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BACKGROUND: Hypertensive disorders of pregnancy (preeclampsia,
gestational hypertension, and chronic hypertension), diabetes mellitus,
and placental dysfunction confer an increased risk of long-term maternal
cardiovascular disease. Preeclampsia is also associated with acute athero-
sis that involves lesions of uteroplacental spiral arteries, resembling early
stages of atherosclerosis. Serum amyloid A1 is involved in hypercoagula-
bility and atherosclerosis and may aggregate into amyloid—aggregations
of misfolded proteins. Pregnancy zone protein may inhibit amyloid aggre-
gation. Amyloid is involved in Alzheimer's disease and cardiovascular dis-
ease; it has been identified in preeclampsia, but its role in preeclampsia
pathophysiology is unclear.
OBJECTIVE: We hypothesized that serum amyloid A1 would be
increased and pregnancy zone protein decreased in hypertensive disorders
of pregnancy and diabetic pregnancies and that serum amyloid A1 and
pregnancy zone protein would correlate with placental dysfunction
markers (fetal growth restriction and dysregulated angiogenic biomarkers)
and acute atherosis.
STUDY DESIGN: Serum amyloid A1 is measurable in both the serum
and plasma. In our study, plasma from 549 pregnancies (normotensive,
euglycemic controls: 258; early-onset preeclampsia: 71; late-onset pre-
eclampsia: 98; gestational hypertension: 30; chronic hypertension: 9; dia-
betes mellitus: 83) was assayed for serum amyloid A1 and pregnancy
zone protein. The serum levels of angiogenic biomarkers soluble fms-like
tyrosine kinase-1 and placental growth factor were available for 547
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pregnancies, and the results of acute atherosis evaluation were available
for 313 pregnancies. The clinical characteristics and circulating bio-
markers were compared between the pregnancy groups using the Mann-
Whitney U, chi-squared, or Fisher exact test as appropriate. Spearman’s
rho was calculated for assessing correlations.
RESULTS: In early-onset preeclampsia, serum amyloid A1 was
increased compared with controls (17.1 vs 5.1 mg/mL, P<.001), whereas
pregnancy zone protein was decreased (590 vs 892 mg/mL, P=.002).
Pregnancy zone protein was also decreased in diabetes compared with
controls (683 vs 892 mg/mL, P=.01). Serum amyloid A1 was associated
with placental dysfunction (fetal growth restriction, elevated soluble fms-
like tyrosine kinase-1 to placental growth factor ratio). Pregnancy zone
protein correlated negatively with soluble fms-like tyrosine kinase-1 to pla-
cental growth factor ratio in all study groups. Acute atherosis was not
associated with serum amyloid A1 or pregnancy zone protein.
CONCLUSION: Proteins involved in atherosclerosis, hypercoagulabil-
ity, and protein misfolding are dysregulated in early-onset preeclampsia
and placental dysfunction, which links them and potentially contributes to
future maternal cardiovascular disease.
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Introduction

P reeclampsia is a potentially severe
pregnancy complication, defined

as new-onset hypertension and at least
1 other preeclampsia-associated sign of
organ dysfunction (eg, proteinuria, fetal
growth restriction, and elevated liver
transaminases) in the second half of
pregnancy.1 Hypertensive disorders of
pregnancy, including preeclampsia and
other pregnancy complications associ-
ated with placental dysfunction (eg,
fetal growth restriction, preterm birth,
and gestational diabetes mellitus
[GDM]) are associated with a 2−8-fold
increased risk of future maternal cardio-
vascular disease.2−4 Pregnancy can thus
be regarded as a sex-specific stress test
for predicting maternal risk of cardio-
vascular disease. Cardiovascular dis-
eases remain a major cause of death for
both men and women, but female-spe-
cific pathophysiological mechanisms
have so far been understudied.5

The maternal features of preeclampsia
result from excessive systemic vascular
inflammation secondary to increased shed-
ding of proinflammatory factors from a
malperfused and dysfunctional placenta.6,7
Placental malperfusion leads to oxidative
and endoplasmic reticulum stress, eliciting
the release of proinflammatory and antian-
giogenic factors.8 Placental dysfunction in
early-onset preeclampsia is associated with
insufficient physiological spiral artery
transformation.6,9 Both early- and late-
onset preeclampsia are associated with
excessive placental senescence and high
rates of uteroplacental acute atherosis.6,10,11

