
RescUSim and IPython: An environment for
offshore emergency preparedness planning

Markus Brachner∗1,2 and Lars Magnus Hvattum2

1Molde University College, Molde
2University of Tromsø, Tromsø

Abstract

Emergency preparedness is crucial for oil and gas operators. While
accidents in this industry are commonly connected to oil spill disasters,
helicopter accidents are, in terms of incidence rates, a more grave concern
in Norway. A recent helicopter accident near Bergen has brought this
subject back into focus. We introduce RescUSim, a simulator for rescue
missions after offshore helicopter accidents, which is implemented as an
open source library with bindings for the Python language. We discuss
the modules in the existing Python ecosystem that are used for data
preparation and analysis. We show how RescUSim and the interactive
computing environment IPython can join forces to provide a tool for
planning rescue preparedness for oil and gas related offshore activities.

1 Introduction
On 29 June 2016, around noon, a Super Puma EC225 Helicopter with two pilots
and eleven passengers lost its main rotor on the way inbound from the Gullfaks B
platform and crashed on the small island Turøy near the coast. In this area,
which features high offshore related activity, rescue resources were on site within
short time, but to no avail: no one survived the crash. Helicopter transportation
is one of the major hazards for employees on offshore installations [16]. In the
Barents Sea, an area under consideration for the future development of oil and gas
exploration, long transport distances, sparse infrastructure, low maritime activity,
and harsh environmental conditions will exacerbate the issue of transporting offshore
personnel. There, relying on existing infrastructure will not be possible, and the
Emergency Response System (ERS) needs to be planned from scratch in a robust
but economically feasible way.

Planning and evaluating offshore emergency preparedness solutions is difficult,
because of the – luckily – rare occurrence of incidents in the past. Besides running
through real-life scenarios, computer simulation is one of the few possibilities to
get estimates of the ERS capability [14]. Brachner [1] presented a simulation
model for offshore Search-and-Rescue (SAR) operations after a helicopter ditch.

∗corresponding author, Markus.Brachner@uit.no

This paper was presented at the NIK-2016 conference; see http://www.nik.no/.

This simulation is – unlike Human-in-the-loop simulations like the one presented
by Xiuwen [17] or VSTEP’s RescueSim (http://vstepsimulation.com/product/
rescuesim/, accessed Oct 18 2016) – not targeted at training SAR personnel, but
at evaluating the capabilities of an ERS, that is, to check if the right amount and
types of rescue units (RUs) are placed at the right locations to provide enough rescue
capacity in case of an incident. We define rescue capacity as the number of persons
that can be rescued within a given time at a given incident location. This capacity
can be obtained collaboratively by several RUs. That is, if several RUs are within
range, all of them can contribute to the rescue operation. In the simulation the
available RUs are mobilized, travel to the incident location, and conduct a rescue
operation by picking up persons from the sea. Environmental conditions and other
stochastic factors influence mobilization, travel, and pickup time. Many of the
assumptions made when developing the simulation model are based on the report
that was used as a basis for the Norwegian Oil and Gas guidelines for establishing
area preparedness [15] and on work done by SINTEF [7].

The simulation based on this model, which was implemented in the Python
programming language, provided the desired results, and the run time of up to
several minutes was still adequate for single evaluations of ERS configurations [1].
While Python allowed us to develop the model quickly, it became clear as new
demands and requirements were emerging that the existing code base with no
decent software architecture in mind could only serve as a close-ended prototype.
In addition to the SAR helicopters originally modelled, we wanted also to include
maritime RUs, that is, Emergency Rescue Vessels (ERVs). The simulator should be
easily extendable with new RU types. The architecture should also allow for using
the same data model with different simulator engines, as we wanted to experiment
with alternative algorithms and a heterogeneous computing engine utilizing the
Graphical Processing Unit. Furthermore, we wanted to utilize a good deal more
weather data instead of the one year span used in the original model, to account
for annual variations and climatic trends. Finally, the simulator run time should be
drastically cut in order to allow for the evaluation of a big amount of scenarios within
a short period of time in order to utilize the simulator in a simulation-optimization
framework to support optimization of the ERS design.

