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Abstract

Neural forecasting of spatiotemporal time series drives both
research and industrial innovation in several relevant appli-
cation domains. Graph neural networks (GNNs) are often
the core component of the forecasting architecture. However,
in most spatiotemporal GNNs, the computational complexity
scales up to a quadratic factor with the length of the sequence
times the number of links in the graph, hence hindering the
application of these models to large graphs and long temporal
sequences. While methods to improve scalability have been
proposed in the context of static graphs, few research efforts
have been devoted to the spatiotemporal case. To fill this gap,
we propose a scalable architecture that exploits an efficient
encoding of both temporal and spatial dynamics. In particu-
lar, we use a randomized recurrent neural network to embed
the history of the input time series into high-dimensional state
representations encompassing multi-scale temporal dynam-
ics. Such representations are then propagated along the spatial
dimension using different powers of the graph adjacency ma-
trix to generate node embeddings characterized by a rich pool
of spatiotemporal features. The resulting node embeddings
can be efficiently pre-computed in an unsupervised manner,
before being fed to a feed-forward decoder that learns to map
the multi-scale spatiotemporal representations to predictions.
The training procedure can then be parallelized node-wise by
sampling the node embeddings without breaking any depen-
dency, thus enabling scalability to large networks. Empirical
results on relevant datasets show that our approach achieves
results competitive with the state of the art, while dramati-
cally reducing the computational burden.

1 Introduction
As graph neural networks (GNNs; Scarselli et al. [1], Bac-
ciu et al. [2]) are gaining more traction in many application
fields, the need for architectures scalable to large graphs –
such as those associated with large sensor networks – is
becoming a pressing issue. While research to improve the
scalability of models for static graph signals has been very
prolific [3, 4, 5, 6], little attention has been paid to the ad-
ditional challenges encountered when dealing with discrete-
time dynamical graphs, i.e., spatiotemporal time series. Sev-
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Preprint.

. . .

. . .

. . .

ESN

ESN

ESN

Temporal embedding: Spatial embedding:

M
LP

... ...

i.i
.d

. s
am

pl
es

Figure 1: Overview of the forecasting framework. Light-
grey boxes denote training-free components. At first, an
Echo-State Network (ESN) – with shared parameters across
nodes – encodes multi-scale temporal dynamics. Then, K
graph shift operators are used to propagate spatial informa-
tion. The resulting K + 1 representations are concatenated
and fed to an MLP to predict the next H node observations.

eral of the existing scalable training techniques rely on sub-
sampling graphs to reduce the computational requirements
of the training procedure, e.g., [3, 5]. However, sampling
the node-level observations as if they were i.i.d. can break
relational (spatial) dependencies in static graphs and it is
even more problematic in the dynamic case, as dependencies
occur also across the temporal dimension. Indeed, complex
temporal and spatial dynamics that emerge from the interac-
tions across the whole graph over a long time horizon, can be
easily disrupted by perturbing such spatiotemporal structure
with subsampling. As an alternative, precomputing aggre-
gated features over the graph allows for factoring out spa-
tial propagation from the training phase in certain archite-
tures [6]. However, similarly to the subsampling approach,
extending this method to the spatiotemporal case is not triv-
ial as the preprocessing step must account also for the tem-
poral dependencies besides the graph topology.
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In this paper, we propose a novel scalable encoder-
decoder architecture for processing spatiotemporal data;
Fig. 1 shows high-level schematics of the proposed ap-
proach. The spatiotemporal encoding scheme is training-
free: first, it exploits a deep randomized recurrent neural net-
work [7, 8] to encode the history of each sequence in a high-
dimensional vector embedding; then, it uses powers of the
graph adjacency matrix to build informative node represen-
tations of the spatiotemporal dynamics at different scales.
According to the downstream task at hand, the decoder maps
the node representations into the desired output, e.g., the fu-
ture values of the time series associated with each node. To
improve efficiency, we exploit the structure of the extracted
embedding to design the decoder to act as a collection of
filters localized at different spatiotemporal scales.

Since the spatiotemporal encoder requires neither training
nor supervision, the representation of each node and time
step can be computed in a preprocessing stage, without the
constraints that come from online training on GPUs with
limited memory. The decoder is the only component of the
architecture with trainable parameters. However, since spa-
tiotemporal relationships are already embedded in the repre-
sentations, the embeddings can be processed independently
from their spatiotemporal context with two consequent ad-
vantages. First, training can be done node-wise, allowing for
sampling node representations in mini-batches of a size pro-
portional to the hardware capacity. Second, the decoder can
be implemented similarly to a standard multilayer percep-
tron (MLP) readout, which is fast and easy to train.

Let T and E be the number of steps and the number of
edges in the input graph, respectively. The cost of training a
standard spatiotemporal GNN on a mini-batch of data has
a computational and memory cost that scales as O(TE),
or O(T 2E) in attention-based architectures [9]. Conversely,
in our approach mini-batches can be sampled disregarding
the length of the sequence and size of the graph, thus mak-
ing scalability in training constant, i.e., O(1), w.r.t. the spa-
tiotemporal dimension of the problem.

Our contributions can be summarized as follows.

• We propose a general scalable deep learning framework
for spatiotemporal time series, which exploits a novel en-
coding method based on randomized recurrent compo-
nents and scalable GNNs architectures.

• We apply the proposed model to forecast multivariate
time series, whose channels are subject to spatial rela-
tionships described by a graph.

• We carry out a rigorous and extensive empirical evalua-
tion of the proposed architecture and variations thereof.
Notably, we introduce two benchmarks for scalable spa-
tiotemporal forecasting architectures.

