
Faculty of Science and Technology
Department of Computer Science

Interactive visualizations of unstructured oceanographic data

Simen Lund Kirkvik
INF-3990 Master’s thesis in Computer Science - February 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Til min mor, Beate

Abstract
The newly founded company Oceanbox is creating a novel oceanographic
forecasting system to provide oceanography as a service. These services use
mathematical models that generate large hydrodynamic data sets as unstruc-
tured triangular grids with high-resolution model areas. Oceanbox makes the
model results accessible in a web application. New visualizations are needed
to accommodate land-masking and large data volumes.

In this thesis, we propose using a k-d tree to spatially partition unstructured tri-
angular grids to provide the look-up times needed for interactive visualizations.
A k-d tree is implemented in F# called FsKDTree. This thesis also describes the
implementation of dynamic tiling map layers to visualize current barbs, scalar
fields, and particle streams. The current barb layer queries data from the data
server with the help of the k-d tree and displays it in the browser. Scalar fields
and particle streams are implemented using WebGL, which enables the render-
ing of triangular grids. Stream particle visualization effects are implemented
as velocity advection computed on the GPU with textures.

The new visualizations are used in Oceanbox’s production systems, and spa-
tial indexing has been integrated into Oceanbox’s archive retrieval system.
FsKDTree improves tree creation times by up to 4× over the C# equivalent and
improves search times up to 13× compared to the .NET C# implementation.
Finally, the largest model areas can be viewed with current barbs, scalar fields,
and particle stream visualizations at 60 FPS, even for the largest model areas
provided by the service.

Acknowledgements
I would like to thank my supervisor, Lars Ailo Bongo, for always making me
optimistic after every meeting we had. Even though it all seemed daunting at
times. Giving crucial feedback throughout the process, without which would
make this project impossible. I would also like to thank Jonas Juselius, for
starting this ambitious project and letting me take on these challenges head-
on. Only responding with enthusiasm and encouragement to all the problems
needing to be tackled.

Thanks to all my close ones for their continual love and support.

Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

List of Listings xiii

Glossary xv

List of Abbreviations xvii

1 Introduction 1
1.1 Previous approaches . 3
1.2 Proposed solutions . 4
1.3 Summary of results . 6
1.4 Outline . 6

2 Computational oceanography 7
2.1 Oceanographic modeling 7

3 Oceanbox’s architecture 9
3.0.1 Motivation for oceanbox.io 9
3.0.2 Architecture . 10

3.1 The NetCDF file format . 13
3.2 Finite Volume Community Ocean Model 13

4 Visualizations 15
4.1 Usage scenario . 15
4.2 Current barbs . 16

4.2.1 Tiled web map . 18
4.2.2 Design . 19

vii

viii contents

4.2.3 Implementation . 20
4.3 Model area mesh with WebGL 22

4.3.1 Design . 22
4.3.2 Implementation . 25

4.4 Particle streams . 28
4.4.1 Design . 28
4.4.2 Implementation . 30

5 Spatial indexing: Finding things fast 33
5.1 The k-d tree . 33
5.2 Design . 35

5.2.1 Barb look-ups . 36
5.2.2 Caching . 36

5.3 Implementation . 37
5.3.1 The k-d tree . 37
5.3.2 Location endpoints 37

6 Evaluation 41
6.1 FsKDTree performance . 41

6.1.1 Experiment setup 41
6.1.2 Creation . 42
6.1.3 Search . 43

6.2 Grid prop fetching times . 44
6.3 Grid and Scalar field rendering with WebGL 46
6.4 Summary . 46

7 Discussion 49
7.1 Current barb drawing . 49
7.2 Spatial indexing . 50

7.2.1 The k-d tree implementation 50
7.3 Model grid tiling . 52
7.4 Grid downsampling . 52
7.5 Future Work . 52

8 Conclusion 53

List of Figures
1.1 Barbs shown in map tool 5

3.1 Simplified Oceanbox architecture 10

4.1 Map tool model selection view with a model area selected . 17
4.2 Barb positions in web tiles 19
4.3 Close-up of model grid with colors 23
4.4 An early rendition of drawing the grid 26
4.5 Particle streams visualization in map tool 29

5.1 Zoomed out view of an FVCOM grid 34
5.2 Close up view of the FVCOM grid 35

6.1 PO11 model area showing velocity scalar field 46

ix

List of Tables
6.1 Hardware and software specs 42
6.2 Software versions used in benchmarking 42
6.3 k-d tree creation benchmarks 43
6.4 k-d tree search benchmarks 44
6.5 Storage node hardware specifications. 45
6.6 Results of sampling property downloads 45

xi

List of Listings
4.1 Barb drawing routine . 18
4.2 Tile drawing routine . 21
4.3 Shader for model area . 27

xiii

Glossary
k-d tree k-dimensional spatial index tree. Data structure for quickly storing

spatial information, where searches like nearest neighbor searches can
be made.

Atlantis The front-end application of Oceanbox. Here is where the users log in
to use their Software-as-a-service. A map is presented to the user, where
they can choose model areas to explore, run particle simulations, and
more.

Sorcerer The back-end server of Oceanbox serves archive data. All archive
requests that need data go through Sorcerer. This is also where perfor-
mance improvements can be made when fetching data.

xv

List of Abbreviations
CMEMS The Copernicus Marine Environment Monitoring Service

EPSG:3857 Pseudo-Mercator - Spherical Mercator

FVCOM Finite Volume Community Ocean Model

GIS Geographic Information System

GPU Graphics Processing Unit

HPC High Performance Computing

k-NN k-nearest neighbor

SaaS Software As A Service

WGS84 World Geodetic System

WMS Web Map Server

WMTS Web Map Tile Server

xvii

1
Introduction
The newly founded company Oceanbox1 is creating a novel oceanographic
forecasting system to provide oceanography as a service for commercial and
scientific applications. These services are built on mathematical models that
generate hydrodynamic data sets in unstructured triangular grids with high-
resolution model areas. This thesis describes our approach to creating interac-
tive visualizations for oceanographic data, so consumers can easily interpret
it. These visualizations include streamlines, barbs, and particle tracers. These
types of applications and visualization can be found in other areas like weather
forecasting2. Ocean forecasting has been attempted, but there are currently no
large commercial enterprises focusing on oceanography-as-a-service. Oceanbox
is creating a complete pipeline for running FVCOM simulations in pre-defined
regions. These ocean regions hold aquacultures, whose owners can run par-
ticle simulations in their browsers, and view ocean forecasts for operational
intelligence. The data amounts are large, and therefore not easily searchable
within an interactive timeframe.

The hydrodynamic data sets contain an unstructured triangular grid for the
structure of the model area and data points that constitute the state of the
ocean. The data point types of data are velocity, depth, salt, temperature, and
elevation. There are 35 layers, which is the third dimension of the grid. The
grids can be significant. For example, our test grid, Napp, is a small model

1. https://oceanbox.io
2. https://windy.com

1

https://oceanbox.io
https://windy.com

2 chapter 1 introduction

area, situated around Buksnesfjorden in Nordland,Norway, consisting of 25 136
nodes and the archive file is 3.8GB. But it only contains 24 hours’ worth of data.
The Oceanbox service requires both historical and forecasting data forward 3-5
days is a challenge. Oceanography as a service requires representing the data
clearly on a map to find value. Larger grids, require more data to be transferred
and the gird size, therefore, limits the sizes of model areas that can be accessed
in a timely fashion to ensure a good user experience.

Creating an oceanography-as-a-service solution comes with several challenges.
The first is visualizations: how to represent the water’s velocity and direction in
a map visualization, rendering the grid on top of a map, and animating streams.
Integrating custom drawing routines into existing map-drawing technologies
is yet another challenge, consisting of both the triangular unstructured grid,
but also the values within the grid. Finally, particle streams are an intuitive
look into the movements of fluid-like substances, and will significantly increase
the readability of the simulations. A second challenge is to extract data from
the model area within milliseconds, which allows for real-time interactions
with the visualized data. Because of the size of the grid, measures must be
taken to reduce loading times, both for the servers serving data, and the clients
requesting data.

Traditionally, ocean models like ROMS[10], HyCOM[2], and NEMO[9], use
structured regular grids that allow for easier processing due to their regularity,
as accessing positional data can be done using the known size of the rectan-
gles. Finite Volume Community Ocean Model (FVCOM) is the ocean modeling
system used by Oceanbox for ocean simulations, which uses unstructured tri-
angular grids. This is impossible with unstructured triangular grids, so another
approach must be used to query positional data fast enough. In spatial database
systems, such as PostGIS, spatial indexing is used for geographical data[1]. Ex-
amples of spatial indexing data structures are R-trees, quad-trees, k-d trees.
There are many examples of maps and services showing weather data for the
public. Visualizations of wind bards, scalar fields, and particles, are drawn to
allow clients to make decisions based on weather modeling.

The aforementioned set of challenges, lead to the following requirements for
the system:

1. A client-side current barb drawing routine for a given velocity vector, and
integrating them into a dynamic map tool

2. A way to effectively draw, and color triangular meshes with millions of
nodes in the client’s browser

3. Create a particle stream visualization given an unstructured triangular

1.1 previous approaches 3

mesh, and the water’s velocities of the hour and day chosen

4. A way to access data in an unstructured triangular grid within 150ms
through an API

We propose a full-stack system using F# in a purely functional paradigm that
solves the above 4/5 requirements. A current barb visualization that leverages
the dynamic map tool’s tiling to find coordinates within the archives. We add
a spatial index to the archive server, which allows it to retrieve data quickly.
Together with the current barbs, we create custom dynamic map layers that
use WebGL. One for rendering the FVCOM archives and their different scalar
fields. And another that advects visual particles on the GPU, for a beautiful
dynamic water stream visualization.

From a longer-term perspective, these solutions will be the groundwork for a
new service. One that provides forecasting, and interactive analysis of transport
particles and sedimentation, all within a user-friendly interface. Oceanography-
as-a-service which brings ocean intelligence to your web browser. With ocean
industries and activity standing vital to countries and companies, we believe
this new oceanography-as-a-service platform will become the backbone of
ocean intelligence and operational information.

1.1 Previous approaches

The Copernicus Marine Environment Monitoring Service (CMEMS)[8] is an
open data and service provider of hindcast, nowcast, and forecast ocean data.
They also provide scalar fields and current visualizations. Windy.com also has a
current visualization, but where the data is provided by CMEMS. Ocean trans-
port simulations, however, are not currently available as Software As A Service
(SaaS) solutions. Most current solutions are science projects or consultancy
companies. For example, Multiconsult, Intertek, and SINTEF offer marine op-
eration consulting, hydrodynamic modeling, and other fields of oceanography
expertise. Running the ocean models requires large amounts of computing
power, so they are run in High Performance Computing (HPC) environments.
This is a complex task. Which is part of the reason this is not a commercially
available product. A problem is controlling the computing time of customers.
Another is queue times for simulation jobs.

