
Faculty of Science and Technology
Department of Physics and Technology

Exploring the Behavior of Open-Source Diffusion Model Inpainting Algo-
rithms

Vebjørn Halvorsen
FYS-3941 Master’s thesis in applied physics and mathematics 30 SP
25 January 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“A computer would deserve to be called intelligent if it could deceive a human
into believing that it was human.”

–Alan Turing

Abstract
The present study aimed to examine the performance of an open-source diffu-
sionmodel inpainting algorithm under varying conditions of inpainting strength
and mask radius. However, the results obtained were unexpected and raise sig-
nificant concerns. Our findings indicate that the algorithm not only modifies
the pixels within the designated mask, as intended, but also alters pixels out-
side of the mask, even those that are unrelated to the inpainted subject. This
unexpected behavior has potentially significant implications, particularly in the
context of utilizing this algorithm for fine-detailed medical imaging, where the
consequences of inaccurate inpainting could be severe.

Utilizing heatmaps and the calculation of mean squared error (MSE), we ob-
served that areas of the image characterized by consistent pixel color, such
as the sky or water, tend to undergo minimal alteration during the inpainting
process. However, areas of the image that are more varied in color and texture,
such as mountain ridges and grass, tend to experience higher, yet relatively low
levels of alteration. The heatmaps further reveal that the edge of the inpainting
mask is a particularly sensitive area for pixel alteration.

The second experiment conducted in this study, which involved varying the
radius of the inpainting mask while keeping the strength constant, showed
that as the mask radius increases, the MSE may increase or decrease in a trend-
like manner.

This study provides valuable insights into the behavior of the inpainting algo-
rithm, and highlights areas that may require further research. It is important
to investigate the relationship between inpainting strength and mask radius in
more detail, as well as identify the specific characteristics of images that con-
tribute to their lower MSE. Additionally, the unexpected results of this study
regarding the alteration of pixels outside the masked area require further in-
vestigation and consideration in the field of utilizing diffusion models for in-
painting.

Acknowledgements
I would like to express my sincerest gratitude to my supervisor, Dr. Benjamin
Ricaud. Thank you, Benjamin, for sharing your wealth of knowledge and ex-
perience in both machine learning and computer vision. Your guidance and
direction made this thesis project both fascinating and informative. My deepest
appreciation also goes out to my siblings, parents, and grandparents for their
unwavering support throughout my academic journey. Lastly, I would like to
thank my partner Milla for her constant belief in me and my project.

Contents
Abstract iii

Acknowledgements v

List of Figures ix

1 Introduction 1
1.1 Image generation with deep generative models 2

2 Theory 5
2.1 Generative models . 5
2.2 Diffusion models . 7

2.2.1 Forward process . 7
2.2.2 Different variance schedules 9
2.2.3 Backward process 9
2.2.4 Training a diffusion model 11
2.2.5 Architecture . 15

2.3 Guided diffusion . 17
2.3.1 Classifier guidance 20
2.3.2 Classifier-free guidance 21

2.4 Stable diffusion: Latent diffusion models 22
2.4.1 Image inpainting . 23

3 Method 27
3.0.1 Syncing between computer and cluster 28
3.0.2 Utilizing Docker . 29
3.0.3 Inpainting . 30
3.0.4 Experiments . 33
3.0.5 Second experiment: Varying radius for three different

strengths . 35
3.0.6 Heatmap visualization 35

4 Results and discussion 37
4.1 Landscape images dataset 38

vii

viii contents

4.2 Pixelchange with respect to strength change 39
4.2.1 Plots . 39
4.2.2 Discussion . 42
4.2.3 Heatmap visualisation 44

4.3 Pixel change with respect to mask size 58
4.3.1 Graphical visualisation 58
4.3.2 Discussion . 61

4.4 Conclusion . 65

Bibliography 67

List of Figures
1.1 Some example images from Midjourneys community show-

case generated images. Each image is create with the prompt
written in the captions. Source [5]. 2

2.1 Illustration of the transition from clear to noisy image. Modi-
fied from Ho et al. [14]. 8

2.2 Latent samples from linear and cosine schedules at linearly
spaced t values between 0 and T are shown in the top and
bottom, respectively. The latter quarter of the linear sched-
ule’s latents are virtually entirely noise, but the cosine sched-
ule gradually introduces noise. Source: [15] 10

2.3 Illustration transferring between different time steps T be-
tween 𝑋𝑇 and 𝑋0 in a Markov chain. Source Ho et al. [14]. . 10

2.4 Plot of two arbitrary functions illustrating how 𝑓 (𝑥) ≥ 𝑔(𝑥)
for intuition behind ELBO. 12

2.5 Sudo code for the forward and backward process (sampling
and training). Source: Ho et al. [14] 15

2.6 U-network design (example for 32x32 pixels in the lowest
resolution). A multi-channel feature map correlates to each
blue box. On the top of the box, there is a channel count in-
dicator. At the lower left corner of the box, the x-y size is dis-
played. Copied feature maps are represented by white boxes.
The various operations are shown by the arrows. Source: Ron-
neberger et al. [20] . 16

2.7 Showcase image created with Dalle 2 using the prompt: An
astronaut riding a horse in a photorealistic style. Source: [4] . 19

2.8 Sudo code of algorithm for classifier guided diffusion sam-
pling. Source: Dhariwal and Nichol [10] 21

2.9 Illustration of the different machine learning components mak-
ing up the LDM algorithm. Source: Rombach et al. [2] 23

2.10 Example of image and mask ready to be inpainted. Source:
[27] . 24

2.11 Example of inpainted dog 24

ix

x list of figures

2.12 The RePaint method modifies the conventional denoising pro-
cess by incorporating conditioning on the existing image con-
tent. Specifically, in each step of the method, known regions
are sampled from the input image, while the inpainted re-
gions are obtained from the output of a DDPM (deep gen-
erative models using diffusion probabilistic process). Source:
Lugmayr et al. [28] . 25

2.13 "Generating tumoral lesions with predetermined regions of in-
terest (ROIs) for necrotic tumor core, tumoral edema, and tu-
moral enhancement. In each instance, prediction 1 was done
with a free-form input ROI and prediction 2 was done with a
bounding box input ROI." Source: Rouzrokh et al. [29] 26

3.1 Image created with the "StableDiffusionPipeline" from hug-
gingfaces diffusers package [30]. The text prompt used: "a
home for all the critters of the forest, big tree, tall, lush, calm,
book cover, ultra realistic, 4k, 8k" 27

3.2 The first time while testing result yielded high quality, show-
casing the capabilities of the technology. A strength of 0.6,
guidance scale of 7, and text prompt "cola can, red, standing
on wooden table, 4k, 8k" were used to restore the missing re-
gions of the image. This result demonstrates the potential of
this technology. 30

3.3 An illustration of the inpainting process with the strength pa-
rameter set to 0.84 is presented. As demonstrated by a com-
parison of figures (a) and (c), it is evident that the pixels out-
side the image mask have undergone significant changes. This
example represents one of the more pronounced instances of
this phenomenon. 32

4.1 The current study utilized a set of randomly selected land-
scape images for the purpose of conducting strength variation
testing. These images were chosen to provide a representative
sample of diverse landscape scenarios. The image on the top
left is Landscape image 0 and the image number increases
row wise to the right with Landscape image 1 until the bot-
tom right image which is Landscape image 19. 38

l ist of figures xi

4.2 The present study conducted a comparison of the pixels out-
side the inpainting mask of the inpainted images with the
original image prior to inpainting. The results indicated a no-
table trend towards higher mean-squared error (MSE) as the
inpainting strength increases. These results were obtained us-
ing the set of landscape images depicted in Figure 4.1. A dy-
namic downscaling method was employed, ensuring that the
largest side of each image remained below 650 pixels. Fur-
ther details regarding the methodology employed in this ex-
periment can be found in Section 3.0.4. 41

4.3 Mean of every plot seen in figure 4.2 with the addition of sec-
ond degree polynomial trendline represented by the function
9.694𝑥2 − 4.105𝑥 + 40 . 43

4.4 Inpainting of Landscape image 0 done with a strength of 0.84. 45
4.5 Inpainting of Landscape_2 done with a strength of 0.97. . . 47
4.6 Inpainting of Landscape_5 done with a strength of 0.97 . . 50
4.7 Inpainting of Landscape_7 done with a strength of 0.99. . . 52
4.8 Inpainting of Landscape_15 done with a strength of 0.93. . 54
4.9 Inpainting of Landscape_16 done with a strength of 0.99. . 56
4.10 . 60
4.11 Inpaintings and corresponding heatmaps of Landscape_13,

utilizing a strength of 0.5 and a radius percentage of half
the smallest dimension of the image, at 20, 32, 44, and 68
respectively. 63

4.12 Landscape_10 . 64

1
Introduction
As visual beings, humans can easily recognize items, conceive new settings,
and visually comprehend the world around us. When trying to make a com-
puter interpret images, the task’s true complexity becomes obvious. Images
are just a large collection of numbers that computers organize spatially on a
pixel grid, with each color represented by a tuple of three integers in the RGB
color model. The main problem in the subject of computer vision is making it
possible for computational models to comprehend and complete a variety of
tasks using picture input. Recently, diffusion models [1, 2] have been able to
generate visual results which are quite astonishing and image augmentation
and generation procedures might have been permanently altered by this new
technology (Imagen [3], Dalle2 [4] and Midjoruney [5] are some examples).
Even while the technology is in theory open source, a concern is that many of
these ready-made models have the disadvantage of being behind a paywall for
the user.

Fortunetely, in August 2022 the technology was released to the public by a col-
laboration from Stability AI [6, 7], CompVis LMU [8] and Runway [9]. They
released the weights and the code with no paywall and made everybody with
a computer powerfull enough able to create visually outstanding image gen-
erations. The inpainting method, which seems to have real-world applications
beyond just producing beautiful photos, will be tested as part of this study to
determine the boundaries of this open source diffusion model.

1

https://imagen.research.google/
https://openai.com/dall-e-2/
https://midjourney.com/showcase/recent/

2 chapter 1 introduction

(a) Prompt: "full body por-
trait of a small child,
cyberpunk, in the back-
ground a gigantic gun-
dam in a blurred city
scene"

(b) Prompt: "aerial view of
a giant fish tank shaped
like a tower in the mid-
dle of new york city, 8k
octane render, photoreal-
istic"

(c) Prompt: "the entire uni-
verse contained inside a
glass jar, super realistic,
hyper detailed, dramatic
lighting, 4k"

Figure 1.1: Some example images from Midjourneys community showcase generated
images. Each image is create with the prompt written in the captions.
Source [5].

1.1 Image generation with deep generative
models

The task of image generation using deep generative models (DGMs) is to syn-
thesize unseen images that accurately reflect the underlying probability dis-
tribution of a given dataset. This endeavour is highly complex and requires a
combination of advanced mathematical and statistical concepts, in addition to
the implementation of multiple machine learning techniques.

DGMs are the ideal choice for this task, as they are specifically designed to learn
the intricate patterns and structures within a set of images and use this infor-
mation to generate new images. This is achieved by learning a distribution over
the space of all possible images, allowing for sampling from this distribution in
order to produce novel images.

DGMs have several advantages for image generation, including their capacity
to capture high-level features and abstractions in the data. This allows for
the production of images which are not only realistic in appearance, but also
have meaningful and logical content. Additionally, deep generative models
can be trained on large datasets, thereby providing them with the necessary
complexity and diversity to generate realistic images of the real world.

1.1 image generation with deep generative models 3

In conclusion, image generation with DGMs is an engaging and difficult area
of research that could have a major impact on a variety of applications, such
as computer vision, graphics, and artificial intelligence.

2
Theory
2.1 Generative models

Unsupervised learning is a powerful method for understanding any kind of data
distribution, and generative models have been particularly effective in recent
years. These models aim to learn the underlying distribution of the training
data, allowing them to generate new data points with some variations. This
is useful because it is not always possible to fully understand the distribution
of our data, either intuitively or explicitly. To accomplish this, we can harness
the learning capabilities of neural networks to develop a function that roughly
matches the model distribution to the real distribution.

