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Abstract
Global energy consumption is projected to grow by nearly 50% as of 2018, reaching a peak of 910.7 quadrillion BTU in 
2050. The industrial sector accounts for the largest share of the energy consumed, making energy awareness on the shop 
floors imperative for promoting industrial sustainable development. Considering a growing awareness of the importance 
of sustainability, production planning and control require the incorporation of time-of-use electricity pricing models into 
scheduling problems for well-informed energy-saving decisions. Besides, modern manufacturing emphasizes the role of 
human factors in production processes. This study proposes a new approach for optimizing the hybrid flow-shop scheduling 
problems (HFSP) considering time-of-use electricity pricing, workers’ flexibility, and sequence-dependent setup time (SDST). 
Novelties of this study are twofold: to extend a new mathematical formulation and to develop an improved multi-objective 
optimization algorithm. Extensive numerical experiments are conducted to evaluate the performance of the developed solution 
method, the adjusted multi-objective genetic algorithm (AMOGA), comparing it with the state-of-the-art, i.e., strength Pareto 
evolutionary algorithm (SPEA2), and Pareto envelop-based selection algorithm (PESA2). It is shown that AMOGA performs 
better than the benchmarks considering the mean ideal distance, inverted generational distance, diversification, and quality 
metrics, providing more versatile and better solutions for production and energy efficiency.

Keywords Production management · Energy consumption · Time-of-use electricity rates · Workers’ flexibility · Multi-
objective optimization

Introduction

The global population growth, which has resulted in an 
exponential increase in industrial activities, and the worsening 
environmental situation over the past few decades highlight 
the need for sustainable industrial development. Global energy 
consumption is projected to grow by nearly 50% between 
2018 and 2050, which is expected to reach a high of 910.7 
quadrillion BTU. The industrial sector, including mining, 
manufacturing, agriculture, and construction, accounts for 
the largest share of global energy consumption.1

To respond to the growing energy demands and alleviate the 
grid’s burden during peak hours, many countries introduced 
time-dependent energy prices that can vary during the day and 
across seasons. As a prime example, manufacturing enterprises 
are asked to shift all or parts of their activities to the off-
peak periods to reduce the load on the system to manage the 
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energy crisis. Purchasing energy-efficient machines, updating 
product designs, and process optimization are some of the 
other measures to tackle the energy consumption problem. 
Production scheduling is a relatively affordable and effective 
solution to help manage operations in the quest for cleaner 
production (Dai et al. 2013).

As a generalization of the classic flow-shop and parallel-
machine scheduling, the hybrid flow-shop scheduling 
problem (HFSP) consists of at minimum two processing 
stages with at least one of them having two or more 
parallel machines (Ruiz and Vázquez-rodríguez 2010). 
Machines in the production stages can be identical, uniform, 
unrelated, or a combination, and the jobs flow through the 
shop floor in the same direction (Linn and Zhang 1999). 
The wide industrial needs have motivated production 
researchers to extend the HFSP for various shop floor 
configurations. Salvador (1973) for the first time applied 
the HFSP in practical settings, i.e., nylon polymerization 
production context for minimizing the maximum 
completion time—makespan. In the packaging industry 
context, Adler et al. (1993) developed a robust scheduling 
system that meets the due date and maximizes plants’ 
throughput. Minimizing makespan and buffer queueing 
in semiconductor manufacturing, Wittrock (1988) applied 
an adaptable scheduling algorithm to handle the dynamics 
of the shop floor. Jin et al. (2002) developed a scheduling 
approach for three-stage printed circuit board production 
line optimization, aiming to minimize the total completion 
time of all jobs over a finite planning horizon. Other 
practical applications of HFSP include the iron and steel 
industry (Tang and Wang 2011), ion plating cell production, 
container handling systems in a maritime terminal (Chen 
et al. 2007), and textile, glass, paper, furniture, and plastic-
making industries (Lin et al. 2021).

Incorporating the technical and operational requirements 
into the basic HFSP, like setup time (Zandieh et al. 2006), 
machine eligibility (Ruiz and Maroto 2006), the machine 
turn-off-turn-on decisions (Mouzon et al. 2007), the transfer 
time of jobs (Pan et al. 2013), a limited buffer between 
production stages (Wardono and Fathi 2004), and work-
center space constraints (Moghadam et  al. 2018), has 
facilitated its industry reach. Most of the existing scheduling 
problems overlooked human considerations. Considering 
the impact of workers’ capabilities on energy efficiency 
(Zhang and Dornfeld 2007), simultaneously incorporating 
these factors helps to account for the possible interactions 
and improves the optimization outcomes. Inspired by this 
practical need, the main contribution of this study is to 
incorporate an energy consumption model into the HFSP 
formulation while considering workers’ performance 
and sequence dependent setup time (SDST) between the 
processing of consecutive jobs. Such an extension increases 
the scheduling complexity and calls for effective solution 

approaches. A multi-objective metaheuristic algorithm is 
extended and tested to contribute to the scheduling literature.

The rest of this manuscript is organized into four sections. 
The “Research gap” section reviews the relevant literature 
and highlights the research gap. The “Mathematical formu-
lation” section is devoted to problem description and math-
ematical model formulation. The adjusted multi-objective 
genetic algorithm (AMOGA) optimization algorithm for 
solving the model is presented in the “Solution method” 
section. The “Computational experiments” section presents 
the computational experiments and analyzes the results con-
sidering different instances. Finally, the study is concluded 
and summarized in the “Conclusions” section.

Research gap

Maximizing the shop floor efficiency has been the central 
optimization objective in the production scheduling litera-
ture (Ruiz and Vázquez-rodríguez 2010; Ribas et al. 2010; 
Lee and Loong 2019). To tackle up-to-date manufacturing 
concerns for environmental sustainability and energy secu-
rity, the energy consumed on the shop floor should also be 
taken into consideration. A growing number of studies are 
investigating this paradigm shift. Early studies on energy-
efficient scheduling were limited to optimizing energy con-
sumption using execution time variables (Dai et al. 2013; 
Tang et al. 2016; Yan et al. 2016; Li et al. 2018). More 
recent studies considered energy consumption models under 
time-of-use electricity tariffs. Such energy models are more 
practical and can more effectively address energy efficiency.

