
Faculty of Science and Technology
Department of Computer Science

BacklinkDB: A Purpose-Built Backlink Database Management System

Marius Løvold Jørgensen
INF-3981 Master’s Thesis in Computer Science - February 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
In order to compile a list of all the backlinks for a given webpage, we need
knowledge about all the outgoing links on the web. Traversing the web and
storing all the backlink data in a database allows us to efficiently retrieve the list
of backlinks for a web page on demand. However, the web consists of billions
of backlinks which translates to terabytes of data. As the web is continuously
evolving, the database needs to be rebuilt periodically in order for it to closely
resemble the current state of the web.

This thesis presents BacklinkDB, a purpose-built database management system
designed for managing a backlink database. Using a series of in-memory hash
indices allows for high insert throughput when building the database. The
backlink data for a given domain is stored together in sections throughout the
database file. This allows for the requested backlink data to be easily located.
With a simple sql-inspired query language, the users can both insert and
retrieve backlink data.

The evaluation shows that building a purpose-built database management sys-
tem allows us to make the trade-offs between which performance metrics that is
important. In this thesis, we will focus on creating a scalable backlink database
management system with high insert performance.

Acknowledgements
First, I want to thank my supervisor Weihai Yu for his feedback and guidance in
this project. I would also like to thank my friends and family for their support
throughout my time as a student at uit.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

List of Listings xvii

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Scope, Assumptions, and Limitations 2
1.3 Method and Approach . 3
1.4 Organization . 4

2 Background 5
2.1 Website and Webpages . 5

2.1.1 URL - Uniform Resource Locator 5
2.2 PageRank . 6
2.3 Adjacency List . 6
2.4 Web Crawler . 8
2.5 DBMS - Database Management System 8

2.5.1 Database Index . 8
2.5.2 Transactional Databases 9
2.5.3 Analytical Databases 9
2.5.4 Relational Databases 9
2.5.5 Graph Databases . 10

2.6 Three-Schema Architecture 10
2.6.1 Data Independence 11

3 Design 13

vii

viii contents

3.1 Requirements . 13
3.1.1 Functional Requirements 13

3.2 Overview - Database System Structure 14
3.3 External Level . 14

3.3.1 Query Language . 14
3.4 Conceptual Level . 16
3.5 Internal Level . 16

3.5.1 Storage Manager . 17
3.5.2 Top-Level Domain (TLD) Index 17
3.5.3 Data files . 18
3.5.4 Storage Index . 18
3.5.5 Block List . 18
3.5.6 Free List . 19
3.5.7 Disk Block Structure 19

4 Implementation 23
4.1 Language choice . 23
4.2 Testing . 24
4.3 TLD Index and Storage Index 24
4.4 Valid TLDs . 24
4.5 Inserting links . 25

4.5.1 Requesting a new segment 25
4.5.2 Reallocating segments 25

4.6 Querying backlinks . 26
4.7 Connection . 26

5 Experiments 27
5.1 Setup . 27

5.1.1 Technical Specifications 27
5.1.2 Software . 28
5.1.3 Data . 28
5.1.4 BacklinkDB . 28
5.1.5 SQLite . 29
5.1.6 Neo4j . 29

5.2 Insert Throughput . 29
5.2.1 BacklinkDB . 30
5.2.2 SQLite . 30
5.2.3 Neo4j . 31

5.3 Querying Backlinks . 31
5.3.1 BacklinkDB . 31
5.3.2 SQLite . 31
5.3.3 Neo4j . 32

5.4 Space Utilization . 32
5.5 BacklinkDB Scalability . 33

contents ix

5.6 BacklinkDB Fragmentation 33
5.7 BacklinkDB Profiling . 33

6 Results 35
6.1 Insert Throughput . 35
6.2 Querying Backlinks . 35
6.3 Space Utilization . 37
6.4 BacklinkDB Scalability . 39
6.5 BacklinkDB Fragmentation 39
6.6 BacklinkDB Profiling . 41

7 Evaluation 43
7.1 Insert Throughput . 43
7.2 Querying Backlinks . 44
7.3 Space Utilization . 44
7.4 BacklinkDB Scalability . 44
7.5 BacklinkDB Fragmentation 45
7.6 BakclinkDB Profiling . 45

8 Discussion and Future Work 47
8.1 Optimizations . 47

8.1.1 Adjacency List . 48
8.1.2 Defragmentation . 48
8.1.3 Simple backlink record compression 49
8.1.4 Memory Fragmentation 49
8.1.5 Buffer Pool . 50
8.1.6 Multiple connections 50
8.1.7 Distributed Data Store 50

8.2 BacklinkDB vs SQLite . 51
8.3 BacklinkDB vs Neo4j . 51
8.4 BacklinkDB . 51

8.4.1 Failure handling - Transactions 52
8.4.2 Profiling Results . 52
8.4.3 Space Utilization . 52

8.5 Purpose-Built Backlink DBMS 53

9 Conclusion 55

Bibliography 57

List of Figures
2.1 The components of an URL. 6
2.2 Example of the PageRank score for a small web of websites. . 7
2.3 Example of an adjacency list along with its graph representa-

tion. 7
2.4 Illustration of the Three-Schema Architecture. 10

3.1 Overview of the BacklinkDB system structure. 15
3.2 Entity–Relationship Model of the data stored in BacklinkDB. 16
3.3 Overview of the TLD index structure. 17
3.4 Overview of the storage index and block list structure using

the .com TLD. 18
3.5 Illustration of the segment structure. The block header keeps

track of the different segments located on the block. 20
3.6 Structure of the content in a block segment and the link record

that is stored within. 21

5.1 Relational backlink database schema. 29
5.2 Graph backlink database. 30

6.1 Insert throughput results from BacklinkDB, SQLite, and Neo4j. 36
6.2 Throughput results from querying the three backlink databases

managed by BacklinkDB, SQLite, and Neo4j. 37
6.3 BacklinkDB throughput benchmark results. Insert and search

throughput when inserting/storing 200,000 to 4,000,000 back-
links. Increments of 200,000 are used. 39

6.4 BacklinkDB storage benchmark. Database storage analysis when
storing between 200,000 and 4,000,000 backlinks. Increments
of 200,000 are used. 40

6.5 Block distribution is sorted by the amount of free space when
4,000,000 backlinks (586.81 MiB) are stored in the database. 40

6.6 Descending order of the functions that BacklinkDB spent the
most time in. 42

6.7 List of the functions that spent most time calling the memcpy
function. 42

xi

List of Tables
6.1 BacklinkDB - Throughput results from inserting five different

amounts of backlink data five times. 36
6.2 SQLite - Throughput results from inserting five different amounts

of backlink data five times. 36
6.3 Neo4j - Throughput results from inserting five different amounts

of backlink data five times. 37
6.4 BacklinkDB - Throughput results from retrieving all the back-

links from 10,000 different URLs five times. 38
6.5 SQLite - Throughput results from retrieving all the backlinks

from 10,000 different URLs five times. 38
6.6 Neo4j - Throughput results from retrieving all the backlinks

from 10,000 different URLs five times. 38
6.7 The backlink database’s total size. 38
6.8 Descending list of the five most back-linked domains in a

backlink database consisting of 4,000,000 backlinks. 41

xiii

List of Abbreviations
ACID Atomicity, Consistency, Isolation and Durability

ACM Association for Computing Machinery

ANSI American National Standards Institute

BI Business Intelligence

CPU Central Processing Unit

DBMS Database Management System

GHz Gigahertz

GiB Gibibyte

GNU GNU’s not Unix

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

LTS Long-Term Support

MiB Mebibyte

ORM Object–Relational Mapping

OS Operating System

RAM Random-Access Memory

xv

xvi l ist of abbreviat ions

RDBMS Relational Database Management System

SPARC Standards Planning And Requirements Committee

SQL Structured Query Language

TCP Transmission Control Protocol

TLD Top-Level Domain

UiT University of Tromsø

URL Uniform Resource Locator

WARC Web ARChive

List of Listings
5.1 Inserting a backlink in to the SQLite database. 30
5.2 Cypher command for loading the link data into the Neo4j

backlink database. 31
5.3 Retrieve all the backlinks for a given URL. 32
5.4 Cypher for retrieving all the backlinks for a given URL. . . . 32

xvii

1
Introduction
Search engine companies collect and organize data from the world wide web
to later help people find what they are looking for. Querying a search engine
returns a curated list of links which is ordered based on what the search engine
perceives as most relevant. Web searching can be divided into three categories
of intent. Informational, navigational, and transactional search queries. Approx-
imately 10% of all searches are transactional and navigational[5]. Transactional
and navigational searches are valuable for businesses that have an online pres-
ence. Research has shown that businesses ranking high in search engines for
relevant search terms will attract more customers[1, 10].

The implementation details of the most used search engines are a well-kept
secret, but analysis of the search engine results page has shown that the biggest
search engine, Google, utilizes the PageRank algorithm[8] when ranking web-
pages [7]. The PageRank algorithm ranks webpages by calculating the quality
and quantity of all the incoming links (also known as backlinks).