In generative models, we use the training data to estimate the prior probability,
𝑃 (𝑌), and the likelihood probability, 𝑃 (𝑋 |𝑌). By applying Bayes’ Theorem, we
can then calculate the posterior probability, 𝑃 (𝑌 |𝑋). Here, 𝑋 represents the
observed data and 𝑌 represents the latent variables or hidden states. The goal
of generative models is to estimate the probability of the observed data given
the latent variables, 𝑃 (𝑋 |𝑌), and the probability of the latent variables, 𝑃 (𝑌).
By using Bayes’ Theorem to compute the probability of the latent variables
given the observed data, 𝑃 (𝑌 |𝑋), we can gain insights into the underlying
relationships between these variables. This computation forms the foundation
of Bayesian generative models.

In the past, Variational Autoencoders (VAE) and Generative Adversarial Net-
works (GAN) were two of the most commonly used and effective techniques.

5

6 chapter 2 theory

GANs try to find an equilibrium between the generator and the discriminator,
while VAEs try to maximize the lower bound of the data log-likelihood. It is
important to note that while generative models have achieved great success
in various tasks, they are not a panacea and have their own limitations. For
example, they may struggle to capture highly structured or multi-modal data
distributions, and can be difficult to train. Despite these limitations, generative
models continue to be an active area of research, with new techniques and
approaches being developed all the time.

Recently, the field of diffusion models has seen a spike in popularity, with in-
creasing numbers of studies devoted to this area of research. They were first
introduced by Sohl-Dickstein et al. [1] and have undergone significant im-
provements and refinements in subsequent papers. For example, in the study
conducted by Dhariwal and Nichol [10], diffusion models were shown to outper-
form the then-current state-of-the-art generative models, effectively rendering
GANs a thing of the past. A more in-depth examination of diffusion models can
be found in Section 2.2.

Another important aspect of generative models is evaluating their performance.
This can be a challenging task, as it is often difficult to quantify how closely the
model distribution matches the real data distribution. One popular method for
evaluating generative models is the "Inception Score" (IS) [11], which measures
the quality and diversity of the generated samples. The IS is calculated by
training an image classification model on the generated samples and real data,
and then measuring the classification accuracy. A higher IS indicates that the
generated samples are of high quality and diverse. However, the IS has been
criticized for being sensitive to the choice of image classification model and
not necessarily indicative of the realism of the generated samples.

Other metrics for evaluating generative models include the "Fréchet Inception
Distance" (FID) [12], which measures the distance between the feature dis-
tributions of the generated samples and real data, and the "Kernel Maximum
Mean Discrepancy" (MMD) [13], which measures the distance between the
distributions using a kernel function. Like the IS, these metrics also have their
own limitations and trade-offs, and it is important to consider the specific task
and evaluation criteria when choosing a metric.

In conclusion, generative models have proven to be a powerful tool for under-
standing and generating data distributions. These models have been successful
in various tasks, but also have their own limitations. The field of diffusion mod-
els is a relatively new area of research that has shown promising results in
outperforming other generative models.

2.2 diffusion models 7

2.2 Diffusion models

The concept of diffusion models was first introduced in the context of deep
learning by Sohl-Dickstein et al. [1]. At a high level, diffusion models operate
by intentionally corrupting the training data through the addition of noise, and
subsequently learning to reverse this process through denoising techniques.
This allows diffusion models to generate coherent images from noise.

As generative models, diffusion models can be utilized to produce data similar
to that which they have been trained on. This is achieved by adding Gaussian
noise to the training data incrementally and learning to reverse this process
through a denoising technique. Once trained, the diffusion model can be used
to generate data by applying the learned denoising technique to randomly
sampled noise. Images are one type of data for which the effectiveness of
diffusion models can easily be visualized, and the results produced by current
models are noteworthy. It is worth noting that the original diffusion model
proposed by Sohl-Dickstein et al. [1] does not incorporate a latent space, a
feature that was introduced in later papers and models. The mathematical
foundations presented in this section 2.2 are derived from Sohl-Dickstein et al.
[1], Ho et al. [14], Nichol and Dhariwal [15], with explanations provided in
Karagiannakos et al. [16] and Luo [17].

Furthermore, by conditioning the image generation process, diffusion mod-
els can be utilized in conjunction with text-to-image guidance to generate an
almost unlimited number of images from text alone. The image generation
process can be guided by inputs from embeddings such as CLIP [18], providing
robust text-to-image capabilities. A more in-depth, theoretical and mathemati-
cal explanation of diffusion models in general will be provided in the following
sections of this theory section.

2.2.1 Forward process

A diffusion process is a statistical method that utilizes the properties of a Gaus-
sian distribution and a Markov chain to gradually introduce noise to a given
data distribution. This process can be used to approximate the posterior distri-
bution of a set of latent variables, denoted as 𝑋1, ..., 𝑋𝑡 , given an initial variable
𝑋0. The approximate posterior distribution is represented as 𝑞(𝑋1 : 𝑇 | 𝑋0),
where the latent variables have the same dimensionality as the initial vari-
able.

The use of a Gaussian distribution allows for the incorporation of uncertainty
in the process, while the Markov chain ensures that the evolution of the latent
variables is dependent only on their current state and not on their past states.

8 chapter 2 theory

This results in a temporal consistency in the latent variables, allowing for the
modeling of temporal dependencies in the data.

The forward process of a diffusion process is illustrated in Figure 2.1. This
figure shows the progression of the latent variables through time, starting from
the initial variable 𝑋0 and ending at the final variable 𝑋𝑇 . The incorporation
of noise at each time step through the use of the Gaussian distribution and the
Markov chain results in the approximation of the posterior distribution of the
latent variables.

Figure 2.1: Illustration of the transition from clear to noisy image. Modified from Ho
et al. [14].

The diffusion process depicted in Figure 2.1 can be represented mathemati-
cally using the framework of Markov chains. Specifically, the process can be
expressed as in Equation 2.1, which represents a sequence of sampling steps
from a Gaussian distribution N . The mean of the distribution at time step 𝑡

is given by 𝜇𝑡 =
√︁
1 − 𝛽𝑡x𝑡−1, while the covariance matrix is represented by

Σ = 𝛽𝑡 I. Here, 𝛽𝑡 is a noise scheduler that can be varied based on the time step
𝑡 , and I represents the identity matrix.

𝑞 (x1:𝑇 | x0) :=
𝑇∏
𝑡=1

𝑞 (x𝑡 | x𝑡−1) :=
𝑇∏
𝑡=1

N
(
x𝑡 ;

√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I

)
(2.1)

One issue with this representation is that computing the distribution at a partic-
ular time step, such as step 450 out of 500, requires recalculating the distribution
for the previous 449 steps. To address this issue, the reparameterization trick
can be used to rewrite the expression in a recursive form. This involves defining
𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =

∏
𝑠 = 0𝑡𝛼𝑠 , with 𝜖0, . . . , 𝜖𝑡−2, 𝜖𝑡−1 ∼ N(0, I). Using this

reparameterization, it can be shown that:

2.2 diffusion models 9

q (x𝑡 | 𝑥𝑡−1) = N
(
𝑥𝑡 ,

√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼

)
=
√︁
1 − 𝛽𝑡𝑥𝑡−1 +

√︁
𝛽𝑡𝜖

=
√
𝛼𝑡𝑥𝑡−1 +

√︁
1 − 𝛼𝑡𝜖

=
√
𝛼𝑡𝛼𝑡−1𝑥𝑡−2 +

√︁
1 − 𝛼𝑡𝛼𝑡−1𝜖

=
√
𝛼𝑡𝛼𝑡−1𝛼𝑡−2𝑥𝑡−3 +

√︁
1 − 𝛼𝑡𝛼𝑡−1𝛼𝑡−2𝜖

=
√
𝛼𝑡𝛼𝑡−1 · · ·𝛼1𝛼0𝑥0 +

√︁
1 − 𝛼𝑡𝛼𝑡−1 · · ·𝛼1𝛼0𝜖

=
√
𝛼𝑡𝑥0 +

√︁
1 − 𝛼𝑡𝜖

(2.2)

By utilizing the trick in equation 2.2, it is possible to generate a sample at
any time step 𝑡 using only the input sample 𝑥0 and without the need to it-
erate through all previous time steps. This is achieved through the following
equation:

x𝑡 ∼ 𝑞 (x𝑡 | x0) = N
(
x𝑡 ;

√
𝛼𝑡x0, (1 − 𝛼𝑡) I

)
(2.3)

Note that 𝛽𝑡 is a hyperparameter, which means that it is a value that is chosen
prior to training any algorithms and is not learned through the training process.
As a result, it is possible to precompute 𝑎𝑡 and 𝛼𝑡 for all time steps 𝑡 . This
property will be useful later on when calculating the loss 𝐿𝑡 .

2.2.2 Different variance schedules

There are various options for selecting the schedule of the variance parameter
𝛽𝑡 over the𝑇 time steps. This schedule can be fixed to a constant value, or it can
be varied using a variety of mathematical functions such as linear, quadratic,
or cosine. In the original work on denoising diffusion models by Sohl-Dickstein
et al. [1], which was later improved upon by Ho et al. [14], a linear schedule
was used, with 𝛽1 = 10−4 and 𝛽𝑇 = 0.02. However, it has been demonstrated
by Nichol and Dhariwal [15] that using a cosine schedule can yield even better
results.

2.2.3 Backward process

So far, we have demonstrated the process of adding noise to images at different
time steps as a means of preparing for denoising. However, the key question
remains: how does the denoising actually work? As 𝑇 approaches infinity, the

10 chapter 2 theory

Figure 2.2: Latent samples from linear and cosine schedules at linearly spaced t values
between 0 and T are shown in the top and bottom, respectively. The latter
quarter of the linear schedule’s latents are virtually entirely noise, but the
cosine schedule gradually introduces noise. Source: [15]

noised x𝑡 becomes increasingly similar to an isotropic Gaussian distribution
(when Σ = 𝜎2I). By generating noise from this distribution,N(0, I), and learn-
ing the distribution 𝑞(x𝑡 − 1 | x𝑡), it is possible to generate the "previous" noise.
If this process is repeated for a sufficient number of time steps, we can even-
tually generate a sample from the original distribution, 𝑞(x0). However, the
challenge lies in learning the distribution 𝑞(x𝑡 − 1 | x𝑡), which is unknown in
practice.

Estimating the statistical properties of 𝑞(x𝑡−1 | x𝑡) is intractable (there is no
existing algorithm capable of finding this distribution). Instead, we must rely on
approximations using the data distribution itself. This is where deep learning
andmachine learning excel, as we can use a neural network,𝑝𝜃 , to approximate
this distribution by parameterizing the mean and variance (as shown in Figure
2.3). By selecting a small enough value for 𝛽𝑡 , we can use this neural network
to estimate these parameters.

𝑝𝜃 (x𝑡−1 | x𝑡) = N
(
x𝑡−1; 𝝁𝜃 (x𝑡 , 𝑡) , 𝚺𝜃 (x𝑡 , 𝑡)

)
(2.4)

Figure 2.3: Illustration transferring between different time steps T between 𝑋𝑇 and
𝑋0 in a Markov chain. Source Ho et al. [14].

As previously mentioned, by repeatedly applying the reverse formula at each
time step, it is possible to recover the original (estimated) data distribution
from x𝑇 . This process can be thought of as "unwinding" the noise that was
added at each time step, eventually arriving at the original distribution.

2.2 diffusion models 11

𝑝𝜃 (x0:𝑇) = 𝑝𝜃 (x𝑇)
𝑇∏
𝑡=1

𝑝𝜃 (x𝑡−1 | x𝑡) (2.5)

By incorporating the time step 𝑡 as a parameter for the model to learn, we
can estimate the Gaussian parameters for each time step. This allows us to
determine the mean, 𝜇𝜃 (x𝑡, 𝑡), and covariance matrix, Σ𝜃 (x𝑡 , 𝑡), for each time
step 𝑡 . This additional information can be leveraged to improve the accuracy
of the model and enhance its ability to capture the underlying distribution of
the data.