Luo et al. (2013) investigated scheduling under time-
of-use electricity tariffs while minimizing makespan and 
electric power costs. Applying the right-shift procedure to 
reduce the estimated production cost, they found that as the 
length of each electricity price period increased, the electric 
power cost decreased. They suggested that it is more energy 
efficient to consider a mix of high-power and low-power 
machines rather than having the same number of machines 
with middle power. In a closely relevant study, Zhang et al. 
(2019) developed a bi-objective optimization model with 
the presence of time-of-use electricity tariffs for scheduling 
flexible flow-shops consisting of machines with heterogene-
ous energy consumption but did not account for the workers’ 
capabilities and setup times despite their relevance to the 
energy consumption context. They used the strength Pareto 
evolutionary algorithm (SPEA2) for solving the multi-objec-
tive optimization problem. Wang et al. (2020) proposed aug-
mented epsilon-constraint and evolutionary algorithms for 
solving various variants of two-stage flow-shops under time-
of-use energy tariffs, minimizing makespan and total energy 
consumption considering a case from the glassmaking 
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industry. Most recently, Xue and Wang (2023) developed a 
multi-objective discrete differential evolution algorithm for 
scheduling under time-of-use electricity tariffs in two-stage 
flow shop environments.

To improve the practicability of the scheduling problems, 
direct human involvement should also be considered along 
with machine-related resource constraints. Industry 5.0 
calls for this addition to the production planning and control 
models. Dual resource constraints have seen some develop-
ments in the job shop scheduling literature. Zheng and Wang 
(2016) proposed a knowledge-guided fruit fly optimization 
algorithm to solve dual resource-constrained flexible job 
shops with a single objective of minimizing the makespan. A 
flexible job shop with dual-resource constrained was studied 
by Yazdani et al. (2019) where two evolutionary algorithms 
were developed to minimize the makespan, critical machine 
workload, and total workload of machines altogether.

As a relevant variant of dual-resource constrained fea-
ture, workers’ flexibility considers the number of machines a 
worker can operate. An illustrative example of this schedul-
ing variant is presented in Fig. 1, where identical machines 
with different power consumption operate with the help of 
different skilled workers. In this example, worker flexibility 
is considered in the first stage, meaning that any of worker 1 
or worker 2 can be assigned to perform the setup operations.

Gong et al. (2018a) investigated a multi-objective vari-
ant with flexible workers aiming to minimize total worker 
cost and makespan while maximizing green production 
indicators using an improved genetic algorithm. Gong et al. 
(2018b) developed a memetic algorithm to solve multi-
objective flexible job shops with flexible workers, aiming at 
the minimization of makespan, maximum machines work-
load, and total workload of all machines. Gong et al. (2020) 
addressed flexible flow-shops with worker flexibility. They 
proposed a hybrid evolutionary algorithm to minimize three 
objectives of makespan, total worker cost, and green pro-
duction indicators. They also developed a multi-objective 
memetic algorithm aiming to minimize the makespan, and 

total tardiness while accounting for a balanced workers’ 
workload in an HFSP with dual resource constraints. In their 
proposed model, operations are processed by both machines 
and workers with predefined processing times. Gong et al. 
(2021) developed a non-dominated ensemble fitness ranking 
algorithm for multi-objective flexible job-shop scheduling 
problem considering worker flexibility. Most recently, Luo 
et al. (2023) developed a Pareto-based two-stage evolution-
ary algorithm considering workers’ flexibility in flexible job 
shop production environments.

There are limited scheduling models that consider the 
workers’ flexibility and energy efficiency. Meng et al. (2019) 
proposed two mixed-integer linear programming models, an 
effective variable neighborhood search algorithm is utilized, 
and two energy-saving strategies, namely postponing strat-
egy and turning off/on strategy to minimize total energy 
consumption in HJSP with worker flexibility. Meng et al. 
(2023) developed a variable neighborhood search algorithm 
for the optimization of energy-conscious flexible job shop 
scheduling problem with workers’ flexibility. The flow shop 
studies that consider dual resource conditions and workers’ 
flexibility are quite limited.

The research on HFSP predominantly considered 
machines as a sole resource. On the shop floor, different 
resources are required to complete the products. The most 
important resources are (1) machines (and robots), which 
are used to process the planned operations and can be one 
resource type like in a spool fabrication shop (Moghadam 
et al. 2014) or a combination of all types of resources like in 
car manufacturing industries; (2) energy, which is available 
in forms of electricity, gasoline, and coal, to provide power 
for process machines, handling systems, auxiliary equip-
ment, lighting, and so forth; and (3) workers that operate 
machines and/or adjust tools for undertaking different jobs. 
Depending on the machine shop, a worker may be assigned 
to only one machine at a time to act as an operator that 
remains busy until the operation of a specific job is over. 
Otherwise, they may work on more than one identical or 

Fig. 1  The real-world illustration of a hybrid flow-shop with worker flexibility
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unrelated machine that should be adjusted and/or prepared 
for starting the next operation. In the latter case, the worker/
operator remains busy for the duration of the setup opera-
tions. Given the worker’s role in these operations, human-
related considerations, in particular their capabilities, should 
be incorporated into production planning to account for the 
social aspect of sustainability.

The next section extends the formulation developed by 
Zhang et al. (2019) to integrate the major social and environ-
mental aspects of sustainability into the multi-objective HFSP, 
that is, simultaneously accounting for the energy consumption 
model as well as the human-related and setup constraints to 
account for sustainability in the scheduling problem.

Mathematical formulation

To provide a formal description of the problem, let us assume 
that n jobs should flow through s successive production 
stages in the same direction. In each stage, there are one 
or more identical machines featured with different power 
consumption and workers’ assignment when machines 
are in the setup state. Workers are required to perform 
preparational activities, like tools adjustment and cleaning, 
while the number of workers is limited, and the workers 
have different skill sets. In this situation, the objective is to 
arrange the operations in a time interval considering both 
objective functions. A schedule is feasible only if (a) every 
job is processed by only one machine and in only one stage; 
(b) each machine processes only one operation at a given 
time; (c) each worker can operate only one machine at a 
time and when the machine is in its setup state; (d) jobs are 
independent of each other; (e) machines are independent 
of each other; (f) workers are independent of each other; 
(g) operations are not interrupted after started; (h) every 
operation is processed only after its preceding operations are 
completed. It is also assumed that the moving time between 
the operations of machines is negligible, and the processing 
times corresponding to the operations and the SDST between 
different operations are predefined and deterministic.