To compile a list of all the backlinks for a given webpage, we need knowledge
about all the outgoing links on the web. This is can be found by traversing the
web using a web crawler. The web consists of billions of webpages[4], which
translates to terabytes of backlink data. Access to backlink data is beneficial
for people who want insight into who is linking to a specific webpage and
businesses who want to analyze their competitors.

1

2 chapter 1 introduction

In this thesis, we will describe BacklinkDB, a purpose-built database manage-
ment system for managing a backlink database. We will analyze the purpose-
built approach by comparing it with two other popular database management
systems, and discuss if BacklinkDB is a feasible alternative.

1.1 Thesis Statement

Access to backlink data can help reverse engineer the search engine results page.
However, the web consists of billions of backlinks. Storing this data requires a
system that can organize and efficiently serve terabytes of backlink data.

This thesis aims to investigate the potential of creating a purpose-built database
management system as a scalable and cost-effective approach for managing a
backlink database.

The thesis will investigate if the system is feasible by comparing the imple-
mentation of the proposed design to other database management systems also
configured for storing backlink data.

1.2 Scope, Assumptions, and Limitations

Because the web is constantly evolving, the backlink data does too. Organiza-
tions like Common Crawl1 crawl, organizes, and publish a full dataset consisting
of all the indexable webpages each month. Assuming that the data stored in
the backlink database will be outdated after a short period, implies that the
database needs to be rebuilt often in order for it to always resemble the current
state of the web. Because the backlink database needs to be rebuilt periodically,
the design of BacklinkDB will not cover the update and delete operations for
database records.

The focus of this thesis is on creating a scalable system for storing and retrieving
backlink data. Therefore, the thesis will not focus on the handling of different
types of failures. However, how this functionality could be integrated into the
proposed design is discussed in section 8.4.1.

1. https://commoncrawl.org/

1.3 method and approach 3

A common strategy for scaling a database is to partition the data over a dis-
tributed system. The thesis will only focus on the scalability of a single running
instance of the database. A short discussion on how BacklinkDB can be con-
verted to a distributed data store is found in section 8.1.7.

1.3 Method and Approach

In the final report of the Task Force on the Core of Computer Science by the acm
Education Board, a framework for representing scientific work within comput-
ing is described[2]. The framework consists of three main paradigms.

Theory: Consists of four steps rooted in mathematics. (1) Characterize objects
of study (definition). (2) Hypothesize possible relationships among them (the-
orem). (3) Determine whether the relationships are true (proof). (4) Interpret
results.

Abstraction (modeling): Based on four experimental methods which are fol-
lowed in the investigation of a phenomenon. (1) Form a hypothesis. (2) Con-
struct a model and make a prediction. (3) Design an experiment and collect
data. (4) Analyze results.

Design: Consists of four steps rooted in engineering and consists of four steps
followed in the construction of a system (or device) to solve a given problem.
(1) State requirements. (2) State specifications. (3) Design and implement the
system. (4) Test the system.

This thesis follows the steps of the Design paradigm. The requirements and
specifications are outlined. A design is presented using the three abstraction
levels of the Three-Schema Architecture, along with an implementation of the
design. The system is then tested for correctness before being compared against
the performance of other systems configured to solve the same problem.

4 chapter 1 introduction

1.4 Organization

Structure of this thesis:

Chapter 2: Background covers the technical background for this thesis.

Chapter 3: Design outlines the requirements for a backlink database and de-
scribes the design of BacklinkDB using the Three-Schema Architecture.

Chapter 4: Implementation provides implementation details.

Chapter 5: Experiments covers details about the motivation and the setup for
the experiments.

Chapter 6: Results presents the experiment results.

Chapter 7: Evaluation evaluates the three backlink databases based on the
results.

Chapter 8: Discussion and Future Work discusses the design choices, short-
comings, and potential improvements.

Chapter 9: Conclusion summary of the thesis findings.

2
Background
This chapter covers the technical background for this thesis. Section 2.1 explains
the concept of websites andwebpages. Section 2.2 introduces the fundamentals
of the PageRank algorithm. Section 2.3 outlines the adjacency list data structure.
Section 2.4 covers the basics of a web crawler. Section 2.5 gives an introduction
to database management systems and the different types of databases relevant
to this thesis. Section 2.6 describes the three abstraction levels of the Three-
Schema Architecture.

2.1 Website and Webpages

A webpage is a web document accessible via an url. A website consists of one
or multiple webpages hosted under the same domain address.

2.1.1 URL - Uniform Resource Locator

Anurl specifies the address of a webpage. Outlined in figure 2.1 is the different
components that make up an url. The protocol, subdomain, tld, and path are
required in an url for it to be valid, while the query string and fragment are
optional components that different web technologies can utilize for additional
functionality.

5

6 chapter 2 background

https:// www. example .com /blog/article ? id=123&hl=en #abstract

scheme/protocol

subdomain

domain

top level domain

path

query string
separator

query string
parameters

fragment

Figure 2.1: The components of an url.

2.2 PageRank

PageRank[8] is an algorithm designed for ranking webpages. PageRank intro-
duces the concept of a web surfer who traverses the web by randomly clicking
successive links. Using the model of the random web surfer, a distribution of
probabilities is created to represent how likely the surfer is to visit each of the
webpages.

The algorithm can compute the distribution of probabilities for a large number
of webpages effectively. PageRankwas used as the foundation in the first version
of the Google search engine, and it is still to this day a dominant factor for
ranking webpages[7] in the Google search engine.

A backlink is an inbound (or external) link from one webpage to another. Figure
2.2 illustrates the perceived importance of a small set of websites where some
of them link to each other. The perceived importance is calculated using the
backlink data with the PageRank algorithm.

2.3 Adjacency List

An adjacency list is a data structure that can be used to effectively store graph
data. The data structure consists of an array that is combined with multiple
linked lists. An example of an adjacency list and its graph representation is
illustrated in figure 2.3.

2.3 adjacency list 7

38.4%34.3%

8.1%

1.6%

1.6%

1.6%

1.6%

1.6%

3.9%

3.9%3.3%

Figure 2.2: Example of the PageRank score for a small web of websites.

0

1

2

3

1

1 2 3

2 3

0 1

2 3

Figure 2.3: Example of an adjacency list along with its graph representation.

8 chapter 2 background

2.4 Web Crawler

A web crawler is a program that traverses the web, creates indices, and down-
loads the contents of webpages. A set of seed urls is used as a starting point
to initiate a crawl. After the seed urls are crawled, a new set of urls will
have been discovered and the crawlers start to traverse the web until all the
indexable webpages have been crawled. It is common for web crawlers to store
the crawl data using the Web ARChive (warc) file format.

2.5 DBMS - Database Management System

Database Management System (dbms) is a type of software that manages the
database. dbmses presents an interface to execute operations that result in
the manipulation or retrieval of data from the database. These operations are
performed using a query language. Different query languages exist for different
types of databases.

2.5.1 Database Index

A database index is a data structure that reduces the cost of processing queries.
Index entries combine a search key with a pointer. The pointer stores the lo-
cation on a database file where the corresponding data to the search key is
located. There are two types of indices:

Ordered indices

An ordered index stores the values of the search key in sorted order. Using
ordered indices allows for fast random access as an entry can be found using
binary search. Binary search has an average time complexity of𝑂 𝑙𝑜𝑔(𝑛).

Hash indices

A hash index uses a hash function to distribute the search keys across a range
of buckets. Hash indices are commonly used for in-memory database indices.
Using a hash function allows for quick look-ups as the average time complexity
is 𝑂 (1).

2.5 dbms - database management system 9

2.5.2 Transactional Databases

A transactional database ensures that the validity of the data will be pro-
tected despite a failure or crash. Atomicity, Consistency, Isolation and Dura-
bility (acid) is a set of properties that guarantees validity in a transactional
database.

Atomicity - The atomicity property requires each transaction to be atomic. This
is done by bundling together the set of database operations in a transaction
to create a unit. Either all of the operations in the unit are executed or non
of them are. This ensures that database will never enter an inconsistent state
where some of the data is partially updated.

Consistency - The consistency property requires that a transaction takes the
database from one valid state to another. And that the latest updated values
are always returned.

Isolation - In a database that processes transactions concurrently, the isolation
property requires that the result of the concurrently executed transactions is
the same as if the transactions were to be executed in sequential order.

Durability - The durability property states that when a transaction is commit-
ted, a crash or failure cannot revert the committed transaction.

2.5.3 Analytical Databases

An analytical database focuses on storing vast amounts of data that is later used
in analytical services and applications. Analytical databases are often used by
data scientists and analysts to perform Business Intelligence (bi) processes.
These processes often consist of aggregating large amounts of data. The work-
load of an analytical database consists of data-intensive read-only queries and
batch inserts.

2.5.4 Relational Databases

In a relational database, data is stored using predefined relations in tables.
Multiple tables can be joined, often using a primary and foreign key. In most
Relational Database Management System (rdbms) the Structured Query Lan-
guage (sql) is used.

