
1. Introduction
In the new millennium, sea ice research has become an important topic due to an unprecedented sea ice decline in 
the Arctic (England et al., 2020). One reason is that sea ice plays an essential role in the polar ecosystem (Funder 
et al., 2010). Moreover, the knowledge about sea ice conditions is crucial for polar navigation, offshore opera-
tions, weather forecasting, and climate research (Sandven et al., 2006). The main sources of information about 
sea ice conditions and climatological studies are data from passive microwave radiometers (PMR), and synthetic 
aperture radars (SAR). The latter is preferably used for tactical navigational support and for local studies requir-
ing data at high spatial resolution. Both sensors are commonly used due to their independence of cloud and light 
conditions and therefore their ability to provide imaging of the Earth's surface continuously during day and night, 
and for almost all weather situations (Wang et al., 2016).

Spaceborne SAR provides high spatial resolution images and is one of the main sources from which detailed 
maps of sea ice conditions are produced for navigation in sea ice or at the ice margin (Karvonen, 2014). SAR is 
an active microwave sensor, which can achieve spatial resolutions ranging from about 1 m to 100 m (Johannessen 
et al., 2007). Image products of lower resolutions provide swath widths up to 500 km. An increased spatial resolu-
tion reduces the achievable swath width down to a few kilometers. The interpretation of SAR data is challenging 
due to the complex relationship between radar backscatter and sea ice surface and volume properties and strongly 
relies on the knowledge of sea ice experts (Zakhvatkina et al., 2019).

Passive microwave radiometers are another type of sensor and are commonly used for large-scale sea ice observa-
tions. These sensors operate at multiple frequencies, each of which has different spatial resolutions and sensitivity 
to atmospheric parameters, in particular to cloud liquid water and atmospheric water vapor (Spreen et al., 2008). 
However, even the finest spatial resolution achievable with passive microwave sensors is about 3 km and hence 
significantly coarser than in the case of SAR. The finest spatial resolution is achieved at frequencies of around 
90 GHz which, however, comes with a greater susceptibility to atmospheric noise. This effect is less severe at 
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lower frequencies at the expense of much reduced spatial resolutions at tens of kilometers. The main benefit 
of PMR is that their wide swaths allow a daily coverage over most of the ice-covered polar regions which is 
extremely useful for monitoring sea ice at synoptic scales (Heinrichs et al., 2006).

In the past, some attempts were undertaken to combine PMR and SAR data, to improve sea ice concentration 
estimation that is normally performed with only PMR (Beaven et al., 1996; Karvonen, 2014; Wang et al., 2016). 
In our study, we focus on exploring the potential of improving SAR-based sea ice classification by additionally 
using PMR imagery.

We apply a data fusion scheme that includes the graph-based information selection method which relies on 
information theory metrics in conjunction with a supervised classification approach (Liaw & Wiener, 2001). 
The flexibility of the proposed scheme is well-suited for efficiently analyzing different data combinations that 
can be beneficial for sea ice monitoring. In this short letter, we investigate the potential of combining SAR and 
PMR data for sea ice classification, which we demonstrate for a test case using a combination of data from the 
Sentinel-1 C-band (5.405 GHz) SAR, and the 89 GHz channel of the Advanced Microwave Scanning Radiometer 
2 (AMSR-2).

The rest of this paper is organized as follows. Section 2 describes the data sets used in this study. Section 3 
provides details of the proposed data fusion scheme. Section  4 presents the experimental validation of the 
proposed method. Finally, the discussion and conclusions are presented in Section 5.

