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KILLING TENSORS IN KOUTRAS–MCINTOSH SPACETIMES

BORIS KRUGLIKOV AND WIJNAND STENEKER

Abstract. The Koutras–McIntosh family of metrics include conformally flat pp-waves and the Wils metric. It
appeared in a paper of 1996 by Koutras–McIntosh as an example of a pure radiation spacetime without scalar curvature
invariants or infinitesimal symmetries. Here we demonstrate that these metrics have no “hidden symmetries”, by which
we mean Killing tensors of low degrees. For the particular case of Wils metrics we show the nonexistence of Killing
tensors up to degree 6.

The technique we use is the geometric theory of overdetermined PDEs and the Cartan prolongation-projection
method. Application of those allows to prove the nonexistence of polynomial in momenta integrals for the equation
of geodesics in a mathematical rigorous way. Using the same technique we can completely classify all lower degree
Killing tensors and, in particular, prove that for generic pp-waves all Killing tensors of degree 3 and 4 are reducible.

1. Introduction

1.1. Formulation and motivation. Polynomial integrals of Hamiltonian ODEs were actively studied in the XIXth

century classical mechanics; in particular the existence of quadratic integral for the metric of the ellipsoid allowed
Jacobi in 1836 to find an explicit formula for geodesics in terms of elliptic functions.

This problem also appeared in general relativity: the famous metrics of Schwarzschild, Gödel and Kerr admit
polynomial integrals allowing to describe geodesics of the corresponding spacetimes in detail. Often integrals are
conserved quantities related to Killing vectors via Noether’s theorem, but sometimes there are higher degree integrals,
known as Killing tensors. One of those is the Carter constant [3, 26] reducing the geodesic motion to quadratures.

There exist obstructions to the existence of polynomial integrals: according to [14] a generic metric g admits no
such integrals even locally. It is thus important to realize the existence/nonexistence of Killing tensors for concrete
metrics from applications, see [6, 8, 9, 13, 25].

The following is the Koutras–McIntosh family of spacetimes for (a, b) 6= (0, 0):

(1.1) g = 2(ax+ b) du dw − 2aw dx du +
(
f(u)(ax+ b)(x2 + y2)− a2w2

)
du2 − dx2 − dy2.

These metrics were shown in [11] to possess neither invariants nor symmetries. The first property means that all
polynomial curvature invariants, i.e., complete contractions of tensor products of the Riemann tensor and its covariant
derivatives ∇i1 · · ·∇isRabcd, vanish and so cannot be used to distinguished g from the Minkowski metric.

These are so-called VSI (vanishing scalar invariants) spaces that received considerable attention in recent time [21].
They belong to a more general class of spacetimes not separated by their scalar curvature invariants [4, 5], which
in dimension 4 were proven to be of degenerate Kundt type. Note that Kundt spaces can be distinguished by their
Cartan [19] or differential [16] invariants, see [15] for a comparisson.

The second property above means there are no Killing vectors, or linear integrals, for (1.1). In this paper we show
that it also does not possess “hidden symmetries”, by which we mean Killing tensors of low degrees.

Note that the nonexistence of Killing tensors is important in several applications. For instance, it is necessary for
linearization stability of Einstein’s equations [1] and also for the inverse problem in tensor tomography [20]. Thus,
even though Killing tensors do not have direct geometric interpretation (as noticed by Penrose and Walker [26], see
however [2]) their existence or nonexistence carries certain dynamical implications.

1.2. Main results. Metric (1.1) is conformally flat (but nonflat for f 6= 0) and describes pure radiation, satisfying
Einstein’s field equations of the type Rab = φ lalb for a null vector field l and a scalar field φ.

Metric (1.1) for a = 0, b = 1 is a pp-wave, possessing 6 Killing vectors and 1 homothety except for special cases
f(u) = c and f(u) = c/u2, where the number of Killing vectors increases to 7 [22, 8] and the homothety persists.
We will examine the existence of higher order Killing tensors (up to degree 4) and for specific cases f(u) = cum,
m = 0, 1, 2,−2 we prove that there is only one such irreducible quadratic tensor.

Metric (1.1) for a = 1, b = 0 defines the Wils spacetime [27]. This metric is known to have no Killing vectors or
homotheties for general functional parameter f(u), so we examine it for the existence of higher order Killing tensors.
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It turns out that up to order 6 no irreducible Killing tensors exist (that is with the exception of powers of the
Hamiltonian and combinations with Killing vectors when they exist). These results are presented in Section 3.

For the general Koutras–McIntosh family we deduce the following statement:

Theorem 1. For generic numerical parameters a, b and functional parameter f(u) the spacetime (1.1) possesses no
Killing tensors up to degree 6 except for energy and its powers H, H2 and H3.

Here and below genericity of f(u) is understood in Ck+1 topology, where k is the prolongation level determined by
Algorithm 1 of §2.4, where the matrix Mk depends on the jet jk+1f . Table 2 shows values of k for degrees d ≤ 6.