Empirical results show that our approach performs on par
with the state of the art while being easy to implement, com-
putationally efficient, and extremely scalable. Given these
considerations, we refer to our architecture as Scalable
Graph Predictor (SGP).

2 Preliminaries and Problem Definition
We consider discrete-time spatiotemporal graphs. In partic-
ular, givenN interlinked sensors, we indicate with xit ∈ Rdx
the dx-dimensional multivariate observation associated with
the i-th sensor at time-step t, with Xt ∈ RN×dx the node at-
tribute matrix encompassing measurements graph-wise, and
with Xt:t+T the sequence of T measurements collected in
the time interval [t, t + T ) at each sensor. Similarly, we in-
dicate with Ut ∈ RN×du the matrix containing exogenous
variables (e.g., weather information related to a monitored
area) associated with each sensor at the t-th time-step. Then,
we indicate additional, optional, static node attributes as
V ∈ RN×dv . The relational information is encoded in a, po-
tentially dynamic, weighted adjacency matrix At ∈ RN×N .
We indicate with the tuple Gt = 〈Xt,Ut,V ,At〉 the graph
signal at the t-th time-step. Note that the number of sensors
in a network is here considered fixed only to ease the pre-
sentation; we only request nodes to be distinguishable across
time steps. The objective of spatiotemporal forecasting is to
predict the next H observations given a window of W past
measurements. In particular, we consider the family of fore-
casting models Fθ(·) s.t.

X̂t:t+H = Fθ (Gt−W :t) , (1)
where θ indicates the learnable parameters of the model and
X̂t:t+H the H-step ahead point forecast.

Echo-State Networks Echo state networks [7, 10] are
a class of randomized architectures that consist of recur-
rent neural networks with random connections that encode
the history of input signals into a high-dimensional state
representation to be used as input to a (trainable) readout
layer. The main idea is to feed an input signal into a high-
dimensional, randomized, and non-linear reservoir, whose
internal state can be used as an embedding of the input dy-
namics. An echo state network is governed by the following
state update equation:

ht = σ (Wxxt +Whht−1 + b) , (2)
where xt indicates a generic input to the system, Wx ∈
Rdh×dx and Wh ∈ Rdh×dh are the random matrices defin-
ing the connectivity pattern in the reservoir, b ∈ Rdh is a
randomly initialized bias, ht indicates the reservoir state,
and σ is a nonlinear activation function (usually tanh). If
the random matrices are defined properly, the reservoir will
extract a rich pool of dynamics characterizing the system
underlying the input time series xt and, thus, the reser-
voir states become informative embeddings of xt−T :t [10].
Thanks to the non-linearity of the reservoir, the embeddings
are commonly processed with a linear readout that is opti-
mized with a least squares procedure to perform classifica-
tion, clustering, or time series forecasting [11].

3 Scalable Spatiotemporal GNNs
This section presents our approach to building scalable GNN
architectures for time series forecasting. Our method is
based on a hybrid encoder-decoder architecture. The en-
coder first constructs representations of the time series ob-
served at each node by using a reservoir that accounts for
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Figure 2: Overview of the SGP encoder. Input time series are fed into a randomized network with recurrent connections and
embedded into a hierarchical vector representation. A graph shift operator is used to propagate and aggregate spatial information
of different order which is then concatenated to obtain a final embedding.

dynamics at different time scales. Representations are fur-
ther processed to account for spatial dynamics described by
the graph structure. In particular, as shown on the right-hand
side of Fig. 2, we use incremental powers of the graph adja-
cency matrix to propagate and aggregate information along
the spatial dimension. Each power of the propagation ma-
trix accounts for different scales of spatial dynamics. The
final embedding is then built by concatenating representa-
tions obtained w.r.t. each propagation step, thus resulting in
a rich encoding of both spatial and temporal features.

The encoder does not need any training and, once com-
puted, the embeddings can be uniformly sampled over time
and space when training a nonlinear readout to perform H-
step-ahead predictions. The straightforward choice for the
decoder (i.e., readout) is to map the encodings to the out-
puts (i.e., predictions) by using a linear transformation or a
standard MLP. However, to further enhance scalability, our
decoder exploits the structure of the embedding to reduce
the number of parameters and learn filters that are localized
in time and space. As we will discuss in Sec. 3.2, this is done
by learning separate weight matrices for each spatiotempo-
ral scale.

The following subsections describe in detail each compo-
nent of the architecture.

3.1 SPATIOTEMPORAL ENCODER

We consider as temporal encoders deep echo state net-
works (DeepESN; Gallicchio et al. [8]) with leaky integrator
neurons [12]. In particular, we consider networks where the
signal associated with each node is encoded by a stack of L
randomized recurrent layers s.t.

h
i,(0)
t =

[
xit‖uit

]
,

ĥ
i,(l)
t = tanh

(
W (l)

u h
i,(l−1)
t +W

(l)
h h

i,(l)

t−1 + b(l)
)
,

h
i,(l)
t = (1− γl)hi,(l)t−1 + γlĥ

i,(l)
t , l = 1, . . . , L

(3)

where γl ∈ (0, 1] is a discount factor associated with l-th
layer, W (l)

u ∈ Rdhl×dhl−1 , Wh ∈ Rdhl×dhl , b ∈ Rdhl

are random weight matrices, hi,(l)t indicates the hidden state
of the system w.r.t. the i-th node at the l-th layer, and ‖

indicates node-wise concatenation. As Eq. 3 shows, Deep-
ESNs are a hierarchical stack of reservoir layers that, e.g.,
by changing the discount factor at each layer, extract a rich
pool of multi-scale temporal dynamics [8]1. Given a Deep-
ESN encoder, the input is represented by the concatenation
of the states from each layer, i.e., we obtain node-level tem-
poral encodings h

i

t for each node i and time-step t as

h
i

t =
(
h
i,(0)
t ‖hi,(1)t ‖ . . . ‖hi,(L)t

)
. (4)

We indicate as Ht the encoding for the whole graph at time
t. The extraction of the node-level temporal embeddings is
depicted on the left-end side of Fig. 2, where, to simplify the
drawing, we depict an ESN with a single layer.