2.2.4 Training a diffusion model

It can be observed that the combination of distributions 𝑝 and 𝑞 is similar to
what is present in the learning process of a Variational Autoencoder (VAE). This
suggests that we can train our model by optimizing the negative log-likelihood
of our training data, which is given by the Loss function: − log (𝑝𝜃 (𝑥0)). How-
ever, this probability is difficult to compute as it depends on all previous time
steps 𝑥0, 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑇−3, 𝑥𝑇−2, 𝑥𝑇−1, 𝑥𝑇 . As a solution, we can instead com-
pute the Variational Lower Bound (ELBO) [19], which is commonly used in
VAEs. The underlying principles of the ELBO are simple to understand. Imag-
ine we have a function 𝑓 (𝑥) that we cannot calculate, but have another function
𝑔(𝑥) that we can compute (figure 2.4) andwhich is always less than 𝑓 (𝑥). Then,
if we maximize 𝑔(𝑥), we can be sure that 𝑓 (𝑥) will also increase. In our case,
− log (𝑝𝜃 (𝑥0)) is the 𝑓 (𝑥).

Deriving the equation for the ELBO involves a high degree of complicated math,
which is not presented here (the full derivation can be found in Luo [17] from
equation 34 to 58). However, at the end of these calculations, we arrive at an
equation for the ELBO.

log𝑝 (x) ≥E𝑞 (𝑥1 |𝑥0)
[
log𝜃 (x0 | x1)

]
−

𝐷𝐾𝐿 (𝑞 (x𝑇 | x0) ∥𝑝 (x𝑇)) −
𝑇∑︁
𝑡=2

E𝑞 (x𝑡 |x0) [𝐷𝐾𝐿 (𝑞 (x𝑡−1 | x𝑡 , x0) ∥𝑝𝜃 (x𝑡−1 | x𝑡))]

= 𝐿0 − 𝐿𝑇 −
𝑇∑︁
𝑡=2

𝐿𝑡−1

(2.6)

Equation 2.6 from Karagiannakos et al. [16] presents a revised version of equa-

12 chapter 2 theory

Figure 2.4: Plot of two arbitrary functions illustrating how 𝑓 (𝑥) ≥ 𝑔(𝑥) for intuition
behind ELBO.

tion (5) in Ho et al. [14]. This rewritten equation is used in the learning process
of a Variational Autoencoder (VAE). The ELBO, or evidence lower bound, is an
important concept in VAE training because it allows us to approximate the log-
likelihood of the data, which is the function we want to maximize in order to
improve the performance of our model. By optimizing the ELBO, we can train
our VAE to reconstruct the input data accurately while also generalizing well
to new data. The original equation (5) in Ho et al. [14] expresses the ELBO in
a different form, but Karagiannakos et al. [16] showed that it can be rewritten
as equation 2.6 without loss of generality. This rewritten form of the ELBO has
several advantages, such as being more tractable for optimization and having
a clearer interpretation in terms of the reconstruction loss and regularization
term.

E𝑞 [𝐷KL (𝑞 (x𝑇 | x0) ∥𝑝 (x𝑇))︸ ︷︷ ︸
𝐿𝑇

+∑𝑡>1𝐷KL (𝑞 (x𝑡−1 | x𝑡 , x0) ∥𝑝𝜃 (x𝑡−1 | x𝑡))︸ ︷︷ ︸
𝐿𝑡−1

− log𝑝𝜃 (x0 | x1)︸ ︷︷ ︸
𝐿0

]

In the following, we will analyze the terms in equation 2.6.

2.2 diffusion models 13

1. The first term E𝑞 (𝑥1 | 𝑥0) [log𝑝𝜃 (x0 | x1)] can be understood as a re-
construction term, similar to the one in the evidence lower bound (ELBO)
of a variational autoencoder.

2. The second term 𝐷𝐾𝐿 (𝑞 (x𝑇 | x0) ∥𝑝 (x𝑇)) measures the similarity be-
tween 𝑥𝑡 and a typical Gaussian. It should be noted that this term does
not contain any trainable parameters, and therefore is not affected during
training.

3. The third term
∑𝑇
𝑡=2 𝐿𝑡−1, also known as 𝐿𝑡 , captures the difference be-

tween the required denoising steps 𝑝𝜃 (x𝑡−1 | x𝑡) and the approximations
𝑞 (x𝑡−1 | x𝑡 , x0).

To effectively denoise a given noisy image, it is necessary for the model to
have a clear understanding of the desired outcome. This is accomplished by
conditioning the reverse diffusion step, represented by 𝑞(x𝑡−1 | x𝑡 , x0), on the
input image 𝑥0. Essentially, this means that we sample the previous step x𝑡−1
given x𝑡 and the known clean image 𝑥0.

The goal of the optimization process, as stated in equation 2.6, is to maximize
the likelihood of the denoising steps 𝐿𝑡 . This is achieved through the use of
the reparameterization trick on 𝑞(𝑥𝑡 | 𝑥𝑡−1). By defining 𝛼𝑡 = 1 − 𝛽𝑡 and
𝛼𝑡 =

∏𝑡
𝑠=0 𝛼𝑠 , we are able to express the distribution in a form that allows for

efficient optimization. We can apply this same technique to 𝑞(x𝑡−1 | x𝑡 , x0) in
order to achieve the desired result.

𝑞 (x𝑡−1 | x𝑡 , x0) = N
(
x𝑡−1; 𝝁̃ (x𝑡 , x0) , 𝛽𝑡 I

)
where

𝛽𝑡 =
1 − 𝛼𝑡−1
1 − 𝛼𝑡

· 𝛽𝑡

𝝁̃𝑡 (x𝑡 , x0) =
√
𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

x0 +
√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
x𝑡

(2.7)

It is now possible to render the ELBO fully tractable through the use of a
mathematical calculation that proceeds towards a solution. By examining the
last line in Equation 2.2, we can represent it as an expression for 𝑥0:

14 chapter 2 theory

x0 =
1

√
𝛼𝑡

(
x𝑡 −

√︁
1 − 𝛼𝑡𝝐

))
where 𝝐 ∼ N(0, 𝐼) (2.8)

By substituting equation 2.8 into 2.7 we get a mean 𝝁̃𝑡 that only depends on
𝑥𝑡 (no longer including 𝑥0):

𝝁̃𝑡 (x𝑡) =
1

√
𝛼𝑡

(
x𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝝐

))
(2.9)

Now we can use a neural network to approximate the the noise 𝝐 and conse-
quently the mean. Implementing the new notations yield:

𝝁̃𝜃 (x𝑡 , 𝑡) =
1

√
𝛼𝑡

(
x𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝝐𝜃 (x𝑡 , 𝑡)
)

(2.10)

The loss function 𝐿𝑡 (which is the term for denoising in the ELBO) can now be
written as:

𝐿𝑡 = Ex0,𝑡,𝜖

[
1

2 ∥Σ𝜃 (𝑥𝑡 , 𝑡)∥22

𝝁̃𝑡 − 𝝁𝜃 (x𝑡 , 𝑡)

2
2

]
= Ex0,𝑡,𝜖

[
𝛽2
𝑡

2𝛼𝑡 (1 − 𝛼𝑡) ∥𝚺𝜃 ∥22

𝝐𝑡 − 𝝐𝜃
(√

𝑎𝑡x0 +
√︁
1 − 𝑎𝑡𝝐, 𝑡

)

2] (2.11)

The authors of Ho et al. [14] conducted experiments in their article that led
them to discover that using a simpler loss function (Equation 14 in [14]) could
actually improve the performance of the model compared to utilizing the com-
plete loss function shown in Equation 2.11:

𝐿simple (𝜃) := E𝑡,x0,𝝐
[

𝝐 − 𝝐𝜃

(√
𝛼𝑡x0 +

√︁
1 − 𝛼𝑡𝝐, 𝑡

)

2] (2.12)

It is worth noting that in Ho et al. [14], the authors chose to train the network
solely on the mean while keeping the variance constant. This was improved
upon by Nichol and Dhariwal [15], who allowed the network to also learn the
covariance matrix Σ by modifying 𝐿𝑠𝑖𝑚𝑝𝑙𝑒𝑡 , resulting in better performance from
the model.

2.2 diffusion models 15

Figure 2.5: Sudo code for the forward and backward process (sampling and training).
Source: Ho et al. [14]

2.2.5 Architecture

Now that we have a mathematical understanding of how to train and improve
the performance of our model using a loss function, the next step is to carefully
consider the architecture of our neural network. In particular,we need to choose
a network that is well-suited to the task of denoising images.

As a reminder, our goal is to predict the parameters of the noise in an image in
order to remove it and produce a clear image. Since the input to our model is
a noisy image and the output is a denoised image of the same size, we need to
choose a neural network that is able to effectively learn this mapping.

One type of network that has been successful for image denoising is the U-net,
introduced by Ronneberger et al. [20] in 2015. The U-net achieved state-of-the-
art results for biomedical image segmentation at the time, and its architecture
has proven effective for other image processing tasks as well.

The U-net is similar to an autoencoder, a type of network that learns to recon-
struct its input data by compressing it through a bottleneck and then decom-
pressing it. The U-net also has a bottleneck in the middle of the network, which
helps it focus on the most important features in the input image. However, the
U-net also includes additional features, such as skip connections, that allow it
to more effectively preserve the spatial resolution of the input image during
denoising.

In summary, the U-net is a neural network that is well-suited to the task of
denoising images because of its ability to effectively learn the mapping from
noisy inputs to denoised outputs and its ability to preserve the spatial resolution
of the input image. While the U-net is just one example of a neural network that
could be used for this task, it is a strong choice due to its proven effectiveness
for image denoising and other image processing tasks.

As we can see from Figure 2.6, the U-net gets its name from its distinctive shape,

16 chapter 2 theory

Figure 2.6: U-network design (example for 32x32 pixels in the lowest resolution). A
multi-channel feature map correlates to each blue box. On the top of the
box, there is a channel count indicator. At the lower left corner of the
box, the x-y size is displayed. Copied feature maps are represented by
white boxes. The various operations are shown by the arrows. Source:
Ronneberger et al. [20]

which resembles the letter "U". The U-net takes an input image, typically with
three color channels, as input. On the left half of the "U," there are normal 3×3
convolutions with the ReLu activation function and 2×2 maxpooling layers for
down-sampling. On the right half of the "U," there are up-convolutions (also
known as transposed convolutions, as discussed in Chapter 4 of Dumoulin and
Visin [21]) for upsampling.

One key feature that sets the U-net apart is the use of skip connections, as
illustrated by the gray lines crossing the "U." These skip connections help the
U-net recover spatial information that may be lost during the down-sampling
process and improve the gradient flow, which aids in the denoising process.
This is achieved by concatenating the upsampled layers in the decoding part
with the corresponding down-sampled layers in the encoding part, allowing
the network to "retain" information before it is lost in the bottleneck.

During training, for each time step 𝑡 in denoising equation 2.5, the U-net model
processes every image in the batch and attempts to denoise them to the best
of its ability, while also adjusting its weights during each training epoch. The

2.3 guided diffusion 17

original denoising diffusion probabilistic model implementation [14] includes
Wide ResNet blocks, group normalization blocks, and self-attention blocks in
the U-net. To represent the time step 𝑡 , the authors use sinusoidal position
embeddings, which allow the neural network to "know" at what specific time
step (noise level) it is operating for each image in the batch, drawing inspi-
ration from the Transformer [22]. For more information on the U-net and its
various components, see Ronneberger et al. [20] and this helpful blog post
from Huggingface [23].

To further illustrate the role of the U-net in the denoising process, let’s consider
the following example:

Imagine we have a noisy image and we want to use the U-net to denoise it. The
image is fed into the left half of the U-net, where it undergoes convolution and
down-sampling. This process helps the network identify and extract important
features from the image, such as edges and shapes. However, as the image is
down-sampled, some spatial information is lost.

The extracted features are then passed through the bottleneck of the U-net,
which serves as a bottleneck of information. The bottleneck helps the network
focus on the most important features and discard less relevant ones.