For these reasons, the simulator was re-implemented from grounds up. Still,
the Python ecosystem provides a rich set of libraries that are particularly useful
for ERS planning. Very elegant solutions for working with spatial data, processing
input data, and analyzing the output data are available in this environment. This
made us transfer the computational intensive simulator core to an external C++
library with Python bindings, such that the best of both worlds could be utilized.
While the main focus in [1] was the model itself, in this paper we present the re-
implemented and extended library together with third-party components that form
our environment for ERS planning and evaluation.

The remainder of this paper is organized as follows: In Section 2 we describe
the work flow that we intend for interacting with the simulator and derive the
functionality that is required from the environment. In Section 3 we map this
functionality to concrete third-party packages in the Python ecosystem where
available. We give an overview over these packages and describe the RescUSimCpp
library, which covers the simulation functionality that have been added. Following
this, in Section 4 we give a concrete example of the usage and show how to set up

http://vstepsimulation.com/product/rescuesim/
http://vstepsimulation.com/product/rescuesim/

Start End

Pre-process data
Initialize

simulation
environment

Conduct
simulation

Post-process
results

Visualize results Adjust instance
Are results

satisfactory?
No

Generate reports

Yes

Figure 1: The intended work flow for offshore preparedness planning.

and run a simulation, and we compare the run-times of the new implementation
to the one we used earlier. We conclude the paper with Section 5, where we
discuss alternatives to the presented environment and give some directions for future
improvements.

2 Work flow and functional requirements
Figure 1 shows the intended work flow for using the simulator. The aim was to
provide an environment that facilitates this process, but still is flexible enough to
give the user the freedom to deviate from it. Below we describe the separate tasks
and list the functions that are required to execute them.

The simulation uses historic weather data from the Norwegian meteorological
institute [11]. In the pre-processing stage this weather data is prepared for further
use. One feature of emergency preparedness is the operation in a wide area,
where earth curvature needs to be taken into account. For the sake of efficient
computation, we therefore work with projections into the Euclidean plane. Data
sources, particularly the weather data, may come in one particular projection, but
need to be re-projected into another one in order to work on one single projection;
this operation is called warping. Thus, functions for conducting map projections
and warping are needed.

To be able to handle large amounts of weather data, we need to compress the data
by reducing the number of data points and cropping the data to the region under
consideration. This requires the use of efficient in-memory as well as storage data
structures combined with tools that allow efficient spatial queries for interpolating
the values for the target grid nodes.

In this stage it is also possible to add data that are not collected, but pre-
computed. In our model we use the daylight conditions as an input for the
rescue operation. Those can be obtained by astronomical calculations; they involve
computationally intensive operations, but the results can be used repeatedly. It is
therefore better to put these in the pre-processing stage, rather than to include the
computations in the simulation.

Finally, the pre-processed data need to be represented in a format that is easily
store- and retrievable. Array slicing from permanent storage should be supported
in order to retrieve spatial and temporal subsets of the weather data without the
need to load the full data-set into working memory.

The stage of initialization involves instantiating the simulator, loading weather
data, and providing the set of points where the simulation will measure the
rescue capacity. Furthermore, at this stage the user decides about the amount,
type, specification and location of RUs by instantiating them and setting their

properties. Measuring points could be located along helicopter transport paths
or within a defined area under consideration. As an increased number of measuring
points also increases simulation time, spatial analysis including set-theoretic and
constructive methods for calculating envelopes and convex hulls of given points,
creating geometric figures and discretizing them, and performing operations on
geometric sets are used for reducing the amount of measuring points to the minimum.

After the simulator is set up, the actual simulation is conducted, that is, the
rescue operations to the specified incident locations are simulated, returning the
number of people that could be rescued within a given time limit.

The task of post-processing involves the transformation of the raw simulator
results into the target structure that should answer the questions to the simulation.
This may require in-memory array slicing, aggregation operations over time or space,
such as calculating the average or worst case rescue capacity at the measurement
points, or filtering results to identify the time or location at which a minimum rescue
capacity was undercut.

