 
restoring and material recovery from discarded products, some 
regional and international reverse logistics systems have been 
developed [3].  

Reverse logistics refers to a set of activities with the aim of 
the value recovery from waste products through repair, reuse, 
refabrication, remanufacturing, recycling, and energy recovery 
as well as proper disposal of non-recyclables [4, 5]. To achieve 
sustainable competitiveness in today’s market, reverse 
logistics has become a strategic focus area for most companies 
due to, i.e., the growing environmental awareness among the 
general public, stricter legislation, and imposed corporate 
social responsibility. Effective decision support at strategic, 
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tactical, and operational levels is therefore of essential 
importance for designing and operating a competitive and 
sustainable reverse logistics system. To do so, it is necessary to 
balance complex material and information flows, work with 
various stakeholders, and make important decisions under 
uncertainty. To support different decision making in reverse 
logistics management, predictive, prescriptive, and descriptive 
analytics must be combined to solve complex problems. 

The use of these analytical tools requires different data 
sources, software packages, different coding languages, and 
different structures as well as aggregation of data. The 
combination of several analytical methods to solve a complex 
decision-making problem in reverse logistics management is, 
at present, an ad-hoc process, and often requires significant 
efforts to engage different tools when a new scenario turns up. 
How to develop an integrated system that can connect different 
analytic models, data, tools, and other relevant elements for 
providing efficient decision support is, therefore, a novel 
question. In this paper, considering the technological 
innovations in Industry 4.0, we propose a conceptual 
framework for the next generation of system integration 
methods for smart and sustainable reverse logistics 
management. The initial proof-of-concept is applied to a case 
study design for WEEE management in Norway. In this model, 
the prescriptive and the descriptive analytics are connected 
through establishing a shared database structure.  

The rest of the paper is organized as follows. Section II 
explores reverse logistics management with an emphasis on 
relevant decisions and methods. Section III presents a 
conceptual framework for the system integration of smart and 
sustainable reverse logistics management. In sections IV, we 
demonstrate an application of this framework through a case 
study, and the problems of the existing software solutions are 
also discussed. Finally, the conclusions are given in Section V. 

II. REVERSE LOGISTICS MANAGEMENT 

A. Reverse Logistics Management 

Reverse logistics focuses on the value recovery activities 

of waste products, when combining it into the forward 

logistics system, a closed-loop supply chain can be formed. 

As shown in Figure 1, the material flow in a reverse logistics 

system starts from the local collection of waste products from 

the end-users. The collected waste products will then be 

disassembled, inspected, and sorted at central collection 

centers. Based on the remaining values of the dismantled 

parts, they are sent for further treatment at different facilities. 

The ones with high remaining values will be sent either for 

repair and re-sell at second-hand markets or for 

remanufacturing and refurbishing for function restoration. 

The remanufactured and refurbished components can be sold 
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to the manufacturers at lower prices. The other components 

with low remaining values can be sent to recycling plants, 

where they are degraded into new materials and then sold to 

the raw material suppliers. The non-recyclable components 

can be sent either for energy recovery or for proper disposal. 

 

 

Figure 1.  Reverse logistics system 

TABLE I.  KEY DECISIONS FOR REVERSE LOGISTICS MANAGEMENT 

Level Key decisions 

Strategic level • Target market situation analysis and 
evaluation (coordination of reverse 

logistic network, market size, product, 

etc.) 