10 chapter 2 background

View

Logical

Physical

External Level

Conceptual Level

Internal Level

Database

End User

Figure 2.4: Illustration of the Three-Schema Architecture.

2.5.5 Graph Databases

Graph databases manage nodes and edges. The data entities are stored in the
node while the edges between the node represent relationships. Relationships
between nodes are described using a type and direction. Graph databases are
often found in social networking applications to store information on people
and defined their relationships with each other.

2.6 Three-Schema Architecture

The Three-Schema Architecture[9] (also known as the ansi-sparc Architec-
ture) presents a standard for design an dbms using three levels of abstraction.
Figure 2.4 illustrates an overview of the different components of the architec-
ture.

External Level - The external level consists of the different views of data that
are presented to the end user.

Conceptual Level - The conceptual level describes the structure of the data
stored in the database. Constraints and relationships of data are defined on

2.6 three-schema architecture 11

this level.

Internal Level - The internal level describes how the database files are struc-
tured. This layer outlines the physical representation of the data on the disk.

2.6.1 Data Independence

The Three-Schema Architecture presents the idea of data independence be-
tween the layers. Changes to the dbms in the internal layers should not require
changes to be made in the schema of the conceptual level. And changes to the
implementation of the conceptual level should not affect the data presented in
the external level.

3
Design
The following chapter describes the design of BacklinkDB. This chapter covers
the design of the overall dbms structure and its components. The focus of
the design is to create a resource-efficient and scalable system for managing
a backlink database. Section 3.1 outlines the functional requirements. Section
3.2 presents an structural overview of the systems design. Section 3.3, 3.4 and
3.5 describes the design using the abstractions levels of the Three-Schema
Architecture.

3.1 Requirements

This section outlines a set of the core functional requirements a dbms manag-
ing a backlink database must be able to fulfill.

3.1.1 Functional Requirements

• A client must be able to connect to the dbms and be able to execute
queries.

• The dbms must be able to insert backlink records in bulk, directly from
a file.

13

14 chapter 3 design

• A client must be able to query the dbms for a list of all the backlinks to
a website given a domain name.

• A client must be able to query the dbms for a list of all the backlinks to
a webpage given an url.

3.2 Overview - Database System Structure

Figure 3.1 presents a structural overview of thedbms architecture. The database
engine consists of multiple connected modules that have different responsibili-
ties. In this chapter, these modules will be described in more detail.

3.3 External Level

The external level presents details about the interface a user of the dbms will
interact with. A simple sql inspired query language is designed for interacting
with BacklinkDB.

3.3.1 Query Language

BacklinkDB features a simple query language with support for three differ-
ent queries in order to support the functionalities of inserting and retrieving
backlinks.

SELECT EXACT

The SELECT EXACT <url> statement retrieves and returns a list of all the
backlinks for the given url.

SELECT DOMAIN

The SELECT DOMAIN <domain> statement retrieves and returns a list of all the
backlinks for a given domain.

3.3 external level 15

Connection

Storage Manager

Disk

TLD (Top-Level
Domain) Index

TCP/IP

Query Processor

TLD data files

Database
Connector

Client

Storage Index

In-memory Indices

Figure 3.1: Overview of the BacklinkDB system structure.

16 chapter 3 design

TLD (Top-Level
Domain) Has Domain

Webpages

Has

URL

LinksToBacklink

URL

1 n

DomainNameTLD

n 1

1

n

Figure 3.2: Entity–Relationship Model of the data stored in BacklinkDB.

LOAD

The LOAD <filename> statement iterates and inserts all of the backlinks from
the given filename into the database.

3.4 Conceptual Level

Figure 3.2 illustrated the conceptual design of BacklinkDB using an Entity–Relationship
Model. The figure defines what type of data is stored in the database and their
relations.

3.5 Internal Level

This section will describe the internal abstraction level of BacklinkDB. The
internal level describes the physical details of how the database manages the
data on disk and in memory.

3.5 internal level 17

Buckets
00

02
03
04
05
06
07

".com"

".no" ".org"

TLD entry

TLD index

01

Database FILE pointer

File Header

Storage Index

Free List

TLD entry TLD entry

TLD entry

Figure 3.3: Overview of the tld index structure.

3.5.1 Storage Manager

The storage manager’s main purpose is to write and read the data from and to
the disk. Communication with the disk is done through the Operating System
(os) file abstraction. By using the os file abstraction, the underlying block
structure can be ignored. However, the storage manager creates its own ab-
straction of blocks inside the data files in order to efficiently access data. The
database consists of multiple data files, one for each tld. The storage man-
ager uses 4096-byte size blocks to read and write data to and from the data
files.

3.5.2 Top-Level Domain (TLD) Index

The database keeps all of the backlinks for each separate tld in different
data files. Additional information about the data is stored during runtime.
This information is stored in a tld-entry. For efficient retrieval of the tld-
entry, a hash table is used. Using a hash table allows for high performance
when querying and inserting data with an average time complexity for both
operations of 𝑂 (1). Illustrated in figure 3.3 is an overview of the different
components in the index. Each entry contains a pointer to the data file, an
index for the data itself, and metadata for the data, such as the current number
of links and domains. Each entry also contains a free list which is used to keep
track of the unused sections in the data file.

18 chapter 3 design

num elements

Block List

block number

Block List Element

block offset

segment size

num elements

Buckets
00
01
02
03
04
05
06
07

"netflix"

"facebook" "wikipedia"

Block List

.com index

Block List Block List

Figure 3.4: Overview of the storage index and block list structure using the .com tld.

3.5.3 Data files

There is one data file for each of the tlds. By naming the file using the tld,
it can easily be located in a directory. Each of the data files consists of a file
header followed by a series of 4096-byte size blocks containing the backlink
data. The file header keeps track of the current number of domains, backlinks,
and blocks.

3.5.4 Storage Index

As illustrated in figure 3.3, each tld-entry has its own storage index. The
storage index keeps track of the different domains and what blocks the backlink
to that domain is stored on. The storage index also uses a hash table because of
its high performance on search and insertion. Figure 3.4 illustrates the different
components in the storage index.

3.5.5 Block List

The block list contains the location of all the blocks that store the backlinks to
a given domain. The structure of a block list is highlighted in orange in figure
3.4. A block list consists of a header, followed by multiple block list elements.
The header stores the total number of elements, while each element stores a
reference to a segment using the block number, block offset, and segment size.
Representing the block list using this structure allows for it to be efficiently
stored in memory.

3.5 internal level 19

3.5.6 Free List

As illustrated in figure 3.3, each tld-entry has its own free list. The free list
lives in the memory at runtime and keeps track of all the unused block segments
in the data file. A free list entry contains the block number, segment offset, and
segment size for the unused space in the data file. This data structure is used
to effectively locate unused space when inserting backlink records.

3.5.7 Disk Block Structure

Each block is divided into 16 equal size 256-byte segment slots. The first slot
of the block is assigned to the disk block header. The header holds information
about what segment slots on the block are occupied. A segment dynamically
resizes when more records are inserted. The segment’s initial size is equal to 1
slot (256 bytes) and the maximum segment size is 15 slots (3850 bytes). When
the maximum size of a segment is reached, a new segment at another disk
block is allocated.

Block Header

The block header holds information about which segment slots on the block
are occupied. This is done by storing the offset and the size (number of slots
occupied) for each of the segments located on the block. Figure 3.5 illustrates
the structure of the block header and its relation to the data on the block when
some of the slots are occupied. The information stored in the block header is
essential for the creation of the database indices and free list when the dbms
is initializing. Unoccupied segments (illustrated in white in on figure 3.5) are
stored as entries in the free list during the runtime.

Block Segment

A block segment stores all or part of the backlink data for a specific domain. The
link data is structured using variable-length tuples. The tuple consists of the
destination page and the source site. In a link record, the source site represents
the url of the backlink, and the destination page contains the path of the block
segments domain to which the source site is linking to.

urls are variable-length records, which means that the segment needs to store
additional information on how much space the destination page and the source
site are occupying. This is done using slots. The section of slots for a block
segment is located right after the segment header, as illustrated in figure 3.6.

20 chapter 3 design

block offset = 5

segment size = 5

Block Header Slot

BLOCK SIZE

Block Header

Free Segmentsexample.com

Figure 3.5: Illustration of the segment structure. The block header keeps track of the
different segments located on the block.

These slots describe the offset and size for each of the link records stored in the
segment. When inserting backlinks into the segment, the slots are appended,
while the link record itself is added at the end of the free space.

The slots store information about the size and location of the link record. The
link record itself gives more information about how to extract the data. Since
both the destination page and source site is variable length, the header of the
record contains information about what part of the record is occupied for each
of the two values.

3.5 internal level 21

num records
end of free spaces

Free Space

Segment Header

SEGMENT SIZE

offset
size

Segment Header Record Entry

source site length

Link Record
destination page length source

site
destination

page

Slots
domain len

domain

Figure 3.6: Structure of the content in a block segment and the link record that is
stored within.