Furthermore, these results may be visualized. This not only requires basic
functions like bar-charts, scatter-plots, or histograms, but also cartographic
visualization, which is common to emergency management activities [12]. These
maps could include heat-map overlays, geometric shapes, and annotations.

The simulation can be run with adjusted parameters until the results are
satisfactory. A requirement may be, for example, that an area or transport path
under consideration is sufficiently covered by RUs, that is, enough rescue capacity
is provided for any point within this area or path. Since we see the work-flow as
an iterative process, it is of advantage to reuse results from former runs of the
simulation such that only components that are adjusted need to be recomputed. In
this way the computational time can be further reduced.

As a final step, the execution process and the obtained results should be
documented such that they are reproducible. The environment should provide
functionality to do this in an easy way. Moreover, results – particularly graphical
visualizations – should be exportable for creating reports.

3 Python packages
In this section we discuss the central Python modules that are used to support the
described work flow. We use Anaconda (https://continuum.io, accessed 18 Aug
2016), a Python distribution that is specifically intended for scientific computing.
It already contains a big part of the needed packages and makes it easy to add the
ones which do not come as a part of the distribution. All of the described packages
are licensed under open source – most of them BSD-like – licenses, which allows use
and redistribution with minimal requirements.

RescUSimCpp library
The RescUSimCpp library is the simulation core that was programmed in C++
to reduce the required computational time. It provides bindings to Python
using pybind11 (https://github.com/pybind/pybind11, accessed 17 Aug 2016),
a library that exposes C++ types in Python and vice versa. The source of the library
is available at https://github.com/mbrachner/RescUSim.

This library simulates rescue missions at given incident locations and returns
the rescue capacity. For each RU, the mobilization, transit, and pickup phases are

https://continuum.io
https://github.com/pybind/pybind11
https://github.com/mbrachner/RescUSim

simulated and the resulting individual rescue capacity is consolidated by accounting
for possible interference effects between RUs. The mobilization time can be specified
by a constant value or a probability distribution. The transit time to the incident
location is calculated by iterative dead-reckoning, that is, by advancing the RU step-
wise from origin to destination, summing up the individual times that a RU needs
for completing the steps considering the local weather conditions. For the transit of
SAR helicopters the wind conditions are taken into account in the way described by
Brachner [1]. When simulating the transit of ERVs the wave height is influencing
the travel time [5]. The pickup of persons from the sea is modeled after estimates
by Kr̊akenes et al. [7].

Figure 2 shows the basic architecture of the simulator library. The Simulator
class is the central part and is the superclass of specific simulator implementations.
At the moment, two simulators are implemented. The first one is SimulatorCPU,
which simulates the ERS using the CPU. As many demand points have to be
evaluated in one run, the simulation allows a high degree of parallelism which
is exploited by using the OpenMP API (http://openmp.org/, accessed 16 Aug
2016). In this way it is possible to use all available cores on the CPU. The other
implementation SimulatorOpenCL uses the GPU to conduct the simulation. A
Simulator is associated to an instance of a Weather class, which is used to load
the weather data from persistent storage into memory and retrieve the weather data
for a given point.

Each RescueUnit entity is specified by a data holding object that represents
its performance parameters. Its behavior, that is, which computations to perform
on its performance parameters, are separated. As a consequence, for the CPU
implementation the ERV and Helicopter data objects are associated to ERVCPU
and HelicopterCPU objects. For the OpenCL implementation the behavior is
part of the SimulatorOpenCL class. This is mainly because OpenCL provides a
programming language that is based on a standard C language specification (C99)
and thus does not provide object orientation. One more reason is the interaction
between host and GPU, which makes very different programming approaches
necessary. For the user, who only interacts with data objects, the separation of
data and behavior is transparent. As soon as a data object is added to a simulator
instance, it is handled in the simulator-specific way, that is, it is either wrapped by
the appropriate behavioral classes or directly linked to the simulator instance.

The separation of data and behavior adds one more advantage: The data holding
objects can be also used as entities for optimization problems like the one presented
by Brachner [2] or Razi [10], linking optimization and simulation of ERS.