We can be more specific on the exceptional values of the involved parameters. To find those that allow Killing
vectors one may follow the general approach with metric invariants via the Cartan-Karlhede algorithm [7], however
our method with counting compatibility conditions via the coefficient matrix of the prolonged PDE system gives an
alternative and implies the following results.

Theorem 2. Metrics (1.1) possess Killing vectors if and only if either a = 0 (then rescale b → 1), so that the
spacetime is a plane wave, or b = 0 (then rescale a → 1), so that g is Wils metric with f(u) = (c0 + c1u+ c2u

2)−2.

The same approach but with much heavier computations yields the following results.

Theorem 3. Metrics (1.1) possess Killing 2-tensors different from the Hamiltonian H in the same range of param-
eters as for the Killing vectors, i.e., either a = 0 or b = 0, f(u) = (c0 + c1u+ c2u

2)−2.

The proofs and further specifications will be given in Section 3. The Maple & LinBox worksheets, which demonstrate
our computations, can be found in a supplement to the arXiv version of this paper.

2. Geometric Theory of PDEs

We start with the general setup. Let (Nn, g) be a pseudo-Riemannian manifold. In this section we formalize searching
for Killing tensors (or polynomial integrals of the geodesic flow on the tangent bundle but we work on the cotangent
bundle using raising/lowering indices with the metric g) via a compatibility analysis of an overdetermined PDE
system and discuss the prolongation-projection technique.

2.1. Hamiltonian formalism. The energy function H = 1
2‖p‖

2
g writes in local coordinates

H(x, p) =
1

2
gij(x)pipj [gij ] = [gij ]

−1.

It is well-known that geodesics of g are projections to the base N of trajectories of the corresponding Hamiltonian

vector field XH = ω−1dH on T ∗N
g
≃ TN , where ω is the canonical symplectic form on the cotangent bundle.

Integrating the equations of geodesics requires conserved quantities for this Hamiltonian system. A function I :
T ∗N → R is an integral (of motion) XH(I) = 0 if it Poisson commutes with the Hamiltonian:

{H, I} =
n∑

i=1

(
∂H

∂pi

∂I

∂xi
−

∂H

∂xi

∂I

∂pi

)

= 0.

The natural action of the isometry group on the cotangent bundle T ∗N is Hamiltonian and it preserves the energy H .
Thus, the isometries represent infinitesimal symmetries of the geodesic flow given, by virtue of Noether’s theorem,
by linear in momenta integrals of motion. Explicitly, if X = X i(x)∂xi ∈ iso(N, g) is a Killing vector field then the
corresponding integral is I(x, p) = 〈X, p〉 = X i(x)pi.

More generally, a Killing tensor of degree d corresponds to a homogeneous in momenta polynomial

(2.1) Id := ai1···id(x) pi1 · · · pid ,

which Poisson commutes with H , and is thus a polynomial integral. Since the Hamiltonian is quadratic in momenta,
for any (2.1) the Poisson bracket {H, Id} is of degree d+ 1 in momenta. Consequently, Killing d-tensors correspond
to solutions of a system of differential equations formed by vanishing of p-coefficients of the Poisson bracket, which
we call the Killing equation,

(2.2) Ed := {F = 0 : F ∈ coeffsp({H, Id})}.

This is an overdetermined system of linear first order PDEs on the coefficients ai1···id(x) of the Killing tensor.

Actually, there are
(
n+d
d+1

)
equations on

(
n+d−1

d

)
unknown functions. Denote solutions to this system – the linear

space of all Killing d-tensors – by Kd.
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2.2. Jet spaces and equations. The notion of jet-space formalizes the computational device of truncated Taylor
polynomials; we refer for details to [12]. If xi are local coordinates on N then the jet-space JkN of k-jet of functions
u : N → R has local coordinates (xi, uσ) for multi-indices σ = (i1, . . . , in), is ≥ 0, |σ| =

∑
is ≤ k. Similarly are

defined jets of vector-valued functions, sections, etc. For a bundle π : E → N the jet-space of its sections is denoted
by Jk(N,E).

The space of k-jets of maps u : Rn → R
m will be simply denoted by Jk(n,m). It is a bundle of rank m ·

(
n+k−1

k

)

over n-dimensional base. Any map u = (uj) : Rn → R
m lifts to the jet-section jku : Rn → Jk(n,m) given by

xi 7→ uj
σ = ∂uj(x)/∂xσ .

Definition 4 (Geometric PDE). A partial differential equation of order k is a submanifold E ⊆ Jk(n,m). A
solution of the PDE is defined to be a function u : Rn → R

m such that its k-jet jku takes values in E . A local
solution is the same but defined on a domain U ⊂ R

n. We denote by Sol(E) the space of all (local) solutions of E .

Elements of a k’th order geometric PDE E ⊆ Jk(n,m) are solutions up to order k (at a point). To find the solutions
of the PDE E up to order k+1 and higher, we have to differentiate the defining equations. To encode the chain rule,
we define the q’th total derivative of F : Jk → R

s to be a vector-function on Jk+1 given by

(2.3) DqF :=
∂F

∂xq
+

m∑

j=1

∑

|σ|≤k

∂F

∂uj
σ

· uj
σ+1q

.

