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A B S T R A C T

Global competition and increased variety in products have created challenges for manufacturing companies.
One solution to handle the variety in production is to use reconfigurable manufacturing systems (RMS). These
are modular systems where machines can be rearranged depending on what is being manufactured. However,
implementing a rearrangeable system drastically increases complexity, among which one challenge with RMS
is how to design a new layout for a customized product in a highly autonomous and responsive fashion, known
as the layout design problem. In this paper, we combine several Industry 4.0 technologies, i.e., IIoT, digital
twin, simulation, advanced robotics, and artificial intelligence (AI), together with optimization to create a
smart layout design system for RMS. The system automates the layout design process of RMS and removes the
need for humans to design a new layout of the system.
1. Introduction

With a global market and interconnected supply chains, the com-
petition between manufacturing companies has risen substantially. In
addition, the product life cycle has become shorter and the man-
ufacturing industry is moving from mass production towards mass
customization and mass personalization. This means that manufac-
turing systems need to be changed so that they can better adapt to
the changes in the market and capture new business opportunities.
Therefore, there is a need for a manufacturing system that can be easily
changed and scaled up or down depending on the various demands of
consumers.

To solve these problems, Koren et al. [1] proposed the idea of
a reconfigurable manufacturing system (RMS). An RMS can be de-
scribed as a manufacturing system that can be changed and adjusted
by rearranging and changing the components. They are designed for
the reconfiguration of both hardware and software components in the
system [2].

However, having a system that can be rapidly reconfigured adds
new challenges and complexity to the system [3]. One of the challenges
with RMS is the layout problem. The layout problem focuses on how
to design/rearrange the RMS, when considering both the capacity and
operational performance of the system [4]. To be able to reconfigure
the manufacturing system quickly, it would be beneficial to give the
exact placement of the machines to minimize the reconfiguration time
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of the RMS. In addition, when a new customized order comes, planning
and designing a new product-based layout for an RMS is a time-
consuming job that requires a significant amount of human labor and
input.

There is, however, a lack of research on the layout problem for
RMS. Sabioni et al. [5] reveal that most papers that work on the layout
problem for RMS, focus on cost minimization, and there are few papers
that focus on the design optimization problem. Thus, there is a need for
a model that can support the redesign of the layouts [6]. One method to
solve the layout problem can be to implement other tools/technologies
that can help in the design. Maganha et al. [6], note that there are few
investigations on supportive tools for RMS design.

Industry 4.0 is the next technological revolution and brings several
cutting-edge technologies such as big data, industrial internet of things
(IIoT), simulation, cloud computing and cyber–physical systems. These
technologies are important for the success of RMS [7] and can be used
to further automate the systems. However, Brotolini et al. [8] indicate
that there is a lack of research on implementing and using Industry 4.0
technologies in RMS.

Applying digital twins and simulation enables a faster method that
allows for testing, optimization, development, and deployment of new
layouts for the RMS [9]. Maganha et al. [6] note that there is a need
to investigate the use of simulation to design manufacturing facilities
since simulation tools can be used to test the performance of the system
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in a more realistic way. In addition, industry 4.0 technologies can be
used to achieve smart layout design of the RMS [6]. In this paper, we
will define smart layout design, as combining multiple Industry 4.0
technologies to solve the layout problem in an automatic manner.

Arnarson et al. [10] propose an RMS that uses a mobile robot to
reconfigure the system automatically without any human intervention.
In the paper, they showed that different placement of the platforms in
an RMS gives different manufacturing times. It is therefore important
to minimize the distance the manufactured part has to move in the
system. This paper also reveals that designing and rearranging an RMS
can be extremely time-consuming and usually requires a large amount
of human labor and input, so there is a need for a method to design the
layout of the manufacturing system automatically.

