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ABSTRACT 

 

Background: Tissue factor pathway inhibitor (TFPI) plays an important role for the 

anticoagulant effect of heparin. Depletion of intravascular TFPI by treatment with 

unfractionated heparin (UFH), and not by low molecular weight heparin (LMWH), has been 

suggested to explain the superiority of LMWH in treatment of both arterial and venous 

thrombosis. The present study was undertaken to investigate the impact of UFH on clearance 

kinetics, and organs and cells responsible for the clearance of recombinant human full length 

TFPI purified from baby hamster kidney cells (TFPIBHK) and from E.Coli (TFPIE.Coli).   

Methods: Male Sprague-Dawley rats were used as research animals. TFPIBHK and TFPIE.Coli 

were labelled with 125I, and used to study clearance in vivo.  

Results: Surface Plasmon Resonance (SPR) analysis revealed that both types of TFPI bound 

to UFH in vitro, but TFPIE.Coli exhibited a faster association rate and a much slow dissociation 

rate. Intravenous administration of 100 IU/kg UFH immediately prior to TFPI decreased the 

circulatory survival (t1/2α) of TFPIBHK from 1.99 ± 0.10 min to 1.17 ± 0.13 min (p<0.001) 

without affecting the fast clearance of TFPIE.Coli. Presence of UFH significantly increased the 

circulatory survival during the slow t1/2β phase of TFPIE.Coli from 27.44 ± 1.91 min to 36.88 ± 

1.87 min (p<0.05) without affecting the t1/2β of TFPIBHK. Hepatocellular distribution of 

radiolabeled ligands showed that both forms of TFPI were mainly taken up by PCs in the 

absence of UFH (≥ 90%). UFH administration switched the hepatocellular distribution of 

TFPIE.Coli from PCs towards LSECs, without affecting the distribution of TFPIBHK.   

Conclusions: Our findings revealed a specific increase in the elimination of TFPIBHK during 

UFH treatment. This observation may represent the underlying mechanism for depletion of 

endogenous TFPI in humans during UFH treatment.  
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INTRODUCTION 

 
Tissue factor pathway inhibitor (TFPI) is an endogenous serine protease inhibitor of tissue 

factor (TF)-induced blood coagulation [1]. It exerts its function by neutralizing the catalytic 

activity of factor Xa (FXa) by forming a TFPI-FXa complex, and by feedback inhibition of 

the factor VIIa-TF complex in the presence of FXa [2, 3]. TFPI contains three Kunitz-type 

domains in which the first and second domains are responsible for binding of FVIIa and FXa 

respectively [3]. The third and C-terminally located domain contains the heparin binding sites 

[4, 5], is involved in the association with lipoproteins [6], is also mandatory for the 

anticoagulant function of TFPI in TF-induced coagulation in vitro [7], and is required for 

binding to the cell surface [8]. 

 

The vascular endothelium is the primary site of TFPI synthesis [9] and 50-80% of 

intravascular TFPI is located in association with the endothelial cells, residing both in 

intracellular store, bound to glycosaminoglycans (GAGs) [10, 11] and 

glycosylphosphatidylinositol (GPI) anchored binding sites at the endothelial surface [12, 13].   

 
TFPI plays an important role for the anticoagulant effect of heparin by a prompt mobilization 

of TFPI from the endothelium into the circulation [14-16], and by enhancing the inhibition of 

FXa due to increase molecular interaction promoted by simultaneous binding of FXa and 

TFPI to the same heparin molecule [17, 18]. Despite up-regulation of the synthesis and 

release of TFPI by heparins in endothelial cells in vitro [19, 20], prolonged treatment of 

humans with unfractionated heparin (UFH) causes partial depletion of intravascular TFPI [8, 

21]. Urinary loss of TFPI has been suggested to explain the selective depletion of 

intravascular TFPI during continuous UFH treatment. However, recently we showed that only 
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trace amounts of endogenous TFPI is detected in the urine under basal conditions, and that 

even less TFPI was excreted in the urine during heparin treatment [22].  