The following indices, sets, parameters, and decision 
variables are used in the mathematical formulation of the 
problem.

Indices j, I Job index, where j = 1, 2,… , nj

m Machine tag, where m = 1, 2,… , nm

s Index of stages, where s = 1, 2,… , ns

w Workers’ index, where w = 1, 2,… , nw

k Sequential index of operations processed on 
the same machine,k = 1, 2,… , nl

q Sequential index of operations processed by 
the same worker,q = 1, 2,… , nl

Parameters nj Number of jobs
nm Number of machines
ns Number of stages
nw Number of workers
AMs The set of available machines in stage s
AWs Available worker set in stage s
Cms Availability time of machine m in stage s
Cws Availability time of worker w in stage s
ActW Active worker
nms Number of machines in stage s
nws Number of workers in stage s
Ojs Operation of job j in stage s
Pjsm Processing time of Ojs processed on machine m
Cjs Completion time of Ojs

SCjs Sorted set of Ojs in stage s
Cj Completion time of job j
STjsm Start time of processing job j in stage s on 

machine m
stjIs Setup time between jobs j and its predecessor 

in stage s
pf w Performance factor of worker w
Sw Base salary of worker w per minute
Pcjsm Processing cost of Ojs on machine m
TECjsm Energy consumption when Ojs is processed on 

machine m
L A large positive number

Variables Xjsmk Binary variable; = 1 , if Ojs is processed in posi-
tion k on machine m ; = 0 , otherwise

Qjswq Binary variable; = 1 , if setup of Ojs is processed 
in position q by worker w ; = 0 , otherwise

yjismw(t) Binary variable; = 1 , if there is an adjustment 
from job j to job i in stage s on machine m by 
worker w at moment t  ; = 0 , otherwise

xj,s,m(t) Binary variable; = 1 , if job j in stage s is 
processed on machine m at moment t ; = 0 , 
otherwise

zm(t) Binary variable; = 1 , if machine m is idle at 
moment t  ; = 0 , otherwise

�(t)

Power cost counter,

Objective functions

The first objective is to minimize the makespan, Cmax : this refers to 
the completion time of the last job, to be computed using Eq. (1).

The second objective is to minimize the total cost, TC : 
this consists of total electricity consumption and workers’ 
costs as shown in Eq. (2).

(1)minCmax = maxCj ∶ ∀j = 1, 2,… , nj;

=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

cp1, t1 ≤ t < t2

cp2, t2 ≤ t < t3

…

cpp, tp ≤ t < tp + 1
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These objectives are conflicting in nature; that is, minimizing 
one objective may increase the magnitude of the other objective. 
The objective function is subject to the following constraints.

Constraints

In the first stage, when jobs are not pre-processed, and there 
are no predecessor jobs on a machine, the completion time can 
be regulated using Eq. (3).

When jobs are not pre-processed, but preparations are 
required on a machine, the completion time can be described 
using Eq. (4).

In other stages, when jobs are pre-processed, but there are 
no antecedents on the machine, Constraint (5) will be the basis 
for calculating the completion time using Eq. (6). Constraint 
(5) indicates that the difference between the completion times 
must be larger than or equal to the required setups.

where ∀j = 1, 2,… , nj;m ∈ AMs;w ∈ AWs . Otherwise, 
if Constraint (7) applies, Eq. (8) calculates the completion 
time. Constraint (7) requires that the time difference between 
completing consecutive tasks is less than the associated setups.

Alternatively, when jobs are pre-processed, there are prede-
cessor jobs on the machine, and conditions in Constraints (9) 
and (10) are both true, the completion time can be calculated 
using Eq. (11).

(2)minTC = TECcost + TWcost

(3)

C
I1m = max

(
Cj,Cm1,Cw1

)
+
(
st
I,I1 × pf w

)
+
(
P
I1m.xI1m

)

∀j = 1, 2,… , nj;m ∈ AM1;w ∈ AW1

(4)

C
I1m = max

(
Cj,Cm1,Cw1

)
+
(
stj,I1 × pf w

)
+
(
P
I1m.xI1m

)

∀j = 1, 2,… , nj;m ∈ AM1;w ∈ AW1

(5)Cj(s−1) − Cws ≥ st
I,Is × pf w

(6)C
Ism = Cj(s−1) + P

Ism × x
Ism

(7)Cj(s−1) − Cws < st
I,Is × pf w

(8)
C
Ism = Cws + st

I,Is × pf w + P
Ism × x

Ism,

∀j = 1,2,… , nj;m ∈ AMs;w ∈ AWs

(9)Cj(s−1) > Cws > Cms

(10)Cj(s−1) − Cws ≤ stj,Is × pf w

(11)
C
Ism = Cws + stj,Is × pf w + P

Ism × x
Ism,∀j = 1,2,… , nj;m ∈ AMs;w ∈ AWs

In other cases, when jobs are pre-processed and there 
are antecedents on the machine, the completion time when 
Constraints (9) and (12) are both true is defined as Eq. (13).

wherever jobs are pre-processed and there are preceding jobs 
on the machine, the completion time when Constraints (14) 
and (15) are true should be computed using Eq. (16). Con-
straint (14) requires that the completion time of job Oj(s−1) 
is greater than the availability time of the assigned machine 
and worker. According to Constraint (15), the completion 
time of job s − 1 is less than or equal to the summation of 
setups and availability time of the assigned machine.

In the alternative situation, i.e., when jobs are pre-pro-
cessed and preceding jobs have been completed on the 
machine, the completion time can also be defined using Eq. 
(13) if and only if conditions stated in Constraints (14) and 
(17) are true.

In situations when jobs are pre-processed, there were 
early jobs on the machine, and Constraint (18) applies, 
Eq. (16) defines the completion time. Constraint (18) implies 
that the availability time of machines should be greater than 
the maximum of the completion time of the previous job and 
the worker’s availability.

Finally, when jobs are processed already, there are pre-
ceding jobs on the machine, and Constraint (19) is true, and 
the completion time can be calculated using Eq. (11). Con-
straint (19) indicates that the worker’s availability is greater 
than the maximum between the completion time of the pre-
ceding job and the machine availability for the current job.

The remainder of the constraints are as follows.