In the literature, there are few papers on combining multiple in-
dustry 4.0 technologies together to solve the layout design problem
for RMS. To fill this gap, in this paper, we implement several industry
4.0 technologies such as IIoT, digital twin/model, simulation, advanced
robotics, and artificial intelligence (AI) with optimization to develop a
smart layout design system for RMS. Furthermore, we use evolutionary
computations, known as a subfield of AI, where a population-based
algorithm produces a population of candidates that evolves toward an
optimal or near-optimal solution [11]

More specifically, we formulate a mathematical model for the
platform-based RMS proposed by Arnarson [10] and use optimization
to find a layout automatically. From the optimization, a digital model
is generated, which can be tested with simulation for further validation
of the system. Finally, the system is tested on a physical RMS to verify
and validate if the layout optimization with a digital model simulation
can work effectively and correctly in the real-world system.

The main contributions of the work are as follows:

• Investigate how Industry 4.0 technologies such as IIoT, digital
model, simulation, and advanced robotics can be combined with
optimization to create smart layout design for RMS.

• Develop a mathematical model which gives the exact position/
coordinates of a platform-based RMS.

• Use AI and evolutionary computations to search/optimize for a
layout configuration for the platform-based RMS.

• Generate a digital model automatically from the solution of the
optimization.

• Connect the optimization program together with the digital model
simulation software for further testing and validation in a digital
environment.

• Use IIoT technology to connect the optimization, digital model
simulation, and a physical RMS together for communication.

The rest of the paper is structured as follows: Section 2 reviews
previous studies on the layout design problem for RMS. Section 3
develops the mathematical model of the system, and Section 4 looks at
the implementation and the results from the system. Finally, we discuss
the results in Section 5 and conclude the paper in Section 6.

2. Prevous studies

2.1. Facility layout problem

In more broad research, the layout design problem for manufactur-
ing systems in general is referred to as the facility layout problem [12].
Besbes et al. [13] looked at the layout facility problem, where they
arranged facilities on a planar site and considered geometric constraints
for the facilities. They tested the system using the proposed algorithm
to optimize eight facilities on the plan floor. Lim et al. [14] eval-
uated hybrid algorithms, where they used the algorithms for layout
optimization of multi-cellular manufacturing systems.

Guo et al. [15] used a digital twin to optimize the manufacturing
workshop. A digital twin was used to optimize different parts of the
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workshop and the distribution routes. The method was tested in a
physical welding workshop, which resulted in an increased production
capacity of 29.4%. This shows the potential of implementing digital
twins when doing optimizations of the layout. The authors also mention
that there is a lack of research on using digital twins with layout opti-
mization, and for further research, more methods should be developed
for layout optimization using digital twins.

Moreover, in a literature review on the facility layout problem [16]
reveals that most researchers did not include simulation and safety
drivers with the facility layout design problem. They also noted that
there was less focus on industry 4.0 technologies such as IIoT and
digital twin. Zubaidi et al. [16] note that implementing elements of
industry 4.0 can help in creating a more reliable, comprehensive, and
sustainable layout design. It is also important to note that the facility
layout problem is often considered a static problem. In contrast, the
layout problem for RMS is a dynamic problem since the RMS layout is
made to be changed. Since it is a dynamic problem, it requires powerful
and flexible simulation tools.

2.2. Layout design of RMS

Layout design for RMS encompasses many elements, including pro-
cess planning [17,18], scheduling [19], scalability planning [20], and
cost optimization [21–24]. There are, however, fewer papers that look
at the placement of the machines.

Koren et al. [2] proposed a method on how to design an RMS. Their
method requires planning, and if the RMS has many processes and
machines, the problem will become more complex. They also mention
that each new product that is manufactured should include a new
design of the RMS. Guan et al. [25] investigated the layout design for
RMS where they considered automated guided vehicles for material
handling instead of using conveyors. In the study, precedence graphs
are used to show the flow and positions of the workstation.

Haddou Benderbal et al. [26] studied the machine layout problem
for RMS, where they developed a system that could propose the best
placement for the machines. In addition, Haddou Benderbal et al. [27]
also developed a decision-support approach for switching between
products in the same product family. However, in both cases, the
machines could only be placed in predefined positions.

Another paper from Besbes et al. [28] investigated the facility layout
problem for RMS. In the study, the goal was to minimize the material
handling cost. The layout was generated with a genetic algorithm, and
then an A* search algorithm was used to find the shortest distance
between manufacturing cells. Nevertheless, the authors mention that
the method is tested offline and for further work, the system should
be tested on a physical RMS system. In addition, they mention that
the model should be expanded toward a multi-objective problem that
considers the shape and orientation of the manufacturing cells.