2. Data Set
The following section describes the Sentinel-1/AMSR-2 data set. The Sentinel-1 image was acquired in extra-
wide swath mode in dual-polarization (HH and HV) at 40 m spatial resolution, which is commonly used for 
mapping sea ice. From AMSR-2 we use the brightness temperature (BT) of the 89 GHz channel at horizontal 
(H) and vertical (V) polarization which has a footprint of 3 × 5 km. The data set was acquired over the south-
ern part of Svalbard on 17 March 2021. The Sentinel-1 data were corrected for thermal noise and calibrated to 
sigma-naught in dB using the ESA Sentinel-1 Toolbox. Both data sets were collocated and the AMSR-2 data were 
upsampled to the Sentinel-1 pixel-size which means that adjacent pixels can be completely correlated. Figure 1 
shows the false-color composites of (a) SAR, and (b) PMR images, as well as (c) a natural-color composite of an 
optical image acquired by the Ocean and Land Color Instrument on Sentinel-3. The time gap between SAR and 
PMR scenes was a few minutes, while the optical scene was acquired a few hours later. In particular over the Open 
Water (OW) area on the right side, indications of cloud liquid water and atmospheric water vapor are visible, 
which corresponds to the occurrence of clouds over the same area in the optical image.

The Sentinel-3 optical data were used in addition to the SAR and PMR scenes for identifying various sea ice 
classes, especially the Grey Ice (GI) in the Storfjorden. One main motivation to add PMR data for sea ice 
mapping is based on occasional difficulties to separate OW and ice in SAR imagery. Despite its sensitivity to 
atmospheric parameters, we selected the 89 GHz channel because of its higher spatial resolution compared to the 
lower-frequency PMR bands. Using the three different data sources together was extremely beneficial for visual 

Figure 1. Color representation of the data set: (a) false-color composite SAR (HV, HH, and HH as RGB), (b) passive 
microwave radiometer (H, V, and V as RGB), (c) natural-color composite of an optical image from Sentinel-3 Ocean and 
Land Color Instrument (Bands 8, 6, 4), and (d) spatial distribution of regions of interest that were used for training (polygons 
with green boundaries) and testing (red boundaries); here the blue color refers to Open Water, white color corresponds 
to Brash Ice, cyan illustrates the young Grey Ice, pink color shows the Thin First-Year Ice, and black color indicates the 
landmask for Svalbard.
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inspection and manual identification of various sea ice and water classes. 
Supported by the input of an expert from the Norwegian Meteorological 
Institute (MET Norway) we could distinguish the following sea ice types: 
brash ice (BI), GI, and thin first-year ice (TFYI), as well as OW areas. The 
spatial distribution of the regions of interest (ROIs) that were used for the 
classification is illustrated in Figure 1d, while the classes, number of training 
samples, and ROIs used are shown in Table 1. We note that the ROIs are 
placed with large enough distances between them to avoid mapping upsam-
pled PMR pixels corresponding to a single original PMR pixel into different 
ROIs. Nevertheless, the degree of correlation between pixels is considerably 
higher for the PMR data than for the SAR data.

3. Methods
In the following subsections, we briefly describe the main steps of the 
proposed fusion scheme, namely pre-processing including the collocation 

and upsampling of the original data sets, as well as extraction of textural features for SAR data, the selection of 
relevant attributes, and finally the parallel classification. A more detailed technical description of the information 
retrieval method can be found in Khachatrian et al. (2021).

3.1. Pre-Processing

The Sentinel-1 and AMSR-2 images differ in their areal coverage, spatial resolution, and the coordinate system 
used for presenting the data. Therefore as a first step, we make the data comparable by means of collocating, 
upsampling the PMR data to the SAR resolution, and extracting the overlapping area. In addition to the original 
radar intensities, we extract 10 texture features available in the ESA's Sentinel Application Platform (SNAP) for 
each SAR polarization using the Gray-Level Co-Occurrence Matrix (GLCM) (Haralick et al., 1973; Kandaswamy 
et al., 2005) for 0°, 45°, 90°, and 135°. The results are averaged which is common practice to account for the 
possible rotation of different sea ice or ocean surface structures.

3.2. Attribute Selection

In this section, we briefly describe the information selection method (referred to as GKMI, i.e., Gaussian kernel 
and mutual information) that is part of the proposed scheme which we employ to select relevant attributes 
(Khachatrian et al., 2021). This approach consists of three main steps: segmentation, graph building, and graph 
clustering. It should be noted that even though the whole processing scheme proposed in this study is supervised 
due to the selected classification method, the information selection step is unsupervised.