Acute atherosis is a spiral artery wall lesion
with some morphologic similarities to the
early stages of atherosclerosis.12,13 It is
characterized by subintimal foam cells,
artery wall necrosis, and inflammation and
is associated with thrombosis and a risk of
downstream placental infarcts.14

Circulating proangiogenic placental
growth factor (PlGF) and antiangio-
genic soluble fms-like tyrosine kinase-1
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Why was this study conducted?
Preeclampsia and placental dysfunction place women at risk of future cardiovas-
cular disease, but the mechanisms are largely unknown. This study aimed at
assessing biomarkers that may contribute to this risk.

Key findings
Circulating serum amyloid A1 and pregnancy zone protein—markers of protein
misfolding— are dysregulated in early-onset preeclampsia, and their levels cor-
relate with antiangiogenic biomarkers and fetal growth restriction, which are
proxies for placental dysfunction.

What does this add to what is known?
Our finding of a correlation between protein misfolding markers and proxies for
placental dysfunction is novel. Markers of protein misfolding are implicated in
early-onset preeclampsia and placental dysfunction and may provide a pathway
linking these pregnancy complications to the epidemiologic increased risk of
maternal cardiovascular disease.

Original Research
(sFlt-1) are mainly of placental origin
during pregnancy and are dysregulated
in preeclampsia and other placental
dysfunction syndromes such as fetal
growth restriction.15,16 Consequently,
we have argued that dysregulated angio-
genic biomarkers (eg, low PlGF, high
sFlt-1/PlGF ratio) may be utilized as
proxy markers for placental dysfunction
and syncytiotrophoblast stress.7

Amyloid consists of fibrous aggregates
of misfolded proteins, has slow spontane-
ous dissociation,17 and is implicated in
several chronic, progressive diseases,
including Alzheimer’s disease, type 2 dia-
betes mellitus (DM), and
atherosclerosis.18,19 Amyloid also accumu-
lates in the urine and placenta of women
with preeclampsia.20,21 Circulating amy-
loid precursors transthyretin and amyloid
precursor protein are dysregulated in pre-
eclampsia.20−22 Urine testing for amyloid
has been suggested as a test for pre-
eclampsia severity.23 Serum amyloid A1
(SAA1) is an acute-phase protein mainly
produced in the liver and is one of many
proteins able to aggregate into amyloid.17

Placental expression of SAA1 may play a
role in initiating parturition, though its
expression throughout pregnancy is
uncertain.24 SAA1 is also implicated in
hypercoagulability by promoting amyloid
formation in fibrin(ogen) and driving pla-
telets into a prothrombotic state.25

Pregnancy zone protein (PZP) is a
plasma protein that is highly up-
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regulated during pregnancy,26 and it
may play a progestational role through
immunomodulation.27 Further, low cir-
culating levels of the protein have been
linked to pregnancy loss.28 In vitro, PZP
stabilizes and inhibits misfolded amy-
loid-b from aggregating into amyloid
fibrils.29 Whether PZP inhibits SAA1
aggregation into amyloid-A—the amy-
loid type derived from SAA1—is
unknown.

Circulating SAA1 has been shown to
be increased in GDM30 and has also
been studied in preeclampsia, though
results from these predominantly small
studies are conflicting.31−36 Derived
PZP levels were decreased in women
with preeclampsia in 2 small
studies.37,38 These previous SAA1 and
PZP studies from pregnancy have not
assessed biomarker concentrations in
relation to placental dysfunction.

