

p-SARS

Peer-to-Peer Search for A Recommender System

Master of Engineering Thesis

Rune Devik

12.15.2003

FACULTY OF SCIENCE
 Department of computer science

University of Tromsø, N-9037 Tromsø

© 2003 by Rune Devik

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

p-SARS

Peer-to-Peer Search for A Recommender System

Master of Engineering Thesis

Rune Devik

12.15.2003

FACULTY OF SCIENCE
 Department of computer science

University of Tromsø, N-9037 Tromsø

© 2003 by Rune Devik

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Abstract

 WAIF started out in 2002 and the overall goal is to make the computers
automatically search for relevant information based on the user’s preferences, and to
push this information directly to the user wherever he/she is and to whatever device
he/she has available. In other words, make the machines serve us, with as little human
interaction as possible. This thesis focuses on a specific part of this problem, which is
to design and implement a search mechanism and the surrounding distributed system
that can find publishers that publish on a given topic. We present a search mechanism
that is scalable, fault resistant, self administrative and that utilizes the resources
already present in the network. This is done by utilizing the powers of the
unstructured overlay peer-to-peer architecture.

However creating an efficient search mechanism for a pure peer-to-peer net is
known to be a problem due to the decentralized nature of these overlay networks. Our
solution is to incorporate several known techniques. We propose the use of Random
Walks supplemented by both a hint cache and a probabilistic gossiping mechanism.
The results gathered show that the search mechanism has good coverage but is highly
dependent on that the time to live (TTL) set on the query reflects the size of the
overlay network and that the nodes individual hint caches are populated.

 To verify our design we have both implemented the system and a simulator.
We show with throughput testes and simulations that the system designed can scale to
millions of users.

Keywords:
Peer-to-peer, unstructured, search, gossip, Information Retrieval (IR)

v

vi

Preface

History

The ARPANET was conceived in the late 1960’s. The main goal was to share
computing resources around the US. To do this they created a common network
architecture and thus seamlessly integrated heterogeneous networks, making each
peer an equal participant. There where no firewalls yet and everybody could connect
to any other peer on the net. Everybody consumed yet also produced data. Although
the early killer application of the net, FTP [J. Postel, J. Reynolds. 1985] and Telnet [J.
Postel, J. Reynolds. 1983], was client-server, the overall usage pattern was peer-to-
peer [A. Oram. 2001]. In the early 1990’s this would start changing.

With the introduction of the web came a change in the flow of information
itself. Web browsers with an easy-to-use interface made the Internet publicly
available. People just wanted to surf the web, and request/download was all they
needed. As the web grew the ordinary client was no longer sharing, rather only
consuming data from central servers. Client – server became the prevailing
architecture. This paradigm shift was not entirely positive. As time went by the client
computers became more powerful and people started realizing that utilizing these
resources would be beneficial. So now it actually seems that we to some extent are
going back to what once was.

The break through of peer-to-peer, in modern time, began with Napster

[Napster]. This hybrid peer-to-peer application soon became a gigantic success.
Literally over night everybody were willing to make their resources available to
others. The resource here was bandwidth, and disc space used to trade music (MP3).
But Napster was just the beginning. Soon people realized the weaknesses with the
Napster architecture and started research to find better completely distributed
alternatives and new application areas. Although much work has been done in the
research community concerning peer-to-peer, and especially how to do searches in
peer-to-peer nets, there are still many unresolved issues before we fully understand
this paradigm and its potential.

Thesis Background

 This paper is concentrated around peer-to-peer and a relatively new genre,
information retrieval (IR). IR is gradually becoming a more and more interesting field
for research because of the ever-increasing amount of data out on the Internet. The
problem is basically twofold, to get good precision and good recall on searches.
Precision is the relevance of the data found. That is, if all data returned from the
search is relevant we have a precision ratio of 100%. Also if every available piece of
relevant information is returned, we have a recall of 100%.

In 2002, a research project called WAIF [WAIF] was created at the University
of Tromsø. Its main object is to change the current trend of information retrieval on
the web. Instead of making the user search for information we should instruct the
computer to do this work for us with minimal user interaction. When information is
ready it should be pushed to the user regardless of where he/she is and what device

vii

he/she is using. Our thesis focuses on a part of this problem. That is, how we can find
publishers that publish on some interesting topic and what architecture we should
base this search mechanism upon.

viii

Stakeholders and Audience

This thesis is written as a part of my Siv.ing. degree in computer science. The
work itself is a part of the WAIF project, and the goal is to design and implement a
prototype that satisfies the requirements set. The target audience for this paper is
people with expertise in the field of computer science.

It is taken for granted that the reader has basic skills in the field of computer
science, but he or she does not have to be an expert on the fields presented in this
paper. It is however recommended that the reader has some knowledge about peer-to-
peer and information retrieval. Knowledge about searching in peer-to-peer nets is
especially relevant and the most relevant information will be presented in the
theoretical framework chapter.

ix

x

Acknowledgments

First I would like to thank the WAIF group as a whole for letting me
participate in their project and especially Nils Peter Sudmann, who also was my
teaching supervisor. He contributed with design ideas and also spent a lot of time
helping me structure and review this thesis.

Other people I especially would like to thank are:

• Tom Inge Strøm for reviewing my thesis.
• Karl Magnus Nilsen for critical comments during the process of designing the

system and also for reviewing my thesis.
• Jan Heier Johansen, for the cooperating project WAIF Recommender System

(WRS) and our cooperation figuring out the interface between our systems
(WRS and p-SARS).

• André Henriksen for helping me with mathematical statistics and always
having a few cookies on standby.

• Raymond Haakseth, for helpful hints on the Python Language.
• All others that I’ve had the pleasure of getting to know while I studied here in

Tromsø.

Last but not least I would also like to take the time to thank my family for
always supporting me and making it possible for me, in the first place, to study here
in Tromsø.

Tromsø, December 15th, 2003

Rune Devik

xi

xii

Content

Introduction ...1

1.1 Background..1
1.2 Problem definition ...2
1.3 Implementation environment...3
1.4 Method...4
1.5 Issues not investigated ...5
1.6 Major results ..6
1.7 Outline ...7

Theoretical Framework..9
2.1 The Peer-to-peer paradigm ..9
2.2 Searching in a peer-to-peer net ..10
2.3 Lookup in peer-to-peer net (DHT) ..14
2.4 Replication...15
2.5 Bootstrapping and Maintaining Membership ..16
2.6 Summary..17

Related work..19
3.1 Information Retrieval projects...19
3.2 File sharing applications ..20
3.3 CPU sharing projects ...23
3.4 Summary..24

Requirements ...25
4.1 Cooperating system ...25
4.2 Functional Requirements ...28
4.3 Non-Functional Requirements...29
4.4 Summary..31

Architectural design...33
5.1 The overall architecture ...33
5.2 The interaction between p-SARS and WRS..35
5.3 The main system mechanisms ...37
5.4 Summary..42

Implementation..43
6.1 System overview..43
6.2 The system module ..45
6.3 The system event module ..47
6.4 The topic update module ...49
6.5 The gossip event module ...51
6.6 The search event module ...53
6.7 The result event module...56
6.8 Summary..58

The Simulator ..59
7.1 Design / Implementation ...59
7.2 Performance tuning..61
7.3 Describing the simulations ..63
7.4 Summary..64

Testing ...65
8.1 Testing the p-SARS prototype...65
8.2 Simulating p-SARS ...72

xiii

8.3 p-SARS scalability ..76
8.4 Summary..79

Discussion..81
9.1 The topic update mechanism ...81
9.2 The membership mechanism ...82
9.3 The gossip mechanism...84
9.4 Search mechanism ...86
9.5 Miscellaneous ..89
9.6 Summary..91

Conclusion ...93
10.1 Evaluation..93
10.2 A critique to our work..94
10.3 Future work..95

Bibliography ..97
Appendix A: p-SARS, code listing..101
Appendix B: Simulator, code listing ...145
Appendix C: Describing the events ...155
Appendix D: CD-ROM ...159

xiv

List of figures

Figure 1 - The centralized search approach...10
Figure 2 – Pseudo code for the flooding algorithm ...11
Figure 3 - Searching as it worked in Napster (Simplified)..20
Figure 4 - The flooding algorithm ...21
Figure 5 - Overview of the vertical distributed system stack25
Figure 6 - Two disconnected WRS overlay networks ...26
Figure 7 - Interaction between p-SARS and WRS ..35
Figure 8 - The origin of the Topic Set ...38
Figure 9 - Example hint-set / routing table..39
Figure 10 - System overview (The design of a p-SARS node)44
Figure 11 - The system module ...46
Figure 12 – Processing the system event...47
Figure 13 – Topic update...49
Figure 14 – Processing the gossip event..52
Figure 15 – Processing the search event..53
Figure 16 – Processing the result event ...56
Figure 17 - Pseudo code for the gossip algorithm ...60
Figure 18 - External throughput testing...69
Figure 19 – Random Walk gossip vs. designed gossip mechanism74
Figure 20 - Random Walk Gossip with branching ..84

xv

List of tables

Table 1 - Internal throughput testing ...70
Table 2 - External throughput testing ..70
Table 3 - Throughput with persistent TCP/IP connections ...71
Table 4 – Best coverage results ...73
Table 5 – 1 000 000 WRS clients, scalability calculations..77

xvi

Chapter 1

Introduction

 In this chapter we describe the background for our problem, the problem itself
and the scope of the thesis. We will also talk about the method chosen for this work
and in the end we’ll summarize our major findings.

1.1 Background

Our project is a subproject of WAIF [WAIF]. WAIF is an acronym for “Wide
Area Information Filtering”. The WAIF project as a whole investigates structuring
techniques for future-generation large-scale distributed applications. This includes
fundamental research issues like, how to best partition an application into a set of
cooperating modules, how to optimize interaction among them, how and where to
deploy them, how to interact with the users, how to provide integrity, security and
auditing, and how to ensure fault-tolerance. In particular, WAIF is focusing on event-
driven architectures supporting a more general publish/subscribe paradigm.

The environment we conjecture in the time frame of the project (2003-2006)
is a ubiquitous and pervasive computing infrastructure where a single user
(occasionally) might be supported by thousands, or even millions of computers.

 WAIF is a joint project between the University of Tromsø, the Cornell
University and the University of California, San Diego.

1

Introduction

2

1.2 Problem definition

1.2.1 Problem description

 At the lowest level WAIF [WAIF] is a push-based publish subscribe system.
The WAIF virtual network of publishers and their clients form a directed graph
initially created explicitly. Links in a connected graph may be optimized by analyzing
traffic and by creating new links. However there is no way to discover and interlink
two disconnected graphs. Because the clients explicitly have to set up connections to
the publishers based on recommendations from other humans or what they might
stumble upon on the Internet, the graph generated will, with a very high probability,
be disconnected. The objective of this work is to implement a mechanism to discover
and interlink these disconnected graphs. Since the set of members is dynamic and it’s
desirable to have a scalable self administrative solution, we will focus our work
around a decentralized architecture. The method chosen to perform this work is rapid
prototyping.

Problems to focus on:

• Which distributed model is best suited for this application.
• Design, implement, test and analyze the application.
• API to the search engine.

Our system has one cooperative project named WAIF Recommender System

(WRS). While the work on the WRS system is concentrated around the protocol for
passing the publications to those interested, our work is concentrated around finding
(on demand) clients with similar interests. The underlying assumption here is that
people with similar interests would like to exchange publications.

1.2.2 Focus

 The focus of this thesis lies on design and implementation of a distributed
search engine for the WAIF Recommender System (WRS), currently under
development. More specifically the work includes:

• Identifying which architecture suits us best.
• Designing a search mechanism and the surrounding distributed system.
• Designing the interaction pattern between p-SARS and WRS.
• Implementing a prototype.
• Empirical studies such as performance testing.

Introduction

3

1.3 Implementation environment

1.3.1 Language:

 We’ve chosen the Python [Python] language for implementation. This
language is an interpreted language and is supported by both Windows and UNIX.
The reason for this choice is that Python is a relatively high level language, and this
makes it a good choice for rapid prototyping. The code is also portable as long as the
implementation does not include modules that target specific operating systems.

1.3.2 OS:

 We chose to implement p-SARS on the Windows XP platform. The main
reason for this is familiarity. But because Python is an interpreted language, and our
code portable, the p-SARS system will run on all platforms supporting Python run-
time.

1.3.3 Hardware:

 For the implementation we used an HP pavilion ze4400. This is a laptop with
the following important characteristics:

• CPU
o AMD Athlon XP-M 2400+ (1,8 GHz)
o 266 MHz front side bus
o level 2-cache 512 kB

• Memory
o 2 x 256 MB DDR PC2100 266MHz

• Network
o 10/100 LAN Ethernet, integrated

Introduction

4

1.4 Method

 Work in the discipline of computing follow three major paradigms, or cultural
styles if you will [P. J. Denning. 1989]:

• Theory: This paradigm is rooted in mathematics, and results in the
development of a coherent, valid theory.

• Abstraction: This paradigm is rooted in the experimental scientific method
and results in an investigation of a phenomenon.

• Design: This paradigm is rooted in engineering and results in the construction
of a system that solves the problem stated.

As our work mainly will be focused around design and the implementation of

a search engine prototype, the design paradigm suites us the best as an overall
strategy. But in order to design our search engine we also need a research method.
Since we are building an experimental prototype we need an experimental method.
Because of that, our choice fell on Rapid Prototyping [A. Macro. 1990]. The key
reasons for this choice are:

• It’s easy to find the needed requirements during prototyping.
• We get started right away.
• It’s easier to involve other people and get feedback when we can show them

something that works and maybe even let them use it.

To a certain degree we have also followed the template in [G. Hartvigsen. 1998] on
how to write the thesis itself.

Some UML1 has been included into the design phase. More specifically we
have chosen to model the information flow with the help of activity diagrams. The
reason for this is threefold. First, visualizing with UML makes the design easy to read
and maintain, second UML is a standard so it’s likely that whoever has an interest in
this thesis already is familiar with this modelling language, and third, while
modelling the system with activity diagrams a better understanding of the system’s
hot spots is obtained.

1 UML is an acronym for The Unified Modeling Language

Introduction

5

1.5 Issues not investigated

 Here we’ll describe some fields in peer-to-peer computing that, although
important, we have chosen not to emphasise on. The reason is that they are not
particularly relevant in our research.

• Free-riders are a major problem in current peer-to-peer nets. A free-rider is a
person who benefits from using the peer-to-peer net but does not contribute
with resources to the network himself. Solutions for this problem are in the
line of giving incentives to the user that makes him/her more eager to share
resources [P. Golle et al. 2001].

• Security: The use of peer-to-peer often requires third parties to be allowed

access to our computers, and thus our resources such as CPU and disc storage.
Security then becomes an important issue. All systems should be able to
provide both confidentiality and integrity, and this also applies to peer-to-peer
systems. Current solutions inside different organizations are to either totally
ban the use of peer-to-peer applications or introduce strict policies to their use
[D. Piscitello. 2002].

• Legal issues: All press attention on peer-to-peer in recent time has been

concerned about legal issues using file sharing applications. Napster [Napster]
was not online long before RIAA [RIAA] started the process of shutting it
down. The newer applications like Gnutella [Gnutella] are not as easy to stop
because everything is completely distributed. Therefore the record companies
now have a new strategy. They sue people that share large amounts of illegal
files on these systems instead. Fred von Lohmann, who is an attorney, has
written an article on what we as developers should be aware of when creating
a peer-to-peer system so that we do not end up losing a law suit. In [F. v.
Lohmann. 2003] he explains that we essentially have two options. Either we
create an architecture that provides total control over our users, or we go for
the total anarchy approach where we know nothing about the users.

Introduction

6

1.6 Major results

 This thesis presents the design and implementation of a scalable, fault tolerant,
self administrative and completely distributed search engine. This is accomplished by
utilizing the powers of the unstructured peer-to-peer architecture.

 However creating an efficient search mechanism for a pure peer-to-peer net is
known to be a problem due to the decentralized nature of these overlay networks. Our
solution is to incorporate several known techniques. We propose the use of Random
Walks supplemented by both a hint cache and a gossiping mechanism.

 We have also built a simulator to simulate the efficiency of our proposed
search mechanism and two different gossip mechanisms. By comparing the
simulations and throughput tests performed on the p-SARS prototype we argue that
the system is capable of supporting in excess of one million clients.

 We have also discovered that our proposed Random Walk Gossip (RW-G)
mechanism performs remarkably well in our simulations. In an overly network of
10 000 p-SARS nodes we have a success ratio of 100% on our searches when we use
this gossip mechanism to populate our hint-caches. And furthermore, in our
simulations the overall load increases slower than the additional processing capability
when we include more p-SARS nodes in the overlay network. That is, our solution
seems to scale better the more WRS clients are included into the p-SARS overlay
network.

Introduction

7

1.7 Outline

Chapter 2 – This chapter presents the theoretical background for our project.
It will be concentrated around the search problem in peer-to-peer networks, but also
the distributed hash table (DHT) technique will be presented. Replication and
bootstrapping is also covered.

Chapter 3 – This chapter presents related work. We will cover information
retrieval projects, file sharing projects and the utilization of the resources present in
the leaf nodes of the Internet.

Chapter 4 – The requirement chapter first describes our cooperating project
the WAIF Recommender System (WRS). Then the functional and non-functional
requirements set for our distributed search mechanism p-SARS are listed.

Chapter 5 – This chapter first describes the overall architecture and then the
interaction between p-SARS and the WAIF Recommender System (WRS). Then the
design of our four system mechanisms; the membership mechanism, the topic update
mechanism, the gossip mechanism and the search mechanism are presented.

Chapter 6 – Here we describe the implementation of the modules in the p-
SARS system. We use UML to visualize the work flow of each module.

Chapter 7 – This chapter presents the design and implementation of our
simulator. We also present the different tuneable parameters and the simulator’s input
file.

Chapter 8 – This chapter presents the testing and the simulations of our p-
SARS system. The results are also compared and discussed.

Chapter 9 – In the discussion chapter we mainly discuss the four system
mechanisms identified during design, and enhancements to these.

Chapter 10 – This chapter concludes the thesis.

 Chapter 11 – This chapter presents the Bibliography of our thesis.

 Appendix A – This appendix contains the full source code listing for our p-
SARS system.

 Appendix B – This appendix contains the full source code listing of our
simulator.

 Appendix C – Here we describe every event flowing into, through and out of
our p-SARS system.

 Appendix D – This appendix contains a CD-ROM containing all source code
and test results.

8

Chapter 2

Theoretical Framework

 In this section we’ll describe the theory behind peer-to-peer networks. We
start out giving a brief overview of the peer-to-peer paradigm as a whole, then delve
deeper into the problem of searching these overlay networks. Then we will look at
distributed hash tables (DHT), and why searching these overlay networks are hard. In
the end we talk about replication and membership in peer-to-peer networks.

2.1 The Peer-to-peer paradigm

Peer-to-peer is a decentralized architecture where each peer has the same (or
similar) capabilities and where the peers cooperate to solve a given problem or to
offer a service like e.g. file sharing. The architecture itself is often divided into three
sub-groups [Q. Lv et al. 2002]:

Centralized peer-to-peer: All nodes have the same responsibilities, but
a centralized server performs some service needed by the peer-to-peer net.

Decentralized and unstructured peer-to-peer (pure peer-to-peer):

Every node has the same capabilities and responsibilities. There is no central
service; everything is evenly distributed onto the nodes.

Decentralized and structured peer-to-peer: In this approach there is

some structure on the net itself. The strictness of the structuring varies
between different approaches, but the overall goal is to make searching/lookup
mechanisms better and more effective (scalable, fast and correct). Examples
are distributed hash table systems (DHT’s), routing based on hints and the
notion of super-nodes or super peers.

9

Theoretical Framework

10

2.2 Searching in a peer-to-peer net

 Searching inside peer-to-peer networks has been, and still is, a subject of
much research. To start out our description of the different approaches related to our
work, we divide the different solutions into the three different sub-groups identified
above.

2.2.1 Centralized (The hybrid approach)

 In the centralized approach we have a server that performs the search on
behalf of the systems clients. This is also called the hybrid approach and is
thoroughly discussed in [B. Yang, H. G. Molina. 2001]. The advantages of this are
that the system offer completely accurate searches and a fast response. The
disadvantages are that it requires extra hardware (i.e. the server(s)), one or more
administrators and that the server itself is a single point of failure.

Figure 1 - The centralized search approach

• A client has to log in (1) and provide, to the server, a list of which objects it

ts to perform a search, it sends the search request to the

ated when a client disconnects. The objects
at this client shared are no longer available.

This approach works as follows:

shares.
• When a client wan

server (2).
• The result is returned to the client (3), telling it which peers, if any, has the

object in question.
• The client connects to one of the peers provided by the server requesting a

download (4).
• When the client receives the object it has to update the server (5) telling it that

it now also shares this object.
• he search index must also be updT

th

Theoretical Framework

11

t

uery needn’t be the node
here the query originated. The node then performs a local search and sends back the

results,

very neighbour except the
one which we received the query from. Any results found are routed back to the

2.2.2 Decentralized

In the decentralized approach we have no administrators, no extra hardware
and no single point of failure. But the problem is that some of the desirable
capabilities of the centralized approach like e.g. completely accurate and very fas
searches cannot be obtained. Because the search engine is completely decentralized
we use what’s called ‘blind searches’. We don’t know where to find the data so we
are in a sense blind. The solution used in early peer-to-peer applications was the
flooding algorithm described in figure 2.

Figure 2 – Pseudo code for the flooding algorithm

This algorithm is essentially a limited broadcast, where each node sends the

query to all of its neighbours as long as the time to live (TTL) value is positive. When
a node receives a query for the first time, it registers the query along with the node
that sent it. It’s important to note that the node that sent the q

if result message:
 if querying node:
 display results
 else:
 # Lookup from which node we received the query from
 node = lookup(query_id)
 # Send results back to this node
 send(result, node)
else:
 if query known:
 # Discard known query

pass
 else:

Register query, and the node from which we
received the query
register_node(query_id, node)
Perform search

 result = local_search(query)

our)

if result != empty
 send(result, node)

 # Decrement TTL
TTL = TTL – 1
Relay search to neighbour as long as TTL
is still positive and the neighbour is not the same
neighbour as the one that sent the search to us

 if TTL > 0:
 for all neigbours != node:
 send(query, neighb

w
 if any, to the node registered on this query.

The second stage of the algorithm is the relaying of the query. The TTL is

decremented and if it’s still positive the query is sent to e

Theoretical Framework

12

queryin

lows: Instead of flooding the query to all
ighbours, one is selected at random and the query is forwarded to him. They still

use a TTL to ensure termination of the algorithm, but a Random Walk may also
 reached2. To decrease the delay before a

it is found they may also increase the number of walkers. The reason that the answer
is route

 also check back with the querying node to
figure out when the query is satisfied.

.2.3 Decentralized but structured

by imp
system
essenti
problem

blind s

•
 peer-to-peer net is often very heterogeneous. This

gain implies that some nodes are better suited to handle some services, such

r net where the super-nodes cooperatively act as a dedicated server
r searching. But since the super-nodes are elected dynamically we eliminate

g node using the same path as the search to avoid a message implosion at the
querying node. This may happen because a potential high number of nodes may
search in parallel and return the results simultaneously. A query is typically processed
only once at a specific node. Any duplicates are discarded.

The major disadvantage with the flooding algorithm is that it doesn’t scale
very well. As more clients connect, the search traffic in the net overwhelms the
clients [J. Ritter. 2001]. Possible solutions on this problem are discussed in [Q. Lv et
al. 2002] where the most promising one is Random Walk.

Random Walk works as fol

ne

terminate when the desired number of hits is
h

d back to the querying node in the flooding algorithm is as mentioned the fear
of message implosion at the querying node. In the case of random walks this will not
happen because there are only one or very few peers searching on behalf of the
querying node at any given time. Therefore the walker may return the answers
directly when they are found, and it can

2

The decentralized yet structured approach tries to i.a. reduce network traffic
osing a structure on the peer-to-peer virtual overlay network itself. DHT

s are in this group, but we shall discuss these in a separate section because they
ally do not solve the search problem, but instead what’s known as the lookup

 [H. Balakrishnan et al. 2003].

Essentially there are three approaches to create a more effective search than

earch:

The first approach incorporates what is known as super-nodes. Super-nodes
are introduced because the
a
as searching, on the behalf of the others. How to best elect these nodes are
discussed in [A. Singla, C. Rohrs. 2002], and include the need for sufficient
bandwidth, suitable OS, and sufficient uptime. If super-nodes are to handle all
searching in the net, they must cache what data their clients share and also
decide on a search algorithm to use between the super-nodes themselves. In a
way this approach transforms the decentralized peer-to-peer net to a hybrid
peer-to-pee
fo
the single point of failure.

2 The query is then said to be satisfied.

Theoretical Framework

13

•

• The third approach is to build some sort of routing table. Routing tables can

be build by e.g. observing the traffic in the net. It might also be a good idea to
group together peers that share some of the same objects, because peers with
similar interests are more likely to satisfy each others queries than random
peers [E. Cohen et al. 2003]. One hypothesis on how to achieve this grouping
of peers is presented in [C. Gkantsidis et al. 2004]. The idea is to use the
nodes that previously have answered your queries to populate your neighbour
set. This will, according to the hypothesis, lead to a formation of communities
of users with similar interests.

The second approach is known as semantic searches. If a pattern in the data
can be found, relations between data can be drawn and this gives rise to more
powerful queries. We’re not restricted to search for the name of the resource,
but we may now search on the content itself. It’s clearly easier when the
searchable data consists of text documents only [C. Tang et al. 2003], than if
for example music, pictures [C. Falaoutsos et al. 1994] or video files are
included.

Theoretical Framework

14

2.3 Lookup in peer-to-peer net (DHT)

 Distributed hash tables (DHT) do not solve the search problem, but instead
what’s known as the lookup problem. The lookup problem is stated as follows: Given
an object X stored at some dynamic set of nodes in the system, find it. This is
discussed in [H. Balakrishnan et al. 2003], where the conclusion is that it’s still an
open question if it’s possible to layer indexing and keyword searches effectively on
top of DHT systems. Although these systems do not currently address our search
problem, they are highly related.

 There are two important properties of a DHT system that we indeed would
have liked to incorporate into a distributed search algorithm. First, they guarantee to
do a lookup in a fixed amount of steps, often O(log(n)) steps where n equals the
number of nodes in the overlay peer-to-peer network. Second, if the object exists, it is
guaranteed to be found. The drawback of these systems is that if we want to find an
object, we must know its name. That is, we have to know exactly what we are looking
for. Another problem is the joining and leaving of nodes. Each time a node either
connects or leaves, the network must apply some resources to restructure the overlay
network.

 All these systems e.g. Pastry [A. Rowstron, P. Druschel. 2001], CAN [S.
Ratnasamy et al. 2001], Chord [I. Stoica et al. 2001] and Tapestry [H. Hildrum et al.
2002] are very similar, and therefore we will describe them in general. Each node in
the graph is given a node id from an id-space when it connects. When a node wants to
publish an object, it hashes the name of the object into this id-space. The node that
has the numerical closest id to this hash has to either hold the object or a reference to
where the object can be found. A lookup is then straight-forward. First we hash the
name of the object, and then we look up the numerical closest node in the id-space.
This node will hold the object or a reference to the object, if it exists.

Because of scalability issues each node cannot keep a complete and updated
list of all nodes in the overlay network. In their routing tables they therefore keep
some of the numerical closest nodes, and some of the numerical distant nodes. When
a lookup propagates through the overlay network towards its goal, it’s always sent to
a node that has a node-id numerically closer to the object-hash. Because of the
structure of the routing tables it is ensured that the lookup requires only log(n) steps.

Theoretical Framework

15

2.4 Replication

 One way to make searches more effective is to duplicate the objects, or
references to objects, on to different nodes in the net. When an object resides on
several nodes the chance of finding a particular object increases. The problem is,
however, to find the optimal replication strategy. There are several papers discussing
this problem e.g. [E. Cohen, S. Shenker. 2002] [Q. Lv et al. 2002] and they conclude
that square root replication is nearly optimal.

In [E. Cohen, S. Shenker. 2002] square root allocation is defined as an
allocation where for any two objects the ratio of allocations is the square root of the
ratio of query rates. Another observation made in this article is that square root
allocation lies between Uniform and Proportional allocation, although surprisingly
much closer to the Uniform allocation. In a Uniform allocation all objects are
replicated equally as appose to Proportional allocation where more popular objects
are replicated more frequently than less popular objects.

 Although, theoretically, square root replication is sophisticated it’s shown by
[Q. Lv et al. 2002] that it’s actually not hard to achieve in practice. One of the
algorithms proposed is path replication. This algorithm replicates the objects on the
search path form the querying node to the node holding the object.

Theoretical Framework

16

2.5 Bootstrapping and Maintaining Membership

 When a node wants to join the overlay peer-to-peer network the question
arises of how to find an initial node to connect to. The solution widely adopted is one
or more centralised bootstrap-servers. Nodes register themselves to a well-known
server, and in return they get a list, possibly randomised, of other nodes that already
are a part of the peer-to-peer network. The only other solution today is to ask all other
nodes on the Internet to find out if they run as a peer in the overlay network in
question. This is obviously not a solution to consider. One might think that
broadcasting a request on an LAN might be a solution, but there is no guarantee that
there are others on that LAN currently connected to this overlay network, in which
case we again will end up searching the whole Internet. There is however another
solution, but it requires that the node has previously been a member of this overlay
network and that it cached the addresses to the nodes it was in contact with. When
such a node tries to bootstrap, it can initially try to contact the nodes it already knows,
but if this fails it must again fall back to the bootstrap-server approach.

 Another problem is that the choosing of nodes to add as neighbours influences
the topology of the overlay network. In [A. J. Ganesh et al. 2003] they show how to
use random walks to establish an overlay graph that is well connected. When an
arriving node has found a node already connected to the overlay network, a join
operation is initiated at the discovered node. The join operation is such that the
returned nodes are picked nearly uniformly random. This ensures that there is a high
probability that the resulting overlay network stays well connected. In their article
they also discuss how to keep this desired graph property when nodes join and leave.

In the distributed hash table (DHT) approach, the problem of finding the
initial node is also solved with a bootstrap-server. The difference between DHT and
unstructured peer-to-peer is the join operation after the initial node is found. In DHT
this requires a restructuring of the overlay network itself, and possibly also moving
some data between nodes whereas nothing needs to be done in the unstructured
approach. The restructuring in DHT is necessary because a new node added to the net
gets a node id from the global id-space. This means that the new node possibly has to
take over the responsibility of some of the objects distributed on the overlay network,
because it is now the numerically closest node. It also has to make its presence known
to other nodes so that they may update their routing tables. At last the joining node
also has to build up its own routing table.

Theoretical Framework

17

2.6 Summary

 In this chapter we have presented the theoretical background for our project.
We have shown that the peer-to-peer paradigm consists of three different architectural
approaches; centralized, decentralised and unstructured, and decentralised and
structured. We have also shown how the search mechanism has to be adapted to the
underlying architecture.

We then presented a nearly optimal replication strategy, square root
replication, to make the searches in a decentralized peer-to-peer network more
efficient. In the end we discussed the bootstrap problem and that the joining and
leaving of nodes affect the overlay network topology.

18

Chapter 3

Related work

 In this chapter we will present work related to our project.

3.1 Information Retrieval projects

 In Stumbleupon [Stumbleupon] the idea is similar to the idea in the WAIF
Recommender System (WRS). Push relevant information directly to the user from
peers or friends with similar interests. The system itself is implemented as a web-
browser plug-in. To start up the system the user must configure its interests or the
profile, as we will call it, so that only relevant information is received. The user may
also include friends in this profile. The assumption here is that close friends share the
same interests.