Third party provided packages and projects
IPython together with Jupyter (https://ipython.org/, accessed 25 Aug 2016) are
the fundamental components for interacting with RescUSim. IPython is built upon
Python, adding interactive features such as tab-completion, object introspection,
and a help system. A central feature is the Jupyter Notebook which very recently
was spinned off as a separate project to support additional languages. This is a
web application that allows to create and share notebook-like documents that unify
executable code snippets and documentation by inline visualizations, explanatory
text, and equations. While this provides the interactivity and flexibility needed to
work with the simulator, it streamlines the process of documenting the work and

http://openmp.org/
https://ipython.org/

Weather

HelicopterERV

ERVCPU HelicopterCPU

Simulator

SimulatorCPU

SimulatorOpenCL

RescueUnitCPU

RescueUnit

0..1

1

0..1

1

1 0..*

1 0..*

0..*

1

Figure 2: UML class diagram showing the core classes of the simulator.

presenting the results practically alongside the process to ensure reproducibility.
NumPy [13] provides a data structure for efficient manipulation and processing

of multi-dimensional arrays. We use it for working with weather data, and the
simulation returns its results as a NumPy array, which makes it easy to aggregate
and filter the results during post-processing. This in-memory data structure plays
very well together with HDF5 and a package that provides Python bindings via h5py
(http://www.h5py.org/, accessed 25 Aug 2016), which allow to store, manipulate,
and retrieve a big amount of array-structured data.

The simulation results are analyzed and visualized using Matplotlib [4]. This
package includes also the Basemap toolkit for plotting data on maps, along with
the proj.4 library to project geographic coordinates into the plane. In addition, the
functionality of this projection library is exposed such that arbitrary geographic data
can be projected without visualizing it. This streamlines working with geographic
data: once a map is created, converting geographic to planar data and data
visualization happens through this object using the same projection.

Once the geographic coordinates have been projected onto the plane, Shapely
(http://toblerity.org/shapely/, accessed 25 Aug 2016) facilitates manipulation
and analysis of geometric objects. This package defines points, curves, and surfaces
as fundamental geometric types and allows to conduct a wide range of set-theoretic,
construction, transformation, and merging operations on these objects. As an
example, the measurement points for the simulation as shown in Figure 3 can be
constructed intuitively and with only few lines of code.

http://toblerity.org/shapely/

310 km

Hammerfest

Wisting

(a) Discretization of a transport path.

Berlevåg

Wisting

Hammerfest

Castberg

(b) Discretization of an area defined by
the convex hull of a set of given facilities
including a buffer, excluding points on the
landmass.

Figure 3: The Shapely library facilitates the discretization of measurement points.
Even complex geometrical operations are conducted by few lines of code.

4 Usage
Listing 1 shows the full process of setting up and running a simulation. Figure 4a
presents the exemplary analysis of the simulation results that could assist in planning
decisions. For instance, rescue capacity could be better distributed along a transport
path, given that the number of persons to rescue is not varying along the route.
Alternatively, analyzing a whole area as shown in Figure 4b would allow for adapting
the transport paths to avoid regions that do not provide sufficient coverage, similar
to what is described by Brachner [2] in a deterministic variant. These two figures
highlight also, that arbitrary criteria – in the presented case average rescue capacity,
and required fraction of successful rescue missions – can be applied to decide which
incident locations can be considered to be sufficiently covered. By decoupling
instance preparation, simulation, and analysis and conducting the first and the
last step in IPython the presented environment provides the freedom to adapt the
process to the specific questions that need to be answered.

Table 1 shows the run time for the instances as specified by Brachner [1].
The results of the former implementation have been obtained by re-running these
instances with the simulation model described in the referred paper with more recent
hardware, which is a dual-core Intel Core i5-4210U CPU with 8GB of working
memory. The results show that we achieved a speed-up of approximately factor
three. As the new library is also able to utilize multiple processor cores, we report
the run-times of the library with OpenMP disabled in order to show the effect of
parallel computing. The computation scales well. Moreover, as the comparison
between running the simulation with two and four threads shows, the simulation
can also take advantage of the hyper-threading feature of the dual-core processor.