After passing through the bottleneck, the features are passed to the right half of
the U-net,where they are upsampled using up-convolutions. At this point, the U-
net makes use of skip connections to "recover" the spatial information that was
lost during down-sampling. The skip connections do this by concatenating the
upsampled layers with the corresponding down-sampled layers in the encoding
part of the network.

Finally, the denoised image is produced by the U-net and can be compared to
the original, noisy image using a loss function. This comparison is used to adjust
the weights of the network and improve its performance during training.

Overall, the U-net is an effective neural network architecture for image denois-
ing due to its ability to identify and extract important features from the input
image, its use of a bottleneck to focus on the most relevant information, and
its use of skip connections to recover lost spatial information.

2.3 Guided diffusion

Up until this point, our model has been able to denoise images based solely on
the training images. However, there is another way to incorporate user input

18 chapter 2 theory

into the denoising process, known as guided diffusion.

Guided diffusion allows the user to provide guidance on the content of the gen-
erated images by incorporating embeddings of images or text into the diffusion
process. These embeddings, which take the form of vectors, allow the model to
learn from both the embeddings and the images. To apply a condition to our
diffusion model 𝑝𝜃 , we add extra information 𝑦 at each step of the 𝑡 steps in
the diffusion process:

𝑝𝜃 (x0:𝑇 | 𝑦) = 𝑝𝜃 (x𝑇)
𝑇∏
𝑡=1

𝑝𝜃 (x𝑡−1 | x𝑡 , 𝑦) (2.13)

By applying the embedding at each time step (rather than just the first), we
ensure that the model is constantly adjusted in the correct direction, even if
the results drift. Using text embeddings as input is a good example of this type
of conditional diffusion technique. As shown in Figure 2.7, this approach can
produce highly creative results when using user-defined text prompts as input
to a conditional diffusion model.

It’s important to note that the choice of embedding method (image or text)
and the specific implementation of the guided diffusion process will depend
on the specific task and the resources available. In general, however, guided
diffusion can be a powerful tool for allowing the user to exert more control over
the output of the model and to produce more targeted, relevant results.

The objective of guided diffusion is to learn the gradient of the log posterior
distribution of x𝑡 given 𝑦, denoted as ∇ log𝑝𝜃 (x𝑡 | 𝑦). This can be achieved
through the application of Bayes’ rule:

∇x𝑡 log𝑝𝜃 (x𝑡 | 𝑦) = ∇x𝑡 log
(
𝑝𝜃 (𝑦 | x𝑡) 𝑝𝜃 (x𝑡)

𝑝𝜃 (𝑦)

)
= ∇x𝑡 log𝑝𝜃 (x𝑡) + ∇x𝑡 log (𝑝𝜃 (𝑦 | x𝑡))

(2.14)

Note that the term 𝑝𝜃 (𝑦) in the denominator can be discarded, as it is a constant
with respect to x𝑡 . This is because we are only interested in the loss from the
images, rather than in relation to the conditional input 𝑦, as indicated by the
gradient operator ∇x𝑡 .

To adjust the influence of the conditional input on the guidance, we introduce
a scaling factor 𝑠:

2.3 guided diffusion 19

Figure 2.7: Showcase image created with Dalle 2 using the prompt: An astronaut
riding a horse in a photorealistic style. Source: [4]

∇ log𝑝𝜃 (x𝑡 | 𝑦) = ∇ log𝑝𝜃 (x𝑡) + 𝑠 · ∇ log (𝑝𝜃 (𝑦 | x𝑡)) (2.15)

The scaling factor 𝑠 allows for fine-tuning the degree to which the guidance
provided by the conditional input𝑦 affects the optimization of the log posterior
distribution of x𝑡 . This can be particularly useful in cases where the strength
of the guidance signal may vary, or when it is desirable to adjust the balance
between the guidance and the inherent structure of the data represented by
𝑝𝜃 (x𝑡).

The value of 𝑠 can be determined through a variety of methods, such as em-
pirical experimentation or theoretical analysis. In general, a larger value of 𝑠
will result in a stronger influence of the guidance signal on the optimization

20 chapter 2 theory

process, while a smaller value will allow the inherent structure of the data to
play a more prominent role.

It is important to note that the use of a scaling factor does not necessarily imply
that the guidance signal is necessarily weaker or less reliable than the data.
Rather, it allows for flexibility in balancing the influence of the two sources of
information in the optimization process.

In the following subsections (2.3.1 and 2.3.2), we will describe two different
methods for implementing guided diffusion.

2.3.1 Classifier guidance

A method to guide the diffusion process is to utilize a classifier, denoted as
𝑓𝜙 (𝑦 | x𝑡 , 𝑡), to direct the diffusion towards a desired class 𝑦 during training,
as proposed by Sohl-Dickstein et al [1]. and later implemented by Dhariwal
and Nichol [15]. This can be achieved by training the classifier on the noisy
image x𝑡 , and using the resulting gradients to guide the diffusion process. To
do this, we may consider constructing a class-conditional diffusion model, with
mean 𝜇𝜃 (x𝑡 | 𝑦) and variance Σ𝜃 (x𝑡 | 𝑦).

Since the probability distribution 𝑝𝜃 follows a normal distributionN(𝜇𝜃 , Σ𝜃), it
can be shown from equation 2.15 that the mean of the distribution is perturbed
by the gradients of log 𝑓𝜙 (𝑦 | x𝑡) for class 𝑦. This results in:

𝜇 (x𝑡 | 𝑦) = 𝜇𝜃 (x𝑡 | 𝑦) + 𝑠 · Σ𝜃 (x𝑡 | 𝑦) ∇x𝑡 log 𝑓𝜙 (𝑦 | x𝑡 , 𝑡) (2.16)

In the work of Nichol et al. [24], this concept was further developed by incor-
porating CLIP (Contrastive Language-Image Pre-training) embeddings [18] to
guide the diffusion process. CLIP, as introduced by Saharia et al. [25], con-
sists of an image encoder 𝑔 and a text encoder ℎ. These encoders produce the
text embedding ℎ(𝑐) and image embedding 𝑔(x𝑡), where 𝑐 is a text caption. To
perturb the gradients, the dot product of these embeddings can be taken:

𝜇 (x𝑡 | 𝑐) = 𝜇 (x𝑡 | 𝑐) + 𝑠 · Σ𝜃 (x𝑡 | 𝑐) ∇x𝑡𝑔 (x𝑡) · ℎ(𝑐) (2.17)

This produced a way to correct and guide the diffusion process towards the
user defined text input. See figure 2.8 for code example.

2.3 guided diffusion 21

Figure 2.8: Sudo code of algorithm for classifier guided diffusion sampling. Source:
Dhariwal and Nichol [10]

2.3.2 Classifier-free guidance

Yet again we can use equation 2.15 to define a classifier-free guided diffusion
model:

∇ log𝑝 (x𝑡 | 𝑦) = 𝑠 · ∇ log (𝑝 (x𝑡 | 𝑦)) + (1 − 𝑠) · ∇ log𝑝 (x𝑡) (2.18)

The difference between classifier guidance and classifier free guidance is achiev-
ing guidance without the use of a second classifier model. This was first pro-
posed by Ho and Salimans [26]. The authors combined the training of an
unconditional model 𝜖𝜃 (𝑥𝑡 | 𝑦) with a conditional diffusion model 𝜖𝜃 (𝑥𝑡 | 0),
and rather than training two separate classifiers, they really employ the same
neural network. They randomly change the class y during training to 0, expos-
ing the model to both the conditional and unconditional setup:

𝝐𝜃 (x𝑡 | 𝑦) = 𝑠 · 𝝐𝜃 (x𝑡 | 𝑦) + (1 − 𝑠) · 𝝐𝜃 (x𝑡 | 0)
= 𝝐𝜃 (x𝑡 | 0) + 𝑠 · (𝝐𝜃 (x𝑡 | 𝑦) − 𝝐𝜃 (x𝑡 | 0))

(2.19)

There are a couple of advantages using classifier-free over classifier diffu-
sion:

• There only one model involved in the guided diffusion process

• When guiding on data that is challenging for a classifier to anticipate, it
makes things simpler, for example with text embeddings.

Saharia et al. [25] proposal for Imagen [3] significantly depends on classifier-
free guidance since they found that it is essential to producing samples with
good image and text correlation.

22 chapter 2 theory

2.4 Stable diffusion: Latent diffusion models

The application of diffusion models in image processing requires significant
computational resources due to the direct manipulation of pixel data and the
high-dimensional nature of RGB images. These models often involve repeated
evaluations of functions and computation of gradients, which can be compu-
tationally demanding, requiring hundreds of GPU days in some cases [10].
Moreover, the inference process, which involves the creation of 50, 000 sam-
ples via repeated evaluations on noisy versions of the input space, can be time-
consuming, taking approximately 5 days to complete on a single A100 GPU
[10]. These challenges present two main problems: (1) the high computational
requirements and associated carbon footprint of training such models, and (2)
the time and memory demands of evaluating a trained model.

How do we go about resolving this problem?

By altering the models to operate on the latent space, it is possible to dras-
tically reduce the number of parameters required in calculation. This can be
accomplised by the use of autoencoders. These models where by the authors
Rombach et al. [2] named LDMs or Latent diffusion models (also called stable
diffusion).

To address the challenges presented by the computational demands and time-
consuming nature of diffusion models in image processing, one potential so-
lution is to modify these models to operate in the latent space through the
use of autoencoders. These modified models, referred to as latent diffusion
models (LDMs) or stable diffusion models by the authors Rombach et al. [2],
can significantly reduce the number of parameters required in calculation, as
illustrated in Figure 2.9. In this figure, before the use of the U-net structure,
the images goes through an encoder E which brings them to the latent space,
making it so that the number of parameters is reduced. When the U-net has
done its work on the latent image and possible an additional embedding, the
latents are brought back up to the pixel space with the use of the decoder
D. If we represent the simplified loss function for a typical diffusion model as
equation 2.20 (from Rombach et al. [2]);

𝐿𝐷𝑀 = E𝑥,𝜖∼N(0,1),𝑡
[
∥𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡)∥22

]
(2.20)

the loss function for the latent diffusion model (LDM) can be represented
as:

2.4 stable diffusion: latent diffusion models 23

Figure 2.9: Illustration of the different machine learning components making up the
LDM algorithm. Source: Rombach et al. [2]

𝐿𝐿𝐷𝑀 = EE(x),𝑡,𝜖
[
∥𝝐 − 𝝐𝜃 (z𝑡 , 𝑡)∥2

]
(2.21)

As was previously mentioned, the incorporation of the use of latent space,
thanks to Rombach et al. [2], was a significant step toward lowering the com-
putational cost and making diffusion models efficient enough for the majority
of people to use without the requirement of the most powerful GPU’s. Latent
diffusion models is also the models used throughout this master project.

2.4.1 Image inpainting

Image inpainting is a computer vision technique that involves filling in missing
or damaged areas of an image with semantically and aesthetically plausible
content. It has a wide range of applications, including object removal, image
compositing, and photo restoration. The process of image inpainting can be
difficult, particularly when large areas need to be filled, and requires strong
generation skills. In recent times, image inpainting has also been incorporated
into diffusion models, as the transition from generating an entire image to gen-
erating only a part of an image is not far off. However, changing the algorithms
objective from image generation to inpainting demands new training cycles
and new weights but the main fundamentals of diffusion models algorithm
remains the same. The following example images are taken from an example
of the inpainting algorithm using the diffusers library, which was published as
a Google Colab page [27]. These images demonstrate the effectiveness of the
inpainting algorithm in filling in "missing" parts of an image.

24 chapter 2 theory

(a) Image of dog to be inpainted. (b) The mask used in combination with the dog
image

Figure 2.10: Example of image and mask ready to be inpainted. Source: [27]

(a) Example inpainting a dog to a robot

(b) A couple of more examples of the dog inpainted to a robot

Figure 2.11: Example of inpainted dog

2.4 stable diffusion: latent diffusion models 25

In the field of image inpainting, there has been a continuous evolution of
methods and enhancements over the years, beginning with the work of Sohl-
Dickstein et al. [1] and continuing up to the present day papers like Rombach
et al. [2]. In the initial paper on the topic, Sohl-Dickstein et al. [1] (section
2.5) proposed the use of multiple distributions and posterior computation to
perform inpainting using a diffusion probabilistic model trained on specific
images. Specifically, this approach involves sampling from the posterior dis-
tribution over the missing region of the image, given the rest of the image as
context. However, this is just one of the ways in which diffusion models can be
applied for image inpainting.