(Here we use the notation σ + 1q for the multi-index obtained by adding 1 to the q’th entry of σ.) Now, a point
(xi, uj

σ) ∈ Jk+1 is said to be a solution of E up to order k + 1 if it satisfies the following system of equations:

E(1) :=
{

F (xi, uj
σ) = 0, (DqF )(xi, uj

α) = 0 ∀ q = 1, . . . , n
}

.

The resulting system of equations is called the first prolongation of E . By construction, a solution of the prolongation
E(1) is still a solution of E . We inductively define the l’th prolongation by E(l) = (E(l−1))(1) ⊂ Jk+l. It corresponds
to solutions up to order k + l (at a point).

Definition 5 (Finite Type). A PDE E ⊆ Jk(n,m) is called of finite type l if after l prolongations all the highest
order derivatives of the dependent variables can be expressed algebraically in terms of the lower order derivatives. A
PDE is called of Frobenius type if it is of finite type 0.

Given a PDE E of finite type, it is readily seen that the space of formal solutions E(∞) is necessarily finite-dimensional.
This implies that (under some regularity conditions) the solution space Sol(E) is finite-dimensional.

The Killing PDE is represented by a first order system Ed ⊂ J1(N,SdTN). The following fundamental result is
well-known, cf. [24] and [28].

Theorem 6 (Killing PDE is of Finite Type). The PDE Ed defining a Killing d-tensor is a first order linear PDE
of finite type d with Sol(Ed) = Kd. This equation and its prolongations possess no compatibility conditions before
achieving Frobenius type.

2.3. Prolongation-projection. Let E = {F (xi, uj
α) = 0} ⊆ Jk(n,m) be a PDE of order k. Its solution up to order

k can be extended to order (k+ l) if and only if it belongs to the projection of the prolongation πk+l,k(E
(l)) ⊆ E . In

the case of equality here, every k-jet solution can be extended to a (k+ l)-jet solution. In the opposite case, there is
a linear combination of iterated total derivatives up to order l, �(F ) =

∑

|τ |≤l a
τDτF , which has order k.

Definition 7 (Compatibility). A compatibility condition of E is an equation defining πk+l,k(E) that is algebraically
independent of F and that is satisfied by all formal solutions.

Associated to a PDE is the Cartan distribution. Solutions arise as integral manifolds of this distribution, cf. [12].
Therefore, in the PDE setting, Frobenius theorem implies:

Theorem 8 (Frobenius Theorem). Solutions of a PDE E ⊆ Jk(n,m) of finite type l are determined uniquely by
their (k + l − 1)-jets. If in addition E has no compatibility conditions, then for every ξ ∈ E(l) there exists a local
solution u ∈ Sol(E) satisfying jk+l

x u = ξ.

Note that if a PDE is of finite type, then all of its prolongations are finite type as well. There is the following more
general claim, which holds also true in infinite type case, under the assumption of analyticity of the equation.

Theorem 9 (Cartan’s Involution). There exists q ∈ N such that E(q) is compatible.
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Thus, in regular domains, there are only finitely many compatibility conditions. However to find them explicitly
is generally difficult, and bringing to involution in practice is a formidable computation. We therefore substitute
searching for involution by the following criterion. For the finite type l case: If π : E(r) → E(r−1) is surjective for
some r > l, then E(r−1) is compatible. This is especially simple for linear overdetermined PDEs: over regular domains
U ⊂ N such E are vector bundles and on each step of the prolongation-projection a compatibility condition reduces
its rank; once this rank is stabilized for one step, then by Theorem 8 the system is compatible, so the involution level
q of Theorem 9 is achieved.

2.4. Algorithmic implementation. The above criterion allows for an effective implementation of evaluation of
dimKd for a given metric g using computer algebra systems.

The Killing PDE Ed as well as its prolongations E
(k)
d are linear in (k+1)-jets of the dependent variables. We convert

this linear system of equations to a matrix-valued function Mk(x) on the spacetime. For our class of metrics g
the entries are polynomials with rational coefficients. Hence to make use of computer algebra software, we insert a
rational point x0 ∈ N to obtain a matrix with rational coefficients (in this case computer calculations are exact!).

The first thing to do is to find the points that work nicely with Cartan’s prolongation-projection method. We call a
point x0 ∈ N regular if the function x 7→ rank(Mk(x)) attains its maximum at x0 for all k ≥ 0, that is, at each step
we find the maximal number of compatibility conditions. Note that a regular point is generic, i.e., the set of regular
points is an open dense subset of N . A point is singular if it is not regular.

Algorithm 1. (Cartan’s Prolongation Method for Geodesic Flow).
(Input: A nonnegative integer d, a regular point x0.)

• Step 1.) Compute the Poisson bracket {H, Id} of a polynomial in momenta p function Id with the
Hamiltonian H .

• Step 2.) Collect the coefficients of {H, Id} with respect to the momentum variables. Define the first
order linear PDE Ed := {F = 0 : F ∈ coeffsp({H, Id})}.

• Step 3.) Set k := 0.