(12)Cj(s−1) − Cws > stj,Is × pf w

(13)
C
Ism = Cj(s−1) + P

Ism × x
Ism,∀j = 1, 2,… , nj;m ∈ AMs;w ∈ AWs

(14)Cj(s−1) > Cms > Cws

(15)Cj(s−1) − Cms ≤ stj,Is × pf w

(16)
C
Ism = Cms + stj,Is × pf w + P

Ism × x
Ism,

∀j = 1,2,… , nj;m ∈ AMs;w ∈ AWs

(17)Cj(s−1) − Cms > stj,Is × pf w

(18)Cms > max(Cj(s−1),Cws)

(19)Cws > max(Cj(s−1),Cms)

(20)

Cj(s+1) − Cjs ≥ Pj(s+1)m × xj(s+1)m + stj,I(s+1) × pf w
∀j = 1, 2,… , nj;s = 1, 2,… , ns − 1;m = 1, 2,… , nm;w = 1, 2,… , nw
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Constraint (20) ensure that the operation sequence is 
respected, and there is enough time for processing and set-
ups of consecutive jobs considering the performance of the 
assigned workers. Equation (21) guarantees that each job can 
be processed by at most one machine at a given time. Con-
straint (22) is defined to make sure that each machine can 
process one job at a time. Equation (23) ensures that when 
setup is required, it must be done by one worker. Constraint 
(24) ensures that each worker can process a maximum of one 
operation at a time.

Finally, Eqs. (25)–(31) are used for calculating the cost 
elements of the objective function. The total electricity con-
sumption (TEC) is incorporated using Eq. (25); this includes 
the total electricity consumed during the setups, processing, 
and idle states of machines. The cost terms are defined by 
Eqs. (26)–(28), respectively; which are adopted from Zhang 
et al. (2019).

OE
jIsm

setup is the basis for calculating energy consumption 
per time unit for adjusting from job j to job I  in stage 
s on machine m; pf w denotes the performance factor of 
worker w assigned to undertake the adjustment; t = 0 
and t = Cmax are the starting and finishing times of the 
scheduled jobs; and �(t) counts power cost at time t  . 
In Eq. (27), Ejsm

process is the energy consumption per unit 
time for processing job j in stage s on machine m. In 
Eq. (28), Ei

idle
 is the energy consumption per unit time 

when machine m is in the idle state.

(21)
∑

k

∑

m

xjsmk ≤ 1,∀j = 1, 2,… , nj;s = 1, 2,… , ns

(22)
∑

s

∑

j

xjsmk ≤ 1,∀m = 1, 2,… , nm;k = 1, 2,… , nl

(23)
∑

q

∑

w

Qjsmq = 1,∀j = 1, 2,… , nj;s = 1, 2,… , ns

(24)
∑

s

∑

j

Qjsmk ≤ 1,∀w = 1, 2,… , nw;q = 1, 2,… , nl

(25)TEC = TEsetup + TEprocess + TEidle

(26)TEsetup =
∑

j

∑

I

∑

w

∑

s

∑

m

{
OE

jIsm
setup × pf w ×

[

∫

t=Cmax

t=0

yjIsmw(t).�(t).d(t)

]}

(27)

TEprocess =
∑

j

∑

s

∑

m

{
Ejsm
process

×

[

∫

t=Cmax

t=0

xjsm(t).�(t).d(t)

]}

(28)TEidle =
∑

m

{
Ei
idle

×

[

∫

t=Cmax

t=0

zm(t).�(t).d(t)

]}

The total cost of workers ( TWcost ) is defined using 
Eq. (29), which includes base salary and extra payment per 
busy time that is calculated by Eqs. (30)–(31), respectively.

Solution method

This section elaborates on the improved multi-objective opti-
mization algorithm, AMOGA for solving the HFSPs with 
the time-of-use electricity price model, workforce flexibil-
ity, and SDST. The pseudocode of AMOGA is provided in 
Fig. 2, followed by a detailed explanation of the major com-
putational elements.

Encoding, decoding, and initialization

A new scheme using a multi-layer chromosome of length 
nj × ns is proposed to encode the HFSPs with a flexible 
workforce. As shown in Fig. 3, a vector consisting of job 
sequence, machine selection, worker assignment, and finish 
time of job vectors represents a complete solution. In the 
illustrative example, the number of machines and workers 
in each stage is (3,1,2) and (2,1,1), respectively. The method 
introduced by Luo et al. (2013) is applied for decoding, 
where the optimal selection of resources is made consider-
ing both the makespan and total cost computed for different 
combinations of the available resources. Considering that 
the precise computation of electricity consumption cost is 
essential in this application area, the electricity cost of the 
machine in the idle state is considered in addition to the 
electricity cost in setup and processing states, as presented 
in Eq. (25). This technique not only reduces the complexity 
of the decoding process but also facilitates the generation of 
high-quality solutions.

The step-by-step implementation procedure of the pro-
posed scheme is explained below.

Step 1. Create a four-level chromosome with empty val-
ues.
Step 2. Create a job sequence in the first stage using sim-
ple permutation.
Step 3. Select a prior job in the sequence.
Step 4. Assign machine and worker using the resource 
selection algorithm (RSA) shown in Fig. 4.

(29)TWcost = TWbase + TWextra

(30)TWbase =
∑

w

Cmax × Sw × ActWw

(31)TWextra =
∑

j

∑

I

∑

s

∑

w

∑

q

Sw × stjIs × pf w × Q
Ismq
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Step 5. Decode a partial encoding to a partial schedule 
and record the completion time of the job and indices 
of selected resources.
Step 6. Repeat Steps 3 to 5 for the remaining jobs in 
this stage.
Step 7. Arrange jobs in ascending order of their finish 
time for processing in the next stage.
Step 8. Repeat steps 3 to 7 for the remaining stages.

Step 9. Calculate and record start times, as well as the 
start and finish times of SDST for all jobs/machines in 
each stage.
Step 10. Decode the chromosome to a complete time–cost-
efficient schedule and record the objective function values.