As SAA1 and PZP have opposite
roles in augmenting and attenuating
amyloid aggregation, we hypothesized
that circulating SAA1 is increased and
PZP is decreased in preeclampsia, par-
ticularly in early-onset disease and in
pregnancies complicated by diabetes.
We further hypothesized that SAA1
and PZP levels correlate with proxies
for placental dysfunction (eg, dysregu-
lated angiogenic biomarkers, fetal
growth restriction, or acute atherosis) as
an indication of amyloid deposition in
placental dysfunction.
Materials and Methods
Patient recruitment and sample
collection
Data and biological samples from 549
singleton pregnant women recruited
between 2001 and 2017 to the Oslo
Pregnancy Biobank at Oslo University
Hospital were included in this study. All
had extensive clinical data from preg-
nancy and delivery and blood samples
available for biomarker analyses. All
women gave informed written consent.
The study was approved by the Regional
committee for Medical and Health
Research Ethics in South-Eastern Nor-
way and conducted in accordance with
the principles of the Helsinki Declara-
tion.
Hypertensive disorders of pregnancy

(HDP) were defined according to the
2018 Guidelines of the International
Society for the Study of Hypertension in
Pregnancy.1 Gestational hypertension
(GH) was defined as new-onset hyper-
tension (blood pressure ≥140 mm Hg
systolic and/or ≥90 mm Hg diastolic on
≥2 occasions ≥6 hours apart) at ≥20
weeks’ gestation. Preeclampsia was
defined as GH accompanied by ≥1
other new-onset sign(s) of maternal
organ dysfunction1 (eg, proteinuria,
acute kidney injury, liver involvement,
eclampsia, hemolysis, and fetal growth
restriction) at ≥20 weeks’ gestation.
Early-onset preeclampsia (EO-PE) and
late-onset preeclampsia (LO-PE) were
defined as preeclampsia delivered
<34 vs ≥34 weeks’ gestation, respec-
tively.6 Chronic hypertension (CHT)
was defined as hypertension occurring
prepregnancy or diagnosed <20 weeks’
gestation. Superimposed preeclampsia
was defined as CHT and ≥1 new-onset
preeclampsia-associated feature(s) at
≥20 weeks’ gestation. DM diagnoses
(type 1 DM [DM1], type 2 DM [DM2],
gestational DM [GDM]) were based on
diagnoses identified in the clinical set-
ting by endocrinologists according to
current guidelines.39,40 Women with
both an HDP and DM diagnosis were
classified as HDP+DM. Controls were
women who remained normotensive
and euglycemic throughout pregnancy.
None of the included women had

regular uterine contractions, ruptured
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fetal membranes, or signs of infection at
the time of blood sampling. None had
known chronic diseases apart from
women with CHT (n=25), pregesta-
tional DM (n=79), or hypothyroidism
(n=33). No controls had CHT or DM.
Gestational age at inclusion was deter-
mined by routine ultrasound screening
at gestational week 17 to 20, except in
25 women, where gestational age was
determined by embryo transfer date (in
vitro fertilization) and in 7 women by
first day of the last menstrual period
before pregnancy. Sex-specific newborn
weight percentiles were calculated
according to Norwegian fetal growth
curves.41 Fetal growth restriction was
defined as sex-specific newborn weight
≤third percentile. No newborns had
structural or apparent chromosomal
abnormalities.
The presence or absence of uteropla-

cental acute atherosis was assessed in
decidua basalis vacuum suction biopsies
collected after delivery of the placenta
and evaluated as described previously.42

Acute atherosis was defined as spiral
arteries with ≥2 adjacent CD68-positive
vacuolated subintimal cells.43

For most women, blood samples were
obtained immediately before elective
cesarean delivery and centrifuged
within 120 minutes of sampling at 4°C
for 10 minutes at 1800 g. Ethylenedia-
minetetraacetic acid (EDTA) plasma
was stored at �80°C until immunoas-
say. For some of the included women
(n=81), a blood sample was collected 1
−31 days before delivery instead of at
delivery. Blood was sampled from an
antecubital vein or intravenous cannula
without ongoing infusion or from an
arterial catheter (n=20). Maternal
serum samples were also collected at the
same time point as EDTA plasma as
described previously.44

Biochemistry and immunoassays
The SAA1 and PZP concentrations
were measured by enzyme-linked
immunosorbent assay (ELISA) in
maternal EDTA plasma in duplicates.
The mean value of the duplicates was
used for analysis. All reagents were
obtained from R&D Systems (Minneap-
olis, MN) catalog numbers DY3019-05
(SAA1) and DY8280-05 (PZP). Assays
were performed in accordance with the
manufacturer’s instructions. Optical
density was determined at 450 nm and
corrected at 540 nm. The coefficients of
variation were 6.4% for SAA1 and 2.4%
for PZP.