 

Recombinant human TFPI purified from E.Coli (TFPIE.Coli) is rapidly cleared from the 

circulation with a plasma half-life of less than 1 minute in rats [23]. The clearance is 

prompted by an initial association with heparan sulfate proteoglycans (HSPGs) at the cell 

surface with subsequent LDL-receptor related protein-1 (LRP-1) mediated endocytosis in 

hepatoma cell lines [24-26]. Administration of UFH to mice 10 min following the 

administration of TFPIE.Coli resulted in a rapid rise in the plasma TFPI, to a level which was 

maintained for over 30 min [24]. The effect was attributed to release of TFPI from HSPGs on 

the vascular endothelial cells. Blockade of HSPGs with protamine resulted in prolonged 

plasma clearance of TFPIE.Coli in mice [24], inhibited binding to rat hepatoma MH1C1 cells 

[24], and increased degradation of TFPIE.Coli by LRP-positive cells (MH1C1 cells and mouse 

embryonic fibroblasts heterozygous PEA10 cells) [24, 27]. In contrast, recombinant human 

TFPI purified from mammalian cells characterized by post-translational glycosylation, i.e. 

expressed in mouse C127 fibroblasts (TFPIC127), does not bind to HSPGs at the cell surface 

and is degraded independently of LRP-1-mediated endocytsis [28]. 

 

However, the mechanism beyond a selective depletion of intravascular TFPI by UFH remains 

a puzzle. In this study we aimed to investigate the mechanism of TFPI depletion during UFH 

treatment by investigating the effect of UFH in vivo and in vitro on the clearance of a 

recombinant full length glycosylated TFPI purified from baby hamster kidney cells (TFPIBHK) 

as compared to recombinant full length non-glycosylated TFPI purified from E.Coli 

(TFPIE.Coli).  
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MATERIALS AND METHODS 

 
Materials 

Human recombinant full length TFPI, 42 kDa, isolated from baby hamster kidney cell line 

(TFPIBHK) [29] was from Novo Nordisk (Måløv, Denmark). Human recombinant full length 

TFPI, 35 kDa, isolated from E.Coli (TFPIE.Coli) was obtained from American Diagnostica Inc 

(Greenwich, CT, USA). Unfractionated heparin (UFH) (5000 IU/ml) was from Nycomed Pharma 

AS (Oslo, Norway). Carrier free Na125I was from Perkin-Elmer Norge AS (Oslo, Norway), and 

1,3,4,6-tetrachloro-3α, 6α-diphenylglycoluril (Iodogen) was from Pierce Chemical Co. 

(Rockford, IL, USA). Collagenase P type II was from Worthington Biochemical Corporation 

(Lakewood, NJ, USA). Human serum albumin (HSA) was from Octapharma (Ziegelbrucke, 

Switzerland). Culture medium RPMI 1640, supplemented with 20 mM sodium bicarbonate, 

0.006% (w/v) penicillin and 0.01% (w/v) streptomycin, was from Gibco BRL (Roskilde, 

Denmark). Phosphotungstic acid (PTA) was from Merck (Darmstadt, Germany). Bovine 

serum albumin (BSA), fraction 5 was from ICN Bichemicals Inc., CA, USA. Human 

fibronectin was a kind gift from Dr. Peter McCourt, University of Tromsø, Norway. Collagen 

was from Cohesion, Pablo Alto, CA, USA. Sephadex G-25 (PD-10 columns) and Percoll 

were from Amersham Biotech (Uppsala, Sweden). Formaldehyde treated serum albumin 

(FSA) was prepared as described [30].  