Information is pushed to the users based on ratings. Members rate the web-
sites they come over, and the highest rated sites in accordance with the client’s profile
are presented to the client when asked for. Another feature is that the system learns
what the client thinks is relevant information based on the client’s ratings. So the
more a client participates in the rating process, the more relevant the information
pushed to this client will be.

 In NewsMonster [NewsMonster], as with Stumbleupon, the user may rate
websites and share ratings with other users automatically. But this program also
supports news gathering from RDF Site Summary (RSS) streams and automatic
caching of articles for offline surfing before the user even requests them. The user
may also search through all current subscriptions and already cached articles. As with
Stumbleupon, the user must create a profile and the profile is automatically updated
based on what the user rates as relevant information. This application is integrated
with Mozilla and Netscape.

 Konspire [Konspire] is a new type of file sharing application that pushes files
to the user before he/she asks for them. The pushing is based on which channels the
user currently subscribes to. The user may also start a new channel, broadcasting files
to other subscribers.

The Oxygen [Oxygen] project at MIT is a highly related project. Their goal is
basically the same as the goal of the WAIF project as a whole: Put the people in
centre. Make the machines invisible but in the same instant make them omnipresent.
Make them serve us, not the other way around. Push relevant information directly to
the user, wherever he/she is and to whatever device he/she might have available.
Create software that adapts to changes in the environment or in user requirements.
E.g. if a user is at work, he/she might only be interested in work related information.
The basic scheme for the project is therefore to make the machine adapt to the users
based on where they are, what they do and what they are interested in.

19

Related work

20

3.2 File sharing applications

3.2.1 Napster

 Napster [Napster] was released in the fall of 1999, and was the first file-
sharing peer-to-peer application. Although it wasn’t a pure peer-to-peer application
because the search engine was situated on a dedicated server, the actual download
was done directly between peers. This is known as a hybrid peer-to-peer network.

Centralized
Server

Client 1
1) Log inn

2) I share these files!

When
connecting to
Napster...

Client 2

4) Results

When
searching

3) Search for X

5) Contact correct node to download file

6) Now I share these files!

ares (2). The files are recorded
at the cen

l was shared and that they had the means to stop it. This was also discovered
tween Napster and RIAA [RIAA].

d access to the system. Napster only got their filters 99%
orrect,

Figure 3 - Searching as it worked in Napster (Simplified)

When a client connects to Napster, which uses a central server, the client logs

in (1) and provides information about which files it sh
tral server to satisfy future requests (3). To give the clients an up-to-date

view of the system, the search index is updated when a client downloads a file (6) or
when a client goes offline. The advantages of this architecture are that the system
offers completely accurate searches and fast responses. The disadvantages are that it
require extra hardware (i.e. the server(s)), one or more administrators and that the
server itself is a single point of failure.

Placing the search engine on a central server gave the system excellent
searching capabilities, but it also meant that the Napster crew knew that copyrighted
materia
during the trial be

The populated user database actually meant more investors and more money.

This way the court showed that Napster indeed benefited financially from the file
sharing, that they had to know about what was going on, and that they had the ability
to control their users. The users could simply be denied access. It was demanded that
copyrighted material was filtered out, and that users indulging in trading copyrighted
material should be denie
c but the judge demanded 100%. This was never achieved and the search
service was taken offline, resulting in a total shut down of the file sharing service
itself.

Related work

21

verything including the search mechanism was decentralized. When Napster was

rs.

On top of the Gnutella net you find many different client applications. Some
of the well known, and still up and running, file sharing applications are Morpheus
[Morpheus], BareShare [BareShare], WinMX [WinMX], Grokster [Grokster] and
KaZaA [KaZaA]. They are all currently under some kind of dispute with the record
companies, but as of yet it seems that the decentralized nature of their systems might
save them. The reason is that no servers owned by the companies actually indulge in
the file sharing process themselves. Everything is decentralized and run by the users.

 Gnutella started out using the flooding algorithm described in the theoretical
framework chapter:

3.2.2 Gnutella

 While Napster was up and running the interest for the peer-to-peer paradigm
was increasing. This resulted in e.g. the Gnutella [Gnutella] protocol where
e
shut down people started looking for a substitute and over night the Gnutella net got
thousands of new use

Client 1 Client 2

Client 5 Client 3

Client 6
Client 4

Client 7

4) found

3) Do you have X?(TTL = 1)

5) found

3) Do you have X?(TTL = 1) 2) Do you have X?(TTL = 2)

1) I'm searc

6) found

2) Do you have X?(TTL = 2)

hing for X(TTL=3)7) Request download

he search came until it reaches
the querying node (step 4, 5 and 6). This node then downloads the file directly from
the node holding the file (step 7).

Figure 4 - The flooding algorithm

A search is initiated by a querying node (client 1) sending a search request to all of its
neighbours (step 1). The request propagates through the net (step 2 and 3), where
each node receiving the query sends it on to all other neighbours, except the
neighbour from whom it received the query, and only as long as the time to live
(TTL) is still positive. If a node finds the file we are searching for, we have a hit
(client 5). The result is propagated back the same way t

Related work

22

Since the flooding algorithm doesn’t scale very well, it was soon discovered
-peer network could potentially be a good idea.

he most used structuring technique today is the notion of super-nodes or super-peers
which

that structuring the overlay peer-to
T

we discussed in the theoretical framework chapter. Applications that use this
technique are e.g. KaZaA [KaZaA] and Morpheus [Morpheus]. The reason that the
distributed hash table (DHT) technique has not yet been widely adopted in these
applications is the problem of searching these nets. Another problem is the extra work
needed maintaining these nets as nodes join and leave.

Related work

23

g projects

.3.1 SETI@home

ons.” The goal is
to utilize the waste amount of unused computing power out on the Internet, and put it
to use a

people to download and install a

creensaver, the SETI@home group accomplishes their goal of utilizing idle CPU
me. When the client computer becomes idle, the screensaver is activated and starts
 process a data chunk from Berkley. After a while the chunk is processed, and the
sults are sent back. In response, another work unit is received by the client. Their

progress and extended background information can be viewed at their homepage
[SETI@home].

3.3.2 Intel philanthropic peer-to-peer program

 This project was created by Intel to demonstrate the power of distributed
computing, and has currently several sub-projects around the world, all in the field of
medical research. All projects have the similarity that the problems can be divided
and processed in parallel. The most widely known of these sub-projects is probably
the project running at the University of Oxford. In their project Screensaver –
Lifesaver, they have concentrated their effort in the field of cancer research. The goal
is to identify molecules that interact with proteins that in advance have been
determined to be a potential target for cancer therapy. Through a process called
virtual screening, it will be determined which molecular candidates have a high
likelihood of being developed into a drug. As the name suggests, they also follow the
SETI@home approach. By creating the application as a screensaver, they manage to
tap into the idle resources on millions of computers world wide. Their progress and
extended background information can be viewed at their homepage [Screensaver –
Lifesaver]. Information on the Intel philanthropic peer-to-peer program can be found
at [Cure], including links to other sub-projects.

3.3 CPU sharin

In its widest sense, this is also peer-to-peer. Philosophically, peer-to-peer is to
take advantage of the resources in the net’s leaf nodes. In the architectural sense
though, these projects fall in under the controller – worker paradigm. But because the
sharing of resources is such a vital notion in our project, we’ve chosen to include a
description of some resource sharing success stories.

3

 This project aims to “…search out new life and new civilizati

nalyzing radio signals from space.

 This can be accomplished because the problem can be divided, and the results
can be computed in parallel. By allowing
s
ti
to
re

Related work

3.4 Summary

 This chapter pr
describing some inform

esented work that is related to our project. We started out
ation retrieval projects. Information retrieval projects focuses

n retrieving information, preferably from different sources, and push this
form

e CPU sharing projects that with their success

 resources available in the leaf nodes of the
ternet. Not only that, but it also shows that people is able and willing to share these

o
in ation directly to the users based on their interests. Some projects like WAIF
and Oxygen also try to create adaptive software. That is software that is able to
change its behaviour based on what context the user currently is in and what device
the user currently has available.

We then presented two widely known file sharing applications and i.a.
discussed how the search problem was solved in these applications.

In the end we described som
shows that there actually is a lot of
In
resources as long as it is deemed safe to do so.

24

Chapter 4

Requirements

 In this chapter we will present the requirements set for the p-SARS system.
We start out by describing the cooperating system named WAIF Recommender
System (WRS). Then we will present the functional and non-functional requirements
set for the p-SARS system in detail.

4.1 Cooperating system

 applications will run.
his is typically GUI applications taking advantage of services the middleware layer

provides.

 The presentation of the requirements has incorporated some ideas from The
Volare Specification Template described in [S. Robertson, J. Robertson. 1999].

 Before we describe the WAIF Recommender System we will take a look at
the whole vertical distributed system stack.

4.1.1 The system stack

Figure 5 shows an overview of the vertical distributed system stack. The
ystem stack is divided into four modules. At the top all WAIFs

T

Figure

n.

5 - Overview of the vertical distributed system stack

The main task of the discovery module is to minimize the needed user
interaction. It will use both the WAIF Recommender System (WRS) and p-SARS to
find and suggest new sources of info based on e.g. user behaviour and interests.

We envision different application to be situated on top of the discovery layer.
These are e.g. applications for publishing links and / or files in general. The specific
pplication itself may be standalone or e.g. a web-browser plug ia

25

Requirements

26

The goal of the WAIF Recommender System (WRS) is to provide users with
personalized publications based on the ratings of other users. This is accomplished by
running an application on each client that is capable of both receiving and publishing
publications.

As a client subscribes to a publisher it also submits a threshold value of

accepted personal rating of that publisher. If the personal rating of the publisher falls
below this threshold the subscription is terminated. Subscribers rate all publications
received and the publishers personal rating is some summarization of all these ratings.
This means that the group as a whole rates each publisher, and based on this rating
and the threshold value, set independently by each client, each subscriber decides if it
still wants to receive publications from this source. This will prevent publishers from
spamming a group, and only highly relevant and personalized information will flow
through the system to the clients. It’s assumed that the WRS system has to run a
while before it has accumulated enough data to perform at its best. The system has to
learn who is a good producer, and who is interested in what, based on user feedback.

The work in the WRS project is in reality concentrated around finding the

appropriate communication protocol for message passing between clients. And also
how to ensure that only relevant information is passed on to the subscribers. But to
facilitate testing a GUI application is also implemented. This application allows
clients to publish and/or subscribe to publications3.

The goal of our p-SARS system is to extend the WAIF Recommender System

(WRS) with an external search level. As shown in figure 6 the WRS system sets up a
directed graph between publishers and subscribers. This graph is initially created
manually. That is, the client must explicitly set up connections to already known
publishers. There is no way for a client to search for a publisher on a given topic and
therefore our p-SARS system will extend a subset of the WRS nodes with such a
search capability. This subset is selected by the WRS system, and the WRS nodes
selected to run our search mechanism are called super-nodes.

Figure 6 - Two disconnected WRS overlay networks

4.1.2 The WAIF Recommender System (WRS)

3 Only plain text publications are currently supported in this application.

WRS
s-node

WRS
s-node

WRS overlay network (Directed graph)
WRS client
Connection between a WRS client and its respective WRS super-node

Requirements

27

t the WRS system is thought to scale to

illions of clients. That is, this is not an application just created for the members of a
single

 will present a summary of the system requirements. The rationale

It’s important to notice here tha
m

project group. This application could potentially be used by every client
connected to the Internet creating a world wide network between publishers and
subscribers. Another important issue is that the topics are generated by humans and
reflects their interests. We may therefore assume that these topics will change slowly,
because the interests of each individual human changes slowly.

 Next we
behind them will follow in later discussions.

Requirements

28

equirement 1
Description: The system must be able to bootstrap.

manages to connect to the p-SARS overlay
etwork, as long as there are other nodes running.

escription: Provided with a topic the system should support searching for
is topic.

 client.

escription: An API to the search engine should be provided for external systems
stem.

escription: The system must keep a topic set, describing which clients are
hich topics.

may be satisfied.

 8
escription: The local topic set should be updated periodically.

Fit Criteria: Changes in the topic set situated on the WRS super node shall after
opic set on the corresponding p-SARS node.

equir

om Walk may be performed.

4.2 Functional Requirements

These requirements state the functions or actions that are to be part of the
finished p-SARS system. But only the functions or actions that contribute directly to
the goal of the system. That means that e.g. look and feel requirements are not
included here. All requirements are stated with a fit criterion to facilitate testing the
system functionality.

R

Fit Criteria: When a node is started up it
n

Requirement 3
D
publishers on th
Fit Criteria: When the system receives a query request, it should be processed and an
answer should be given to the querying WAIF Recommender System (WRS)

Requirement 4
D
like the WRS sy
Fit Criteria: The WRS system and the p-SARS system are able to communicate.

Requirement 7
D
publishing on w
Fit Criteria: The topic set is populated with the right information when the node is up
and running so that searches

Requirement
D

update be reflected in the locally cached t

R ement 10
Description: The system must try to keep a populated neighbour set.
Fit Criteria: When a node is up and running it should have a populated neighbour set

= 1 so that a Rand>

Requirements

29

Non-functional requirements describe the properties that the finished product
ust have. E.g. operational and performance requirements that applies to the system.
 short we may say that everything that is not a part of the system’s fundamental

 is included here. We use the same presentation as with the Functional
equirements above but divide the requirements into two groups starting with the

performance requirements.

4.3.1 Performance requirements

 Here we will present the requirements we have incorporated into our design to
improve the overall performance of the system.

Requirement 5
Description: When a local client starts to publish on a new topic, disseminate this
information. (Disseminate local view.)
Fit Criteria: When a new topic is discovered after the locally cached topic set has
been updated a message informing surrounding nodes should be sent.

Requirement 6
Description: The system must keep a hint set (routing table), possibly limited in size.
Fit Criteria: When the system is warm, the routing table should be populated with
some information on what topics clients of other super-nodes publish on.

Requirement 9
Description: When a node connects to the peer-to-peer system it should make use of
already populated hint sets.
Fit Criteria: When a node connects it should receive the routing tables of its
neighbours.

4.3.2 Operational requirements

These requirements describe which environment the system is meant to
operate successfully in. This include e.g. platform and if there is some special
architectural needs.

Requirement 2
Description: The system should be decentralized.
Fit Criteria: No single failure should bring the system as a whole to a halt.

Requirement 11
Description: The system should be designed as modules.
Fit Criteria: The system is easily maintained, and changes are easily incorporated.

4.3 Non-Functional Requirements

m
In
functionality
R

Requirements

30

Requirement 12
stem should work in both Windows and UNIX

it Criteria: The code is portable to both operating systems.
Description: The sy
F

Requirements

4.4 Summary

 To set our system in perspective we started out this chapter describing the
vertical distributed system stack and then more specifically our cooperating system
the WAIF Recommender System (WRS). The goal of the WRS system is to provide
users with personalized publications based on the ratings of other clients. This is
accomplished by running an application on each client capable of both receiving and
publishing publications. Our p-SARS system will enhance this WRS system with an
external search level so that the clients of the WRS system may search for publishers
publishing on a specific topic.

 In the end we summarized the requirements set for our p-SARS system. We
divided the presentation in two; functional requirements and non-functional
requirements.

31

32

Chapter 5

Architectural design

 In this chapter we will present the design of the p-SARS search engine and

hy we have chosen the solutions we have. While discussing our design choices we
will als

the

tarted to design our system we needed to decide on the overall
network architecture. The choice was basically twofold. Either we design the search
mechanism as centralized client-server or we create some sort of a decentralized
solution. Since the decentralized approaches has some desirable properties like for
instance scalability, failure resistance, self administrating and no need for extra
hardware our choice fell on a decentralized architecture known as peer-to-peer
(requirement 2).

 The centralized client-server solution has several advantages. By caching all
information in one place, the searches become very fast and correct. The search
coverage is excellent because all searching is performed at a centralized server. This
is not true in an unstructured peer-to-peer network. So the trade-off present here is to
exchange search precision, speed and better coverage for failure resistance, self
administration and better utilization of available resources. To be able to satisfy our
WRS clients the p-SARS system needs fairly good search coverage so that a client
can find some of the publishers out there, but it’s not critical to the system if we
cannot find them all. Therefore we are willing to make this trade-off.

The reason we didn’t choose the distributed hash table (DHT) approach is
twofold. Firstly it’s still an open question if it’s possible to layer pattern search on top
of DHT and secondly it’s not fully understood how the joining and leaving of nodes
in a DHT system affects the scalability [H. Balakrishnan et al. 2003].

If we view our system as a completely isolated system, our architecture is
unstructured peer-to-peer. Therefore every node has the same responsibilities and
capabilities. The bigger picture is different though. The nodes in the p-SARS system
will extend a sub-set of the WRS clients with search capabilities. These enhanced
nodes are in effect super nodes. The reason not every WRS node is incorporated into
the p-SARS overlay network is scalability. Only the nodes capable of being a part of

w
o refer to the corresponding requirements already stated in chapter 4.

We start out explaining our overall architecture then the interaction between

p-SARS and the WAIF Recommender System (WRS). In the end we will describe
design of the main system mechanisms4.

5.1 The overall architecture

Before we s

4 The membership mechanism, the topic update mechanism, the gossip mechanism and the search
mechanism.

33

Architectural design

34

the distributed search engine should participate and only as many nodes as needed. If
ly one of a thousand

RS nodes should participate in the p-SARS overlay network. This will lead to
better s

It may have been possible to enhance our system’s scalability and efficiency
y introducing super-nodes with special responsibilities and capabilities. We could

ake a sub-set of the p-SARS nodes maintain a more precise routing table. This
approach is what we in the theoretical framework chapter referred to as structured
peer-to-peer and this architecture also represents the current trend in file sharing
applications. It is already realized in e.g. KaZaA [KaZaA] and Morpheus [Morpheus].
We have however chosen not to incorporate this into our design because the WRS
system already has chosen the nodes best capable of running as super-nodes. The
potential gain here is therefore probably so little that we decided it was not worth the
added complexity.

e.g. a super-node is capable of supporting one thousand nodes on
W

calability and ultimately better search coverage because we have reduced the
size of the overlay network with a factor of one thousand. As an example if we have a
network of ten million nodes only ten thousand WRS nodes should participate in the
p-SARS overlay network.

b
e.g. m

Architectural design

35

local

RS

Figure 7 - Interaction between p-SARS and WRS

 As shown in figure 7 both the p-SARS system and the WRS system create
overlay networks. These two overlay networks are completely distinct and separated.
While the WRS overlay network is a directed graph between publishers and
subscribers (WRS clients), the p-SARS overlay network is an unstructured peer-to-
peer network between the p-SARS nodes. The directed graph in the WRS overlay
network describes which clients are publishing, and to whom they publish. The links
in the p-SARS overlay network describes which nodes a node considers to be in its
neighbour set.

5.2 The interaction between p-SARS and WRS

The WAIF Recommender System (WRS) is itself responsible for the
topic graph connecting subscribers and publishers. Our system only comes into play
when a client connected to a WRS super-node tries to extend its local graph with new
publishers not already in its local graph. It’s important to notice here that a W
super-node also acts as an ordinary client.

p-SARS

WRS
s-node

p-SARS

p-SARS p-SARS

P-SARS overlay network (Unstructured peer-to-peer)

WRS overlay network (Directed graph)

Connection between a WRS super-node and a p-SARS node

WRS
s-node

WRS
s-node

WRS
s-node

WRS client

Connection between a WRS client and its respective WRS super-node

WRS group A
WRS group B

Architectural design

36

 Each WRS super-node is extended with a p-SARS node that provides a search
 WRS clients (requirement 4). As an

 view the two WRS groups formed in figure 7. Although the WRS

nected through the p-SARS overlay network.
query to find a publisher the client will find

roup B. The WRS overlay network will then be
 one group by this newly found

mechanism to this WRS super-node and all of its
example we can
clients in group A are not connected to any WRS clients in group B in the WRS
overlay network, they are indirectly con

herefore if a client in group A issues a T
this publisher even if he/she is in g
updated and the WRS groups will be joined to
connection.

The WRS system decides at run-time which of its nodes should run as super-

nodes. It’s also important to notice that a WRS client is connected to only one WRS
super-node at a time in contrast to Gnutella 2 where each client may be connected to
several super-nodes. This approach is taken in Gnutella 2 as a safety precaution to
minimize the impact a badly functioning super-node will have on a client.

Architectural design

37

 main system mechanisms

the systems main mechanisms. We will

 locally on each node in the p-SARS overlay net. For the system to be able to
erform any search and gossip activity it needs to connect to other nodes
equirement 1 and 10). A set of nodes are therefore kept in what we call the

neighbour set, and continuously pinged to ensure that they are indeed alive and ready
to process queries on our behalf.

A neighbour is pinged if nothing is heard from it within a defined time period.

If a neighbour dies or we after bootstrap discover that we don’t have enough
neighbours, defined by a constant, the system must try different things to find more
neighbours. One solution to find additional neighbours when already connected to the
overlay network is to extract them from the events propagating through the node. The
search events even hold a list of visited nodes, nodes that could be seen as potential
neighbours. This is not yet incorporated into our design, with the exception of
extracting neighbours from the ping and pong events received.

The designed mechanism works as follows:

• Nodes are pinged, and those that do not answer with a pong event within a
specified time interval are rem ceived, but it arrives
too late, the node i . All nodes
presumed dead are also removed. A node is presumed dead when the sending

contact the bootstrap server trying to

ut
e who

S then we’ll
robably again end up searching the whole Internet. So like many other applications

5.3 The

 This section describes the design of
start with the membership mechanism.

5.3.1 The membership mechanism

An important aspect of our design is the neighbour set which is situated and

updated
p
(r

oved. If a pong event is re
s re-inserted into the set only if there’s still room

of events to this node fails.

• When a node X pings a second node Y, node Y will include node X in its

neighbour set if there is still room. This means that a node X may have node
Y in its local neighbour set, but node Y need not consider node X as its own
neighbour if it already has the maximum defined number of neighbours in its
local neighbour set.

• Periodically the system module will

fetch new neighbours, but only if the neighbour set is not yet full.

The bootstrap service is designed as a centralized server. This is due to the
known problem of name resolving. We need to know which node to contact, before
we can even try to establish a link. The alternative is to search for a node througho
th le Internet by trying to connect to each one until a member of the overlay
network is found. This is clearly not the solution. We could try to search the LAN,
but there is no guarantee that someone else on our LAN actually runs WR
p

Architectural design

38

help us with the initial bootstrapping of our
ystem.

fore holds an updated version of the
complete topic set of its local clients and offers this set to the corresponding p-SARS
node.

s a byproduct of the update operation we also discover what has changed
since l

he gossip events are important to both speedup the searches and to make
them m ism in detail.

we rely on a centralized service to
s

5.3.2 The topic update mechanism

 The topic set describes which topics each client of the WAIF Recommender
System (WRS) publishes on. To facilitate searching each p-SARS node keep a cached
copy of this set. Each WRS super-node there

p-SARS

WRS
s-node

Topic server

The cached topic set

Figure 8 - The origin of the Topic Set

 To be able to return any search result to a client of our search mechanism p-
SARS, the topic set is essential (Requirement 7). We could fetch the topics from the
topic server each time a query came in to ensure that the search results always
reflected the real world. We have chosen to cache the data though for two reasons.
First it’s not expected that the topics, which essentially describes the interests of a
specific human, will change rapidly. Secondly it’s much faster to use a locally cached
topic set than to pull the topic server each time we need to process a query. We do
have to update the topic set periodical though to prevent that our topic set, in time,
will contain only stale data (Requirement 8).

A
ast update. If a new topic not already registered is discovered, or if the last

node that published on a topic has left, we initiate a gossip (Requirement 5). Gossips
are used to build and maintain the hint sets, essentially a nodes local routing table.

T
ore effective. Next we’ll describe the gossip mechan

Architectural design

39

5.3

locally
route q
emphas
know i
a stale his means that the routing table
don’t necessarily contain correct information.

degene
relayed ecomes more
effective if we have a populated one.

 the p-

.3 The gossip mechanism

The goal of the gossip mechanism is to build up what we call a hint set,
 on each node (Requirement 6). This set is in fact a routing table that is used to
ueries to super-nodes that may have clients publishing on a given topic. The
is on may is very important. When searching is performed we don’t really

f the hint is still valid, but the theory is that it’s better to occasionally discover
 hint than always perform a blind search. T

If a matching entry cannot be found in the routing table, the search mechanism
rates to Random Walk. That is, a random neighbour is fetched and the query is
 to it. Although the system will function without a hint-set, it b

Figure 9 - Example hint-set / routing table

As we can see in figure 9 the hint-set contains the topics and a list of

SARS nodes that may know of a WAIF Recommender System (WRS) client
publishing on this topic. The topic set has two important properties. Firstly every
unique topic has only one entry with a corresponding list of hints. Secondly each hint
points to another p-SARS node where several or none hits matching the query may be
discovered. That is, if a p-SARS node should know of more than one WRS client
publishing on the same topic it will still be present with only one entry in the hint set.
So as an example the p-SARS node with IP 128.0.0.1 could know of more than one
client publishing on the topic fishing. This information is recorded in the local topic
sets on the p-SARS node with IP 128.0.0.1 and will not be discovered before the
query is relayed to this p-SARS node. If we are unlucky though the hint is stale and
no hits matching the query are found on node 128.0.0.1.

To prohibit that joining nodes will start out with an empty hint cache they

requests the hint sets of their neighbours. This way we manage to utilize the
knowledge our neighbours already have accumulated to populate the hint sets of
joining nodes.

The designed gossip mechanism works as follows:

 Fishing (128.0.0.1),(128.0.0.2),
(128.0.0.3)

Basketball (128.0.0.3)

Peer-to-Peer (129.0.0.3),(128.0.0.1)

......

Topic p-SARS nodes

Architectural design

40

 traversed and for each neighbour the gossip event is sent
 this neighbour with a defined probability.

 propagation: When a node receives a gossip event, it fetches the data,

pdates the hint-set and decrements the TTL on the gossip event. If the TTL

 Gossip termination: The gossip event terminates when the TTL reaches zero,

• Gossip start: When profiles are updated on a node in the p-SARS system two
lists are returned. One list contains new topics discovered locally on this node,
and the other list contains previously known local topics that have vanished as
a consequence of the update. A gossip event is then created. The event
contains the two lists received from the update and in addition the hint set of
this node. Each gossip event also has a time to live (TTL) value. The entire
neighbour set is then
to

• Gossip
u
still is positive the entire neighbour set is traversed and for each neighbour the
gossip event is sent to this neighbour with a defined probability.

•
or the gossip event becomes discarded. If the TTL is positive the event is
propagated from a specific node to at least one of its neighbours with a
probability of:

Where p is the defined probability of gossiping to the individual neighbour
and n is the number of neighbours.

5.3

The ma
(WRS) wit
publishers on a

 One so
algorithm. Alt
2001], it ac ua onsive [Q. Lv et al. 2002].
This property is a result of the flooding its
the query
theoretical fra
Walks are scal
it’s far less res
for better scal
responsive sea
relationship w
aren’t that imp
quality. We ha
hint cache. Th
know of publishers on the topic in question. If no hints are found we perform
Random Walk.

In an unstructured peer-to-peer overlay network there is no way to predict
accurately when a search result is returned or if one will be returned at all. To offer a

.4 The Search mechanism

in task of our system is to enhance the WAIF Recommender System
h a search capability, so that clients running WRS is able to search for new

 given topic. We therefore need to design a search mechanism.

lution presented in the theoretical framework chapter was the flooding
hough it is widely known that this algorithm does not scale [J. Ritter.
lly has one desired property. It is highly respt

elf since many nodes receives and process
in parallel. Another solution to the search problem, also presented in the

mework chapter, is Random Walks. It has been shown that Random
able and has nearly as good coverage as the flooding algorithm but that
ponsive. This is however a trade-off we are more than willing to make
ability. The clients of the WRS system aren’t in need of a highly
rch mechanism anyway. They are looking for a potential long time
ith publishers and a few extra seconds waiting for the search results
ortant as long as the results from the search mechanism are of equal
ve therefore chosen the Random Walk approach supplemented with a
e hint cache contains information about other super-nodes that may

Architectural design

41

more reliably service to the WRS system we have added what we call pending
ign. The p-SARS node that is local to the querying WRS client

reates the pending search when it first receives the query. The pending search
echan

sically follows three vital steps on each
ode it visits:

• The first p-SARS node receiving the query from a WRS client will be

•

 query has a “happy” value that describes how many hits the
query needs before it’s satisfied. If some results are found they are sent

• yet satisfied and the TTL is still positive we try two

approaches:

mains we choose randomly among them.

 just like when we searched for a hint. If we
do not find any neighbours not already visited, one is picked at random

 reason for this is that even though the query has
rs of this

nod is
thu
value s de

query.

searches to our des
c
m ism has one responsibility. Make sure the querying WRS client receive the
answer for its query when it’s satisfied or when the query times out5. The timeout
value is defined by a constant and all search results received after the pending search
has timed out is discarded.

The designed search mechanism ba

n

reckoned as the querying node in the p-SARS system. This node will create a
pending search for this query.

The node then examines its own topic set to see if it can satisfy the query
locally. Each

directly back to the querying node where the results are en-queued on the
pending search. The query itself is only relayed to another node if both the
time to live (TTL) and happy value is still positive. The TTL is decremented
by one on each node it visits, while the happy value is decremented with the
number of hits discovered.

If the query is not

o First we see if we have some hints about other p-SARS nodes that
may know of publishers on the topic in question. If a hint is found the
query is relayed to the p-SARS node registered on that hint. Because
every search event carries with it a list of the nodes visited we are able
to remove all hints already visited by the query. If more than one hint
re

o If the first approach fails, that is if we don’t find any hints, we perform
a random walk. A neighbour not already visited has precedence over a
neighbour already visited

from all of them. The
visited all the neighbours, it may be that some of the neighbou

e themselves has neighbours not visited and so on. The query
s always relayed to another node as long as the TTL and happy

till is positive. There is one exception though; if a p-SARS no
becomes disconnected and no longer has neighbours it cannot relay the

5 An answer will be returned even if it contains no search results.

Architectural design

5.4 Summary

 p-SARS is designe
(WRS). The main goal is

d as an enhancement to the WAIF Recommender System
 to provide the WRS system with a search service so that

RS clients can search for publishers publishing on a specific topic. To do this we
is
es

Our system consists of four main mechanisms:

anism. This mechanism makes sure that a p-SARS node
has a populated neighbour set and that the neighbours present in this set are up

yproduct of the periodical update we learn if a
new topic is discovered or if a topic is removed. This byproduct is used by the

ts to other p-SARS nodes.
The local view of a node is the node’s locally cached topic set and the node’s

pplemented with a hint cache. The approach taken when a query is received
an be divided into these steps:

W
have chosen unstructured peer-to-peer as the overall architecture. The reasons for th
are scalability, failure resistance, self administrating and utilizing the resourc
available in the leaf nodes of the Internet6.

1. The membership mech

and running. Nodes presumed dead are removed. The neighbours are used to
process queries on our behalf, but they are also needed in the gossip
mechanism.

2. The topic update mechanism. The topic set describes which topics the local

clients of a WAIF Recommender System (WRS) super-node publish on. To
facilitate searching a p-SARS node keep a cached copy of this set. This
mechanism is therefore needed to periodic update this cached data to prevent
it from becoming stale. As a b

gossip mechanism.

3. The gossip mechanism. The hint set is a p-SARS node’s routing table and is
used by the search mechanism to route queries to other p-SARS nodes that
may know of publishers on the topic in question. The task of our gossip
mechanism is to build up this hint set locally on each p-SARS node. This is
done by disseminating a nodes local view as hin

hint set.