Geographic Information System (GIS) are widely used for spatial data explo-
ration. ArcGIS3 is such a solution, which provides a map interface. Users can

3. https://www.esri.com/en-us/what-is-gis/overview

https://www.esri.com/en-us/what-is-gis/overview

4 chapter 1 introduction

include layers that hold any type of data with a locality. They can provide
data analysis tools and visualizations to enable a greater understanding of
different applications. However, this is a proprietary solution, which does not
enable endless customization. And does not meet the requirements of oceano-
graphic analysis and marine operational intelligence, which Oceanbox wishes
to provide.

Spatial indexes are standard tools for maps and weather systems, but in the
particular context of oceanography, there are few solutions and literature
concerning interactive visualizations on the web. Most work has been done on
fluid dynamics, and mathematical modeling, which is of utmost necessity to
enable this new system by Oceanbox.

Particular[6] by Indreberg, 2021, created a particle simulation system for Serit
IT Partner Tromsø. It was a stand-alone application that attempted to solve
some of the same problems we are. In particular, Indreberg also used a k-d
tree to speed up particle lookups. However, this thesis is not exploring particle
simulations. Even though Oceanbox currently provides this as a service for its
customers.

Meta-data archiving management tools have also been explored by Lau, in
2022. MdMt[7] keeps track of relationships in large geospatial datasets, like
dependencies between archives. This system is not currently used, and instead,
an RDMS is used to keep track of archives and their files.

1.2 Proposed solutions

Oceanbox has a pipeline designed and implemented to model the hydrody-
namics of the ocean on their HPC cluster. Which stores hourly data in archives,
and is fetched by users as they are analyzing the forecasts. Oceanbox’s oceano-
graphic systems are projected to produce hundreds of gigabytes of data daily.
Users are provided a user interface to interact with these simulations, a web
server called Atlantis that server a single page application (SPA). They can
select which model area they want to view, and are provided with a dynamic
map tool. Once in the map tool, they get widgets from where they can toggle
options. Additionally, Oceanbox provides a particle simulation interface. Here
users can select release points with parameters, like radius and release inter-
vals, which get sent to the HPC cluster to be simulated. Once the results are
in, the user can view the simulation, and step forwards in time to see where
the particles end up. This, in conjunction with representations of that ocean’s
state, gives a clearer picture of what is happening. Here is where our visual
contributions come in.

1.2 proposed solutions 5

Figure 1.1: The barbs are shown as of 19/10/2022. Showing the coast of Norway in
the model area called PO3. Including a color scale to indicate the value
associated with the current color shown. Here is the velocity of the water
shown.

We propose the design and implementation of a spatial index integrated into
Oceanbox’s archive delivery system. Sifting this data to extract something
as trivial as the velocity of the water in a given area would – with a naive
implementation – take too long to serve clients browsing the data in a web
browser. To enable quick spatial look-ups into the grid archives, we propose
using a k-d tree as the spatial index. We implemented a 𝑘-d tree, especially
for this use-case, called FsKDTree. FsKDTree is a static 2-dimensional tree, that
does not support adding points after it is made. This enables concurrent users
to interactively browse the map overview, and fetch data from the system in
real-time while maintaining processing times needed for a responsive user
experience, which are between 30ms and 350ms.

Part of the solution is also to create intuitive and visually pleasing visualizations.
We provide current barbs, scalar fields, and particle trailing visualizations to
the user. This enables clear insight into the movement of the ocean and will
help several ocean-born industries in analysis and problem-solving. We provide
custom dynamic map layers for rendering our visualizations. Current barbs are
drawn on top of the dynamic maps, and their tiling techniques are leveraged
to find the correct points to sample the model areas. WebGL renders the model
area meshes directly on the user’s machines, via their web browsers. We provide
a WebGL tiling map layer, which renders the scalar fields of the unstructured
triangular grids. This color map is calculated on the GPU to produce a color
scale mapped to the grid’s values.

6 chapter 1 introduction

We implement spatial indexes and front-end interfaces using F# and Fable,
in a single-language full stack, using the .NET platform. Where the front-end
uses the OpenLayers⁴ open source library, a JavaScript library for interactive
maps. The solution is run on an on-premise Kubernetes, hosted by Serit IT
Partner Tromsø, the parent company of Oceanbox. The back end includes our
k-d tree library, called FsKDTree, and contributions to the current Oceanbox
solution.

1.3 Summary of results

The solutions presented in this thesis are now a part of the Oceanbox pro-
duction system and are available for customers with subscriptions. We use
spatial indexing to enable a responsive user experience successfully. Current
barbs appear with delays between 40ms and up to 400ms. They quickly and
evenly fill the map, while never appearing outside the model area, successfully
land-masking the near-shore triangular grids. Most computers handle running
Atlantis in the web browser, allowing for a responsive experience exploring
the map and the model area. The largest model areas are rendered without
performance issues.

1.4 Outline

The thesis is organized as follows: Chapter 2 gives background on the company,
concepts, and new technologies. Chapter 3 describes the design and imple-
mentation of the 𝑘-d tree. Chapter 4 covers OpenLayers and how the barb
visualizations are done in the browser, including a custom WebGL OL layer.
Chapter 5 describes interpolation techniques, which are needed for simulations,
but can be used in visualizations as well. Chapter 6 evaluates the performance
of the 𝑘-d tree and the front end. In Chapter 7 we discuss the different solutions
and the trade-offs with our choices. Finally, we conclude and outline future
work in Chapter 8.

4. https://openlayers.org

https://openlayers.org

2
Computational
oceanography

This chapter covers the necessary background to understand the problem space
and get insight into the chosen solutions. Firstly, we introduce oceanography
and how the modeling is done. Section ?? details the ocean model used, and
what kind of data it produces. Then, we create an overview of current oceano-
graphic services, the lack thereof, and how Oceanbox is creating something
new.

2.1 Oceanographic modeling

Oceanography is the field of studying the ocean. Oceanographic models are
mathematical models that simulate the systems of the ocean. Oceanbox focuses
on near-shore hydrodynamic properties, and therefore large spatiotemporal
datasets are produced. Near-shore environments are more complex than out in
the open sea. A shoreline can have thousands of small islands, requiring high-
resolution grids to account for these complexities. Spatiotemporal meaning
they have a geographical location and a time stamp. These properties are
temperature, salinity, elevation, and velocity. Each property, then, has a location,
a value for some time, and at different depths. 34 depth layers to be exact.

7

8 chapter 2 computational oceanography

When amodel and simulation have been created, they can run simulations, such
as particle simulations. Particle simulations can be inanimate objects floating,
but they can also be simulations of lice or viruses and their floating patterns.
For aquaculture industries, this can provide crucial operational information for
improving fish health.

Marine operations can be aided through current forecasting and hydrodynamic
modelling. Reducing costs by simulating ocean conditions ahead of time. In
aquaculture, hydrodynamic modeling is used to help fish farms comply with
government regulations. Particle modeling of fish dung can estimate where it
will land on the ocean floor, informing the placement of aquaculture infrastruc-
ture. These results will typically come as a written report, manually created
by oceanographers and other consultants. Oceanbox will bring this directly to
your web browser.

A critical use case is fisheries, especially fish farms, that need to know where
their fish waste goes, as there are regulations to prevent too much from accu-
mulating in a small area beneath the fish farm due to detrimental ecological
effects. Oceanographic simulations forecast velocities, ocean tidings, and more.
By running simulations on the fish droppings represented as particles, estima-
tions can be calculated. Then, based on the fish farm’s position, the estimated
amount of droppings can be placed in the simulations, and advecting it based
on the model’s current stream data, predictions can be made on where it will
end up.

Ocean models involve solving complicated differential equations, like Navier-
Stokes equations on three-dimensional numerical grids. This requires a lot of
processing power, so these simulations need HPC environments for reasonable
execution times. In addition to the expertise required to maintain such a cluster,
the simulations can be fickle; resulting in wrong outputs, and having to redo
the simulations, which can be worth months of work for the oceanographers.
Delays of such magnitude in a commercial environment can lead to additional
costs in the millions.

3
Oceanbox’s architecture
We outline an overview of Oceanbox’s software architecture, to show the scope
of this thesis. Finally, the library OpenLayers is expanded upon.

3.0.1 Motivation for oceanbox.io

Oceanographers have long deployed services for creating and running simu-
lations for marine institutions. However, this field has fallen behind in terms
of automation, and the many innovations within cloud and data-center tech-
nology that enables stream-lined data production. A considerable motivation
for Oceanbox is then to streamline the process of defining, starting, running,
and interacting with oceanographic simulations by creating the right tool-
set to enable more efficient information gathering, and thus strengthening
decision-making in marine contexts.

The goal of Oceanbox is to create a web service that oceanographers, and also
laymen, can use to browse and analyze the ocean. Oceanbox provides a user
interface that makes it easy to create particle simulations. These simulations,
however, can become large, and may take up to minutes, hours, and even
several days to execute. So a system must be in place to handle the hand-off
of simulations.

Visualizations in the browser must be made so that the user can interact with
the data by getting a broad picture of the ocean in their model area, or clicking

9

10 chapter 3 oceanbox ’s architecture

Figure 3.1: A simplified illustration of Oceanbox’s architecture. All compute nodes
are hosted at Serit IT Partner Tromsø. There are two Kubernetes clusters
(Ekman and K2). Clients first contact Atlantis for the front end and are
redirected to Sorcerer to fetch Data. The compute nodes share the same
filesystem as the Storage nodes. The archive data is stored as files in the
Linux file system. The archive database is an index into the filesystem
which Sorcerer uses to find the correct files. All fetches pass through an
Nginx reverse proxy shown on the border of the clusters.

on a river to see a forecast of its velocity at the different depths. Or tomorrow’s
elevation, salinity, and more.

Oceanbox was founded in April 2022. They are still in early days of launching
their start-up, but they have a functional infrastructure. Able to browse model
areas, inspect values, and start particle simulations.

3.0.2 Architecture

The .NET platform is the common foundation for the servers and back-end
services,with Fable being used for F# to JavaScript -transpilation andGoogle Lit

11

as the reactive web component framework. The front end uses the OpenLayers1
open source library, a JavaScript library for interactive maps. And WebGL
is used for GPU acceleration on the front end. These solutions are used in
live production by customers but are in continual change and incremental
improvement to improve the overall solution. The solution is run on an on-
premise Kubernetes, hosted by Serit IT Partner Tromsø, the parent company
of Oceanbox.