Serum levels of sFlt-1 and PlGF were
determined for 547 pregnancies as pre-
viously described44 using Elecsys immu-
noassays (Roche Diagnostics,
Switzerland) with a fully automated
electrochemiluminescence immunoas-
say platform (Cobas E analyzer, Roche
Diagnostics).

Serum levels of acute-phase reactant
high-sensitivity C-reactive protein
(hsCRP) in either fresh (n=219) or
thawed (n=161) samples were analyzed
as described previously45 using a parti-
cle-enhanced turbidimetric method
(Cobas 8000 c702; Roche Diagnostics,
Rotkreuz, Switzerland). hsCRP was
included in this biomarker study owing
to its known association to cardiovascu-
lar diseases46 and preeclampsia.47 CRP
correlates with SAA outside preg-
nancy,48 whereas a correlation in preg-
nancy has been less studied.33

Statistics
The data were analyzed using SPSS Sta-
tistics 26.0 (IBM). The Mann-Whitney
U test was used for continuous varia-
bles. The chi-squared or Fisher exact
test was used for categorical variables,
as appropriate. Spearman rho (rS) was
calculated for analyzing correlations
between continuous variables, as data
were skewed. We did not correct for
multiple comparisons. A P value <.05
was considered significant.

Results
Table lists the clinical characteristics of
the main pregnancy groups (controls,
n=258; HDP, n=163; DM, n=83; HDP
+DM, n=45), acute atherosis rate, and
circulating biomarker concentrations.
Prepregnancy body mass index (BMI),
mean blood pressures in the first half of
pregnancy and at inclusion, rates of
acute atherosis, hsCRP, and sFlt-1/PlGF
ratio were increased, and gestational age
and newborn weight percentiles were
lower in HDP and HDP+DM than in
controls. Supplemental Tables 1 and 2
list the number of women in each HDP
and DM subgroup, respectively, and
their clinical characteristics.
There were no significant differences

in SAA1 or PZP levels or clinical char-
acteristics when comparing the group
with samples collected 1 to 31 days
before delivery with the group with
samples collected at cesarean delivery
(data not shown).

Serum amyloid A1 and pregnancy
zone protein concentrations in
hypertensive and diabetic
pregnancies
As shown in Table 1, the plasma SAA1
levels were markedly higher in HDP
than in controls (normotensive and
euglycemic, P<.001), whereas SAA1 did
not differ between DM or HDP+DM
compared with controls. Of the HDP
subgroups, the EO-PE group had
increased levels of SAA1 than the con-
trols (P<.001, Supplemental Table 1)
and than all remaining subgroups of
HDP (Figure 1, A). SAA1 did not differ
between any DM subgroup and controls
(normotensive and euglycemic, Supple-
mental Table 2).
The PZP concentration was lower

in both DM and in HDP+DM than in
controls (both P=.01). In contrast,
PZP was similar in HDP and controls.
The levels of PZP were decreased in
EO-PE than in controls (P=.002, Sup-
plemental Table 1) and CHT (Figure 1,
B). PZP was decreased in women with
DM1 and DM2 than in controls
(P=.02 and.003, respectively, Supple-
mental Table 2).
Correlation between serum amyloid
A1 and glycated hemoglobin in
diabetic pregnancies
In DM1, SAA1 (at sampling in late
pregnancy) correlated negatively with
glycated hemoglobin (HbA1c) mea-
sured in the first (rS=�0.43; P=.002),
second (rS=�0.27; P=.04), and third
(rS=�0.33; P=.01) trimesters. First tri-
mester HbA1c ≥53 mmol/mol was
associated with lower SAA1 (2.9 vs 5.0
mg/mL; P=.03). PZP did not correlate
with HbA1c (data not shown).
January 2023 AJOG MFM 3



TABLE 1
Clinical characteristics and circulating biomarkers by pregnancy inclusion groups (total cohort, n=549)

Variable Controls (n=258) HDP (n=163) P value DM (n=83) P value HDP+DM (n=45) P value

Maternal age at inclusion (y) 33.5 (20.1−45.5) 33.1 (19.0−52.9) .25 33.4 (24.1−45.9) .64 33.0 (21.1−44.0) .22

Prepregnancy body
mass index (kg/m2)