4
Implementation
The following chapter describes some of the implementation details of the de-
sign choices outlined in the previous chapter. Section 4.1 describes the choice
of programming language BacklinkDB is implemented in. Section 4.2 outlines
what test of the implementation was performed. Section 4.3 specifies the im-
plementation details of the hash indices. Section 4.4 describes an internal
mechanism implemented to prevent invalid backlink data to be inserted into
the database. Section 4.5 describes the implementation detail of how block
segments are managed when records are inserted. Section 4.6 describes how
the retrieval of backlink data was implemented. Section 4.7 outlines the imple-
mentation details of the Transmission Control Protocol (tcp) socket server in
the connection module.

4.1 Language choice

BacklinkDB was implemented in the C programming language and compiled
using the gnu Compiler Collection1 version 11.3.0. The C programming lan-
guage was chosen because of its memory allocation and management features.
Having fine-grained control over how memory is managed is beneficial when
working with data at a low level.

1. https://gcc.gnu.org/

23

24 chapter 4 implementation

4.2 Testing

Verifying that the database stores and retrieves data correctly are done using
Big-Bang Integration testing. Big-Bang Integration testing combines all the
modules in the database, before running a series of database queries. Inserting
a large amount of backlink data, before retrieving and comparing it with the
inserted data ensures that non of the data is lost and that the dbms functions
as expected.

Utilizing the dynamic memory allocation and management functionality of C
can result in memory errors and memory leaks. To prevent that memory errors
occurs, the Big-Bang Integration test is run using Valgrind2. Valgrind is a tool
that detects memory leaks and errors.

4.3 TLD Index and Storage Index

The tld Index and Storage Index are implemented using a hash table with
closed addressing (open hashing). Separate chaining is implemented using
singly linked lists where one item is stored on each list element. The load factor
of the hash table is set to 0.75 and the total size is doubled when rehashing the
table. Jenkins hash function[6] is used for producing the hashes in the table.
The hash function is non-cryptographic and is designed to uniformly distribute
values.

4.4 Valid TLDs

In order to prevent invalid urls to trigger the creation of new tld data files,
a hash table containing the values of all the valid tlds is used. A lookup is
done whenever an insert is performed to quickly determine if the destination
domain is valid. If the destination tld is not valid, the insert operation for the
backlink is discarded. The list of valid tlds published by Internet Assigned
Numbers Authority (iana)3 is used to populate the table.

2. https://valgrind.org/
3. https://data.iana.org/TLD/tlds-alpha-by-domain.txt

4.5 inserting links 25

4.5 Inserting links

The inserting backlink functionality is implemented by first extracting the tld
from the destination domain. Then, the correct tld-entry from the tld index
is located and retrieved. The tld-entry points to the Storage Index that is
used to locate the Block List for the destination domain. The last element in
the block list points to the last added segment containing the backlinks to the
destination domain. If full, the current segment is resized or a new segment is
allocated using an entry from the Free List. If the segment has available space,
the link is inserted directly into that segment. After the link data is inserted
into the segment, the block and file header metadata are updated before being
flushed. After the data is flushed, the indices are updated.

4.5.1 Requesting a new segment

When a backlink is being inserted, but the allocated space for the destination
domain cannot store the backlink record, a new segment is requested. If the
Free List contains a segment that satisfies the requested segment size, the new
segment is found and the Free List is updated. However, if the Free List does
not contain a viable segment, the tld data file is expanded by one block (4096
bytes). The requested segment is pulled from the newly allocated block, while
the remaining segments are inserted into the Free List. After the data file has
expanded, the file header is updated and flushed so that the data file has the
correct number of total disk blocks stored in the header.

4.5.2 Reallocating segments

When a backlink is inserted into a segment that is full, but the segment itself
does not occupy the 15-segment slot limit, the segment is reallocated. Reallocat-
ing a segment expands the number of segment slots a segment occupies. If the
expanding segment position has a following segment that is free, the segment
can expand into that segment.

If the expanding segment does not have a following free segment on the same
disk block, the segment needs to be moved to another part of the data file where
the new segment can fit. The new segment location is found either in the Free
List or by expanding the data file. When the segment moves location, the block
header is updated and the location of the newly free segment is stored in the
Free List.

When a segment is expanded, the segment needs restructuring. All the link
records need to be shifted to the end of the new segment and their respective

26 chapter 4 implementation

slots offset needs to be updated. After the link records are moved, the end of
the free space pointer also needs to be updated so it is pointing to the start of
the first link records location.

4.6 Querying backlinks

When the storage manager is requested to retrieve all the backlinks for a given
url, the tld of the url is extracted. The storage index is found by doing a
lookup in the tld index. By hashing the domain in the url, the Block List
can be retrieved from the storage index. Iterating over the Block List gives us
information about the location of all the block segments in the data file that
contains the backlinks to the given domain. When loading these segments into
memory, all the backlinks to the domain are located. By iterating over all the
backlinks to the domain, the backlinks for the query request can be filtered
before returning.

4.7 Connection

After initialization of the database, BacklinkDB starts a tcp socket server listen-
ing for connecting clients. When a client connects, the dbms and client start
communicating using a simple protocol. After the connection is established,
the server awaits a query to process. If the query is of type LOAD, the dbms
will load the backlinks of the given file into the database. However, if the query
is of type SELECT, the server will retrieve the requested data using the storage
manager and copy it to a buffer. The data is then transmitted over tcp using
1024-byte chunks until the buffer is empty. Before sending the backlink data,
the server notifies the client of how many total bytes to expect. This is how the
client knows when to stop receiving the 1024-byte chunks.

5
Experiments
This chapter outlines five experiments testing BacklinkDB and benchmarks
its performance against SQLite and Neo4j. The goal of the experiments is to
produce data to evaluate the design and implementation of BacklinkDB.

Section 5.1 details the setup of the experiments. Section 5.2 outlines how the
insert throughput for the three backlink databases is measured. Section 5.3
outlines how the search throughput for the backlink databases is measured.
Section 5.4 describes the experiment for measuring total database size. Sec-
tion 5.5 outlines a more in-depth experiment for analyzing the scalability of
BacklinkDB. Section 5.6 describes the experiment of measuring fragmenta-
tion in BacklinkDB. Section 5.7 describes how the profiling of BacklinkDB is
conducted.

5.1 Setup

5.1.1 Technical Specifications

os Ubuntu 22.04.1 lts (gnu/Linux 5.4.0-137-generic x86_64)
cpu Intel(R) Xeon(R) cpu E5-2630 v4 @ 2.20ghz
ram 128 gib

27

28 chapter 5 experiments

5.1.2 Software

SQLite v. 3.37.0
Neo4j v. 5.4.0
Python v. 3.10.6

5.1.3 Data

The link data used in the experiments is downloaded from the Common Crawls
website1. Common Crawl is a non-profit organization that periodically crawls
the web and publicizes data. For the experiments described in this chapter,
data from the August 2022 crawl2 is used.

Data prepossessing

Common Crawl provides data on all the indexable webpages. This data is
provided in a series of warc files found in their public repository. Common
Crawl also provide WAT files which are produced by processing the warc files
and extracting the metadata for each webpage. The WAT files contain a list of
all the outgoing links for each of the webpages.

All external links from the WAT file are extracted to their own link file so
that they can be directly inserted into a database. Each link is stored on a
separate line in the file using spaces to separate the source domain, source path,
destination domain, and destination path. All the backlinks containing urls
longer than 2048 characters are discarded. A link file is created for each of
the WAT files. These link files contain all the information needed to build a
backlink database.

5.1.4 BacklinkDB

Setting up the BacklinkDB requires a client-side to the connection module de-
scribed in section 4.7. This is implemented using Python’s socketmodule3.

1. https://commoncrawl.org/
2. https://commoncrawl.org/2022/08/august-2022-crawl-archive-now-available/
3. https://docs.python.org/3/library/socket.html

5.2 insert throughput 29

Websites

PK ID

domain

Webpages

PK ID

FK website

path

Links

PK ID

FK source_webpage

FK target_webpage

Figure 5.1: Relational backlink database schema.

5.1.5 SQLite

SQLite⁴ is an open-source embedded transactional rdbms written in the C
programming language. SQLite is serverless, reading and writing data directly
to the file system. As a result of the serverless design, SQLite has low complexity,
high performance, and high portability.

The schema for creating the backlink database in SQLite is shown in figure
5.1. One table for the website, one table for the webpages, and one table for
the links between two webpages. Querying the SQLite database is performed
using Python’s Object–Relational Mapping (orm) package peewee⁵ version
3.15.1.

5.1.6 Neo4j

Neo4j⁶ is an open-source transactional graph database management system
written in Java. The database is designed for enterprise applications featuring
support for complex relations and queries.

The node and edge structure for the backlink graph database is illustrated in
figure 5.2. Each webpage is represented by a node, and the backlink relation is
defined using an edge between two nodes. The node stores information about
the domain and path of the webpage. Querying the Neo4j backlink database is
done using the neo4j⁷ Python driver version 5.4.0.