Computational demands

The core of Oceanbox’s solution is an HPC system where the FVCOM simula-
tions are run. An overview of the architecture can be seen in figure 3.1. The
system has 10 computing nodes, with a total of 2000 CPU cores. Two nodes
are dedicated as storage nodes and run archive data servers, which are called
Sorcerer. Oceanbox currently uses NetCDF as the file format for the FVCOM
simulations. In a separate cluster environment, web servers are run. As the
user logs on to the web service and selects a model area to view, these servers
fetch data from the HPC environment. All subsequent data-specific requests are
requested directly to the HPC cluster. When the user has logged in to Atlantis,
they receive a URL to Sorcerer, which is used by the front-end code. The data
server has direct disk access to all archive data.

When simulations are created, they must be added to the archiving system.
This is a database that holds meta-data about the archives. They are stored on
disk in a structured manner. Each model area has its own unique ID.

Sorcerer is a service for users to download data. It exposes endpoints for
downloading entire grids, though without support for searching within the
grids. When users enters the map tool, they download the archive ID’s that
their user id permits. In the map tool, they select an archive, and with the
provided archive ID, Sorcerer can find the correct file from disk.

However, to avoid reading from disk every time, Sorcerer uses a Cache. This
cache is a mailbox processor that holds the archive indcies as keys, and the
grids as values. Each item has a time to live (TTL) to discard the grids after a
given amount of time.

The previous version of Oceanbox did not use spatial indexes. Instead, elements
were stored in a dictionary of sets where each node index maps to all it’s
elements, a neighbor index. Search was implemented by iterating over all
nodes, and calculating whether the given point is within any of the triangles

1. https://openlayers.org

https://openlayers.org

12 chapter 3 oceanbox ’s architecture

associated with that node. Real-time look-ups in the grid by concurrent clients
was therefore not possible.

Sorcerer is deployed in a Kubernetes HPC cluster called Ekman. Sorcerer is an
F# server and has mounted the grid directories to its file system, and therefore
has direct file access to simulation output files. Nginx sits in front of Sorcerer
as a reverse proxy.

Service delivery

Oceanbox is creating a tool for users to enter a browser that allows them to
view and browse the ocean models they have produced. The model areas are
split up in to smaller sections, spread across Norway’s coast. The archives can
holds months, and even years worth of data, with granularity down to the hour.
Making the user interface intuitive is crucial to support the user in finding
value within these large amounts of data.

The solution is intended to be used by clients in the web-browser, a map library
called OpenLayers is used. Which is a open-source JavaScript library for draw-
ing maps that supports many features, like drawing map tiles, vector data, and
much more. We extend and leverage OpenLayers to enable the visualizations
for the clients. Which are vector barbs, stream lines, and particles.

OpenLayers allows you to easily create a map application using JavaScript. With
minimal configuration, you have a map that supports zooming and panning.
Through many various models, you can customize your map. With clickable
widgets, pop ups, and other UI elements. It has support for different types of
map sources, which are where the map information and images come from. In
addition to this, it has support for using the graphics card to draw on top of
the map.

However, because of WebGL’s complexity, OpenLayers has decided to hide
some of this complexity through its own API. While this provides features for
accessability, it also limits some of the flexibility that is inherent to WebGL.
Which is why we chose to create custom components that allows us to meet
our requirements.

The map tool is a Single-page Application (SPA) written in F# using Fable Lit.
Lit is googles API to create native web-components that many modern browsers
support. Web components are HTML tags that can be made with internal state,
and reactive functionality that allows them to update on user interaction. Fable
is an F# compiler that takes F# code and transpiles it into JavaScript code
that can be run in the browser. This allows for a single language in Oceanbox’

3.1 the netcdf file format 13

entire software stack.

3.1 The NetCDF file format

NetCDF (Network Common Data Format) is a self-describing, scientific file
format. Self-describing as in, it contains meta-data that describes its form. Its
form is array based storage for effective retrieval. NetCDF 4, the latest major
version, supports HDF5, which allows for larger files and multiple unlimited
dimensions. Oceanbox produces Terabytes of NetCDF data. Because of the
array structure of the archive files, indices can be used to fetch data from
disk. This will become essential in the final solution. As it is Sorcerer that has
access to the NetCDF files, and when it has spatial indexing capabilities, can
quickly find the correct array index based on the coordinates coming from
clients.

As an example, the grid is described in the NetCDF files. Each property of
the grid is its own array, and when extracting coordinates, each array are
read separately, and are zipped together after. However, the grid is indexed,
meaning the grid has its own property describing the elements. Elements are
themselves described by three indices into the node coordinates, so element
0 has the value: 80, 81, 0. It points to node 80, 81, and 0. These indices are
shared between the 𝑥 and the 𝑦 coordinates for each node.

3.2 Finite Volume Community Ocean Model

FVCOM[4] is not the most popular ocean model.

The oceanographers in Oceanbox has found value in FVCOM, and has based
the initial stages of the company on it. However, this is not a technological
lock-in. More models are to be supported by the platform, so that in the future
different models can be run by different clients. There are trade-offs with every
model.

The unstructured grid allows for more precision in the model area close to the
coast [3]. This effects simulations, as a orthogonal grid has sharp cut-off points.
A triangular grid follows the contour of the coast line.

Spatially it will also make a difference. Since the triangles can all have different
shapes and sizes, one can increase the resolution in places of interest, and
decrease in it homogeneous areas.

14 chapter 3 oceanbox ’s architecture

The simulations produce NetCDF archives for the FVCOM grids. The FVCOM
grid consists of triangles,made up of nodes and elements. A node is a point, and
an element is a triangle with three nodes. The nodes have 𝑋 , 𝑌 coordinates,
and there is data attributed to both nodes and elements. For example, the
speed of an area is stored in the centroid of an element. The centroids are
then also coordinates into the grids. Each node, however, holds the estimated
salinity for that coordinate.

There is currently no perfect coordinate system to describe the earth. There are
many different coordinate systems, all with pros and cons. This is because one
would want to work with a flat plane, which is what many coordinate systems
do. However, this creates inaccuracies either at the poles, or other extremes.
Spherical coordinates would solve this, but the mathematics involved to work
with these are quite complicated.

The FVCOM simulations can output data in several projections, but are currently
saved in Pseudo-Mercator - SphericalMercator (EPSG:3857). This is a projection
that gives its coordinates in meters. OpenLayers, however, can use different
projections, but most commonly World Geodetic System (WGS84) is used,
which has coordinates in longitude and latitude.

4
Visualizations
This chapter describes our design and implementation of the interactive Ocean-
box visualizations for oceanographic simulations that provide a smooth experi-
ence for web browser clients. We provide current barb drawing routines that
are imported to a map drawing browser library. The library web tiling features
are utilized to query Sorcerer. Tiling functionality is utilized to draw and find
appropriate coordinates for current barbs, with the help of the k-d tree on the
server side. WebGL renders the unstructured triangular grid with the client’s
GPU, together with particle streams.

4.1 Usage scenario

On logging into the Oceanbox platform, the user is presented with an Atlas
view as shown in figure 4.1. This shows what model areas are available to the
user. To visualize the model areas on the map the user chooses which model
area they wish to explore. The grid must be overlaid on the OpenLayers map
which provides functions to move, zoom, and rotate the map. The drawing of
the model area must therefore be integrated with OpenLayers.

On entering the map view, the user is zoomed into a pre-defined area of the
model grid. They are presented with a sidebar for choosing different map
layers and tools they wish to use. A timeline for the model area, how much
data is available, and all the ‘Drifters’ simulations they can access. Finally, a

15

16 chapter 4 visualizations

toolbox is present that has controls for adjusting the current mode. Here is
also a ‘Streams’ switch toggle that toggles the stream’s visualization on and
off.

Additionally, a timeline is added which shows the timespan in which the
service has available data for each model area. It also shows the user’s particle
simulations, which can be selected and played. This results in a workflow
consisting of exploring the model area, starting particle simulations anywhere
within said area, waiting for the results, and playing it back as animations over
the map.

4.2 Current barbs

The first challenge was to draw barbs that could represent velocity, and encode
the speed in a clear visual way. We wanted the barbs to query Sorcerer to
show the grids velocity. There are two problems with this: (1) how to place the
current barbs on the map, which is the coordinate to be queried to Sorcerer;
and (2) how to efficiently look up this coordinate in the grid. The former
challenge is solved by tiled web maps, and is described in section 4.2.1. The
latter challenge is solved by spatial partitioning, and is described in chapter
5.

To draw the barbs, we took inspiration from wind barbs. We overlay a map
interface with current barbs. So, when the user pans over the map, the map
automatically, and evenly, fills the model area with current barbs that show the
direction and magnitude of ocean’s velocity. Zooming requires redrawing the
barbs so that the size of the barbs scale with the viewers zoom level.

It is easy to create a single canvas with a barb in the middle that follows the
mouse, and based on the distance from the mouse to the center of the barb
determines magnitude of the barb. However, placing the barbs on top of a
dynamic map application is not trivial. Since, when the user moves the map
around, how should you keep track of the barbs and where they should sit?
First, there was some thought that went into how one could evenly place barbs
on the map, based on view current view extent. Then, an insight to use the web
map tiling functionality came, which already fills out the screen evenly.

The barb drawing routine uses arrows described in a file, where each point of
the arrow is listed out. The barb has an associated speed for when it should
be displayed. The client gives the drawing routine a velocity vector, and the
correct barb will be drawn in the associated canvas.

4.2 current barbs 17

Figure 4.1: A screengrab from the map tool’s model selection view. Which is what
the user is initially greeted with when logged in. Here we can see that a
model area has been selected. A pop-up appears showing some meta data
about the grid. Currently, only when the archive started, as in the earliest
available data. When confirming the selection, the user will be redirected
to the map tool.

18 chapter 4 visualizations

Drawing consists of looping through the pre-defined points of the arrow, as
shown in the code listing 4.1. We rotate each point around the given angle,
then translate is to the final position.