– Convert the linear system of equations E
(k)
d w.r.t. the variables Vk+1,d := {ai1···idα : |α| ≤ k + 1}

into a matrix Mk(x) that depends on the x-coordinates.
– Substitute x0 to obtain a matrix Mk := Mk(x0), the k’th prolongation matrix.
– Set δk := columns(Mk)− rank(Mk).

If (k ≤ d) or (k > d and δk 6= δk−1), increase k by 1 and repeat Step 3.
• Step 4.) Return (δk, k).

(Output: The dimension of the space of Killing d-tensors is dimKd = δk. The integer k indicates the number
of prolongations necessary to find all compatibility conditions of E .)

Proposition 10. Algorithm 1 is correct and it terminates.

Proof. Termination is clear. We now justify correctness, i.e., that the algorithm computes the number of Killing

d-tensors. Turn the prolongation matrix Mk into row reduced echelon form. The equation E
(k)
d is linear and its rank

as a bundle over N , equal to columns(Mk), counts the number of (k + 1)-jets of dependent variables. Rows of the

matrix represent equations defining E
(k)
d , so they consist of the original Killing PDE, their differential corollaries and

compatibility conditions. Consequently, δk is number of free jets (coordinates on fibers of the equation Ed → N). In
view of the Frobenius theorem, each free variable corresponds to a (k + 1) jet-solution of the Killing PDE.

Now consider the conditions in step 3 determining termination of the loop. The first part (k ≤ d) addresses whether
the prolongation has achieved Frobenius type, see Theorem 6. The second part (k > d and δk 6= δk−1) checks whether
all compatibility conditions have been computed, as guaranteed by the criterion after Theorem 9. Thus every (k+1)
jet yields a local solution. �

2.5. Syzygies and Irreducible Killing Tensors. The pointwise multiplication of functions gives rise to a linear
map

(2.4) Kd1
⊗Kd2

7→ Kd1+d2
, Id1

⊗ Id2
7→ Id1

· Id2
.

A relation (syzygy) among Killing tensors of rank d1 and d2 with d1 6= d2 is an element of the kernel of the map

(2.5) Kd1
⊗Kd2

→ Kd1+d2
.
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If d1 = d2 =: d a relation is given by an element in the kernel of the map S2Kd → K2d.

A Killing d-tensor (d ≥ 2) is irreducible if it is not a linear combination of the symmetric product of lower rank Killing
tensors. The number of irreducible Killing d-tensors can be found using the number of syzygies. We demonstrate
this for Killing 2-tensors. The space of irreducible Killing 2-tensors can be identified with the cokernel of map
ι2 : S2K1 → K2, fitting into a short exact sequence

(2.6) 0 −→ Ker ι2 −→ S2K1 → K2 −→ Coker ι2 −→ 0.

The space of irreducible Killing 3-tensors can be identified with the cokernel of the map ι3 : K1 ⊗ K2 → K3, etc.
The number of syzygies among Killing tensors is found as follows. (We use the notation Taylor(a(x), x0, k) for the
Taylor polynomial of the function a around x0 up to order k.)

Algorithm 2. (Finding Relations among Killing Tensors).
(Input: Nonnegative integers d1, d2, a regular point x0.)

• Step 1.) For s = 1, 2: run algorithm 1 obtain dimKds
and the number of prolongation ks needed to

achieve compatibility.
Consider the polynomial Iks+1,ds

:= Taylor(ai1···ids , x0, ks + 1) · pi1 · · · pids .
• Step 2.) Consider the linear algebraic system of equations {Taylor(c, x0, ks) = 0 : c ∈

coeffsp({H, Iks+1,ds
})} on the variables Vks+1,ds

(x0) := {a
i1···ids
α (x0) : |α| ≤ ks + 1} for s = 1, 2.

Solve these linear equations and substitute the corresponding solutions into Iks+1,ds
to obtain the

truncated integrals Ijks+1,ds
for 1 ≤ j ≤ dimKds

.

• Step 3.) Set

T :=

dimKd1∑

l1=1

dimKd2∑

l2=1

cl1,l2 I l1k1+1,d1
· I l2k2+1,d2

.

Define S := {Taylor(c, x0, d1 + d2) : c ∈ coeffsp(T )}).
• Step 4.) Solve the linear algebraic system of equations {F = 0 : F ∈ coeffsx(S)} in terms of the
coefficients cl1,l2 , and denote the resulting solution space R.

• Step 5.) Return R and dimR.

(Output: Relations among Killing tensors of rank d1 and d2; # (indep) syzygies = dimR.)

Proposition 11. Algorithm 2 is correct and it terminates.

Proof. For d ≥ 1, consider the Killing PDE Ed ⊆ J1. A (k + 1)-jet jk+1
x0

u of a vector-function u = (ai1···id(x)) can

be identified with the Taylor polynomial Ik+1,d = Taylor(ai1···id , x0, k + 1)pi1 · · · pid . Under this correspondence, we

have that jk+1
x0

u ∈ E(k) if and only if {H, Ik+1,d} vanishes up to order k at x0. These observations explain steps 1
and 2.