• Reverse logistic network design 
(the number and location of facilities, 

capacity  planning  and  designing  of  the  
remanufacturing/recycling systems) 

• Transportation strategy 

• New technology adoption 
Tactical level • Reverse logistics network re-optimization 

• Vehicle routing  

• Production planning 

• Inventory planning  

• Fleet management 
Operational 

level 
• Production control 

• Inventory control 

• Vehicle planning and scheduling 

• Risk analysis 

• Recovery analysis 

• Resilience analysis 

 

Reverse logistics management refers to orchestrating 
complex flows (product, capital, and information) among 
multi-layered and non-homogeneous stakeholders in a highly 
uncertain environment. Table I shows the key decisions for 
reverse logistics management at the strategic, tactical, and 
operational levels. Strategic decisions have long-term impacts 
on a reverse logistics system since they are difficult or 
extremely expensive to change. Reverse logistics network 
design is the most important strategic decision [6]. Several 
factors and decisions are affecting the performance of a reverse 
logistics network, i.e., the number and locations of potential 
facilities, capacity planning, remanufacturing and recycling 
technologies, transportation strategy, and the establishment of 
distribution and collaboration channels for recovery products 
and materials [7, 8]. At the tactical level, the reverse logistics 
system is governed by a set of medium-term decisions, usually 
from one month to one year, made under the constraints set by 
the strategic planning  [9]. The formulation of production 
policy, inventory policy, vehicle routing as well as fleet 
management are considered tactical decisions. At the lowest 
level, the short-term operational decisions are made for the 
dynamic control of product recovery operations, dynamic 

inventory control, real-time vehicle routing and scheduling 
problems, and risk analysis, etc. 

B. Methods for Decision Supports 

To support decision making in reverse logistics 
management, three advanced analytical methods: predictive, 
prescriptive, and descriptive analytics, are applied.   

Predictive analytics is a category of applying advanced 
methods to predict future trends based on historical data and/or 
real-time data. It aims to perform an exploratory analysis using 
several analytical tools. Typical techniques are, e.g., artificial 
intelligence (AI), data mining, machine learning (ML), 
modeling, and statistics to estimate, predict, detect future 
patterns [10]. Decision trees, linear/logistic regressions, and 
neural networks are the most common predictive models, 
which can help to clean the data quality for analysis [11]. In 
terms of reverse logistics management, predictive analytics has 
been used to reduce the impact of uncertainty so that a better 
prediction of reverse flows can be achieved. Tuylu and Eroğlu 
[12] used ML to estimate the product return rate in reverse 
logistics. In this case, better prediction and planning were 
achieved by using consumer information so that unnecessary 

production and transportation were avoided. Lickert, et al. [13] 

implemented a ML method to inspect whether the quality 
levels and conditions of returned products were suitable for 
remanufacturing.  

Prescriptive analytics is to select the constrained and 
time-dependent optimal solutions with the help of 
model-based analytics, e.g., mathematical programming 
(linear/non-linear programming, mixed integer programming, 
multi-objective programming, etc.), evolutionary computation 
(genetic algorithm, greedy algorithm, particle swarm 
optimization, etc.), probabilistic models (Markov decision 
process, etc.), logic-based models (benchmark rules, fuzzy 
rules, etc.) [14]. Thus, prescriptive analytics aims at suggesting 
the best decision options under some preconditions [15], 
whose results are given, in many cases, based on the outputs 
from model-based analytics [14]. Prescriptive analytics is the 
most widely used decision-support method in reverse logistic 
management at different levels. For example, extensive 
research efforts have been given to develop mathematical 
models for sustainable reverse logistic network design [5, 16, 
17], profit maximization [18, 19], routing optimization of 
recycling vehicles [20]. 

In logistics and supply chain management, descriptive 
analytics is used to depict the system’s behavior and to 
uncover the meaningful patterns from analyzing the system 
performance, and simulation is considered the most important 
descriptive tool. Simulation can be used to capture the 
randomness, dynamic system behaviors, and disruptions,  
which are more closed to real-world conditions. In reverse 
logistics management, simulation has become a powerful tool 
for decision-makers to investigate the system performance 
with a set of what-if scenarios. Pandian and Abdul-Kader [21] 
developed an agent-based simulation model for the 
performance evaluation of a cell phone remanufacturing 
system. Gianesello, et al. [22] simulated a closed-loop supply 
chain with disruption considerations. This simulation model 
provided better illustrations of the recovery decisions.  Longo 
[23] used a simulation method to compare different inventory 



  

control policies in reverse logistics so that an optimal solution 
is ready to be chosen when certain pre-set conditions are met. 