To provide a diverse and high-quality solution popula-
tion, the sequence of jobs in the first stage is defined by a 
simple job permutation for every solution followed by the 

Fig. 2  Pseudocode of the devel-
oped algorithm, AMOGA

Input: Different instance size, AMOGA parameters

Output: A set of pareto-optimal solutions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Begin
Initialization

1. Initialize the AMOGA parameters: population size (nPop), number of iterations

(MaxIt), crossover probability (Pc), mutation probability (Pm);

2. Initialize population with size nPop and calculate their fitness value;

Assign fitness value using non-dominated sorting and crowding distance methods;

Sort the population ascendingly considering ranks;

While (not termination condition) do

Crossover

If p < Pc then

Select two parent individuals using Tournament selection method;

I. Apply the PMX and Uniform crossover on the job sequence vector;

II. Apply the RSA algorithm for resource selection;

Calculate the fitness value;

End

Mutation

If p < Pm then

Select one parent individual using Tournament selection method;

I. Apply the Mutation operator on the job sequence vector;

II. Apply the RSA algorithm for resource selectin;

Calculate the fitness value;

End

Merge the solution groups (initial, recombined, and mutated solutions);

Remove solutions with the same fitness (objective function) value;

Assign fitness value considering non-dominated sorting and crowding distance;

Sort population ascendingly considering the ranks;

Select best-ranked individuals from the pool using Truncation selection;

Assign fitness value using non-dominated sorting and crowding distance;

Sort population ascendingly considering their ranks;

Store the Pareto-front solution;

End

Terminate

Fig. 3  Structure of the four-
layer chromosome encoding
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implementation of the RSA algorithm and rearrangement of 
the jobs in the following stages.

Fitness calculation and Pareto‑front generation

In the developed algorithm, individuals with the best fitness 
value have a greater chance of being selected for reproduc-
tion and survival into the next generation. To assign a fit-
ness value, the non-dominated sorting method introduced by 
Deb et al. (2002) is employed, which exploits the concept of 
Pareto dominance. This technique consists of pairwise com-
parisons of all the population members to form the fronts. 
The solutions that are not dominated by any other solutions 
belong to the first front (rank one) and represent the (near-)
Pareto-optimal solutions. AMOGA tries to find a better set 
of Pareto-optimal solutions and finds solutions closer to the 
front (the so-called convergence) across computational gen-
erations. In addition to the convergence criterion, the crowd-
ing distance of individuals in their rank should be computed, 
using Eq. (32). It is worthwhile noting that the objective 
values need to be sorted in ascending order before comput-
ing the crowding distance of the solutions.

In this formulation, CDr represents the crowding distance 
of rth individual on the frontier, nOb is the number of the 
objectives, f r+1

k
, f r−1
k

 are the kth objective values of the 
adjacent solutions, f max

k
, f min
k

 are the maximum and minimum 
values of the kth objective. For the boundary solutions in each 
front, the crowding distance amounts to an infinite value. 
The solutions can be sorted by classifying them on different 
fronts and calculating the respective crowding distances. In 
this definition, the solutions with lower domination rank and 
higher crowding distance values are preferred. Solutions are 
first sorted in descending order of their crowding distances 
and then in ascending order of their front values.

(32)CDr =

nOb∑

j=1

(
f r+1
k

− f r−1
k

)

(
f max
k

− f min
k

)

Selection methods

The tournament selection method is used to select parents 
for reproduction. Choosing the size of the tournament deter-
mines whether elitism or diversity received more weight. 
The larger tournaments reflect the elite-selection policy and 
the fastest algorithm convergence. However, in smaller tour-
naments, the diverse-selection policy prevails. In this study, 
the size of the tournament is Tsize = 2 individuals from which 
the one with the lowest rank is selected.

To select the best-ranked individuals from the pool, which 
contains the old population, popold , and the new individu-
als through the evolutionary phase, popnew , the truncation 
function is applied. The population should be updated at the 
end of every generation to select the best individuals for the 
next generation. For this purpose, the existing population 
and the newly generated population from the recombination 
and mutation phases are first integrated. Then, individuals 
with the same fitness value (makespan and total cost) are 
removed. After that, the individuals’ rank and the crowding 
distance are considered to select nPop top individuals, which 
will make it to the next generation(s).

Crossover operators

In the evolutionary phase of AMOGA, crossover operators 
are used for reproducing new (offspring) solutions from 
the selected parent solutions. This research considers two 
crossover operators with equal probability, namely partially 
mapped crossover (PMX) and uniform crossover. These 
operators are applied only to the part of the chromosome 
where the sequence of jobs in the first stage is presented. 
The machine and worker selection sections are then com-
pleted by the RSA algorithm which selects the best resources 
for the chosen job sequence respecting both objectives. The 
PMX operator is employed in such a way as to respect both 
preserves of ordering and information sharing from par-
ents. For this purpose, first, a pair of parents is chosen by 

Fig. 4  Pseudocode of the 
resource selection algorithm
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tournament selection from the existing population, and two 
random cut points are selected uniformly. Then the mapping 
relationship of genes between the cut point is defined, and 
they are exchanged to form a partial offspring. Eventually, 
the remaining empty positions are filled by the original par-
ents. In cases of having the same genes, they will be replaced 
based on the mapping relationship. The illustrative example 
in Fig. 5 clarifies the PMX procedure.

The uniform crossover begins with selecting two parents 
using tournament selection. A uniform binary vector, called 
a mask, with a length equal to the number of jobs ( nj ) is 
then created. Finally, genes are copied from parents to the 
offspring as shown in Fig. 6.

Mutation operators

The mutation improves search diversity and helps escape 
premature convergence. This research applies three mutation 
operators named swap, conversion, and insertion on the job 
sequence section of the chromosomes for generating a new 
offspring. For this purpose, an individual is picked from the 
existing population by tournament selection, and then one of 
the mutation operators is selected randomly (with an equal 
probability). The procedure is illustrated in Fig. 7.

Overall, the RSA algorithm and a module for discard-
ing duplicate solutions are the major points differentiating 
AMOGA from the basic multi-objective genetic algorithm. 
Besides, the encoding, initialization, and genetic operators 
are tailored for solving HFSPs.

Computational experiments

Benchmark description

To evaluate the performance of the developed algorithm, 
the state-of-the-art multi-objective evolutionary algorithms 
are considered benchmarks: SPEA2 (Zitzler et al. 2001) and 
Pareto envelop-based selection algorithm (PESA2; (Corne 
et al. 2001)). SPEA2 and PESA2 are selected because they 

use different approaches for managing the Pareto-front mem-
bers in comparison with AMOGA; while AMOGA takes 
advantage of a single-based solution approach, SPEA2 uses 
K-nearest neighbor(s), and PESA2 uses a region-based 
approach. These algorithms are most-widely used for solv-
ing different classes of multi-objective scheduling problems.