Listing 1: Full example for initializing and running the simulation.

1 # Imports

2 import numpy as np

3 import RescUSimCpp

4 from mpl_toolkits.basemap import Basemap

5 from shapely.geometry import LineString, MultiPoint, Point

6 from shapely.ops import cascaded_union

7

8 # Initialize a dictionary with off- and onshore facilities

9 poi = {name : {’coords’:c, ’type’:s} for name,c,s in [

10 [’Hammerfest’, (23.768302, 70.701319), ’helibase’],

11 [’Berlevaag’, (29.090389, 70.854502), ’helibase’],

12 [’Wisting’, (24.232358, 73.491134), ’platform’],

13 [’Castberg’, (20.347568, 72.494341), ’platform’],

14]}

15

16 # Initialize map. This map is not only used for visualization, but also

for projecting geographic coordinates into the euclidean plane.

17 bmap = Basemap(projection=’aeqd’, lat_0=72, lon_0=29, resolution=’l’,

18 llcrnrlon=15, llcrnrlat=69,

19 urcrnrlon=41, urcrnrlat=75.6, area_thresh=100)

20

21 # Create a transport path from Hammerfest to the Wisting facility

22 path = LineString([bmap(*poi[’Hammerfest’][’coords’]),

23 bmap(*poi[’Wisting’][’coords’])])

24

25 # Discretize path into measuring points 20 km apart from each other

26 measure_points = MultiPoint([path.interpolate(d)

27 for d in np.arange(0,path.length,20000)])

28

29 weather = RescUSimCpp.Weather("c:\\tmp\\data_idw.h5") # Load weather

30 sim = RescUSimCpp.SimulatorCPU(weather) #Initialize simulator

31

32 sim.addStationaryRU(# Add stationary rescue units:

33 RescUSimCpp.Helicopter("Heli1",weather) # One SAR Helicopter

34 .setPos(*bmap(*poi[’Hammerfest’][’coords’]))) # ... at Hammerfest,

35 sim.addStationaryRU(RescUSimCpp.ERV("ERV",weather) # ... and one ERV

36 .setPos(393174,350706)) # ... inbetween Hammerfest and Wisting.

37

38 # Create for each point a sample of 1000 incidents at different times

39 incidentArray=np.array([(p.x,p.y,r) for p in measure_points_path

40 for r in np.random.random_sample(1000)*(weather.getNumScenarios()-2)])

41 sim.addIncidents(incidentArray); # Pass the incidents to the simulator

42

43 # Conduct simulation

44 res=sim.simulateResponseSample()

0 50 100 150 200 250 300
Distance from Hammerfest (km)

0

5

10

15

20

25

30

35

A
v
e
ra

g
e
 r

e
sc

u
e
 c

a
p
a
ci

ty
 (

p
e
rs

o
n
s)

(a) Average rescue capacity along a transport
path

Berlevåg

Wisting

Hammerfest

Castberg

(b) Incident locations, where 95% of the
rescue missions were successful

Figure 4: Results of the simulation experiments

Table 1: Run times for executing the simulation on the instances specified by
Brachner [1] in seconds. The reported values show the best out of three runs,
respectively.

Scenario
Former

implementation

RescUSim
full run
without

OpenMP

RescUSim
full run

with
OpenMP
2 threads

RescUSim
full run

with
OpenMP
4 threads

RescUSim
recalculation

with
OpenMP
4 threads

(a) 39 27 16 12 7
(b) 107 81 48 35 8
(c) 104 88 50 37 8
(d) 110 75 46 33 8

We provide also the results of re-running the simulation after re-locating a
rescue unit to a new position: The new simulation library features the caching
of intermediate results. Consequently, simulations that are re-run will only simulate
the response of RUs that changed in any of its parameters, for example its position,
or its maximum speed. Thus, computational time is considerably reduced when
searching for the optimum of a single decision variable, for instance, the best position
of a RU, assuming the other RU positions to be fixed.