4. The search mechanism. We have chosen the Random Walk approach
su
c

a. Perform local search
b. If not satisfied and time to live still positive propagate query:

i. to a node based on a hint if one not already visited is found
ii. to a node chosen randomly from the neighbours. Nodes not

already visited have precedence over already visited nodes.
c. Return results to the querying p-SARS node if any is found in step a.

6 The Internet is the underlying physical network of the p-SARS system.

42

Chapter 6

Implementation

 In this chapter we will describe our implementation of the p-SARS system,
but for a complete understanding of the system we will also refer to the full source
code listing available in appendix A of this thesis. We start out with a short
description of the system as a whole.

6.1 System overview

 The system itself is divided into separate modules and the information
between modules flow through queues. The queues are multi-producer, multi-
consumer FIFO7 queues and when a process or thread tries to fetch an element from
one of these queues, it’ll be suspended until an element arrives if not specified
otherwise. The r First it divides

e work into manageable pieces, and second it makes changes easier. We don’t have
 re-im

e

he
and

 the

d en-
ght event queue. We have divided the system so that we

ave four different events, and therefore four different modules processing their
corresponding events. When the event processing module is finished processing its
event, it decides which response to send, if any, and en-queues this response on the
output-queue.

eason for dividing the system into modules is twofold.

th
to plement the whole system, just the module we want to change. All modules
depict in figure 10 are implemented as threads and all event-passing inside and into
the p-SARS system is asynchronous.

Each module fetches an event from a queue and then processes this event,
except for the listen and update topic modules. These modules receive marshalled
events over a TCP/IP connection. When a module is finished processing the event it
may enqueue a response onto another event queue before it again awaits a new event.
The pusher module does not however enqueue the event on a queue but marshals this

s it to its destination through TCP/IP. All events flowing trough thevent and send
system is described in detail in appendix C of this thesis.

The system is divided into nine modules as shown in figure 10. In t
following sections we’ll describe the processing modules in detail, but to underst
the system as a whole we’ll start out with a high-level walk through of the entire
system.

The listen module is the interface between the different p-SARS nodes and

WAIF Recommender System (WRS). When it receives an event it unmarshall it and
inserts it into the input queue, and then continues listening. The event dispatcher
waits on the input-queue until an event is ready. It then identifies the event an

ueues the event on the riq
h

7 FIFO is an acronym for First In First Out.

43

Implementation

44

Listen
module

Ev ent dispatcher
module

Search ev ent
processing module

Gossip ev ent
processing module

Sy stem ev ent
processing module

Search
Queue

Search
Get, push

Gossip
Queue

Gossip

Get, push

Sy stem
Queue

Sy stem Get, push

Result ev ent
processing module

Result Queue (Max time
waiting specif ied)Result

Get, push, timeout

Output Queue

Input
Queue

get, push

Pusher module Get, push

TCP/IP Send
Module

Sy stem module

Error sending?

Update topic
module

no

Debug module, receiv es debug
ev ents and sav es them to f ile

Prof ile Serv er
(WRS)

Fetch prof iles

Bootstrap
serv er

Register, f etch potential neighbours

A p-SARS
node

External
sy stems

Figure 10 - System overview (The design of a p-SARS node)

ing. The first is that the sending may take a while, and the second is
tha m
and C
is impl
send th
event i
to t e sing module which action to take, if any.

to main
module
me e cs WRS clients
publishes on, are handled by the update topi
from

events
the gathered data itself to see if the

ystem function correctly.

The pusher module fetches outgoing events and starts the right module for

sending the event to its destination. There are two reasons for starting a separate
module for send

t it ay be desirable to enhance the system later and e.g. support both XML-RPC
 T P/IP. Currently all communication goes through the TCP/IP protocol and this

emented in the TCP/IP send module. The TCP/IP send module only tries to
e event to its destination a defined number of times. If the sending fails the

s enqueued on the node’s input queue with its error field set to true. It’s then up
vent’s corresponding event proceshe

The system module communicates with other p-SARS nodes, through events,
tain the peer-to-peer overlay network. This will be described in the System
 section, but briefly this implies managing bootstrap and neighbour set
rship. Topic set updates, which are the updating of the topimb

c module. This module pulls information
 a WRS topic server and updates the locally cached topic set.

We have also implemented a debug module. This module receives debug
and creates a log. Because there are many nodes running concurrently this will

help debugging, and tests can also be run on
s

Implementation

45

6.2 The system module

If we take a look at the activity diagram in figure 11 we see that first the
system module performs bootstrap by contacting the centralized bootstrap server. The
node registers itself at the server and in return gets a list of nodes already connected
to the p-SARS overlay network. Neighbours are then extracted from this list. The
system module then sends out requests asking for the hint sets of its chosen
neighbours, so that this node may populate its own hint set. Since this module is the
first one started it also has to initiate and start up other modules. This includes
starting up the topic update module and the event dispatching module. When the
event dispatching module is started we also indirectly start the listen module, the
pusher module and the four event processing modules depict in figure 10.

The event dispatching module investigates which type of event is received

from the listen module and sends the event towards the right event processing module
by enqueuing the event on the right event queue. We will describe the topic update
module in its own section below.

The system module is designed and implemented so that after the initial work

just mentioned, it sleeps for a defined number of seconds before it repeats some work
which we have chosen to call system update. Three main tasks are repeated on each
system update:

• Traverse the neighbours to see if any have a ping event pending. If a

neighbour has a pending ping event this means that it has not returned a pong
event since last system update. Since no pong event is received, the node is
presumed dead and removed from the neighbour set. All hints associated with
this neighbour are also removed.

• Traverse neighbours again, but this time test to see if it’s time to ping any of

the neighbours. Each neighbour has a corresponding timestamp that tells the
system how long it’s since last ping. When it’s time to ping a neighbour, a
ping event is created and en-queued on the output queue.

• The last task of the system module is to help maintain the size of the

neighbour set. If there’s not enough neighbours connected, defined by a
constant, the system contacts the bootstrap server in search for new
neighbours to add. The node has already registered itself at the bootstrap
server so this is not repeated.

This module cooperates closely with the system event module. The system

event module, which we discuss next, process and create responses to system events.

Implementation

46

Do bootstrap

Start Event
dispatcher module

Sleep SECONDS_BEFORE_SYSTEM_UPDATE
seconds

Traverse pinged neighbors

Pong received?

Try to remove node as neighbor and remove
any hints associated with this node

List empty?

no

Traverse
neigbors

yes

Should neighbor
be pinged?

no

Try to update
neighbor as pinged

yes

Enqueue ping event on
output queue

Successful?

yes

no

List empty ?

no

Try to add more neighbors
to neighbor set

yes

Start topic
update module

Request hint list from
all neighbours

yes
no

Figure 11 - The system module

Implementation

47

6.3 Th

The main task of this module is to take appropriate action when a node
receives ping and pong events. We will start out our description with the activity
dia m

e system event module

gra presented in figure 12.

Wait on event from
system queue

Event error?

Discard event
Ping?

Enqueue pong message on
output queue

Try to set ping time
on neighbor

Try to add node as
neighbor

Pong?

yesPrint event. Not
known

no

yes
no

yes

no

Figure 12 – Processing the system event

 When this module receives an event it goes through some tests to identify
which type of event it is before the appropriate action is taken:

• Event error: If it is an error event it means that the system has tried to send a
ping or a pong event but has not succeeded. When an event can’t be sent to
the addressed node, this node is presumed down and usually deleted from the
neighbour set. But because the node will be deleted anyway on the next
system update, for now, no action is taken here. The reason we have
implemented this feature is that all events that the pusher module fails to send
out always will be returned to the right processing node so that an appropriate
action can be taken. It may be that we in the future will use this response in a
constructive way and not just discard it as we do now.

• Ping event: If the event is a ping event a pong event is created and enqueued

on the output queue. Then we treat the ping event as a pong event and reset
the ping-time of this node but only if the pinging node is already in our

Implementation

48

neighbour set. If the neighbour set is not full, the last action taken on the ping
o the neighbour set if it’s not already present.

This way we extract neighbours from ping events.

pong event is received, the module tries to reset the recorded
ping-time. This may not succeed though, because the event may be too late
and the neighbour already removed. If the event is too late we reinsert the
pinging node in the neighbour set if it’s not already full. The thought here is
that it’s better to have a potentially saturated neighbour than potentially none
at all.

event is to add the pinging node t

• Pong event: If a

Implementation

49

6.4 h

ensure
present

 T e topic update module

This module performs periodical updates of the locally cached topic set to
that potentially stale data is updated. The activity diagram for this module is
ed in figure 13.

Wait for SECONDS_BEFORE_TOPIC_UPDATE
seconds

Fetch topic set from
topic server

Failed or empty
set returned?

new topics or
deleted topics?

Update cached
topic set

Generate
gossip event

Traverse
neighbors

List empty?

Send to neighbor?
(Based on probability)

no

Enqueue gossip to this
neighbor on output queue

yes

yes

no

yes

no

no

yes

Figure 13 – Topic update

The module has a do-while structure. This means that it’s executed once
before it’s put to sleep for a defined number of seconds and then re-executed. The
following takes place on each topic update:

Implementation

50

S topic server to fetch the updated topic set.

 one topic server for each WRS super-node. Since the p-SARS node
be

turns two lists. The first list contains any new topics
discovered and the second list contains any removed topics since last update.

• If the lists returned contain any information, that is either some new topics are

ns
all information received from the update. Both topics removed and new topics

• The module contacts a known WR
There is
will extend the WRS super-node with search capabilities, it will most likely
situated on the same physical node as the WRS system’s topic server. When
the topic set is fetched the module updates the locally cached version. The
update process re

added or some old topics are removed, a gossip event is created. Then the
entire neighbour set is traversed and for each neighbour the gossip event is
addressed and enqueued with a defined probability. The gossip event contai

are described in the same event. It also contains this nodes entire hint set.

Implementation

51

6.5 The gossip event module

 Gossips are initiated in the topic update module as described but also in the
search module as will be described in the corresponding section below. This module
handles the gossip propagation and termination. The activity diagram of this module
is presented in figure 14.

When a gossip event is received it is processed sequentially in these steps:

• If the event is an error, this means that an outgoing gossip has failed to be
sent. The neighbour is presumed dead, and its data is removed from both the
neighbour set and the hint set. The algorithm then precedes to the last step.

• If the event is a gossip get event, we have a neighbour that requests our hint

set. The response created is a gossip push event that contains both the hint set
and the topic set of this node. This gossip event is only sent to the requesting
neighbour and will not propagate further. Then the module again waits for a
new gossip event.

• If the event received is a gossip push event, we have received the hint set and

the topic set from one of our neighbours. The action taken is to update the
node’s local hint set with the received information. Then the module again
awaits a new gossip event.

• If this step is reached we have an ordinary gossip event. First the new topics,

if any, are extracted and tried inserted into the hint set. The hints already
known are just ignored. Then the deleted topics are traversed and the ones
present in the hint set are removed. All gossip events also contain the hint set
of the node initiating the gossip. We thus traverse this set and update the local
hint set accordingly.

• The TTL is then decremented and if the resulting value equals zero, the event

is discarded and the module awaits a new gossip event. In the case where the
value is greater than zero the same action as in the update profile module is
taken. The entire neighbour set is traversed and for each neighbour the gossip
event is addressed and enqueued with a defined probability. When done, the
module again awaits a new gossip event.

Implementation

52

Wait on event from
gossip queue

Error?

Decrement Time To Live
(TTL) on gossip event

Try to register hint in
hint set

TTL > 0?no

Try to remove node as neighbor
and its entries in hint setyes

Traverse
neighbor set

yes

End of neighbor
set?

yes

Send gossip to
neighbor?

no

no

Create and enqueue gossip
event on output queue

yes

Traverse
new_gossip l ist

Traverse
death_gossip l ist

End of new list?

no

yes

Try to delete hint in
hint set

End of death list?

no

Create and enqueue entire hint
set as a gossip push event

Update hint l ist
with received data

Request for hint
l ist?

no

yes

Received hint l ist
from neighbour?

no

yes

no

Traverse received
hint set

yes

End of hint set?

Try to register hint in
hint set

Try to register hint
in hint set

no

Figure 14 – Processing the gossip event

Implementation

53

wit

6.6 The search event module

This module implements the actual search mechanism. We start out as usual
h the activity diagram of the module depict in figure 15.

Wait on event from
search queue

Is it a locally
querying client?

Create search event and
create new pending search

yes

Is it an error
event?

no

Try to remove node as neighbor
and its entries in hint set

yes

Register node
as visited

Is this node
already visited?

Decrement TTL
and happy value

Node already
visited?

no

yes

Perform local
search

no

Results?
yes

Search based on
hint?

no

no

Enqueue false hint event
on output queue

yes

Search satisfied?

Local results?no

yes

Create result event. Enqueue it
on output queue.

yes

Search for random
HINT neighbor

no

Found?

Pick random neighbor.
(Random Walk)

no

Enqueue search on
output queue

No neighbors connected.
Discard search

Found ?

no

yes

yes

no

yes

Figure 15 – Processing the search event

Implementation

54

The pro
steps:

1. o

the current WAIF Recommender System’s (WRS) super node. This is the case

m a local search
when the query originates from a local client. The WRS system ensures that

RS super-
node. The registering client then receives all topics which the local WRS

 to indicate that this event is

this query.

2. it’s not a local querying node we test if it’s an error event. This means that

the previous relaying of a search event has failed. When this happens we
assume that the unreachable client is dead. The action taken is to remove it
from the neighbour set, if present, and to remove any hints registered on this
node. Then the processing proceeds to step 6.

3. If it’s not an error event, we test if this node is already visited by this search.

If this is the case there’s no reason we should perform a local search once
more on this node. Therefore the algorithm proceeds directly to step 6. If it is
the first time we visit this node, we perform a local search through the topic
list to see if any clients publishes on the topic in question. In our current
implementation we have not implemented pattern search, only exact matches
are defined as a hit.

4. In this step we test if the local search performed was successful, that is if the

search found any objects that satisfied the query. If the search was successful
we proceed to step 6, if not we proceed to the next step.

5. Since the local search was not successful we need to test if this search event

was relayed to this node based on a hint. If the event was relayed to this node
based on a hint the hint is clearly stale, because no items were found locally
on this node. A hint-death event is therefore created and enqueued on the
output queue addressed to the node were we received the query from. This

cessing of the search event is designed and implemented as the following nine

When a search event is received we first check if the querying node is local t

if this super-node is the first to receive the query from a WRS client. If it’s a
local querying node we create a pending search, add some extra information
to the search event and proceed to step 6. We shall not perfor

all WRS clients connected to the same super-node already knows of each
other. This is accomplished when a WRS client registers to a W

super-node’s clients publish on. In addition a WRS client can pull the WRS
super-node for this information if it is needed later. The extra information
added to the search event is listed below.

• The TTL is set to the defined value.
• A visited list is created, so that the nodes visited by this query can be

recorded.
• The search event’s error field is set to false.
• The search event’s hint field is set to false

not relayed to this node based on a hint.
• The p-SARS node where the search originated is recorded in the

event’s from field. We need this information because this is the node
in charge of handling the search results for

If

Implementation

55

hint-death event is an ordinary gossip event; the only extra ordinary with it is
ability to only this neighbour in the first step.

The propagation from the second node and on is as explained in the gossip

7. If both the TTL and happy value still is grater than 0 we need to relay the

search to another node. If this is not the case we proceed to step 9.

8. First we search for hints in the hint set to find nodes not already visited that
may have local clients publishing on the topic in question. If a hint is found
the search is relayed to the node registered on this hint. If more than one node
is found we chose randomly among them. If no hints are found, or they are all
already visited by this query, we perform random walk. A node is fetched at
random among the neighbours not already visited. If all neighbours are
visited, we chose randomly among them all. The query is then relayed to the
chosen neighbour. In the case where the node is completely disconnected and
has no neighbours, the search event is discarded.

9. If some results where found during the search through the topic set of this

node, we create a result event. This event is addressed to the original querying
p-SARS node and enqueued on the output queue.

that it is sent with a 100% prob

mechanism above. This gossip event also includes the node’s entire hint set.

6. The TTL is decremented by one and the happy value is decremented with the
number of hits found locally on this node. If it’s the first time this node is
visited by this search this node is recorded in the visited list.

Implementation

56

6.7 Th

themse
the resu
of this

e result event module

The search event module, described above, is in charge of where the searches
lves propagate and how they are processed on each node. When it comes to
lt handling though, the result event module is in charge. The activity diagram

module is presented in figure 16.

Wait on event from result queue. Wait max
SECONDS_BEFORE_RESULT_UPDATE seconds

Try to re
resu

gister
lt

Traverse pending
searches

New event?no

Search satisfied?

Send result back to
querying client.

yes

List empty?yes

Max waiting time on
search reached?

no

Remove search from
pending search list

Error?
Remove

pending search

Try to add as
hint

Search still
pending?

yes

no

no

yes

yes

no

no

yes

Figure 16 – Processing the result event

When an event is received or we have waited a defined number of seconds the
following steps are taken:

1. If it is a timeout on the event queue we proceed to step 5.

2. If it’s an error event, we try to remove the pending search described in the

event and proceed to step 5. An error event is received here when the result

Implementation

57

couldn’t be delivered to the querying WRS client or the originating p-SARS
 Regardless of the cause the search results are discarded.8

3.

4.

super-node.

If this step is reached we have received results from a p-SARS node
processing a query on our behalf. First we register the results on the
corresponding pending search, if it’s still pending, and then we extract hints
from the results. The hints are added to the hint list if they’re not already
known. If the search is not pending the results are discarded and we proceed
to step 5.

We test if the pending search now is satisfied. If it is satisfied, send results
back to the querying WAIF Recommender System (WRS) client and remove
the search as pending.

5. Traverse all pending searches to see if any of them has timed out. If any has,

remove them from the list of pending searches and return the result, empty or
not, back to the clients.

8 We have already extracted hints from the search results before we tried to relay the result event the
first time.

Implementation

6.8 Summary

vided and implemented as independent modules. Each module
d as a thread. This is to ease system maintenance and if we do

inor changes to the design we do not have to re-implement the whole
stem

 response, if any, is sent onwards to
e right module. All events within a p-SARS node flow through queues. The queues
e imp

 from a queue it is suspended until an event arrives if not
pecified otherwise. All communication into and out of a p-SARS node is sent over

the

 The system is di
presented is implemente
have to make m
sy only the module influenced by the change. There is one exception though, if
the format on the events propagating through the system are changed all modules
processing these events must be changed.

Our system is mostly event based. That is, almost every module awaits an
event and when one appears it is processed and a
th
ar lemented as multi-producer, multi-consumer FIFO queues and when a module
tries to fetch an event
s

 TCP/IP protocol.

58

Chapter 7

The Simulator

 To shield us from the tedious work of setting up a real network we decided to
design and implement a simulator. Another reason is that we actually don’t have the

sources in this project to set up a potentially large test-bed to gather the needed test

echanism effective?
• Is the search mechanism effective?
• How the system will react if we change some of the constants like e.g. TTL-

TL-gossip and the probability for gossiping itself. How about the
 of neighbours each super-node has? Should we extract routing

-SARS prototype though.
he only code reused is the random functions used in both the simulator and p-SARS

to fetch a random neighbour and to decide to whom, if any, we should gossip.

We have divided the simulator essentially in four stages. The first stage is to
initialize the network; secondly we have th -up
stage and last we ha stage separately in

etail below, except for the warm-up stage which essentially is the same as the search

re
results. The simulator essentially has two purposes; to discover how many messages
are sent in the network and the success rate of our search mechanism. However, the
simulator is not in any way used for timing tests.

 The simulation results will reflect the real system behaviour and let us
investigate issues like:

• Will the p-SARS system scale?
• Is the gossip m

search, T
number
information from search results?

 In this chapter we will first explain how we built our simulator, and then we
will describe the different tuning capabilities. The results from the simulations will be
presented and discussed in chapter 8, Testing. The reader may refer to appendix B for
a full source code listing of our simulator.

7.1 Design / Implementation

 The simulator, as the real p-SARS system, is built in its entirety in Python.
The reason for this is that this high-level programming language saves us for much
coding. We were not able to reuse much code from the p
T

e gossip stage; third we have the warm
ve the search stage. We will discuss each

d
stage. We will also discuss an alternative to our gossip mechanism which we have
called Random Walk Gossip (RW-G).

59

The Simulator

60

7.1.1 Network initialization

The simulated network is held in its entirety in a list. Each element in this list

 id as a topic on which the node publishes.

t of node_t instances and initializes the
 calling each instance telling it how many neighbours it shall fetch.

hese neighbours are fetched at random from the list of nodes already created9. There

 we tart
e gossiping stage.

e gossip. Just like the p-SARS
ystem saves hints passing by in gossip events.

code for the gossip algorithm

te the effect of the gossip mechanism.

is an object instance and represents a p-SARS node in the network. This object, called
node_t from now on, holds three sets of data. The sets held are those already
identified in the p-SARS design; the neighbour set, the topic set and the hint set. Each
node is assigned an id, and this is what the simulator searches for. To see the relation
to p-SARS we think of this

 When the simulator starts it creates a lis
neighbour sets by
T
are two ways for a node_t instance to fetch neighbours. Either we tell it to fetch
exactly X neighbours or we tell it to fetch between 1 and X neighbours. The reason
for this is to analyze what effect it has on the overlay network whether or not all
neighbours are fully connected. A node is said to be fully connected if it has reached
the maximum number of neighbours defined. When the network is initialized s
th

7.1.2 Gossip

 The gossip protocol is implemented, in our simulation, as a recursive depth
first function. Based on the TTL of the gossip event and the probability defined, the
gossip spreads in the network from the node where it is started just like it does in p-
SARS. The gossip event contains only the node id of the node that started the gossip,
and this id is saved in the hint set of nodes visited by th
s

With a probability set to 100%, this algorithm works just like a flooding
algorithm with no constraints. That is, a node can be visited more than once, and each
node receiving a gossip event will relay this event to all of its neighbours as long as
the TTL is grater than zero. The gossip algorithm implemented in both p-SARS and
the simulator is presented in figure 17. The probability parameter in our
implementation can take on a value between 0 and 100 %.

for neighbour in neighbour_set:
 if should_I_send_gossip(probability):
 send(gossip, neighbour)

Figure 17 - Pseudo

 Like in the p-SARS system this gossip protocol is implemented to speed up
the search algorithm. By populating the hint set on the individual nodes, searches can
be directed to the right node if an entry in the hint set exists. If we decide to not do
the gossip, the search algorithm will degenerate to plain random walk, making it
possible to estima

is may actually result in islands in the network which we will discuss below in the search section. 9 Th

The Simulator

61

7.1.3 Ran

 As ano
Random W k escribed in the
theoretical framework chapter, but for gossiping instead. That is, a walker carries
along with it a node’s topic set and uses this set to populate the hint sets of the nodes
it encounte

7.1.4 Search

 The a our simulator, as a recursive function.
If a hint is relayed to the right node. If no hint is
found, we perform random walk. When relaying the search, neighbours not already
visited have priority over neighbours already visited. This is just like in the p-SARS
system, an i twork more efficiently.

 Bec contain islands we need to
reduce the effect an isolated node will have on the simulation results. A search is
therefore initiated from a random selected node and the node id we search for is also
selected at existence of islands will affect our
simulation u case
is when a node w e
situated on a small isl d from the rest of the network. Of course if the
number of neighbo s
our graph than if each

 To t we implement the possibility for

arning fro future searches, just like it’s done in p-SARS. Since it is a recursive
function we also have the possibility to not only increase the knowledge of the
querying node, but also on all nodes on the path to the item we search for by using
tail recursion. The latter is not implemented in p-SARS. The reason for this is that in
p-SARS we have chosen to send the results directly back to the querying node. Not
back through the intermediate nodes on the search path. When we perform what we
call a warm-up in our simulations we essentially just perform a defined number of
searches with one or both of the learning capabilities turned on.

7.2 Performance tuning

 There are several variables that can be tuned in the p-SARS system to achieve
optimal performance. These variables are described in the OWN_constants file listed
in appendix A. We have decided to implement some of them and a few extra as
tuneable variables in our simulator. The extra parameters not available in the real p-
SARS prototype are explicitly marked with an (X). These are the tuneable parameters
in our simulator:

dom Walk Gossip (RW-G)

ther solution to populate the hint sets of our p-SARS nodes we propose
al Gossip (RW-G). We use random walks as it is d

rs on its walk.

 se rch protocol is implemented, in
 found in the hint set, the search is

d w ll help us explore the nodes in our ne

ause the graph generated most likely will

 random. This will not prevent that the
 res lts but it will make the extreme case less influential. The extreme

e ither search for or the node where we initiated the search is
and disconnecte

ur each node have is high it is less likely that islands will exist in
 node have very few neighbours.

fur her enhance our searching protocol
mle

The Simulator

62

• Network generation
ork.

o (X) Whether or not all nodes should fetch exactly Y random
s.

o The TTL on a gossip event.

ndom Walk Gossip (RW-G)
If RW-G should be performed.

TTL on the RW-G event.

r or not warm-up is wanted.
 TTL on warm-up searches.

of warm-up searches to perform.

 If search should be performed.
the searches should help populate the hint set.

cts routing information from

nd all nodes on the path to the item in
ts routing information from search results.

arches.
.

o Number of nodes in the netw

neighbours or if they should fetch between 1 – Y random neighbour
o Maximum neighbours to fetch defined by the value Y.

• Gossip
o (X) If gossip should be performed.

o The gossip probability in percent.

• (X) Ra
o
o The

• (X) Warm-up
 Whetheo

o The
o Number

• Search
o (X)
o (X) Whether or not

 Only the querying node extra
search results.

 Both the querying node a
query extrac

o The TTL on se
o (X) Number of searches to perform

The Simulator

63

 the simulations

Example input file (sim.txt) containing one test case:

 Test 1
1: Num_nodes

1000
#2: Num_neighbours
9
#3: Fetch neighbours at random?
1
#4: Should we gossip?
0
#5: TTL on gossip
7
#6: Gossip probability
30
#7: Should we perform search?
1
#8: TTL on search
500
#9: Number of searches to perform
1000
#10: Should the originating node learn from searches?
1
#11: Should all intermediate nodes also learn?
0
#12: Should we perform a warm-up?
0
#13: TTL on warm-up searches
500
#14: How many warm-up searches should we perform?
10000
#15: Should we perform Random Walk gossiping (RW-G)?
1
#16: TTL on RW-G
500

Test 2 ...

 We define a test tuple as the tuple of integers holding the different test
parameters. The test tuple for the above test case would look like this:

(1000,9,1,0,7,30,1,500,1000,1,0,0,500,10000,1,500)

 All results from the simulator are loged in the file output.txt but also displayed
to screen.

7.3 Describing

 The simulator starts out reading in the test cases from a file called sim.txt.
These test cases are then run sequentially. Because we want to limit the impact a
badly generated network topology has on the simulation results each run starts with
the reinitializing of the overlay network. We also reinitialize the hint set on each node
to prevent that previously run tests will affect the test results.

10

#
#

10 In the example input file we have that : 0 equals false and 1 equals true

The Simulator

7.4 Summary

 The r
work of setti

eason we decided to build a simulator was to shield us from the tedious
ng up a potentially large test-bed to gather the needed test results of our

ystem. Our simulator essentially has two purposes. By tuning different parameters
we firs
s

tly want to discover how many messages are sent in the network and secondly
we want to investigate the effectiveness of our search mechanism. It’s important to
notice however that our simulator is not used for timing purposes.

64

Ch

Te i

and a t simulate the system’s
ehaviour using the simulator described in chapter 7 to i.a. investigate how effective

our
scalabi

here. All simulation results gathered can be viewed as a whole in appendix D.

During the implementation of our system we continuously performed white-
box s
done by inserting constructed events into one node and observing the path the event
took inside the node. We also performed various regression tests to ensure that when
a n
the modules already present.

s

• Hardware: We hold this parameter constant by always running the tests on

 Network

apter 8

st ng

Our testing consists of two parts. First we perform both a conformance test
hroughput test on the p-SARS prototype. Secondly we

b
 search mechanism is. In the end we present a discussion of the system’s

lity.

It’s important to notice that we will only present a summary of our results

8.1 Testing the p-SARS prototype

 te ting to ensure that new additions to the system functioned correctly. This was

ew module was incorporated into our existing system it did not negatively affect

8.1.1 Parameters and factor

Before we start testing our prototype we have to identify the parameters that
are not the object of our study, but may affect our test results. When these parameters
have been identified it’s important that we either eliminate their influence or hold
them constant. If this is not done we can end up with test results that aren’t correct
and cannot be compared.

The parameters that we try to eliminate or keep constant during our tests are:

the same type of machines. For testing we used between one to six Hewlett
Packard Kayak XU machines with the following important characteristics:

o CPU

 2 x 300MHz Pentium II
o Memory

 256 MB RAM
o

 100 Mb/s FastEther

65

Testing

66

d this parameter constant by running all
performance tests on the same type of operating system. In our case all the

 vary during our experiments. To reduce the influence of
these parameters we conduct our experiments at night.

pact on our
easurements.

em can

l node, and inserting constructed events. The test cases are constructed
ased o

o monitor the results from the processing of the different events. This is
one b

sponding WRS topic server.

me sequence as the requirements where
tated i

• OS: During our tests we hol

machines in the network run Red Hat 9 with the 2.4.20-24.9smp kernel.

• Processor and network load: Our experiments are performed in a multi-user

environment. Therefore both the network and processor resources available to
us will most likely

• Memory: We have limited the workload of our tests so that the tasks of a p-
SARS node can be held in its entirety in main memory (RAM). This is done
so that our system will not outgrow the physical memory and be swapped to
disc. If this happened it would lead to a significant im
m

Next we need to identify the parameters we will vary between experiments.
These are the factors to be studied. The factors, or variable parameters, in the
throughput testing are as follows:

• Queue size: The maximum number of elements a queue in our syst
contain.

• Number of queries: The number of search events to insert into the p-SARS

node.

8.1.2 Conformance testing

 Conformance testing is used to determine whether the implementation of a
system meets the standards or specifications it was designed to meet. In our case this
means that we will test our requirements on the finished p-SARS prototype to see if
they hold. The tests are performed by starting up six p-SARS nodes, situated on the
ame physicas

b n the requirement’s fit criteria. By observing the path the events take both
inside and externally between other nodes of the p-SARS system we conclude if the
test is a success or not.

We als
d y printing debug messages, but also by using our debug module to log debug
events from all six nodes. In other words we perform both white-box testing and
black-box testing of the real system. We are also simultaneously performing an
interoperability test between p-SARS and the WAIF Recommender System (WRS).
This is because we are connected to the WRS system during our tests and populate
our topic sets from a node’s corre

Our results will be presented in the sa
s n chapter 4.

Testing

67

m was able to bootstrap because of the bootstrap-
erver. Each node contacted the bootstrap-server and fetched the list of already

connec

 a system update function that periodically pulls the
erver for new neighbours if needed, all nodes in our tests finally ends up with five

other n

rted into the system the
sponse received always described exactly the same results. This means that the

system

the WRS client will not receive the results. This is according
to our design and it’s up to the WRS client to find a new super-node to connect to and
reissue

at adheres to the event format may communicate with
-SARS. All events passing into, inside and out of the p-SARS system is described in

append

ding topic set and cached it locally. Correct updates where also performed
eriodically.

 we printed the entire neighbour set

n each system update. We noticed that the p-SARS nodes dynamically removed

topics and/or some deleted topics were discovered, the node performing the update

Testing our Functional requirements

Requirement 1: The syste
s

ted nodes. The list was then used to extract neighbours. In our tests all p-
SARS nodes ended up with all other five nodes in their corresponding neighbour set
after running for a while.