The same solution encoding/decoding and genetic opera-
tors are used in all the benchmark algorithms to ensure a 
fair comparison. Besides, all the algorithms are adjusted for 
effective handling of discrete problems following (Corne 
et al. 2001; Zitzler et al. 2001). All the algorithms are coded 
and compiled on MATLAB R2020a and run on a personal 
computer with AMD Rayzen 3, 2.60 GHz CPU, and 12 GB 
Ram.

Test instances

Test data are generated randomly in a way that they can be 
representative of the shop floor. Table 1 shows the levels 
and ranges of the factors determining the configuration of 
the test instances. The test problems are denoted by “number 
of jobs–number of stages–number of machines in all stages-
number of workers in all stages.” For example, a problem 
with 20 jobs, 3 stages, 10 machines, and 5 workers can be 
identified by “20–3-10–5.”

The time-of-use plan rates for small and medium-sized 
enterprises (SMEs) are used in this study, which is illus-
trated in Fig. 8. According to the figure, the peak electric-
ity demand increases during the summer months (i.e., June 
to September), as well as the afternoon time (i.e., 4 to 
9 pm); hence, the associated energy cost is higher. On this 
basis, five time-of-use periods are considered for energy 
cost calculation.where the following rates apply in power 
cost calculations:

–  �(t) = 0.10497 if 24n ≤ t < 24n + 14

–  𝜌(t) = 0.12476if24n + 14 ≤ t < 24n + 16

–  𝜌(t) = 0.15311if24n + 16 ≤ t < 24n + 21

–  𝜌(t) = 0.12476if24n + 21 ≤ t < 24n + 23

– 𝜌(t) = 0.10497if24n + 23 ≤ t < 24n + 24

Fig. 5  Illustrative example of 
the partially mapped crossover 
(PMX)
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Comparison metrics for algorithm evaluation

To compare the performance of the multi-objective evolu-
tionary algorithms, various metrics should be considered. In 
this study, five metrics, namely spacing metric (SM), mean 
ideal distance (MID), diversification metric (DM), quality 
metric (QM), and inverted generational distance (IGD), are 
used, as considered in earlier studies (Cheng et al. 2020) to 

benchmark the performance of AMOGA against SPEA2 and 
PESA2. These metrics are detailed below.

SM measures the uniformity of the spread of non-dom-
inated schedules, which can be computed using Eq. (33).

(33)SM =

∑n−1

i=1

���d − di
���

(n − 1) × d

Fig. 6  Illustrative example of the uniform crossover

Fig. 7  Illustration of the muta-
tion operators: (a) swap, (b) 
insertion, and (c) reversion
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In this equation, di is the Euclidean distance between 
two successive non-dominated schedules in the solution 
set and d represents the average of Euclidean distances. 
The smaller value of this metric is preferred (Piroozfard 
et al. 2018).

MID measures the proximity of the non-dominated 
solutions 

(
f1,i, f2,i

)
 from the ideal point 

(
f best
1

, f best
2

)
 and is 

calculated by Eq. (34).

where f1,i and f2,i denote the fitness function of the ith non-
dominated solution found by each algorithm (first and sec-
ond objectives); f best

1
, f best
2

 indicate the best fitness function 
of the first and second objectives among all solutions of the 
competing algorithms, and n refers to the total number of 
Pareto front solution find by each algorithm. A smaller value 
of MID is desired (Nabipoor Afruzi et al. 2013).

DM determines the extent of heterogeneity in the set of 
non-dominated schedules for each algorithm, which can be 
calculated using Eq. (35); higher values of this metric is 
advantageous (Tavakkoli-Moghaddam et al. 2011).

QM shows the percentage of unique non-dominated 
schedules obtained by each algorithm. To calculate this, a 
union of obtained Pareto-front solutions of all competing 
algorithms is first determined to form a new set of non-dom-
inated solutions. Then, the number of solutions obtained 
by each algorithm in each new Pareto-front is counted and 
divided by the total number of solutions in the union set. 
The higher the value of this metric is, the more unique solu-
tions are obtained by the respective algorithm (Moradi et al. 
2011).

IGD simultaneously considers both convergence and 
diversity aspects to measure how far the Pareto-front 
obtained by an algorithm is from the reference Pareto-front 

(34)MID =

∑n

i=1

�
(f1,i + f best

1
)
2
+ (f2,i + f best

2
)
2

n

(35)DM =

√
∑nOb

i=1

(
max(fi) + min(fi)

)2

Table 1  Summary of the test data

Factors Levels Number 
of levels

Number of jobs 10, 20, 40, 60, 80, and 100 6
Number of stages 2, 3, 5, and 10 4
Number of machines at each 

stage
1, 2, 3, 4, and 5 5

Number of workers at each 
stage

Floor ((no of 
machine + 1)/2)

1

Processing units of each 
operation

Discrete uniform [30,100] 1

Sequence-dependent setup 
time

Discrete uniform [1,5] 1

Performance factor of 
workers

0.8, 1.0, 1.2 3

Worker cost ($/min) 0.2, 0.17, 0.15 3
Power of machine in process 

state
Discrete uniform [8,10] 1

Power of machine in setup 
state

Discrete uniform [5,7] 1

Power of machine in idle 
state

Discrete uniform [3,5] 1

Fig. 8  Time-of-use plan rates 
for small-medium business  
(Source: Pacific Gas and Elec-
tric Company)
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solutions. It is computed by Eq. (36) with the lower value 
being more desirable (Coello Coello and Reyes Sierra 2004).

In this equation, d∗
i
 is the Euclidean distance of each 

Pareto-front solution to the nearest schedule obtained by 
each algorithm, and n∗ is the number of Pareto-front solu-
tions. It is worth noting that in cases with unknown Pareto-
front solutions, IGD can be estimated considering the 
integrated Pareto-front solutions found by all benchmark 
algorithms.