There are few examples of systems that can generate a layout for the
RMS. Abdelkrim et al. [12] note that there were few researchers work-
ing on solving the layout design problem for RMS. From a literature
review, Sabioni et al. [5] reveal that most papers working on optimizing
of RMS configurations looked at cost minimization. The study did not
find any relevant researches that combined both the layout design and
machine configuration problem at the same time. It is also noted that
it is difficult to find industries or laboratories that have implemented
an RMS.

2.3. Simulation for layout design

A few attempts have been made to implement industry 4.0 tools,
such as simulation and digital twin, to solve the layout design problem.
Yamada [29] used 3D simulation to do analysis and design evalua-
tion for the reconfiguration of an RMS. In the study, he looked at
a manufacturing system with transport robots, input stations, output
stations, movable manufacturing cells and processes, where he tried to
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minimize the manufacturing time using particle swarm optimization.
The simulation is rather simple, where the manufacturing cells and
other stations are modeled in the simulation as circles and squares.
Zheng et al. [30] proposed a simulation framework for the layout,
cost, and performance of the system. They used the simulation tool
‘‘Plant Simulation’’, which is a discrete-event simulator, to analyze the
behavior of a system. Petroodi et al. [31] used a discrete event simu-
lation tool (Simul8) together with optimization to solve the resource
allocation and production planning problem. These studies show the
potential of combining simulation and optimization together. However,
these examples of using simulations are simple and are not validated
with a real RMS.

Work has also been done on using 3D manufacturing simulations
and digital twins to support the layout design process. Santos et al. [32]
used a simulation-based approach to support the design and operational
management of the system. The simulation allowed the planner to
test different configurations and layouts virtually. Touckla et al. [33]
proposed a framework with a digital twin design and simulation model
for RMS. These studies do not use optimization to create the layout and
require human operators to design the system.

There is also research on using digital twins for planning in RMS.
Leng et al. [34] proposed a digital twin for fast reconfiguration of RMS,
which was used as a tool to shorten the time of production changeover.
Kurniadi et al. [35] investigated the use of digital twin simulation
for reconfiguration planning. They used both discrete-event simulation
(DES) and visual simulation to show that digital twins can help effec-
tively integrate RMS into a production system. The RMS digital twin
framework proposed by Hajjem et al. [36] suggested that using digital
twins with RMS provides improved functionalities, e.g., simulation and
intelligent sensors, which can improve the system’s intelligence and
efficiency.

2.4. Summary

All the papers investigating the layout design problem for RMS have
not tested their system or method on a physical RMS to validate if
the system works. Rosio et al. [3] did also find limited examples of
industrial examples of RMS, and there is a lack of knowledge on how
to design an RMS.

In addition, there is a lack in the literature on exploiting the benefits
of using Industry 4.0 technologies to solve the layout design problem of
RMS. These existing studies have clearly shown the potential of using
simulation and digital models for the layout design problem, but there
is a need for more investigation, for instance, by combining both opti-
mization and simulation. In addition, there are a few examples showing
how Industry 4.0 technologies such as digital twins and simulation can
be implemented in a physical RMS. Integrating various industry 4.0
technologies can lead to a smart layout design system for RMS which
can automate the layout design process.

3. Mathematical model

In this project, a mathematical model is formulated based on the
concept of a modular platform based RMS described in [10]. This type
of system has multiple modular platforms that can easily be added or
removed depending on the demand or what is being manufactured. The
goal is to develop a general mathematical model which can be used to
automatically generate layouts for a platform based RMS.

3.1. Assumptions

To develop the mathematical model, the following assumptions are
made:

1. The mathematical model is a 2D plane, and the 3D dimension is
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not considered.
Fig. 1. The center point and movement point of the platforms. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

2. All platforms are modeled as rectangles
3. The platforms can be placed in a space of 10 × 10 m
4. All manufactured parts move from a singular point on the plat-

forms.
5. The amount of platforms is given, and the model can use all

platforms to design the layout. There is a risk of the layout
becoming chaotic if too many platforms of the same type are
used.