Despite the huge advantages the predictive, prescriptive, 
and descriptive analytics have, the combination of these 
methods/theories, which can benefit the multi-objective 
decision-making approach, has not been well developed. 
Today’s rapid advancement of information and 
communication technology (ICT) in Industry 4.0 has provided 
new opportunities for reverse logistics management to become 
more smart, sustainable, and simplified. On the one hand, the 
wide adaptation of IoT embedded devices, smart sensors, and 
radio frequency identification (RFID) have provided effective 
ways for real-time data collection and processing. On the other 
hand, the significant development of AI and optimization 
algorithms has improved computational effectiveness and 
efficiency, which drives the increasing use of data-driven 

prediction, optimization, and decision-making. However, the 
effective use of these new technologies in reverse logistics 
management requires a high level of system integration in a 
cyber-physical environment.  

In the next session, we will propose a framework for 
system integration purposing smart reverse logistics 
management.  

III. A FRAMEWORK FOR SYSTEM INTEGRATION 

System integration is the process that links and integrates 
several physical and cyber components so that they can work 
together as a whole [24]. The most significant challenge of the 
system integration for reverse logistics management is related 

to the use of several analytical tools and the inclusion of a large 
amount of data from different sources and stakeholders. 
However, selecting the right analytical tools and right data to 
solve specific reverse logistics management problems requires 
domain expertise. Thus, this conceptual framework is 
proposed to explore the opportunities for the next generation of 
system integration for smart reverse logistics management. As 
shown in Figure 2, the integrated system combines various AI 
algorithms, optimization models, and simulations to support 
strategic, tactical, and operational decisions, and these 
elements form three layers, namely, data collection, data 
processing and analytics, and decision support. At the lowest 
data collection layer, the data can be collected from both 
physical sources, e.g., enterprise resource planning (ERP)/ 
advanced planning & scheduling (APS), smart sensors, and 
geographic information system (GIS), etc., and cyber sources, 

e.g., the information from the online collaboration portals, the 
online data from track and trace systems, and the 
product-based digital twin [25], etc. The reliability of a 
decision-support system depends heavily on the quality, 
completeness, validity, consistency, timeliness, and 
availability of data [26]. The raw data collected from these 
multiple sources can be sent and stored on a cloud-based 
database and be cleaned. The next step is the core of the system 
integration, which is the data processing, analysis, and 
preparation. Depending on the types of decisions to be made 
for reverse logistics management, the respective AI and/or 
optimization models and/or simulation models need to be 
selected and combined, and the data needs thus to be prepared 
accordingly in order to feed these models. For example, in the 
proactive planning of a waste product collection system, the 

 

 
 

Figure 2. System Integration for Smart Reverse Logistics Management 



  

historical data can be used with AI, e.g., deep learning, to 
provide accurate predictions of the waste generation and the 
maintenance periods required for the waste collection vehicles. 
The prediction results can be visualized and be directly 
converted to the inputs of the respective optimization models 
for routing the vehicles and scheduling the waste collection 
activities and vehicle maintenance. Besides, the optimization 
results and relevant parameters can be converted seamlessly to 
the simulation environment to analyze the system dynamics 
under different scenarios, evaluate the impacts of disruption, 
and test and formulate different reactive strategies. Besides, 
the prediction needs to be dynamically updated with the 
real-time data collected from various smart devices and 
information portals, e.g., traffic condition, vehicle utilization, 
etc., and the optimization and simulation models need to be 
re-activated accordingly to update the respective analytical 
results and suggestions. In making short-term operational 
decisions, real-time data places a more important role in the 
optimization of reactive decisions. Smart reverse logistics 
management emphasizes the importance of effective proactive 
planning and reactive decisions driven by both historical data 
and real-time data. However, in some cases, the datasets are 
not available or not large enough for data analytics to generate 
a reliable prediction. In this regard, simulation can be used at 
the first stage to yield the initial scenarios for a data-driven 
learning process [27] and the parameter estimation for 
optimization. For instance, a simulation method combined 
with a patient allocation heuristics was used to estimate the 
system dynamics of the medical waste generation during the 
early stage of the COVID-19 pandemic in Wuhan, China, 
whose results were then used as the inputs to a multi-objective 
mixed integer program to optimize the locations of temporary 
waste incinerators [28].  