3.2.1. Segmentation

In order to preserve the particularity of distinct areas in the observed Sentinel-1 and AMSR-2 scenes and to 
optimize the algorithm in terms of execution time (ET), we implemented the attribute selection on superpixels, 
that is, groups of neighboring pixels showing homogeneous characteristics throughout the considered multivar-
iate data set. It should be noted that there are other patch-wise approaches, for example, using regularly spaced 
windows. However, fixed windows often still cover variations of characteristics, which is avoided in the super-
pixel approach. Moreover, superpixels allow employing the algorithm on a local scale, which is crucial since some 
image parts might require different types of attributes to effectively represent different ice types and characteris-
tics. In the SAR images, the decrease of the local incidence from near- to far-range has to be considered as well. 
An image can be split into superpixels using different segmentation methods, such as Watershed (Beucher, 1992) 
or Felzenszwalb (Felzenszwalb & Huttenlocher,  2004). In this work, we determine the superpixels using the 
Simple Linear Iterative Clustering segmentation method (Neubert & Protzel, 2014). Furthermore, the number 
of superpixels, as well as their size, are parameters that can be changed within the algorithm depending on user 
preferences and applications. The superpixel segmentation is only used as a part of the information selection step.

3.2.2. Graph Building

To find the attributes which are best suited for sea ice classification, we apply a selection method, that relies 
on information theory metrics and on a representation based on graph Laplacians. Unlike existing graph-based 

Table 1 
Classes Determined by Sea Ice Experts From the Visual Inspection, Along 
With a Number of Training Samples and Regions of Interest Used for 
Performance Evaluation

Name Description Training samples

ROIs

All Train Test

OW Open water 313,751 12 4 8

BI Brash ice 145,112 9 3 6

GI Grey ice 41,502 6 2 4

TFYI Thin first-year ice 221,092 9 3 6

Note. The number of training samples refers to the number of pixels in the 
ROIs specifically used for training.
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clustering methods that are only using kernels as similarity measures (repre-
senting the mutual relations between the data points), we are also considering 
the information content of the original data. Therefore, the similarity is quan-
tified using two metrics simultaneously, which allows us to capture relevant 
information at different scales which improves the precision of the selection. 
The mutual information (MI) is performed globally and provides a better 
estimation of the attributes-shared information (Vergara & Estévez, 2014), 
while the Gaussian kernel (GK) is applied locally and preserves the structure 
of the original data (Luxburg, 2007).

3.2.3. Graph Clustering

Once the graph is defined according to the operations that have been previously 
introduced, we perform the partition of the graph using a procedure inspired 
by the spectral clustering approach (Luxburg, 2007) in order to identify and 
select the most relevant attributes in the data set. The GKMI method forms 
groups of similar attributes, according to MI and GK metrics, and selects 
the most relevant from each grouping. Thus we obtain subsets of attributes 
that preserve the structure and the information content within a particular 
superpixel. The grouping is performed using k-means, which is a simple and 
commonly used clustering algorithm (Theodoridis & Koutroumbas, 2008).

3.2.4. Adaptive Selection

As was mentioned above we assume that different homogeneous parts of the 
image, that is, superpixels, might have different relevant subsets of attrib-
utes. Not only the attributes might differ between superpixels, but also their 
number, depending on the specific ice characteristics. Therefore, we include 

an adaptive attribute selection based on the kneedle method (Satopaa et al., 2011) in the proposed scheme, which 
allows us to automatically determine the relevant number of attributes. The kneedle algorithm finds the maxima 
of the curve to detect a beneficial point, or a “knee.” In our case, this means determining the optimal number of 
attributes after which adding any additional attributes will be redundant.

3.3. Classification

The final step of the proposed scheme is the application of the PMR and SAR data in combination for sea ice clas-
sification. The classification is carried out using the Random Forest method, which is a widely applied classifier 
in remote sensing (Liaw & Wiener, 2001). Furthermore, for various superpixels, different numbers and attributes 
are selected. We consider this in the pixel-wise classification which improves the performance of the algorithm. 
In our experiments, we use pixels from the predefined ROIs for training and testing the algorithm. Moreover, 
employing different ROIs avoids overfitting.