5.2 Insert Throughput

A fully operational backlink database stores billions of links and has to rebuild
periodically. This experiment intends to compare the scalability of the three

4. https://sqlite.org/index.html
5. https://pypi.org/project/peewee/
6. https://neo4j.com/
7. https://pypi.org/project/neo4j/

30 chapter 5 experiments

Webpage Webpage

id: 1
domain: www.youtube.com

path: /about

id: 2
domain: www.example.com

path: /article

LINKS_TO

Figure 5.2: Graph backlink database.

different backlink databases by inserting different amounts of backlinks while
measuring the throughput.

5.2.1 BacklinkDB

The links are inserted using the LOAD <filename> statement described in sec-
tion 3.3.1.

5.2.2 SQLite

SQLite does not support creating relations when inserting records directly
from a file. Therefore, each backlink is inserted separately using peewee. When
inserting a backlink, the source and destination domain is inserted into the
website’s table before the webpages are inserted into the webpage table. When
both the websites and webpages exist in the database, the link is created as
outlined in listing 5.1.

Listing 5.1: Inserting a backlink in to the SQLite database.
def insert_link(source_domain, source_path, target_domain, target_path):

source_website = Websites.get(Websites.domain == source_domain)
source_webpage = Webpages.get(Webpages.website == source_website,

Webpages.path == source_path)

target_website = Websites.get(Websites.domain == target_domain)
target_webpage = Webpages.get(Webpages.website == target_website,

Webpages.path == target_path)

Links.insert(source_page=source_webpage, target_page=target_webpage)
.execute()

5.3 querying backlinks 31

5.2.3 Neo4j

Inserting is done using the LOAD CSV Cypher command as outlined in listing
5.2. The LOAD CSV Cypher command is a feature for inserting large amounts
of data at once. The subquery CALL { ... } IN TRANSACTIONS is used to
commit and clear the memory buffer for every 1000 rows inserted. This prevents
Neo4j from running out of memory.
Listing 5.2: Cypher command for loading the link data into the Neo4j backlink

database.
LOAD CSV WITH HEADERS FROM file:///<filename> AS row
FIELDTERMINATOR " "
CALL {

MERGE (source_page:WEBPAGE {path: coalesce(row.source_page, ""),
domain: row.source_domain})
MERGE (target_page:WEBPAGE {path: coalesce(row.target_page, ""),
domain: row.target_domain})
MERGE (source_page)-[:LINKS_TO]->(target_page)

} IN TRANSACTIONS;

5.3 Querying Backlinks

A fully operational backlink database stores terabytes of data. As the database
grows, it is important that all the backlinks for a given url can efficiently
be retrieved. This experiment is intended to test how the backlink database’s
search performance is affected by the different amounts of backlinks stored in
the database. The experimentmeasures the average throughput when querying
for the same 10,000 backlinks five times. The backlinks used in this experiment
are a shuffled subset of the already inserted links in order to prevent the insert
order to affect the experiment results.

5.3.1 BacklinkDB

The backlinks for a given url are retrieved using the SELECT EXACT <url>
statement described in section 3.3.1.

5.3.2 SQLite

Retrieving the backlinks for a given url is done as outlined in listing 5.3. The
query uses two join operations in order to produce the list of backlinks for the
given url.

32 chapter 5 experiments

Listing 5.3: Retrieve all the backlinks for a given URL.
def get_backlinks_for_webpage(domain, path):

Get target webpage
target_website = Websites.get(Websites.domain == domain)
target_webpage = Webpages.get(Webpages.website == target_website,

Webpages.path == path)

backlinks = (
Links.select(Websites.domain, Webpages.path)
.join(Webpages, on=(Webpages.id == Links.source_page))
.join(Websites, on=(Websites.id == Webpages.website))
.where(Links.target_page == target_webpage)

)

return backlinks

5.3.3 Neo4j

The Cypher outlined in listing 5.4 is used to retrieve a list of all the backlinks
for the given url.

Listing 5.4: Cypher for retrieving all the backlinks for a given URL.
backlink_records = session.run(

"MATCH (external_page:WEBPAGE)"
"-[:LINKS_TO]->"
"(webpage:WEBPAGE {domain: $domain, path: $path})"
"RETURN external_page",
domain=destination_domain, path=destination_path

)

5.4 Space Utilization

How each of the databases stores the backlink data will have an impact on
the total size of the database. This experiment is intended to measure the size
of the database when different amounts of backlinks are stored. The results
will give an indication of how space efficient each of the backlink databases
is.

5.5 backlinkdb scalabil ity 33

5.5 BacklinkDB Scalability

The BacklinkDB scalability benchmark is designed to analyse how BacklinkDB
performs when storing up to 4,000,000 backlinks. Doing analysis on the amount
and distribution of the free space will give a more in-depth understanding of
how BacklinkDB scales.

5.6 BacklinkDB Fragmentation

The design of BacklinkDB introduces fragmentation as records are inserted.
Analyzing the current level of fragmentation occurring in the database is im-
portant when evaluating performance. This data can also be used when design-
ing new iterations of the dbms. Inserting 4,000,000 backlinks and measuring
the amount of fragmentation with the domain that has the highest number of
backlinks will give insight into how effective BacklinkDB’s storage manager
is.

5.7 BacklinkDB Profiling

Profiling the execution of the program will give insight into where the Central
Processing Unit (cpu) spends most of the time. The results of the profiling will
give insight into how efficiently the design and implementation of BacklinkDB
is, as hot spots can be identified.

Callgrind⁸ is a call-graph generating cache and branch prediction profiler that
records instruction statistics on the given executable. In this experiment, we
will profile the insert of 20,000 backlinks before retrieving all the backlinks for
10,000 of the links inserted.

8. https://valgrind.org/docs/manual/cl-manual.html

6
Results
This chapter presents the results from the experiments described in the previous
chapter. Section 6.1 presents the insert throughput experiment results. Section
6.2 presents the search throughput experiment results. Section 6.3 presents the
analysis of the three backlink databases. Section 6.4 presents a more in-depth
analysis of BacklinkDB’s performance. Section 6.5 presents a fragmentation
analysis. Section 6.6 presents the profiling results for BacklinkDB.

6.1 Insert Throughput

Executing the experiment described in section 5.2 produced the results shown
in table 6.1, 6.2 and 6.3. The experiments are performed using five different
datasets of 100,000, 200,000, 300,000, 400,000, and 500,000 backlinks. Each
dataset is inserted five times in order to calculate the average, standard devia-
tion, and relative standard deviation. Figure 6.1 shows the insert throughput
results from the three backlink databases using an error plot.

6.2 Querying Backlinks

Executing the experiment described in section 5.3 produced the results shown
in table 6.4, 6.5 and 6.6. The experiments are performed using five different

35

36 chapter 6 results

100k 200k 300k 400k 500k
Backlinks inserted

0

10000

20000

30000

40000

50000

60000

70000

Th
ro

ug
hp

ut
 (l

in
ks

 in
se

rte
d/

se
c)

Backlink insert throughput benchmark

BacklinkDB
Neo4j
SQLite

Figure 6.1: Insert throughput results from BacklinkDB, SQLite, and Neo4j.

Backlinks inserted Avg. throughput Standard deviation
100,000 69,332 links/sec 794 (1.08%)
200,000 67,598 links/sec 768 (1.14%)
300,000 67,386 links/sec 308 (0.46%)
400,000 66,235 links/sec 770 (1.16%)
500,000 65,806 links/sec 725 (1.10%)

Table 6.1: BacklinkDB - Throughput results from inserting five different amounts of
backlink data five times.

Backlinks inserted Avg. throughput Standard deviation
100,000 34.25 links/sec 0.37 (1.08%)
200,000 33.21 links/sec 0.38 (1.13%)
300,000 33.49 links/sec 0.28 (0.85%)
400,000 31.80 links/sec 0.58 (1.83%)
500,000 31.60 links/sec 0.66 (2.08%)

Table 6.2: SQLite - Throughput results from inserting five different amounts of back-
link data five times.

6.3 space util ization 37

Backlinks inserted Avg. throughput Standard deviation
100,000 16.61 links/sec 0.13 (0.79%)
200,000 8.62 links/sec 0.10 (1.16%)
300,000 5.59 links/sec 0.37 (6.58%)
400,000 3.85 links/sec 0.67 (17.47%)
500,000 3.02 links/sec 0.17 (5.62%)

Table 6.3: Neo4j - Throughput results from inserting five different amounts of backlink
data five times.

100,000 200,000 300,000 400,000 500,000
Backlinks stored

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (q

ue
rie

s e
xe

cu
te

d/
se

c)

Query throughput benchmark

BacklinkDB
SQLite
Neo4j

Figure 6.2: Throughput results from querying the three backlink databases managed
by BacklinkDB, SQLite, and Neo4j.

datasets stored in the database. The different datasets contain 100,000, 200,000,
300,000, 400,000, and 500,000 backlinks. All the backlinks for 10,000 urls are
retrieved five times in order to calculate the average, standard deviation, and
relative standard deviation. Figure 6.2 shows the search throughput results
from the three backlink databases using an error plot.