The first node contacting the bootstrap-server will however always get an
empty list returned. This is because the server does not yet know of any other nodes,
but since we have implemented
s

odes in their respective neighbour set. See also requirement 10.

Requirement 3: When a search query was inse

re
 not only supports searching but also that the algorithm is stable and produces

the same result every time. If the time to live (TTL) was set so low that we could not
guarantee that the query visited all nodes, the number of query hits fluctuated. The
reason for this is that the query then visited a different set of nodes each time.

The pending search technique described in the architectural design chapter

also worked. That is, if a query was not satisfied before the timeout, the results
already received were sent to the WRS client. If a query was satisfied before timeout
it was sent right away. We also observed that when the p-SARS node holding the
pending search crashes,

 the query.

Requirement 4: The interaction between p-SARS and WRS functioned
correctly. In fact any system th
p

ix C.

Requirement 7 and 8: When running the system we printed the entire topic set
after each system update. We could then observe that each p-SARS node fetched its
correspon
p

Requirement 10: When running the system
o
neighbours that went down and re-inserted them when they came back online. They
successfully fetched new neighbours both from the ping-pong events and by
contacting the bootstrap-server.

Testing our Non-functional requirements

Requirement 5: When the topic sets where updated and either some new

Testing

68

ural design chapter. Both propagation and
rmination functioned properly.

Requirement 6: When running the system we printed the entire hint set on

each system update. We observed that the system successfully extracted hints from
both gossip events and search results. In addition the white-box testing also showed
us that the propagation of the queries used this information efficiently to route the
queries. There are however no limitations on how big a hint set might be so in the
future we will have to adopt a cache policy like e.g. Least Recently Used (LRU) or
Least Frequently Used (LFU).

Requirement 9: After bootstrap each client asked each of its neighbours to
send it their hint set. They all answered the request and also received the hint sets of
their neighbours. Hints where then extracted accordingly.

Requirement 2: When a p-SARS node went down this node was removed
from the neighbour sets and the system still was able to process queries. The impact
of a node failing is that the WRS clients local to this node will have to find a new
super-node to connect to. They also lose all searches they have pending on this node.
In addition all other queries currently queued or under processing at the failing node
will be lost. Therefore a failing p-SARS node may also influence other, not loca
WRS clients because the ated. The search engine
s a whole also loses the possibility to recommend these local WRS clients to other

queryin

odule. There were a few
xceptions though, if we changed the format on an event we needed to change all

er. This is because we in our implementation
ses a module called Queue that has been enhanced with some new capabilities in this

ver n

.1.3 Throughput testing

We wa
how fa
one new odule. This module pushes queries to the

-SARS node through TCP/IP, and by starting a timer in the system’s pusher module
wh t
we can

initiated a gossip event containing this information. We also observed that the gossip
behaved as described in the architect
te

l,
ir searches can be prematurely termin

a
g WRS clients because there, as of now, is no super-node advertising the

topics they publish on.

Requirement 11: The system is designed as modules, and when we performed

changes we only needed to re-implement parts of a m
e
modules processing this event.

Requirement 12: The system was successfully tested in both Windows and
Linux. One important thing we discovered though is that the p-SARS system only
executes correctly on Python 2.3 or new
u

sio .

8

The throughput tests are performed both with and without the TCP/IP traffic.
nt to see how many queries per second a node can process in real life, but also
st it processes the queries internally. The first test is constructed by creating

 external module called the input m
p

en he first event is received and stopping the timer when the last event is received
 measure how many queries a p-SARS node can process each second when

Testing

69

TCP/IP
pusher

 in

her
n

and the work timed.

 e

.

• The new listen module creates an internal search event, containing the
 st queuin eve inp fined

number of times.

• The search events are then processed by the search event processing module.
The is create so that no m will be found on this p-SARS node nor
wil nts be available. The r chosen to this is to ensure
hat arch eve takes the lo st inte ath and t refore our results

will reflect the wo

• he pusher module is modified to wait until the predefined number of queries

 traffic is included. The reason we stop the propagation of the event in the
module is depicted in figure 18.

Input

Figure 18 - External throughput testing

As we can see in example 1 if we propagate the events to an output module

our throughput testing and perform the timing there we will actually end up timing
some of the system’s work twice. This is avoided by stopping the event at the pus
module. This is shown in example 2 and as we can see there is now no intersectio
between the work done

We also want to put our system through an internal throughput test so that w
can identify how the TCP/IP traffic influences a node’s query processing capability.
This is done by modifying the listen module and the pusher module of our system
We also have to modify the search event itself to include a timestamp telling us when
the test started. It all works as follows:

timestamp, and arts en g this nt on the ut queue a de

 query d atch
l any hi eason we have do

t the se nt nge rnal p he
rst case scenario.

T
is received, create a new timestamp and compare it to the one received with

p-SARS
module

Output

Example 1:

module

Input
module

p-SARS p-SARS p-SARS

Example 2:

Inpu
mod

t
ule

p-SARS p-SARS p-SARS

Encapsulates the work performed during a
throughput test. (The work timed.)

Testing

70

Queue
e

Searches Errors
en

Time Search per
Se

the events. This will then tell us how much time the p-SARS node needs to
process a predefined number of events.

Throughput test results

 Table 1 shows a summarization of the results of our internal throughput
testing. While throughput testing the p-SARS node we changed the size of the event
queues. As we can see the optimal size was found to be from one to about thousand
elements for the internal throughput test.

siz s ding cond
1 100 000 1280 781.3

10 00 00 0 129 775.2 1 0
100 00 00 0 129 775.2 1 0

1000 00 00 0 136 735.3 1 0
10 000 00 00 0 177 565.1 0 0

100 000 00 00 0 231 432.1 0 9
Table 1 l throughput testing

We have not yet for certain identified the reason why our system performs

better w

When including the TCP/IP traffic we can see in table 2 that the throughput

rops dramatically and that the size of the event queues in practice has less impact on
the performance than the internal throughput test suggested. Since the best result in
the internal throughput test is a factor of 14.7 better than the best result in the external
throughput test it’s safe to assume that the TCP/IP traffic completely dominates the
results. Therefore the size of the queues has little influence here.

Queue
size

Searches Error
sending

Time Search per
Second

failed open
socket

 - Interna

ith a smaller queue size, but we surmise it’s because of the Python’s garbage
collection algorithm. That is, we think that the garbage collection consumes much
more resources when the queues grow larger and the number of referenced objects
increases. To be able to accurately identify the reason we will most likely have to
look into the implementation of the Python Queue module and how Python handles
the garbage collection.

d

1 5 000 0 99 50.5 0
10 5 000 0 94 53.2 0
100 5 000 0 97 51.5 0
1 000 5 000 0 97 51.5 0
10 000 5 000 0 94 53.2 0

Table 2 - External throughput testing

As we may read from the results the TCP/IP traffic constitute the bottleneck in

our system. Possible solutions to increase throughput is the creation of thread pools

Testing

71

that awaits incoming connections to a p-SARS node or to hold persistent TCP/IP
 Another solution to get better performance is of

ourse to re-implement the system in C or C++. We did not choose Python because of

odule so that it didn’t shut down the
ent but instead waited for another one. We also

ents into the p-SARS node.

connections to our neighbours.
c
its performance characteristics but because it’s the ideal language for prototyping. For
performance critical software C or C++ is far more effective than Python.

 To test what effect persistent TCP/IP connections actually could have on our
system we re-implemented the listen m
connection after receiving a search ev
onfigured 5 other nodes to continuously push search evc

The results gathered are presented in table 3.

TCP/IP? Queue
size

Searches Error
sending

Time Search per
Second

TRUE 100 10 000 0 61 163.9
TRUE 100 10 000 0 51 196.0
TRUE 100 10 000 0 57 175.4
TRUE 100 10 000 0 62 161.3
TRUE 100 10 000 0 51 196.0
TRUE 100 10 000 0 50 200.0

Table 3 - Throughput with persistent TCP/IP connections

As eases substantially. The

best result en we do not keep
persistent c nd tearing down of
TCP/IP co form creating a thread each
time we re efore that we will increase
throughput ours.

we can see the number of events processed incr
 is 3.8 times better than the best result measured wh

that the setting up aonnections. The reason for this is
nnections is avoided. We have also saved us
ceive a packet. The lesson learned here is ther

 to our neighb if we keep persistent connections

Testing

72

8.2 i

We designed a simulator to help us discover what effect the different
iency without having

to set up a potentially large test-bed. The simulator is thoroughly discussed in chapter
herefore not be discus

8.2.1 Parameters and factors

ed any param that w ect our results without our
this is that we any time critical tests.

saturate e will ha this case is to increase th
pletes. This is of n ortance though since th
ll not be affected.

died in our simulations are the parameters in the test
uple. These 16 parameters are already presented in the end of chapter 7 but for

 here p t an ple. Th te
,0,0,0,1,50 scribes by field the following to

1. Create a netw
2. Maximum nodes of neighbours to fetch are 9.

h is set to 500.
9. We should perform 1000 searches.

.2.2 Simulations

to answer using the simulator:

 S mulating p-SARS

techniques incorporated into our design had on the search effic

7 and will t sed here.

 We have not identifi eters ill aff
consent. The reason for do not perform

d nodTherefore the only impact e.g. a ve in e
time until the simulation com

lves wi
o imp e

simulation results themse

The factors to be stu
t
readability we will also resen

0) de
exam

 field
e st tuple:

(1000,9,1,0,0,0,1,500,1000,1,0
our simulator:

ork of 1000 nodes.

3. Fetch randomly between 1-9 neighbours per node.
4. We should not perform gossip.
5. This field describes the TTL on a gossip.
6. This field describes the gossip probability.
7. We should perform a search.
8. TTL on searc

10. The querying node should learn from the results.
11. All intermediate nodes on the path of the search event should not learn

from the results.
12. We are not going to perform a warm-up.
13. This field describes the TTL on warm-up searches.
14. This field describes the number of warm-up searches to perform.
15. We are going to perform Random Walk gossiping.
16. The TTL on a Random Walk gossip is set to 500.

8

When designing the simulations we basically just tune the factors in the test
tuple to see what effect the different techniques incorporated has on our search
mechanism. On each test we i.a. record the success rate and how many nodes a query
on average has to visit before a hit is found. There are mainly three questions we try

Testing

73

o the different techniques generate?

We sta

• How effective is our search mechanism?
• How effective is our gossip mechanism?
• How many messages d

rt out with our best coverage results presented in table 4.

Test tuple Percentage
of success

Avg.
depth on
success

Gossip
sent

RW-G
sent

Searching without hint cache (Pure Random Walk)

(1000,4,0,0,0,0,1,500,1000,0,0,0,0,0,0,0)

52.4 250.3 - -
Searching performed after warm-up

(1000,4,0,0,0,0,1,500,1000,1,1,1,500,1000,0,0)

69.7 87.3 - -

(1000,4,0,0,0,0,1,500,1000,1,0,1,500,1000,0,0)

65.6 212.5 - -
Searching performed after gossip

(1000,4,0,1,30,30,1,500,1000,0,0,0,0,0,0,0)

86 91.9 1,333,670 -
Searching performed after RW-G

(1000,4,0,0,0,0,1,500,1000,1,0,0,0,0,1,500)

100 2.7 - 500,000

(10000,9,1,0,0,0,1,500,1000,1,0,0,0,0,1,500)

100 19.6 - 5,000,000

(100000,4,0,0,0,0,1,500,1000,1,0,0,0,0,1,500)

92 153.4 50,000,000

Table 4 – Best coverage results

 As we can see the Random Walk Gossip (RW-G) strategy we proposed in
chapter 7 performs the best with regards to both how many percent of our searches is
a success and how many nodes these successful searches in average must visit11. We
also notice that the average number of messages generated in the overlay network by
the RW-G approach is far less than the average number of messages generated by the
p-SARS gossip algorithm.

 If we compare the RW e

ifferences. While a RW-G runs until completion every time, i.e. until the time to live
(TTL)

-G strategy with the warm-up strategy there are som
d

value reaches zero, a warm-up search functions just like a search and
propagates only until a hit is found and then it’s terminated. In other words a RW-G
uses on average more messages and covers more nodes than the warm-up strategy. In
our simulations we also observed that a RW-G covered almost only unique nodes.
This is important because if this was not the case the burden on the network on a RW-
G would be more or less wasted. Another difference between RW-G and warm-up is
that a warm-up search carries with it the search results to populate intermediate nodes
while the RW-G carries with it the topic set of the node where it was initiated.

 The reason we simulate warm-up is to identify whether or not it’s a good idea
to extract hint information from the search results in our system. This technique is
therefore not proposed as a substitute for e.g. the RW-G approach but as a
supplement. The results show that after performing 1000 warm-up searches we get a
noticeable increase in the hit rate of our searches compared to the pure random walk

 Average depth on success. 11

Testing

74

approa

average number of nodes visited by a search event by 158.4. Although
hanism increases the effectiveness of our search algorithm it doesn’t

perform

ch. This indicates that it’s important to utilize the information already flowing
through the system regardless of what other additional technique we use to populate
the nodes individual hint set.

To see the effect of our designed gossip mechanism we compare it to the test
case where the hint cache is disabled. Our designed gossip algorithm implemented in
the p-SARS prototype increases the coverage from 52.4 percent to 86 percent and
reduces the
our gossip mec

 as good as the proposed RW-G approach.

Figure 19 – Random Walk gossip vs. designed gossip mechanism

p with a probability set to 100%
ehaves as the flooding algorithm described in the theoretical framework chapter.

Thi e
event.
popula
approa
Random
depict in figure 19. The reason the RW-G approach on average performs better is
because it distributes the hints more evenly in the network than the p-SARS gossip
me n
become
p-SAR
benefit from being as close to the gossip initiating node as possible, and that distant

odes will be penalized.

In figure 19 we can see a simplified picture of how the two different gossip

mechanisms behave in an overlay network. A gossi
b

s r sults in that every neighbour around the gossip initiating node receives the
The draw back compared to the RW-G approach is that this gossip event only
tes the hint caches of relatively close nodes in the overlay network. The RW-G
ch on the other hand populate the hint cashes of the nodes encountered on a

 Walk. Therefore it potentially reaches deeper into the overlay network as

cha ism. This results in that the chances that we will find a hint on a search
s more or less independent on from which node the search is initiated. In our

S gossip mechanism on the other hand we expect that a searching node would

n

Testing

75

The lessoned learned here is therefore that the branching factor on our gossip
 our design we can only reduce the branching factor

y reducing the probability for gossiping. The result is that even though reducing the
probab

notice that although the simulator presents a close to real life

es to the gossip traffic or the
arm-u

lts in a huge amount of messages being sent almost
multa

major part of the
easons for this. Firstly we have that the topics on a p-
apidly because the topics represent human interests.

Second

roposed p-SARS gossip mechanism with a TTL set to 30
ility of 30% generates 1,333,670 messages in the overlay

algorithm should be small, but in
b

ility for gossiping will make our mechanism more like the RW-G approach it
has the side effect that the probability that the gossip event is propagated from a
specific node to at least one of its neighbours decreases. That is, if we decrease the
gossip probability this will reduce the number of steps the gossip event will
propagate.

It’s important to
icture of the search traffic, it does not when it comp

w p traffic. To be able to simulate how effective our search mechanism is we
first have to warm up the network. If we e.g. want to build up a network of 1000
nodes we add these 1000 nodes simultaneously, and ask them one by one to initiate
.g. a gossip. This resue

si neously. The real world however is somewhat nicer. Here we would not
expect all nodes to join simultaneously, but that the network will be created over
time.

We also argue that the gossip traffic will not represent the

overall traffic. There are two r
SARS ode will not change rn

ly we have designed and implemented a periodic update of a p-SARS node’s
topic set. This means that although e.g. 1000 WRS clients are connected to this p-
SARS node and they all change their interests between two periodic updates of the
cached topic set, this will only generate one gossip event. So if we e.g. update the
topic set every thirty minutes, one p-SARS node will generate a maximum of 48
gossip events a day regardless of how many WRS clients are connected to this p-
SARS node. If we name the number of messages one gossip produces in the overlay
network X we have that each p-SARS node must process: (48*X)/86,400 gossip
events per second in the worst case scenario. The same reasoning also holds for the
RW-G approach.

If we uses table 4 we can calculate some numbers that are independent on how
many nodes that participate in the overlay network:

• We can see that our p
ssip probaband a go

network when performing 1000 gossips. Each gossip initiated therefore
generates an average of: 1,333,670/1000 = 1333.7 messages. The worst case
scenario is then that each p-SARS node must process 48*1333.7/86,400 = 0.7
gossip events per second.

• The RW-G mechanism is somewhat more effective. Each RW-G generates

500 messages as is defined by the TTL value set. Therefore each p-SARS
node must process 48*500/86,400 = 0.3 gossip events per second in the worst
case scenario.

Testing

76

8.3 p-SARS scalability

In this section we will compare the test resul h the lation r
identify how scalable our solution is. ill l t thre ferent ne
configurations and their scalab and the e raw a rall con
based on the calculations presented.

8

 Our calculations are pre ed in ta and h e wil e r
b g e fir hese are presented in row
one and two in the table.

 igura f one tho
WAIF Recommender System
thousand p-SARS nodes part ating overlay eer- network.
means that the net

twork as a whole. Therefore we have
hat ea

 o estimate the best case scenario we assume a populated hint cache and that
the sys

ts wit simu esults to
We w ook a e dif twork

ility then in nd d n ove clusion

.3.1 Calculations

sent ble 5 ere w l explain th ationale
ehind them by walking throu h th st two calculations. T

In our exam alculat we h etwork cple c ion ave a n onf tion o usand
(WRS) clients per p-SARS node and a total of one
icip in the p to-peer This

work as a whole supports 1 million WRS clients.

Worst case scenario (WCS):

To estimate the worst case scenario we assume that none of the searches are

satisfied before the time to live (TTL) value runs out and that the system uses the
Random Walk Gossiping (RW-G) approach. If we look back on the external
throughput test we see that the p-SARS prototype is able to process 53.2 search
events per second. But since we also have to process 0.3 gossip messages per second
per node we need to subtract these. That is, each p-SARS node is able to process 53.2
– 0.3 = 52.9 search events per second. Every search has a time to live (TTL) value set
to 500 and this tells us that each search in the worst case scenario produces a

orkload of 500 messages for the overlay new
t ch p-SARS node may initiate 52.9/500 = 0.1058 searches per second. This
means that each WRS client connected to a p-SARS node may initiate 0.1058/1000 =
0.0001058 searches per second. That is, all WRS client may simultaneously initiate
one search per 1/ 0.0001058 = 9451.8 seconds without saturating the system.

Best case scenario (BCS):

T
tem uses the Random Walk Gossiping (RW-G) approach. The average depth

on success for this configuration is measured to be 2.7. That means that each p-SARS
node can initiate 52.9/2.7 = 19.6 searches per second without saturating the system.
Each WRS client can therefore initiate 19.6/1000 = 0.0196 searches per second. That
is, all WRS client may simultaneously initiate one search per 1/0.0196 = 51.0 seconds
without saturating the system.

Testing

77

 # search processed
per second

gossip per
second

p-SARS
nodes

WRS
clients per p-
SARS node

Avg. depth
on success

number of
seconds between
each search a WRS
client can issue

The prototype with Random Walk Gossip (RW-G)

WCS 53.2 0.3 1000 1000 500 9451.8
BCS 53.2 0.3 1000 1000 2.7 51.0
WCS 53.2 0.3 10 000 100 500 945.2
BCS 53.2 0.3 10 000 100 19.6 37.0
WCS 53.2 0.3 100 000 10 500 94.5
BCS 53.2 0.3 100 000 10 153.4 29.0
The prototype with the implemented gossip mechanism

WCS 53.2 0.7 1000 1000 500 9523.8
BCS 53.2 0.7 1000 1000 91.9 1750.5
Keeping persistent TCP/IP connections

WCS 200 0.3 100 000 10 500 25.0
BCS 200 0.3 100 000 10 153.4 7.7
Assuming web-server performance (Based on SEDA Gnutella packet router)

WCS 1000 6.7 100 000 10 500 94.5
BCS 1000 6.7 100 000 10 153.4 1.5

Table 5 – 1 000 000 WRS clients, scalability calculations

 From our calculations in table 5 we can see that the more WRS clients that

articipate ap
r

s p-SARS nodes in the overlay network the better our system scales. The
eason

 hold for network sizes over one hundred
ousan p-SARS nodes.

As mentioned before we assume that the rate of change in the topics will be
slow. This is because the topics represent the interests of humans and these do not
change frequently. This will also most likely affect the rate at which new queries are
initiated. That is, because we expect the topics to change slowly there will also be a
slow change in the searchable data. Therefore we assume that a WRS client on
average also initiates new queries at a slow rate. We think it is reasonable that a WRS
client, on average, issues a new query as slowly as one per hour.

From the results in table 5 we can see that our prototype re-implemented with

the RW-G approach is capable of offering a much higher query rate than this. Each
WRS client can on average issue a query every 29 seconds. And these calculations
are based on our prototype implemented in python. If we had re-implemented the
system in e.g. C and fine tuned the architecture for performance we can see no reason
why we shouldn’t come close to the throughput accomplished in [M. Welsh et al.
2001]. In this paper they present a Gnutella packet router, based on the SEDAN
architecture, capable of processing 1000 packets per second.

for this is that, although the number of p-SARS nodes increases with a factor
of ten the average depth on success only increases with a factor between 7.2 and 7.8
in our simulations. That is, the overall load increases slower then the additional
processing capability when we include more p-SARS nodes in the overlay network.
Therefore it is advantageous to have more nodes cooperatly handling the load. We

ve only simulated networks up to one hundred thousand nodes however. Therefore ha
we cannot tell if this trend continues to
th d

Testing

78

There are basically two reasons why we can make this assumption. First our
isingly similar to that of the SEDA architecture and therefore it is

asonable to believe that we could be able to reach the same throughput. Both
ystem o the

ur
ce

 which are saturated. This
ay th every

also
.

o run

are of
 [M.

A
s

st

As an overall conclusion we argue that based on the throughput tests and
imulations the designed system with the use of RW-G scales to at least one million

RS clients. Even our implemented prototype which uses the p-SARS gossip
gorithm will scale, if the query rate assumption holds. However, based on the
sults we will probably exchange the current gossip mechanism with RW-G.

architecture is surpr
re
s s have separated concerns by dividing the application into stages. Als
stages are connected by queues and each stage is event driven just as in o
architecture. The only difference is that the SEDA architecture uses resour
ontrollers to dynamically allocate more threads to stagesc

w ey manage to increase overall throughput on high workloads. Because
processing stage in our p-SARS system is asynchronous and event driven we are
able to initiate more than one thread simultaneously to perform the work of a module
Therefore the only thing missing is to incorporate the resource controllers.

Secondly we have that the WRS system selects the best capable nodes t

as p-SARS nodes. That is, we will only use the best WRS clients as nodes in the p-
SARS overlay network. Therefore it is also reasonable to assume that the hardw
our p-SARS nodes at least is nearly as good as the hardware which is used in
Welsh et al. 2001] to test the packet router.

As we can se from table 5, if we manage to reach the throughput of the SED
packet router each WRS client will be able to issue a query every 1.5 seconds. This i
such a high query rate that the chances that our system will be saturated are almo
liminated. e

s
W
al
re

Testing

8.4 Summary

 In this chapter we have shown that our prototype of the p-SARS system
satisfies the requirements set in chapter 4. Furthermore we have identified the peak
capacity of our system by presenting throughput results.

We discovered during the throughput tests that the TCP/IP traffic has a
substantial impact on the throughput and two approaches to remedy this problem
were discussed. Persistent TCP/IP connections and thread pools. We even presented
measurements to show that the persistent TCP/IP approach works in practice.

 With our simulation results we showed that our proposed Random Walk
Gossip (RW-G) approach outperforms the p-SARS gossip implementation both with
regards to the traffic generated and the resulting search hit ratio. We therefore
concluded that our gossip event processing module should be re-implemented to
support the RW-G approach instead.

 In the end we presented a comparison between our throughput tests and our
simulations and concluded that our current p-SARS design with the use of RW-G is
capable of scaling to at least one million WRS clients.

79

80

Chapter 9

Discussion

 In this chapter we will discuss the design and implementation of the p-SARS
prototype. We will divide our discussion into the four system mechanisms identified

 the design chapter and also add an extra section which we have called
miscellaneous.

.1 Th

e topics which the local WAIF Recommender
ystem (WRS) clients publish on. But there is still information available that could

further

ent we receive from the WRS topic server and
an easily be extracted an added to our topic set.

not add this information to the hint set where it actually

elongs is because we do not know the addresses of the super-nodes supporting these
mote

By implementing this enhancement we introduce the possibility for duplicates
to occu

in

9 e topic update mechanism

 This mechanism updates the local topic cache on a p-SARS node. Here we
discuss one improvement to this mechanism.

9.1.1 Including the subscribe set

 Each p-SARS node caches th
S

 improve the efficiency of our search mechanism. We remember from the
design chapter that each WRS client is both a publisher and a subscriber. This means
that each WRS client also holds information about other, possibly remote, WRS
clients that publish on a given topic. That is, it knows which WRS clients it
subscribes to and therefore also some of the topics these nodes offer. This information
is actually already available in the ev
c

The reason we can
b
re WRS clients. For this to be possible we would have to augment the WRS
clients so that when asked they could tell which super-node they currently are
connected to. It’s important to notice here that it’s possible for a local WRS client to
subscribe to another local WRS client. These subscriptions are not of any importance
though because they only reflect what already is known in the local topic set. It’s only
the remote WRS clients and what they publish on that are of interest to us here.

r in the search results. This may happen because there are now possibly
several p-SARS nodes advertising the topics a WRS client publishes on. The effect of
duplicates and how they can be handled is discussed in the search mechanism section
of this chapter.

81

Discussion

82

echanism is in charge of populating a node’s individual
neighbour set with other p-SARS nodes. Th

9.2.1 The bootstrap-server

use random walks as
describ

de
hooses the same set of neighbours.

In the theoretical framework chapter we also mentioned the technique of
caching nodes encountered during previous runs. This will potentially offload the
boot server because we will be able to use this information for later bootstraps. There
are however no guarantee that these nodes still are up and running, so this technique
can only be seen as a supplement to the bootstrap-server technique. If it fails we need
to have a bootstrap-server available.

9.2.2 Ping and pong

 In our current design we have a defined maximum on how many neighbours a
node may have in its neighbour set. What we don’t have is a limitation on how many
nodes that may reckon a specific node as its neighbour. This means that it’s possible
that we can end up with a popular node X which is included into every node’s
neighbour set except its own. That is, if we have a network of one thousand p-SARS
nodes, node X could be forced to answer ping messages from 999 other nodes. This
can potentially lead to a message implosion at node X.

One solution is to maintain the set of neighbours which reckon this node as its
neighbour and set an upper limit on the size of this set. When the limit is reached, we
simply instruct node X to avoid answering the ping messages from the nodes not in
this set. This will trick any pinging node, not currently in this set, to think that node X
is dead and thus remove it from its own neighbour set. One disadvantage though is
that the tricked nodes will remove the hints pointing to node X from their local hint
sets.

9.2 The membership mechanism

 The bootstrap m

ese neighbours are essential to our system
because they are needed for both the search mechanism and the gossip mechanism to
function properly. Here we will propose several changes to our current bootstrap-
server and finally we also discuss our current ping-pong scheme.

Our project is not focused around the bootstrap problem so we have designed

a simple solution that actually just sends the whole list of registered nodes back to the
requesting node. The list is then used to populate the neighbour set. A better solution
is, as we discussed in the theoretical framework chapter, to

ed in [A. J. Ganesh et al. 2003] after we initially have found a node connected
to the overlay network. This will, with a high probability, ensure that the resulting
overlay graph stays well connected. A simpler solution but still better than our current

esign is to randomize the results from the bootstrap server so that not every nod
c

Discussion

83

Another solution is to implement some sort of handshake between a node and
s neighbour set. If a node realizes that too many

 reckon it as a neighbour it just have to decline any future request until

essages as
ring other nodes. A node floods the ping

y network and receives pong messages from the nodes

the node it wants to incorporate into it
nodes currently
the situation improves.

Gnutella [Gnutella] uses ping and pong messages not as heartbeat m

we do in p-SARS but as a way of discove
the overlamessage into

receiving the ping message. This way the system extracts neighbours from both ping
and pong messages.

We could potentially borrow some ideas from this approach and e.g. initiate a

random walk carrying a ping event. The event would propagate through the net just
like a random walk search and record the nodes it encountered during propagation. At
the end it would be sent back to the initiating node. Every node participating could
also extract neighbours from the ping event as it’s passing by.

Another approach discussed in the design chapter is to utilize the events

already flowing through the network. Especially the search event is suitable because
it already carries a list of visited nodes which can be seen as potential neighbours.

Discussion

84

terminate early would
crease when decreasing the branching factor. So if we have to choose between the

two ap

ed in early stages would propagate further

9.3 The gossip mechanism

 The gossip mechanism is designed and implemented to make the searches
more efficient. Here we discuss and propose changes to this mechanism.

9.3.1 The algorithm

 During simulations we discovered that our proposed Random Walk gossip
(RW-G) strategy actually outperforms our implemented gossip mechanism. The
reason is that the RW-G on average more evenly distributes the hints in the overlay
network. The p-SARS gossip mechanism could be tuned to have a low branching
factor and actually behave similar to the RW-G approach. The disadvantage we
discovered was that the probability that our gossip would
in

proaches now we would choose the RW-G approach.

 More simulations have to be performed to identify which gossip approach we
should implement in the future, but an interesting idea is to extract some of both
techniques. E.g. we could initiate a RW-G and on each node it visits we can, defined
by a probability, branch of one or several RW-G events and send them off in different
directions in the overlay network. The newly spawned RW-G’s would inherit the
TTL of it’s parent so that RW-G’s spawn
than the RW-G’s spawned late in the propagation of its parent. Optimal branching
factor and if this indeed it the way to go is left to investigate. How this would look in
the overlay network is depict in figure 20.

Figure 20 - Random Walk Gossip with branching

Discussion

85

w

lobal view [A. Demers et al. 1987]. We argue that our implemented algorithm also
has this property. If we take a look at our gossip algorithm we initiate a gossip on two

e topic set has changed, and secondly if a node
ceives a search event relayed on a hint which we discover to be stale. Regardless of

 LRU as a cache policy the
ost recently used. As of now

ed a cache policy.

question dealing with gossip algorithms is to decide on
he answer to this question is actually straight

m as a whole is capable of handling the extra load we
he more we gossip the more efficient our search

rithms actually deviate from the real
at none of the two gossip mechanisms
a node’s hint set. Only the topic set is

ve obtained in chapter 8 still
for this is that if we also had

ets in our simulations, more hints would have been available
s, and this would again have increased the efficiency of our

rcentage of success on searches and a smaller
arch events. We also argue that our conclusion on

W-G) versus the implemented p-SARS algorithm still holds.
hint sets in our gossips we still believe that the more evenly

distribution of the hints in the RW-G approach will ensure that the RW-G algorithm

9.3.2 Achieving global vie

 Original gossip protocols have the property that they eventually converge to a
g

occasions. First on a topic update if th
re
the reason we initiate a gossip with this node’s entire hint set. As the nodes receiving
this gossip eventually will initiate gossip events on their own the data will eventually
propagate throughout the overlay network. What we do not argue is the fact that this
propagation presumably will be very slow. The reason for this is that as long as the
interests of the WRS clients do not change, no gossip will be initiated. And as we
suggested in the design chapter we expect this rate to be low.