Listing 4.1: Barb drawing routine

import {XYZ} from " o l / source " ;

c lass BarbTi le extends XYZ {
\ ∗ . . . ∗ \
drawArrow(ctx , arrow , angle , pos) {
c tx . beginPath ()
arrow . Po in t s . forEach (p => {

const s = Math . s i n (angle) ;
const c = Math . cos (angle) ;

const newX = p . X ∗ c − p . Y ∗ s ;
const newY = p . X ∗ s + p . Y ∗ c ;

const x = newX + pos . X ;
const y = newY + pos . Y ;
c tx . l ineTo (x , y) ;

}) ;
c tx . s t roke () ;

}
}

4.2.1 Tiled web map

Displaying current barbs, as in a visual barb showing the magnitude and
direction of the water it is placed upon, it must find the value of this exact
spot. This is not done by the client, even though they have already downloaded
the grid. Instead, the client queries a data server that holds the grid. We
create a barb layer that extends the behavior of a tiled web map. The data
Sorcerer then acts as a Web Map Server (WMS). Taking tile map coordinates
and returning data for the tile the client queried. When the user pans around
the map, OpenLayers finds the tiles and their tile coordinates which are used
to query the data server.

When new data is available for the users to browse, they should be able to
view current barbs as soon as they can download the model areas data. This
requires efficient spatial indexing, to quickly look up, and find the correct
elements for where the data resides as provided by Sorcerer (Chapter 5). This

4.2 current barbs 19

(x, y)

(x + 1, y + 1)

𝑥0, 𝑦2

Figure 4.2: Illustration of how the web tiling in OpenLayers is leveraged to create
points to fetch velocities for barbs. OpenLayers on the client-side chooses
𝑥,𝑦, 𝑧 tile coordinates which are sent to the server. The server converts
the tile coordinates to lat and long coordinates and divides the bounding
box into 9 boxes.

should be done in real-time, as no pre-processing is currently performed on
the simulation data.

4.2.2 Design

In the selection screen, the available model areas are displayed with a rough
outline of their actual positions. The client can click the area of interest, and
then be redirected to the map application. Controls are presented to choose
what kinds of data the client wants to explore. Whether it should be the velocity
of the water, salinity, bathymetry, and more. An example of showing velocity
can be seen in figure 1.1.

Showing the current barbs is a choice for the client, as a checkbox in the
floating control panel. When enabled the model area will be evenly filled with
current barbs, displaying the velocity and direction of the water at the locations
from their origins. When the time is incremented, either by the animation, or
manually stepping forwards in time, the barb layer has to query the server

20 chapter 4 visualizations

again to retrieve the values for the new time step.

The barb tiles are an extension to OpenLayers, with a custom drawing routine
for the barbs. The barbs are specified as a JSON file that the server defines. The
client will then request the arrow definitions, which it looks up when drawing
barbs. It defines the vectors for drawing the arrow, and at what speeds. So
when a coordinate is found to have a velocity of 1m s−1, it will draw a specific
type of arrow.

Panning or zooming the map will move the client viewport, or extent, of the
map, telling OpenLayers to fetch new tiles from the WMS of choice. Users
can choose, from our pre-defined selection, what map providers they want to
use, as different map tile providers host different types of tiles. They differ
stylistically and how detailed they are. The coordinate the client is viewing will
correspond to a tile coordinate, which is defined as 𝑋 , 𝑌 , and 𝑍 coordinates.
The 𝑋,𝑌, 𝑍 coordinates of the tile is placed on its north-western corner, and is
a geographic coordinate, which can be translated. This is done by the Sorcerer
service, and is described in Chapter 5. As tiles are rectangles covering some real
geographic space, they can be used as bounding boxes for finding the points
from where to sample the current model area. An example of this can be shown
in figure 4.2. Which shows the web tiles, and the subsequent partitioning of
these to find the barb search coordinates.

This results in a scheme for evenly placing current barbs over the model area.
By bootstrapping the tile fetching procedures of web tiling libraries, in this
case OpenLayers, the coordinates and positioning of current barbs are found.
Additionally, OpenLayers does caching to avoid redundant downloads of web
tiles, and since the current barbs are drawn onto a canvas, they are cached for
reuse.

The WMS in case the “Sorcerer”, which is a F# server running in the same
cluster as the HPC cluster running the simulations. This means that it has data
locality, as it can mount the file system that stores the simulation data, and the
model areas. “Sorcerer”, then, exposes an API that takes web tile coordinates,
an archive id, and a time step, which it uses to fetch velocity data from the
correct model area.

4.2.3 Implementation

The barb layer is implemented in JavaScriptwhere it extends a XYZ layer. Which
is one OpenLayer class from the assortment of different layers and functionality
that comes with OpenLayers. An XYZ layer is a map layers that expects to be
pointing at a WMS, which has an API that takes XYZ tile coordinates. This

4.2 current barbs 21

layer class has a tile loading function, which takes a tile and a URL. The tile is
a canvas, and the URL is the WMS the layer should fetch its map images from.
However, this function is overwritten in the barb layer, where a fetch is done
manually to “Sorcerer”.

Listing 4.2: Tile drawing routine

drawArrows (t i l e V e l o c i t i e s , t i l e , coords) {
const t i l e S i z e = th i s . t i l e G r i d . g e t T i l e S i z e (coords) ;
const g r idS i z e = t i l e S i z e [0] / th i s . a r rowsPerT i le ;
const midGrid = gr idS i z e / 2;
// Crea t e a canvas f o r t h i s t i l e
const c tx = createCanvasContext2D (t i l e S i z e [0] ,

t i l e S i z e [1]) ;

t i l e V e l o c i t i e s . forEach ((ti leRow , i) => {
ti leRow . forEach ((vel , j) => {

const pos = {
X : midGrid + j ∗ gr idS ize ,
Y : midGrid + i ∗ g r idS i z e

} ;
const arrowVec = {
X : ve l . X ,
Y : −ve l . Y

} ;
const velMag = th i s . vec torLength (arrowVec) ;
const arrowVecN = th i s . vectorNormal ize (arrowVec) ;
const angleRad =

th i s . arrowAngleRad (arrowVecN) + Math . PI ;

i f (velMag < 0.1) {
th i s . drawCirc le (ctx , pos . X , pos . Y) ;

} else {
const arrow = th i s . f indArrow (velMag) ;
th i s . drawArrow(ctx , arrow , angleRad , pos) ;

}
}) ;

}) ;
(t i l e) . setImage (c tx . canvas) ;

}

Instead of Sorcerer returning an image, it returns a set of vectors. These are the
velocities of the barbs. The client then does a drawing procedure in each of the
HTML5 canvases that OpenLayers produced, drawing the correct barb based

22 chapter 4 visualizations

on the magnitude, and in the correct direction. This can be seen in Listing 4.2.
An example of this can be seen in figure 1.1. The colored areas of the map show
the outline of the model area. It is colored using WebGL which is done with
another OpenLayers layer, but is described further in section 4.3. The client
can choose the density of barbs, but the default value is 9 barbs per tile.

The web service Atlantis is meant to be used by many clients concurrently.
Since different archives and files are read at the same time. Unnecessary file
io should be avoided. This is partly ameliorated through a cache agent. There
are two agents, one for opening and reading from the archive files stored as
NetCDF files on disk, and a cache agent, which holds data structures, and
mainly spatial indices, which are also stored to disk when stale.

4.3 Model area mesh with WebGL

This section describes the use of WebGL to draw the model area, and enable
efficient interactive visualizations by solving the challenge of the data amounts
involved in oceanographic simulations, and techniques used to overcome this.
This allows us to place the whole model area on the grid, without any pre-
processing. Drawing and coloring the grid is done by the GPU, which makes
the rendering time negligible, but fetching times are cause of some delay. The
FVCOM unstructured triangular grid corresponds well to the grids normally
drawn by GPUs, enabling the use of well known optimizations.

4.3.1 Design

The client downloads the grid in its entirety. But because of the size of the
grids, they are stored on the clients machine using the IndexedDB browser API.
When the user starts the web application, and chooses a model to view, the
browsers database is checked against the archive id, and the cached version of
the grid is used.

OpenLayers handles map visualizations and navigation, and already has layers
using the GPU to render objects overlaying the map, these features are used and
extended to fit the needs of Oceanbox. OpenLayers supports WebGL layers,
so objects can be drawn as sprites at given coordinates on the map. The
GPU is very efficient at drawing thousands of such objects at the same time.
However, there are no pre-defined layers that allows including the whole mesh
(FVCOM grid) to be drawn. The current largest grid, called ‘LT3’, has over 1
million nodes in its mesh. Therefore, we create a new layer by extending the
functionality of OpenLayers. However, drawing a triangular grid using the CPU

4.3 model area mesh with webgl 23

Figure 4.3: Close-up of model grid with wireframe rendering turned on that shows
the triangles of the grid and how the coloring is done. Since each nodes
gets a value, the color is interpolated by the graphics card between the
three corners of the triangle.

is unfeasible.

WebGL is an API for the browser that interfaces with the users graphics card
(GPU). So, we can utilize the GPU’s triangle rasterization technologies to effec-
tively draw triangle meshes in real time, and therefore provide the responsive
interactions with the scientific model that are integral in the Oceanbox service.
As OpenLayers is a map drawing library, we use a custom layer that overlay
the model drawing on top of the map, even while the client is navigating the
map by zooming, panning, and even rotating. This custom layer uses WebGL
to draw and color the grid.

Colors

We want to display the information stored in the model area. When looking
at the grid, the user can choose what properties they want to see. These are:
salt, elevation, bathymetry, temperature, and velocity. Since this information is
stored either on the grid’s nodes, or in the elements, we can color the elements

24 chapter 4 visualizations

based on the values they hold. Which is to say, with velocity as an example,
we want to show fast regions of the ocean red, and calm ones blue. However,
we want different colors based on the properties being visualized. We can
then create color maps, which are pre-defined color palettes. Color maps are
calculated on the GPU using the values of the grid. Which means that the grid
can be drawn and colored based on the state of the ocean at the given point of
time.

Users should be able to tweak the color palette. Different properties can vastly
different value ranges. Changes in the color properties should update the
model instantly, and a color range should be present to indicate what the
colors represent.

The properties must then be fetched from the Oceanbox servers as the client
views a given time step.

OpenLayers

As the custom components are written in JavaScript to interface with Open-
Layers, we need a way for the F# code to interface with our new modules.
Bindings are created in F# as a module that can be imported into F# code.
This is done in the style of Feliz1. This lets us get typed JavaScript code, that –
once transpiled – our F# code gets access to.

Wireframe

To view the grid, we need a wireframe view of the model areas. This is disabled
by default, and can be switched on by the user. There is no native functionality
in WebGL to enable a wireframe view, so it must be calculated manually by
the GPU. An approach is to send barycentric coordinates together with the
grid when rendering it. However, these must be correctly aligned with the
vertices, so the grid must therefore be unindexed. An alternative would be to
not include the barycentric coordinates, and calculate the length from the edge
of the triangles, but this reduces rendering quality. We therefore went for this
approach.