6.3 Space Utilization

The results after executing the experiment described in section 5.4 with five dif-
ferent backlink datasets are shown in table 6.7. The size is found by measuring
all the database files from each of the backlink databases after insertion.

38 chapter 6 results

Backlinks in database Avg. throughput Standard deviation
100,000 428.64 links/sec 6.24 (1.46%)
200,000 286.58 links/sec 3.25 (1.13%)
300,000 253.62 links/sec 2.08 (0.82%)
400,000 197.60 links/sec 2.12 (1.07%)
500,000 199.05 links/sec 1.67 (0.84%)

Table 6.4: BacklinkDB - Throughput results from retrieving all the backlinks from
10,000 different urls five times.

Backlinks in database Avg. throughput Standard deviation
100,000 996.22 links/sec 1.52 (0.15%)
200,000 831.05 links/sec 0.74 (0.09%)
300,000 692.33 links/sec 1.35 (0.20%)
400,000 542.02 links/sec 9.49 (1.75%)
500,000 518.14 links/sec 0.74 (0.14%)

Table 6.5: SQLite - Throughput results from retrieving all the backlinks from 10,000
different urls five times.

Backlinks in database Avg. throughput Standard deviation
100,000 16.39 links/sec 0.07 (0.41%)
200,000 8.66 links/sec 0.02 (0.20%)
300,000 5.80 links/sec 0.02 (0.36%)
400,000 4.35 links/sec 0.01 (0.13%)
500,000 3.84 links/sec 0.01 (0.35%)

Table 6.6: Neo4j - Throughput results from retrieving all the backlinks from 10,000
different urls five times.

Backlinks stored BacklinkDB SQLite Neo4j
100,000 (15.53 MiB) 20.34 MiB 20.13 MiB 15.41 MiB
200,000 (28.66 MiB) 40.35 MiB 41.70 MiB 30.48 MiB
300,000 (43.40 MiB) 60.56 MiB 63.20 MiB 45.44 MiB
400,000 (58.10 MiB) 80.03 MiB 84.40 MiB 61.35 MiB
500,000 (72.54 MiB) 98.87 MiB 104.88 MiB 74.95 MiB

Table 6.7: The backlink database’s total size.

6.4 backlinkdb scalabil ity 39

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Backlinks 1e6

60000

61000

62000

63000

64000

65000

66000

67000

Th
ro

ug
hp

ut
 (l

in
ks

 in
se

rte
d/

se
c)

Insert throughput 100

150

200

250

300

Th
ro

ug
hp

ut
 (q

ue
rie

s e
xe

cu
te

d/
se

c)

BacklinkDB throughput benchmark

Query throughput

Figure 6.3: BacklinkDB throughput benchmark results. Insert and search throughput
when inserting/storing 200,000 to 4,000,000 backlinks. Increments of
200,000 are used.

6.4 BacklinkDB Scalability

Figure 6.3 shows the throughput from inserting 200,000 to 4,000,000 back-
links using increments of 200,000. After each insert, the query throughput is
measured by retrieving all the backlinks for 10,000 random urls using the
SELECT EXACT statement.

Figure 6.4 shows how the database size increases from 200,000 to 4,000,000
backlinks stored. The free space (shown in black) indicates how much of the
database file is not utilized.

When storing 4,000,000 backlinks (586.81 mib), BacklinkDB’s database occu-
pied 704.43 mib of disk space. This is an increase of 20% in disk space. Mea-
suring the total memory footprint for all the in-memory indices accumulated
to 42.17 mib. This translates to 5,99% of the database’s size.

Figure 6.5 shows the block distribution sorted by the amount of free space
when 4,000,000 backlinks are stored in BacklinkDB.

6.5 BacklinkDB Fragmentation

In a database with 4,000,000 backlinks, the results from executing the experi-
ment described in section 5.6 shows that www.facebook.com was the domain

40 chapter 6 results

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Backlinks stored 1e6

0

1

2

3

4

5

6

7

Si
ze

 (b
yt

es
)

1e8
Database
In-memory index
Free space

24.0%

26.0%

28.0%

30.0%

32.0%

BacklinkDB storage benchmark

% Free space

Figure 6.4: BacklinkDB storage benchmark. Database storage analysis when storing
between 200,000 and 4,000,000 backlinks. Increments of 200,000 are
used.

[0.
.25

5]

[25
6..

51
1]

[51
2..

76
7]

[76
8..

10
23

]

[10
24

..1
27

9]

[12
80

..1
53

5]

[15
36

..1
79

1]

[17
92

..2
04

7]

[20
48

..2
30

3]

[23
04

..2
55

9]

[25
60

..2
81

5]

[28
16

..3
07

1]

[30
72

..3
32

7]

[33
28

..3
58

3]

[35
84

..3
83

9]

[38
40

..4
09

6]

Free space (bytes of block)

0
5000

10000
15000
20000
25000
30000
35000

Bl
oc

ks

BacklinkDB 4, 000, 000 backlinks free space block distribution

Figure 6.5: Block distribution is sorted by the amount of free space when 4,000,000
backlinks (586.81 mib) are stored in the database.

6.6 backlinkdb profil ing 41

Domain Backlinks
https://www.facebook.com 175,429
https://twitter.com 144,785
https://www.blogger.com 126,390
https://www.instagram.com 93,629
https://www.youtube.com 68,374

Table 6.8: Descending list of the five most back-linked domains in a backlink database
consisting of 4,000,000 backlinks.

with the most amount of backlinks. Table 6.8 shows a list of the five domains
with the most amount of backlinks.

Analyzing the block list for the www.facebook.com domain showed that the
backlinks are distributed over 22,978 different segments. The distribution of
block that the backlinks are stored on showed that there is on average 4.51
blocks between each block containing www.facebook.com backlinks.

6.6 BacklinkDB Profiling

This section presents the results from the profiling experiment described in sec-
tion 5.7. Inserting 20,000 backlinks before retrieving all the backlinks for 10,000
urls was performed using the Callgrind tool. Figure 6.6 shows a screenshot
of the call graph using the Callgrind visualizer: Kcachegrind1.

The Incl. (Inclusive time) column shows the total amount of time spent in the
given function. The Self column displays the total amount of time spent in
the function, not including the time called from that function. And the Called
column displays the total number of times the function is called. Figure 6.7
lists the functions that spent most time calling the memcpy function.

1. https://kcachegrind.github.io/html/Home.html

42 chapter 6 results

Figure 6.6: Descending order of the functions that BacklinkDB spent the most time
in.

Figure 6.7: List of the functions that spent most time calling the memcpy function.

7
Evaluation
This chapter presents a short evaluation of the results presented in the previous
chapter. Section 7.1 evaluates the results from the insert throughput experi-
ment. Section 7.2 evaluates the results from the search throughput experiment.
Section 7.3 compares the results from the database space analysis. Section 7.4
evaluates BacklinkDB’s scalability. Section 7.5 evaluates the fragmentation in
BacklinkDB. Section 7.6 evaluates the profiling results of BacklinkDB.

7.1 Insert Throughput

The results presented in section 6.1 show that BacklinkDB has a major advan-
tage compared to SQLite and Neo4j when inserting backlinks directly from the
file. At 500,000 inserts BacklinkDB averaged 69,332 inserts/sec, while SQLite
and Neo4j averaged 31.60 and 3.02 inserts/sec. This shows that BacklinkDB has
2,194 times higher throughput at 500,000 inserts compared to SQLite.

SQLite did not see a major drop in throughput as the dataset increased in
size. However, the results for Neo4j show a drastic decrease in performance for
every 100,000 increments in size. This shows that Neo4j has the least scalable
backlink database after evaluating the insert performance.

43

44 chapter 7 evaluation

7.2 Querying Backlinks

The results from experiment 5.3 show that SQLite has a 2.32 times higher av-
erage throughput compared to BacklinkDB when retrieving backlinks from a
backlink database with 500,000 records. Neo4j suffered the same scalability
problems as mentioned in the previous section with a rapid decline in through-
put as the datasets increased in size.

7.3 Space Utilization

The accumulated size of all the database files for each of the three backlink
databases represented in table 6.7 shows that Neo4j has the best utilization
of space. When storing 72.54 mib of backlink data, the Neo4j database needs
3.32% more storage to represent the data as nodes and edges. With the same
dataset, BacklinkDB and SQLite use 36.30% and 44.60% more space when the
dataset is stored in the database.

7.4 BacklinkDB Scalability

When analyzing the insert and search throughput from 200,000 to 4,000,000
backlinks, the BacklinkDB’s performance decreases. This performance decrease
is shown in figure 6.3. The insert throughput still is above 60,000 links insert-
ed/sec, but the search throughput falls just below 100 queries/sec. This shows
that BacklinkDB implementation is more scalable when it comes to inserting
backlinks compared to doing backlinks retrieval.

The database storage analysis shown in figure 6.4 shows that as the backlink
database grows, the free space percentage decreases. This is an indication
that the database gets more space efficient as the database grows. The figure
shows that the free space percentage converges. This indicates that a majority
decrease in the free space percentage will happen at the start of the populating
of a full-scale backlink database.