 

Binding of TFPIE.Coli and TFPIBHK to UFH  

Binding of TFPIE.Coli and TFPIBHK to immobilized haparin were analyzed by Surface Plasmon 

Resonance (SPR) in a Biacore 3000 Biosensor instrument (GE Healthcare). Biotinylated 

heparin (Merck KGaA, Darmstadt, Germany) was reconstituted in 20 mM HEPES, 150 mM 

NaCl, 5 mM CaCl2 and 0.05% Tween-20, pH 7.4 to a concentration of 100 μg/ml, which was 

immobilized to a streptavidin chip (Biacore, GE healthcare) at a flow rate of 10 µl/min for 5 
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min. Kinetic analysis was performed in running buffer HBS-P (10 mM HEPES, 150 mM 

NaCl, 0.005% Tween-20) supplemented with CaCl2 (5 mM) at a flow rate of 30 µl/min. The 

concentrations of TFPIs used for the analysis were 100, 50, 25, 12.5 and 6.25 nM. The 

dissociation phase lasted 10 min and regeneration was performed with a 3-min pulse of 50 

mM EDTA, 1 M NaCl in HBS-P buffer. SPR data were fitted to 1:1 Langmuir binding model 

(supplied by the software) using T100 and BIA 4.1 evaluation software, respectively. The 

enzyme PNGAse (N-Glycosidase) cleaving between the innermost GlcNAc and asparagine 

residues from N-linked glycoproteins was supplied by New England Biolabs (Hertz, UK) and 

buffers, reagents and procedures supplied with the kit was employed for TFPI 

deglycosylation. 

 

Experimental Animals 

Male albino rats, Sprague-Dawley (mean body weight 250 g), purchased from Scanbur BK, 

AB (Sollentuna, Sweden) were kept under controlled animal room conditions at 21°C, relative 

humidity 55±10% and 12:12 light-darkness cycle (8.00-20.00 light), and fed a standard chow 

(Scanbur BK, Nittedal, Norway) ad libitum. For in vivo experiments, anesthesia was induced 

with 4% Isofluran (Abbott Scandinavia AB, Solna, Sweden) and maintained at 2.1%. For in 

vitro studies, rats were anesthetized by subcutaneous injection of a mixture of 0.4 mg/kg 

Domitor® (Orion Pharma, Espoo, Finland) and 60 mg/kg Ketalar (Pfizer AS, Lysaker, 

Norway). All experimental protocols were approved by the Norwegian Animal Research 

Authority in accordance with the Norwegian Animal Experimental and Scientific Purposes 

Act of 1986. 

 

Preparation of 125I-labelled TFPI 

TFPIE.Coli and TFPIBHK in PBS were labelled with carrier-free Na125I in a direct reaction 

employing Iodogen as oxidizing agent [31]. The ligands and activated 125I were allowed to 
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react for 30 min and the reaction was stopped by the addition of Na2S2O5 and excess amount 

of KI. Radiolabelled ligands and free iodine were separated by gel filtration on a PD-10 

column equilibrated with 1% HSA in PBS. Fractions of 0.5 ml were collected with PBS as 

eluting buffer. Radioactivity was measured using a gamma-counter (Cobra II, Packard, New 

York, NY, USA). The resulting specific radioactivities were 3.2 - 4.4 x 107 cpm/μg.  

 

Distribution studies 

Circulatory survival and organ distribution of intravenously administered labeled TFPI were 

determined in rats as described [32]. Under Isofluran anaesthesia, 125I-TFPIE.Coli and 125I-

TFPIBHK (0.1 nM) were injected through the tail vein alone or just after the intravenous 

injection of 100IU/kg UFH. Immediately thereafter, blood samples of 25 μl were collected 

from the tip of the tail into calibrated capillary tubes containing 0.5 ml water and then mixed 

with 0.75 ml of 4°C 20% TCA and 0.5% PTA. Blood collection was done every 10 seconds 

during the first 5 min, followed by one sample per minute during the interval 5-20 min and 

one sample every 5th minute up to 1h. Radioactivity in the supernatant after centrifugation 

(acid-soluble radioactivity) was taken as degraded TFPI. Radioactivity in blood 1 min after 

injection was taken as 100%. At 10 and 20 min after injection of and 125I-TFPIBHK with or 

without pre-injection of 100IU/kg UFH, the organs were washed free of blood by systemic 

perfusion through the heart with physiological saline, removed and analyzed for radioactivity.  