4. Experiments
In this section, we evaluate the performance of the proposed scheme for sea ice mapping and characterization 
of different sea ice types. In order to quantitatively evaluate the result of sea ice classification, we apply several 
metrics: the Overall Accuracy (OA) index, Average Accuracy (AA), Cohen's Kappa coefficient (k), and ET. The 
OA shows the percentage of correctly classified samples, AA quantifies the mean of class-specific accuracies for 
all classes, while Kappa measures the agreement between the classification and the reference data (Bharatkar & 
Patel, 2013).

4.1. Performance Analysis

In order to properly evaluate the SAR and PMR fusion scheme for sea ice classification, we conducted different 
experiments by varying the input data combination and assessing the performance of each combination (Table 2).

Table 2 shows the OA, AA, ET, and Kappa coefficient (k) obtained for the various cases: single- and multi-sensor 
scenarios without adaptive attribute selection, and with the proposed scheme using different numbers of selected 

Table 2 
Classification Performance

Data set N OA (%) AA (%) k (%) ET (min)

Single-sensor

 SAR 2 75.6 68.3 64.1 98.1

 SAR & GLCM 22 81.6 74.5 73.3 63.1

 PMR 2 75.2 64.8 63.3 25.2

Multi-sensor without selection

 SAR & PMR 4 79.6 78.0 69.9 29.1

 CMD 24 90.2 90.4 85.6 42.8

Multi-sensor with selection

 CMD 5 78.2 72.1 67.9 23.5

 CMD 10 91.3 90.6 87.1 22.3

 CMD 15 91.1 91.5 86.6 22.6

 CMD Auto 93.2 93.8 90.1 21.3

Note. N shows the number of selected/used attributes, k refers to the Kappa 
coefficient, AA (%) to the average accuracy, OA (%) to the overall accuracy, 
and ET is execution time. CMD denotes combined multi-sensor data that 
combines all the available sources, namely SAR, GLCM textural features, 
and PMR. The performance evaluation was implemented using an Intel Core 
i7 CPU at 2,6 GHz with 32 GB RAM. The best performance values of the 
OA, AA, ET, and k are shown in bold.
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attributes. The classification accuracies are lower if only a single sensor is used, while execution times are higher 
in comparison to multi-sensor combinations. It is especially evident in the case of SAR intensity (Table 2: N = 2 
for the two polarizations) that the ET is significantly larger than for other data combinations with more attrib-
utes (N > 2). Because of limited complementary information, the algorithm struggles to properly assign each 
point to a particular class which results in lower accuracy and higher ET. Using single-sensor scenarios with 
a low number of considered attributes, which here are the SAR intensity or the PMR BT at two polarizations, 
results in a lower classification performance and reveals the lowest accuracy among all the experiments. Due 
to the lower resolution, PMR misses narrow variations of ice structures and types, which causes lower accura-
cies if the classification scheme is more detailed. In the case of SAR, low accuracies are most likely due to the 
influence of speckle and thermal noise. Furthermore, SAR intensity contrasts do not differ strongly between the 
GI and TFYI in the selected scene, which makes their separation more difficult. The best classification result 
of the single-sensor cases is found for the combination of intensity and GLCM textural features. Nevertheless, 
the multi-sensor case outperforms the single-sensor cases in terms of accuracy and computation time. The best 
performance is achieved for the multi-sensor case with integrated information selection. We tested this on two 
main scenarios, with a fixed number of attributes and adaptive/automatic selection. For all the cases with selec-
tion, except for a fixed (N = 5), the performance scores are higher and the ET is almost halved in comparison to 
the whole set of attributes without the selection. Moreover, the highest accuracy scores and the lowest ET were 
achieved with the proposed fusion scheme with an automatic determination of the number of attributes. These 
results strongly support the relevance of automatic information selection and parallel classification which are the 
crucial parts of the proposed multi-sensor fusion scheme.