However, demanding that a node eventually should have a global view in its
cache would, as more clients connect, lead to an un-scalable solution. A solution to
this problem is to impose a policy for dropping items when the hint cache reaches a
defined maximum size. Widely known cache policies that can be used here are Least
Recently Used (LRU) and Least Frequently Used (LFU). This will however have an
impact on the global view property. If we e.g. choose
lgorithm will converge to a global view of the objects ma

we have not implement

Another important
how often we should initiate

as the syste
 a gossip. T

forward. As long
should gossip as often as possible. T

e. mechanism will b

9.3.3 The gossip simulation

 Our simulator’s implemented gossip algo
gossip algorithms described. The fault is th

inates implemented in the simulator dissem
disseminated. We argue however that the results we ha

reason are valid although probably to pessimistic. The
disseminated the hint s

eon the individual nod
search algorithm. That is, better pe

 of the seaverage propagation depth
Random Walk Gossip (R
That is, if we include the

still outperforms the p-SARS gossip algorithm.

Discussion

86

design and implement the system as a pure peer-to-peer overlay
etwork. One reason for this was to be able to support pattern searching which is not

e (DHT) technique. In our current implementation
 a pattern search. The locally implemented search

 in fa

 both ‘football’ and ‘basketball’ returned.

def rea

 for element in topics_available:
if topic in element:

d(element)

 for item in matching_topics:

 return false

9.4 Search mechanism

 In this section we will discuss the search mechanism and some enhancements.

9.4.1 Search implementation

We chose to
n
possible in the distributed hash tabl
though we haven’t yet incorporated
is ct a lookup mechanism. That is, the WAIF Recommender System (WRS)
client will only get a hit if the query is matched exactly to a topic.

 To implement a search mechanism that supports pattern search we do not need
to change our overall system design. Only one function need be changed. This is the
read function of the topics class situated in the OWN_system.py file. Example of a
simple search algorithm in python that supports case sensitive search for a sub-string
within a topic is shown below. If we e.g. search for ‘ball’, we could get WRS clients
publishing on

d(self, topic):
 # Set lock
 self.spin_lock()

 # List holding the WRS clients
 # matching the topic
 list = []

 # List holding the matching
 # topics
 matching_topics = []

 # Simple pattern search algorithm, Case sensitive
 topics_available = self.topics.keys()

 matching_topics.appen

 # Do uique id --> IP address mapping

 # Test if mapping is available
 if item in self.append(self.mapping[item]):
 list.append(self.mapping[item])

 # unlock mutex
 self.unlock()

 # Test if results are found
 if len(list) > 0:
 return list
 else:

 Another property of our search implementation is that a WRS client may get
more answers returned than the happy12 value suggests. This will happen if more

12 The happy value describes how many hits are required to satisfy the query.

Discussion

87

9.4.2 Returning the results

In our design we decided to return the answers directly to the p-SARS node

plement. The search event already contains the list of the nodes visited by the
search event. This list is also sorted so that the last element in it actually is the last

se a WRS client connects to only one p-SARS node, and that the search
mechanism ensures that any given p-SARS node is only searched once by the same
query.

vent carries a happy value that describes when a query is
atisfied. Based on the happy value and the time to live (TTL) field we decide if the

results than the happy value describes is found on one node. As an example let’s say
that the happy value equals one. The node processing the search event traverse its
topic set and finds five hits on this query. Instead of choosing four of these results to
discard, all results are returned before the propagation of the search event is
terminated. We have chosen this approach because when we have discovered the hits
we may as well return them. However, if our algorithm finds many hits on one node
this will result in a large result event being sent over the network. To prevent that a
result event can saturate the network we should enforce an upper limit on the number
of results returned.

we label as the querying node13. The alternative would be to route the answer back
the way the query came. Our choice has two advantages but also one disadvantage.
The first advantage is that the answer arrives at the querying p-SARS node much
faster than if we need to route it through the intermediate nodes. The user perceived
delay will therefore potentially be lower14. The second advantage is that the number
of search events traversing the overlay network will be less then in the proposed
alternative.

The disadvantage however is that the intermediate nodes will never observe
that a p-SARS node has answered the query. If other nodes where able to notice when
a node answered a query they could use this information to update their hint sets. In
our design the only node that benefits from this is the querying p-SARS node which
extracts hints from the results received.

 Routing the answer back the same path the query took should be fairly easy to
im

node visited.

9.4.3 Duplications in results

 In our current implementation duplicates will not occur in a query’s result set.
This is becau

However if we incorporate the change discussed above in the section labelled
topic update mechanism, duplicates may occur. This could with little effort be
handled by the pending search mechanism. We just have to ensure that the result is
not already enqueued on this query, if it is just discard the duplicate.

 Our search e
s

13 The node that initially received the query from the WRS client
14 If the query isn’t satisfied the user must always wait until the pending search times out

Discussion

88

search should be terminated or sent onwards to another p-SARS node. If duplicates
roblem therefore arises. The happy value will be wrongly

ecremented. The reason for this is that the search event carries no information about

 p-SARS node is able to check for duplicates and will therefore
 query’s happy value. The extra cost will be the message
e delaying of the query results themselves.

 Y. Siu. 2003] is to use long living random walks to
ate the size of the overlay network. The approach taken is to mark the nodes that

 each node it visits with its current count.

ued for one search and also if duplicates may arise.

 issued the query because this
ch event. This is in fact not such a big drawback

ly the search activity that to some extent is
 its identity as soon as it chooses to

d a file, just like it has to do in WRS when it chooses to subscribe from

are encountered another p
d
previously discovered results so that we cannot decide locally if a hit is a duplicate or
not. The premature termination problem could be solved by making the searching
node check back with the querying p-SARS node to see if the query is satisfied

stead of relying on the search event’s happy value as we do now. This will work in
because the querying
not wrongly decrement the

affic back and forth and thtr

9.4.4 When to terminate search

 The time to live (TTL) value combined with the happy value decides if the
search event should be terminated or if it should be forwarded to another p-SARS
node. The problem here is to figure out how many nodes participate in the overlay
network, because as more nodes join the larger the TTL value has to be. One of the
olutions discussed in [C. Law, K.s

estim
the walker has counted and to also notify

 Another solution is to always have a large TTL so that the happy value is in
charge of when the search should be terminated. The only function the TTL value has
is to prevent a loop. This approach is similar to the “Checking” approach discussed in
[Q. Lv et al. 2002] but in our solution we propagate the satisfaction value with the
search event. We therefore don’t need to check back with the querying node every
few steps to see if the query is satisfied. This is however necessary if we want to
increase the number of walkers iss

9.4.5 Anonymity

Gnutella [Gnutella] offers, to some extent, anonymity on behalf of the
searching node. This is because the hits on a query are not sent directly back to the
querying node. The hits are instead routed back the same path the request came so if
the querying node is more than one hop away from the answering node its anonymity
is secured.

 our system everybody knows which nodeIn

information is available in the sear
compared to the Gnutella solution. It’s o

 Gnutella. A client must reveal
n

anonymous in
downloa
another WRS client.

Discussion

89

.5.1 Persistent data

Because the data we search for reflects the interests of specific humans we
ssume that the rate of change is low. This is reflected in the periodic updates of the

topic set which in our implementation currently is set to once every thirty minutes.
We believe that our search mechanism could also be used as part of a regular file
sharing service. But the scalability results presented in chapter 8 would have to be
adjusted. This is because the locally cached topic set would have to be updated at a
much higher rate and therefore the gossip traffic would consume more resources. This
will lead to a reduced scalability.

9.5.2 Terminating the program

The termination of a p-SARS node is not yet implemented. There are however
two solutions to this problem. Firstly we may update a shared variable periodically
tested by the threads running. When this termination variable is set to false all threads
ends execution. This approach has the disadvantage that it does not flush the system
event queues before terminating the program and that it may take a while before the
thread actually tests this variable.

To solve both these problems we may introduce a locally issued termination

event. When we want to terminate the system we just insert this termination event
into the system input queue. This event will then propagate through the event queues
and finally reach all modules in our implementation except two. These are the system
module and the update topic module and cannot be reached because they are not
connected to any queues. Therefore to incorporate this solution into our current
implementation we would have to create two new queues, one for each of these
modules, with the soul purpose of delivering this termination event. The additional
change on the existing code would be minimal. We just have to add the following test
after a module receives an event:

if event['type'] == 'termination':
 # Possibly do some clean up work and
 # send the event towards next module
 # if any.
 ...
 ...
 # Break out of while loop
 break

9.5 Miscellaneous

 Here we will first discuss that the data we search for in p-SARS as in contrast
to a regular file sharing service, is nearly persistent. In the end we will discuss how to
gracefully terminate a p-SARS node.

9

a

Discussion

90

When the module has propagated the termination event onwards it may itself
re two exceptions though. Firstly the result event processing

odule must terminate all pending searches and enqueue the results for the
corresp

 ensure that all

ha l ional events should be sent out
of t n

terminate. There a
m

onding WAIF Recommender System (WRS) client before it propagates the
termination event onwards. Secondly the pusher module will have to

ur event processing modules have sent it the termination event. This is to ensure fo
t t al the event queues are flushed and that no addit

he ode through TCP/IP.

Discussion

9.6 Summary

In this chapter we have mainly discussed the four system mechanisms which
we identified during design. We have discussed important issues like:

• How we should handle the bootstrap problem.
• The global view property of our gossip mechanism.
• How to choose the correct time to live (TTL) value.
• If we should return the results directly or send them back the way the search

event came as it’s done in e.g. Gnutella.
• Avoiding message implosion because of ping events.

We have also proposed several enhancements to or current design where the

more important once were:

• Including the subscribe set.
o Avoiding duplicates and the premature termination problem.

• Caching policies like LRU or LFU.
• A simple search algorithm capable of matching sub-strings within a topic.
• A locally issued termination event so that we are able to flush the event

queues of our system before shutting down.

The correctness of our simulation results where also discussed. We discovered
that the simulator was faulty and that it did not gossip a node’s hint set. Only the
topic sets of the nodes where disseminated. However, we have argued that our
simulation results still are valid although probably to pessimistic with regard to the
success ratio and also the average depth on success.

91

92

Chapter 10

Conclusion

 This chapter concludes the thesis. Here we will present an evaluation and a
critique to our work. In the end future work will be discussed.

10.1 E

econdly we have implemented a prototype of this
esign. All this is made possible by augmenting a sub-set of the WRS clients with
earch capabilities and including these nodes in the p-SARS overlay network.

 Our choice of an overall distributed architecture was basically twofold. Either
we chose the unstructured peer-to-peer architecture or we chose the structured peer-
to-peer architecture. If we view p-SARS and WRS as one system the overall
architecture is structured peer-to-peer. That is, the WRS system chooses a sub-set of
its clients to run as super-nodes. These super-nodes are then enhanced with the p-
SARS search mechanism and included in the p-SARS overlay network. Because the
WRS system already has selected the most capable nodes to run as p-SARS nodes we
decided that it was not worth the added complexity to also introduce a structured
architecture between the p-SARS nodes. Therefore, if we look isolated on the p-
SARS system, the chosen architecture is unstructured peer-to-peer.

With the help of simulations we have shown that our search mechanism has
good coverage. In fact, in a network of 10 000 p-SARS nodes we have a success rate
of 100 percent on our searches when using the Random Walk Gossip (RW-G)
algorithm to populate the hint caches.

Finally we have compared throughput tests and simulations to decide how
scalable our system is. We argue that both our design and our current prototype are
capable of supporting in excess of one million WRS clients. The simulations also
indicate that the overall load increases slower than the additional processing
capability when we include more p-SARS nodes in the overlay network. That is, our
solution seems to scale better the more WRS clients are included into the p-SARS
overlay network.

We have also shown several enhancements to make our prototype scale even

better. This includes i.a. re-implementing the gossip event processing module, so that
our prototype uses RW-G, and keeping persistent TCP/IP connections between
neighbours. We also assume that we would obtain additional performance if we re-
implemented the prototype in C or C++.

valuation

 The main goal of our project was to design and implement a distributed search
engine for the WAIF Recommender System (WRS). We have accomplished both
these goals. Firstly we have designed a fault resistant, scalable, self administrative
and distributed search mechanism. S
d
s

93

Conclusion

94

our work

lemented
techniques proposed. This happened when

e failed to include the hint set into our gossip events, turning the gossip mechanisms
into rep

as on our simulation results is that they are to pessimistic.

we wanted a solution
that supported pattern searches and therefore the distributed hash table (DHT)
tech q ch in
our pro one. When that is said, we only
nee o S
proto y

10.2 A critique to

The biggest error was of course that we in our simulator actually imp
replication techniques instead of the gossip
w

lication mechanisms. Although this is a minor thing to fix in the simulator, it
could have corrupted many hours of work. We argue though that the only influence
this h

We have repeatedly argued throughout this thesis that

ni ue was discarded. As it turned out we have not implemented pattern sear
totype. We feel that this should have been d

d t design a pattern search mechanism and modify one function in the p-SAR
t pe for this to be supported.

Conclusion

10.3 Future work

 First of all we plan to design and implement an efficient local search
algorithm that supports pattern searching.

Next we will try to increase the scalability of our prototype. There are several
issues we would like to investigate here and the once we think are the most promising
are:

• Keep persistent TCP/IP connections to our neighbours.
• Keep thread pools.
• Re-implement the gossip event processing module so that it supports the

Random Walk Gossip (RW-G) mechanism.
• Implement the prototype, or parts of it, in a different language like e.g. C or

C++ to see if we can get an increase in performance.

We will also have to look into the security problem of our system. There are
two major challenges here:

• First everybody that knows the message format of our system may fake

messages and e.g. corrupting the hint caches leading to poor search efficiency.
• Another problem is that the interests of the WRS clients are distributed onto

different nodes in the p-SARS overlay network. There is no security
mechanism ensuring that these interests cannot be revealed.

95

96

Chapter 11

Bibliography

[A. Demers et al. 1987] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,

ase Maintenance. In Proc. of the
12, Vancouver, British Columbia,

anada, August 1987

, A. M. Kermarrec, L. Massoulié. Peer-to-Peer Membership
anagement for Gossip-Based Protocols. IEEE Transactions on computers, Vol. 52, No. 2, February

. Macro. 1990] A. Macro. Software Engineering: concepts and management. Prentice Hall

r of Disruptive Technologies.
’Reilly & Associates, Inc., March 2001.

t
cation and routing for large-scale peer-to-peer systems. In Proc. of the 18th IFIP/ACM International

ber

. Singla, C. Rohrs. 2002] A. Singla, C. Rohrs. Ultrapeers: Another Step Towards Gnutella

3). http://www.bearshare.com/

D. Swinehart, D. Terry. Epidemic Algorithms For Replicated Datab
Sixth Symposium on Principles of Distributed Computing, pages 1-
C

[A. J. Ganesh et al. 2003] A. J. Ganesh
M
2003

[A
International, pages 49-53, United Kingdom, February 1990

[A. Oram. 2001] A. Oram. PEER-TO-PEER: Harnessing the Powe
O

[A. Rowstron, P. Druschel. 2001] A. Rowstron, P. Druschel. Pastry: Scalable, distributed objec
lo
Conference on Distributed Systems Platforms (Middleware 2001), Heidelberg, Germany, Novem
2001

[A
Scalability. Whitepaper, December 2002

[BareShare] BareShare, Homepage (200

[B. Yang, H. G. Molina. 2001] B. Yang, H. Garcia-Molina. Comparing Hybrid Peer-to-Peer Systems.

 Proc. of the 27th Int. Conference on Very Large Data Bases, Roma, Italy, September 2001

. Yang, H. G. Molina. 2002] B. Yang, H. Garcia-Molina. Efficient search in peer-to-peer networks.
puting Systems (ICDCS),

ienna, Austria, July 2002.

. Falaoutsos et al. 1994] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic,
ent Information

ystems, vol 3, pages 231 - 262, July 1994

. Gkantsidis et al. 2004] C. Gkantsidis, M. Mihail, A. Saberi. Random Walks in Peer-to-Peer

 Siu. 2003] C. Law, K. Y. Siu. Distributed Construction of Random Expander
etworks. In Proc. of Infocom. IEEE, San Francisco, CA, USA, April 2003

tic Overlay Networks. Technical report, HP Labs, November 2002

 (2003). http://www.intel.com/cure/

In

[B
In Proc. of the 22nd IEEE International Conference on Distributred Com
V

[C
W. Equitz. Efficient and Effective Querying by Image Content. Journal of Intellig
S

[C
Networks. To appear in INFOCOM 2004.

[C. Law, K. Y.
N

[C. Tang et al. 2003] C. Tang, Z. Xu, S. Dwarkadas. Peer-to-Peer Information Retrieval Using Self-
Organizing Seman

[Cure] Intel philanthropic peer-to-peer program. Homepage

. Cohen et al. 2003] E. Cohen, A. Fiat, H. Kaplan. A Case for Associative Peer-to-Peer Overlays. In

[D. Piscitello. 2002] D. Piscitello. Security And Peer-To-Peer Applications. Business Communications
Review, pages 45 – 51, October 2002

[E
Proc. of Workshop on Hot Topics in Networks, Princeton , New Jersey , USA October 2002

97

Bibliography

98

gies in Unstructured Peer-to-
 '02, pages 177-190, Pittsburgh, PA, USA, August 2002

FC 854, May 1983

ber

. Ritter. 2001] J. Ritter. Why Gnutella Can’t Scale. No, Really.

[E. Cohen, S. Shenker. 2002] E.Cohen, S. Shenker. Replication Strate
Peer Networks. In Proc. of ACM SIGCOMM

[J. Postel, J. Reynolds. 1983] J. Postel, J. Reynolds. Telnet Protocol Specification. R

[J. Postel, J. Reynolds. 1985] J. Postel, J. Reynolds. File Transfer Protocol (FTP). RFC 0959, Octo
1985

[J
http://www.darkridge.com/~jpr5/doc/gnutella.html February 2001

[F. v. Lohmann. 2003] F.v.Lohmann. IAAL-: Peer-to-Peer File Sharing and Copyright Law after

orwegian), Kristiansand, 1998

nutella] Gnutella, Homepage (2003). http://www.gnutella.com

Napster. Whitepaper, January, 2003

[G. Hartvigsen. 1998] G. Hartvigsen. The researcher’s Handbook. Norwegian Academic Press (In
N

[G

[Grokster] Grokster, Homepage (2003). http://www.grokster.com/

[H. Balakrishnan et al. 2003] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica.
Looking Up Data in P2P Systems. Communication of the ACM. Vol. 46, no. 2 February 2003

[H. Hildrum et al. 2002] H. Hildrum, J. D. Kubiatowicz, S. Rao, B. Y. Zhao. Distributed Object
Location in a Dynamic Network. In Proc. of ACM Symposium on Parallel Algorithms and
Architectures, Winnipeg, Canada, August 2002

[I. Stoica et al. 2001] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, H. Balakrishnan. Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In Proc. of the SIGCOMM '01, San
Diego, California, USA, August 2001.

[KaZaA] KaZaA, Homepage (2003). http://www.kazaa.com/us/index.htm

[Konspire] Konspire, Homepage (2003). http://konspire.sourceforge.net

[Morpheus] Morpheus, Homepage (2003). http://www.morpheus.com/

[Napster] Napster, Homepage (2003). http://www.napster.com/

[Newsmonster] Newsmonster, Homepage (2003). http://www.newsmonster.org

[Oxygen] Oxygen, Homepage (2003). http://oxygen.lcs.mit.edu/

[P. Golle et al. 2001] P. Golle, K. L. Brown, I. Mironov. Incentives for Sharing in Peer-to-Peer
Networks. In Proc. of the Third ACM Conference on Electronic Commerce, Tampa, Florida, USA,
October 2001

[P. J. Denning. 1989] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, P.
R. Young. COMPUTING AS A DISCIPLINE. Communications of the ACM, Vol. 32, No. 1, pages 9-
23, January 1989

[Python] Python, Homepage (2003). http://www.Python.org

[Q. Lv et al. 2002] Q. Lv, P. Cao, E. Choen, K. Li, S. Shenker. Search and Replication in Unstructured
Peer-to-Peer Networks. In Proc. 16th Annual ACM Int'l Conference on Supercomputing, New York,
USA, June 2002

[RIAA] Recording Industry Association of America, Homepage (2003). http://www.riaa.com/

Bibliography

[Screensaver - Lifesaver] Screensaver-Lifesaver. Homepage (2003).
http://www.chem.ox.ac.uk/curecancer.html

[SETI@home] SETI@home, Homepage (2003). http://setiathome.ssl.berkeley.edu/

[S. Ratnasamy et al. 2001] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. A scalable
content addressable network. In Proc. of the 2001 ACM SIGCOMM Conference, San Diego,
California, USA, August 2001

[S. Robertson, J. Robertson. 1999] S. Robertson, J. Robertson. Mastering the Requirements Process.
Addison Wesley, pages 136-164, Great Britain, August 1999

[Stumbleupon] Stumbleupon, Homepage (2003). http://www.stumbleupon.com

[WAIF] WAIF (Wide Area Information Filtering), Homepage (2003). http://www.waif.cs.uit.no/
.
[WinMX] WinMX, Homepage (2003). http://www.winmx.com/

99

100

Appendix A

Appendix A: p-SARS, code listing

 The p-SARS code consists of a total of 3078 lines where 1219 of these are

r
ring Thesis

nts.py

umerical global constants
r system

YPE_DEBUG = 'debug'

 'get_profiles'

 ######

assured in items

ion (socket)

ral bootstrap server
9.242.13.22'

re the bootstrap server listens

. Queue!

debug module.

',9865)

 should strive to be connected too

TED = 9

non-commenting source statements (NCSS).

<p-SARS/OWN_constants.py>

The p-SARS System (peer-to-peer search engine)

une Devik # Designed and implemented by R
2003, 15 August - 15 Decembe#

Master of Enginee
a# File: OWN_const

File to define n
to be used by ou

RETURN VALUES
false = 0
true = 1

plicate = 2 du
new_topic = 3
del_topic = 4

EVENT TYPES
YPE_SEARCH = 'search' T

T
TYPE_GOSSIP = 'gossip'
TYPE_RESULT = 'result'
TYPE_SYSTEM = 'system'
TYPE_BOOTSTRAP_REG = 'reg'

 = 'find' TYPE_FIND_NEIGHBOURS
PE_FETCH_PROFILE =TY

DEFINING THE CONSTANTS

Max size of queues me

 1 QUEUE_MAXSIZE =

Max time to wait on a TCP connect
MAX_WAIT = 100

The address to the cent
BOOTSTRAP_SERVER_IP = '12

 The port whe#

BOOTSTRAP_SERVER_PORT = 1212

The maximum nodes kept at the bootstrap server
MAX_NUMBER_OF_NODES_IN_BOOTSTRAP_LIST = 100

Buffer size on tcp connections
TCP_BUFF_SIZE = 4000

Number of connections accepted on tcp server socket
TCP_NUM_CONNECTIONS = 10000

 = 1, send debug info to # If DEBUG
DEBUG = 0

ug module # The address to the deb
DEBUG_ADDRESS = ('129.242.13.22

ode# The number of nodes each n
 # The neighbourhood set!!

NEIGHBOURS_WANNUMBER_OF_

101

p-SARS, code listing

The number of seconds before
SECONDS_BEFORE_SYSTEM_UPDATE = 2

running system update. (System thread)
0

etween each ping/pong message! This will be tested only each

ient!

ch to become satisfied.

each topic update!
ECONDS_BEFORE_TOPIC_UPDATE = 60*30

gossip.

 should try to send an event over TCP/IP
de dead!

to run on a throughput test
 = 5000

-to-peer search engine)
d by Rune Devik
cember

gineering Thesis

tem should continue gossip.

00, where the int represents the probability in

continue gossip, false otherwise
d python's random generator is.

p(self, probability):

re a <= N >= b

The number of seconds b#

system_update
 40 SECONDS_BEFORE_PING =

The number of seconds to wait on
results before sending response to WRS cl
SECONDS_BEFORE_RESULT_UPDATE = 10

The number of seconds to wait for a sear
ECONDS_TO_WAIT_ON_RESULTS = 20 S

The number of seconds between
S

be sendt # The probability that a neighbor should
PROBABILITY_SEND_GOSSIP = 35

TTL for gossips
TL_GOSSIP = 5 T

TTL for search

 TTL_SEARCH = 40

The number of times we

 no#, before deeming the
AT = 20 NUMBER_OF_REPE

Number of tests

ESTINGTHROUGHPUT_T

<p-SARS/OWN_math.py>

The p-SARS System (peer
Designed and implemente

gust - 15 De# 2003, 15 Au
 Master of En#

File: OWN_math.py

#import own libs
from OWN_constants import *

#import standard libs

m import rando

The class containing math utils
class math_utils:

 # The init function
 def __init__(self):
 pass

 # Function to deside if sys
 # Args:

er from 0 to 1 # probability = Integ
 %

 # Returns true if we should
ure how goo # Note: I'm not s

 def should_i_gossi

 # Fetch a random number N whe

d a = 0, b = 99 # an
 num = random.randint(0,99)

 # Decide if we should continue gossip based on supplemented

! # probability
 if num < probability:

 Continue gossip #
 #print 'Gossip'
 return true

 else:

102

p-SARS, code listing

 # Stop gossiping
 #print 'no gossip'
 return false

 # Function to generate a random number 1 - max_num, including

imal number generated
generated
_num):

mber

me

 utils

cal node

on

)
 error occured

, address):

)

n, return false
 return false

socket

ion

ss',port)

ections waiting (simultaniously)

r_tcp(self,address,bufsize,num_conn):

ocket(AF_INET,SOCK_STREAM)

t Exception,why:

 # 1 and max_num
 # Args:

 # max_num = The max
 # Returns the random number
 def generate_random(self, max
 # Return random number
 return random.randint(1,max_num)

<p-SARS/OWN_network.py>

The p-SARS System (peer-to-peer search engine)
 Designed and implemented by Rune Devik #

2003, 15 August - 15 Dece
Master of Engineering Thesis

etwork.py # File: OWN_n

import own libs

tants import * from OWN_cons
import OWN_math

import standard libs

et import * from sock
import pickle
import select

hreading import t
rt tiimpo

aining network# Class cont

class network_utils:

 # The init function
 def __init__(self):
 pass

 # Function to fetch the ip address of lo
 # Returns the ip address
 def get_local_ip(self):

eturn gethostbyname(gethostname()) r

 # Open client TCP/IP connecti
 # Args:
 # address = A tuple : ('address',port

n, or false if # Returns the connectio
client_tcp(self def open_

 try:
 c_soc = socket(AF_INET, SOCK_STREAM)
 #soc.setblocking(0)

ess c_soc.connect(addr

ion,why: except Except
 # Exceptio

turn client # Re
 return c_soc

rver TCP/IP connect # Open se
 # Args:
 # address = A tuple : ('addre
 # bufsize = size of msg buffer

number of conn # num_conn = alloved
 # Returns server

 def open_serve
 try:
 s_soc = s

 s_soc.bind(address)
s_soc.listen(num_conn)

 excep

103

p-SARS, code listing

 # Exception, return false
 print 'Error creating server socket. Could not bind to address'

ocket until it gets writeable

 otherwise
nn, timeout):

ut)

)

,why:
 # Exception, return false

 # buffer = Size of package to receive

ta from host

all

,[],[],timeout)

 'Timeout on socket.'

sending
 # Args:

 return false

 # Return server socket
 return s_soc

 # Send via TCP/IP
 # Args:
 # msg = The message to send
 # conn = TCP connection

wait on s # timeout = time to
 # Not implemented yet!
 # Returns true if ok, false
 def send_tcp(self, msg, co

 # Test to see if socket is writeable

ct.select([conn],[],[],timeo # (rd,wr,ex) = sele

 #if len(wr) != 0:
 # Socket is writeable
 try:

 # Send message
 conn.send(msg

 except Exception

 return false

 #All ok
 return true

 # Receive via TCP/IP
 # Args:

 # conn = TCP connection

 # timeout = How long to wait on da
 # Returns the message received, or false if error occured
 def receive_tcp(self, conn, buffer, timeout):

 #test to see if socket is readable
 #Use the select c
 (rd,wr,ex) = select.select([conn]

 if len(rd) != 0:
 #socket is readable
 try:
 msg = conn.recv(buffer)
 return msg

 except Exception,why:

ng : ',why print 'Error receivi

 # Socket not readable
 print
 return false

 # Close Connection
 # Args:
 # conn = connection
 # Returns true if ok, false otherwise
 def close_conn(self,conn):
 try:
 conn.close()
 except Exception, why:
 # Exception, return false
 return false

 # All ok
 return true

 # Pack message before

104

p-SARS, code listing

 # msg = message to pack
 # Returns the packed message or an error (fal
 def pack(self,msg):

se)

)

se)

ickle.loads(msg)

_REPEAT times the event is reinserted
et to true

queues):

(self)
to be sent

data
 network class

 self.queues = queues

 until it succeeds or
 times.
PEAT):

ent['to'][0],

rt all over

 try:
 # unpack message

pickle.dumps(msg message =
 except Exception, why:
 # Failed packing, return false
 return false

 # Return packed message
 return message

 # Unpack message received
 # Args:
 # msg = message to unpack

 error (fal # Retruns the unpacked message or an
 def unpack(self,msg):
 try:
 message = p
 except Exception, why:
 # Failed unpacking, return false
 return false

 # Return unpacked message
 return message

Class containing xml_rpc functions!

Not implemented yet #
class xml_rpc_utils:

 # The init function
 def __init__(self):
 pass

Thread for sending tcp ip messages

_OF# If error in sending event NUMBER
into the input queue with the error field s
class send_tcp_t(threading.Thread):

 # The init function
 # Args:
 # event_data = The event to be sendt

ues # queues = The set of system que
data, def __init__(self, event_

 # init thread
hread.__init__ threading.T

 # the event
 self.event = event_
 # Create instance of
 self.net = network_utils()

 # The input queue

 def run(self):

 # We set sent to false
 sent = false

 # Repeate the sending procedure
 # we have tried NUMBER_OF_REPEAT
 for element in range(NUMBER_OF_RE

 # Create client socket

ient_tcp((self.ev c_soc = self.net.open_cl
['to'][1])) self.event

 if c_soc == false:

cket returned, sta # If no so
 # Error connecting to client
 continue

105

p-SARS, code listing

 else:
 # pack message

 = self.ne pack

t.pack(self.event)

g, try again
onn(c_soc)

 continue

 # Packing failed, Try all over

LED!!!!'

d):

eues):
ad

(self)

()

 connection)

rk variables

ueues

 if not pack == false:

 # send message
 if not self.net.send_tcp(pack, c_soc, MAX_WAIT):
 # Failed sendin
 self.net.close_c

 else:
 # succeded sending
 sent = true
 self.net.close_conn(c_soc)
 # end for loop
 break

se: el

 self.net.close_conn(c_soc)
 continue

 if not sent:
 # Error occured. Set error, and enqueue message to input queue
 self.event['error'] = true

t(self.event) self.queues.input_q.pu
 print 'MESSAGE SENDING FAI

Thread for sending xml-rpc messages.
Not implemented yet
class send_xml_rpc_t(threading.Threa

 # The init function
 # Args:

 # event_data = the event to send
 # queues = The system queues
 def __init__(self, event_data, qu
 # init thre
 threading.Thread.__init__
 # the event to be sent
 self.event = event_data

twork class # Create instance of ne
 self.net = xml_rpc_utils

 # The set of queues
 self.queues = queues

 def run(self):
 while true:
 time.sleep(10)

Thread started' print 'XML_SENDING

The thread listening for incomming data! (TCP
class listen_t(threading.Thread):

 # Init thread
 # Args:

 # addr = The listen modules address
 # queues: The set of system queues
 def __init__(self, addr, queues):
 # init thread
 threading.Thread.__init__(self)

 # Create instance of the network utils class

 self.net = network_utils()

t some netwo # Ini
 self.NUM_CONN = TCP_NUM_CONNECTIONS
 self.ADDR = addr

 # Hold on to the system queues
 self.queues = q

106

p-SARS, code listing

 # The body of the thread!
 def run(self):

 print 'Event listen thread s

t
tarted..'

en_server_tcp(self.ADDR, TCP_BUFF_SIZE, self.NUM_CONN)

no socket returned'

o handle this
ocess_incomming_data(c_soc, self.queues)

vent

node

e to queues

 def run(self):
 # Fetch data from client

BUFF_SIZE,MAX_WAIT)

(pickle)

. If not ok, its just discarded

e. This call will block if

.put(data)

t error
_soc) != true:
et'

read to receive, unpack and enqueue the event
t holds persistant tcp/ip
ction times out defined by the

 # c_soc = The socket connecting us to another p-SARS node
 # queues = The system queues

 # Fetch server socke
 s_soc = self.net.op

 if s_soc == false:
 print '

 else:
 while true:
 # Accept incomming connection
 c_soc, addr = s_soc.accept()

 # Spawn off thread t

= pr process_thread
 process_thread.start()

ceive, unpack and enqueue the e# Thread to re
class process_incomming_data(threading.Thread):

 # The init functions
 # Args:
 # c_soc = The socket connecting us to another p-SARS
 # queues = The system queues
 # Returns nothing
 def __init__(self,c_soc, queues):
 # init thread

Thread.__init__(self) threading.