6. All platforms are made to be the same- or similar height.

3.2. Describe the platforms

Manufacturing systems usually contain different machines depend-
ing on the tasks. In the system, each platform can contain a 3D
printer, a CNC machine, a conveyor or a robot arm. To categorize these
platforms and be able to generalize the system, we divide the platforms
into four categories:

• Input platform: A platform that gives material to the system, or
an input part of the system

• Movement platform: A platform that is used to move parts be-
tween platforms (can be robot arms or humans).

• Work platform: A platform used to do a process, such as quality
control, machining process, and assembly station.

• Output platform: A platform that moves the parts out of the
system (can be conveyors).

Each of the platforms has three variables used in the optimization,
𝑥 and 𝑦 for the position and theta for the rotation of the platform. The
platforms do also have size variables and the position of the movement
points.

The point of rotation (center point) is highlighted with the red circle
as shown in Fig. 1. In this project, we test two types of rotations for
theta. The first type sets a fixed 0, 90, 180, or 270 degrees rotation for
the platforms and the second type uses a number between 0–360 for
theta.
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Fig. 2. Demonstration of a simplified RMS with three platforms.
To calculate the 𝑥 and 𝑦 positions of the corners (P2-P4) the follow-
ing formulas are used when theta:

𝑃1𝑥 = 𝑥

𝑃 1𝑦 = 𝑦

𝑃2𝑥 = 𝐿1 ∗ 𝑐𝑜𝑠(𝜃) + 𝑥

𝑃 2𝑦 = 𝐿1 ∗ 𝑠𝑖𝑛(𝜃) + 𝑦

𝑃3𝑥 = 𝐿1 ∗ 𝑐𝑜𝑠(𝜃) − 𝐿2 ∗ 𝑠𝑖𝑛(𝜃) + 𝑥

𝑃 3𝑦 = 𝐿1 ∗ 𝑠𝑖𝑛(𝜃) + 𝐿2 ∗ 𝑐𝑜𝑠(𝜃) + 𝑦

𝑃4𝑥 = −𝐿2 ∗ 𝑐𝑜𝑠(𝜃) + 𝑥

𝑃 4𝑦 = 𝐿2 ∗ 𝑠𝑖𝑛(𝜃) + 𝑦

𝑃𝑜𝑝𝑡𝑥 = 𝐿𝑜𝑝𝑡1 ∗ 𝑐𝑜𝑠(𝜃) − 𝐿𝑜𝑝𝑡2 ∗ 𝑠𝑖𝑛(𝜃) + 𝑥

𝑃𝑜𝑝𝑡𝑦 = 𝐿𝑜𝑝𝑡1 ∗ 𝑠𝑖𝑛(𝜃) + 𝐿𝑜𝑝𝑡2 ∗ 𝑐𝑜𝑠(𝜃) + 𝑦

(1)

3.3. Optimization problem

In this paper, we investigate a platform-based RMS, and the opti-
mization goal is to improve efficiency by minimizing the total move-
ment distance of the workpiece throughout the system. Since the
movement distance on each working platform is fixed, the problem
becomes thus the minimization of the distance between different plat-
forms. Fig. 2 illustrates a simple case with a 3D printer, a robot
platform, and a conveyor. In this example, we try to minimize the
distance between the 3D printer and the conveyor, say, the distance
between point A and point B. At this stage, the distance between the
robot platform (movement platform) and the other platforms is not
considered, because the robot platform only moves the parts from
one working platform to another. The only requirement for the robot
platform is that it can reach the required points on the respective
working platforms.