However, because of the changes between wireframe and normal rendering,
the wireframe is created as a separate layer. This makes it optional to add the
wireframe rendering to the map application. Another approach would be to
bake the wireframe functionality into the original layer, but this would increase

1. https://zaid-ajaj.github.io/Feliz/

https://zaid-ajaj.github.io/Feliz/

4.3 model area mesh with webgl 25

the complexity within the shader code. One could send an attribute to the GPU
whether wireframe was enabled, or change the shader program used with the
view. For simplicity, they were split into separate layers overlayed on top of
each other.

Summary

We create functions that returns the new WebGL layer, and with arguments
that lets you specify the grid and the inital values for the grid. One for viewing
props, and another layer that renders the wireframe of the model area. The
class also exposes methods for updating the grid’s properties for when the time
changes, the user adjusts the opacity of the grid, or changes the color palette
to one of the many made available to them.

4.3.2 Implementation

OpenLayers integration

TheWebGL layer is created in JavaScript as a class that extends the OpenLayers
Layer class. This allows us to add this layer to our own map. A custom renderer
is created for the overrideable method that gives the layer its renderer. By
creating a custom renderer, we choose how the layer looks, and what should
be on it. The custom renderer is also an extension of a pre-existing class within
OpenLayers, the WebGLLayerRenderer.

In the WebGLLayerRenderer class, the shaders, array buffers, attributes, and
uniforms can be manually created with the help of OpenLayers WebGL helper
functions. However, OpenLayers exposes the utilities they use internally for
their WebGL layers. These are used when possible. The renderer has two
central methods that can be overridden, which are prepareFrameInternal
and renderFrame. Most importantly, in renderFrame, since this custom layer
has been added to a map, from where the user moves their view around
the world, it provides the projection matrix which translates coordinates to
screen pixels. By uploading the projection matrix to the GPU, and multiplying
every node in the grid, we move the model grid to the correct position on the
map.

Color palette

The color palette calculations are done by uploading the selected color palette
to the GPU as an attribute. The vertex shader is shown in 4.3, where some

26 chapter 4 visualizations

Figure 4.4: An early rendition of drawing the grid. Random colors were used to draw
every triangle. The model area is called ‘LT3’, and is located on the coast
of Norway, encompassing Lofoten.

4.3 model area mesh with webgl 27

variable declarations are omitted. The color palette is therefore shared between
every vertex in the vertex shader. Together with the vertices, we upload the
properties, which is the chosen grid property that the client wants to view.
Then, for every vertex in the grid, we also get the node’s property. With the
property’s value, we can normalize it to index the correct color in the color
palette. The color is passed on to the fragment shader, which is where the
triangles are colorized.

Listing 4.3: Shader for model area

a t t r i b u t e vec2 a_pos i t i on ;
a t t r i b u t e f l oa t a_prop ;

uniform mat4 u_pro jec t ionMat r i x ;
uniform vec3 u_pa l e t t e [256];
uniform f l oa t u_pale t teLength ;
uniform f l oa t u_paletteRange [2] ;
uniform f l oa t u_opac i ty ;

vary ing vec4 v_co lor ;

void main () {
g l _Po s i t i o n = u_pro jec t ionMat r i x

∗ vec4 (a_pos i t ion , 0 .0 , 1 . 0) ;
f l oa t v = a_prop ;
i f (v < u_paletteRange [0]) {
v = u_paletteRange [0] ;

} else i f (v > u_paletteRange [1]) {
v = u_paletteRange [1] ;

}
f l oa t co lo rResca l e = ((u_pa le t teLength − 1.0)

/ (u_paletteRange [1]
− u_paletteRange [0])) ;

in t idx = in t ((v − u_paletteRange [0]) ∗ co lo rResca l e) ;
v_co lo r = vec4 (u_pa l e t t e [idx][0] , u_pa l e t t e [idx][1] ,

u_pa l e t t e [idx][2] , u_opac i ty) ;
}

Wireframe rendering

By giving each vertex in our grid a barycentric coordinate[5], we can let the
GPU interpolate between the corners, and thus see how far from the edge
of each triangle we are. By knowing how far we are from the edge of the

28 chapter 4 visualizations

triangle, we can decide what color it should have. In the case of a wireframe,
we can make the middle of each triangle transparent, and give the colors to
the edges.

To create barycentric coordinates, we take the indexed grid and unindex it.
This can be done by iterating over every element and expanding the elements
out into a new unindexed vertex array. This creates an array with twice as
many entries as the original index array.

After we have a flat unindexed vertex array, we can create the barycentric
coordinates. This is done by mapping each vertex coordinate to its index in the
array modulo three. This gives us the index into another array of barycentric
coordinates, which are uploaded to the GPU as an uniform. Meaning, every
vertex shares the same three barycentric coordinates, but each pair of vertex
coordinates get assigned an barycentric index.

In the fragment shader, with the barycentric coordinate, we can calculate the
pixels opacity, based on its distance from the triangles edge.

4.4 Particle streams

We designed the particle streams to visualize velocities that are inspired by
weather forecasts2, which often have wind particles as a visualization tool.
The particle streams were implemented as an independent application in
JavaScript by Daniel Stødle of NORCE Norwegian Research Centre and were
integrated into the map tool afterward by the thesis Author. Not to be confused
with particle transport models, where in visualizations, actual speeds are not
of primary concern, only the aesthetics. However, the land-masking problem
requires us to avoid getting ocean particles on land. By uploading the vector
fields to GPU textures, velocities can be sampled to move only the particles
where there is motion.

4.4.1 Design

Particle streams can be visualized by releasing thousands of fluorescent par-
ticles into a stream of water and then tracking the particles to see the water
streams. However, keeping track of these particles is computationally expensive.
Therefore, the visualization and computation to render the animation is done
on the GPU.

2. https://windy.com

https://windy.com

4.4 particle streams 29

Figure 4.5: An image of particle streams visualizations in Atlantis showing Saltstrau-
men, a famous tidal current in Northern Norway near Bodø.

30 chapter 4 visualizations

The particles should be beautiful and have a trailing tail that fades behind the
particles as they move. They should follow the properties of the water they
happen to have landed in, and therefore give a general idea for the user of the
velocity of the water. These visualizations are therefore mostly cosmetic.

The streams layer is created as an extension to OpenLayers, which allows
OpenLayers users to add these graphics to their maps. What must be supplied
is the model, which consists of vertices and indices, and the velocity for each
element in the model. Then, a canvas will be overlaid on top of the user’s map,
following the user’s movements.

Since the user has already selected a model area, the grid is already fetched
from ‘Sorcerer’ and loaded into memory. On the initial load, the streams layer
is created and initialized but set to be invisible. In the toolbox, the user can
toggle the streams layer. Which will fill the model area with particles that will
start moving. When the user steps forward in time, the particle system must
have its vector field updated, so that it can create a new particle simulation.
This initiates a fetch from Sorcerer, which returns the velocities for the model
in a new timestep.

Particle stream animation is done in 4 steps:

1. Generate particles in random locations

2. Look up the particles on their positions and the underlying vector field,
and advect them

3. Reset particles after a ‘lifetime’

4. Fade the previous positions and draw the new position on top

We create interfaces both for F# and JavaScript. The JavaScript ones wrap
the streams application in OpenLayers, which allows us to view the particles
on a map, and which allows other programmers to utilize this layer in their
map applications. The F# bindings are made to be used in our application. An
interface to update the particle stream layer’s velocities is provided.

4.4.2 Implementation

We create an OpenLayers class that extends the OpenLayers Layer class, which
has its own renderer, which is the Streams renderer. This custom renderer calls
the streams application and gives the application its canvas instance and the
frame extent from where the streams can sync up with the map view. Finally,

4.4 particle streams 31

we wrote F# bindings for the map tool front end. Which allows us to create
the streams layer and add it to the map tools map.

The particle streams are implemented as a custom OpenLayers layer. This
layer gives us a canvas to draw on, and an extent that tells us the world
space coordinates, based on where on the map the Client is currently viewing.
When the layer is initialized and the canvas is created, it can be handed off to
the streams layer application, together with the FVCOM grid and the current
velocity. For the sake of brevity, mainly the vector field computation will be
discussed.

With the vertices, indices, canvas, and velocities as input, the streams layer
will draw onto its own canvas in an independent animation loop. We create
a mesh out of the model grid, the same as the model area grid layer. Then,
a vector field is created from the model mesh, but the velocities are moved
from the centroids of the elements, to the nodes of the mesh. This is done by
averaging the velocities by the contributing triangles, since many triangles can
be connected to each node. The vector field consists of the model grid, and a
texture which holds the velocities.

Particles are created when the stream application is initialized and placed
randomlywithin the bounding box of the grid. The particles are also transcribed
into a texture, where their properties are written as pixels. Each particle gets
two floating point pixels to describe its position in 𝑥,𝑦, their remaining lifetime
in 𝑡 , the velocities magnitude in 𝑣 , and the starting 𝑥,𝑦, 𝑡 in 𝑠𝑥, 𝑠𝑦, 𝑠𝑡 . Which
are the starting position when the lifetime of the particle expires.

With the vector field and particles initialized, the animation can begin. It loops
at 60 frames per second. Each frame, the particles are computed and moved
based on their positions, including both the particle texture, and the vector
field texture. Then, the graphics card does a texture look-up to find the current
particle. It checks to see if the lifetime of the particle has passed or not. If not, it
will do another look-up in the vector field texture, and move the particle based
on the found velocity. This is written back into the particle texture.

When rendering the particles, points are used as the geometries for the render-
ing. There are allocated the same number of point geometries as particles in
the texture. The particle texture is uploaded together with the points. Then, in
the vertex shader, each point geometry looks up their respective value in the
particle texture, which there are two pixels per particle, as described earlier.
The point can then be placed in the 𝑥,𝑦 coordinates described by the texture.
The color can also be found by looking at the particles velocity in conjunction
with the chosen color gradient. To create a fading effect, the lifetime of the
particle decides the opacity of the point geometry, fading away as its lifetime

32 chapter 4 visualizations

approaches its maximum.

5
Spatial indexing: Finding
things fast

In this chapter, we describe how spatial indexing allows for efficient data
queries into an unstructured triangular grid. We use a k-d tree to store the grid
information of FVCOM files to index them based on spatial coordinates. Given
a coordinate, the tree finds the correct index in the FVCOM archive, letting us
retrieve data without searching further. The “Sorcerer” service uses the library
to load the grid and exposes an API to let clients fetch and search for model
data while browsing the data in a web browser.