Parameter settings

Separate experiments are conducted to calibrate the 
parameters of each algorithm. For AMOGA, the popu-
lation size, tournament selection configuration, cross-
over, and mutation probabilities are tuned. The param-
eters of SPEA2 include the population size, archive 
size, crossover probability, and mutation probability. 
For PESA2, the grid number needs to be considered 
in addition to the parameters of SPEA2. The Taguchi 
method is used for determining the optimal level of 
important known factors while the effects of uncon-
trollable factors are minimized. For a full description 
of how to perform the Taguchi method for tuning the 
algorithm’s parameters, we refer the interested readers 
to the research conducted by Nabipoor Afruzi et al. 
(2013).

As a first step, trial-and-error experiments are conducted 
to determine the initial values for each parameter. Table 2 
shows the parameter levels of AMOGA. Considering the 
number of known parameters, the respective test levels, 
and the Taguchi method, an orthogonal array L9 then is 
designed, which consists of different configurations of 
parameter levels. To assess which combination of param-
eter values results in the best algorithm performance, four 
randomly generated test problems of different scales (HS04, 
HS06, HS10, HS14) are considered. To ensure the reliability 
of the outcomes, each problem is solved five times, provid-
ing a total of 20 results for each trial.

(36)IGD =

�∑n∗

i=1
(d∗

i
)2

n∗

Next, the performance metrics explained in the previ-
ous section are computed and normalized by the relative 
deviation index for every instance, calculated using Eq. (37). 
The average values associated with each trial are then deter-
mined. These performance indicators have different degrees 
of importance based on how they measure the quality and 
diversity of the Pareto-front solutions for solving a multi-
objective optimization problem. SM = 1, DM = 1, MID = 2, 
QM = 3, and IGD = 4 are considered to measure the weighted 
average relative deviation index (WARDI; Eq. 38) for every 
item of the orthogonal array.

In these equations, Pci represents the average of perfor-
mance criterion associated with the ith experiment over 20 
runs; Pcbest

i
 is the best performance metric among all experi-

mental results; Pcmax
i

 and Pcmin
i

 denote the maximum (and 
minimum) values of a certain performance metric among all 
experiments. It should be noted that WARDIi is calculated 
for the ith experiment with RDIi representing the average 
of RDIs of the four test problems, and nM referring to the 
number of metrics. The results are used as the response 
value in the Taguchi design approach, according to which 
the best combination of parameter values for AMOGA can 
be obtained.

The same procedure has been implemented for SPEA2 
and PESA2. It should be noted that the levels of the com-
mon factor of SPEA2 and PESA2 are similar to AMOGA 
while the archive size levels for these two algorithms are 
L1(50)-L2(80)-L3(100). For PESA2, the potential levels of 
the grid’s number are L1(20)-L2(40)-L3(60). The results of 
the Taguchi experiments for AMOGA, SPEA2, and PESA2 
are summarized in Figs. 9, 10, and 11, respectively. Table 3 
presents the optimal parameter values for each algorithm.

Experimental results and discussions

Given the calibration outcomes, this section compares the 
performance of the algorithms considering a total of twenty-
and-four test instances of various scales. Table 4 summarizes 
the computational results of AMOGA, SPEA2, and PESA2 
considering different performance measures, SM, MID, DM, 
QM, and IGD. The best outcomes in the benchmark are in 
bold for an easy track.

A statistical test of significance is then conducted to 
confirm if the difference is significant. Looking at the 

(37)RDIi =

|||Pci − Pcbest
i

|||
|||Pc

max
i

− Pcmin
i

|||

× 100

(38)WARDIi =

∑nM

i=1

�
wi × RDIi

�

∑nM

i=1
wi

× 100

Table 2  Factor levels 
considered in the calibration of 
AMOGA

Parameter Level

1 2 3

nPop 50 80 100
Pc 0.7 0.8 0.9
Pm 0.1 0.2 0.3
Tsize 2 3 4
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first criterion, SM, it is observed that the PESA2 outper-
forms both AMOGA and SPEA2 on 19 and 15 out of the 
24 test instances, respectively. That is, better uniformity of 
the spread of non-dominated solutions can be obtained by 
PESA2. The reason behind the superiority of PESA2 lies 
in the fact that it benefits from a region-based approach, 
which leads to yielding results with a more uniform distribu-
tion compared with the other two algorithms. However, the 
difference is not statistically significant (null hypothesis is 
accepted with statistic = 2.5249 and p-value = 0.0874).

Concerning the second criterion, MID, AMOGA shows 
a relatively better performance with an average of 235.61 
compared with 308.75 and 343.57 of SPEA2 and PESA2, 
respectively. Considering the number of instances, AMOGA 
and SPEA2 are comparable and outperform PESA2 in 19 

and 16 instances, respectively. Although the statistical test 
does not confirm a significant difference between the over-
all performances, AMOGA results are more competitive for 
large-scale instances (HFSP/W20-24). That is, the proxim-
ity of the non-dominated solutions obtained by AMOGA 
from the ideal point is comparatively better for large-scale 
instances. The outperformance concerning MID is expected 
to be even more significant when industry-scale instances 
are solved.

Concerning the third metric (i.e., DM), it is observed 
that the diversity of the Pareto-front solution obtained by 
both AMOGA and SPEA2 is better than PESA2 with 20 
and 18 out of the 24 tests being outperformed, respectively. 
Overall, AMOGA obtained better more diverse solutions 
with a DM value of 608.12, and it can be confirmed that 

Fig. 9  The mean WARDI plot 
for each level of the parameters 
in Taguchi methodology-
AMOGA

Fig. 10  The mean WARDI plot 
for each level of the parameters 
in Taguchi methodology-SPEA2
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AMOGA performs significantly better than SPEA2 with 
statistic = 3.4531, p-value = 0.0012.

Considering the number of unique non-dominated solu-
tions obtained by each algorithm, i.e., the QM indicator, 
it is evident that AMOGA outperforms both SPEA2 and 
PESA2. Obtaining better QMs in all 24 test instances proves 
the superiority of AMOGA for exploring harder solution 
spaces, like non-convex areas. It is worth noting that an aver-
age of about 81% of non-dominated solutions were yielded 
by AMOGA, compared with only 9 and 11% for SPEA2 and 
PESA2, respectively. With 99% confidence, a statistic value 
of 243.5465 and a p-value of 0.0000 the null hypothesis are 
rejected, confirming that AMOGA performs significantly 
better in terms of finding unique non-dominated solutions 
compared to SPEA2 and PESA2.