22.4 (17.6−39.5) 24.0 (18.3−41.1) <.001 24.5 (19.1−39.4) <.001 27.3 (19.6−41.1) <.001

Mean SBP <20 wk (mm Hg) 110 (85−140) 120 (90−158) <.001 114 (92−138) <.001 120 (95−164) <.001

Mean DBP <20 wk (mm Hg) 68 (40−88) 75 (55−103) <.001 69 (50−84) .21 73 (50−90) <.001

First pregnancy 24% 45% <.001 22% .61 42% .01

First delivery 39% 62% <.001 41% .77 53% .07

Previous preeclampsia, n (%)a 12 (8%) 26 (43%) <.001 7 (14%) .17 9 (43%) <.001

SBP at inclusion (mm Hg) 121 (86−156) 151 (117−220) <.001 120 (90−155) .77 150 (120−189) <.001

DBP at inclusion (mm Hg) 75 (48−110) 95 (63−130) <.001 74 (50−90) .94 92 (66−110) <.001

Gestational age
at inclusion (wk)

39.0 (33.7−42.1) 34.4 (24.3−41.1) <.001 38.0 (28.7−40.4) <.001 36.9 (29.0−40.0) <.001

Preterm delivery
(<37 wk gestation)

3% 65% <.001 10% .01 40% <.001

Early-onset preeclampsia
(delivery <34 wk gestation)

— 48% — 16%

Newborn weight (g) 3483 (1325−5130) 2087 (500−5040) <.001 3802 (988−5857) <.001 3574 (620−5424) .70

Newborn weight percentile 62.6 (0−100) 5.0 (0−99.9) <.001 86.1 (0−100) <.001 90.9 (0−100) .01

Fetal growth restriction 2% 45% <.001 5% .10 4% .22

Acute atherosisb 9% (14/160) 39% (37/96) <.001 7% (2/31) 1.00 27% (7/26) .01

Serum-sFlt-1 (pg/mL)c 3683 (1081−17,185) 11,204 (1429−61,348) <.001 4629 (1260−18,857) .003 7597 (2003−21,430) <.001

Serum-PlGF (pg/mL)c 172 (23−2074) 58 (6−624) <.001 166 (35−1027) .82 104 (29−1852) <.001

sFlt-1/PlGF ratioc 22.3 (1.1−615.1) 208.6 (2.3−3264.3) <.001 24.9 (2.7−209.0) .24 78.9 (1.4−470.8) <.001

Serum-hsCRP (mg/L)
(ref.: 0.0−4.0)d

3.1 (0.6−76.6), n=201 4.4 (0.6−107.0), n=117 .002 3.9 (0.6−32.7), n=36 .26 4.8 (0.8−15.9), n=26 .04

Plasma-SAA1 (mg/mL) 5.08 (0.41−120) 9.90 (0.80−120) <.001 4.06 (0.37−120) .06 6.07 (0.22−115.95) .22

Plasma-PZP (mg/mL) 892 (32−3240) 818 (12−2992) .15 683 (40−3406) .01 548 (25−3280) .01

For continuous variables, the median value and range are shown; for categorical variables, percentages are shown. Statistical differences were calculated by comparing each pregnancy group with the
control group (normotensive and euglycemic pregnant women).

DBP, diastolic blood pressure; DM, diabetes mellitus (pregestational or gestational); HDP, hypertensive disorders of pregnancy; HDP+DM, women with both HDP and DM; hsCRP, high-sensitivity C-
reactive protein; PlGF, placental growth factor; PZP, pregnancy zone protein; SAA1, serum amyloid A1; SBP, systolic blood pressure; sFlt-1, soluble fms-like tyrosine kinase-1.
aNulliparous women were excluded when analyzing the rate of previous preeclampsia
bDecidua basalis acute atherosis was assessed in 313 women (all had spiral arteries present)
csFlt-1 and PlGF concentrations were available for all except 2 women with HDP
dhsCRP concentration was available for 380 women.