The next step is to propagate information along the spa-
tial dimension. As discussed at the beginning of the section,
we use powers of a graph shift operator Ã to propagate and
aggregate node representations at different scales. By using
a notation similar to Eq. 4, we obtain spatiotemporal encod-
ings as

S
(0)
t = Ht =

(
H

(0)
t ‖H

(1)
t ‖ . . . ‖H

(L)
t

)
,

S
(k)
t = ÃS

(k−1)
t =

(
ÃkH

(0)
t ‖ÃkH

(1)
t ‖ . . . ‖ÃkH

(L)
t

)
,

St =
(
S

(0)
t ‖S

(1)
t ‖ . . . ‖S

(K)
t

)
,

(5)

where Ã indicates a generic graph shift operator matching
the sparsity pattern of the graph adjacency matrix. In prac-
tice, by indicating with D the graph degree matrix, we use
Ã = D−1A in the case of a directed graph and the symmet-
rically normalized adjacency Ã = D−1/2AD−1/2 in the
undirected case. Furthermore, for directed graphs we option-
ally increase the number of representations to 2K +1 to ac-
count for bidirectional dynamics, i.e., we repeat the encod-
ing process w.r.t. the transpose adjacency matrix similarly
to [14]. Intuitively, each propagation step ÃS

(k−1)
t propa-

gates and aggregates – properly weighted – features between
1We refer to [13] for more details on the properties and stability of
DeepESNs.
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nodes connected by paths of length k in the graph. As shown
in Eq. 5, features corresponding to each order k can be com-
puted recursively with K sparse matrix-matrix multiplica-
tions (Fig. 2). Alternatively, each matrix Ãk can be precom-
puted and the computation of the different blocks of matrix
St can be distributed in a parallel fashion as suggested in
Fig. 1. Even in the case of extremely large graphs, features
St can be computed offline by exploiting distributed com-
puting as they do not need to be loaded on the GPU memory.

3.2 MULTI-SCALE DECODER
The role of the decoder is that of selecting and weighing
from the pool of the (possibly redundant) features extracted
by the spatiotemporal encoder and mapping them to the de-
sired output. Representations St can be fed into an MLP
that performs node-wise predictions. Since the representa-
tions are large vectors, a naı̈ve implementation of the MLP
results in many parameters that hinder scalability. Therefore,
we replace the first MLP layer with a more efficient imple-
mentation that exploits the structure of the embeddings.

As we described in Sec. 3.1, St is the concatenation of
the representations corresponding to different spatial propa-
gation steps which, in turn, are obtained from the concatena-
tion of multi-scale temporal features. To exploit this struc-
ture, we design the first layer of the decoder with a sparse
connectivity pattern to learn representations Zt s.t.

Z
(k)
t = σ

(
ÃkH

(0)
t Θ

(0)
k ‖ . . . ‖Ã

kH
(L)
t Θ

(L)
k

)
(6)

= σ

S
(k)
t

Θ
(0)
k 0

. . .
0 Θ

(L)
k

 , (7)

Zt =
(
Z

(0)
t ‖Z

(1)
t ‖ . . . ‖Z

(K)
t

)
, (8)

where Θ
(l)
k ∈ Rdhl×dz are the learnable parameters and σ

is an activation function. In practice, representations Zt can
be efficiently computed by exploiting grouped 1-d convolu-
tions (e.g., see Krizhevsky et al. [15]) to parallelize compu-
tation on GPUs. In particular, if we indicate the 1-d grouped
convolution operator with g groups and kernel size r as ?r,g ,
and the collection of the decoder parameters Θ

(l)
k as Θ we

can compute Zt as
Zt = σ

(
Θ ?1,g St

)
, (9)

with g = L(K + 1) in the case of undirected graphs and
g = L(2K + 1) for the directed case. Besides reducing the
number of parameters by a factor of L(K+1), this architec-
ture localizes filters Θ(L)

k w.r.t. the dynamics of spatial order
k and temporal scale l. In fact, as highlighted in Eq. 6–8, rep-
resentation Zt can be seen as a concatenation of the results
of L(K + 1) graph convolutions of different order. Finally,
the obtained representations are fed into an MLP that pre-
dicts the H-step-ahead observations as

x̂it:t+H = MLP
(
zit,v

i
)
, (10)

where the static node-level attributes vi can also be aug-
mented by concatenating a set of learnable parameters (i.e.,
a learnable positional encoding).

Training and sampling The main improvement intro-
duced by the proposed approach in terms of scalability
concerns the training procedure. Representations St embed
both the temporal and spatial relationships among obser-
vations over the sensor network. Consequently, each sam-
ple sit can be processed independently since no further spa-
tiotemporal information needs to be collected. This allows
for training the decoder with SGD by uniformly and inde-
pendently sampling mini-batches of data points sit. This is
the key property that makes the training procedure extremely
scalable and drastically reduces the lower bound on the com-
putational complexity required for the training w.r.t. stan-
dard spatiotemporal GNN architectures. We provide an effi-
cient implementation of the full encoding and training pro-
cedure as supplementary material to the paper (see Sec. 5).