In terms of the last performance metric, IGD, analysis of 
the results shows that AMOGA outperforms PESA2 in 23 
test instances and SPEA2 yielded better convergence and 
diversity of solutions only for solving HFSP/W17. Consider-
ing the extent of the difference, which is 2.78 against 90.50 
and 99.09, one can conclude that AMOGA is also supe-
rior considering IGD. Finally, the statistic value of 9.46145 
and a p-value of 0.0002 confirm, with 99% confidence, that 

AMOGA showed better convergence and more diverse solu-
tions compared to SPEA2 and PESA2.

To visually compare the non-dominated solutions 
obtained by the benchmark algorithms, six test instances of 
different scales, i.e., HFSP/W03, HFSP/W06, HFSP/W08, 
HFSP/W12, HFSP/W16, HFSP/W19, and HFSP/W24) are 
presented in Fig. 12a–f. One can observe that most non-
dominated solutions obtained by AMOGA are better than 
those of SPEA2 and PESA2 in terms of production effi-
ciency and saving total cost. That is, the proposed AMOGA 
appears to be more effective for solving different scales of 
the studied problem.

Furthermore, Fig. 13a–b displays the trend of the inverted 
generational distance of each algorithm for HFSP/W20 and 
HFSP/W24 instances, which showcases a better convergence 
give a fixed number of iterations. Finally, sample Gant Charts 
of the non-dominated solution for HFSP/W08 and HFSP/W11 
instances are provided in Fig. 14 to showcase the production 
schedules obtained by our optimization approach.

Given a diverse set of near-optimum non-dominated 
schedules, production managers can flexibly weigh up 
between minimizing the total costs and the maximum 
completion time to select the solution that suits the current 
operational needs of the company. Taking mandates on the 
energy consumption and environmental performance as an 
example, the production manager may choose a schedule with 
lower energy consumption—but higher makespan—in normal 
conditions. However, when the delivery time of certain 
orders is a priority, the production schedule with a minimum 
makespan may be selected. Workforce productivity is another 
major consideration; having highly productive workers for the 
production orders that require substantial setups is one way to 
reconciliation between cost-effectiveness and responsiveness 
strategies.

Fig. 11  The mean WARDI plot 
for each level of the parameters 
in Taguchi methodology-PESA2

Table 3  Parameter setting of AMOGA, SPEA2, and PESA2

Parameter AMOGA SPEA2 PESA2

nPop 100 100 50
Pc 0.9 0.7 0.8
Pm 0.2 0.3 0.2
T_size 2 - -
nArchive - 80 80
nGrid - - 40
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Fig. 12  Non-dominated solu-
tions by AMOGA, SPEA2, and 
PESA2

(a) HFSP/W03 (b) HFSP/W06

(c) HFSP/W08 (d) HFSP/W12

(e) HFSP/W19 (f) HFSP/W24

(a) HFSP/W20 (b) HFSP/W24

Fig. 13  Inverse generational distance for AMOGA, SPEA2, and PESA2
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Conclusions

The environmental concerns associated with the growing 
industrial activities have led to an array of initiatives 
seeking energy efficiency. As a prime example of net-zero 
initiatives, the time-of-use electricity policy is pushing 
manufacturing shop owners to reduce energy consumption. 
Both value-adding (i.e., production) and non-value-adding 
operations (i.e., setup and preparation) contribute to energy 
consumption on the shop floor. Production planning and 
control methods that address such concerns are of utmost 
relevance to industrial sustainable development. Besides, 
the workers’ capabilities impact the energy efficiency of 

production operations; simultaneously incorporating these 
features improve the optimization outcomes. This study 
contributed to the literature by introducing an effective 
multi-objective optimization approach for scheduling 
hybrid flow-shops, considering energy consumption under 
time-of-use pricing models, workers’ flexibility, and SDST 
features simultaneously. The objective was to minimize 
total costs comprising electric consumption and worker 
costs pertinent to the setup operations while minimizing 
the response time for fulfilling new demands. To the best of 
the authors’ knowledge, this is the first study that integrates 
these factors.

To evaluate the performance of the proposed algorithm, 
different operational parameters and performance measures 
are considered within a comprehensive computational 
experiment. Comparing the performance of AMOGA with 
two state-of-the-art multi-objective evolutionary algorithms, 
SPEA2 and PESA2, we showed that most of the non-
dominated solutions were yielded by AMOGA considering 
various tradeoffs between the optimization objectives. 
AMOGA proved to be more effective for solving various 
scales of HFSP instances considering MID, DM, QM, and 
IGD measures, which are advantageous for providing wider 
trade-offs for production planning, while PESA2 showed to 
perform better in terms of SM.

Future research may extend our study in three directions. 
First, our study is limited in that it considers a static time-
of-use electricity pricing model. Machine learning can be 
used to predict future power consumption in the region 
and adjust the production schedules accordingly. Machine 
learning can also be used for weather forecasting in cases of 
using renewable energies, like solar panels and wind turbine. 
Second, the energy pricing model should be incorporated 
into other classes of scheduling problems, like in unrelated 
parallel machines. In so doing, situation-specific operational 
constraints, like a capacitated buffer in each stage, machine 
failure, and workers’ availability constraints may be con-
sidered to explore their impact on the energy consumption 
factor. The proposed incorporation can also be studied in 
rescheduling models to reduce energy consumption in times 
of energy shortage and/or power disruption. In terms of the 
objective function, a balance of workers’ workload and min-
imizing earliness/tardiness can be considered to highlight 
the possible changes in the energy cost in pick hours. Our 
study focused on the multi-objective feature of managing 
the Pareto-front members for which AMOGA was compared 
with SPEA2 and PESA2; the future research may consider 
comparing other search features to compare AMOGA 
with the multi-objective evolutionary algorithms based 
on decomposition (MOEA/D) and multi-objective particle 
swarm optimization (MOPSO). As a final suggestion for 
future direction, other methods of dealing with multiple con-
flicting objectives should be developed and compared with 

(a) HFSP/W08

(b) HFSP/W11

Fig. 14  Visual illustration of a non-dominated solution of HFSP/W08 
by AMOGA
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the Pareto-based method developed in our study. For this 
purpose, some of the properties of multi-objective decision-
making models may be inspiring for further development in 
the multi-objective optimization field.
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