Fosheim. Markers of protein misfolding in pregnancy complications. Am J Obstet Gynecol MFM 2022.
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Serum amyloid A1 and pregnancy
zone protein concentrations and
their relationship with proxies for
placental dysfunction
We compared SAA1 and PZP levels
with proxies for placental dysfunction.
Women with acute atherosis did not
differ in SAA1 or PZP levels compared
with women without acute atherosis
within any of the pregnancy groups
(Supplemental Table 3). However,
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increased SAA1 levels were seen in
pregnancies with fetal growth restric-
tion, and they correlated positively with
the antiangiogenic sFlt-1/PlGF ratio in
the total cohort (13.3 vs 5.1 mg/mL,
rS=0.24; both P<.001) and in HDP
(13.7 vs 6.1 mg/mL, rS=0.40; both
P<.001). PZP was not associated with
fetal growth restriction but correlated
negatively with sFlt-1/PlGF in the total
cohort (rS=�0.13, P=.002), HDP
(rS=�0.19; P=.015), and HDP+DM
(rS=�0.30; P=.049).

Correlations between serum amyloid
A1, pregnancy zone protein, and
high-sensitivity C-reactive protein
Finally, we compared SAA1 and PZP
with the general inflammation marker
hsCRP. SAA1 correlated positively with
hsCRP in the total cohort (rS=0.46;
P<.001) and in all pregnancy groups:



FIGURE 1
Scatter plots of circulating biomarkers

Concentrations of circulating biomarkers by subgroup of hypertensive disorder of pregnancy (irrespective of diabetes mellitus status) and controls (nor-
motensive and euglycemic) (n=466). A, serum amyloid A1 (SAA1) concentrations; B, PZP concentrations. The Mann-Whitney U test was used to calcu-
late statistical differences between groups. Line at median. Triple asterisks denote P<.001. Double asterisks denote P<.01. Single asterisk denotes
P<.05
CHT, chronic hypertension; EO-PE, early-onset preeclampsia (delivery <34 weeks gestation); GH, gestational hypertension; LO-PE, late-onset preeclampsia (delivery ≥34 weeks gestation); PZP, pregnancy
zone protein.

Fosheim. Markers of protein misfolding in pregnancy complications. Am J Obstet Gynecol MFM 2022.

Original Research
controls (rS=0.35; P<.001), HDP
(rS=0.58; P<.001), DM (rS=0.35; P=.04),
and HDP+DM (rS=0.62; P=.001).
Moreover, SAA1 was increased in
women with hsCRP above an upper ref-
erence limit of 4 mg/L (9.4 vs 4.3 mg/
mL; P<.001). We found no correlation
between PZP and hsCRP (data not
shown). We found no correlation
between SAA1 and PZP for the total
cohort or for any pregnancy groups
except for HDP+DM (rS=-0.37; P=.01).
SAA1 and PZP concentrations did

not consistently correlate with prepreg-
nancy BMI, early pregnancy blood pres-
sure, gestational age at sampling, or
fetal sex in the total cohort or in any
subgroups; the few exceptions are listed
in Supplemental Results.

Discussion
Principal findings
In line with our hypothesis, we found
increased SAA1 and decreased PZP in
pregnancies complicated by EO-PE.
SAA1 and PZP correlated significantly
with signs of placental dysfunction, as
determined by fetal growth restriction
and an antiangiogenic biomarker pat-
tern. In contrast to our hypothesis, we
did not find an association between
acute atherosis and SAA1 or PZP.
Results
Our finding of increased circulating
SAA1 in EO-PE may indicate the pres-
ence of amyloid-A in these women.
Amyloid-A deposits are typically found
in chronic inflammatory diseases,49 as
prolonged inflammation (demonstrated
by CRP elevation) causing persistently
elevated SAA1 may lead to amyloid-A
deposits.17 Other types of amyloid
(amyloid-b and transthyretin) have
been identified by immunohistochemis-
try in placentae from preeclamptic
pregnancies.20,21 Whether amyloid-A is
deposited in the placenta in response to
increased SAA1 is unknown. We
January 2023 AJOG MFM 5
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speculate that this is the case and that
placental amyloid-A might exacerbate
existing placental dysfunction, particu-
larly for women with EO-PE, by dis-
turbing cell-cell interactions and tissue
structure.17