Some comments have to be made when comparing the new library with the
former solution. In the earlier implementation we approximated the travel times by
simulating several radial travels starting from the RU origin and then interpolating
the resulting travel times to the measuring points. This results in less accurate travel
times the further the measurement points are located from the origin, because of
the increasing distance between two radials. In RescUSimCpp the travel to each
single measurement point is simulated, which increases accuracy. Furthermore, in
the former implementation, the weather data was taken from the nearest point on a
10x10 km grid. However, in the new simulation the 50-fold amount of weather data
does not allow for such a fine-grained grid. Thus, the grid spacing is increased to
20x20 km, but the weather data on a certain point is now determined by bi-linear
interpolation from the four surrounding grid nodes.

We also performed tests using a GPU-implementation on an NVIDIA GeForce
840M GPU. This implementation was straight-forward and not particularly
optimized for GPU, with one thread per measurement point. The run time turned
out to be sometimes on par, but mostly worse than for the CPU implementation.
However, simulating a series of incidents that have the same incident time, but vary
by location, reduced run times by more than 80%, if the locations were close to
each other. In our opinion, this points to a bottleneck at the GPU global memory:
the reason for the speed-up with constant incident time seems to be the fairly large
(1 MB) L2 memory cache of the GPU, where data locality can be exploited with
incident locations that are near to each other.

5 Concluding remarks
In this paper we presented an environment, which we believe to be a useful tool to
support planning and evaluation of ERSs for offshore helicopter ditching. However,
there exists other options to achieve the desired results.

For the similar purpose of evaluating an ERS, Jakobsen [6] used MATLAB and
Simulink with the SimEvents discrete event simulator. These products are tightly
integrated with each other, as they are developed by the same software provider.
Though we have not done a full implementation, we are convinced that the required
functionality for data processing and visualization is fully available in MATLAB.
However, some prefer Python in terms of clarity and functionality [3]. Moreover,
using a discrete event simulator like SimEvents for the rescue operation involves
unnecessary overhead due to the relatively simple process with little interaction
between the simulated entities. Last, but not least MATLAB, Simulink, and
SimEvent are commercial closed-source products that cause considerable cost even
for academic licenses, while Python is free and open-source.

ArcGIS is a Geographic Information System, that would cover well the aspects
of spatial processing and map visualization. It is also a commercial closed-source
product. The use of scripting languages, out of which Python is the most popular,

is well supported. However, we would have needed too little of the functionality of
this feature-rich solution to justify the cost. Nevertheless, our environment does not
exclude ArcGIS, which can rather be seen as an add-on option.

Finally, an alternative would have been to implement the full functionality in
C++. There are several reasons that speak against this approach. While compiled
C++ code runs considerably faster than interpreted code, this generally involves
longer development times and requires more verbose code compared to scripting
languages [9]. Moreover, it distracts the user from the actual problem-solving
process, with an increased need to deal with implementation issues [3]. Finally,
in a pure C++ implementation we would have missed the possibility of interaction
such as adjusting parameters, repositioning or adding RUs, or analyzing various
aspects of the results without recompiling and rerunning. While we did not want a
full-blown graphical user interface, it was important to target an easy and agile way
of interaction. Any user interface in a C++ only solution would have needed to be
built additionally to the simulation core. In contrast, with IPython and Jupiter the
Python ecosystem provides interactivity for free, so to speak.

The RescUSim environment will be developed further. We intend to combine
the simulation with meta-heuristic optimization in order to find robust ERS
configurations that can cover flight paths under varying environmental conditions.
We also see a potential to extend the simulator to other domains, for instance land
based missions. This would require to include new types of RUs. Furthermore, a
more advanced visualization of the results, for example an interactive, 3-dimensional
visualization using CesiumJS (https://cesiumjs.org/, accessed Oct 18 2016)
would improve human-computer interaction. Finally, there has been some research
to model the reliability of SAR operations in more detail [8], which may be taken
into consideration in our simulator.

Acknowledgements
We would like to thank three anonymous reviewers for their effort in helping us to
improve the manuscript.

References
[1] M. Brachner. A simulation model to evaluate an emergency response system

for offshore helicopter ditches. In Proceedings of the 2015 Winter Simulation
Conference, pages 2366–2377. IEEE Press, 2015.