 

Hepatocellular Distribution 

Fifteen min after intravenous administration of 125I-TFPIE.Coli and 125I-TFPIBHK (0.1 nM) alone 

or just after the intravenous injection of 100 IU/kg UFH, a cannula was inserted into the portal 

vein. Collagenase perfusion and purification of liver cells were carried out as described elsewhere 

[33]. The distribution of radiolabelled ligands in different liver cell populations was assessed 

by quantifying the amount of radioactivity per million cells of parenchymal cells (PCs) and 
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non-parenchymal cells (NPCs). The NPC fraction consisted mainly of LSECs and KCs and 

was essentially devoid of PCs, red blood cells, stellate cells and debris. Further purification of 

LSECs from KCs requires an at least 30 min incubation at 37°C of NPCs seeded on culture 

dishes coated with glutaraldehyde treated BSA. This step was omitted in order to avoid TFPI 

degradation with a subsequent escape of the radioactivity from the cells. Cell numbers were 

assessed by visual counting in a phase contrast microscope. The uptake per cell was 

calculated based on the fact that the ratio between KCs, LSECs and PCs in rat liver is 

1:2.5:7.7 [34]. The method for determining the hepatocellular distribution of different ligands 

has previously been used by us and others [32, 35, 36]. 

 

Statistics 

All data are presented as the means ± SEM unless otherwise indicated. Statistical analyses 

were assessed by GraphPad Prism 4 (GraphPad Software Inc, San Diego, CA, USA). Two-

sided p values less than 0.05 were considered statistically significant. Clearance kinetics were 

analyzed as described previously [37]. 
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RESULTS 

 
Surface Plasmon Resonance (SPR) assay of interactions between TFPI and heparin 

Binding of TFPI to heparin was investigated by SPR analysis (Figure 1). Both types of TFPI 

bound to UFH in vitro, but with different binding profiles. Although similar concentrations of 

TFPIE.Coli and TFPIBHK were added to the heparin chip, the sensorgrams gave rise to higher 

response levels for TFPIE.Coli as compared to TFPIBHK. The binding appeared to be dose-

dependent for both types of TFPI. TFPIE.Coli displayed an almost 1:1 profile of binding 

interaction with UFH, while TFPIBHK did not; indicating that only one heparin site on 

TFPIE.Coli is available for heparin binding. This could indicate that only one heparin site is 

available per TFPIE.Coli molecule. The TFPIE.Coli-UFH profile exhibited a slow dissociation 

rate (Figure 1A), while the TFPIBHK-UFH interaction resulted in a fast dissociation rate 

(Figure 1B). PNGase treatment of TFPIBHK drastically changed the dissociation rate to a very 

slow dissociation rate similar to TFPIE.Coli (data not shown). 

 
Effect of heparin on blood clearance of TFPI 

Intravenous administration of 100 IU/kg UFH prior to TFPI decreased the circulatory survival 

of TFPIBHK during the α-phase (t1/2α) from 1.99 ± 0.10 min to 1.17 ± 0.13 min (p<0.001) 

without affecting the clearance of TFPIE.Coli (Table 1). The presence of UFH significantly 

increased the circulatory survival during the slow t1/2β phase of TFPIE.Coli from 27.44 ± 1.91 

min to 36.88 ± 1.87 min (p<0.05) without affecting the t1/2β of TFPIBHK. 