Subsequent papers, such as Lugmayr et al. [28], have introduced alternative
methods for utilizing diffusion models for this purpose. One such approach
involves intelligently combining known and unknown pixels to generate the
missing pixels, given the context of the known pixels as illustrated in figure
2.12.

Figure 2.12: The RePaint method modifies the conventional denoising process by in-
corporating conditioning on the existing image content. Specifically, in
each step of the method, known regions are sampled from the input im-
age, while the inpainted regions are obtained from the output of a DDPM
(deep generative models using diffusion probabilistic process). Source:
Lugmayr et al. [28]

Diffusion models and inpainting algorithms have many applications, partic-
ularly in healthcare. One of the more interesting applications is the use of
inpainting on medical data. A recent paper by Rouzrokh et al. [29] presented a
proof-of-concept diffusion model that can be used for multitasking brain tumor
inpainting on multi-sequential brain MRI studies. The model was developed to
receive a 2D axial slice from different MRI sequences and inpaint a user-defined
cropped area of the slice with realistic and controllable images of high-grade

26 chapter 2 theory

gliomas or tumor-less brain tissues. With this model, researchers can edit syn-
thetic tumoral or tumor-less tissues on brain MRI slices, which is particularly
valuable given the limited data on brain tumors. To achieve this, the authors
trained a diffusion model that can transform an input image of an axial brain
MRI slice with random noise into a synthetic but realistic image with user-
specified attributes through 1000 steps of denoising, conditioned on the input
regions of interest to the model. See figure 2.13

Figure 2.13: "Generating tumoral lesions with predetermined regions of interest (ROIs)
for necrotic tumor core, tumoral edema, and tumoral enhancement. In each
instance, prediction 1 was done with a free-form input ROI and prediction
2 was done with a bounding box input ROI." Source: Rouzrokh et al. [29]

3
Method

Figure 3.1: Image created with the "StableDiffusionPipeline" from huggingfaces dif-
fusers package [30]. The text prompt used: "a home for all the critters of
the forest, big tree, tall, lush, calm, book cover, ultra realistic, 4k, 8k"

The initial goal of this project was to evaluate the potential of diffusion mod-
els for use in machine learning and deep learning applications, rather than to
immediately apply them to a specific problem. To conduct experiments, it was
necessary to implement a stable diffusion model on a local computer. After con-
sidering several options, the diffusers package [30] provided by HuggingFace

27

28 chapter 3 method

was selected due to its widespread use and reputation within the machine learn-
ing community. HuggingFace is a community of machine learning developers
and enthusiasts committed to advancing and making machine learning acces-
sible to all. The diffusers package can be easily installed using the following
command:

pip install --upgrade diffusers transformers accelerate

However, a significant obstacle arose when it became apparent that the GPU in
my personal laptop, a MacBook Pro released in late 2019, was not compatible
with CUDA, a parallel computing platform and programming model developed
by NVIDIA for generic computing on GPUs. While it is possible to run diffusion
models on a CPU, the process is much slower and can result in overheating of
the chip over time. As a solution, the use of a GPU cluster provided by the UiT
machine learning group was implemented. This cluster, which can be accessed
via the Secure Socket Shell (SSH) network protocol in combination with vpn,
allowed for the efficient execution of the diffusion models despite the lack of a
compatible GPU on my personal laptop. It is worth noting that recent advances
have resulted in the creation of implementations for Apple M1 chips, which
perform well in this context.

3.0.1 Syncing between computer and cluster

When executing code on the cluster, it was necessary to transfer all the necessary
files required for the specific code to be run, to the cluster’s personal storage.
This is where the Secure Shell (ssh) protocol came into play. The Secure Copy
Protocol (scp) was utilized to transfer files with ssh. By simply executing the
following command in the terminal:

scp /path/to/file username@a:/path/to/destination

This commandwould copy a file from the local system to the desired destination
connected via ssh. However, in cases where it was necessary to copy files from
the cluster to the local system, such as generated plots, "npy" or "pkl" files, or
other files generated by the cluster, it was a simple matter of reversing the
direction of the command. This is illustrated by the following command:

scp username@b:/path/to/file /path/to/destination

A problem that arose frequently was that in the use cases where the cluster
generated a huge amount of files, it was necessary to copy each and every
file individually, which proved to be a tedious task. In order to overcome this
problem, an alternative solution was sought after. One such solution is the

29

utilization of the fast and versatile file copying/syncing tool, rsync [31]. Rsync
is a commonly used tool in Linux and OSX operating systems, it can be used
to synchronize files between different systems by implementing an algorithm
that minimizes the amount of data copied by only transferring the differences
in data between the last time the sync command was executed and the current
execution of the command.

This proved to be a tremendous relief as it was now incredibly easy to trans-
fer entire folders of files between the cluster and the local system with one
command line:

rsync OPTION SourceDirectory_or_filePath
user@serverIP_or_name:Target↩→

To further facilitate the transfer of files between the local system and the cluster,
two ".sh" files were created, referred to as "sync_to_cluster" and "sync_from_cluster".
These files allowed for even more rapid and effortless synchronization of all
relevant files to or from the cluster and could easily be called upon from the
terminal when necessary.

3.0.2 Utilizing Docker

Docker [32] is an open-source platform that facilitates efficient and secure
packaging and deployment of applications. This is achieved through the utiliza-
tion of container-based virtualization technology, which isolates applications
and their dependencies into self-contained units, making them easy to manage
and deploy. This feature makes Docker an ideal tool for software development
teams who aim to quickly and efficiently build and deploy applications. Ad-
ditionally, Docker provides a high level of flexibility and scalability, allowing
code to be tested and deployed on multiple platforms.

In the present context, the system employs the use of Docker images to run ap-
plications on the cluster. Specifically, in the context of running Stable Diffusion
models on the cluster, various Python packages were required. To avoid the
time-consuming process of having to install these packages each time the code
was run, a custom Docker image was created. The Diffusers package offered
by Hugging Face utilizes PyTorch as its base and PyTorch conveniently offers
official Docker images that can be customized by the end user. Hence, a custom
Docker image was created, and uploaded to Docker Hub, for the purpose of
running this specific application on the cluster. This allowed for the cluster to
download and utilize the image for this specific purpose.

30 chapter 3 method

3.0.3 Inpainting

(a) Original image of a TINE IsKaffe
Gosto Brasileiro

(b) Mask image given to the algo-
rithm alongside the original im-
age 3.2a

(c) Inpainting results

Figure 3.2: The first time while testing result yielded high quality, showcasing the
capabilities of the technology. A strength of 0.6, guidance scale of 7, and
text prompt "cola can, red, standing on wooden table, 4k, 8k" were used
to restore the missing regions of the image. This result demonstrates the
potential of this technology.

31

Upon using the inpainting method from the HuggingFace diffusers library,
we observed that it contained a strength parameter which not only impacted
the inpainting mask, where the diffusion model would perform inpainting,
but also altered the pixels outside of the mask as can be seen in figure 3.3.
This prompted us to investigate the effect of this parameter on the inpainting
results. To do so, we conducted a series of experiments varying the strength
parameter and analyzing the resulting inpainting performance. Our findings
showed that adjusting the strength parameter had a significant influence on
both the inpainting mask and the pixels outside of the mask, and that careful
tuning of this parameter was necessary to achieve satisfactory results. These
results were crucial in guiding the development of our inpainting methodology
and ensuring the robustness of our approach.

(a) The original landscape images with nothing done to it. Source: [33]

(b) Mask image created with 94% of the smallest side as diameter of the circle.

32 chapter 3 method

(c) Inpainted mask area with strength parameter of 0.84 and no guidance scale (no text input
from user)

Figure 3.3: An illustration of the inpainting process with the strength parameter set
to 0.84 is presented. As demonstrated by a comparison of figures (a) and
(c), it is evident that the pixels outside the image mask have undergone
significant changes. This example represents one of the more pronounced
instances of this phenomenon.

The higher the strength, the more intense the inpainting process will be as
the number diffusion iterations increases. Conversely, the lower the strength,
the less intense the inpainting process will be. This can be useful for fine-
tuning the inpainting process to achieve the desired balance between image
quality and inpainting intensity. Also, since inpainting requires a mask for the
selected area which is to be inpainted, this could also be a varying factor when
experimenting.

Despite the limited resources available on the theoretical and mathematical
workings of the Hugging Face inpainting algorithm, I have made a conscious
effort to gain a comprehensive understanding of the algorithm through study-
ing the open-source code released on their GitHub page and referencing the
papers by Ho et al. and Rombach et al. While inpainting is just a subset of
the capabilities of the algorithm, it is important to recognize the significance
of its application in the field of deep learning. Further research in this area,
including in-depth explanations of the theoretical and mathematical workings
of the algorithm, would greatly contribute to the evolution of diffusion models
for inpainting.

Overall, the code provided by Hugging Face on their GitHub page is open for
examination. However, due to the complexity and intricacies of the underlying
algorithms and codebase, a thorough understanding of its inner workings may

33

be challenging for those without advanced coding proficiency. Despite this, the
inpainting pipeline utilized in this experiment can be analyzed and understood
to a certain extent through examination of the provided code and documen-
tation. Additionally, the results of this study provide valuable insights into the
behavior of the inpainting algorithm, regardless of a complete understanding
of its underlying codebase.

The following is an exact quote written as a comment in their inpainting
pipeline [34] (line 502-506) about the strength parameter.

strength (‘float‘, *optional*, defaults to 0.8):
Conceptually, indicates how much to inpaint the masked
area. Must be between 0 and 1. When ‘strength‘ is 1, the
denoising process will be run on the masked area for the
full number of iterations specified in
‘num_inference_steps‘. ‘image‘ will be used as a reference
for the masked area, adding more noise to that region the
larger the ‘strength‘. If ‘strength‘ is 0, no inpainting
will occur.

The strength parameter is a continuous variable that ranges between 0 and 1
and plays a crucial role in the inpainting process. It governs the intensity of
the inpainting applied to the masked regions of an image. Specifically, when
the strength is set to 1, the algorithm will fill in the masked area as much as
possible, using the denoising process for the full number of iterations specified
in the other parameter 𝑛𝑢𝑚_𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑡𝑒𝑝𝑠. The image is used as a refer-
ence for the masked area, thus the noise level in the masked area increases
proportionally with the increase of strength. Conversely, a value of 0 for the
strength parameter implies no inpainting is performed. This relationship be-
tween the strength parameter and the intensity of inpainting can be succinctly
encapsulated mathematically as follows:

𝑖𝑛𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ × 𝑛𝑢𝑚_𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑡𝑒𝑝𝑠

3.0.4 Experiments

First experiment: Varying strength with constant mask radius

The initial experiment was conducted on a dataset of 20 randomly selected
landscape images sourced from Kaggle [33]. Each image underwent down-
sampling, specifically relative downsampling that adjusts the image size to be
below a certain pixel threshold, while preserving the aspect ratio of the image.

34 chapter 3 method

This downsampling was necessary due to the limited amount of video random
access memory (VRAM) available in the graphics processing unit (GPU) cluster
provided. As access to command line commands that would reveal the exact
hardware specifications was not possible, if an image with an excessive number
of pixels was inputted, an out of memory error would be generated by PyTorch,
indicating that approximately 10GB of VRAM was available.

As a result of experimentation, it was determined that through the utilization of
various memory-saving options within the code, though at the expense of slower
inference iterations, the maximum image size that could be processed without
encountering an out-of-memory error was approximately 750× 750 = 562500
pixels. However, it is worth noting that this value is not fixed and that the
total number of pixels can be increased by adjusting the aspect ratio of the
image such that the total number of pixels remains within close proximity to
562000.