5.1 The k-d tree

A k-d tree is a 𝑘 dimensional tree, where 𝑘 is 𝑘-dimensional space. It is a space-
partitioning data structure mainly used for holding points. Specifically, a k-d
tree bisects a list of points, constructing a tree. On construction, it alternates
the axis on what it bisects. That is, sorting first on the x-axis, then the y-axis,
in a typical example where we want to partition points in space. Initially, our
implementation only supports two dimensions, so it is a static 2D tree. We
can search some space using either range search or nearest neighbor search.
Range search takes a bounding box, and returns all elements stored in the tree
within that box. The nearest neighbor search takes a coordinate, and returns –

33

34 chapter 5 spatial indexing: f inding things fast

Figure 5.1: Zoomed out view of an FVCOM grid

in order – the closest items in the tree to the given point.

Two trees are created: a node index tree, where the FVCOM node coordinates
are the leaves making up the tree; and an element index tree, where the
coordinate of the element’s centroid is used. Each leaf holds the corresponding
index in the grid archive. The library has two functions: range search and
nearest neighbor search. The tree can index any set of points. Here we index
the triangular unstructured grids, using their real geographic coordinates as
the points, and the index back into the NetCDF file as the data.

The user can then use the tree to for example search for the velocity at some
area within the grid. Doing a range search will result in a list of leaf nodes
satisfying the bounds of the area supplied. With the indices returned, the user
can then index the NetCDF archive and read the velocities of the points found.
A search has successfully been done.

5.2 design 35

Figure 5.2: Close up view of the FVCOM grid shown in 5.1

5.2 Design

The FVCOM simulations produce NetCDF archives, which Sorcerer serves the
clients browsing archives in the map tool. However, no searching endpoints
were previously exposed in Sorcerer. With the k-d tree, Sorcerer lets users
search the archives. Like in the case of current barbs, where we want to sample
grid velocities.

An example grid is a model area called “Napp”, which has 25136 nodes, and
then 48332 elements.

There is no correlation between elements in the grid and their coordinates. So
to look up a point within the model area without a spatial index is not trivial.
In an orthogonal grid, binary search can be used since the grid sizes are known,
and the coordinates are therefore sorted. This is not possible with an irregular
triangular grid, as traversing the grid would not result in a straight path (as
shown in Figure 5.2.)

To enable real-time look-up in the unstructured triangular grid we use the
𝑘-d tree in Sorcerer. Two search functions are given for the tree: nearest
neighbor search, and range search. The k-nearest neighbor (k-NN) search

36 chapter 5 spatial indexing: f inding things fast

takes a coordinate and returns the closest point it finds. Range search takes a
bounding box, and returns all points within. Each leaf in the tree has a position
and associated data. The data is generic, but in our use case the indices into
the neighbor index previously described is stored.

5.2.1 Barb look-ups

To find the current barb values, Sorcerer uses the 𝑘-d to do a search in the
archive. Since the barbs needs the speed of their position, the search is done on
the elements (triangles) of the grids. A nearest neighbor search is performed
for each coordinate found within the bounding box of the tile. When the index
of the element is found, a check is done to see if the barb’s point is inside the
element. This, in essence, is how the land masking for the barb visualization
is done.

When users enable current barbs, the layer will send an array of coordinates
for Sorcerer to look up. Together with the coordinates, the client will include
what archive they are looking at, how many barbs they want, and the current
time step. This information is used by Sorcerer to find the correct archive, and
find the information the client is looking for. Then a list of velocities is returned
to the client, which they use to draw current barbs.

The current barb search endpoint uses nearest neighbor search, and will there-
fore always return a value, even if it misses an element. To avoid this, we
must additionally test if the search point is within the element the search
returned.

5.2.2 Caching

Multiple users use the same k-d tree. So multiple model areas, and their
respective grids, can be queried simultaneously. The trees therefore must be
loaded only on-demand, and discarded when deemed stale. The indices should
then be cached to avoid recreating the trees. Additionally, since the grids never
change, the indices can be serialized to binary, and written to disk. Then, when
the cache misses when a user selects an archive, Sorcerer can read the trees
from the disk.

Since users can query specific points for any of the data types, and they are
stored on either the nodes or the elements, two types of spatial indices need
to be made. They are either node indices or element indices. We, therefore,
expose separate API endpoints for locating properties stored on nodes or
elements.

5.3 implementation 37

5.3 Implementation

This section describes the implementation of a 𝑘-d tree in F#, why this spatial
index was chosen, and the motivation for implementing a new F# library.

5.3.1 The k-d tree

A server that has mounted the file system with the model data (NetCDF files)
reads at start-up the grid coordinates. The array of points is given to the 𝑘-d
tree module, which constructs a tree. The points are sorted in turn by each of
the 𝑘 axes and split into two halves. Each half is then sorted on the next axis
and split again, and so on. This continues until the length is smaller or equals
the leaf length specified. So the 𝑘-d tree is a tree of arrays. Each node holds
the coordinates of the mid-point for the previous sorts. This point is used to
navigate the tree later in search.

5.3.2 Location endpoints

Sorcerer is the name of the service close to the data. It creates tree indices
of the grid data. It exposes end-points for searching for nodes, elements, or
a Web Map Tile Server (WMTS) type search, as described in Chapter 4. Two
index tree are created with the k-d trees, and stored for each model grid. An
element tree, for the triangles, and a node tree.

Finding the nearest node is simple. As nodes are just points, a k-NN search on
the FVCOMgrid can be done, and the nearest neighborwill be the node. Finding
the element, however, requires figuring out whether or not the coordinate is
inside the element that is found.

Firstly, to do a k-NN search on the elements, a new set of points must be
generated, namely the centroids of each triangle. These are calculated by
taking the three nodes and averaging their position vectors. These points are
stored in the element tree. On look-up, the given point is then compared to
the centroids of the triangles, but to check whether the point is within an
element, there needs to be a check whether it is inside any of the triangles.
Because of the constraints of the triangles in the FVCOM grid, there are edge
cases in the nearest neighbor, and within triangle -tests. There is no guarantee
that a point within one triangle, but that is on the edge, or near one of its
corners, will actually be closer to the center of a neighboring triangle. This can
be due to early precision errors, as single-point precision was initially used,
and later switched to double precision. However, to ameliorate this, a more
comprehensive test is done; when searching for an element within the grid,

38 chapter 5 spatial indexing: f inding things fast

all surrounding elements are also tested. Because of the neighbor index, the
neighboring elements of the missed element can be used. So, a k-NN search,
followed by testing if it is inside that element, can fail. Therefore, in that case,
all surrounding elements are fetched and sequentially tested to determine if
they contain the point. This enables clients to find specific elements on the
map, and they are given an index back. This index can be used to search for
data contained in the grid. Like the velocity in the area of the element. This
will also be used to sample the grid for information, enabling visualizations
like barbs, and point-clicking to look up statistics about the grid. The k-d tree
is also used in simulations, as one needs to look up information and velocities
from the grid when advecting particles.

To retrieve the velocities of barbs, a look-up is done into the model area. This
means that the point found for every barb is searched for in the triangle mesh,
to find what element the barbs are within. When the element is found, it can
be read from the NetCDF archive.

Sorcerer converts the tile coordinates to UTM33, which the FVCOM grid is
stored in. This is done with the formulas

𝑙𝑜𝑛 =
𝑥

2𝑧
× 360 − 180

𝑙𝑎𝑡 = arctan
(
sinh(𝜋 − 𝑦

2𝑧
× 2𝜋)

)
× 180

𝜋

Which gives the coordinates of the north-western corner of the web tile. Adding
one x gives the east-ward tile, and y the one below. This gives you two coordi-
nates that are the bounding box of the current tile you are looking at. Finally,
the tile is divided into 𝑛 sub-boxes, which can be specified by the client, as
shown in 4.2. This is done by dividing the tile into however many barbs the
client wants, stepping over the tile with the length given by the barb amount,
and finding the middle of each sub-box.

The indices of elements are stored in the 𝑘-d tree together with the position of
either the element’s centroid or the nodes of each element. So depending on
the information being searched for, different trees must be used. As mentioned
earlier, the velocity of the model area is stored in the elements, with the
placement of the velocity being in the centroid of the element. A k-NN search
is done against the grid’s elements, and an index is given if the barb’s point is
within any element in the grid. If the search misses, no value is returned.

Additionally, when searching for an element, which again, is the centroid of
a triangle, the nearest neighbor search can miss in edge cases. When search
points hit close to the border between two triangles, the k-d tree will find
the centroid of one element, but fail when testing whether it is inside it. This

5.3 implementation 39

results in missing barbs, causing holes where there should be none. To fix this,
we perform a double search for every barb. Using the neighbor index, we can
look up the neighbors of the element we find. We then perform the triangle
hit test for all the surrounding elements. Then, these elements are iterated
over, and the element index of the first elements the search point falls within
is returned.

When the element indices for the given tile have been found, the 𝑢, 𝑣 of the
element can be read from the FVCOM archive on the given time step. The
reading operation is given to a “DatasetAgent”, which is a mailbox processor
that holds the file handles to the different archives available. As concurrent
clients can view the same archives at a time, there must be a way to handle
file io efficiently.

6
Evaluation
The two most important questions are if the static k-d tree implementation was
worth it, and how fast the look-up times are. Grid property download times
are also evaluated. We evaluated the solutions using benchmarks run on the
thesis authors personal computer, and the production system by requesting
services directly.

6.1 FsKDTree performance

In this section, we compare the performance of the C# k-d tree implementation
(KdTree1) against our new F# implementation. Tree creation and nearest
neighbor searches are critical paths in Oceanbox’s stack, and we will therefore
evaluate these two functions.

6.1.1 Experiment setup

The experiments are run on a personal laptop. The hardware specifications
are in Table 6.1. The data used for the experiments is the largest FVCOM grid
available at Oceanbox: ‘LT3’. It has 1 000 083 nodes and 1 930 679 elements.
The vertices and indices comprise around 30mb. The archive’s simulation date

1. https://github.com/codeandcats/KdTree

41

https://github.com/codeandcats/KdTree

42 chapter 6 evaluation

Host HP 8549
CPU Intel Core i5-8265U (8) @ 3.900GHz
RAM 16GB 2667MHz DDR4

Harddrive SAMSUNG 256GB NVMe SSD w/ 1300.0/3000.0 Mbps W/R
OS NixOS 22.11.2345.af96094e9b8 (Raccoon) x86_64
Kernel Linux 5.15.90

Table 6.1: Hardware and software specifications of the author’s personal laptop. Note:
hard drive performance is taken from productz.com - Samsung PM981

.NET SDK 6.0.403
.NET Runtime 6.0.1122.52304
BenchmarkDotNet v0.13.2

Table 6.2: Software versions used in benchmarking

start is 2017/07/14 00:00, and it has time steps of 10 minutes each, lasting
for 9 hours, totaling 72 steps. These 9 hours culminate in a total of 13GB of
data.