 
Effect of heparin on anatomical distribution of TFPIBHK 

Anatomical distribution of 125I-TFPIBHK was assessed without and with simultaneous 

administration of UFH 10 min and 20 min after injection. The radioactivity in the primary 

organs of uptake (liver and kidneys) was not significantly affected by the presence of UFH 

(Figure 2).  

 9



Effect of heparin on hepatocellular distribution of TFPI 

At 15 min after intravenous injection, the hepatocellular distribution of both types of TFPI 

was assessed with and without pre-administration of UFH. The uptake of 125I-TFPIE.Coli in 

parenchymal cells (PCs) was reduced from 81% in absence of UFH to 46% in the presence of 

UFH (p<0.01), and the distribution within the non-parenchymal cells (NPCs) was increased 

from 19 to 54% (p<0.01), respectively (Figure 3A). In contrast, pre-administration of UFH 

did not change the distribution for TFPIBHK. PCs were the main site for uptake of 125I-

TFPIBHK administered without or with UFH (Figure 3B).  
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DISCUSSIONS 

 
This study was carried out with the aim to investigate the mechanism of TFPI depletion 

during UFH treatment by studying the effect of UFH in vivo and in vitro on the clearance of 

human recombinant full length TFPIBHK as compared to TFPIE.Coli. We found that TFPIBHK 

binds weaker to heparin compared to TFPIE.Coli, and that intravenous administration of UFH 

immediately prior to TFPI significantly decreased the circulatory survival of TFPIBHK during 

the alpha-phase of elimination, while the circulatory survival of TFPIE.Coli during the beta-

phase of elimination was significantly increased. Administration of UFH did not affect the 

organ distribution of TFPIBHK. Hepatocellular distribution of TFPIBHK was not affected by the 

presence of UFH, while the uptake of TFPIE.Coli was switched from PCs towards NPCs.  

 

SPR analysis of the interaction between TFPI and heparin showed that TFPIE.Coli-UFH 

interactions are much stronger than the TFPIBHK-UFH interactions. Human recombinant full-

length TFPI expressed in mammalian cells and bacteria differ in molecular weight (42 kDa 

and 35 kDa, respectively) most probably due to N-linked glycosylation at three potential sites; 

Asn 117, Asn 167, Asn 228 in the mammalian variant of TFPI [38-41]. Removal of the N-

glycosylation sites on the TFPIBHK molecule by PNGase treatment significantly decreased the 

dissociation of TFPIBHK from TFPIBHK-UFH complex, suggesting that the glycosylation sites 

may be the reason for the different binding profiles observed for the two types of TFPI. 

Another obvious difference between the two sensorgrams is the level of response (RU); the 

same TFPI concentrations employed gave rise to a higher response level for TFPIE.Coli as 

compared to TFPIBHK. The differences may be explained by the possible conformational 

changes that occur during glycosylation of TFPIBHK. Carbohydrate branches added during 

post-translational modifications may affect protein folding or may partially mask the binding 
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sites for heparin located on the third Kunitz-type domain and at the C-terminal region of the 

TFPI molecule [4, 5]. 

 
Plasma carrier-free TFPI and heparin releasable TFPI were shown to be depleted during 

repeated intravenous injections and during continuous intravenous infusion of UFH [8, 21]. A 

previous study showed that the recovery of TFPIBHK in the absence of LMWH in rabbits was 

very low and the authors suggested a very rapid distribution phase (18). We sought to look 

further into the alpha-phase of elimination and found that the half-life (t1/2α) of TFPIBHK in 

rats was 2 min and decreased by 41% by pre-administration of UFH. We observed no effect 

of UFH on the circulatory survival of TFPIBHK during the beta-phase of elimination, whilst a 

slight effect of LMWH was previously demonstrated by Bregengaard et al. [42]. However, 

both studies suggest that the beta-phase of clearance may be independent of heparin binding. 

The non-mammalian type of TFPI, TFPIE.Coli, was cleared significantly slower during the 

beta-phase in the presence of UFH as compared to its clearance in the absence of UFH. 