For each image within the dataset of 20, a corresponding binary mask image
was generated, where the masked regions were represented by white pixels
and the non-masked regions by black pixels. This is a widely accepted stan-
dard for representing masks in the context of image inpainting, as depicted
in Figure 3.2b and 3.3b. The masks for each image were created by utilizing
approximately 80% of the length of the smallest side of the image, divided
in half, as the radius for a circular white mask. This approach was chosen in
order to maintain a consistent ratio of circle area

image area across the 20 images, despite
variations in image width and height, by ensuring that the circle never extends
beyond the boundaries of the image.

For each image, a linearized inpainting strength between 0 and 1, consisting
of 100 steps, was utilized to generate 100 inpainted images per original image.
This resulted in a total of 2000 inpainted images, as depicted by the mask de-
scribed above. This methodology allows for a comprehensive examination of
the varying inpainting strength on the final result. The reason for maintaining
a relatively large number of strength inputs per image was to investigate the
potential correlation between the inpainting strength and the degree of change
to the pixels outside the inpainting mask, which were subject to change. The
task of generating a large number of inpainted images, as described in the
previous statement, was quite time-consuming and labor-intensive for the com-
putational hardware. Fortunately, the availability of a GPU cluster enabled a
significant reduction in computation time, as each inpainting operation was
completed in an average of 21 seconds. This resulted in a total inpainting time
of close to 12 hours, with the time being dependent on the image size and
the number of inference steps, where the number of inference steps increased
proportionally with the strength parameter.

35

As a final step, we aimed to visualize the effectiveness of the inpainting algo-
rithm on the pixels outside the masked area, by utilizing the Mean Squared
Error (MSE) pixel-wise. In order to accurately calculate the change in pixels
outside of the inpainting mask, it was necessary to ignore the inpainted area
when comparing the pixels to the original image. To accomplish this, we re-
placed all inpainted pixels with white pixels in both the original image and
the inpainted image, ensuring that the squared error within the inpainted area
would not contribute to the overall error. This method has the potential to di-
lute the MSE due to the high number of zero errors introduced. To address this,
a combination of replacing the inpainted pixels with white pixels and using
Python code to identify and only apply the MSE to the relevant pixels was
implemented. The results can be seen in section 4.2.

3.0.5 Second experiment: Varying radius for three
different strengths

In the second experiment, we aimed to investigate the impact of varying the
radius of the white circular mask on the degree of change in pixels outside
the inpainted mask area. The same images as in experiment 1 3.0.4 was also
utilized in this experiment. To accomplish this, 50 different mask sizes were
utilized per image. The radius of the masks were linearly spaced between 20
percentage and up to 80 percentage of the smallest image side divided in
half. This approach was implemented to prevent the mask from exceeding the
boundaries of the image, as outlined in Section 3.0.4 of our methodology. Each
of the 50 different mask sizes were then applied to three different strengths of
0.1, 0.5 and 0.9, resulting in a total of 20 × 50 × 3 = 3000 inpainted images.
This experimental design required a computational effort of approximately
3000
2000 × 12 = 18 hours.

In order to visualize the results the same approach as in experiment 1 was used.
Namely using MSE in order to compare the difference and making sure that
the inpainted part not intervened with the MSE results by putting a white circle
on the masked area on both the original and inpainted image. The results can
be seen in this section 4.3.

3.0.6 Heatmap visualization

As we conducted our experiments and considered the reason for the inpainting
algorithm’s tendency to alter not only the pixels within the inpainted area,
but also those surrounding it, we developed a hypothesis. The algorithm may
introduce some additional noise to the entire image during certain inference
steps in order to improve the fit of the inpainted area to the rest of the image.

36 chapter 3 method

Furthermore, if this hypothesis is true,wewould expect to observe a higher level
of change in the pixels near the border of the inpainting mask. To investigate
this, we employed a heatmap of pixel change on the top three inpainted images
displaying the highest degree of change. The results of this visual investigation
can be found in the results section 4.2.3 and the code for Experiment 1, 2
and the heatmap visualisation can be seen at my Github page [35] in the file
inpainting_strength_testing.py.

https://github.com/VebjornHal/huggingface-diffusion-library-testing
https://github.com/VebjornHal/huggingface-diffusion-library-testing/blob/main/cluster_dir/inpainting_strength_testing.py

4
Results and discussion
The present study aimed to investigate the impact of inpainting strength and
mask radius on the alteration of pixels outside the inpainting mask. A series
of experiments were conducted in which images were inpainted with varying
strengths and constant mask radiuses, as well as varying mask radiuses and con-
stant strengths. The results of these experiments were analyzed using heatmap
analysis to provide a visual representation of the alteration of pixels outside the
inpainting mask. The results of these experiments and the subsequent heatmap
analysis will be discussed in the following sections, providing insights into the
behavior of the inpainting algorithm and the areas of the image that are most
affected by the inpainting process.

37

38 chapter 4 results and discussion

4.1 Landscape images dataset

Figure 4.1: The current study utilized a set of randomly selected landscape images for
the purpose of conducting strength variation testing. These images were
chosen to provide a representative sample of diverse landscape scenarios.
The image on the top left is Landscape image 0 and the image number
increases row wise to the right with Landscape image 1 until the bottom
right image which is Landscape image 19.

4.2 pixelchange with respect to strength change 39

4.2 Pixelchange with respect to strength change

4.2.1 Plots

40 chapter 4 results and discussion

4.2 pixelchange with respect to strength change 41

Figure 4.2: The present study conducted a comparison of the pixels outside the in-
painting mask of the inpainted images with the original image prior to
inpainting. The results indicated a notable trend towards higher mean-
squared error (MSE) as the inpainting strength increases. These results
were obtained using the set of landscape images depicted in Figure 4.1.
A dynamic downscaling method was employed, ensuring that the largest
side of each image remained below 650 pixels. Further details regarding
the methodology employed in this experiment can be found in Section
3.0.4.

42 chapter 4 results and discussion

4.2.2 Discussion

The results of the present study, as illustrated in Figure 4.2, provide evidence
that as inpainting strength increases, there is a corresponding increase in the
mean squared error (MSE) of pixels located outside the inpainting mask. Ad-
ditionally, the variance of the MSE also increases with increasing inpainting
strength. The data also reveals the presence of high spikes in MSE at inpainting
strengths of approximately 0.6 and above.

However, it is important to note that the rate of increase in MSE with respect
to inpainting strength varies among the images. This variability is not immedi-
ately apparent from the plots, as the degree of the spikes for higher inpainting
strengths varies for each image, resulting in a range of y-values that depends
on the height of the highest spikes. For instance, by comparing the plots for
Landscape_6 and Landscape_18, a clear trendline can be identified; however,
in other images such as Landscape 1, 2, 4, 5, 8 and 9, the increasing trend is
less discernible due to the high variance in the spikes, with MSE values ranging
from 15 to 45 in Landscape_5, for instance.

While all of the images demonstrate some increase in MSE with increasing
inpainting strength, it is evident that some images exhibit a smaller rate of
increase in comparison to others. Further analysis is necessary to identify the
specific characteristics of these images that contribute to their lower MSE, as
well as to investigate the high spikes in MSE at inpainting strengths of 0.6 and
above, as they may indicate a threshold at which inpainting errors become
particularly pronounced.

4.2 pixelchange with respect to strength change 43

Increasing trendline

Figure 4.3: Mean of every plot seen in figure 4.2 with the addition of second degree
polynomial trendline represented by the function 9.694𝑥2 − 4.105𝑥 + 40

The mean of the MSE for each image, as a function of inpainting strength, is
presented in Figure 4.3. To gain a deeper understanding of the relationship
between inpainting strength and mean MSE, a polynomial regression analysis
was conducted. The resulting best-fit equation, represented by the polynomial
function 9.694𝑥2 − 4.105𝑥 + 40, is superimposed on the data points in the
figure, providing a clear illustration of the trend of the mean MSE as inpainting
strength increases.

It is evident from the figure and the best-fit equation that there is a clear posi-
tive correlation between inpainting strength and the mean MSE, indicating an
increase in the error outside the masked area as strength increases. This high-
lights the importance of considering the inpainting strength when utilizing this
technique, as it has a direct impact on the quality of the inpainted result.

In conclusion, this experiment provides valuable insights into the relationship
between inpainting strength and change of pixels outside inpainting mask in
image inpainting using diffusion models. The results suggest that there is a
clear trade-off between inpainting strength and MSE, and that certain images
may be more resilient to inpainting errors. Further research could focus on
identifying the specific characteristics of these images and understanding the
cause of the high spikes in MSE at high inpainting strengths.

44 chapter 4 results and discussion

4.2.3 Heatmap visualisation

This section will focus on the examination of the pixel-wise distribution of the
mean squared error (MSE) for the three inpainting strengths that correspond
to the highest MSE values, as observed in the previous analysis. To gain a more
detailed understanding of the location and distribution of errors, heatmaps
of the pixel-wise MSE were generated for each of these inpainting strengths.
These heatmaps provide a visual representation of the MSE across the entire
inpainted image, allowing for a more comprehensive assessment of the areas
where the change in MSE is most prominent.

In particular, this analysis aims to investigate whether there are any differences
in the location of the highest MSE values around the inpainting mask border,
as this area is known to be particularly sensitive to inpainting errors. The
heatmaps will be analyzed to evaluate the degree of variation in the distribution
of the MSE across the images and to identify any patterns or trends in the
location of errors. This analysis will provide further insights into the underlying
mechanisms that influence the quality of the inpainting results and may inform
the development of improved inpainting methods.

The images presented in figures 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 were specifically se-
lected from among the three inpainting strengths that correspond to the highest
MSE values for each image. These images were chosen due to the observation
that they appear to reveal some unique characteristics and patterns regarding
the changes in the pixels outside the mask as a result of inpainting.

4.2 pixelchange with respect to strength change 45

(a) Original Landscape_0 image downscaled

(b) Inpainted image

(c) Heatmap of pixelwise MSE compared to original image

Figure 4.4: Inpainting of Landscape image 0 done with a strength of 0.84.

46 chapter 4 results and discussion

Upon closer examination of the heatmap presented in Figure 4.4, it can be
observed that the highest levels of inpainting error, as indicated by the yel-
low color on the colorbar, are concentrated in small areas at the edge of the
inpainting mask, specifically between the 6 and 9 o’clock positions. A closer
examination of the inpainted area within the mask reveals the presence of
blue-colored structures at the lower end of the inpainted region.

This observation may suggest that the inpainting algorithm, despite the fact
that it may have inpainted something that does not fit well with the rest of
the image, given its high inpainting strength, is attempting to optimize the
transition between the real and inpainted parts of the image. This may result
in small areas close to the inpainting mask’s edge being altered in order to
achieve a better fit. Furthermore, it is also worth noting that the fine-grained
structural parts of the image, such as tree leaves, grass, or the mountain ridge in
the background, also seem to be affected by the inpainting, although to a lesser
extent. These alterations may be due to the algorithm attempting to preserve
the overall coherence and continuity of the image, which can be challenging
when dealing with such fine-grained details. This highlights the complexity of
the inpainting task and the need to consider various factors when developing
inpainting algorithms.

This highlights the complexity of the inpainting task and the trade-offs that
may be required to achieve optimal results. Further investigation is necessary
to better understand the underlying mechanisms that influence the quality
of the inpainting results and the ways in which these trade-offs can be mini-
mized.

The heatmaps of pixel-wise MSE for these images, will be utilized to gain
further understanding of the distribution of errors and the location where the
change in MSE is most prominent. This analysis will provide insights into the
underlying mechanisms that influence the quality of the inpainting results, and
may aid in the development of improved inpainting methods.

4.2 pixelchange with respect to strength change 47

(a) Original Landscape_2 image downscaled

(b) Inpainted image

(c) Heatmap of pixelwise MSE compared to original image

Figure 4.5: Inpainting of Landscape_2 done with a strength of 0.97.