This system integration combines AI, optimization models, 
and computer-based simulation, which can support important 
decisions and test several alternatives in a risk-free 
environment [27]. The main features of the next generation of 
system integration and software development for smart reverse 
logistics management are discussed as follows: 

• Cyber-physical structure: At the lowest level, the 
system integration needs to enable effective data 
collection from both physical and cyber sources. 

• Cloud-based system: The important data and analytical 
models need to be stored in a cloud-based platform so 
that they can be easily accessed from decentralized 
locations. 

• Shared database and data conversion: The parameters 
for different analytical models are generated from the 
same database and can be easily converted to feed 
different models with different requirements on data 
structure and aggregation. 

• Flexible network structure: For different problems in 
reverse logistics management, the numbers of 
echelons and actors involved are by no means 
identical, so the integrated system needs to be flexible 
enough to adapt to different reverse logistics network 
structures.  

• Large model database: The model database needs to be 
broad to tackle a wide range of decision-making 
problems at strategic, tactical, and operational levels. 

• Flexible model modification: The model can be easily 
modified to adapt to the change of system 
requirements in the decision-making. 

• User-friendly interface: The digital interface should be 
designed in a user-friendly way for practitioners and 
non-expert users. 

IV.  MATURITY EVALUATION OF EXISTING SOLUTIONS 

With existing software solutions, we first present the initial 
proof of concept with a case study of the reverse logistics 
network design for WEEE management. Then, three existing 
solutions are compared to evaluate the maturity of system 
integration for smart reverse logistics management. To 
optimize the WEEE recycling network in Norway, an analysis 
combining with both optimization and simulation is given, and 
the data flow needs to be converted between optimization 
models and simulation models due to their different 
requirements. The anyLogistix, which is a cutting-edge 
combined optimization-simulation software package has the 
functionality to convert data between the two methods in 
forward logistics. However, due to the difference of reverse 
logistics flows and the requirement to consider the carbon 
emission objective in decision-making, it cannot be used 
directly to solve this problem. Figure 3 illustrates the data flow 
of the decision-support process for this reverse logistics 
network design problem. First, the data input files need to be 
established in Microsoft Excel. Based on the input data, a 
bi-objective optimization problem considering the balance of 
both costs and carbon emissions is solved with a professional 
optimization solver, whose results are written in the output file. 
The input parameters need to be converted to feed the 
simulation model, and a set of Pareto optimal solutions 
suggested by the optimization model are considered several 
candidate network configurations. Based on this information, 
the performance indicators, e.g., cost, carbon emissions, 
periodic inventory level, etc., can be obtained under a dynamic 
and stochastic environment. The analytical results can then be 
easily visualized for better decision supports. As can be seen, 
to formulate the reverse logistics flows and ensure the model’s 
flexibility, the existing software solutions cannot realize a 
streamlined data flow conversion between different analytical 
models in reverse logistics.  

 

Figure 3. Data flow through the decision-support system. 



  

To identify the gaps related to the system integration for 
smart reverse logistics management, three existing software 
solutions i.e., SAP, Optimity, and anyLogistix are compared 
with respect to the general features given in the previous 
section. In Table II, three levels of system integration maturity 
for smart reverse logistics are defined as follows: 

• 3 is the highest maturity level, in which the process is 
standardized and the functionality can be well 
achieved for smart reverse logistics management.  

• 2 means the functionality has been established at the 
basic level, but significant efforts need to be done to 
solve reverse logistics management problems. 