4 Related works
Spatiotemporal GNNs are essentially based on the idea of
integrating message-passing modules in architectures to pro-
cess sequential data. Notably, Seo et al. [16] and Li et al. [14]
use message-passing to implement gates of recurrent neu-
ral networks. Yu et al. [17] and Wu et al. [18, 19] proposed
architectures alternating temporal and spatial convolutions.
Wu et al. [9] and Marisca et al. [20], instead, exploit the at-
tention mechanism to propagate information along both time
and space. Modern architectures often combine some type
of relational inductive bias, with full Transformer-like at-
tention [21] along the spatial dimension [22, 23, 24], which,
however, makes the computation scale quadratically with the
number of nodes. SGP falls within the category of time-then-
graph models, i.e., models where the temporal information
is encoded before being propagated along the spatial dimen-
sion. Gao and Ribeiro [25] showed that such models can be
more expressive than architectures that alternate temporal
and spatial processing steps.

Research on scalable models for discrete-time dynamic
graphs has been relatively limited. Practitioners have mostly
relied on methods developed in the context of static
graphs which include node-centric, GraphSAGE-like, ap-
proaches [3] or subgraph sampling methods, such as Clus-
terGCN [4] or GraphSAINT [5]. Wu et al. [19], Gandhi
et al. [26], Wu et al. [27] are examples of such approaches.
Among scalable GNNs for static graphs, SIGN [6] is the ap-
proach most related to our method. Like in our approach,
SIGN performs spatial propagation as a preprocessing step
by using different shift operators to aggregate across differ-
ent graph neighborhoods, which are then fed to an MLP.
However, SIGN is limited to static graphs and propagates
raw node-level attributes. Finally, similar to our work, Dyn-
GESN [28] processes dynamical graphs with a recurrent
randomized architecture. However, the architecture in Dyn-
GESN is completely randomized, while ours is hybrid as it
combines randomized components in the encoder with train-
able parameters in the decoder.

5 Empirical evaluation
We empirically evaluate our approach in 2 different scenar-
ios. In the first, we compare the performance of our fore-
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METR-LA PEMS-BAY

15 min 30 min 60 min Average 15 min 30 min 60 min Average

MAE MAE MAE MAE MSE MAPE (%) MAE MAE MAE MAE MSE MAPE (%)

LSTM 2.99 ± 0.00 3.58 ± 0.00 4.43 ± 0.01 3.58 ± 0.00 53.01 ± 0.13 10.19 ± 0.05 1.39 ± 0.00 1.83 ± 0.01 2.35 ± 0.01 1.79 ± 0.00 17.72 ± 0.08 4.16 ± 0.05

FC-LSTM 3.33 ± 0.01 3.43 ± 0.01 3.67 ± 0.01 3.46 ± 0.01 44.85 ± 0.12 10.15 ± 0.09 2.22 ± 0.01 2.25 ± 0.01 2.34 ± 0.02 2.26 ± 0.01 22.31 ± 0.27 5.33 ± 0.04

DynGESN 3.27 ± 0.00 3.99 ± 0.00 5.00 ± 0.00 3.98 ± 0.00 50.30 ± 0.07 11.11 ± 0.01 1.57 ± 0.00 2.13 ± 0.01 2.81 ± 0.02 2.09 ± 0.01 18.43 ± 0.07 4.74 ± 0.01

DCRNN 2.82 ± 0.00 3.23 ± 0.01 3.74 ± 0.01 3.20 ± 0.00 41.57 ± 0.22 8.88 ± 0.05 1.36 ± 0.00 1.71 ± 0.00 2.08 ± 0.01 1.66 ± 0.00 14.40 ± 0.15 3.76 ± 0.01

Graph WaveNet 2.72 ± 0.01 3.10 ± 0.02 3.54 ± 0.03 3.06 ± 0.02 38.22 ± 0.32 8.40 ± 0.03 1.31 ± 0.00 1.64 ± 0.01 1.94 ± 0.01 1.58 ± 0.00 13.12 ± 0.14 3.58 ± 0.02

FC-Gated-GN 2.72 ± 0.01 3.05 ± 0.01 3.44 ± 0.01 3.01 ± 0.00 37.48 ± 0.32 8.27 ± 0.00 1.32 ± 0.00 1.63 ± 0.01 1.89 ± 0.01 1.56 ± 0.01 12.96 ± 0.11 3.51 ± 0.03

UG-Gated-GN 2.72 ± 0.00 3.10 ± 0.00 3.54 ± 0.01 3.06 ± 0.00 38.82 ± 0.08 8.40 ± 0.04 1.33 ± 0.00 1.67 ± 0.01 1.99 ± 0.01 1.61 ± 0.01 13.76 ± 0.14 3.59 ± 0.03

SGP 2.69 ± 0.00 3.05 ± 0.00 3.45 ± 0.00 3.00 ± 0.00 36.70 ± 0.10 8.27 ± 0.02 1.30 ± 0.00 1.60 ± 0.00 1.88 ± 0.00 1.54 ± 0.00 12.43 ± 0.03 3.44 ± 0.01

Ablations
–No-Space-Enc. 2.84 ± 0.00 3.26 ± 0.00 3.74 ± 0.00 3.22 ± 0.00 44.55 ± 0.05 9.20 ± 0.01 1.34 ± 0.00 1.68 ± 0.00 2.02 ± 0.00 1.62 ± 0.00 14.14 ± 0.06 3.67 ± 0.01

–FC-Dec. 2.76 ± 0.01 3.13 ± 0.01 3.52 ± 0.02 3.08 ± 0.01 37.92 ± 0.35 8.63 ± 0.11 1.35 ± 0.01 1.67 ± 0.01 1.96 ± 0.01 1.61 ± 0.01 13.04 ± 0.23 3.61 ± 0.04

–GC-Dec. 2.77 ± 0.00 3.17 ± 0.00 3.63 ± 0.00 3.12 ± 0.00 40.67 ± 0.06 8.74 ± 0.01 1.32 ± 0.00 1.65 ± 0.00 1.97 ± 0.00 1.59 ± 0.00 13.47 ± 0.08 3.60 ± 0.01

Table 1: Results on benchmark traffic datasets (averaged over 3 independent runs). We report MAE, MSE, and MAPE averaged
over a one-hour (12 steps) forecasting horizon. We also show MAE for H ∈ {15, 30, 60}minutes time horizons. Bold numbers
are within a standard deviation from the best reported average result.