A more detailed analysis of the free space distributed is illustrated in figure
6.5. This figure shows that at 4,000,000 backlinks stored, the majority of free
space is relatively smaller chunks distributed on the majority of the blocks in
the data files.

7.5 backlinkdb fragmentation 45

7.5 BacklinkDB Fragmentation

Analyzing the fragmentation of the most backlinked domain when storing
4,000,000 backlinks resulted in a block list containing 22,978 elements. With a
total of 175,429 backlinks, this translates to an average of 7.63 backlink records
stored in each block segment. With an average of 4.51 blocks between each
of the block segments for the domain, indicates that a high level of fragmen-
tation occurs in the implementation of BacklinkDB. Section 8.1.1 and 8.1.2
contains further discussions on how defragmentation in BacklinkDB can be
achieved.

7.6 BakclinkDB Profiling

Themajority of the execution time is spent in the get_all_backlinks_for_webpage
function as shown in the call graph in figure 6.6. This function retrieves all the
backlinks for a given url, successively placing them in a dynamically allocated
block of memory. The call graph also shows that during the execution of the
program, a lot of the time is spent copying memory using the memcpy function.
memcpy is a standard C library function for copying a chunk of memory to
another specified location. Figure 6.7 shows that during the execution, the
function get_all_backlinks_for_webpage called memcpy 4,174,866 times. This
shows that thememcpy calls introduce a hot spot. This issue is discussed further
in section 8.4.2.

8
Discussion and Future
Work

In this chapter, we will discuss BacklinkDB as a solution for managing a back-
link database. This chapter will also discuss BacklinkDB’s shortcomings and
present possible improvements to the design. Section 8.1 discusses possible op-
timization improvements to BacklinkDB’s design. Section 8.2 contains a short
discussion comparing BacklinkDB to SQLite. Section 8.3 contains a short dis-
cussion comparing BacklinkDB to Neo4j. Section 8.4 discusses performance
and failure handling. Section 8.5 discusses the advantages and disadvantages
of building a purpose-built backlink dbms.

8.1 Optimizations

When building a purpose-built dbms from scratch, the goal is to create a
system that is more efficient at managing the data compared to other exist-
ing off-the-shelf solutions. In a backlink database, we are not dealing with a
complex data model, but we are dealing with a lot of data. Scalability and per-
formance become the main focus when we are creating a system that is going
to store terabytes of data. This section will discuss some of the shortcomings
and improvements of the design presented in this thesis.

47

48 chapter 8 discussion and future work

8.1.1 Adjacency List

Storing the backlinks on disk using an adjacency list will drastically decrease
the total size of the database and reduce the search time. In the current de-
sign, each backlink record is defined using a source url and a destination
url. This implies that if there are more than two backlinks for the same url,
the destination url is redundantly stored (𝑛 − 1) times in the database. Us-
ing an adjacency list will eliminate the redundant copies of the destination
urls.

The search time will be reduced when using an adjacency list as there is no
need to inspect all the destination urls when querying for backlinks. The
search will stop when the adjacency list array entry for the given url is found.
This will still present a worst-case time complexity of 𝑂 (𝑛), but by sorting the
backlinks, a binary search can be used, reducing the worst-case time complexity
when searching for all the backlinks for a given url to 𝑂 (𝑙𝑜𝑔 𝑛).

Adding the adjacency list functionality would require some redesign of the seg-
ment structure, as the backlink data for a singleurl can’t exceed the maximum
size of a block segment. Allowing adjacency list elements to overflow into other
segments would require additional metadata about the records to be stored,
but could potentially reduce the overall size of the database significantly.

Storing the backlinks using a sorted adjacency list will decrease the insert
performance. Sorting destination urls when inserting backlinks will introduce
more overhead, potentially shifting existing backlink records when an inserting
operation is performed. Adding the sorted adjacency introduces the trade-off
between less insert performance and higher search throughput.

8.1.2 Defragmentation

With the current design of BacklinkDB, the distribution of the disk blocks stor-
ing backlinks for a given domain can be sparse as shown in section 6.5. This
is because the storage manager allocates a new block at the end of the data
file when inserting backlinks. Having a block list containing multiple segments
of data that are not stored consecutively on the data file requires multiple
consecutive systems calls to read the data. By defragmenting the data files
would reduce the total number of system calls required when retrieving back-
links. This would also drastically reduce the memory of the storage index, as
the block list would only contain a defined range of segments on the data file,
instead of a list of all the different segments.

8.1 optimizations 49

In section 6.5 the www.facebook.com domain had its backlinks distributed over
22,978 different blocks. This translates to a block list of 22,978 elements defin-
ing a block number, a block offset, and a segment size. By adding the defrag-
mentation functionality to BacklinkDB, the backlink data forwww.facebook.com
could be referenced by a range of blocks on the data file, reducing the size of
the in-memory storage index.

8.1.3 Simple backlink record compression

All webpages use the Hypertext Transfer Protocol (http) or Hypertext Trans-
fer Protocol Secure (https) to transfer the contents of the webpage. These
protocols are found at the start of every url with the http:// and https://
prefix. For more efficient space utilization, the protocol can be represented us-
ing one uniquely identifiable byte value instead of 7-8 bytes, for each backlink.
This simple compression scheme will have an measurable impact on the total
database size when storing billions of backlinks. The string manipulation of pre-
fixing 7-8 bytes of characters should not have a major impact on performance
for each backlink retrieved.

8.1.4 Memory Fragmentation

As described in section 4.5 and 4.6, when inserting and retrieving backlinks,
both operations include doing a lookup in the tld index and the storage index.
The implementation details of the storage index and tld index can have an
impact on the performance. Because both the search key and its value point to
separate locations in memory, a cache hit is not guaranteed when reading the
value after the search key is located.

A possible increase in performance could be achieved by adding a custom
memory allocator to BacklinkDB’s system structure. When the cpu accesses a
value from an address in memory, the cpu loads a chunk of memory into the
cache. A custom allocator can optimize the placement of the search key and
its value so that it is located next to each other in the memory address space.
This will increase the probability of cache hits occurring when doing lookups
in the tld and storage index.

50 chapter 8 discussion and future work

8.1.5 Buffer Pool

Caching disk blocks in memory can allow for faster reads in some instances.
The design presented in this thesis does not present a system explicitly for
buffering the blocks in which the backlink data resides. The data is loaded
from the disk on demand by the storage manager.

Adding caching to BacklinkDB would be beneficial if the backlinks for some of
the urls and domains are requested more frequently than others. Implement-
ing a page cache system will increase the read performance for that particular
subset of domains and urls. While a caching system would boost the perfor-
mance of some queries, it will require BacklinkDB to consume more memory
at runtime. A trade-off decision need to be made between the amount of mem-
ory BacklinkDB will consume and the percentage of queries that will have an
increase in response time.

8.1.6 Multiple connections

The benefit of having a server that manages the connected clients is that Back-
linkDB potentially can support multiple client connections simultaneously. This
can be achieved by continuously iterating over all the connections and process-
ing the queries as they are received.

8.1.7 Distributed Data Store

An advantage of BacklinkDB’s design is that the backlink for a given domain is
located using the hash value of that domain. This introduces the opportunity
of adding distributed data storage functionality without making any major
changes to the core database design.

Partitioning the data by having multiple distributed instances of BacklinkDB
that each is responsible for a range of hash values would increase both the
throughput of insert and the throughput when retrieving backlinks. While a
distributed design can increase overall performance, a distributed data store
presents new challenges and trade-offs that are described in the CAP theorem[3].
CAP presents the three guarantees: consistency, availability, and partition tol-
erance, and the theorem states that in a distributed data store, you can only
ensure two of the three guarantees.

8.2 backlinkdb vs sqlite 51

8.2 BacklinkDB vs SQLite

The results presented in this thesis show that SQLite outperformed BacklinkDB
when searching for and retrieving backlinks. Even though SQLite needed to
perform two join operations when processing the retrieval of backlinks for a
given url, it has more than double the throughput compared to BacklinkDB.
However, when inserting data, BacklinkDB outperformed SQLite.

Neo4j and BacklinkDB use sockets to connect to the database while SQLite
writes and reads directly to the file system. Not having to communicate over
sockets allows SQLite to have less communication overhead as database queries
are invoked directly from a library.

8.3 BacklinkDB vs Neo4j

Neo4j’s throughput performance was significantly lower compared to Back-
linkDB and SQLite. Because the world wide web can be represented as a graph,
it is natural to store link data in a graph database. However, when dealing with
large amounts of backlink data, Neo4j did not appear to be a scalable system
for managing a backlink database.

Neo4j stores records in linked lists on the disk, this provides the benefits of hav-
ing much better space utilization as outlined in section 6.3. However, this alone
does not make Neo4j a feasible dbms for managing a backlink database.