Furthermore, our findings support
our hypothesis that poor placentation
and placental dysfunction, as evi-
denced by an antiangiogenic shift in
the sFlt-1/PlGF ratio and fetal growth
restriction, correlates with increasing
SAA1 and decreasing PZP. PZP has
been shown in vitro to form stable
compounds with amyloid-b-peptide,
thus inhibiting amyloid-b aggrega-
tion.29 We hypothesize that PZP may
similarly inhibit SAA1 misfolding.
Although we did not explore any
mechanistic interaction between them
in this study, we hypothesize that low
PZP in the setting of increased SAA1
may facilitate the formation of amy-
loid-A and other forms of amyloid
associated with preeclampsia, such as
amyloid-b and transthyretin.
Previous studies have found

increased circulating levels of acute-
phase proteins in preeclampsia,33,36,47

in line with our findings of increased
hsCRP in EO-PE (Supplemental Table
1). Also in line with previous observa-
tions,33 SAA1 correlated positively with
hsCRP levels in our cohort, confirming
a role for excessive inflammation in
SAA1 dysregulation.
Preeclampsia is characterized by

hypercoagulability and a risk of
thromboembolism.1,50 SAA1 increases
the thrombotic ability of platelets,25 and
as SAA1 is increased in EO-PE, we
speculate that SAA1 participates in
mediating hypercoagulability in EO-PE.
Further studies are needed to explore
this hypothesis.
Unexpectedly, SAA1 correlated nega-

tively with HbA1c—a marker of blood
glucose control—in women with DM1.
Poor glucose control is associated with
other inflammatory markers such as
hsCRP and with increased cardiovascu-
lar risk.30,51,52 A previous study found a
positive correlation between SAA and
HbA1c in women with GDM.30 Assays
detecting SAA measure both SAA1 and
SAA2—nearly identical SAA isoforms.
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Hence, we expected a positive correla-
tion between SAA1 and HbA1c in our
DM1 group also. BMI likely did not
confound our finding, as it was not
associated with SAA1 in DM1 or other
study groups apart from GDM (Supple-
mental Results). As seen from Supple-
mental Table 2, the median
prepregnancy BMI of women with
DM1 was within the normal range (24.2
kg/m2). To the best of our knowledge,
we are among the first to address SAA1
and glycemic control in DM1 during
pregnancy. The negative correlation
between SAA1 and HbA1c in DM1 may
reflect the complex regulation of inflam-
mation in pregnancy and merits further
investigation.

Clinical and research implications
Low circulating PZP levels have been
linked to pregnancy loss.28 Women
with pregestational DM and those who
develop EO-PE may harbor an unfavor-
able preconception endometrial envi-
ronment, resulting in inadequate
placentation and clinical manifestations
of preeclampsia during pregnancy.53

We suggest that low circulating PZP
levels in the second half of pregnancy
may reflect such placentation issues and
that low PZP may identify women with
particularly poor placentation and sub-
sequent high risk of early-onset placen-
tal dysfunction.

Amyloid has been identified in ath-
erosclerotic plaques.54 SAA1 and SAA2
—nearly identical isoforms—may play
a role in atherosclerosis, both locally
and systemically. In a murine athero-
sclerosis model, SAA expression was
increased in both early and late athero-
sclerosis lesions.55 SAA possibly acts as
a chemoattractant for leukocytes in
lesions.56 Increased circulating SAA lev-
els have been associated with recurrent
coronary events and stroke, as have ele-
vated levels of hsCRP.46 In a mouse
model, even a short period of elevated
SAA1 increased atherosclerosis lesion
size.57 We speculate that elevated SAA1
in women with preeclampsia may pro-
mote accelerated atherosclerosis pro-
gression even if the SAA1 elevation
were temporary and restricted to some
months during pregnancy. Although
acute atherosis and early atherosclerosis
share morphologic features,58 we found
no association between SAA1 and acute
atherosis. This may be owing to differ-
ent mechanisms for the development of
acute atherosis, affecting small-caliber
spiral arteries, and atherosclerosis,
affecting larger arteries and also owing
to large time differences for their devel-
opment.
Further studies are required to eluci-

date protein-protein interactions
between SAA1 and PZP, their possible
role in placental (dys)function, and in
turn, their impact on circulating angio-
genic proteins. Future longitudinal
pregnancy studies may reveal whether
circulating SAA1 and PZP could serve
as predictors for placental dysfunction.
Placenta tissue studies may reveal
whether increased circulating SAA1, as
in EO-PE, leads to placental amyloid-A
deposits. Identifying predictors of future
maternal cardiovascular health during
pregnancy merits further investigation.
Longitudinal studies are needed to iden-
tify whether SAA1 shows prolonged ele-
vation following preeclampsia as hsCRP
does,59,60 placing these women at risk of
postpartum amyloid-A deposition and
subsequent organ damage.