48 chapter 4 results and discussion

Upon close examination of the heatmap presented in Figure 4.5, it can be
observed that the ridges in the image seem to have undergone a higher degree
of alteration as compared to the other regions. A pattern that is beginning
to emerge is that parts of the image that are characterized by a consistent
color over a larger area, such as the water or sky, seem to have undergone
minimal alteration as a result of inpainting. This is an interesting observation
that warrants further investigation.

Another notable feature is the alteration of the mountain ridge that is located
at the edge of the inpainting mask, between the 9 and 12 o’clock positions.
The inpainting appears to have resulted in a notable change in this region.
Additionally, it can be observed that the atmosphere in the inpainted part does
not quite match that of the rest of the image. This can be attributed to the
high inpainting strength used, which may have resulted in the algorithm at-
tempting to optimize the transition between the real and inpainted parts of
the image.

Furthermore, it is also worth noting that the fine-grained parts of the image,
such as the grass on the mountainside to the left, have undergone a moderate
alteration across the entire area. This further highlights the complexity of
the inpainting task and the need to consider various factors when developing
inpainting algorithms. The fine-grained details are particularly challenging to
preserve during inpainting.

4.2 pixelchange with respect to strength change 49

(a) Original Landscape_5 image downscaled

(b) Inpainted image

50 chapter 4 results and discussion

(c) Heatmap of pixelwise MSE compared to original image

Figure 4.6: Inpainting of Landscape_5 done with a strength of 0.97

4.2 pixelchange with respect to strength change 51

The heatmap presented in Figure 4.6 provides a detailed representation of
the pixel-wise mean squared error (MSE) for the image of Landscape 5 in-
painted with a strength of 0.97. This heatmap reveals an interesting pattern of
alteration that supports the hypothesis that pixels located close to the edge of
the inpainting mask undergo higher levels of alteration, particularly when the
inpainting strength is high.

When examining the heatmap, it can be observed that despite the fact that the
masked area, particularly in the upper part of the inpainting mask, contains
image areas that are characterized by consistent color (e.g. the sky), the in-
painting mask’s edge is surrounded by the red color indicating a higher level of
MSE. This suggests that the algorithm is attempting to optimize the transition
between the real and inpainted parts of the image at the expense of the overall
coherence of the image. This is further supported by the observation that the
rest of the sky has undergone minimal alteration, indicating that the algorithm
is preserving the consistency of the image in this area.

Additionally, it is worth noting that the ridge of the mountain, as in the previous
heatmaps, has undergone a notable change as a result of inpainting. This is
likely due to the algorithm attempting to preserve the overall continuity of the
image and the fine-grained details present in this area.

(a) Original Landscape_7 image downscaled

52 chapter 4 results and discussion

(b) Inpainted image

(c) Heatmap of pixelwise MSE compared to original image

Figure 4.7: Inpainting of Landscape_7 done with a strength of 0.99.

4.2 pixelchange with respect to strength change 53

The heatmap presented in Figure 4.7 provides a detailed representation of the
pixel-wise mean squared error (MSE) for the image of Landscape 7 inpainted
with a strength of 0.99. This heatmap confirms the observations made in the
previous heatmaps.

When examining the heatmap, it can be observed that there is a high level of
alteration in certain areas, such as along the edge of the inpainting mask. This
suggests that the algorithm is attempting to optimize the transition between
the real and inpainted parts of the image at the expense of the overall coherence
of the image.

Another interesting observation that can be made is that the change along
the horizontal line separating the sea from the sky is not as prominent as
the changes observed along the mountain ridges. This raises the question of
whether there is a difference between the two lines, such as the mountain ridge
being a more complex feature than the sea-sky separating line. Further analysis
is needed to investigate the reasons behind this discrepancy.

(a) Original Landscape_15 image downscaled (b) Inpainted image

54 chapter 4 results and discussion

(c) Heatmap of pixelwise MSE compared to original im-
age

Figure 4.8: Inpainting of Landscape_15 done with a strength of 0.93.

The heatmap presented in Figure 4.8 was selected as an example due to its
ability to clearly demonstrate the relationship between the consistency of color
within an image and the level of alteration caused by inpainting. As can be
observed, areas of the image that exhibit a consistent color tend to undergo
less alteration than areas with a higher variation in pixel color.

An interesting observation that can bemade is the presence of a relatively bright
area of grass within the inpainting mask. Despite this, there is not a significant
level of alteration observed in the pixels surrounding this area, which may
indicate that the algorithm has determined that a sharp transition of color is

4.2 pixelchange with respect to strength change 55

the most appropriate fit for this particular image. Additionally, it is also worth
noting that the flowers in the image exhibit the highest levels of alteration,
which is not surprising given their fine-grained and colorful nature.

(a) Original Landscape_16 image downscaled

(b) Inpainted image

56 chapter 4 results and discussion

(c) Heatmap of pixelwise MSE compared to original image

Figure 4.9: Inpainting of Landscape_16 done with a strength of 0.99.

For this last heatmap presented in Figure 4.9 provides a detailed representa-
tion of the pixel-wise mean squared error (MSE) for the image of Landscape 16
inpainted with a strength of 0.99. This heatmap, in conjunction with the other
heatmaps, continues to confirm the hypothesis that pixels close to the edge of
the inpainting mask tend to undergo higher levels of alteration. This is partic-
ularly evident in the snow smoke area at the top left of the mountain, which
has undergone some alteration in order to optimize the transition between the
real and inpainted parts of the image.

Additionally, it can be observed that there is a considerable level of alteration of
pixels outside the mask across the fine-grained details of the mountain, such as
the mountain ridges. This suggests that the algorithm is attempting to preserve
the consistency and continuity of the image while minimizing errors, but this
comes at the expense of the overall coherence of the image. This observation is
consistent with the previous analysis of the other heatmaps, where it was also
observed that pixels in fine-grained and high-contrast areas tend to be more
affected by the inpainting process.

Conclusion

In conclusion, the heatmap analysis of the inpainting experiment has provided
valuable insights into the behavior of the inpainting algorithm with regard to
the alteration of pixels outside the inpainting mask. The results indicate that
areas of the image characterized by consistent pixel color, such as the sky or

4.2 pixelchange with respect to strength change 57

water, tend to undergo little to no alteration during the inpainting process.
Conversely, areas of the image that are more varied in color and texture, such
as mountain ridges, tree leaves, and grass, tend to experience higher levels of
alteration. Furthermore, the heatmaps have demonstrated that the edge of the
inpainting mask is a particularly sensitive area for pixel alteration, with high
levels of alteration observed in the immediate vicinity of the mask.

It has been observed that the edge of the inpainting mask tends to be dispro-
portionately affected in comparison to other regions of the image, even when
accounting for similarities in color and texture. This observation suggests that
the inpainting algorithm places a particular emphasis on preserving continuity
at the edge of the mask. Overall, the heatmap analysis has provided valuable
insights into the behavior of the inpainting algorithm and has highlighted areas
of the image that are most affected by the inpainting process.

In order to further understand the underlying mechanisms of the inpainting
algorithm, further research is necessary to identify the specific characteristics
of images that contribute to their lower MSE. Additionally, it is crucial to in-
vestigate the high spikes in MSE observed at inpainting strengths of 0.6 and
above, as well as the reason for the different level of alteration of pixels outside
the mask with respect to the image content.

58 chapter 4 results and discussion

4.3 Pixel change with respect to mask size

4.3.1 Graphical visualisation

4.3 pixel change with respect to mask size 59

60 chapter 4 results and discussion

Figure 4.10

4.3 pixel change with respect to mask size 61

4.3.2 Discussion

As depicted in Figure 4.10, which is outlined in Section 3.0.5, the results of
inpainting various landscape images, as illustrated in Figure 4.1, with a range
of radii and a fixed strength parameter of 0.1, 0.5, and 0.9 are presented. The
primary objective of this experimentwas to investigate the relationship between
the alteration of pixels outside the inpainting mask and both the inpainting
strength and the number of available pixels outside the inpainting mask.

Through incrementally varying the radius of the inpainting mask in 50 steps, it
is possible to conduct a supplementary inpainting experiment to examine the
effect of different mask sizes on the inpainting process.

As previously established through the plots in Figure 4.2 and 4.2.3, it has be-
come evident that the strength parameter exerts a significant influence on the
alteration of pixels outside the inpainting mask. An examination of the results
from varying the inpainting mask’s radius further confirms this observation,
as evidenced by the increased fluctuations in Mean Squared Error (MSE) for
pixels outside the inpainting mask for strengths above 0.6.

However, it does not appear that changing the radius has a significant impact
on the MSE. Nearly all the plots have a minimum to maximum difference in
MSE score with respect to the ratio of the disk area to the image area of within
a maximum of 3 to 4 MSE score, primarily due to the random spikes observed
in the 0.9 strength curve. In comparison to the differences observed in the first
experiment, as depicted in Figure 4.2, which could range between 20 to 30
given the spikes in MSE, the differences in this experiment are negligible.

It should also be noted that all the plots in Figure 4.2, heatmap figures from
figs. 4.4 to 4.9, and the plots seen for this experiment in Figure 4.10 the error
on the y-axis is the mean of the error squared. Therefore, the actual change in
practical terms would be the square root of the numbers on the y-axis, which
makes the error observed in our plots even more insignificant.

Despite the minimal variations observed in the results, certain trend lines can
be discerned in a select number of the inpainted images. Utilizing the knowl-
edge gained from previous experiments, it may be possible to identify the
underlying factors contributing to these trends. An examination of Landscape
13 and 17 in Figure 4.10 reveals a striking linear trend, particularly in the case
of Landscape_13 seen in the plot.

62 chapter 4 results and discussion

(a) Inpainting with 20% mask radius of
smallest image side

(b) Heatmap of inpainting in 4.11a

(c) Inpainting with 32% mask radius of
smallest image side

(d) Heatmap of inpainting in 4.11c

4.3 pixel change with respect to mask size 63

(e) Inpainting with 44% mask radius of
smallest image side

(f) Heatmap of inpainting in 4.11e

(g) Inpainting with 68% mask radius of
smallest image side

(h) Heatmap of inpainting in 4.11g

Figure 4.11: Inpaintings and corresponding heatmaps of Landscape_13, utilizing a
strength of 0.5 and a radius percentage of half the smallest dimension of
the image, at 20, 32, 44, and 68 respectively.

64 chapter 4 results and discussion

As demonstrated in Figure 4.11, as the area covered by the inpainting mask
increases, fewer pixels are taken into account when calculating the MSE for
the change of pixels outside the mask. This phenomenon can be attributed to
the mask acting as an area of constant color, such as the sky in the upper part
of Landscape_13. As such, the decreasing trend observed in the plot for Land-
scape_13 may be explained by fewer pixels being considered when calculating
the MSE for larger mask radii. Conversely, this phenomenon can also account
for the reversed trend in which the MSE exhibits a slight increase as the radius
increases. For example, if the inpainting masks as they expand ultimately cover
areas of consistent color, such as sky or water, the pixels which previously con-
tributed to lowering the MSE, as observed in the heatmaps in figs. 4.4 to 4.9,
will no longer be taken into account, resulting in an increase in the MSE. An
example of this increasing trend can be observed in the plot for Landscape_10
in Figure 4.10.

Figure 4.12: Landscape_10

As is evident from the presented image in figure 4.12, a significant proportion of
the central region comprises sky. As the radius of the circular inpainting mask
increases, a larger portion of the sky will be excluded from the calculation
of the MSE for pixels outside the mask. This implies that pixels with higher
change will disproportionately contribute to the computation of the mean of

4.4 conclusion 65

the squared errors. It is important to note, however, that the observed trend
of change in error, whether increasing or decreasing, is minimal and may be
considered negligible.

The analysis of the plots presented in Figure 4.10 reveals an interesting obser-
vation with regards to the relationship between inpainting strength and Mean
Squared Error (MSE) for pixels outside the inpainting mask. By examining the
plots for Landscape images 0, 4, 6, 8, 12, 15, 17 and 18, it can be observed that
the curves for inpainting strengths of 0.1, 0.5, and 0.9 overlap initially, as the
radius of the inpainting mask is small. However, as the radius increases, the
variance in MSE, particularly for inpainting strengths of 0.5 and 0.9, increases.
This suggests that for very small inpainting masks, or at least low radius circular
inpainting masks, the inpainting strength has a less pronounced effect on the
MSE for pixels outside the image.