 # Keep referenc
 self.queues = queues
 # Keep reference to socket
 self.c_soc = c_soc

 # Create instance of network utils
 self.net = network_utils()

 data = self.net.receive_tcp(self.c_soc,TCP_

 # If data, enqueue it!
 if data != false:

 #Unpack data
 data = self.net.unpack(data)

e data # if unpack ok, enqueu
 if data != false:

t in input queu # Inser
 # the queue is full!
 self.queues.input_q

 # Try to close socket. If error, prin
 if self.net.close_conn(self.c
 print 'Failed closing sock

Th
A modified version above tha
connections. (Until the conne
MAX_WAIT parameter!)
class process_incomming_data_tmp(threading.Thread):

 # The init functions

 # Args:

 # Returns nothing
 def __init__(self,c_soc, queues):
 # init thread

107

p-SARS, code listing

 threading.Thread.__init__(self)

o qu # Keep reference t eues

t
_tcp(self.c_soc,TCP_BUFF_SIZE,MAX_WAIT)

nqueue data. If not ok, its just discarded

))

 This call will block if

queues.input_q.put(data)

 print error
) != true:
'

'

 for

__init__(self)

' % int(time.time())
)

(time.time())

into the
 how many
second

 self.queues = queues
 to socket # Keep reference

 self.c_soc = c_soc

 # Create instance of network utils
 self.net = network_utils()

 def run(self):
 first = false
 while(true):

n # Fetch data from clie
 data = self.net.receive

 # If data, enqueue it!
 if data != false:

 #Unpack data (pickle)
 data = self.net.unpack(data)

 # if unpack ok, e

 if data != false:
 if first:
 first = false
 data['time'] = int(time.time(

 # Insert in input queue.

 # the queue is full!
 self.

 else:
 break

socket. If error, # Try to close
 if self.net.close_conn(self.c_soc

ket print 'Failed closing soc

 print 'Persistant connection dropped on time_out!!!

A modified version of the listen module used
throughput testing

ead): class listen_tmp(threading.Thr

 # The init function
 # Args:
 # addr = The listen modules address
 # queues = The system queues

): def __init__(self, addr, queues
 # init thread

 threading.Thread.
 # Init nerwork stuff
 self.net = network_utils()
 self.NUM_CONN = TCP_NUM_CONNECTIONS
 self.ADDR = addr
 self.BUFSIZE = TCP_BUFF_SIZE
 self.queues = queues

 # The body of the thread!
 def run(self):
 print 'Started spaming node :) %d
 time.sleep(5

nt start = i

 # A for loop just pumping search events
 # system input queue. This is to test
 # search event a node can process pr.

108

p-SARS, code listing

 for i in range(THROUGHPUT_TESTING):
 # Insert in queue

 #print event
 # Create internal search event

gibberish'
129.242.13.22',9034)

alse

inated
22',9094)

ues.input_q.put(event)

'

eue

.Thread):

(self)
le

 self.queues = queues

hread started'

 rpc's and create events..

ut queue and
thread to push event out (based on it's content)

Thread):

 event = {}
3.22',9090) event['to'] = ('129.242.1

 event['type'] = TYPE_SEARCH
 event['topic'] = '
 event['reply_addr'] = ('
 event['happy'] = 20
 # Perform local search
 event['local'] = false
 event['error'] = false
 event['ttl'] = 2

'] = [] event['visited
 event['hint'] = f
 event['time'] = start
 # The supernode the query orig

2.13. event['from'] = ('129.24

 self.que

Finito spaming! print '

Receive incomming Asynchron XML RPC.
Parse data, create event and put it in inputqu
Not implemented yet
class xmlrpc_listener_t(threading

 # The init function
 # Args:
 # addr_o = The set of system addresses
 # queues = The set of system queues
 def __init__(self, addr_o, queues):
 # init thread
 threading.Thread.__init__
 # Make arguments accessab

 self.addr_o = addr_o

 def run(self):

 t print 'XML-RPC listen
 while true:

 # Fetch
 time.sleep(1000)
 pass

ead maintaining the outp# Pusher thread. Thr
ts the right # star

class pusher_t(threading.

 function # The init
 # Args:
 # queues = The event queues
 # addr_o = The set of system addresses
 def __init__(self, queues, addr_o):

 # init thread
 threading.Thread.__init__(self)

 # Set of queues
 self.queues = queues
 # Make instance of network utils

 self.net = network_utils()

 def run(self):

m = 0 nu

 while true:
 # Fetch outgoing event

 event = self.queues.output_q.get()

event # Start thread to send the

109

p-SARS, code listing

 send_thread = send_tcp_t(event,self.queues)

ghput testing.

nt queues

rap server.

arting bootstrap server!'

ance of the network_utils class
work.network_utils()

ill run
ER_PORT)

tcp(ADDR,1024,100)

st containing the last nodes that did a bootstrap.

 throughput testing to trick the p-SARS
it has a neighbour so that all events
 to this node

 send_thread.start()

A modified pusher module used in throu
class pusher_tmp(threading.Thread):

 # The init function
 # Args:
 # queues = The eve
 # addr_o = The set of system addresses
 def __init__(self, queues, addr_o):
 # init thread
 threading.Thread.__init__(self)

 # Set of queues
 self.queues = queues
 # Make instance of network utils
 self.net = network_utils()

 def run(self):
 num = 0
 s = 0
 print 'Modified pusher created!'
 while true:
 # Fetch outgoing event
 event = self.queues.output_q.get()

 if 'time' in event:
 num += 1
 if num == 1:
 s = int(time.time())

 if num == THROUGHPUT_TESTING:
 print 'Number: %d, time: %d' % (num, int(time.time())

<p-SARS/bootstrap_server.py>

The p-SARS System (peer-to-peer search engine)
Designed and implemented by Rune Devik
2003, 15 August - 15 December
Master of Engineering Thesis
File: bootstrap_server.py

import own libs
from OWN_constants import *
import OWN_network

The class containing the bootstrap server
class boot_server:

 # The init function
 def __init__(self):
 pass

 # The main method for the bootst
 def main(self):
 print 'St

 # Create inst
 net = OWN_net

 # The address where the bootstrap server w

TRAP_SERV ADDR = (BOOTSTRAP_SERVER_IP,BOOTS

 # Create server socket

et.open_server_ s_soc = n

 # Create li
 list = []

 # Needed for

 # node to think
re propagated # a

110

p-SARS, code listing

 # list.append(('129.242.13.187',9080))

no socket returned'

c_soc,1024,MAX_WAIT)

ved!

 data = net.unpack(data)

ata is ok

ister node

nsert in list
 list:

ata['addr'])

ent

ER_OF_NODES_IN_BOOTSTRAP_LIST:

tmp)

ient

 # pack it

sting p-SARS node
 node list

 # Sending failed
'

 print 'Failed closing socket'

!

t.py>

s
system

mport sys

 # Test if we indeed got the server socket

soc == 0: if s_
 # Failes setting up socket
 print '

 else:
 # Start bootstrap server
 while 1:

 # Wait on client
 c_soc, query_addr = s_soc.accept()

nt # Fetch data from clie
 data = net.receive_tcp(

 # Test if data is recei
 if data != false:

 # Unpack data (pickle)

 # Test if unpacked d
 if data != false:
 # Process the client request
 # If reg, reg
 if data['type'] == TYPE_BOOTSTRAP_REG:
 # If duplicate do not i

t in if data['addr'] no
(d list.append

 # Test if list is to long. If it is,
 # remove the oldest elem

NUMB if len(list) > MAX_
tmp = list[0]

 list.remove(

 # Create response to cl
 res = {}
 res['nodes'] = list

 res = net.pack(res)
 # Send replay to the reque

ontains the # The replay c
 if not net.send_tcp(res,c_soc,100):

 print 'Message could not be sendt

 # Try to close socket. If error, print error
 if net.close_conn(c_soc) != true:

Start the bootstrap server by calling main
if __name__ == '__main__':
 # Make instance of boot_server
 boot = boot_server()
 boot.main()

p-SARS/star<

The p-SARS System (peer-to-peer search engine)

Devik # Designed and implemented by Rune
 2003, 15 August - 15 December #

Master of Engineering Thesis
File: start.py

wn lib# Import o
mport OWN_i

import OWN_network

 import standard libs #

i

111

p-SARS, code listing

for impo# A class working as a container rtant system

 where the system listens for incomming events
e port where the system listens for incomming events
P address where the system listens for RPC communication

 where the system listens for RPC communication
address for the topic server

p_tcp, port_tcp, ip_rpc, port_rpc, ip_profile, port_profile):

p_tcp
port_tcp = int(port_tcp)
p_rpc = ip_rpc

_rpc = int(port_rpc)
ofile = ip_profile

_profile = int(port_profile)

es
tuple

cp, self.port_tcp, self.ip_rpc, self.port_rpc,

s

ver address

 It fetches the needed

e instance of network utils

 # Create instance of address object
ddr_o = addr(local_ip, sys.argv[1], local_ip, sys.argv[2], sys.argv[3],

 system thread initiates bootstrap and continously

lling main!

addresses
class addr:

 # Init method
 # Args:
 # ip_tcp = The IP address
 # port_tcp = Th
 # ip_rpc = The I
 # port_rpc = The port
 # ip_profile = The IP
 # port_profile = The port for the topic server
 def __init__(self, i

p_tcp = i self.i
 self.
 self.i
 self.port
 self.ip_pr

 self.port

 # Function to read all address

addresses as a # Returns all
 def read(self):
 return (self.ip_t
self.ip_profile, self.port_profile)

en address # Function to fetch the TCP/IP list
 # Returns only the TCP/IP listen address
 def read_listen_tcp(self):
 return (self.ip_tcp,self.port_tcp)

res # Function to fetch the XML-RPC listen add
 # Returns only the XML-RPC listen address
 def read_listen_rpc(self):
 return (self.ip_rpc,self.port_rpc)

 # Function to fetch the profile ser
 # Returns only the profile server address
 def read_profile_server_address(self):
 return (self.ip_profile,self.port_profile)

method.# This is the main
arguments and starts up the system
def main():

 if len(sys.argv) != 5:
 # To few arguments given. Print usage
 print 'USAGE : python start.py [port_tcp] [port_rpc] [ip_profile]
[port_profile]'

 else:
 # Creat
 net = OWN_network.network_utils()
 local_ip = net.get_local_ip()

 a
sys.argv[4])

 # Start system thread. The
 # maintains the neighbour list. It also initiates event processing!
 search_mechanism_t = OWN_system.system_t(addr_o)
 search_mechanism_t.start()

Starting the program by ca
if __name__ == '__main__':
 # Call main
 main()

<p-SARS/OWN_system.py>

112

p-SARS, code listing

The p-SARS System (peer-to-peer search

 by Rune Devi
 engine)

k
mber

N_network

nodes connected if any..

nd register as supernode

listen thread listens, and where the events
e sent

e bootstrap server

t.open_client_tcp((BOOTSTRAP_SERVER_IP, BOOTSTRAP_SERVER_PORT))

Designed and implemented
2003, 15 August - 15 Dece
Master of Engineering Thesis

File: OWN_system.py #

import own libs
from OWN_constants import *
import OWN_math
import OWN_network
import OWN_profiles
import OWN_event_handler

import standard libs
import mutex
import time
import Queue
import copy
import threading

The bootstrap class.
Contains the bootstrap method.
class bootstrap:

 # The init function
 # Args:
 # addr_o = The set of addresses needed by the system

: def __init__(self, addr_o)
 instance of OW # Make

 self.net = OWN_network.network_utils()

 # Fetch the address to the listen module

.read_listen_tcp() self.ADDR = addr_o

 # Function to do bootstrap or only fetch neighbours.

ng the bootstrap server # This is done by contacti
Args: #

 # neighbours_o = the neighbor set
 # do_reg = A boolean telling us if we should register or only
 # fetch neighbours
 # Returns number of additional
 def bootstrap(self, neighbours_o, do_reg):
 num_connected = 0

 if do_reg:

ver a # Contact central ser
 # create request
 req = {}
 req['type'] = TYPE_BOOTSTRAP_REG
 # The address where the

uld b # to this node sho
 req['addr'] = self.ADDR

 else:
 # Only request the nodes registered at th
 req = {}
 req['type'] = TYPE_FIND_NEIGHBOURS

 # Pack request (pickle)
 req = self.net.pack(req)

 # create client socket
 c_soc = self.ne

 if c_soc != false:

 # send message
 self.net.send_tcp(req, c_soc, MAX_WAIT)

 # In response of register get the nodes registered!
 res = self.net.receive_tcp(c_soc, TCP_BUFF_SIZE, MAX_WAIT)

 # Close connection

113

p-SARS, code listing

 self.net.close_conn(c_soc)

 # unpack data

t.unpack(res) res = self.ne

 # Get current time as a time stamp. (An integer)
 timestamp = int(time.time())

 # Test if data is unpack
 if res != false:

ed ok

ode

mber of neighbours is reached. Break out

ected >= NUMBER_OF_NEIGHBOURS_WANTED:

otstrap FAILED'

our set

et.
 should be pinged

Neighbour set, topic set, hint set and the

ct called sets.)

ours_o, true)

g bootstrap: %d' % connected_nodes

eriodically updating the topic set
_set_t(self.queues, self.sets,

 # Traverse list and try to insert the n
'nodes']: for node in res[

 # If the desired nu

oop # of for l
 if num_conn
 break

 # Try to insert node, but not if it is our selves
 if node != self.ADDR:
 tmp = neighbours_o.append(node)

 tmp == true: if
 # node was inserted!

 num_connected = num_connected + 1

 else:
 # Could not unpack data. No nodes fetched
 print 'Unpacking event from bootserver failed!'
 return false

 else:
 # Could not create client socket.
 print 'Could not connect to bootserver. Bo
 return false

 # Return number of nodes inserted into the neighb
 return num_connected

The system thread. Keeps track on the neighborhood s
Removes persumed dead nodes and pings nodes when they
class system_t(threading.Thread):

 # The init function
 # Args:

 # addr_o = The system address set
 def __init__(self, addr_o):
 # init thread
 threading.Thread.__init__(self)

 # Hold on to the addresses
 self.addr_o = addr_o

 # Create the sets needed.
 # pending search set.
 # (Encapsulated in one obje
 self.sets = sets()

 # Make instance of bootstrap class
 self.bootstrap = bootstrap(addr_o)

 # Create the set of all event queues!

 called queues.) # (Encapsulated in one object
 self.queues = event_queues()

 def run(self):
 # Do bootstrap
 connected_nodes = self.bootstrap.bootstrap(self.sets.neighb

cted durin print 'nodes conne

 # Start the process of p
 update_topic_set_t = OWN_profiles.update_topic
self.addr_o)
 update_topic_set_t.start()

114

p-SARS, code listing

 incomming # Create and start
WN_event_han

 event handling thread
dler.event_handler_t(self.queues, self.sets, self.addr_o)

st with data from neighbours, we
!

g testing
e gossip events wont have time

ulating the hint sets.

all_neighbours(event,self.queues)

ighbours_o.read()

 # print '\n######### NEIGHBOUR ###########'

###'

eighbour list.
ct = self.sets.neighbours_o.read()

es should be removed. If no pong message has been

inged == true)

 # Debug
 # print 'Node removed from neighborhood set.'

nt element

lement):

nts removed from hint set'

 t = O
 t.start()

i # To initialize the local hint l
 # need to request their hint sets and topic sets
 # Create event
 event = {}
 event['type'] = TYPE_GOSSIP
 event['from'] = self.addr_o.read_listen_tcp()
 # This is a get event!
 event['get'] = true
 # To support error on sending
 event['ttl'] = 1
 event['push'] = false
 event['error'] = false
 # Send event to all neighbours of this node!

 like we do durin # If all neighbours are started at once,
 th # we should put a delay here or else

 # to propagate through the net, pop
0) # time.sleep(1

 self.sets.neighbours_o.send_event_to_

 # Continue to maintain neighbor set
 while true:
 # Print all sets on each system update for debugging!!
 # hint_set = self.sets.hint_o.read_all()
 # topic_set = self.sets.topic_o.read_all()
 # neighbour_set, not_important = self.sets.ne

 #print '############ HINT #############'
 #print hint_set
 #print '###############################'

TOPIC ############' # print '\n######
 # print topic_set

 # print '###############################'

 # print neighbour_set
 # print '############################

 # Sleep a while before updating system
 time.sleep(SECONDS_BEFORE_SYSTEM_UPDATE)

 # Fetch n

di list,

 # Test if some nod
received
 # since last system-update --> remove (p
 del_list = []
 for element in list:

lement][2] pinged = dict[e

 if pinged == true:
 # Record which nodes to delete. If we delete them directly, the
 # traversal of the list will be incorrect
 del_list.append(element)

 # Remove node from neighbor set, and remove hints associated with
 # this node
 for element in del_list:
 # Remove neighbour

 if self.sets.neighbours_o.remove(element):

 # pri
 pass

 # Remove hints
 if self.sets.hint_o.remove(e
 # Debug
 # print 'Hi

115

p-SARS, code listing

 # print element
 pass

 # Fetch current time

mp = int(time.time()) timesta
 # Refresh neighbour list.

self.sets.neighbours_o.read()

ict[element][1]

d a ping message
ng > SECONDS_BEFORE_PING and dict[element][2] ==

ng node, create message

ent][0]
r_o.read_listen_tcp()

= 'ping'

 if self.sets.neighbours_o.update_as_pinged(element, true) == true:

'Neighbor updated as pinged'
Enqueue message only if we could updated node as pinged
elf.queues.output_q.put(ping)

server

 false)

NEW NEIGHBOURS FOUND %d' % num

urrently spin-locks.
###############################

hold the event queues needed by

UE_MAXSIZE)

IZE) # The queue for incomming search

_q = Queue.Queue(QUEUE_MAXSIZE) # The queue for incomming gossip

AXSIZE) # The queue for incomming result

AXSIZE) # The queue for incomming system

needed in the program

neighbours()
tance of topic set utils

ics()

 list, dict =

 for element in list:
 last_ping = d

 # Test if we should sen

- last_pi if timestamp
false:
 # We must pi
 ping = {}
 ping['to'] = dict[elem
 ping['from'] = self.add
 ping['type'] = TYPE_SYSTEM
 ping['topic']

error'] = false ping['

 # Update node as pinged

 # print

 s

 # If not enough neighbors, try to fetch more by asking the
 # bootstrap
 if len(list) < NUMBER_OF_NEIGHBOURS_WANTED:
 # Fetch more neighbours
 num = self.bootstrap.bootstrap(self.sets.neighbours_o,

hbours added, if any # Print the number of neig
um > 0: if n

 print '

Helper functions to protect shared variables
The locking mechanism is c
###########################

reate and # A class to c
the system
class event_queues:

 # Init queues
 def __init__(self):
 # Create output queue
 self.output_q = Queue.Queue(QUE

ate input queue # Cre
 self.input_q = Queue.Queue(QUEUE_MAXSIZE)
 # Create event queues
 self.search_q = Queue.Queue(QUEUE_MAXS
events
 self.gossip
events
 self.result_q = Queue.Queue(QUEUE_M
events

ueue.Queue(QUEUE_M self.system_q = Q
events

A class to hold the instances of the sets
class sets:

 # Init sets
 def __init__(self):

neigbour set utils # Create instance of
rs_o = self.neighbou

 # Create ins
 self.topic_o = top
 # Create instance of hint set utils
 self.hint_o = hints()

116

p-SARS, code listing

 # Create instance of pending_search utils

= pending_search() self.pending_o

Class to controll the access to the neighbour set

ex
ex()

d to this ping-time
or last ping

se if node not in neighbour set
:

 it does, insert timestamp

, time, false]

unpinged!

 true if node is pinged, false if node doesn't have pending ping message

d):

][2] = true

me[node][2] = false

 # Returns the whole set

()

 the sets in question!!

class neighbours:

 # The init function
 def __init__(self):

 # The neighbour set
 self.neighbours = []
 # The corresponding ping time
 self.ping_time = {}

mut # Initialize the
 self.m = mutex.mut
 # Initialize math utils
 self.math = OWN_math.math_utils()

 # Function to accquire mutex
 def spin_lock(self):

 while not self.m.testandset():
 pass

 # Function to relase mutex
 def unlock(self):
 self.m.unlock()

 # Set update time!
 # Args:

e # node = The node connect
imestamp f # time = The t

 # returns true when value set, fal
 def set_ping_time(self, node, time)
 # Set lock
 self.spin_lock()

 if node exists. If # Test
 if node in self.neighbours:
 self.ping_time[node] = [node
 # unlock mutex
 self.unlock()
 return true

 else:
 # node does not exist
 # unlock mutex
 self.unlock()
 return false

nged or # Set node as pi
 # Args:

 # node = the node to be updated in ping_time dictionary
 # pinged =
 # returns true when done
 def update_as_pinged(self, node, pinge

 if pinged:
 # Set node as pinged

node self.ping_time[
 return true

 else:
 # set node as not pinged
 self.ping_ti
 return true

 # Function to fetch the neighbour set, and the ping times

 def read(self):
 # Set lock
 self.spin_lock

 # Return copies of

117

p-SARS, code listing

 res = (copy.deepcopy(self.n

 # unlock mutex

eighbours), self.ping_time.copy())

:

ighbors already
hbours)

_NEIGHBOURS_WANTED:

not in self.neighbours:

nd(node)

),false]

icate

)

rom the neighbourhood set.
 ping_time dictionary

node]

des in set

 self.unlock()
 return res

 # Function to add a new neighbor. Neighbor is added if
 # its not in the neighbour set already, and if
 # its not already full.
 # Args:
 # node = the new super-node to add to set

rted and false if # Returns duplicate if exists, true if inse
ugh neighbors # we already have eno

 def append(self, node)
 # Set lock
 self.spin_lock()

have enough ne # Test if we
 num = len(self.neig

 if num <= NUMBER_OF

 # Only add node if its not already added
 if node
 # Add as neighbour
 self.neighbours.appe
 # Set ping-time
 self.ping_time[node] = [node,int(time.time()

 # Unlock mutex
 self.unlock()
 return true

 else:
 # We have a dupl

 # unlock mutex
 self.unlock(
 return duplicate

 else:
 # We have enough neighbors
 # unlock mutex
 self.unlock()
 return false

 # Function to remove a node f
 # Also remove the entry in the
 # Args:
 # node = the node to remove
 # Returns true if ok, false otherwise
 def remove(self, node):
 # Set lock

lock() self.spin_

 try:
 # Remove it from neighbor set
 self.neighbours.remove(node)
 # Remove the ping time entry
 del self.ping_time[
 except Exception, why:

 # unlock mutex

 self.unlock()
 return false

 # unlock mutex
 self.unlock()
 return true

unt number of neighbours in set # Function to co
 # Returns number of no
 def count(self):
 # Set lock
 self.spin_lock()

118

p-SARS, code listing

 num = len(self.neighbours)

k random neighbor to be used in Random Walk
to find a neighbour not visited, but if that fails --> pick

 no neighbour is found
:

neighbours not already
ry

 Fetch those not already

rs:

element)

list)

not visited
andom number between 1 and length

 = self.math.generate_random(length)

and return it
our = self.neighbours[random_int - 1]

ck mutex
f.unlock()

 return neighbour

random number between 1 and num
 = self.math.generate_random(length)

etch neighbour and return it
s[random_int - 1]

s

ighbours(self, event, queues):

ress in self.neighbours:

 # unlock mutex

lf.unlock() se
 return num

 # Function to pic
 # Try
 # random among them all
 # Returns a random neighbour, or false if

ndom_neighbour(self, visited) def pick_ra
 # Set lock
 self.spin_lock()

 # Fetch number of neighbours
 num = len(self.neighbours)

 if num == 0:

 # unlock mutex
 self.unlock()
 return false

 else:
 # Create list to hold
 # visited by the que
 list = []
 # Traverse neighbours.
 # visited
 for element in self.neighbou

 element not in visited: if
 # Node not visited. We add it to the list
 list.append(

 length = len(

 if length > 0:

ill neighbours # There is st
e r # generat

 random_int

 # Fetch neighbour
 neighb

lo # un
 sel

 # All neighbours are visited.
 # Pick random node between all of them
 else:
 length = len(self.neighbours)

nerate # ge
 random_int

 # F
 neighbour = self.neighbour

 # unlock mutex
 self.unlock()
 return neighbour

 # Function to send a event to all neighbour
 # Args:
 # event = The event to send
 # queues = The system event queues

 # Returns true when done
 def send_event_to_all_ne
 # Set lock
 self.spin_lock()

 # Traverse all neighbours!
 for add

119

p-SARS, code listing

 tmp = event.copy()

ress
t!

_q.put(tmp)

 the topic set

existing topics and the publishers on each

lients unique id (e-mail address) to it's

lf.mapping = {}

esses
ail addresses

 tmp['to'] = add
 # Enqueue even

 queues.output

 # Unlock

 self.unlock()
 return true

Class to controll access to
class topics:

 # The init function
 def __init__(self):

 # Dictionary to hold
 # topic (topic set)
 self.topics = {}

 # Dictionary to map the c

 # current ip/port!
 se

 # Initializing the mutex
 self.m = mutex.mutex()

 # Function to accquire mutex
 def spin_lock(self):
 while not self.m.testandset():
 pass

 # Function to relase mutex
 def unlock(self):
 self.m.unlock()

fetch the whole topic set # Function to
 # Returns the topic set
 def read_all(self):
 self.spin_lock()

 ret = self.topics.copy()

 self.unlock()
 return ret

 # Function to read who has a specific topic.
 # Args:
 # topic = The topic we are searching for
 # Returns the publishers if any, false if no one
 def read(self, topic):
 # Set lock
 self.spin_lock()

 list = []

 # See if the topic is registered.
 if topic in self.topics:
 # The topic is found. Return list with addr

ns that we have to map id to e-m # This mea
 # before we return the list

 for item in self.topics[topic]:
 # Test if mapping is available
 if item in self.mapping:
 list.append(self.mapping[item])

 # unlock mutex
 self.unlock()
 return list

 # Topic is not registered!
 else:

120

p-SARS, code listing

 # unlock mutex
 self.unlock()

 return false

s the clients of the WRS super-node # Function to update the topic
 # publishes on.
 # Args:
 # list = The list of publishers! Also contains what they publish on!
 # Returns two lists : new_topic_list and del_topi
 def update(self, list):

c_list

r element in list:

'])

oved. Do we need

ist.append(id)

t

asn't changed.

mapping[id] = address

'interests']:

c. Record it
nd(topic)

 new entry in dictionary
pics[topic] = []
de

pics[topic].append(id)

 new topic

Add node if it's not already added

append(id)

ting topics to see if this publisher
moved from one of them!

interests']:

eck if the node is registered. If it is, remove it
in self.topics[topic]:

 # Register it for removal afterwards!
 # But ensure that it's not already registered for removal.

 # This may occure if the same person is registered twice in

 # Set spin-lock
 self.spin_lock()

 # Create a few lists
 del_list = []
 publisher_list = []
 new_topic_list = []
 del_topic_list = []
 del_publisher_list = []

 # Traverse the publishers!
 fo
 # Create replay address
 address = (element['return_address'],element['return_port
 id = element['email']

 # Save id's so we can find out if any has to be rem
this???
 publisher_l

 # create mapping if it does not exis
 if id not in self.mapping:

 self.mapping[id] = address

 # If mapping exist check that it h
 # If mapping changed, update with new value!
 else:
 if self.mapping[id] != address:
 # update
 self.