The .NET platform is used to run the code. The versions used can be seen in
table 6.2.

The experiments were run using ‘BenchmarkDotNet’2. To run benchmarks, one
can implement a method for a BenchmarkDotNet class. Annotating the method
as a benchmark, the library will methodically run the method many times to
evaluate the algorithm properly. Data is prepared outside the method, and
only the functions of interest are called within it. The framework will therefore
decide the start and end -times of the function call.

6.1.2 Creation

Wewant to measure tree creation times, for both grid nodes and elements. That
is, when the grids’ points have been loaded into memory, and added to the k-d
tree, how long does this take? Even though new model areas are not created
often, and are often done once and written to disk, these can be deleted, and
must therefore be created a-new. This happens on demand, when a user selects
a model area, and can block requests. Reducing any user experience delays
will therefore be desirable.

This can be measured by timing the creation of the tree. .NET NetCDF SDKs

2. https://benchmarkdotnet.org/

https://productz.com/en/samsung-pm981-mzvlb256hahq/p/GD5Zz
https://benchmarkdotnet.org/

6.1 fskdtree performance 43

Method Mean Memory Allocated
C# Node KdTree (N=33) 4.165 s 83.93MB
C# Elem KdTree (N=15) 9.637 s 294.61MB
F# Node FsKdTree (N=13) 1.068 s 774.65MB
F# Elem FsKdTree (N=15) 2.281 s 1731.43MB

Table 6.3: k-d tree creation benchmarking results on ’LT3’. A 13GB FVCOM archive
with 1 000 083 nodes.

are used to read data from disk. When the arrays are read into memory, we
can time the data transformation into the right format, and call the creation
function. Node vertices do not need any transformation. Elements however
must be converted from centroids into nodal coordinates. Going through every
element we read its vertices, and calculate the centroid which is loaded into
the trees.

FsKDTree has a faster construction time than the C# k-d tree. The results of the
benchmarks can be viewed in Table 6.3. We see that the node tree construction
takes less time in both cases than the element tree, as expected. The F# node
tree takes 1 second, and the C# tree takes 4.1 seconds. The element tree takes
2.3 and 9.6 seconds for the F# and the C# trees, respectively.

We can see that the F# tree’s creation time is around 4× faster than the C#
tree. The F# tree takes a whole list which it iterates over to construct the tree.
While it does array splitting, which might allocate objects, this only happens
for as many leaves as there are. The default leaf array sizes are 64 elements.
The C# tree, on the other hand, creates a node object for every point inserted
into the tree. This means memory allocation for every point inserted.

FsKDTree is also static, as one cannot add new points to the tree after creation.
The tree must therefore not handle keeping itself balanced, which reduces
code complexity and logic within the creation code. The C# tree supports
both k dimensions, and adding points to the tree. Though, it does not balance
itself automatically on point additions, as this must be done manually after
creation.

6.1.3 Search

Search functions are used by Sorcerer when users request location-specific
information from the grids. When clients activate barbs visualization, they
send a request per tile in their viewport. The tile images are 512 × 512 large,
so there are a minimum of 8 tiles on the screen at all times. However, these
images can be scaled down by the clients. Here we assume the minimum case.

44 chapter 6 evaluation

Method Mean Memory Allocated
C# node k-NN search (N=28) 260.363µs 206.344 kB
C# elem k-NN search (N=33) 274.780µs 216.544 kB
F# node k-NN search (N=14) 20.583µs 11.584 kB
F# elem k-NN search (N=14) 20.351µs 10.768 kB

Table 6.4: k-d tree searching benchmark results on the large ’LT3’ grid.

Sorcerer subdivides each tile at default into 9 coordinates, this becomes 72
searches into the grid to find the closest element index. The performance of
the search will therefore have an effect on the clients. We want to see the
difference between the C# tree and our new F# tree.

We use the same hardware and experimentation setup as in the previous
section. We measure the time to take a pre-built tree and run k-NN search on
both trees. We include both node tree searches and element tree searches. The
searches use the same point for both the element and the node trees. When
the functions return the point, the benchmark ends.

The results of the search benchmarks can be seen in table 6.4. We can see there
are negligible differences between node and element searches, so we consider
only the difference between element searches. When indexed into the trees,
they are both simply points. k-NN search resulted in 274.780µs, and 20.351µs
for the KdTree vs. FsKDTree, respectively. This is an improvement on a factor
of 13𝑥 .

The C# k-d tree uses an internal priority queue to handle returning a list of
the nearest neighbors, in addition to a hyperrect that it keeps track of while
testing points in the different dimensions. Which does additional distance tests
on searches, and reordering the queue on finding closer neighbors. FsKDTree
does not have a priority queue as it only returns the single closest neighbor,
decreasing the logic with the function call.

6.2 Grid prop fetching times

We want to measure how long it takes to download grid properties, since they
are not currently tiled. Currently, as no pre-processing is done on the archives,
we want to see how long it takes to fetch archive props. Users can step forwards
in time, and on the larger model areas, this causes some delay. This is because
when a scalar field is selected, all properties for the new timestep must be
fetched from Sorcerer.

6.2 grid prop fetching times 45

Host Lenovo SR645 (7D2XCTOLWW)
CPU AMD EPYC 7713 (256) @ 2.000GHz
RAM 16× 16GB 3200MHz DDR4

Harddrive 349TB XFS storage with RAID 60
OS NixOS 22.11 (Raccoon) x86_64
Kernel Linux 5.15.91

Table 6.5: Storage node hardware specifications.

Property 10 fetch avg. Max Min
Speed 723ms 836ms 451ms

Temperature 385ms 802ms 241ms

Table 6.6: Results of sampling property downloads. Taken from Oceanbox’s produc-
tion system. The model area is PO11, whose grid size is 22.72MB. The
properties are 3.02MB.

This is measured by sampling download times in a browser’s network console.
Each call to Sorcerer is logged, and timings are displayed in milliseconds.
Sampling these timings can show back-end performance.

Sampling was done in Oceanbox’s production system, which is currently un-
available to the public. API calls are requested to Sorcerer, which is running
on Ekman as a Kubernetes pod, which means a containerd3 container. Its
hardware specifications can be seen in table 6.5. The model area called ‘PO11’
is used to test prop fetching, as shown in figure 6.1. It is located in Troms and
Finnmark, Northern Norway. The previous example ‘LT3’ is not available in the
production system. ‘PO11”s grid is 22.72MB large.

We manually increment the time on model area ‘PO11’ with speed and temper-
ature properties selected, read the time taken by each call, and finally average
the times. Ten calls are sampled from each of the props from the production
instance of Atlantis. The results are in table 6.6. This gives us an average
request time of 723ms for speed, and 385ms for temperature. Speed has a
max duration of 836ms, and a minimum of 451ms. Temperature has 802ms,
and 241ms.

These are noticeable waiting times, especially for speed properties. When
Sorcerer fetches the grid’s velocities, it must convert every value from being
located on the element to its nodes.

3. https://containerd.io/

https://containerd.io/

46 chapter 6 evaluation

Figure 6.1: Image of PO11 with speed scalar field visualization enabled. It has a grid
size of 22.72MB, and for every props’ time step one layer has 3.02MB of
data.

6.3 Grid and Scalar field rendering with WebGL

Drawing the smallest grids with the HTML Canvas API took up to 60 seconds
per frame. With WebGL, 60 frames per second are achieved reliably.

6.4 Summary

Overall, our results show the following:

• FsKDTree outperforms the C# equivalent up to 4× in creating the tree.
This comes from knowing the size beforehand, which avoids dynamic
object allocations.

• Current barbs are deployed to production and perform sufficiently

• Model areas with up to one million elements can be viewed in their
totality, though some latency can be experienced when time-stepping

• The particle streams draw up to 250000 particles moving at 60 frames per

6.4 summary 47

second, which would not be possible with CPU rendering, as attempted
with the HTML canvas API

7
Discussion
7.1 Current barb drawing

It is unnecessary to give the barb point file its API. The barbs are described in a
file, which the user downloads after entering the website. This could have been
avoided by simply including the geometries in JavaScript. Since the clients
must download the web content anyway, they do not need to do a separate
fetch for the barbs.

Currently, the barbs are drawn procedurally by connection lines between points
described in a JSON file. An alternative to procedurally drawing current barbs
is using images. The current barbs and their velocity representations could
have images that clients download, rotate, and blit to their screens. However,
this can be considered wasteful. An image will most likely be a rectangle, so
the transparent space in the picture is hard to exclude from the request. In
addition to this, doing what is essentially texture mapping onto the canvas
is an expensive operation. Procedurally drawing lines based on a small text
file might be less expensive. These costs could have been measured, but the
overhead can be considered negligible. Here, some computation is moved onto
the client, where they procedurally draw the barb instead of downloading a
resource stored on Oceanbox’s servers.

49

50 chapter 7 discussion

7.2 Spatial indexing

Many engines and systems work with spatial data[1]. Was it worth it to build
ours from scratch? In the Alam survey, we can see many databases and systems
for storing geographical data. We can also see these systems have their own
spatial partitioning and indexing schemes. Oceanbox does not use any of
these pre-existing systems to store oceanographic data. Instead, data is stored
in a standard Linux filesystem, and a database keeps track of the archives
and their files. Integrating these solutions into Oceanbox’s system would mean
duplicating component responsibilities. Custom components had already solved
the storing and fetching of the data. It was also not within the scope of this
paper to investigate such infrastructure problems. Since Sorcerer was already
loading the data into memory, placing the spatial index here was a natural
choice.

There are other spatial partitioning algorithms, like the R-tree. It creates min-
imum bounding rectangles around close elements. When a rectangle holds
enough items, it can partition itself further by reducing the amount each rect-
angle bears. However, since we are indexing the nodes of a polygon and not
many polygons. Therefore, choosing the k-d tree seems more intuitive. The
complexity of the algorithm, contrasted with the net benefit, seems negligible.
There are no performance issues identified with a k-d tree yet.

7.2.1 The k-d tree implementation

The nearest neighbor search algorithm seems to be lacking. It does not currently
utilize a ‘hyperrect’ to ensure that the points found can be within the distance
found.

The algorithm currently uses the exact distance instead of the squared distance.
Instead, by using squared distances, we square operations, which are done per
current barb in the searches. Still, it performs better than the C# k-d tree that
uses squared distance comparisons.