PV-US CER-En

Prediction error (MAE) Resource utilization Prediction error (MAE) Resource utilization

30 mins 7 hours 30 mins 11 hours Batch/s Memory Batch size 30 mins 7 hours 30 mins 11 hours Batch/s Memory Batch size

10
0-

N
N

DCRNN 1.39 ± 0.09 3.34 ± 0.22 3.54 ± 0.48 2.04 ± 0.01 9.63 GB 2 0.22 ± 0.00 0.28 ± 0.00 0.29 ± 0.00 1.43 ± 0.02 11.10 GB 2
Graph WaveNet 1.45 ± 0.13 5.09 ± 0.63 5.26 ± 1.34 2.01 ± 0.02 11.64 GB 2 0.23 ± 0.00 0.36 ± 0.01 0.36 ± 0.01 2.41 ± 0.03 8.39 GB 1
UG-Gated-GN 1.33 ± 0.08 2.94 ± 0.05 3.12 ± 0.14 8.41 ± 0.09 11.46 GB 5 0.22 ± 0.00 0.28 ± 0.00 0.28 ± 0.00 8.21 ± 0.08 11.70 GB 4

SGP 1.09 ± 0.01 3.14 ± 0.21 3.16 ± 0.19 116.58 ± 8.74 2.21 GB 4096 0.21 ± 0.00 0.30 ± 0.00 0.31 ± 0.01 117.32 ± 8.36 2.21 GB 4096

Fu
ll

DCRNN 1.59 ± 0.17 4.10 ± 0.27 4.93 ± 0.60 1.37 ± 0.00 11.59 GB 1∗ 0.23 ± 0.00 0.29 ± 0.00 0.29 ± 0.00 1.13 ± 0.01 11.10 GB 1∗

Graph WaveNet 1.65 ± 0.23 6.93 ± 0.58 7.93 ± 0.17 0.77 ± 0.00 11.35 GB 2 0.25 ± 0.01 0.38 ± 0.03 0.37 ± 0.01 1.26 ± 0.01 8.58 GB 1
UG-Gated-GN 1.61 ± 0.06 3.25 ± 0.04 3.04 ± 0.05 8.83 ± 0.10 11.14 GB 1∗ 0.22 ± 0.00 0.28 ± 0.00 0.29 ± 0.00 8.77 ± 0.10 11.14 GB 1∗

SGP 1.09 ± 0.00 3.06 ± 0.11 3.13 ± 0.13 118.64 ± 8.35 2.21 GB 4096 0.21 ± 0.00 0.30 ± 0.00 0.31 ± 0.01 115.85 ± 10.60 2.21 GB 4096

Table 2: Results on large-scale datasets (averaged over at least 3 independent runs). We report MAE over H-step-ahead predic-
tions, H = {30m, 7h30m, 11h}, together with timings and memory consumption. ∗ indicates that subsampling was needed to
comply with the memory constraints. Bold numbers are within a standard deviation from the best reported average result.

casting architecture against state-of-the-art methods on pop-
ular, medium-scale, traffic forecasting benchmarks. In the
second, we evaluate the scalability of the proposed method
on large-scale spatiotemporal time series datasets by con-
sidering two novel benchmarks for load forecasting and PV
production prediction.

Datasets In the first experiment we consider the METR-
LA and PEMS-BAY datasets [14], which are popular
medium-sized benchmarks used in the spatiotemporal fore-
casting literature. In particular, METR-LA consists of traffic
speed measurements taken every 5 minutes by 207 detectors
in the Los Angeles County Highway, while PEMS-BAY in-
cludes analogous observations recorded by 325 sensors in
the San Francisco Bay Area. We use the same preprocessing
steps of previous works to extract a graph and obtain train,
validation and test data splits [18]. For the second experi-
ment, we introduce two larger-scale datasets derived from

Dataset # steps # nodes # edges sparsity

METR-LA 34272 207 1515 3.54%
PEMS-BAY 52116 325 2369 2.24%

PV-US (100nn) 8868 5016 417,199 1.66%
CER-En (100nn) 8868 6435 639,369 1.54%

PV-US 8868 5016 3,710,008 14.75%
CER-En 8868 6435 3,186,369 7.69%

Table 3: Additional information on the considered datasets.

energy analytics data. The first dataset contains data com-
ing from the Irish Commission for Energy Regulation Smart
Metering Project (CER-E; Commission for Energy Regula-
tion [29]), which has been previously used for benchmark-
ing spatiotemporal imputation methods [30]; however, dif-
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ferently from previous works, we consider the full sensor
network consisting of 6435 smart meters measuring energy
consumption every 30 minutes at both residential and com-
mercial/industrial premises. The second large-scale dataset
is obtained from the synthetic PV-US2 dataset [31], consist-
ing of simulated energy production by 5016 PV farms scat-
tered over the United States given historic weather data for
the year 2006, aggregated in half an hour intervals. Since
the model does not have access to weather information, PV
production at neighboring farms is instrumental for obtain-
ing good predictions. Notably, CER-E and PV-US datasets
are at least an order of magnitude larger than the datasets
typically used for benchmarking spatiotemporal time series
forecasting models. Note that for both PV-US and CER-En
the (weighted) adjacency is obtained by applying a thresh-
olded Gaussian kernel to the similarity matrix obtained by
considering the geographic distance among the sensors and
the correntropy [32] among the time series, respectively. We
provide further details on the datasets in the supplemental
material.