 # Traverse topics
 for topic in element[

 # Test if it is a new topic
 if topic not in self.topics.keys():
 # We have a new topi

ic_list.appe new_top
 # Create
 self.to
 # Add no

 self.to

 # It's not a
 else:
 #
 if id not in self.topics[topic]:
 self.topics[topic].

sis # Traverse ex
 # should be re
 for topic in self.topics.keys():
 if topic not in element['

 # The node is not producing on this topic
 # Ch
 if id

the
 # WRS system

121

p-SARS, code listing

 if (topic,id) not in del_list:

 del_list.append((topic,id))

el_list:

].remove(element[1])
ne producing on topic, or should we remove

0]]) > 0:

ement[0]]
ic_list
ement[0])

ing:

for deleting
isher_list.append(self.mapping[element])

pic set after update
Topic set ##################'

#################'

st, del_topic_list)

t id (e-mail address)
 available, false otherwise

elf, id):

s
.mapping[id]

 address

ex

he hint set

 # Traverse del_list and remove nodes that no longer produces on a topic!
 for element in d
 # Remove item
 self.topics[element[0]
 # Is there still someo
 # the topic as a whole??
 if not len(self.topics[element[
 # Remove topic
 del self.topics[el
 # Add it to the del_top
 del_topic_list.append(el

 # Traverse publisher list, and remove publishers that no longer exists
 for element in self.mapp

 in publisher_list: if element not
 # Record

 del_publ
 # Delete

lement in del_publisher_list: for e
 del self.mapping[element]

 # Debug, print to
 print '###########
 print self.topics
 print '############################

 # unlock mutex
 self.unlock()
 return (new_topic_li

 # Function to map between id and address
 # Args:
 # id = the unique clien
 # Returns the address if
 def map_id_to_address(s
 # Set lock
 self.spin_lock()

 # Test if mapping exist

ping: if id in self.map

 # Fetch addres
 address = self

 # unlock mutex

 self.unlock()
 return

 # unlock mut
 self.unlock()
 # No mapping found!
 return false

 # Functions to count number of topics
 # Returns number of topics
 def count_topics(self):
 # Set lock
 self.spin_lock()

 num = len(self.topics)

ck mutex # unlo
 self.unlock()

 return num

Class to controll access to t

122

p-SARS, code listing

class hints:

 # The init function

tex
 = mutex.mutex()

utex

ic topic.

ng for
y, false if no one

:

topic])

registered!

mutex

 registered under

, true otherwise

ts, append node
o test if the hint is already known

f.hints[topic]:

 mutex
lock()

 def __init__(self):

 # The hint set
 self.hints = {}
 # Initializing the mu
 self.m
 # Initializing math utils
 self.math = OWN_math.math_utils()

 # Function to accquire mutex
 def spin_lock(self):
 while not self.m.testandset():
 pass

 m # Function to relase
 def unlock(self):

 self.m.unlock()

n to read who might have a specif # Functio
 # Args:

 searchi # topic = The topic we are
 # Returns the hints if an
 def read(self, topic)
 # Set lock
 self.spin_lock()

 # See if the topic is registered.
 if topic in self.hints:
 # The topic is found. Return list
 list = copy.deepcopy(self.hints[

 # unlock mutex
 self.unlock()

turn list re

 # Topic is not
 else:
 # unlock
 self.unlock()
 return false

 # Function to read all hints saved locally
 # Returns entire hint dictionary!
 def read_all(self):
 # Set lock
 self.spin_lock()

 # Copy dictionary
 ret = self.hints.copy()

 # Unlock
 self.unlock()
 return ret

 # Function to add hints to hint set
 # Args:
 # topic = the topic where the hint should be

uper-node to register # node = The s
 # Returns duplicate if already registered
 def append(self, topic, node):
 # Set lock
 self.spin_lock()

 # Test if topic exists
 if topic in self.hints:

 # The topic exis
 # But we need t
 if node in sel
 # Gossip already known
 # unlock
 self.un

123

p-SARS, code listing

 retur

n duplicate

 else:

ode)

k()

 and append node
ic] = []

done

de):

e it!

 present. We delete it
[element].remove(node)

ved

node):

t

ts[topic]:
under topic, remove it

lf.hints[topic].remove(node)

 return false

 self.unlock()

 # Gossip not known

append(n self.hints[topic].
mutex # unlock

 self.unloc
 return true

 else:
 # The hint is under a new topic
 # Create list
 self.hints[top
 self.hints[topic].append(node)

 # unlock mutex
 self.unlock()

 return true

 # Function to remove a node from hint set
 # Args:

 # node = The super-node to remove
 # Returns true when
 def remove(self, no
 # Set lock
 self.spin_lock()

 delet # Traverse all topics, if node there
 # Fetch all topics in dictionary
 topics = self.hints.keys()

 for element in topics:

in self.hints[element]: if node
 # Node is
 self.hints

 # unlock mutex

() self.unlock

 return true

 # Function to remove super-node from specific hint
 # Args:

e should be remo # topic = topic under which the super-nod
 # node = The super node
 # Returns true when done or false if it does not exist
 def remove_one(self, topic,
 # Set lock
 self.spin_lock()

 # Test if topic exists
 topic_list = self.hints.keys()

 # if it really is there, remove i
 if topic in topic_list:

 if node in self.hin
 # node found
 se

 else:
 # node not found under topic
 # unlock mutex
 self.unlock()

 return false

 # If topic does not exist
 else:
 # unlock mutex

 self.unlock()

 # unlock mutex

124

p-SARS, code listing

 return true

 # Function to read the whole hint set

t set # Returns the whole hin
 def read_all(self):
 self.spin_lock()

 # Create copy of the hint
 hint_copy = self.hints.cop

 set
y()

er of topics which we have

opics

ery

s
t has the topic in question if any, false otherwise

self, topic, visited):

)

ist)

rate_random(length)

on topic. Unlock and return false!

ess for the pending search set

 self.unlock()

t_copy return hin

 # Function to count the numb
 # hints for
 # Returns number of t
 def count(self):
 # Set lock

spin_lock() self.

 num = len(self.hints)

 # unlock mutex
 self.unlock()

 # Function to pick random hint node to be used in Hint search, but
 # exclude nodes already searched by the qu
 # Args:

ing on # topic = The topic we are search
node # visited = list of visited

 # Returns a random node tha
(def pick_random_hint_node

 # Set lock
 self.spin_lock(

 # If topic exists, traverse hints and find those not already
 # visited
 if topic in self.hints:
 list = []
 for element in self.hints[topic]:
 if element not in visited:
 # element not already visited! Add it to
 # potential visit list!
 list.append(element)

 length = len(l

 if length > 0:

t visited. Pick one # We still have hints no
and return it! # random

 random = self.math.gene
 # Fetch node

 node = list[random - 1]

 # Unlock and return node
 self.unlock()
 return node

 else:
 # Unlock, and return false
 # All hints are already visited
 self.unlock()
 return false

 else:
 # No hint found
 self.unlock()
 return false

Class to controll acc
class pending_search:

125

p-SARS, code listing

 # The init function
 def __init__(self):

 # init dictionary over pending searches
 self.pending = {}
 # Create mutex
 self.m = mutex.mutex()

 # Function to accquir
 def spin_lock(self):

e mutex

pending, false if not
ient, topic):

 self.pending[client]:
ch is pending

te pending search

tered under

 this search is satisfied
 be returned when finished

nding!
r):

g search on this client
ing:

g[client] = {}

c is registered on client. If not register
 if not topic in self.pending[client]:

{}

'] = []

int(time.time())

c]['happy'] = happy

y pending!

 while not self.m.testandset():
 pass

 # Function to relase mutex
 def unlock(self):
 self.m.unlock()

 # Function to test if search is still pending
 # Args:
 # client = The search is registered under this client

topic of the search # topic = The
 # Returns true if search is
 def search_pending(self, cl
 # lock mutex
 self.spin_lock()

f.pending: if client in sel
 if topic in
 # Sear
 # unlock mutex
 self.unlock()
 return true

 # unlock mutex
 self.unlock()
 return false

 # Function to crea
 # Args:
 # client = The client where the search should be regis
 # topic = The topic of the search
 # happy = The number of hits needed before
 # reply_addr = The address where the search should
 # Return true when done. Returns false if search already is pe
 def create_pending_search(self, client, topic, happy, reply_add
 # lock mutex
 self.spin_lock()

 # Test if we have a pendin

d if not client in self.pen
 # Create it

 self.pendin

 # Test if topi

 # Create it
 self.pending[client][topic]=
 # Create list to put results
 self.pending[client][topic]['results
 # Create time stamp
 self.pending[client][topic]['timestamp'] =
 # Create happy entry

ing[client][topi self.pend

 # Search is alread
 else:
 # unlock mutex
 self.unlock()
 return false

 # unlock mutex
 self.unlock()
 return true

126

p-SARS, code listing

search # Function to append results to a pending
 # Args:

 # client = the search is registered under this client

 be added
, or false if search not pending!

g:

earch is active. Add results
ending[client][topic]['results'] =

 true

exist anymore!

 is satisfied

istered under this client
ch

atisfeid, false otherwise
ient, topic):

[client]:
ive. Count results

self.pending[client][topic]['results'])

ing[client][topic]['happy']:

ending search

ent

 # Returns true if search removed, false otherwise

s!

lient][topic]
if we should remove client to.
is done as long as the client does not have any

her pending searches!

 # topic = the search topic
o # results = the results t

true when done # Returns
 def append(self, client, topic, results):

 # lock mutex
 self.spin_lock()

 # Test if we have a pending search on this client
 if client in self.pendin
 if topic in self.pending[client]:
 # The s
 self.p
self.pending[client][topic]['results'] + results

 # Debug

 # print self.pending[client][topic]['results']

 # unlock mutex
 self.unlock()
 return

 # Search does not
 # unlock mutex
 self.unlock()
 return false

 # Function to discover if search
 # Args:
 # client = the search is reg

on sear # topic = the topic
 # Returns true if s

l def happy(self, c

 # lock mutex
 self.spin_lock()

 # Test if we have a pending search on this client
 if client in self.pending:
 if topic in self.pending

rch is act # The sea
 num = len(

 if num >= self.pend
 #unlock mutex
 self.unlock()
 return true

 #unlock mutex
 self.unlock()
 return false

 # Function to remove p
 # Args:
 # client = The cli

 # topic = The topic on search to be removed

 def remove(self, client, topic):

 # lock mutex
 self.spin_lock()

 # Test if it exist

 if client in self.pending:
 if topic in self.pending[client]:

lete it # Search exists, de
 del self.pending[c

 # Test
 # This
 # ot

127

p-SARS, code listing

 if not len(self.pending[client]) > 0:

opic did not exist.

ove client!
n(self.pending[client]) > 0:

self.pending[client]

es on a node.
 persumed dead!

lf.unlock()

lts from a pending search
 # Args:

ch is registered under

 # Retruns results or false if the search does not exist

ing:
c in self.pending[client]:

ts
nding[client][topic]['results']

lock mutex
f.unlock()

 res

ding
utex
k()

n false

d all pending searches
dictionary

copy()

 del self.pending[client]

lock mutex # Un
 self.unlock()
 return true

 # The search t
 else:
 # Test to see if we should rem
 if not le

 del

 # Search did not exist
 # Unlock mutex
 self.unlock()
 return false

earch # Function to remove all pending s
 # Used when querying p-SARS node is
 # Args:
 # node = Remove all pending searches on this node
 # Returns true when done
 def remove_all(self, node):

 # lock mutex
 self.spin_lock()

 # Test if it exists!
 if node in self.pending:
 # Delete
 del self.pending[node]

Search did not exist #
 # Unlock mutex
 se
 return true

 # Function to read resu

 # client = The node where the sear
 # topic = The topic of the search

 def read(self, client, topic):
 # lock mutex
 self.spin_lock()

 # Test if it exists!
 if client in self.pend

 if topi
 # Fetch resul

 = self.pe res
un #

sel
 return

rch not pen # Sea

 # unlock m
.unloc self

 retur

 # Function to rea

s entire # Return
 def read_all(self):
 # lock mutex
 self.spin_lock()

 # Create copy of the pending search set

 ret = self.pending.

 #unlock mutex
 self.unlock()
 return ret

128

p-SARS, code listing

 # Function to process pending searches and figure out which one's

, empty list if none

opic]['timestamp']) >

arch to terminated list
 topic, tmp[client][topic]['results']))

ent[1]]
arches on this client.

)

cember

ork

libs

 time

vent handling

ets

es
addr_o):

s

 # to terminate
ated if any # Returns the list of searches termin

 def process_pending(self):
 # lock mutex
 self.spin_lock()

 # Create list of terminated searches
 terminated = []

 # Get time
 current_time = int(time.time())

 tmp = self.pending.copy()

 # Iterate through pending searches
 for client in tmp:

 for topic in tmp[client]:
 # Test if search has timed out

 - tmp[client][t if (current_time
IT_ON_RESULTS: SECONDS_TO_WA

 # append se
 terminated.append((client,

 # Delete terminated searches
 for element in terminated:
 del self.pending[element[0]][elem
 # See if there are more pending se
 # if not delete it
 if not len(self.pending[element[0]]) > 0:
 del self.pending[element[0]]

 # unlock mutex
 self.unlock()
 return terminated

<p-SARS/OWN_event_handler.py>

The p-SARS System (peer-to-peer search eng

ed by Rune Devik
ine

Designed and implement
 2003, 15 August - 15 De#

Master of Engineering Thesis
File: OWN_event_handler.py

import own libs

tants import * from OWN_cons
import OWN_netw
import OWN_system
import OWN_math

import standard
import Queue
mport threading i

import

The class containing function for e
class event_handler:

 Init function #
 # Args:

 The system s # sets =
 # queues = The event queues

ress # addr_o = The system add
 def __init__(self, sets, queues,

ets # Hold on to s
 self.sets = sets

 hold on to queues #
 self.queues = queues
 # Hold on to addresse

129

p-SARS, code listing

 self.addr_o = addr_o

 # Start the threads proc

r
essing these queues

ocessing
ss_search_t(self.queues, self.sets, self.addr_o)

earch_thread.start()

o)

)

t and enqueue it

alse if error

 self.queues.gossip_q.put(event)

ULT:
e it

 event['type'] == TYPE_DEBUG:

NT'

t)

nt. No action taken on : ' + event[heading]

ion

ent queues

 # Start search event p
 search_thread = proce

 s

 # Start gossip event processing
 gossip_thread = process_gossip_t(self.queues, self.sets, self.addr_
 gossip_thread.start()

 # Start result event processing
 result_ s_result_t(self.queues, self.sets, self.addr_othread = proces
 result_thread.start()

 # Start system event processing
 system_event_thread = process_system_t(self.queues, self.sets, self.addr_o)
 system rt() _event_thread.sta

tion to identify even # Func
 # on the right event queue
 # Args:
 # event = incomming event
 # Return true, if all ok, f
 def identify_event_enqueue(self, event):

 TYPE_SEARCH: if event['type'] ==
 # We have a search, enqueue it
 # print 'WE HAVE A SEARCH EVENT'
 self.queues.search_q.put(event)

 elif event['type'] == TYPE_GOSSIP:

ue it # We have a rumor about a publisher, enque
 # print 'WE HAVE A GOSSIP EVENT'

 elif event['type'] == TYPE_RES
 # We have a result, enqueu
 # print 'WE HAVE A RESULT EVENT'
 self.queues.result_q.put(event)

 elif
 # We have a debug event, print it
 # print 'WE HAVE A DEBUG EVE
 print event

 elif event['type'] == TYPE_SYSTEM:

t # We have a system event, enqueue i
ENT' # print 'WE HAVE A SYSTEM EV

 self.queues.system_q.put(even

 else:
 print 'UNKNOWN eve

alse return f

 # All ok
 return true

The event handler thread.
Initiates the event_handler class
and starts the listen and pusher thread
class event_handler_t(threading.Thread):

 # The init funct
 # Args:
 # queues = The ev
 # sets = The system sets
 # addr_o = The system addresses

__(self, queues, sets, addr_o): def __init
 # init thread
 threading.Thread.__init__(self)

 # Hold on to queues

130

p-SARS, code listing

 self.queues = queues
 # Hold on to sets
 self.sets = sets
 # Hold on to addresses

o self.addr_o = addr_

 def run(self):
 # Init OWN_event_handler
 self.event = event_handler(self.sets, self.queues, self.addr_o)

 # Create and start up a listen thread

self.addr_o.read_listen_tcp(), listen_thread = OWN_network.listen_t(
self.queues)
 listen_thread.start()

 # Create and start up RPC listen
 #xmlrpc_thread = OWN_network.xmlr

ing thread!!
pc_listener_t(self.addr_o.read_listen_rpc(),

_thread = OWN_network.pusher_t(self.queues,self.addr_o)

eue

search events
read):

et)

Fetch incomming search event
get()

Add it as pending!
add a few entries in the dictionary

self.queues)
 #xmlrpc_thread.start()

 # Create and start up pusher thread.

 # This thread processes the system-output queue
 pusher
 pusher_thread.start()

 # Receive incomming message, identify it and place it in right queue
 # for processing.
 while true:
 # Fetch from queue when data ready
 event = self.queues.input_q.get()

qu # process event, and enqueue it in right
dentify_event_enqueue(event) self.event.i

####################################
Threads to process event queues! #

##################################

The thread processing incomming
class process_search_t(threading.Th

 # Args:
 # queues = The system event queues
 # sets = The system sets
 # (Neighbour set, Topic set, Hint set and pending search s

 (ip,port) tuples # addr_o = The set of system addresses.
 def __init__(self, queues, sets, addr_o):
 # init thread
 threading.Thread.__init__(self)

 # The queues
 self.queues = queues
 # The sets
 self.sets = sets
 # Hold on to the addresses
 self.addr_o = addr_o

 # Fetch the listen module address

 self.ADDR = addr_o.read_listen_tcp()

 # Create instance of the network utils class
 self.net = OWN_network.network_utils()

 def run(self):

 true: while

 data = self.queues.search_q.

 # If search originates from local client.
 # And
 if data['local']:
 # Set pending

131

p-SARS, code listing

 self.sets.pending_o.create_

ply_
pending_search(data['reply_addr'],
addr'])

e query originated.

message may just have failed
urated.

'to'][1])

ement TTL, even if the event failed to be sent. (Error = true)
 node is disconnected

nd!

ot perform local search if error,
m this node or this node already is

in data['visited'])):
t.

_local = self.sets.topic_o.read(topic)

ed

ot performed a local search. No results

data['topic'], data['happy'], data['re
se # Set error to fal

 data['error'] = false
 # Set ttl
 data['ttl'] = TTL_SEARCH
 # Create visited list
 data['visited'] = []
 # This search is not based on hint
 data['hint'] = false
 # Set from address. This is the super-node where th
 # The reply_addr is the super-nodes client that issued the request
 data['from'] = self.ADDR

 # Create debug event
 debug = {}
 debug['to'] = DEBUG_ADDRESS
 debug['type'] = TYPE_DEBUG
 debug['from'] = self.ADDR

 = %d' % debug['debug'] = 'Search topic: %s. TTL
(data['topic'],data['ttl'])

 # Test if it is an error from previous sent search message
 # If it is, update neighbor list and hint list
 if data['error']:
 # Remove node as neighbour. BUT the
 # because the neighobur is currently satt
 self.sets.neighbours_o.remove(data['to'])

 # Remove hints recorded on that node.
 self.sets.hint_o.remove(data['to'])

 # DEBUG
 debug['debug'] += ' (ERROR) '

'to'][0], data[#print 'ERROR RELAYING SEARCH: %s %d' % (data[
 #print 'Neighbour removed from neighbour set'

 # Fetch topic
 topic = data['topic']

 # Decr
 # This is to prevent looping indefinitly when the
from all
 # others! We even decrement the TTL first time arou
 data['ttl'] = data['ttl'] - 1

o n # Performe local search. But d
 # the search is originating fro
visited!!
 result_local = false
 local_search = false

or'] or data['local'] or (self.ADDR if not (data['err
 # Search locally on topic, and get resul
 result
 local_search = true
 # DEBUG
 debug['debug'] += ' (LSearch) '

ot if already add # Add this node as visited, but n
 if not (self.ADDR in data['visited']):
 data['visited'].append(self.ADDR)
 # DEBUG

 ' debug['debug'] += ' (+Visited)

 # Calculate number of hits
 if result_local != false:

= len(result_local) num_result_local

 else:
 # We have n

132

p-SARS, code listing

 # are therefore available
 num_result_local = 0

 # Test if the search was based on a hint. If so we must send a message

is should

s the receiver of this message
en(data['visited']) - 1

t get a list index out of range!
>= 0:

ast_visited_index]

'] = []

om hint lists!

ossip['death_gossip'].append(data['topic'])

gossip['gossip_dict'] = self.sets.hint_o.read_all()

e hint) '
' %

ue is 0, search is satisfied

h not yet satisfied and TTL != 0

t include

pick_random_hint_node(topic,

e != false:
ess to whom search is headed for

hint'] = true
'] = false

r'] = false

'

rch is degenerated to plain Random Walk
 # Fetch random neighbour for random Walk.
random_node =

r(data['visited'])

'] = false

t(data)

'

 else:

back to
 # the last node and tell him that the hint is not true. Th
not be done if a local
 # search has not been performed!
 if data['hint'] and local_search:
 # Last visited node i
 last_visited_index = l

 # Ensure that we do no
 if last_visited_index
 # Create the event
 gossip = {}
 gossip['type'] = TYPE_GOSSIP
 gossip['to'] = data['visited'][l

 = self.ADDR gossip['from']
 # No new entries are to be added in hint list

 gossip['new_gossip
 # The item to remove fr

 gossip['death_gossip'] = []
 g
 # Add local hint set

 # Set ttl
 gossip['ttl'] = TTL_GOSSIP
 # Enqueue message
 self.queues.output_q.put(gossip)
 # DEBUG
 debug['debug'] += ' (Fals

 print 'FALSE HINT, we do not have the topic "%s" locally
data['topic']

y val # Update HAPPY value. When happ
 data['happy'] = data['happy'] - num_result_local

 # Search hint table if searc
 if data['ttl'] > 0 and data['happy'] > 0:
 # Search local hints, and get random node returned. Do no
 # already searched nodes!
 random_node = self.sets.hint_o.
data['visited'])

 # If random hint node is found, relay search
 if random_nod
 # Set addr

'to'] = random_node data[
 data['
 data['local
 data['erro
 # Enqueue it on output queue
 self.queues.output_q.put(data)

 # DEBUG
 debug['debug'] += ' (Hint found)

 else:
 # No hint is found. Sea

self.sets.neighbours_o.pick_random_neighbou

 if random_node != false:
 # Neighbour found, address the event to it
 data['to'] = random_node
 hint'] = false data['
 data['local
 data['error'] = false
 # Enqueue it on output queue
 self.queues.output_q.pu
 # DEBUG
 debug['debug'] += ' (R_Walk)

133

p-SARS, code listing

 # All has failed. Node has no neighbours!

search. Results, if any, will # just discard
wnbelow

 be returned

 (No neighbours connected!) '

rying node

s sent) '

nt set and pending search set)
. (ip,port) tuples

r_o):

move

Removing all hints on this node, and removing it

ata['to'])

'])

do
 print 'NO NEIGHBOURS CONNECTED'
 # DEBUG

 debug['debug'] += '

 # If results found on this node. Send them directly to que
 if num_result_local > 0:
 # Prepare result message
 res = {}
 res['to'] = data['from']
 res['from'] = self.ADDR
 res['type'] = TYPE_RESULT

ta['topic'] res['topic'] = da
 res['result'] = result_local
 res['reply_addr'] = data['reply_addr']
 res['error'] = false

 # Enqueue result message

.output_q.put(res) self.queues

 # DEBUG
 debug['debug'] += ' (Result
 else:
 # DEBUG
 debug['debug'] += ' (No local results) '

ule # Test if we should send debug event to debug mod
 if DEBUG:
 self.queues.output_q.put(debug)

The thread processing incomming gossip events
class process_gossip_t(threading.Thread):

 # Args:

event queues # queues = The system
 # sets = The system sets
 # (Neighbour set, Topic set, Hi
 # addr_o = The set of system addresses
 def __init__(self, queues, sets, add
 # init thread

) threading.Thread.__init__(self

 # The queues
 self.queues = queues
 # The sets
 self.sets = sets
 # The addresses

_o self.addr_o = addr
 # Fetch the address of the listen module

 self.ADDR = self.addr_o.read_listen_tcp()

 # instance of network
 self.net = OWN_network.network_utils()
 # instance of math
 self.math = OWN_math.math_utils()

 def run(self):
 while true:
 # Fetch incomming gossip event
 data = self.queues.gossip_q.get()

 # The sending of the gossip message failed. Node is persumed down. Re
it.
 if data['error']:

SIP ERROR! print 'GOS
as a neighbor'
 # Remove it from neighbor set

.sets.neighbours_o.remove(d self
 # Remove it from hint list
 self.sets.hint_o.remove(data['to

134

p-SARS, code listing

 # We must relay gossip if the TTL is still positive

ne

in the from field)

age

hint_o.read_all()

al topic set to this

ic set

.keys()

ess

 # Not present, add it
['gossip_dict'][element].append(self.ADDR)

!

eighbour!

s from neighbours

rom neighbour!'
']:

'][topic]:
right topic, but ensure that we

de.

.append(topic,node) == true:
'

it's not from this node!!
']:

 # Traverse new gossips

 data['error'] = false

 not wait for a new event. Must try to relay the o # We shall
 # we failed to relay

 # Neighbour requesting our gossip list!
 elif data['get']:
 # Create push gossip
 # Send it to querying node. (Found
 event = {}
 event['type'] = TYPE_GOSSIP
 event['to'] = data['from']
 event['from'] = self.ADDR
 # Set TTL, because the sending of this mess
 # can fail
 event['ttl'] = 1

 hint set! # Include our entire
 event['gossip_dict'] = self.sets.

ires in the loc # Also add all ent
 # gossip.
 # Extract all topics from top
 topic_set = self.sets.topic_o.read_all()
 topics = topic_set

 # Add them with this p-SARS nodes addr
 for element in topics:
 # If the entry does not already exist, create it
 if element not in event['gossip_dict']:
 event['gossip_dict'][element] = []

 # Ensure that we do not introduce a duplicate
 # even though a p-SARS node should never be
 # present in its own hint set

 if self.ADDR not in event['gossip_dict'][element]:

 event

 event['error'] = false
 # This is not a request
 event['get'] = false
 # This is a push event!
 event['push'] = true

 # Enqueue event
 self.queues.output_q.put(event)
 print 'Hint list is sent to neighbour'

 # Wait for new event
 continue

 # Getting the gossip list from a n
 elif data['push']:
 # Fetch dictionary, and insert hint
 # hint list
 print 'Hint set is received f
 for topic in data['gossip_dict
 for node in data['gossip_dict
 # Add node to hint list on the
don't

nts pointing to this no # add hi
 if node != self.ADDR:
 if self.sets.hint_o
 print 'Hint added from neighbours hint list!!!

 # Wait for new event
 continue

 # We have an ordinary gossip event
 else:
 # Only register gossip if
 if data['from'] != data['to

135

p-SARS, code listing

 for element in data['new_gossip
 # Register gossip

']:

t_o.append(element,data['from'])

 res == duplicate:
 # DEBUG

eady known'

d!'

ips
death_gossip']:

DEATH GOSSIP RECEIVED!!!!!'

 self.sets.hint_o.remove_one(element, data['from'])
 res:

int 'Hint removed'

 else:

 # DEBUGlocal_ip
 # print 'Hint does not exist'

 pass

Travers hint set receivd

print 'Hint added from received hint list!!!'

s from this node!!'

'
 this neighbor!

 # Create event

ead_listen_tcp()
dt on topic. to %s %d TTL = %d'

'

 res = self.sets.hin

 if

 # print 'alr
 pass
 else:
 # DEBUG
 print 'hint is adde

 # Traverse death goss

 element in data[' for
 # Remove hint from hint set
 print '

es = r
 if
 # DEBUG
 pr

 pass

 for topic in data['gossip_dict']:
 for node in data['gossip_dict'][topic]:
 # Add node to hint list on the right topic, but ensure
that we don't
 # add hints pointing to this node.
 if node != self.ADDR:
 if self.sets.hint_o.append(topic,node) == true:

 else:
 # DEBUG

 'Gossip originate # print
 pass

 # PREPARE TO RELAY GOSSIP
 # Decrement ttl on gossip
 data['ttl'] = data['ttl'] - 1

 # Test to see if we should continue gossip
 if data['ttl'] > 0:
 # Fetch neighbors
 neighbor_set, not_important = self.sets.neighbours_o.read()

 # Send gossip to neighbor with a probability of
PROBABILITY_SEND_GOSSIP
 # Traverse all neighbors
 for element in neighbor_set:

 if self.math.should_i_gossip(PROBABILITY_SEND_GOSSIP):
 print 'send gossip
 # Gossip to

 data['to'] = element

 # enqueue message
 self.queues.output_q.put(data)

 # DEBUG
 # enqueue debug event
 # debug = {}
 # debug['to'] = DEBUG_ADDRESS
 # debug['from'] = self.addr_o.r

ug['debug'] = 'Gossip sen # deb
% (element[0],element[1],event['ttl'])
 #self.queues.output_q.put(debug)
 else:
 # No gossip sent
 print 'NO GOSSIP

136

p-SARS, code listing

The thread processing incomming results
class process_result_t(threading.Thread):

 # The init function
 # Args:
 # queues = The system event queues
 # sets = The system sets
 # (Neighbour set, Topic set, Hint set and pending search set)
 # addr_o = The set of system addresses. (ip
 def __init__(self, queues, sets, addr_o):
 # init thread

,port) tuples

 self.addr_o = addr_o

y wait on queue for a defined number of

UPDATE)

error']:

ata:

-SARS node is

e topics the client publishes on will

s dead. If it's the p-SARS node that has died, this node

ing search and the removal will fail.

 num_dead += 1

arch!
ppend(data['reply_addr'],

arch is still pending
 res:

e if search is satisfied
g_o.happy(data['reply_addr'],

' % num_res

 threading.Thread.__init__(self)

 # The queues
 self.queues = queues
 # The sets
 self.sets = sets

 # The addresses

 def run(self):

 # DEBUG values
 num_res = 0
 num_dead = 0

 while true:
 # Fetch incomming result. But onl
seconds
 empty = false
 try:
 data = self.queues.result_q.get(true,SECONDS_BEFORE_RESULT_
 except Queue.Empty:
 # Nothing in queue

 empty = true

 # Test if we have a result event
 if not empty:
 # Test if it is an error. In that case, try to remove pending search!
 if data['
 # Remove pending searches on client!
 if 'reply_addr' in d
 self.sets.pending_o.remove_all(data['reply_addr'])

querying p # Either we have a WRS client down or the
down

ent th # If it is a WRS cli
not be
 # removed here. But in profile update, when it's discovered that
the
 # client i
has no
 # pend

 # DEBUG

 else:
 # Add result to pending se
 res = self.sets.pending_o.a
data['topic'], data['result'])

 # Try to add hint in hint set
 if self.sets.hint_o.append(data['topic'], data['from']) == true:
 print 'HINT ADDED FROM SEARCH RESULT!'

Test if se #
 if

 # Se
 if self.sets.pendin
data['topic']):
 print 'SEARCH SATISFIED %d

 # DEBUG

137

p-SARS, code listing

 num_res += 1

d before timeout. Return it to

lient!

'] = data['topic']
stet

event['results'] =
'])

addr']
t

.output_q.put(event)
 # Remove search

e(data['reply_addr'],

 # Fetch timed out searches

pending_o.process_pending()

them

ults'] = element[2]
' % (num_res,num_dead)

 # queues = The system event queues

ic set, Hint set and pending search set)
 # addr_o = The set of system addresses. (ip,port) tuples

ues

= addr_o

h incomming result.
 self.queues.system_q.get()

now we just drop the message
ur will be removed on next system update when pong has not
ceived

'ping':
essage. Create a pong message

 # Search is satisfie
querying
 # WRS c
 event = {}

 event['type'] = TYPE_RESULT
 event['topic
 # Fetch results. Search is there because we already te
for that

self.sets.pending_o.read(data['reply_addr'], data['topic
 event['to'] = data['reply_

swer to clien # Enqueue an
 self.queues

 self.sets.pending_o.remov
data['topic'])

 # Process pending searches. See if any of them should be removed!

 res = self.sets.

 # Create answers to the WRS clients and enqueue
 for element in res:
 num_res += 1
 event = {}
 event['type'] = TYPE_RESULT
 event['to'] = element[0]
 '] = element[1] event['topic
 event['res

SEARCH HAS TIMED OUT %d , %d print '
 # Enqueue element
 self.queues.output_q.put(event)

The thread processing incomming system events

eading.Thread): class process_system_t(thr

 # The init function
 # Args:

 # sets = The system sets
 # (Neighbour set, Top

 def __init__(self, queues, sets, addr_o):
 # init thread

_(self) threading.Thread.__init_

 # The queues
 self.queues = que

 # The sets
 self.sets = sets

sses # The addre
r_o self.add

 def run(self):

e true: whil
 # Fetc
 data =

 # Test if error

error']: if data['
 # For

 # Neighbo
 # been re
 pass

 # Test if ping
 elif data['topic'] ==

 # We have a ping m
 tmp = data['to']
 data['to'] = data['from']
 data['from'] = tmp

138

p-SARS, code listing

 data['topic'] = 'pong
 # enqueue pong messa

'

 # Fetch timestamp
= int(time.time())

'], timestamp) ==

Pinging node added as neighbor!'

'] == 'pong':

from'], timestamp) ==

 else:

m again if room!
from']) == true:

ighbor is reinserted!'