8.4 BacklinkDB

Because of the amount of data needed to be stored in an operational backlink
database, a high insert throughput is necessary. BacklinkDB has demonstrated
that it has the potential of sustaining high throughput as the database scales.
Section 8.1.7 presents a discussion on how BacklinkDB can operate as a dis-
tributed data store, which will not only increase the insert throughput but the
throughput when retrieving backlinks as well.

Designed for only storing backlink data, BacklinkDB utilizes the space better
than SQLite. Section 8.1.1 discusses how to add database normalization using
adjacency lists. This optimization should further improve the space utilization
of BacklinkDB.

52 chapter 8 discussion and future work

8.4.1 Failure handling - Transactions

Neo4j and SQLite both support acid transactions. Supporting these properties
ensures the validity and consistency of the database in the event of a failure.
BacklinkDB does not support acid transactions. As this thesis aims to explore
the benefits of building a purpose-built dbms, support for acid transactions
was not implemented. In the benchmark results presented in section 6.1 Back-
linkDB is compared against two transactional databases. Introducing acid
transactions to BacklinkDB would introduce extra overhead to each backlink
inserted.

Support for transactional queries in BacklinkDB would introduce additional
precautionary steps when a backlink is inserted. BacklinkDB is designed to
be space efficient, meaning that the database will reorganize the segments as
backlink records are inserted into the database (section 4.5.2). Because of this
optimization, extra logging for each of the steps in the reallocating process is
necessary in order for the database to be able to recover after a failure that
happens during a reallocation.

Because the workload of a backlink database resembles an analytical database
more than a transactional database, supporting transactions may introduce
unnecessary overhead. The backlink data are inserted from files which means
that if BacklinkDB has a failure while the backlink database is building, the
backlink database can be rebuilt without any permanent loss of data.

8.4.2 Profiling Results

The profiling results presented in chapter 6.6 shows that BacklinDB spends a
lot of the execution time copying memory using the memcpy function. This
is an interesting finding because the bottleneck in most dbmses often occurs
as they are accessing the disk. Reducing the overall use of the memcpy func-
tion should be prioritized in future versions in order to improve the overall
performance.

8.4.3 Space Utilization

Dividing blocks into segments results in additional complexity and overhead.
The benefits of assigning a chunk of disk space to a set of backlinks for a specific
domain allow for efficient lookupwhen combinedwith a hash index. The reason
for sectioning a block into segments is so that we can reduce the total amount
of free space.

8.5 purpose-built backlink dbms 53

Without the concept of block segments, entire 4096-byte size blocks are allo-
cated each time a domain needs more space to store backlinks. One backlink
record will almost never occupy the full size of a block, leaving a major section
of the newly allocated block as free space. This free space can only be used to
store the backlinks for that specific domain. The web consists of hundreds of
millions of domains. Not accounting for this issue could result in a relatively
high percentage of free space.

8.5 Purpose-Built Backlink DBMS

After conducting the experiments and evaluating the implementation of the
design, BacklinkDB reveals both advantages and disadvantages. The previous
sections in this chapter show that the underlying architecture can be adapted
to overcome the shortcomings and potential challenges that will occur when
scaling.

This thesis shows that when managing large amounts of data, using a purpose-
builtdbms can be beneficial. With a purpose-built design,we have the ability to
choose what performance metrics to focus on. BacklinkDB showed high insert
performance and medium search throughput and space efficiency. Previously
presented in this chapter are some potential improvements thatwill increase the
search throughput and space efficiency. However, most of these improvements
will introduce a lower insert performance.

9
Conclusion
This thesis presented BacklinkDB, a purpose-built database management sys-
tem. The interface of BacklinkDB allows users to do a batch insert directly
from files. Support for listing all the backlinks for a given webpage is achieved
through a simple sql-inspired query language.

Analysis of BacklinkDB’s performance shows that a purpose-built dbms can
deliver a significantly higher throughput when inserting backlinks compared
to SQLite and Neo4j. The search throughput for BacklinkDB is approximately
39% of that what SQLite achieved. However, this thesis presents design im-
provements that will increase BacklinkDB’s search performance. Neo4j is the
best dbms of the three when it comes to utilizing disk space. Using techniques
such as adjacency lists to store records on disk, BacklinkDB can potentially
achieve better disk utilization.

Evaluation of the BacklinkDB show that building a purpose-built dbms for
managing a backlink database will have better resource utilization at scale
compared to a off-the-shelf database management system.

55

Bibliography
[1] Albert Bifet, Carlos Castillo, Paul-Alexandru Chirita, and Ingmar Weber.
An analysis of factors used in search engine ranking. In AIRWeb, pages
48–57, 2005.

[2] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe Turner,
Paul R. Young, and Peter J. Denning. Computing as a discipline. Commun.
ACM, 32(1):9–23, jan 1989.

[3] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, jun 2002.

[4] Antonio Gulli and Alessio Signorini. The indexable web is more than 11.5
billion pages. In Special interest tracks and posters of the 14th international
conference on World Wide Web, pages 902–903, 2005.

[5] Bernard J Jansen, Danielle L Booth, and Amanda Spink. Determining
the informational, navigational, and transactional intent of web queries.
Information Processing & Management, 44(3):1251–1266, 2008.

[6] Bob Jenkins. A new hash function for hash table lookup. Dr. Dobb’s
Journal, 1997.

[7] Cheng-Jye Luh, Sheng-An Yang, and Ting-Li Dean Huang. Estimating
google’s search engine ranking function from a search engine optimiza-
tion perspective. Online Information Review, 40(2):239–255, 2016.

[8] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

[9] American National Standards Institute. Standards Planning and Require-
ments Committee. Study Group on Data Base Management Systems. In-
terim Report: ANSI/X3/SPARC Study Group on Data Base Management

57

58 bibl iography

Systems. ACM, 1975.

[10] Ravi Sen. Optimal search engine marketing strategy. International Journal
of Electronic Commerce, 10(1):9–25, 2005.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	List of Listings
	1 Introduction
	1.1 Thesis Statement
	1.2 Scope, Assumptions, and Limitations
	1.3 Method and Approach
	1.4 Organization

	2 Background
	2.1 Website and Webpages
	2.1.1 URL - Uniform Resource Locator

	2.2 PageRank
	2.3 Adjacency List
	2.4 Web Crawler
	2.5 DBMS - Database Management System
	2.5.1 Database Index
	2.5.2 Transactional Databases
	2.5.3 Analytical Databases
	2.5.4 Relational Databases
	2.5.5 Graph Databases

	2.6 Three-Schema Architecture
	2.6.1 Data Independence

	3 Design
	3.1 Requirements
	3.1.1 Functional Requirements

	3.2 Overview - Database System Structure
	3.3 External Level
	3.3.1 Query Language

	3.4 Conceptual Level
	3.5 Internal Level
	3.5.1 Storage Manager
	3.5.2 Top-Level Domain (TLD) Index
	3.5.3 Data files
	3.5.4 Storage Index
	3.5.5 Block List
	3.5.6 Free List
	3.5.7 Disk Block Structure

	4 Implementation
	4.1 Language choice
	4.2 Testing
	4.3 TLD Index and Storage Index
	4.4 Valid TLDs
	4.5 Inserting links
	4.5.1 Requesting a new segment
	4.5.2 Reallocating segments

	4.6 Querying backlinks
	4.7 Connection

	5 Experiments
	5.1 Setup
	5.1.1 Technical Specifications
	5.1.2 Software
	5.1.3 Data
	5.1.4 BacklinkDB
	5.1.5 SQLite
	5.1.6 Neo4j

	5.2 Insert Throughput
	5.2.1 BacklinkDB
	5.2.2 SQLite
	5.2.3 Neo4j

	5.3 Querying Backlinks
	5.3.1 BacklinkDB
	5.3.2 SQLite
	5.3.3 Neo4j

	5.4 Space Utilization
	5.5 BacklinkDB Scalability
	5.6 BacklinkDB Fragmentation
	5.7 BacklinkDB Profiling

	6 Results
	6.1 Insert Throughput
	6.2 Querying Backlinks
	6.3 Space Utilization
	6.4 BacklinkDB Scalability
	6.5 BacklinkDB Fragmentation
	6.6 BacklinkDB Profiling

	7 Evaluation
	7.1 Insert Throughput
	7.2 Querying Backlinks
	7.3 Space Utilization
	7.4 BacklinkDB Scalability
	7.5 BacklinkDB Fragmentation
	7.6 BakclinkDB Profiling

	8 Discussion and Future Work
	8.1 Optimizations
	8.1.1 Adjacency List
	8.1.2 Defragmentation
	8.1.3 Simple backlink record compression
	8.1.4 Memory Fragmentation
	8.1.5 Buffer Pool
	8.1.6 Multiple connections
	8.1.7 Distributed Data Store

	8.2 BacklinkDB vs SQLite
	8.3 BacklinkDB vs Neo4j
	8.4 BacklinkDB
	8.4.1 Failure handling - Transactions
	8.4.2 Profiling Results
	8.4.3 Space Utilization

	8.5 Purpose-Built Backlink DBMS

	9 Conclusion
	Bibliography