Baselines We consider the following baselines:
1. LSTM: a single standard gated recurrent neural net-

work [33] trained by sampling window of observations
from each node-level time series by disregarding the spa-
tial information;

2. FC-LSTM: an LSTM processing input sequences as if
they were a single high-dimensional multivariate time se-
ries;

3. DCRNN: a recurrent graph network presented in [14] –
differently from the original model we use a recurrent
encoder followed by a linear readout (more details in the
appendix);

4. Graph WaveNet: a residual network that alternates tem-
poral and graph convolutions over the graph that is given
as input and an adjacency matrix that is learned by the
model [18];

5. Gated-GN: a state-of-the-art time-than-graph [25]
model introduced in [24] for which we consider two dif-
ferent configurations. The first one – indicated as FC –
uses attention over the full node set to perform spatial
propagation, while the second one – indicated as UG –
constrains the attention to edges of the underlying graph.

6. DynGESN: the echo state network for dynamical graphs
proposed in [28].

For all the baselines, we use, whenever possible, the config-
uration found in the original papers or in their open-source
implementation; in all the other cases we tune hyperparam-
eters on the holdout validation set.

Experimental setup For the traffic datasets, we replicate
the setup used in previous works. In particular, each model
is trained to predict the 12-step-ahead observations. In SGP,
the input time series are first encoded by the spatiotemporal
encoder, and then the decoder is trained by sampling mini-
batches along the temporal dimension, i.e., by sampling B
sequences Gt−W :t of observations.
2https://www.nrel.gov/grid/solar-power-data.html

For the large-scale datasets, we focus on assessing the
scalability of the different architectures rather than maximiz-
ing forecasting accuracy. In particular, for both datasets, we
consider the first 6 months of data (4 for months for training,
1 month for validation, and 1 month for testing). The models
are trained to predict the next {00:30, 07:30, 11:00} hours.
We repeat the experiment in two different settings to test the
scalability of the different architectures w.r.t. the number of
edges. In the first setting, we extract the graph by sparsify-
ing the graph adjacency matrix imposing a maximum of 100
neighbors for each node, while in the second case we do not
constrain the density of the adjacency matrix. Tab. 3 reports
some details for the considered benchmarks.

To assess the performance in terms of scalability, we fix
a maximum GPU memory budget of 12 GB and select the
batch size accordingly; if a batch size of 1 does not fit in
12 GB, we uniformly subsample edges of the graph to re-
duce the memory consumption. Differently from the other
baselines, in SGP we first preprocess the data to obtain spa-
tiotemporal embeddings and then train the decoder by uni-
formly sampling the node representations. We train each
model for 1 hour, then restore the weights corresponding to
the minimum training error and evaluate the forecasts on the
test set. The choice of not running validation at each epoch
was dictated by the fact that for some of the baselines run-
ning a validation epoch would take a large portion of the 1
hour budget.

The time required to encode the datasets with SGP’s en-
coder ranges from tens of seconds to ≈ 4 minutes on an
AMD EPYC 7513 processor with 32 parallel processes. To
ensure reproducibility, the time constraint is not imposed as
a hard time out; conversely, we measure the time required for
the update step of each model on an NVIDIA RTX A5000
GPU and fix the maximum number of updates accordingly.
For SGP, the time required to compute node embeddings
was considered as part of the training time and the number
of updates was appropriately reduced to make the compari-
son fair. For all the baselines, we keep the same architecture
used in the traffic experiment. For SGP we use the same hy-
perparameters for the decoder, but we reduce the dimension
of the embedding (the value of K) so that a preprocessed
dataset can fit in a maximum of ≈ 80 GB of storage. To ac-
count for the different temporal scales, we increase the win-
dow size for all baselines and increase the number of layers
in the ESN (while keeping the final size of Ht similar). Ad-
ditional details and the exact values of the hyperparameters
are provided in the supplementary material.

5.1 RESULTS

Results for the traffic benchmarks are reported in Tab. 1;
while the outcomes of the scalability experiments are shown
in Tab. 2. We consider mean absolute error (MAE), mean
squared error (MSE), and mean absolute percentage error
(MAPE) as evaluation metrics.

Traffic experiment The purpose of the first experiment is
to demonstrate that the proposed method achieves perfor-
mance comparable to that of the state of the art. In this re-
gard, results in Tab. 1 show that in all the considered sce-
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Figure 3: Training curves on PV-US. The plot shows the av-
erage ± the standard deviation of 3 independent runs. The
plotted curves are smoothed with a running average of 8
steps.

narios SGP is always among the best performing forecast-
ing architectures. The full-attention baseline is the strongest
competitor which, however, has time and memory complex-
ities that scale quadratically with the number of nodes. Re-
garding the other baselines, DCRNN underperforms com-
pared to the other spatiotemporal GNN architectures. Dyn-
GESN, the fully randomized architecture, despite being very
fast to train, obtains reasonable performance in short-range
predictions but falls short over longer forecasting horizons
in the considered scenarios. In light of these results, it is
worth commenting on the efficiency of SGP compared to
the baselines. Approaches like DCRNN and Graph Wavenet,
perform graph convolutions whose time and space of com-
plexity is O(LTE), being E the number of edges, L the
number of layers (8 in Graph Wavenet), and T the time steps.
Such complexity is completely amortized by the preprocess-
ing step in our architecture. Similarly, Gated-GN, while be-
ing architecturally much simpler, propagates spatial infor-
mation by relying on the attention mechanism that is known
to scale poorly with the dimensionality of the problem. The
next experimental setting shines a light on these shortcom-
ings.