By Theorem 6 Kd is determined by d-jets in the sense that we can compute all jets of a Killing d-tensor at a point
if we know its d-jet. Thus, in step 3 we must include the jets up to order d1 + d2 in order to determine uniquely the
corresponding (d1 + d2)-tensor. �

Application. In practice we apply algorithm 2 as follows. First, using algorithm 1 we compute the dimensions of
S2K1 and K2. Then we use algorithm 2 to determine the dimension of the kernel Ker ι2. Finally, the number of
(lin. independent) irreducible Killing 2-tensors is given by

dimCoker ι2 = dimK2 − dimS2K1 +Ker ι2.

This method can be readily generalized to higher order Killing tensors.

Regular and singular points. Even though the regular points are dense, it is difficult to verify (in practice) that
a given point is regular. Thus, we must be careful in order to get rigorous results. For a singular point, algorithm 1
gives an upper bound on the number of Killing tensors. The number of syzygies imply lower bounds on the number of
Killing tensors (indeed, the syzygies imply the number of reducible Killing tensors). Thus, whenever the algorithms
suggest the existence of an irreducible Killing tensor it is important to find it explicitly. (For our metrics g it turns
out to be possible to find the irreducible Killing tensors explicitly using Maple’s pdsolve.)
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2.6. Note on the computability of the algorithm. We briefly discuss the computational difficulties associated
with the proposed method and how we deal with them. Dimension of the prolongation matrix Mk from algorithm 1
equals

rows(Mk) =

(
n+ d

d+ 1

)

·

(
n+ k

n

)

, columns(Mk) =

(
n+ d− 1

d

)

·

(
n+ k + 1

n

)

.

In particular, we see that the number of rows grows faster with k than the number of columns. We highlight several
elements that have made the computer implementation more efficient:

• (LinBox). The LinBox package [18] in Sage allows for incredibly fast rank computations of large sparse integer
matrices. For example, computing the rank of the quartic prolongation matrixM19 for metric 2 with size (495880)×
(371910) took less than an hour. In comparison, rank computations of smaller matrices (say 50000 by 40000) would
take several days in Maple or not give a result at all. Thanks to LinBox, the time to compute the ranks is negligible.
Generating a prolongation matrix takes by far the longest time of the steps in algorithm 1.

• (Exploiting Sparsity.) The prolongation matrices Mk that we encounter here are sparse (with density < 0.001).
It is important that the generation of the matrix reflects this. We generate the initial matrix with all entries zeroes
and then substitute the nonzero values.

• (Combinatorial Description of Prolongations.) For the quartic case, we used a combinatorial description of
the prolongation equations. We demonstrate this for metric 2. Since I4 is of degree 4, we have that {H, I4} is of
degree 5 in momenta. Thus, we can write {H, I4} = coeffτp

τ where pτ = pτ11 pτ22 pτ33 pτ44 . Given a multi-index τ of
length 5, we obtain the pτ -coefficient in terms of the coefficients of I:

coeffτ ({H, I4}) = 2∂1(a
τ−11) + 2∂2(a

τ−12)− 2∂4(a
τ−13)− 2∂3(a

τ−14)

+ 4x3((x1)2 + (x2)2)∂4(a
τ−14)− 2((x1)2 + (x2)2)

(τ + 13 − 2 · 14)!

(τ − 2 · 14)

− 4x1x3 (τ + 11 − 2 · 14)!

(τ − 2 · 14)!
aτ+11−2·14 − 4x2x3 (τ + 12 − 2 · 14)!

(τ − 2 · 14)!
aτ+12−2·14 .

Using the Leibniz rule for multi-index notation, we can subsequently determine the general expression for the
derivative ∂α(coeffτ ({H, I4})), where α is a multi-index. In this way we obtain the equations of the prolongation
as a function of the multi-indices τ and α. This combinatorial description significantly reduces the time needed to
generate the equations in Maple, especially as the order increases. This approach is most beneficial for Hamiltonians
which are polynomials of low order in the independent x-variables. (For the Kerr metric, for example, these
combinatorics would be unfeasible.)

3. Computations and results

Here we discuss the results of concrete computations with the above algorithms. We begin with investigations of the
special cases of pp-waves and Wils metric and then discuss the general case.

3.1. Conformally Flat pp-Waves. These are given by the following formula:

(3.1) g = 2dx3dx4 +
(
f(x3)((x1)2 + (x2)2)

)
(dx3)2 − (dx1)2 − (dx2)2

Sippel and Goenner classified pp-waves in terms of their isometry groups [22]. For conformally flat pp-waves there
are three classes: f(x3) = c, f(x3) = c(x3)−2 and the generic case with dimK1 = 6. We apply our prolongation-
projection algorithm to the following four metrics (rescaling of f does not play a role for the first three metrics):

(i) f(x3) = 1, (ii) f(x3) = x3, (iii) f(x3) = (x3)2, (iv) f(x3) = 2(x3)−2.

If two subsequent values δk, δk+1 are equal (with k ≥ d), the sequence of δ-values stabilizes and we can read off the
number of Killing d-tensors. In the table this is shown by circling this δ-value.