Strengths and limitations
This study is the first to examine circu-
lating SAA1 and PZP—potential
markers of protein misfolding—in phe-
notypically well-characterized sub-
groups of women with hypertensive
disorders of pregnancy and diabetes
mellitus in relation to different proxies
for placental function and uteroplacen-
tal acute atherosis. The population size
(549 pregnancies) and well-described
pregnancy groups are strengths of our
study, which establishes that circulating
SAA1 is increased in EO-PE and pla-
cental dysfunction. The distinction
between EO-PE and LO-PE as shown in
our study (delivery <34 or ≥34 weeks’
gestation, respectively) could explain
why some previous studies report
increased SAA1 in preeclampsia31,33,36

whereas others do not,32,34,35 as none
have made a similar differentiation.
One study quantified circulating SAA1,
sFlt-1, and PlGF in preeclampsia but
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did not study correlations between
SAA1 and sFlt-1/PlGF.34

PZP has been indirectly studied (by
immunodiffusion gel) in 2 smaller stud-
ies of preeclampsia37,38 and directly
studied (by ELISA) in 1 very small study
where plasma from 9 women with pre-
eclampsia was pooled before assay.29

We are, to the best of our knowledge,
among the first to study circulating lev-
els of PZP by ELISA in individual preg-
nancy samples from uncomplicated,
hypertensive, and diabetic pregnancies.
We chose to overrepresent HDP and

DM pregnancies in this study to obtain
as much data on these pregnancy com-
plications as possible while maintaining
a reasonably large (n=258) control
group. Most of the included women
(n=468) were delivered by cesarean,
either owing to medically complicated
pregnancies (HDP, DM), owing to
maternal request (including previous
psychologically traumatic vaginal deliv-
ery or tocophobia), or because of breech
presentation (the control group).
Prepregnancy BMI, early pregnancy

blood pressure, gestational age at sam-
pling, and fetal sex did not consistently
correlate with SAA1 or PZP levels.
Thus, we did not perform regression
analyses. Gestational age at sampling
correlated with SAA1 and PZP, but
only in EO-PE, likely reflecting a more
severe placental dysfunction with a clin-
ical phenotype requiring earlier deliv-
ery. Our results are likely not
confounded by our lack of gestational
age matching, as gestational age did not
correlate with SAA1 or PZP in any
other groups.
A limitation to our study is the lack

of longitudinal samples to establish
whether SAA1 and/or PZP show pro-
longed dysregulation during and/or
after pregnancy complications and lack
of placental tissue samples for amyloid
staining.

Conclusions
Understanding and identifying early
risk markers for cardiovascular disease
in women is essential for achieving tar-
geted primary prevention, optimized
health outcomes, and healthier societies.
Our finding of increased SAA1 and
hsCRP in women with EO-PE, fetal
growth restriction, and other signs of
placental dysfunction may provide fur-
ther explanation as to the known epide-
miologic link between these pregnancy
complications and maternal cardiovas-
cular disease in later life. Dysregulated
SAA1 and PZP in EO-PE may point to
amyloid-A as a mediator of the
observed risk of cardiovascular disease
in women with a history of preeclamp-
sia or other forms of placental dysfunc-
tion, though longitudinal and
mechanistic studies are needed to test
this hypothesis.
Glossary
Acute atherosis: pregnancy-specific
foam cell lesions in spiral arteries; may
affect any pregnancy, but is most fre-
quent in preeclampsia.

Protein misfolding: process by which
proteins lose or fail to maintain normal
structure, or fail to fold correctly during
protein synthesis, thus losing physiolog-
ical properties.

Amyloid: fibrillar aggregates of mis-
folded proteins; very stable compounds
because of their cross-b sheet structure,
involved in numerous human dis-
eases. &
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