• 1 is the lowest maturity level, which means the 
functionality has not been well established for reverse 
logistics management.  

TABLE II.  EVALUATION OF SYSTEM INTEGRATION MATURITY FOR 

THREE SOFTWARE 

Main features 
Three existing software solutions 

SAP Optimity anyLogistix 

Cyber-physical structure 3 2 2 

Cloud-based system 3 3 3 

Shared database and data 

conversion 
3 3 3 

Flexible network structure 1 1 1 

Large model database 1 2 2 

Flexible model modification 1 1 2 

User-friendly interface 3 3 3 

 

SAP (System Analysis Program Development) is the 

world's leading software provider of business process 

management, data processing, and information flow solutions 

across organizations. The SAP system has been adopted by a 

large number of companies in many industries. The SAP’s 

EPR solution is a comprehensive system including various 

modules for finance, administration, logistics, etc., with which 

a high level of cross-functional integration and 

cross-organizational coordination can be achieved. SAP is a 

mature system to integrate and process data from different 

sources and to convert data for different purposes via a 

cloud-based system. In logistics planning, SAP offers a set of 

embedded models and algorithms to solve a wide range of 

problems, e.g., vehicle routing problems (VRP). However, 

there is a lack of standardized solution modules and models 

for reverse logistics management problems, e.g., network 

design. Besides, as a commercial system, it suffers from 

flexibility issues.  

Both Optimity and anyLogistix focus on providing the 

next generation of software solutions and digital twin for 

managing logistics systems and supply chains. Optimity 

emphasizes data-driven optimization combined with both ML 

and a set of optimization models for better prediction and 

better decision support. On the other hand, anyLogistix 

focuses on the combination of mathematical optimization and 

computer-based simulation to provide solutions and analytical 

insights under a dynamic and realistic environment, and the 

data flow conversion between optimization models and 

simulation models is thus well developed. However, since 

both software packages are developed with a primary focus on 

forward logistics systems and supply chains, the network 

structure is not well adapted for modeling the material flows 

in the reverse logistics system, as shown in Figure 3. Besides, 

even though they offer model adjustment by adding and 

subtracting some elements, e.g., carbon cost, penalty, etc., the 

flexibility is extremely limited to adapt different modeling 

requirements, e.g., multi-objective optimization, stochastic 

programming, etc. Thus, there is still a long way to go in order 

to achieve the next generation of system integration for smart 

reverse logistics management. 

V. CONCLUSION 

The emergence and increasing use of several Industry 4.0 
technologies have provided new opportunities for improved 
connectivity and intelligence of a system. The combination of 
both data-driven analytics and model-based methods is driving 
the paradigm change toward smart reverse logistics 
management. However, different tools and models need to be 
used to solve different decision-making problems, and these 
tools and models need different software packages, different 
inputs, and different structures and levels of aggregation of 
data. Thus, it is usually an ad-hoc process to combine different 
data sources and different models to solve complex 
decision-making problems in reverse logistics management, 
and there is a lack of standardized solution and software 
package that contains a comprehensive network structure and a 
large model collection to solve a wide range of reverse 
logistics management problems. 

In this paper, from the user’s perspective of reverse 
logistics management, we propose a conceptual framework for 
the next generation of system integration for smart reverse 
logistics management. Six primary parameters, i.e., 
cyber-physical structure, cloud-based system, shared database 
and data conversion, flexible network structure, large model 
database, flexible model modification, and user-friendly 
interface, are given to evaluate the maturity of system 
integration of smart reverse logistics management. The initial 
proof of concept is given by a case study in Norway. Besides, 
three existing software solutions, i.e., SAP, Optimity, and 
anyLogistix, are compared to identify the current problems and 
challenges of system integration. The proposed six parameters 
for the maturity evaluation of system integration are 
considered the general guidelines for the next generation of 
software development in order to realize smart reverse 
logistics management. 
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