[2] M. Brachner and L. M. Hvattum. Combined emergency preparedness and
operations for safe personnel transport to offshore locations. Omega. Accepted
19 March 2016, http://dx.doi.org/10.1016/j.omega.2016.03.006.

[3] H. Fangohr. A Comparison of C, MATLAB, and Python as Teaching Languages
in Engineering, pages 1210–1217. Springer Berlin Heidelberg, 2004.

[4] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science
Engineering, 9(3):90–95, May 2007.

[5] S. R. Jacobsen and O. T. Gudmestad. Long-range rescue capability for
operations in the barents sea. In ASME 2013 32nd International Conference on

https://cesiumjs.org/
http://dx.doi.org/10.1016/j.omega.2016.03.006

Ocean, Offshore and Arctic Engineering, pages V006T07A013–V006T07A013.
American Society of Mechanical Engineers, 2013.

[6] M. F. Jakobsen. Assessment of helicopter emergency response capacity in the
barents sea. Master’s thesis, Norwegian University of Science and Technology,
2015.

[7] T. Kr̊akenes, S. H̊abrekke, I. Wærø, and K. Øien. Estimated rescue times for
persons from sea. Technical report, SINTEF, 2013. Internal memo.

[8] L. Norrington, J. Quigley, A. Russell, and R. Van der Meer. Modelling
the reliability of search and rescue operations with bayesian belief networks.
Reliability Engineering & System Safety, 93(7):940–949, 2008.

[9] L. Prechelt. Are scripting languages any good? A validation of Perl, Python,
Rexx, and Tcl against C, C++, and Java. volume 57 of Advances in Computers,
pages 205 – 270. Elsevier, 2003.

[10] N. Razi, M. Karatas, and M. M. Gunal. A combined optimization and
simulation based methodology for locating search and rescue helicopters. In
Proceedings of the 49th Annual Simulation Symposium, ANSS ’16, pages 5:1–
5:8, San Diego, CA, USA, 2016. Society for Computer Simulation International.

[11] M. Reistad, Ø. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik, and J.-R.
Bidlot. A high-resolution hindcast of wind and waves for the north sea, the
norwegian sea, and the barents sea. Journal of Geophysical Research: Oceans,
116(C5), 2011. C05019.

[12] W. A. Schafer, J. M. Carroll, S. R. Haynes, and S. Abrams. Emergency
management planning as collaborative community work. Journal of Homeland
Security and Emergency Management, 5(1), 2008.

[13] S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy array:
A structure for efficient numerical computation. Computing in Science
Engineering, 13(2):22–30, March 2011.

[14] J. E. Vinnem. Evaluation of offshore emergency preparedness in view of rare
accidents. Safety Science, 49(2):178–191, 2011.

[15] J. E. Vinnem. Retningslinjer for omr̊adeberedskap - underlagsrap-
port, forutsetninger og faglige vurderinger. Accessed Oct 18, 2016.
https://www.norskoljeoggass.no/Global/Retningslinjer/HMS/

Beredskap/064%20-%20Underlagsrapport.pdf, 2012. In Norwegian.

[16] J. E. Vinnem, T. Aven, T. Husebø, J. Seljelid, and O. J. Tveit. Major hazard
risk indicators for monitoring of trends in the norwegian offshore petroleum
sector. Reliability Engineering & System Safety, 91(7):778 – 791, 2006.

[17] L. Xiuwen, X. Fangbing, and J. Yicheng. A prototype of marine search and
rescue simulator. In Information Technology and Computer Science, 2009.
ITCS 2009. International Conference on, volume 1, pages 343–346, July 2009.

https://www.norskoljeoggass.no/Global/Retningslinjer/HMS/Beredskap/064%20-%20Underlagsrapport.pdf
https://www.norskoljeoggass.no/Global/Retningslinjer/HMS/Beredskap/064%20-%20Underlagsrapport.pdf

	Introduction
	Work flow and functional requirements
	Python packages
	RescUSimCpp library
	Third party provided packages and projects

	Usage
	Concluding remarks