Together with strong TFPIE.Coli-UFH interactions assessed by SPR analysis, the slower 

clearance of TFPIE.Coli during the beta-phase suggest that UFH inhibited the ability of 

TFPIE.Coli to interact with the heparan sulfate proteoglycans (HSPGs) at the surface of 

vascular endothelial cells [10, 23].  

 

Anatomical distribution study showed that while TFPIE.Coli is mainly found in the liver of rats 

[23], TFPIC127 and TFPISK are found both in liver and in kidneys of rabbits [43]. Similarly, we 

found that the liver and the kidneys are the main site of uptake of intravenously injected 125I-

TFPIBHK in rats. It was suggested that the reticuloendothelial system in the liver may promote 

an enhanced clearance of the TFPI-heparin complexes [8]. Our finding showing that the 

hepatocellular distribution of TFPIE.Coli within the liver cells was switched from the 

parenchymal cells (PCs) toward the non-parenchymal cells (NPCs) supports this suggestion. 
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The NPC fraction obtained upon liver cell separation consists mainly of liver sinusoidal 

endothelial cells (LSECs) and Kupffer cells (KCs), both members of the reticuloendothelial 

system, with KCs eliminating particles (> 200 nm) from the circulation via phagocytosis, and 

LSECs removing colloids and soluble macromolecules (< 200 nm) via non-phagocytic 

receptor-mediated endocytosis [44]. Experimental studies in vivo and in vitro provide strong 

evidence that LSECs are the principal site for binding and uptake of UFH via a yet unknown 

scavenger-like receptor [45]. Furthermore, binding of TFPIE.Coli to rat hepatoma MH1C1 cells 

was previously shown to be significantly inhibited in the presence of UFH [23]. Based on this 

knowledge, we assume that in our study the uptake of TFPIE.Coli following administration of 

UFH was switched from PCs towards LSECs, rather than KCs. This result suggests that in the 

presence of heparin, the scavenger receptor on LSECs may have higher affinity for binding of 

TFPIE.Coli-UFH complexes than the HSPGs and/or LRP-1 receptor on PCs and/or LSECs for 

binding of TFPIE.Coli alone.  

 

Interestingly, the anatomical distribution and the hepatocellular distribution of TFPIBHK were 

not significantly affected by the presence of UFH. Moreover, in accordance with previous 

findings in humans [22], only traces of TFPIBHK were detected in the urine of rats with or 

without pre-administration of UFH. Furthermore, only slightly elevated levels of TFPIBHK 

were detected in the blood following UFH administration. These findings in addition to the 

rapid clearance of TFPI in the presence of UFH clearly demonstrate that the mechanism for 

depletion of TFPI is not the urinary loss. Several hypotheses may explain this mechanism: i) 

the PC receptor(s) for TFPIBHK has higher affinity for its ligand than the receptor for TFPIE.Coli 

(LRP) in the presence of UFH, ii) binding of TFPIBHK at the cellular site of uptake in liver and 

kidneys may be enhanced by the presence of UFH, and/or iii) other type of binding 

mechanism may exist for the fast clearance of TFPIBHK in the liver and kidneys when UFH is 

present in the circulation. The two latter possibilities are based on conformational changes in 
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the TFPIBHK molecule by UFH binding, enhancing the affinity of TFPIBHK for its receptor(s). 

Previously, we and others have shown that TFPI of mammalian origin, i.e. TFPIBHK and 

TFPIC127 bind very weakly, or even fail to bind to HSPGs, and that their uptake is not 

mediated by the LRP-1 (unpublished data, [11, 28]). These findings along with the SPR 

analysis showing weaker TFPIBHK-UFH interactions compared to TFPIE.Coli-UFH interactions 

suggest that the faster clearance of TFPIBHK in the presence of UFH is caused by an enhanced 

binding affinity of the TFPIBHK-UFH complexes to the yet unknown receptor(s) for TFPIBHK 

on PCs.   