Thus, the objective of the optimization model is to minimize the
Euclidean distance for moving the workpiece between point 1 and point
2, as shown in Eq. (2):

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝐵𝐽 =
√

(𝑥𝑝𝑜𝑖𝑛𝑡1 − 𝑥𝑝𝑜𝑖𝑛𝑡2)2 + (𝑦𝑝𝑜𝑖𝑛𝑡1 − 𝑦𝑝𝑜𝑖𝑛𝑡2)2 (2)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗1 =
∑

𝑖∈𝑀

∑

𝑗∈𝑀
𝑑𝑖𝑗𝑐𝑖𝑗𝑤𝑡𝑖𝑗 (3)

Moreover, the Euclidean distances are calculated from a given
order/sequence of the platforms in the system. We generalize the
mathematical optimization model in Eq. (3), which minimizes the
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total movement distance (𝑐𝑖𝑗) of the workpiece throughout the whole
RMS. The set of working platforms is defined by 𝑀 = {1, 2,… , 𝑚},
and calculate the movement distance between two working platforms,
where 𝑖, 𝑗 ∈ 𝑀 and 𝑖 ≠ 𝑗.

In an RMS for mass and/or individualized customization, the manu-
facturing procedures need to be formulated based on the requirements
of specific products or product families. In this regard, 𝑐𝑖𝑗 is a binary pa-
rameter establishing the linkage and precedence between two working
platforms in the RMS, which is determined based on a specific product.
If the system uses multiple input and output platforms, the optimization
model considers all combinations of how the part can move in the
system. For instance, Fig. 3 shows an RMS system that has two 3D
print platforms, working platforms, and conveyor platforms, where five
linkages are established by setting 𝑐13, 𝑐23, 𝑐34, 𝑐45, and 𝑐46 equal to 1.

In this model, 𝑤𝑡𝑖𝑗 is the weight of each linkage, which may help
to adjust the movement distance (𝑐𝑖𝑗) with, for example, the flow of
workpieces between two working platforms. Besides, it can also be
used to solve the challenges related to a multi-platform RMS system. As
shown in Fig. 4, a manufacturing system can be divided into multiple
platforms. In this example, the system is divided into three platforms,
where two conveyor platforms are used to connect these platforms. One
challenge of having a conveyor between two platforms is that, in the
optimization process, the two platforms are likely to fight for the same
conveyor. Moving the conveyor in either direction may yield the same
optimal result, and the conveyor may be placed in between the two
platforms, which are far away from each other, as can be seen in Fig. 5.
There are several ways to solve this problem. One method is to add a
larger weight to the conveyor’s output and input, which can help to
reduce the distance between the two platforms connected by the same
conveyor. This method has little impact on the rest of the system.

Next, we consider the optimal positions of movement platforms.
For this system, we model the movement platforms as robot arms and
will therefore need to take into consideration the reach of the robot
arms in the mathematical model. As mentioned in Section 3.1, the
mathematical model is based on a 2D plane. However, the robot arms
have a circular reach in all axis. This means that if the platforms are
of different heights, the robot arms might not be able to reach the
platforms while being within the radius of the 2D plane. In this system,
we assume that all platforms are at the same or similar height, and we
will therefore model the reach of the robot arm as a circular radius, as
shown in Fig. 6. It should be noted that the robot might still not be able
to reach certain points with a particular orientation (yaw, pitch, and
roll) of the tool center point. As a result, a simulation is used for further
verification if the robot arm is capable of picking the item (Section 4.2).
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Fig. 3. A RMS with two input platforms, two working platforms, two output platforms, and two movement platforms.
Fig. 4. A multi-platform RMS system.
Fig. 5. Illustration of the optimization challenge related to a multi-platform RMS with shared conveyors connecting different platforms.
The total movement distance of the robot arms needs to be min-
imized, while at the same time, all the working platforms need to
be assigned to a robot arm within its maximum reachable radius.
Mathematically, the following constraint (4) needs to be held. Herein,
the set of movement platforms is given by 𝑁 = 1, 2,… , 𝑛, and 𝑟𝑛 is the
maximum reachable radius of each movement platform. Moreover, 𝑎𝑛𝑚
is a binary variable that determines if a working platform is assigned to
a movement platform, and 𝑝𝑛𝑚 is the movement distance (𝑐𝑖𝑗) between
them.