Figure 2 displays the classification results for different data scenarios. Furthermore, the red contours indicate 
several challenging areas for classification that was improved considerably when using SAR and PMR in combi-
nation, together with variations of the proposed scheme as shown in Table 2. The classified maps on the first 
row of Figures 2a, 2b, and 2c show the single-sensor scenarios. The presented images clearly demonstrate the 
difference in spatial resolution between PMR and SAR sensors. Because of its coarser resolution, a smoother 
classification map is obtained from PMR. However, it is not possible to identify sea ice structures and variations 
of sea ice types that are smaller than the PMR resolution cell. Furthermore, there are areas of misclassification 
in the OW on the right side of Figure 2a, which are caused by cloud liquid water and water vapor in the atmos-
phere. The original SAR image is affected by speckle and thermal noise which is transferred into the calculation 
of texture parameters and the final classification. Furthermore, GI is very often misclassified in the SAR data. 
Nevertheless, the classified map obtained from SAR considering GLCM textural features illustrates a significant 
improvement, especially for the GI and OW classes that were misclassified in the intensity-only case.

The classified maps on the second row of Figures 2d, 2e, and 2f illustrate the multi-sensor examples with and 
without the proposed attribute selection. Each of these maps provides a more accurate classification compared to 
the single-sensor examples. The combination of SAR and PMR shows, for example, an improvement compared 
to the single PMR case because the potential influence of cloud liquid water and water vapor in the atmosphere 
is slightly reduced. On the other hand, the classified maps based on a combination of SAR and PMR preserve 
the smoothness of the PMR and the ability of the SAR image to identify smaller sea ice and water surface 
details, such as BI in the marginal ice zone. The classified map obtained with the combined data set without and 
with the proposed attribute selection depicts more of the GI in Storfjorden between Spitsbergen and Edgeøya in 
comparison to the PMR and SAR combination without texture. The performance evaluation along with visual 
inspection of the classified maps shows the advantages of combining various sources in order to obtain unique 
information regarding the area of interest. Moreover, even though the PMR is mostly used for coarse-resolution 
wide-coverage products, such as in the case of sea ice concentration, our study demonstrates the usefulness of 
integrating the PMR for sea ice type classification.

5. Conclusions
In this test case study, we demonstrate the application of a new, flexible, adaptive, highly accurate, and efficient 
multi-sensor fusion scheme on specific data combinations obtained from SAR and PMR, the most commonly 
used sensors for sea ice classification, ice charting, and climatological sea ice monitoring. We presented sea ice 
classification results separately for each sensor. The results indicate that the addition of PMR can improve the 
SAR-based classification in certain cases. The suggested fusion scheme reveals a better classification perfor-
mance and needs less computation time compared to other investigated methods.
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Because of the promising results, we plan to extend our study, which here is limited to one test case, to different 
ice conditions. The test case data were acquired in cold and dry winter conditions, therefore the PMR provided 
an image that is only marginally affected by cloud liquid water and water vapor in the atmosphere. It is also 
known that sea ice classification with SAR and PMR is more difficult in the melting season. Thus, future work 
should additionally assess the seasonal robustness of the approach and its applicability to different times of the 
year. We are preparing an extended data set with a larger number of Sentinel-1/AMSR-2 data acquisitions over a 
full season and with more complex ice conditions. In addition, we consider to investigate the usefulness of lower 
PMR frequency channels and derived ice concentration, considering the sensitivity of the 89 GHz channel to 
atmospheric parameters.

Data Availability Statement
Sentinel-1 SAR and AMSR-2 PMR data sets are publicly available through Copernicus Open Access Hub (https://
scihub.copernicus.eu/dhus/#/home) and GCOM-W1 Data Providing Service (https://gportal.jaxa.jp/gpr/).
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Figure 2. Classified maps using the RF method for different data sets: (a) only passive microwave radiometer (PMR) 
brightness temperature (BT), (b) only synthetic aperture radar (SAR) intensity, (c) SAR intensity plus Gray-Level 
Co-Occurrence Matrix (GLCM) textural features, (d) combined SAR intensity and PMR BT, (e) combined SAR intensity 
plus GLCM textural features, and PMR BT, and (f) adaptive attribute selection applied on the combination of SAR intensity 
plus GLCM textural features and PMR BT. The single- and multi-sensor cases in (a)–(e) were used without selection. The 
classes and corresponding colors are similar to Figure 1d. Red contours indicate several challenging areas for single-sensor 
classification. The classification was improved with the fusion of different sensors and the employment of the proposed 
scheme.
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