The bottom of Tab. 1 reports results for the ablation of key
elements of the proposed architecture: No-Space-Enc. indi-
cates that the embeddings are built without the spatial prop-
agation step; FC-Dec. consider the case where the structure
of the embedding is ignored in the readout and the sparse
weight matrix in Eq. 7 is replaced by a fully-connected one;
GC-Dec. indicates that the spatial propagation is limited to
the neighbors of orderK = 1 and, thus, the decoder behaves
similarly to a single-layer graph convolutional network. Re-
sults clearly show the optimality of the proposed architec-
tural design.

Large-scale experiment Tab. 2 reports the results of the
scalability experiment where we considered only the spa-
tiotemporal GNNs trained by gradient descent. We excluded
the full-attention baseline (FC-Gated-GN) as its O(N2)
complexity prevented scaling to the larger datasets; however,
we considered the UG version where attention is restrained

to each node’s neighborhood. There are several comments
that need to be made here. First of all, batch size has a dif-
ferent meaning for our model and the other baselines. In our
case, each sample corresponds to a single spatiotemporal
(preprocessed) observation; for the other methods, a sam-
ple corresponds to a window of observations Gt−W :t where
edges of the graph are eventually subsampled if the memory
constraints could not be met otherwise. In both cases, the
loss is computed w.r.t. all the observations in the batch. The
results clearly show that SGP can be trained efficiently also
in resource-constrained settings, with contained GPU mem-
ory usage. In particular, the update frequency (batch/s) is up
to 2 order of magnitude higher. Notably, resource utiliza-
tion at training time remains constant (by construction) in
the two considered scenarios, while almost all the baselines
require edge subsampling in order to meet the resource con-
straints. Fig. 3 shows learning curves for the PV-US dataset,
further highlighting the vastly superior efficiency, scalabil-
ity, and learning stability of SGP. Finally, results concerning
the forecasting accuracy show that performance is competi-
tive with the state of the art in all the considered scenarios.

6 Remarks and conclusion
We proposed SGP, a scalable architecture for graph-based

spatiotemporal time series forecasting. Our approach can
compete with the state of the art in popular medium-sized
benchmarks datasets, while greatly improving the scalabil-
ity in large sensor networks. While sampling in SGP largely
reduces GPU memory usage compared to the other methods,
the entire processed sequence can take up a large portion
of system memory, depending on the size of the reservoir.
Nevertheless, the preprocessing can be distributed and the
preprocessed data stored on disk. Then, each data batch can
be loaded incrementally during training, as usually done on
large datasets, such as those from computer vision applica-
tions. We believe that SGP constitutes an important step-
ping stone for future research on scalable spatiotemporal
forecasting and has the potential of being widely adopted
by practitioners in both academia and industry. Future work
can explore a tighter integration of the spatial and tempo-
ral encoding components, assess performance on even larger
benchmarks, and transfer across sensor networks, i.e., in an
inductive learning setting.
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Appendix

A Detailed experimental settings
In this appendix, we provide additional details on the exper-
imental settings for the results presented in the paper.

A.1 SOFTWARE PLATFORM

The Python [34] code used to run all the computational ex-
periments will be released upon publication. We relied on
the following open-source libraries:

• PyTorch [35];
• PyTorch Geometric [36];
• Torch Spatiotemporal [37];
• PyTorch Lightning [38];
• numpy [39].

We relied on the Neptune3 [40] DevOps infrastructure for
the logging of the experiments. For all the baselines, we run
all the experiments by relying on their open-source imple-
mentations.

A.2 HARDWARE PLATFORM

Experiments were run on a server equipped with two AMD
EPYC 7513 processors and four NVIDIA RTX A5000. Re-
producibility of the scalability experiments was ensured by
taking timings for the update step of each model and set-
ting the number of updates performed by each model ac-
cordingly (more details in Sec. A.5).

3https://neptune.ai/
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A.3 DATASETS

All datasets used in our study are open-source or freely
available for research purposes. The input graphs are ex-
tracted by at first computing a weighted, dense adja-
cency matrix W from (side) spatial information, e.g., the
geographic position of the sensors, or by computing a
(dis)similarity metric among the time series. The adjacency
is then sparsified to obtain A by zeroing out values under
a certain threshold and, optionally, capping the maximum
number of neighbors for each node. For all datasets, the only
exogenous variable we consider is the encoding of the time
of the day with two sinusoidal functions.

Traffic datasets Both METR-LA and PEMS-BAY are
widely popular benchmarks. We use the same setup of previ-
ous works [18] for all the preprocessing steps. As mentioned
in Sec. 5, PEMS-BAY contains 6 months of data from 325
traffic sensors in the San Francisco Bay Area, while METR-
LA contains 4 months of analogous readings acquired from
207 detectors in the Los Angeles County Highway [41]. In
both datasets, observations are aggregated at a 5 minutes
time scale.

CER-En The data from the Irish Commission for En-
ergy Regulation Smart Metering Project [29] contains mea-
surements of the energy consumption aggregated at a 30
minutes scale in households and small/medium enterprises.
The full dataset consists of observations from 6435 smart
meters measuring energy consumption every 30 minutes.
As mentioned in the paper, we use the same preprocess-
ing of [30], and, in particular, an analogous strategy to
extract a graph from the correntropy [32] among time
series. Note that, differently from [30], we consider the
full sensor network. For all the spatiotemporal GNN base-
lines, we set the window size to 36 steps. Access to
the dataset can be obtained free of charge by following
the information provided at https://www.ucd.ie/issda/data/
commissionforenergyregulationcer; we provide the prepro-
cessing scripts in the supplementary material.