We see that metrics 1 and 4 have 7-dimensional isometry, which is consistent with the classification by Sippel and
Goenner. Note that for the quartic case of metrics 2 and 3 we have to go all the way to the 19’th prolongation of
the Killing PDE. The number of equations and variables at this stage are so large that it is unlikely that we can
compute the number of Killing 5-tensors with present computational powers.
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Linear E E(1) E(2) E(3) E(3)

δ 10 10 7 7 . . .

Quadratic E . . . E(4) E(5) E(6)

δ 30 . . . 29 28 28

Cubic E . . . E(6) E(7) E(8)

δ 65 . . . 87 84 84

Quartic E . . . E(10) E(11) E(12)

δ 119 . . . 211 210 210

Linear E E(1) E(2) E(3) E(3)

δ 10 10 7 6 6

Quadratic E . . . E(5) E(6) E(7)

δ 30 . . . 24 22 22

Cubic E . . . E(11) E(12) E(13)

δ 65 . . . 63 62 62

Quartic E . . . E(17) E(18) E(19)

δ 119 . . . 150 148 148

Linear E E(1) E(2) E(3) E(3)

δ 10 10 7 6 6

Quadratic E . . . E(5) E(6) E(7)

δ 30 . . . 24 22 22

Cubic E . . . E(11) E(12) E(13)

δ 65 . . . 63 62 62

Quartic E . . . E(17) E(18) E(19)

δ 119 . . . 150 148 148

Linear E E(1) E(2) E(3) E(3)

δ 10 10 7 7 . . .

Quadratic E . . . E(4) E(5) E(6)

δ 30 . . . 29 28 28

Cubic E . . . E(6) E(7) E(8)

δ 65 . . . 87 84 84

Quartic E . . . E(10) E(11) E(12)

δ 119 . . . 211 210 210

Table 1. Left up: Metric (i) f(x3) = 1; Right up: Metric (ii) f(x3) = x3.
Left down: Metric (iii) f(x3) = (x3)2; Right down: Metric (iv) f(x3) = 2(x3)−2.

3.2. Syzygies and irreducible Killing tensors for pp-waves. In order to find the number of irreducible Killing
tensors, we have to take into account the number of syzygies among the Killing tensors. We demonstrate this for
metric 2 (the other cases are similar). Consider the following short exact sequence

0 −→ Ker ι2
︸ ︷︷ ︸
1 syzygy

→ S2K1
︸ ︷︷ ︸

21−dim.

ι2−→ K2
︸︷︷︸

22−dim.

−→ Coker ι2
︸ ︷︷ ︸

2 irreducible Killing 2-tensors

→ 0

Algorithm 2 gives dimKer ι2 = 1, and so there are 2 irreducible Killing 2-tensors. Next, we consider

0 −→ Ker ι3
︸ ︷︷ ︸

70 syzygies

→ K1 ⊗K2
︸ ︷︷ ︸

132−dim.

ι3−→ K3
︸︷︷︸

62−dim.

−→ Coker ι3
︸ ︷︷ ︸

0 irreducible Killing 3-tensors

→ 0

Algorithm 2 gives dimKer ι3 = 70 and so there are no irreducible Killing 3-tensors. Since there are no irreducible
Killing 3-tensors, the source space of ι4 is the second symmetric power S2K2. (If there were irreducible Killing
3-tensors, then the source space would be K1 ⊗K3 ⊕ S2K2.) Thus we obtain the short exact sequence

0 −→ Ker ι2
︸ ︷︷ ︸

105 syzygies

→ S2K2
︸ ︷︷ ︸

253−dim.

ι4−→ K4
︸︷︷︸

148−dim.

−→ Coker ι4
︸ ︷︷ ︸

0 irreducible Killing 4-tensors

→ 0

There are 105 syzygies, it follows that there are no irreducible Killing 4-tensors.

For metrics (i), (ii) and (iii) we obtain that there exists one irreducible Killing 2-tensor, in addition to the Hamiltonian.
Actually, we can explicitly write this Killing 2-tensor as follows:

(3.2) J := −x3H + x1p1p4 + x2p2p4 + 2x4p24.

For metric (iv) the only irreducible Killing 2-tensor is the Hamiltonian H , i.e., the Killing 2-tensor J is reducible in
this case (due to the existence of an extra Killing vector).

In the general case (3.1) for f(u) 6= c, cu−2 the Killing vectors are the following:

(3.3) I1 = p1x
2 − p2x

1, I2 = p4, I3,4 = a1,2(x
3)p1 + a′1,2(x

3)x1p4, I5,6 = a1,2(x
3)p2 + a′1,2(x

3)x2p4,

where ai (i = 1, 2) are fundamental solutions of the linear second order ODE a′′ + fa = 0, i.e., solutions satisfying
the initial conditions a1(0) = 1, a′1(0) = 0, a2(0) = 0, a′2(0) = 1. The Hamiltonian is equal to

(3.4) H = 2p3p4 − p21 − p22 − ((x1)2 + (x2)2)f(x3)p24
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and the other quadratic integral J is given by (3.2) (also for general f). These results are consistent with the following
theorem by Keane and Tupper [8] that was proven using the Koutras algorithm [10] (our approach is different).