𝑝 ≤ 𝑟 𝑎 ,∀ 𝑛 ∈ 𝑁,𝑚 ∈ 𝑀 (4)
358

𝑛𝑚 𝑛 𝑛𝑚
Besides, each working platform must be served by a robot arm, as
shown in Eq. (5):
∑

𝑛∈𝑁
𝑎𝑛𝑚 = 1,∀ 𝑚 ∈ 𝑀 (5)

However, the use of this non-linear hard constraint drastically in-
creases the computational efforts needed to solve the optimization
model. Thus, in this paper, it is converted to a soft constraint to
improve the computational efficiency to find near-optimal solutions.
These solutions will be further validated in the simulation stage, which
helps to effectively eliminate all the infeasible solutions. To implement
the soft constraint, we introduce a piecewise function in Fig. 7 to
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Fig. 6. Illustration of the maximum reachable radius of the robot platform.

Fig. 7. Piecewise function for weight calculation.

calculate the weight of the movement distance between robot arms and
working platforms. As shown, if the robot arm can reach the required
points, the weight on the respective distance is very small. However,
if the robot arm cannot reach the required point, a higher weight will
be given as a penalty for the respective linkage between the robot arm
and the working platform, which will, in most cases, lead to 𝑎𝑛𝑚 = 0. An
illustration of how the weights can be seen in Fig. 8. The general form
of the second objective as well as the respective constraint is given in
Eq. (6).

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗2 =
∑

𝑚∈𝑀

∑

𝑛∈𝑁
𝑝𝑛𝑚𝑎𝑛𝑚𝑤𝑝𝑛𝑚 (6)

Subject to:
∑

𝑛∈𝑁
𝑎𝑛𝑚 = 1,∀ 𝑚 ∈ 𝑀

𝑤𝑝𝑛𝑚 =

{

𝑝𝑛𝑚𝑤𝑔 , if 𝑃𝑛𝑚 ≤ 𝑟𝑛
𝑝𝑛𝑚𝑤𝑠, if 𝑃𝑛𝑚 ≥ 𝑟𝑛

(7)

There is also a need to consider the rotation and reachable area of
different types of robot arms. For instance, Universal Robots has a reach
of ±360 degrees, while a Nachi MZ07 has a reach of ±170 degrees. As
shown in Fig. 9, the unreachable area of the robot arm can be drawn
as a triangle. A check is thus added to see if any required points on the
working platforms are in the unreachable area of the robot arms. First,
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all the points in the triangle are calculated with the following formulas:

𝑐1𝑛 = (𝑥2(𝑛) − 𝑥1(𝑛)) × (𝑦𝑝(𝑚) − 𝑦1(𝑛)) − (𝑦2(𝑛) − 𝑦1(𝑛)) × (𝑥𝑝(𝑚) − 𝑥1(𝑛))

𝑐2𝑛 = (𝑥3(𝑛) − 𝑥2(𝑛)) × (𝑦𝑝(𝑚) − 𝑦2(𝑛)) − (𝑦3(𝑛) − 𝑦2(𝑛)) × (𝑥𝑝(𝑚) − 𝑥2(𝑛))

𝑐3𝑛 = (𝑥1(𝑛) − 𝑥3(𝑛)) × (𝑦𝑝(𝑚) − 𝑦3(𝑛)) − (𝑦1(𝑛) − 𝑦3(𝑛)) × (𝑥𝑝(𝑚) − 𝑥3(𝑛))

(8)

A constant 𝑘𝑛 is added to increase the length of the triangle to
ensure the whole area is checked. For the Nachi MZ07 robot arm, the
constant is 1.2. In addition, all robot arms are 90 degrees rotated on
the platforms, and we therefore add 90 degrees. Using these points, we
check with Eq. (8) if the point 𝑝 on the working platform m is inside
the triangle with these conditions when 𝑎𝑛𝑚 = 1:

If the point is inside the triangle, a higher penalty should be applied.
In addition, in some cases, one movement platform is able to reach all
the required platforms, and then there would be no need for another
movement platform that is not assigned to any working platforms, as
shown in Fig. 10. The redundant movement platform needs thus to be
eliminated from the system.