PV-US The PV-US4 dataset [31] instead consists in a col-
lection of simulated energy production by 5016 PV farms
for the year 2006. In the raw datasets, samples are generated
every 5 minute, we aggregate observations at 30 minutes in-
tervals by taking their mean. A (small) subset of this dataset
(often referred to as “Solar Energy”5) with only the 137 PV
plants in Alabama state has been used as a multivariate time
series forecasting benchmark [42]. To obtain an adjacency
matrix, we consider the virtual position of the farms in terms
of geographic coordinates, and we apply a Gaussian kernel
over the pairwise Haversine distances, as described at the
beginning of this section. Similarly to the CER-En dataset,
we set the window size of the baselines to 36 steps. In the
supplementary material, we provide the code to download
and preprocess the data.

4https://www.nrel.gov/grid/solar-power-data.html
5https://github.com/laiguokun/multivariate-time-series-data

A.4 ADDITIONAL DETAILS ON SGP
ARCHITECTURE

We implemented the DeepESN encoder following the de-
sign principles assessed in previous works [13, 43]. In par-
ticular, we decrease the discount factor λ progressively at
each layer by subtracting 0.1 from its initial value. We also
randomly set 30% of the weights of the networks to 0 to
obtain a sparse reservoir. We use tanh as nonlinear activa-
tion function. The recurrent weights are normalized so that
the spectral radius of the corresponding matrix is lower than
one [7].

For the spatial encoding, we compute the embeddings at
the different spatial scales iteratively. Additionally, we also
concatenate to the spatiotemporal embedding St the graph-
wise average of the temporal embedding Ht to act as a sort
of global attribute [44].

The MLP decoder is implemented as standard feed-
forward network with parametrized residual connections be-
tween layers [45], SiLU activation function [46] and op-
tional Dropout [47] regularization.

A.5 TRAINING AND EVALUATION PROCEDURE

Traffic As previously mentioned, for the traffic datasets
we used the same training settings of previous works. For
all the baselines we kept the same parameters of previous
works whenever possible. For SGP we selected the hyper-
parameters by performing an initial random search and then
manually adjusting the hyperparameters of the reservoir and
selecting the best performing configuration on the validation
set. In particular, for METR-LA we used a DeepESN with
3 layers of 32 units each, an initial decay factor of 0.9, and
a spectral radius of 0.9. For PEMS-BAY, instead, we used
an encoder with a single layer of 128 units, a decay rate of
0.8, and a spectral radius of 0.9. For both datasets, we set
K = 4 and used the bidirectional encoding scheme. In the
decoder, for the first layer we used 32 units for each group
in METR-LA and 96 PEMS-BAY, followed by 2 fully con-
nected layers of 256 units each with a dropout rate of 0.3.
The model is trained with early stopping for a maximum of
200 epochs of 300 batch each with the Adam optimizer and
a multi-step learning rate scheduler.

Large-scale In Tab. 2 of the paper, we report the time re-
quired for a single model update (in terms of batches per sec-
ond) and GPU memory usage for every considered method.
To ensure a fair assessment, we record the time interval
between the beginning of the inference step and the end
weights’ update for 150 batches and exclude the first 5 and
last 5 measurements (that may have overheads). We exclude
from the computation the overhead introduced – for every
batch – by the edge subsampling strategy adopted for the
scalability of the baselines.

To measure the GPU memory required, we exploit
NVIDIA System Management Interface6, which provides
near real-time GPU usage monitoring.

6https://developer.nvidia.com/nvidia-system-management-
interface
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All the experiments designed to measure time and mem-
ory requirements have been run on the same machine on
a dedicated reserved GPU. We kept the models mostly un-
changed w.r.t. the traffic experiment. However, we increased
the window size to 36 for the baselines and updated the con-
figuration of the reservoir for SGP to account for the dif-
ferent time scales. In particular, we increased the number of
reservoir layers to 8 and 6 in PV-US and to in CER-En, re-
spectively, and reduced the number of units accordingly. The
difference in the number of layers between the two datasets
is motivated by the choice of keeping the size of the prepro-
cessed sequences similar. For this reason, we also setK = 2
and use the unidirectional encoding to limit the amount of
required storage to a maximum ≈ 80 GB for each dataset.

Baselines For LSTM and FC-LSTM we consider a
single-layer LSTM with 128 units for the temporal embed-
ding and an MLP with one hidden layer with 256 units and
dropout rate of 0.1. For DCRNN, as reported in [14], we set
the number of units in the hidden state to 64 and the order of
the diffusion convolution to K = 2; compared to the origi-
nal mode, we use a feed-forward readout instead of a recur-
rent one to enable scalability on the larger benchmarks. For
Graph WaveNet and Gated-GN we use the same hyperpa-
rameters and learning rate schedulers reported in the relative
papers. We implemented all the baselines in PyTorch and
PyTorch Geometric (for graph-based methods) following the
open-source implementations provided by the authors. To
improve memory and computation efficiency in message-
passing layers, we use sparse matrix-matrix multiplications
instead of scatter-gather operations whenever possible. We
fix the maximum number of training epochs to 300 to allow
all the models to reach convergence, and stop the training if
the MAE computed on the validation set does not decrease
for 50 epochs. We evaluate the models using the weights
corresponding to the minimum validation MAE.

For DynGESN we set the hyperparameters of the reser-
voir to the same ones used for SGP and increase the num-
ber of units to approximately match the dimensions of the
final embeddings extracted by our method. We trained the
readout with Ridge regression by selecting the weight of the
L2-regularization term on the validation set.
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