 

In conclusion, our study clearly demonstrates different mechanisms for clearance of TFPIE.Coli 

and TFPIBHK during heparin treatment. UFH forms stronger complexes with TFPIE.Coli than 

TFPIBHK, and simultaneous administration of TFPIE.Coli and UFH switches hepatic binding of 

TFPIE.Coli-UFH complexes from PCs during TFPIE.Coli administration alone towards LSECs, 

the primary site of UFH elimination. On the other hand, TFPIBHK which is glycosylated and 

thereby resembles endogenous TFPI, showed increased elimination during UFH treatment 

without affecting the target organ and specific cells responsible for binding and endocytosis. 

The latter findings may explain why prolonged treatment with UFH causes depletion of 

intravascular TFPI in humans. Further studies are needed to understand the impact of UFH on 

cell binding and degradation of TFPIBHK.   
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Table 1. Effect of UFH on Clearance of TFPIBHK and to TFPIE.Coli 

Trace amounts of 125I-TFPIBHK and 125I-TFPIE.Coli (0.1 nM in 0.5 mL physiological saline) 

were injected into a lateral tail vein, either alone, or just after intravenous injection of 100 

IU/kg UFH, and radioactivity was measured in blood samples over time. Radioactivity in 

blood 1 min after injection was taken as 100%. The clearance was fitted to two-phase 

exponential decay. The values are mean ± SEM from 9 separate experiments in each group. 

 

Ligand                   t½ α (min) t½ β (min) 

TFPIBHK 1.99 ± 0.10 25.08 ± 1.56 

+ UFH 1.17 ± 0.131 27.17 ± 1.80 

TFPIE.Coli 1.44 ± 0.082 27.44 ± 1.91 

+ UFH 1.67 ± 0.10 33.88 ± 1.873 

 
1 p<0.001 for differences in t1/2 α between TFPIBHK administered alone and with UFH 

2 p<0.001 for differences in t1/2 α for TFPIBHK and TFPIE.Coli 

3 p<0.05 for differences in t1/2 β between TFPIE.Coli administered alone and with UFH 
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FIGURE LEGENDS 

 

Figure 1 Binding of TFPI to immobilized UFH by SPR analysis 

Sensorgrams of TFPIE.Coli-UFH interaction (A), and TFPIBHK-UFH interaction (B). 

Concentrations of TFPIs were 100, 50, 25, 12.5 and 6.25 nM. 

 

Figure 2 Organ distribution of 125I-TFPIBHK without and with administration of UFH 

Trace amounts of 125I-TFPIBHK and 125I-TFPIE.Coli (0.1 nM in 0.5 mL physiological saline) 

were injected into a lateral tail vein, either alone, or just after intravenous injection of 100 

IU/kg UFH. At 10 and 20 min after injection the organs were washed free of blood by 

systemic perfusion through the heart with physiological saline, removed and analyzed for 

radioactivity. The values are mean ± SD from 2 separate experiments in each group. 

 

Figure 3 Effect of UFH on Hepatocellular distribution of 125I-TFPIE.Coli and 125I-TFPIBHK 

At 15 min after i.v. administration of 125I-TFPIE.Coli (A) and 125I-TFPIBHK (B) alone (dark bars) 

or just after 100 IU/kg UFH (white bars), the liver cells were dispersed by collagenase 

perfusion and the amount of radioactivity per million cells was measured in suspension of 

parenchymal cells (PCs) and non parencymal cells (NPCs). The uptake per cell in the total 

liver was calculated based on the knowledge that the ratio between KC, LSEC and PC in rat 

liver is 1:2.5:7.7 [34]. Bars are means ± SEM for three and six separate experiments for 

TFPIE.Coli and 125I-TFPIBHK, respectively.  

 

 

 

 

 

 

 16



Figure 1 
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Figure 2 
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