The general form of the mathematical optimization model is then
given in Eq. (9):

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗1 =
∑

𝑖∈𝑀

∑

𝑗∈𝑀
𝑑𝑖𝑗𝑐𝑖𝑗𝑤𝑡𝑖𝑗

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗2 =
∑

𝑚∈𝑀

∑

𝑛∈𝑁
𝑝𝑛𝑚𝑎𝑛𝑚𝑤𝑝𝑛𝑚

(9)

Subject to Eq. (10):

∑

𝑛∈𝑁
𝑎𝑛𝑚 = 1,∀ 𝑚 ∈ 𝑀

𝑤𝑝𝑛𝑚

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝𝑛𝑚𝑤𝑠, 𝑖𝑓𝑤𝑝𝑛𝑚 = 1 and if{𝑝𝑛𝑚 ≥ 𝑟𝑛} or
{

𝑃𝑛𝑚 ≤ 𝑟𝑛 and
{

𝐶1
𝑛 ≥ 0 and 𝐶2

𝑛 ≥ 0 and 𝐶3
𝑛 ≥ 0

or 𝐶1
𝑛 ≤ 0 and 𝐶2

𝑛 ≤ 0 and 𝐶3
𝑛 ≤ 0

𝑝𝑛𝑚𝑤𝑔 , otherwise

(10)

Finally, another hard constraint needs to be added to ensure the
model is not to have any overlap between different platforms. One
method to formulate this constraint is to use the separating axis the-
orem (SAT). The SAT can be used with any convex shapes to check
if there is any overlap. For each of the solutions generated, the SAT
is tested. If there is an overlap between the platforms, the solution is
eliminated, and only the solutions without overlap are considered.

4. Implementation

4.1. Solve mathematical model

One of the challenges with RMS is the complexity of such systems.
Increasing the number of platforms in the system also increases the
number of possible layouts for the system. One method to find a layout
for the RMS is to use evolutionary computation, which is a sub-field
of AI. Evolutionary computation uses population based algorithms,
where a population is maintained and evolves towards a good/optimal
solution [11].

For this project, we used non-dominated sorting genetic algorithm 2
(NSGA2) [37] for the optimization since it is a powerful multi-objective
algorithm [38], which has been widely used to solve process planning
problems [38] for RMS design. Due to its reliability and speed, the
NSGA2 has been used to solve workshop-related problems [39], allo-
cation problems, scheduling problems, traveling salesman problems,
and vehicle routing problems [40]. The NSGA2 is a multiobjective

evolutionary algorithm that can find multiple Pareto-optimal solutions.
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Fig. 8. Example of the Piecewise function for weight works. In case 1 the robot platform can reach the platforms and the 𝑤𝑔 weight is used, while in case 2 the robot platform
cant reach the points and the 𝑤𝑠 is used.
Fig. 9. Illustration of the reachable area for a robot arm, where the blind zone of the robot arm is shown.
It is an improvement on NSGA in terms of computational complexity,
the need to specify sharing parameters and the lack of elitism [37].

The NSGA2 algorithm is implemented in python using the library
Pymoo [41] and a flowchart of the algorithm can be seen in Fig. 11.

The input to the system is a list with all platforms in each section.
For example, if a section contains ‘‘3D printer, Robot platform, Work
Table - 1, Conveyor out’’, then a part will move from the 3D printing
platform to the work table - 1 to do a process and move out of the
section with the conveyor platform. The robot platform is used to move
the parts between the platforms. Fig. 12 shows the input to the system
and the resulting layout.

The list is used to determine how the manufactured parts move
through the system and the size of each platform. Then, the mathe-
matical model is used for optimization with NSGA2 to find a layout.

In this project Pymoo 0.5.0 is used, and the optimization is executed
on an AMD Ryzen 9 3950X processor.

A video example of when the layout optimization is running can
be seen at https://youtu.be/UNsugBOi4cs. The video shows the best
solution for each generation.
360
4.2. Digital model, simulation, and IIoT

It is difficult to describe and include all restrictions in a mathemat-
ical model. Making the model too complex can also make the problem
unsolvable. It can therefore be beneficial to have a simpler mathemat-
ical model and connect the solution generated from the mathematical
model with simulation tools, as a second layer to validate/test the
solution. For this purpose, Visual Components Premium 4.4 [42] is
used. Visual Components is a visual simulation software used to design
and optimize manufacturing systems. It is possible to use Visual Compo-
nents both for developing a visual digital model of the system, as well
as for running manufacturing simulations. Hence, Visual Components
is used to generate a digital model from the optimization, and then the
digital model is used to run the simulation.