System event not recognized!!'

to-peer search engine)
 by Rune Devik

st - 15 December
is

ofiles.

work_utils()

ess tuple for the profile server
 received from profile server, or false if nothing returned

(self, host_addr):

ge
 self.queues.output_q.put(data)

 timestamp

 # Try to set ping time
 # Test if time was set!
 if self.sets.neighbours_o.set_ping_time(data['to
true:
 # DEBUG
 # print 'Timestamp set on node:'
 # print data['to']
 pass

 else:
 # Try to insert node as neighbor

to']) == true: if self.sets.neighbours_o.append(data['
 print '

 # Test if pong
 elif data['topic
 # We have a pong message.
 # Create timestamp
 timestamp = int(time.time())

 # Try to set ping time and test if time was set!
 if self.sets.neighbours_o.set_ping_time(data['
true:
 pass

 # Neighbor is to late with pong message
 # we should insert hi

 if self.sets.neighbours_o.append(data['
 print 'Pong to late. But ne

 # It's an unknown event!
 else:
 print '

<p-SARS/OWN_profiles.py>

The p-SARS System (peer-

d and implemented# Designe
2003, 15 Augu
Master of Engineering Thes
File: OWN_profiles.py

#import own libs

* from OWN_constants import
import OWN_network
import OWN_math

import standard libs
import time
mport threading i

Class that contains utils for managing pr

only topic management # Currently
class profile_utils:

 # The init function
 def __init__(self):
 # init network utils

elf.net = OWN_network.net s

 # Function to fetch profiles

s: # Arg
 # host_addr = The addr

rofiles # Returns the p
 def fetch_topics

139

p-SARS, code listing

nnect #create network co
c = self.net.op

ion
en_client_tcp(host_addr)

_FETCH_PROFILE,'address':my_addr}

(msg)

IT)

c, TCP_BUFF_SIZE, MAX_WAIT)

 > 0:
rshall) message

t.unpack(msg)
t

c server

f, profile_list, filename):

n be found

 so

 if soc != false:
 # Get local socket address

 my_addr = soc.getsockname()

 #create request package and pack it
 msg = {'type':TYPE
 msg = self.net.pack

 #send package
 self.net.send_tcp(msg, soc, MAX_WA

 #fetch and return answere
 msg = self.net.receive_tcp(so

 if len(msg)
 # Unpack (unma

 self.ne msg =
 # Return i

 return msg

 else:
 # Empty message returned from topic server
 return false

 else:
 # Could not open connection to topi
 return false

 # Function to save profiles to file
 # Args:
 # Profile_list = The list of interests and ip
 # filename = Name of the file containing profiles
 # Returns true if ok, false otherwise
 def save_profiles(sel

 # Pack message
 ok = self.net.pack(profile_list)

 # Test for error
 if not ok:

return false

 else:
 # If not error
 # Open file for writing bytes
 fp = open(filename,'wb')

e to file # Writ
 fp.write(msg)
 # Close file
 fp.close()

 # Return true
 return true

 # Function to load profiles from file
 # Args:
 # filename = name of file where profiles ca
 # Returns profile list, or 0 if error
 def load_profiles(self, filename):
 # Open file & read content
 fp = open(filename,'rb')

onary # unpack profile dicti
 ok = self.net.unpack(fp.read())

 # Test for error
 if not ok:

140

p-SARS, code listing

 # We have an error
 return false

 else:

 # Return unpacked data
 return msg

The thread updating the profiles of the local publishers

ofile server address

ghbour sets

gossiping because there are no

th information from topic server! :'

ROFILE_SERVER_ADDR)

 new_topic_list
 '___'

 #print del_topic_list
###################'

 or len(del_topic_list) > 0:

 gossip
 new_gossip = []
 death_gossip = []

e new_gossip list
w_topic_list) > 0:

 # Traverse new_topic_list
 for element in new_topic_list:
 new_gossip.append(element)

ssip list
st) > 0:

Args:
queues = The system queues
sets = The system sets
addr_o = The system addresses
class update_topic_set_t(threading.Thread):

: def __init__(self, queues, sets, addr_o)
 # init thread
 threading.Thread.__init__(self)

 # Keep queues
 self.queues = queues
 # Keep sets
 self.sets = sets

 # Fetch the listen module address, and pr
 self.ADDR = addr_o.read_listen_tcp()
 self.PROFILE_SERVER_ADDR = addr_o.read_profile_server_address()

 # instance of the math_utils class
 self.math = OWN_math.math_utils()
 # instance of the profile_utils class
 self.profile = profile_utils()

 def run(self):

rted at once, we must wait until their nei # If all nodes are sta
are

ll be no # initialized... (If not there wi
neighbours yet!)
 # Should just be used during testing..
 # time.sleep(5)

 while true:
 print 'Updating topic list wi
 print self.PROFILE_SERVER_ADDR
 # Fetch profiles

 = self.profile.fetch_topics(self.P result

 result != false: if

 # Update local publishing list!!
 new_topic_list, del_topic_list = self.sets.topic_o.update(result)

 #print '############# TOPICS Discovered ########################'

 #print
 #print

 #print '##########################

_list) > 0 if len(new_topic

 # prepare to

 # populat

 if len(ne

 # populate death_go

 if len(del_topic_li
 # Traverse del_topic_list
 for element in del_topic_list:

141

p-SARS, code listing

 # Fetch hint set

 death_gossip.append(element)

 = self.sets.hint_o.read_all()

 event['type'] = TYPE_GOSSIP

f

bors
portant = self.sets.neighbours_o.read()

ighbors
ghbor_set:

.should_i_gossip(PROBABILITY_SEND_GOSSIP):
to this neighbor!

_q.put(event)
'

BUG_ADDRESS
#debug['from'] = self.ADDR

 #debug['debug'] = 'Gossip sendt on topic. to %s %d TTL =
ent[0],element[1],event['ttl'])

 #self.queues.output_q.put(debug)

e:

 print 'NO RANDOM GOSSIP'

o topic server!'

little while before updating the topic set!
wait is placed at the bottom to create a do-while structure..

S_BEFORE_TOPIC_UPDATE)

search engine)
ne Devik

 Thesis

 *

 OWN_network

DDRESS, TCP_BUFF_SIZE, 10000)

 hint_set

 # Create gossip event

 event = {}

 event['from'] = self.ADDR
 event['ttl'] = TTL_GOSSIP
 # Add new and deleted topics
 event['new_gossip'] = new_gossip
 event['death_gossip'] = death_gossip
 # Add local hint set

t'] = hint_set event['gossip_dic
'] = false event['error

 event['get'] = false
 event['push'] = false

 # Send gossip to neighbor with a probability o
PROBABILITY_SEND_GOSSIP

h # Fetch neig
 neighbor_set, not_im

 # Traverse all ne
 for element in nei
 if self.math
 # Gossip

 # Address gossip event
 event['to'] = element

 # enqueue event

eues.output self.qu
 print 'Gossip initiated after topic update

 # enqueue debug event

 #debug = {}
 #debug['to'] = DE

%d' % (elem

 els

 else:

nnecting t print 'Failed co

 # Sleep a

 # This
 time.sleep(SECOND

<p-SARS/debug.py>

er # The p-SARS System (peer-to-pe
Designed and implemented by Ru

 December# 2003, 15 August - 15
Master of Engineering

y # File: debug.p

Import own libs

om OWN_constants importfr
import OWN_network

The main method
def main():
 # Create instance of
 net = OWN_network.network_utils()

 # create server tcp
 s_soc = net.open_server_tcp(DEBUG_A

142

p-SARS, code listing

 if s_soc != false:

 # Open debug file!
 fp = open('debug.txt','a')

 fp.write('######## START LOG #########\n\n')

 run = 1
 while run:
 print 'Debug logger started'
 c_soc, addr = s_soc.accept()
 data = net.receive_tcp(c_soc, TCP_BUFF_SIZE, MAX_WAIT)

 # unpack and save data to file
 data = net.unpack(data)

 if data != false:
 # Stop debug??

 if data['debug'] == 'end':
 fp.write('######### END LOG ##########\n\n')
 # close file
 fp.close()
 # close connection
 c_soc.close()
 s_soc.close()
 # end while loop
 run = 0
 print '\n\nbye'
 else:
 address = '%s : %d' % (data['from'][0],data['from'][1])
 # Write debug to file
 fp.write(address + ' : ' + data['debug']+'\n')
 # close client connection
 c_soc.close()
 else:
 # Failed creating tcp/ip socket
 print 'Debug event collector not started!!!'

Starting the program by calling main!
if __name__ == '__main__':
 # Call main
 main()

<p-SARS/end_debug.py>

The p-SARS System (peer-to-peer search engine)
Designed and implemented by Rune Devik
2003, 15 August - 15 December
Master of Engineering Thesis
File: end_debug.py

Import own libs
from OWN_constants import *
import OWN_network

Make instance of network utils
net = OWN_network.network_utils()

Create terminate debug event
data = {}
data['debug'] = 'end'

pickle event
data = net.pack(data)

if data != false:
 # open client connection
 c_soc = net.open_client_tcp(DEBUG_ADDRESS)

 if c_soc != false:
 # send event
 net.send_tcp(data, c_soc, MAX_WAIT)
 # close connection
 if not net.close_conn(c_soc):

143

p-SARS, code listing

 print 'Fa

 else:

iled closing socket after debug termination event wass sent'

 print 'Sending debug event failed'

144

Appendix B

Appendix B: Simulator, code listing

The simulator code consists of a total of 686 lines where 306 of these are non-

 Rune Devik
ber

list[1]

 self.gossip = list[3]

[5]

4]

st[15]

 # Should we perform search?

s?

s from search

commenting source statements (NCSS).

<simulator/sim.py>

The p-SARS Simulator
Designed and implemented by

2003, 15 August - 15 Decem#
Master of Engineering Thesis
File: sim.py

Import modules
import time
import math
import random

port copy im
import string

Defining true/false
true = 1
false = 0

Container class for the defined tuning variables!
ARGS:

ing one simulation # list = The list of variables defin
Returns: Nothing
class tuning_variables:
 def __init__(self,list):

 # SET NETWORK VARIABLES
 # Number of nodes in network
 self.num_nodes = list[0]

ghbours # Maximum number of nei
bours = self.max_neigh

 # Fetch random number of neighbours?
ighbours = list[2] self.random_number_of_ne

 # SET GOSSIP VARIABLES

 # Should we gossip?

 # TTL on gossip

.TTL = list[4] self
 # Probability of gossip

 self.probability = list

 # SET RANDOM WALK REPLICATION VARIABLES

orm RW replication # Should we perf
 self.RW_replication = list[1

cation # TTL on RW repli
 self.RW_replication_TTL = li

 # SET SEARCH VARIABLES

 # MAX 994, MAXIMUM RECURSION DEPTH IN PYTHON.

 self.search = list[6]

 on search # TTL
 self.TTL_search = list[7]
 # Number of searches to perform
 self.num_searches = list[8]
 # Should the hint set be populated from search result
 self.learning = list[9]

hint # Should intermediate nodes also fetch
 # results?

145

Simulator, code listing

 self.learning_plus =

 UP VARI

 list[10]

ABLES

es to perform on warm-up
3]

ystem

.id)

n numbers of neighbours between 0 and num_nodes

nt(0,num_nodes - 1)
this node as its own neighbour!
r != self.id:

 in self.neighbours:
a new node not already added

hbour)

s the simulation operations

 # num_nodes = The number of nodes in the network

):

l node

 nodes (may have duplicates)

 # SET WARM -
 # Should we do warm-up?
 self.warmup = list[11]
 # TTL on warm-up searches
 self.TTL_warmup = list[12]
 # Number of search
 self.num_warmup = list[1

The class simulating a node in the p-SARS s
class node_t:

 # The init function
 # Args:
 # id = The node id!
 # Returns: Nothing
 def __init__(self, id):

 # Init neigbourhood set, hint_set and topic_set
 self.neighbours = []
 self.pingtime = int(time.time())
 self.id = id
 self.hint_set = []
 self.topic_set = []
 self.topic_set.append(self

 # Function to populate the neighbour set of a node
 # ARGS:

re to # ran = An integer deciding how many nodes a
 # be added in the neighbour set
 # num_nodes = The number of nodes in the network
 # Returns: Nothing
 def insert_new_neighbours(self, ran, num_nodes):
 # fetch random ra
 for element in range(ran):

 while 1:
 ran_neighbour = random.randi
 # not include
 if ran_neighbou
 if ran_neighbour not
 # We have found
 self.neighbours.append(ran_neig
 break

 # Function to count number of hints in hint_set
 # Returns: number of hints
 def count_hints(self):
 return len(self.hint_set)

nt# The class that impleme
class sim:

 # Initializes the network
 # Args:

 # Returns: Nothing
 def __init__(self, num_nodes
 self.nodes = []
 for i in range(num_nodes):
 self.nodes.append(node_t(i))
 self.num_nodes = num_nodes

 # Function to start gossip
 # Args:
 # node = The node where the gossip should start
 # probability = The probability of gossiping to each individua

ip # ttl = Time to live on goss
f reached # Returns number o

 # and the depth reached on this gossip
 def gossip(self, node, probability, ttl):
 # Traverse neighbours

146

Simulator, code listing

 num = 0
 depth_of_gossip = 0
 depth = []
 # Gossip based on probability
 for element in self.nodes[node].neighbours:
 if self.should_i_gossip(probability):
 tmp = self.relay_gossip(element, self.nodes[node].topic_set,

= The probability of gossiping to each individual node

, depth):

ed

odes[node].id:

.hint_set:
end(element)

(ttl)

e continue gossiping

o them

hbours:
ility):

ility, ttl, depth)

m

he

he depth reached on search
, learning, learning_plus):

_set:

probability, ttl, depth)

 num = num + tmp

 # Record gossip depth

len(depth) depth_of_gossip =

 return (num,depth_of_gossip)

Recursive function) # Function to relay gossip (
 # Args:
 # node = The node where the gossip should start
 # hints = The hints gossiped
 # probability
 # ttl = Time to live on gossip

hs this gossip has reached. # depth = A list of the dept
 # Returns number of nodes reached including itself!
 def relay_gossip(self, node, hints, probability, ttl
 # Add gossip to hint set
 num = 0
 # Traverse hints receiv

r element in hints: fo
 # If they originate from this node, don't add them
 if element != self.n
 # Test if hint already is known
 if element not in self.nodes[node]

set.app self.nodes[node].hint_

 # Decrement TTL
 ttl = ttl - 1

 # If new depth is reached, add it!
 if ttl not in depth:
 depth.append

 # Should w
 if ttl > 0:
 # Traverse all neighbours and send t
 # based on the given probability

g for element in self.nodes[node].nei
ould_i_gossip(probab if self.sh

 tmp = self.relay_gossip(element, hints, probab
 num = num + tmp

 num = num + 1
 return nu

 else:
 # Discard gossip
 return 1

 # Function to start search
 # Args:
 # node = The node where the search should start
 # Topic = The node_id to search for!
 # ttl = Time to live for search event
 # learning = True if the searching node should learn from t
 # search results!
 # learning_plus = True if the intermediate nodes should learn

from the search results #
 # Returns: If topic is found and t

, node, topic, ttl def search(self
 # Create visited list.
 visited = []

 # See in hint_set
 if topic in self.nodes[node].hint

147

Simulator, code listing

 # Topic found in hint set
 # Forward search to this node
 id = topic # Important that id == topic in this simulation

 % self.id
arning_plus)

)

ected. Search failed
'

es[node].neighbours[neighbour], topic, ttl, visited,

t.append(topic)

nodes on the search path
he search results

 # Returns: If topic is found and the depth reached on search
 def relay_search(self, node, topic, ttl, visited, learning):

 # Decrement TTL
 ttl -= 1

 # Search locally
 if topic in self.nodes[node].topic_set:
 # Bingo, we are on the right node
 found = true
 depth = ttl
 #print 'topic %d found on node %d' % (topic, self.id)
 return (found, depth)

 if ttl > 0:
 # Add node in visited list, if it's not already there!
 not in visited:
 visited.append(self.nodes[node].id)

 # Look for hints
 if topic in self.nodes[node].hint_set:
 # Relay search based on hint
 id = topic
 found, depth = self.relay_search(id, topic, ttl, visited, learning)

 # Add as hint in hint list
 if found and learning:
 topic not in self.nodes[node].hint_set:
 self.nodes[node].hint_set.append(topic)

 turn (found,depth)

 num = len(self.nodes[node].neighbours)
 num == 0:
 # No neighbours connected. Search failed
 print 'No neighbours !!!!!!!!!!!!!'
 return (false, ttl)

 #print 'Yes hint found. Search relayd on hint from node : %d'
ed, le found, depth = self.relay_search(id, topic, ttl, visit

 else:
 # Topic not found in hint set
 # Pick random neighbour and relay search
 num = len(self.nodes[node].neighbours
 if num == 0:
 # No neighbours conn
 print 'No neighbours connected!!!!!!!!!!!!
 return (false,0)
 else:
 # Pick random neighbour
 neighbour = random.randint(0, num - 1)
 # Relay search
 foun pth = d, de
self.relay_search(self.nod
learning_plus)

 # Extract hint from results if it is a learning search
 if found and learning:
 # Add node id in hint set if it's not already there!
 if topic not in self.nodes[node].hint_set:
 self.nodes[node].hint_se

 return (found, depth)

 # Function to relay search
 # Args:
 # node = The node the search is currently on
 # Topic = The node_id to search for!
 # ttl = Time to live for search event

 # visited = The list of already visited nodes
 # learning = True if all intermediate

 also should learn from t #

if self.nodes[node].id

if

 re
else:

 if

148

Simulator, code listing

 else:
 # copy neighbour list
 tmp = copy.deepcopy(self.nodes[node].neighbours)
 # Only the neighbours not already visited should be
 # chosen first. Remove already visited nodes
 for element in visited:
 if element in tmp:
 # Node visited earlier
 tmp.remove(element)

 num = len(tmp)

 num > 0:
 #print 'Neighbours left'
 # Pick random neighbour
 neighbour = random.randint(0, num - 1)
 found, depth = self.relay_search(tmp[neighbour], topic, ttl,
visited, learning)

 else:
 #print 'No neighbours left'
 # all neighbours visited. Pick one random among all neighbours
 num = len(self.nodes[node].neighbours)
 neighbour = random.randint(0, num - 1)

 # Relay search
 found, depth =
self.relay_search(self.nodes[node].neighbours[neighbour], topic, ttl, visited,
learning)

 # Add as hint in hint list
 if found and learning:
 if topic not in self.nodes[node].hint_set:
 self.nodes[node].hint_set.append(topic)

 return (found,depth)
 else:
 return (false,ttl)

 # Function to initialize the neighbourhood set of all nodes
 # in the simulated network
 # Args:
 # max_num = Maximum number of neighbours to fetch
 # random_num = Boolean, tells if each node should fetch
 # either exactly (false) X neighbours
 # or between 1 - X neighbours (true)
 turns: Nothing
 def fetch_neighbours(self, max_num, random_num):
 for element in self.nodes:
 # Fetch random amount of neighbours between
 # 1 and max_num if random_num is true
 # else always fetch max_num
 if random_num:
 ran = random.randint(1,max_num)
 else:
 ran = max_num

 element.insert_new_neighbours(ran, self.num_nodes)

 # Function to print the three sets of a node
 # Neighbour set, topic set and hint set
 ed for debugging only
 # Returns: Nothing
 def print_lists(self):
 for element in self.nodes:
 print 'Neighbours: '
 print element.neighbours
 print 'Topic set'
 print element.topic_set
 print 'Hint set: '
 print element.hint_set
 '

 if

Re

Us

print '

149

Simulator, code listing

 # Simulating gossip
 # Args:
 # probability = probability of gossiping to individual neighbour
 # ttl = TTL on gossip event
 # Returns: Number of messages and av depth of all gossips
 def sim_gossip(self, probability, ttl):
 # Traverse all nodes, make them gossip!!
 num = 0
 depth_of_gossip = 0

 for node in range(len(self.nodes)):
 if node % 100 == 0:
 print 'Gossiping from node %d' % node
 # Perform gossip
 tmp, depth = self.gossip(node, probability, ttl)
 num += tmp
 depth_of_gossip += depth

 return (num, depth_of_gossip)

 # Simulate search
 # Args:
 # topic = The node id/topic to search for
 # ttl = TTL on search event
 # learning = If search results should be incorporated into the hint set
 # of initiating node
 # learning_plus = If search results should be incorporated into the hint set
 # of all nodes participating in the search
 # Returns: If the search is successfull, depth of search,
 # and node where the search was initiated
 def sim_search(self, topic, ttl, learning, learning_plus):
 # Find random start node
 ran = random.randint(0,self.num_nodes - 1)

 found, depth = self.search(ran, topic, ttl, learning, learning_plus)

 #print 'Search started on node: %d' % ran

 # print 'Results found on depth %d' % depth
 #else:
 # print 'search failed'
 return (found, depth, ran)

 # Count average number of hints per node in the network
 # Print result
 # Returns: Nothing
 def count_average_num_hints(self):
 num = 0
 # Traverse all nodes and ask them how many hints they have
 element in range(self.num_nodes):
 num += self.nodes[element].count_hints()

 # Print result
 return 'Average number of hints: %d/%d = %d\n' %
(num,self.num_nodes,num/self.num_nodes)

 # Function deciding if we should gossip based on a given probability
 # Args:
 # probability = The probability of gossiping to each individual node
 # Returns true if we should gossip, false otherwise
 def should_i_gossip(self, probability):
 # Fetch a random number N where a <= N >= b
 # and a = 0, b = 99
 num = random.randint(0,99)

 # Decide if we should continue gossip based on supplemented
 # probability!
 if num < probability:
 # Continue gossip
 #print 'Gossip'
 return true
 else:

#if found:

for

150

Simulator, code listing

 # Stop gossiping
 #print 'no gossip'
 return false

 # Simulate RW replication
 # Args:
 # TTL = The TTL on the RW replication
 # Returns the number of messages used on replication and the
 # total number of unique nodes visited
 def random_walk_replication_sim(self, TTL):
 num
 # Traverse all nodes and perform random walk
 # replication from them
 for node in range(len(self.nodes)):

 visited = []
 hints = self.nodes[node].topic_set
 # Start simulation and fetch number of unique nodes visited by each RW
 num += self.random_walk_replication(node, TTL, visited,
self.nodes[node].topic_set)
 if node % 100 == 0:
 print 'RW replication from node %d' % node

 Calculate number of messages sent in simulation
 messages = len(self.nodes) * TTL
 # Return number of messages used on replication
 return (messages, num)

 # The recursive function performing the work
 # Args:
 # node = The node we currently are on
 # TTL = The current TTL on the RW replication
 # visited = The list of already visited nodes
 # hints = the set of hints to distribute
 # returns nothing
 def random_walk_replication(self, node, TTL, visited, hints):
 num_visited = 0
 # Add hints to hint set
 for hint in hints:
 if not self.nodes[node].id == hint:
 in self.nodes[node].hint_set:
 # Append hint
 self.nodes[node].hint_set.append(hint)

 dd this node as visited
 if node not in visited:
 visited.append(node)

 # Decrement TTL
 TTL = TTL - 1

 TTL > 0:
 # Fetch neighbour list
 tmp = copy.deepcopy(self.nodes[node].neighbours)

 # Travers visited nodes
 for element in visited:
 # Remove all visited nodes from neighbour set
 if element in tmp:

 # Node visited earlier
 tmp.remove(element)

 # Is there any neighbours left
 num = len(tmp)

 if num > 0:
 # There are still neighbours not visited
 # Pick random neighbour

 neighbour = random.randint(0, num - 1)

 else:
 # There are no neighbours left
 # Pick one random among them all
 num = len(self.nodes[node].neighbours)
 neighbour = random.randint(0, num - 1)

= 0

 #

if not hint

A

 if

151

Simulator, code listing

 # Continue recursion
 num_visited =
self.random_walk_replication(self.nodes[node].neighbours[neighbour], TTL, visited,
hints)

 return num_visited

 else:
 # TTL is 0, return number of unique neighbours visited
 return len(visited)

Function to fetch simulation data from file.
Returns the simulation data found
def fetch_simulation_data():
 # Fetch tests and put them in a list
 tests = []
 # open file
 fp = open('sim.txt','r')

 data = true

 while data:
 tmp = []
 counter = 0
 e d record contense
 whil :
 line = fp.readline()

 # We have fetched an entire test case
 break

 # Test for end of file
 if line == "":
 # No more data in file
 data = false
 # Break out of for loop
 break
 else:
 #There is still data
 if not line.startswith('#'):
 tmp.append(int(line))
 counter += 1

 if l) == 16:
 # Simulation fetched, add it to test list
 tests.append(tmp)

 # Close file
 fp.close()

 print '%d simualtions added.' % len(tests)

 return tests

Function to write simulation results to file
ARGS:
output = The data to write to file
Returns nothing
def write_simulation_results(output):
 # Open file
 fp = ope _results.txt','a')
 # Write
 fp.write(output)
 # Close
 fp.close()

The main function
def main():

 # Fetch tion data
 sim_data = fetch_simulation_data()
 # Run the simulations fetched one by one
 for element in sim_data:
 print 'Simulation started'

r ad an
e true

if counter == 16:

en(tmp

n('sim

simula

152

Simulator, code listing

 print element
 output = ' '
 outp = st case:\n'
 for item element:
 output + ' % item
 output += '\n\n
 # Fetch Tuning variables
 var = tuning_variables(element)

 # Begin timing
 s = int(time.time())

 # Initialize network
 simulator = sim(var.num_nodes)
 simulator.fetch_neighbours(var.max_neighbours,var.random_number_of_neighbours)

 output += 'Network initialized with %d nodes\n' % var.num_nodes
 if var.random_number_of_neighbours:
 output += 'All nodes has between 1 and %d neighbours\n' %
var.max_neighbours
 else:
 output += 'All nodes has %d neighbours\n' % var.max_neighbours

 # Warm up the network with a few searches
 # but only if both warm-up and learning is wanted
 if var.learning and var.warmup:
 'Warming up the network'
 output += 'Warming up the network\n'
 num_msg = 0
 for i in range(var.num_warmup):
 # Calculate random node to search for
 random_node = random.randint(0,var.num_nodes - 1)
 # perform search
 found, depth, ran =
simulator.sim_search(random_node,var.TTL_warmup,var.learning, var.learning_plus)

 num_msg += var.TTL_warmup - depth

 output += 'Num messages for warm-up\n: %d' % num_msg

 output += simulator.count_average_num_hints()

 # Test if we should perform gossip

 if var.gossip:
 print 'Performing gossip!'
 output += '\nSimulating gossip with a probability = %d, and a TTL = %d\n'
% (var.probability,var.TTL)
 num_gossip, depth_of_gossip =
simulator.sim_gossip(var.probability,var.TTL)

 # Print average number of hints in hint_sets
 output += simulator.count_average_num_hints()

 output += 'Number of messages sent : %d\n' % num_gossip
 output += 'Average per node %d/%d : %d\n' % (num_gossip, var.num_nodes,
num_gossip/var.num_nodes)
 output += 'Average depth per node %d/%d : %d\n' % (depth_of_gossip,
var.num_nodes, depth_of_gossip/var.num_nodes)

 # Test if we should perform random_walk_replication_sim
 if var.RW_replication:
 print 'RW replication started'
 num , num_visited =
simulator.random_walk_replication_sim(var.RW_replication_TTL)
 output += '\nRW Replication: %d \n' % num
 output += '\nUnique node visited in average %d/%d \n' % (num_visited,
var.num_nodes)

 # Test if we should perform search
 if var.search:
 print 'Performing search.'
 # Perform search in net!
 num_found = 0
 sum_depth = 0
 num_msg = 0

\n###### Simulation started ######\n
ut + 'Te

 in
= '%d,

'

print

Print average number of hints in hint_sets

153

Simulator, code listing

 output += '\nSearching... \n'

 for i in range(var.num_searches):
 if i % 100 == 0:
 print 'Search num %d' % i

 # Calculate random node to search for
 random_node = random.randint(0,var.num_nodes - 1)
 # Do the search
 found, depth, ran =
simulator.sim_search(random_node,var.TTL_search,var.learning, var.learning_plus)
 #print 'Search #%d started on: %d' % (i,ran)
 if found:
 # Topic found during search
 num_found += 1
 sum_depth += var.TTL_search - depth

 num_msg += var.TTL_search - depth

 # Print search summary
 output += 'Number of messages sendt: %d\n' % num_msg
 output += 'Number of successes: %d\n' % num_found
 if num_found > 0:
 output += 'Average depth on success: %d/%d = %d\n' % (sum_depth,
num_found, sum_depth/num_found)
 output += 'Percentage of success : %d/%d = %d\n' % (num_found,
var.num_searches, num_found/var.num_searches)
 else:
 output += '%d\n' % var.TTL_search - sum_depth

 # Print average number of hints in hint_sets
 #simulator.count_average_num_hints()

 # Print time used on simulation
 e = int(time.time())
 output += 'Simulation time = %d\n' % (e - s)

 # Write results to file
 write_simulation_results(output)

 print output

Start the program by calling main!
if __name__ == '__main__':
 # Call main
 main()

154

Appendix C

Appendix C: Describing the events

 In this appendix we will present the structure of every event flowing into,
through and out of our p-SARS system. External events are events flowing into and
out of a p-SARS node. Internal events are events flowing between p-SARS nodes.

The search event

 The external search event is used by the WAIF Recommender System (WRS)
to ask the p-SARS system to perform a query on its behalf. This event is therefore the
search interface p-SARS presents to other systems.

External event:

 The local field tells the p-SARS node that it has received a query from a WRS
client and that it has to create a pending search on this query and modify this search
event into an internal event before propagating it onto the next p-SARS node. The
reply_addr field describes the address where the WRS client wants the answer
returned. Happy describes how many hits are necessary to satisfy this query and topic
is the topic we should search for.

Internal event:

 More information is needed when propagating the query between the p-SARS
nodes. These extra fields are already described in the implementation chapter, the
search event module section, and will not be revisited here.

The gossip event

The gossip event is an internal event used to populate the hint sets of other
nodes in the p-SARS system.

Internal event:

It has three different tasks based on the values set:

155

Appendix C: Describing the events

1. If the get field is true, there is another p-SARS node requesting the hint set of this

node.

2. If the push field is true, there is a p-SARS node sending this node its entire hint
set.

3. If neither get nor push is true we have an ordinary gossip event. That is, a node
has discovered either a new or deleted topic in its topic list and therefore has
initiated a gossip to help other nodes update their hint sets.

Important fields not already mentioned are:

• The new_gossip field which describes the new topics discovered during a
topic update.

• The death_gossip field which describes the removed topics after a topic
update.

• The gossip_dict field containing a nodes entire hint list.

The topic update event

 The topic set is updated by requesting an update from the corresponding WRS
topic server. There are therefore two external events here. The p-SARS request event
and the WRS reply event.

External event:

Request:

Reply:

 The replay event is in fact a list of events where each event contains different
information about a WRS clients connected to this WRS super-node.

For use in the p-SARS system we only extract the interests, the IP address, and the e-
mail address of the individual WRS users.

156

Appendix C: Describing the events

The result event

 When a p-SARS node processing a query finds one or more publishers it
needs to relay its findings to the p-SARS node in charge of gathering the results from
this query. This is done with the internal result event. When the pending search on the
p-SARS node in charge of the query either times out or gets satisfied, this node must
relay the gathered results to the WRS client where the query initially originated. For
this we use what we call the external result event.

Internal event:

External event:

The Debug event

 The debug event is an internal p-SARS event used to send debug messages to
the centralized debug module.

Internal event:

The debug field contains debug information.

The system event

 The system event is either a ping or a pong event i.e. if the topic field is set to
pong this is a pong event.

Internal event:

157

Appendix C: Describing the events

The bootstrap server event

 To populate the neighbour set we use different techniques and one of them is
to contact the centralized bootstrap-server.

External event:

Request:

The type field is either set to “reg” or “find”. “Reg” means that this event is of
type register. The bootstrap-server therefore adds this node to the list of p-SARS
nodes currently running in the overlay network. If the type field is set to find, the p-
SARS node is not registered.

Reply:

 The bootstrap-server responds with the list of p-SARS nodes already
connected to the overlay network regardless of what value the request event’s type
field has.

158

159

Appendix D

Appendix D: CD-ROM

 We have chosen to include test results, test code and also the code presented
in appendix A and B on a CD-ROM. The data on the disc is organized into these
folders:

• p-SARS: The full source code for our p-SARS prototype.
• simulator: The full source code for our simulator.
• test-code: Code implemented for testing purposes.
• test-results: All our test results presented in a Microsoft Excel

worksheet.

The readme file included on the CD-rom describes how to start up the p-SARS
system and what is needed.