Theorem 12 ([8]). A conformally flat pp-wave with dimK1 = 6 or with f(x3) = c admits an irreducible Killing
2-tensor, independent of the (irreducible) Hamiltonian H.

By using our computational algorithm we can also establish the nonexistence results of higher order Killing tensors
for these conformally flat pp-waves.

Theorem 13. A conformally flat pp-wave (3.1) with f(u) = cum, m = 0, 1, 2, or f(u) = 2u−2, admits no irreducible
Killing 3- and 4-tensors.

Proof. The result follows straightforwardly from the above computations and a rescaling argument. �

Corollary 14. For a generic conformally flat pp-wave (3.1) all 3- and 4- Killing tensors are combinations of Killing
vectors (3.3), the Hamiltonian H (3.4) and the Killing 2-tensor J (3.2).

Here f is generic in C13 topology for Killing 3-tensors and in C19 topology for Killing 4-tensors, see Table 1 for
k = kd, however we believe that also holds in lower regularity by the approach of [14].

Proof. It follows from our computations and algebraic dependence of the matrixMk on jk+1f that dimKi (i = 2, 3, 4)
is upper semi-continuous in this jet. Hence, for a generic f(x3) the dimension of K2,K3,K4 are as indicated in the
third term of the above short exact sequences. Due to full control of K1,K2 the second terms have dimensions as
indicated. Dimension of the first term is also upper semi-continuous, so for a generic f(x3) we have at most the
indicated number of syzygies. In fact, this number is realizable as follows.

In the case of Killing 2-tensor (first short exact sequence) the only syzygy is (verifying this exploits constancy of the
Wronskian of a1, a2)

S2 : I1I2 + I3I6 − I4I5 = 0.

For Killing 3-tensor (second short exact sequence) the only 6 syzygies are Ij ·S2 (1 ≤ j ≤ 6). To explain dimension
70 of the first term, note that kernel of the symmetrization operator K1⊗S2K1/K1⊗S2 → S3K1 is 64-dimensional.
Similarly one justifies the case of Killing 4-tensor (third short exact sequence).

Actually, we can also obtain the claim from the fact that the functional rank of 8 functions Ij , H, J is 7, while that
of Ij is 5. Thus no syzygies can involve H, J and the only syzygy among 6 Killing vectors Ii is given by S2. �

3.3. Absence of Killing Tensors for the Wils Metric. The Wils metric is given by

(3.5) g = 2x1dx3dx4 − 2x4dx1dx3 +
(
f(x3)x1((x1)2 + (x2)2)− (x4)2

)
(dx3)2 − (dx1)2 − (dx2)2.

We apply our prolongation-projection algorithm to the following three cases: f(u) = um, m = 0, 1, 2. The results
are displayed in the following table.

Linear . . . E(4) E(5)

δ . . . 1 1

Quadratic . . . E(5) E(6)

δ . . . 2 2

Cubic . . . E(7) E(8)

δ . . . 2 2

Quartic . . . E(8) E(9)

δ . . . 3 3

Quintic . . . E(9) E(10)

δ . . . 3 3

Sextic . . . E(10) E(11)

δ . . . 4 4

Linear . . . E(5) E(6)

δ . . . 0 0

Quadratic . . . E(5) E(6)

δ . . . 1 1

Cubic . . . E(7) E(8)

δ . . . 0 0

Quartic . . . E(8) E(9)

δ . . . 1 1

Quintic . . . E(9) E(10)

δ . . . 0 0

Sextic . . . E(10) E(11)

δ . . . 1 1

Linear . . . E(5) E(6)

δ . . . 0 0

Quadratic . . . E(5) E(6)

δ . . . 1 1

Cubic . . . E(7) E(8)

δ . . . 0 0

Quartic . . . E(8) E(9)

δ . . . 1 1

Quintic . . . E(9) E(10)

δ . . . 0 0

Sextic . . . E(10) E(11)

δ . . . 1 1

Table 2. Metric (i) f(x3) = 1; Metric (ii) f(x3) = x3; Metric (iii) f(x3) = (x3)2.
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Theorem 15. The Wils metric (3.5) for f(u) = um, m = 0, 1, 2, admits no Killing tensors up to degree 6 except
for powers of the Hamiltonian.

This statement follows directly from Table 2. It also implies that for generic values of the functional parameter f
there are no lower degree Killing tensors. Now we want to be more specific on those exceptional parameters.

Theorem 16. The Wils metric admits Killing vectors if and only if f is of the form

(3.6) f(x3) = (c0 + c1x
3 + c2(x

3)2)−2.

In this case the Killing vector is unique up to scale and is given by the formula

(3.7) X := (c0 + c1x
3 + c2(x

3)2) ∂x3 − (2c2x
1 + c1x

4 + 2c2x
3x4) ∂x4 .

Proof. In order to simplify the calculations we evaluate at x1 = 1, x2 = 2, x4 = 4 but leave x3 general.