There are ways to create more optimal implementations. One example is
reducing the size of the data structures used and the organization of the data.
An alternative is to use flat arrays for the points and a separate item array. This
would be more cache friendly as the points being iterated over are more tightly
packed. However, this can be a more complex implementation, as keeping track
of pairs of points when moving them around is more prone to error. Then, with
an idiomatic F# implementation that improves performance, it can be viewed
as a success.

7.2 spatial indexing 51

Currently, we use a recursive discriminated union that is either a leaf or a
node that holds a tuple of sub-trees. A leaf is also a struct that holds another
struct, the ‘Pos’ struct. This creates higher memory fragmentation, as more
unnecessary data is used in the tree operations, invalidating more of the cache.
Though, how the discrimination is represented in memory is somewhat opaque.
The .NET platform creates a sizeable abstract layer on top of the programs and
with garbage collection, which makes knowing how memory is handled more
difficult.

The FsKDTree should have used an array for the points. This would allow a
more straightforward implementation of a k dimensional tree. With an array,
the number of dimensions could be its length instead of explicitly defining a
position type for each supported dimension.

Existing implementations

The C# k-d tree already exists, so implementing our own could have been
avoided. However, for development ergonomics, there are benefits to using a
single language for the entire technology stack. In the case of C# is easy, as
they share the same .dotnet runtime. C# is an object-oriented programming
language first (or that is how it is mainly used). F#, on the other hand, is a
functional first language, where immutability and having no side effects are
central tenants in the language. Creating the C# involves adding each point
separately through an Add method on the tree. The method does not return
anything and is, therefore, a side-effect. This trivial example is not a problem
in and of itself, but it breaks with the usual programming flow one has with
F#.

k-NN bugs

Because this is a new implementation of a k-d tree, the stability of the solution
is not sufficient for production use. Using the FsKDTree in a development
environment and enabling the current barbs gave a fast response. However,
zooming into the model area far enough will sometimes yield gaps in the
current barb rendering. Near select triangle borders, there will be missing
barbs. A possible explanation for this could be a bug in the nearest neighbor
algorithm. If the k-NN search returns the centroid of the neighboring element,
then testing whether the barb coordinate is inside another, this would naturally
fail.

Meanwhile, the C# k-d tree is used in the production system to ensure correct-
ness.

52 chapter 7 discussion

7.3 Model grid tiling

There are possibilities for pre-processing of model properties. We can render
the model areas server-side and create our WMTS that serves tiled images of
the scalar fields. This would reduce the data loads needed to download for
the clients. Since the client would no longer need to download the entirety
of the grid but only images that fit the 512x512 standard resolution of WMTS
tiles.

This would not work, as large amounts of data are continually created, with 34
layers per time-step, usually one hour. Images must then be stored at different
resolutions, per grid property, at each time step, and the different depths.
Culminating in large amounts of data to produce and store. An alternative,
however, would be to produce tiles only for forecasting data. The forecasting is
only five days, which would keep the data amounts manageable. In addition,
forecasting data are arguably in the highest demand, which would decrease
the data throughput significantly on the data that is already the most sought-
after.

7.4 Grid downsampling

To reduce the data load, a possibility would be to downsample the grid. This
would involve collapsing the unstructured triangular grid. As the FVCOM trian-
gle specifications enforce some attributes for the grid, we know that collapsing
the triangles in half would still preserve the integrity of themodel area. The grid
resolution would degrade, but it would be sufficient for visualization.

7.5 Future Work

In addition to the improvements mentioned above, like ensuring the correctness
of the FsKDTree. Oceanbox is still in the early development of its services. The
company was founded in April of 2022 and has created its stack from scratch.
Many optimizations can be made, but the system’s overall architecture and
feature set must settle before these are attempted. Features that still need to
be added are things like grid tiling. Especially for forecasting data. The front
end must be continually improved, and specialized to specific fields, to ensure
a good user experience.

8
Conclusion
This thesis has described the design and implementation of visualizations for
Oceanbox’s Oceanography-as-a-Service web application. A k-d tree was intro-
duced for spatial indexing when sifting through large amounts of hydrodynamic
data. It enables responsive current barbs that sample large model areas and
is available as a feature in the map tool. Together with the current barbs, the
model areas are viewed and colored using GPU rendering. Finally, a stream
visualization application is integrated into the map tool for a highly dynamic
and visually pleasing view of the ocean’s complex nature.

Together with the entire F# stack, the k-d tree was created from scratch. Com-
pared to the .net C# k-d tree implementation, which provides a performance
difference of up to 4× for tree creation and up to 13× for search operations.
However, the C# implementation is more mature and more widely used, which
increases its reliability, which is why our new implementation is not currently
used.

Our work aims to show a new way to work with scientific data and applications.
We are providing highly available and easy-to-use interfaces in any web browser.
We can show large triangular unstructured hydrodynamic data sets in real time
by leveraging computing graphics rendering techniques. Without image pre-
processing before viewing results, an engaging feedback loop for those seeking
operational intelligence in these valuable datasets is created.

53

Bibliography
[1] Md Mahbub Alam, Luis Torgo, and Albert Bifet. “A Survey on Spatio-

Temporal Data Analytics Systems.” In: ACM Comput. Surv. 54.10s (Nov.
2022). issn: 0360-0300. doi: 10.1145/3507904. url: https://doi.
org/10.1145/3507904.

[2] Eric P. Chassignet et al. “The HYCOM (HYbrid Coordinate Ocean Model)
data assimilative system.” In: Journal of Marine Systems 65.1 (2007).
Marine Environmental Monitoring and Prediction, pp. 60–83. issn:
0924-7963. doi: https : / / doi . org / 10 . 1016 / j . jmarsys . 2005 . 09 .
016. url: https://www.sciencedirect.com/science/article/pii/
S0924796306002855.

[3] C Chen, R.C. Beardsley, and G Cowles. “An Unstructured Grid, Finite-
Volume Coastal Ocean Model (FVCOM) System.” In: Oceanography 19(1)
(Mar. 2006), pp. 64–77. url: https://doi.org/10.5670/oceanog.2006.
92.

[4] Changsheng Chen et al. An unstructured-grid, finite-volume community
ocean model: FVCOM user manual. Sea Grant College Program, Mas-
sachusetts Institute of Technology Cambridge . . ., 2012.

[5] Tomasz Czajęcki. Wireframes with barycentric coordinates. Jan. 5, 2019.
url: https://tchayen.github.io/posts/wireframes-with-barycentric-
coordinates.

[6] Marius Indreberg, Jonas Juselius, and John Markus Bjørndalen. “Partic-
ular: A Functional Approach to 3D Particle Simulation.” Master thesis.
UiT The Arctic University of Norway, May 2021.

[7] Ka Hin Lau, Jonas Juselius, and Lars Ailo Bongo. “Management of large
geospatial datasets.” Master thesis. UiT The Arctic University of Norway,
May 2022.

[8] Pierre Yves Le Traon et al. “From Observation to Information and Users:
The Copernicus Marine Service Perspective.” In: Frontiers in Marine
Science 6 (2019). issn: 2296-7745. doi: 10.3389/fmars.2019.00234.
url: https://www.frontiersin.org/articles/10.3389/fmars.2019.
00234.

[9] Gurvan Madec et al. NEMO ocean engine. url: http://hdl.handle.
net/2122/13309.

55

https://doi.org/10.1145/3507904
https://doi.org/10.1145/3507904
https://doi.org/10.1145/3507904
https://doi.org/https://doi.org/10.1016/j.jmarsys.2005.09.016
https://doi.org/https://doi.org/10.1016/j.jmarsys.2005.09.016
https://www.sciencedirect.com/science/article/pii/S0924796306002855
https://www.sciencedirect.com/science/article/pii/S0924796306002855
https://doi.org/10.5670/oceanog.2006.92
https://doi.org/10.5670/oceanog.2006.92
https://tchayen.github.io/posts/wireframes-with-barycentric-coordinates
https://tchayen.github.io/posts/wireframes-with-barycentric-coordinates
https://doi.org/10.3389/fmars.2019.00234
https://www.frontiersin.org/articles/10.3389/fmars.2019.00234
https://www.frontiersin.org/articles/10.3389/fmars.2019.00234
http://hdl.handle.net/2122/13309
http://hdl.handle.net/2122/13309

56 BIBLIOGRAPHY

[10] Alexander F. Shchepetkin and James C. McWilliams. “The regional
oceanicmodeling system (ROMS): a split-explicit, free-surface, topography-
following-coordinate oceanic model.” In: Ocean Modelling 9.4 (2005),
pp. 347–404. issn: 1463-5003. doi: https://doi.org/10.1016/j.
ocemod.2004.08.002. url: https://www.sciencedirect.com/science/
article/pii/S1463500304000484.

https://doi.org/https://doi.org/10.1016/j.ocemod.2004.08.002
https://doi.org/https://doi.org/10.1016/j.ocemod.2004.08.002
https://www.sciencedirect.com/science/article/pii/S1463500304000484
https://www.sciencedirect.com/science/article/pii/S1463500304000484

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	Glossary
	List of Abbreviations
	1 Introduction
	1.1 Previous approaches
	1.2 Proposed solutions
	1.3 Summary of results
	1.4 Outline

	2 Computational oceanography
	2.1 Oceanographic modeling

	3 Oceanbox's architecture
	3.0.1 Motivation for oceanbox.io
	3.0.2 Architecture

	3.1 The NetCDF file format
	3.2 Finite Volume Community Ocean Model

	4 Visualizations
	4.1 Usage scenario
	4.2 Current barbs
	4.2.1 Tiled web map
	4.2.2 Design
	4.2.3 Implementation

	4.3 Model area mesh with WebGL
	4.3.1 Design
	4.3.2 Implementation

	4.4 Particle streams
	4.4.1 Design
	4.4.2 Implementation

	5 Spatial indexing: Finding things fast
	5.1 The k-d tree
	5.2 Design
	5.2.1 Barb look-ups
	5.2.2 Caching

	5.3 Implementation
	5.3.1 The k-d tree
	5.3.2 Location endpoints

	6 Evaluation
	6.1 FsKDTree performance
	6.1.1 Experiment setup
	6.1.2 Creation
	6.1.3 Search

	6.2 Grid prop fetching times
	6.3 Grid and Scalar field rendering with WebGL
	6.4 Summary

	7 Discussion
	7.1 Current barb drawing
	7.2 Spatial indexing
	7.2.1 The k-d tree implementation

	7.3 Model grid tiling
	7.4 Grid downsampling
	7.5 Future Work

	8 Conclusion