Furthermore, these plots also confirm the findings from the plots presented
in Figure 4.2, which demonstrated that for higher inpainting strengths and
inpainting masks with a radius of 80% of half the smallest image side, the
MSE outside the image also increases. This is evident by the general increasing
distance in MSE for the last plot points for the plots in Figure 4.10.

4.4 Conclusion

The present study aimed to investigate the behavior of an open-source diffusion
model inpainting algorithm when presented with varying inpainting strengths
andmask radii. However, the results obtainedwere unexpected and raise impor-
tant considerations. Our findings indicate that the algorithm not only modifies
the pixels within the designated mask, as intended, but also alters pixels out-
side of the mask, even those that are unrelated to the inpainted subject. This
unexpected behavior warrants further investigation and consideration in the
field of utilizing diffusion models for inpainting.

The experiments conducted in this study have provided valuable insights into
the behavior of the inpainting algorithm when presented with varying inpaint-
ing strengths and mask radii. It was observed that areas of the image charac-
terized by consistent pixel color, such as the sky or water, tend to undergo little
to no alteration during the inpainting process. On the other hand, areas of the
image that are more varied in color and texture, such as mountain ridges and
grass, tend to experience higher but still relatively low levels of alteration. The
use of heatmaps further highlighted the sensitivity of the algorithm towards
the edges of the inpainting mask, with high levels of alteration observed in the
immediate vicinity of the mask.

66 chapter 4 results and discussion

The second experiment revealed that as the radius of the inpainting mask in-
creases, the MSE may fluctuate depending on the content within the excluded
pixels. However, it is important to note that any changes in error are so small
that they may be considered insignificant.

In addition, it would also be beneficial to study the effect of using different
types of masks, such as irregular shaped masks, on the inpainting algorithm’s
performance. Furthermore, it would be interesting to explore the use of the
inpainting algorithm in different fields, such as video inpainting and 3D object
inpainting, to understand how it performs in those areas and what are its
limitations.

The utilization of diffusion models for inpainting has emerged as a promising
avenue of research in the field of deep learning. The algorithm presented by
Hugging Face, in particular, has proven to be both user-friendly and efficient
when run on a GPU. However, it is worth noting that the lack of proper docu-
mentation for the subalgorithms used in the model may present a challenge
for those seeking to fully understand and utilize its capabilities.

Overall, this project served as a steep but rewarding learning curve, providing
the opportunity to gain knowledge on diffusion models, GPU clusters, Docker,
and the ability to solve problems independently. The results of this study have
demonstrated the impressive capabilities of diffusion models in the context of
inpainting and the potential for future advancements in this field.

Bibliography
[1] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsu-

pervised learning using nonequilibrium thermodynamics,” in INTERNATIONAL
CONFERENCE ON MACHINE LEARNING, VOL 37, ser. Proceedings of Machine
Learning Research, F. Bach and D. Blei, Eds., vol. 37, 2015, pp. 2256–2265, 32nd
International Conference on Machine Learning, Lille, FRANCE, JUL 07-09, 2015.

[2] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution
image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 10 684–10 695.

[3] “Imagen: Text-to-Image Diffusion Models.” [Online]. Available: https://imagen.
research.google/

[4] “DALL·E 2.” [Online]. Available: https://openai.com/dall-e-2/

[5] “Midjourney Showcase.” [Online]. Available: https://midjourney.com/showcase/
recent/

[6] “Stability-AI/stablediffusion: High-Resolution Image Synthesis with La-
tent Diffusion Models.” [Online]. Available: https://github.com/Stability-
AI/stablediffusion

[7] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution
image synthesis with latent diffusion models,” 2021.

[8] “Stable Diffusion,” Dec. 2022, original-date: 2022-08-10T14:36:44Z. [Online].
Available: https://github.com/CompVis/stable-diffusion

[9] “runwayml/stable-diffusion,” Dec. 2022, original-date: 2022-10-18T16:40:30Z.
[Online]. Available: https://github.com/runwayml/stable-diffusion

[10] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,”
2021. [Online]. Available: https://arxiv.org/abs/2105.05233

[11] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” 2016. [Online]. Available:
https://arxiv.org/abs/1606.03498

67

https://imagen.research.google/
https://imagen.research.google/
https://openai.com/dall-e-2/
https://midjourney.com/showcase/recent/
https://midjourney.com/showcase/recent/
https://github.com/Stability-AI/stablediffusion
https://github.com/Stability-AI/stablediffusion
https://github.com/CompVis/stable-diffusion
https://github.com/runwayml/stable-diffusion
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/1606.03498

68 bibl iography

[12] D. C. Dowson and B. V. Landau, “The Fréchet distance between multivariate
normal distributions,” Journal of Multivariate Analysis, vol. 12, no. 3, pp. 450–455,
1982. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
0047259X8290077X

[13] A. Gretton, K. Borgwardt, M. J. Rasch, B. Scholkopf, and A. J. Smola,
“A kernel method for the two-sample problem,” 2008. [Online]. Available:
https://arxiv.org/abs/0805.2368

[14] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances
in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.

[15] A. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, ser. Proceed-
ings of Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139, 2021,
international Conference on Machine Learning (ICML), ELECTR NETWORK, JUL
18-24, 2021.

[16] Karagiannakos, Sergios, Adaloglou, and Nikolaos, “Diffusion models: toward
state-of-the-art image generation,” https://theaisummer.com/, 2022.

[17] C. Luo, “Understanding diffusion models: A unified perspective,” 2022. [Online].
Available: https://arxiv.org/abs/2208.11970

[18] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable
visual models from natural language supervision,” in INTERNATIONAL CONFER-
ENCE ON MACHINE LEARNING, VOL 139, ser. Proceedings of Machine Learning
Research, M. Meila and T. Zhang, Eds., vol. 139, 2021, international Conference
on Machine Learning (ICML), ELECTR NETWORK, JUL 18-24, 2021.

[19] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013. [Online].
Available: https://arxiv.org/abs/1312.6114

[20] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in MEDICAL IMAGE COMPUTING AND
COMPUTER-ASSISTED INTERVENTION, PT III, ser. Lecture Notes in Computer Sci-
ence, N. Navab, J. Hornegger, W. Wells, and A. Frangi, Eds., vol. 9351. Tech Univ
Munich; Friedrich Alexander Univ Erlangen Nuremberg, 2015, pp. 234–241, 18th
International Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), Munich, GERMANY, OCT 05-09, 2015.

[21] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,”
2016. [Online]. Available: https://arxiv.org/abs/1603.07285

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in ADVANCES IN NEURAL INFOR-
MATION PROCESSING SYSTEMS 30 (NIPS 2017), ser. Advances in Neural Informa-

https://www.sciencedirect.com/science/article/pii/0047259X8290077X
https://www.sciencedirect.com/science/article/pii/0047259X8290077X
https://arxiv.org/abs/0805.2368
https://arxiv.org/abs/2208.11970
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1603.07285

bibl iography 69

tion Processing Systems, I. Guyon, U. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30, 2017, 31st Annual Conference
on Neural Information Processing Systems (NIPS), Long Beach, CA, DEC 04-09,
2017.

[23] “The Annotated Diffusion Model.” [Online]. Available: https://huggingface.co/
blog/annotated-diffusion

[24] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew,
I. Sutskever, and M. Chen, “Glide: Towards photorealistic image generation
and editing with text-guided diffusion models,” 2021. [Online]. Available:
https://arxiv.org/abs/2112.10741

[25] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour,
B. K. Ayan, S. S. Mahdavi, R. G. Lopes, T. Salimans, J. Ho, D. J. Fleet, and
M. Norouzi, “Photorealistic text-to-image diffusion models with deep language
understanding,” 2022. [Online]. Available: https://arxiv.org/abs/2205.11487

[26] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” in NeurIPS
2021 Workshop on Deep Generative Models and Downstream Applications, 2021.
[Online]. Available: https://openreview.net/forum?id=qw8AKxfYbI

[27] “Google Colaboratory.” [Online]. Available: https://colab.research.google.com/
github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_
diffusion_using_diffusers.ipynb#scrollTo=byoa1q2zyd6d

[28] A. Lugmayr,M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool, “Repaint:
Inpainting using denoising diffusion probabilistic models,” in 2022 IEEE/CVF
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), ser.
IEEE Conference on Computer Vision and Pattern Recognition. IEEE; CVF; IEEE
Comp Soc, 2022, pp. 11 451–11 461, iEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), New Orleans, LA, JUN 18-24, 2022.

[29] P. Rouzrokh, B. Khosravi, S. Faghani, M. Moassefi, S. Vahdati, and B. J. Erick-
son, “Multitask brain tumor inpainting with diffusion models: A methodological
report,” arXiv preprint arXiv:2210.12113, 2022.

[30] P. von Platen, S. Patil, A. Lozhkov, P. Cuenca, N. Lambert, K. Rasul, M. Davaadorj,
and T. Wolf, “Diffusers: State-of-the-art diffusion models,” https://github.com/
huggingface/diffusers, 2022.

[31] “rsync.” [Online]. Available: https://rsync.samba.org/

[32] “Docker: Accelerated, Containerized Application Development,” May 2022.
[Online]. Available: https://www.docker.com/

[33] “Landscape Pictures.” [Online]. Available: https://www.kaggle.com/datasets/
arnaud58/landscape-pictures

https://huggingface.co/blog/annotated-diffusion
https://huggingface.co/blog/annotated-diffusion
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2205.11487
https://openreview.net/forum?id=qw8AKxfYbI
https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb#scrollTo=byoa1q2zyd6d
https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb#scrollTo=byoa1q2zyd6d
https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb#scrollTo=byoa1q2zyd6d
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://rsync.samba.org/
https://www.docker.com/
https://www.kaggle.com/datasets/arnaud58/landscape-pictures
https://www.kaggle.com/datasets/arnaud58/landscape-pictures

70 bibl iography

[34] “huggingface/diffusers,” Jan. 2023, original-date: 2022-05-30T16:04:02Z.
[Online]. Available: https://github.com/huggingface/diffusers/blob/
09779cbb4046b0afa7cc3da043c928dc4866d59a/src/diffusers/pipelines/
stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py

[35] “VebjornHal/huggingface-diffusion-library-testing: Using huggingface public dif-
fusion library to generate images on the springfield cluster.” [Online]. Available:
https://github.com/VebjornHal/huggingface-diffusion-library-testing

https://github.com/huggingface/diffusers/blob/09779cbb4046b0afa7cc3da043c928dc4866d59a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py
https://github.com/huggingface/diffusers/blob/09779cbb4046b0afa7cc3da043c928dc4866d59a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py
https://github.com/huggingface/diffusers/blob/09779cbb4046b0afa7cc3da043c928dc4866d59a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py
https://github.com/VebjornHal/huggingface-diffusion-library-testing

	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Image generation with deep generative models

	2 Theory
	2.1 Generative models
	2.2 Diffusion models
	2.2.1 Forward process
	2.2.2 Different variance schedules
	2.2.3 Backward process
	2.2.4 Training a diffusion model
	2.2.5 Architecture

	2.3 Guided diffusion
	2.3.1 Classifier guidance
	2.3.2 Classifier-free guidance

	2.4 Stable diffusion: Latent diffusion models
	2.4.1 Image inpainting

	3 Method
	3.0.1 Syncing between computer and cluster
	3.0.2 Utilizing Docker
	3.0.3 Inpainting
	3.0.4 Experiments
	3.0.5 Second experiment: Varying radius for three different strengths
	3.0.6 Heatmap visualization

	4 Results and discussion
	4.1 Landscape images dataset
	4.2 Pixelchange with respect to strength change
	4.2.1 Plots
	4.2.2 Discussion
	4.2.3 Heatmap visualisation

	4.3 Pixel change with respect to mask size
	4.3.1 Graphical visualisation
	4.3.2 Discussion

	4.4 Conclusion

	Bibliography