Step 1 and 2.) Using, the equations defining the PDE E , we express the 1-jets a11, a
1
2, a

1
3, a

1
4, a

2
3, a

2
4, a

3
2, a

3
4, a

4
1, a

4
2

in terms of the free variables a1, a2, a3, a4, a21, a
2
2, a

3
1, a

3
3, a

4
3, a

4
4 and the function f(x3).

Step 3.) For the first prolongation E(1), we can express all 2-jets in terms of lower order jets without making any
assumptions on f .

Step 4.) Consider E(2). If we assume that f 6= 0, we obtain the following compatibility conditions:

a31 = 0, a33 = −
a1f + f ′a3

2f
, a44 = 0.

We are left with 7 free jet variables. For E(3), we obtain the additional compatibility conditions:

a1 = 0, a22 = a43, a21 =
2a2f2 − 4a3ff ′ + 2a3ff ′′ − 3a3(f ′)2

6f2
.

We are left with 4 free variables. The prolongation E(4) gives three additional compatibility conditions: a43 = 0 and
two expressions for a2 and a4. Only 1 free variable a3 remains, and the next prolongation E(5) does not give an
additional compatibility condition if and only if f is a solution of the ODE

(3.8) f ′′′ =
18ff ′f ′′ − 15(f ′)3

4f2
.

Resolving this ODE gives the required formula (3.6). Expression (3.7) follows. �

The following theorem is proven in the same manner, but the number of steps is larger, so the proof is omitted.

Theorem 17. The Wils metric has Killing 2-tensors if and only if it has nontrivial Killing vectors. This happens
only for the functional parameter (3.6); in this case, denoting I1 = 〈X, p〉 the linear integral corresponding to (3.7),
the general quadratic integral is a linear combination k1I

2
1 + k2H.

3.4. General Koutras-McIntosh metrics. Investigation of the general metric (1.1) follows the same scheme.
First of all, the computation in the previous section implies that the matrix Mk of the prolonged Killing PDE for
degree d ≤ 6 tensors has minimal possible value for δk, i.e., 0 for odd d and 1 for even d. This implies Theorem 1.

To obtains Theorems 2 and 3 we can perform general computation with symbolic matrix for the prolongation E(6)

when d = 1 and E(7) when d = 2. The matrix Mk has size 1260 × 840 for d = 1 and 4200 × 3300 for d = 2. To
compute its rank we use the idea exploited in [17], namely successively identifying rows or columns with few non-zero
terms (this means ≤ 2 for d = 1 and ≤ 8 for d = 2) and doing Gauss elimination, while storing the involved factors
to check their vanishing separately. This gives the splitting a = 0 or b = 0 and the rest follows from Theorem 16. In
fact, this computation also yields equation (3.8).

The exceptional functional parameters f(u) in (3.6) up to transformations u → ku + b (change of coordinates:
x1 7→ λx1, x2 7→ λx2, x3 7→ kx3 + b, x4 7→ λx4/k, g 7→ λ2g, f 7→ f/(λk2)) give the following different cases

f(u) = 1, f(u) = u−1, f(u) = cu−2, f(u) = u−4, f(u) = |u2 ± 1|−2.

In each of these cases one can directly verify there are no irreducible Killing 3- or 4-tensors (for the middle case this
was only verified for a generic parameter c), i.e. all of them are algebraic combinations of I1 and H .
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4. Outlook

In this paper we obtain the nonexistence of Killing tensors of degrees d up to 6 for the Koutras-McIntosh spacetimes
for generic parameters. This complements the previous result on the nonexistence of Killing vectors [11]. The problem
of existence of higher order d > 6 Killing tensors remains open. The size of the involved matrices (163800× 152880
for d = 6) does not allow further computational progress, and we have to stress that our success for metrics (1.1) is
related to sparsity of the corresponding matrices Mk and rationality of their entries in coordinates and parameters.

The complexity of computations carried here is much higher than that in preceeding works [13, 17, 25]; actually
those possessed Killing vectors allowing to reduce the PDE setup to that on a 2-dimensional manifold, while our

setup here is fully 4-dimensional (that is why the size of the matrix Mk of E
(k)
d grows much faster). Other works

[6, 8, 9], addressing Killing 2-tensors, have in similar vein reductions to ODEs (that is, differential equations on a
1-dimensional manifold), so our work on higher degree d Killing tensors is apparently novel.

One may envision that the following approach is feasible for large d. Consider the Killing PDE Ed with Sol(Ed) = Kd.
This is an overdetermined system and a compatibility analysis gives the dimension of Kd depending on certain rank
invariants. Those depend on vanishing of some relative invariants. Since the construction involves only invariant
algebraic operations and all absolute polynomial invariants vanish, there are only few possibilities and the answer
for higher d might be the same as that for d = 1. This is indeed confirmed by what we have investigated.

The nonexistence of polynomial integrals of low degree raises the question whether the geodesic flow of metrics (1.1)
is integrable. Depending on the class of admissible integrals the methods to approach this problem are: differential
Galois theory, Painlevé test, numerical simulations. None of these have been done yet.
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