There is also a need for communication between all parts of the
system. Since the system is made to be flexible, where the platforms
can be moved to any position in the manufacturing environment. One
method to allow for communication in a system is to use IIoT. IIoT
is an extension of IoT in industrial applications and has a strong
focus on machine-to-machine communication [43]. It is therefore used
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Fig. 10. Illustration of one robot arm that can move parts between all platforms, while the last robot arm cant perform any tasks.
Fig. 11. A flowchart of the NSGA2 algorithm.

for communication with the platforms in the system and control the
mobile robots. IIoT can also be used to transfer the layout to the
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mobile robot for automatic configuration of the system. In this system,
the Open Platform Communications Unified Architecture (OPC UA) is
used for IIoT. The OPC UA is an IEC 62541 standard, often used for
communication between industrial equipment [44]. In addition, Visual
Components support connectivity functions such as OPC UA and can
therefore be used to connect the optimization simulation and physical
system together.

The layout program in python is therefore connected to an OPC UA
server, where the solution from the optimization is directly sent over
to Visual Components. An illustration of how the system is connected
and setup can be seen in Fig. 13.

From the layout program, the task order of the machines and the
positions of all the platforms are sent over to Visual Components. When
the data has been transferred, the layout is generated, the simulation
is programmed automatically, and the simulation is then executed. If
there is a problem when running the simulation, it will be stopped
and an error message will be returned. As mentioned in Section 3.3,
the robot arm might not be capable of picking up an item at certain
angles of the tool center point. Therefore, the simulation serves as a
verification tool to determine if the robot arm can pick the item.

In addition, the simulation can be used to:

• Validate if the RMS looks reasonable.
• Check if there is any collision between the platforms.
• Check if there is any collision when the robot arm is working.

If one of the tests fails, the simulation sends a message back to
the layout program that the solution is not satisfactory. Then, the
layout program will send the second-best solution and the simulation
is again tested. A flowchart showing how the system work can be seen
in Fig. 14.

4.3. Configuration testing

To showcase the layout generation in python, four different man-
ufacturing layouts were tested. The layouts are tested for both op-
timization with rotation between 0 to 360 degrees and for fixed 0,
90, 180, and 270 degrees rotation. For the generated layouts, 3D
printers, work platforms, and conveyors are used. The work platform
is modeled as simple tables in the digital model. However, they are
meant to represent manufacturing processes such as CNC machin-
ing, coordinate-measuring machine, assembly or other manufacturing

processes.
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Fig. 12. The input to the optimization model and the system.
Fig. 13. How the optimization program in python is connected to the simulation software Visual Components.
Fig. 14. Flowchart of how the smart layout design system works.
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4.3.1. Layout 1 (three platforms, simplest form)
The first layout is the simplest form of the system. It includes a 3D

printer platform, a robot platform and a conveyor. The results from the
optimization can be seen in Fig. 15. A video of the simulation can be
found at https://youtu.be/YVbpl2U_L8I.

4.3.2. Layout 2 (seven platforms in one line)
The second layout has one section with two 3D printers as input,

two work platforms in parallel, two robot platforms and a conveyor.
The result from the optimization can be seen in Fig. 16 and a video of
the simulation in https://youtu.be/MTCSDvy0Qag.

4.3.3. Layout 3 (two sections)
There are two sections for the third layout. In this case, the conveyor

is used as a bridge between the two sections. The idea of this layout
is to showcase how parallel systems can be connected to create larger
manufacturing layouts. The results are shown in Fig. 17, and a video
demonstration can be found at https://youtu.be/gZxg1X57g3Y.

4.3.4. Layout 4 (big system)
The last layout consists of four sections with different amounts of

platforms in each section. This is to test the optimization on a large
system and see how much time it takes to solve the problem. Fig. 18
shows the results from the optimization and a video can be found at
https://youtu.be/GFiIdPl_0_E.

Table 1 provides details on the optimization time and the number
of generations necessary to produce the generated layouts.

4.4. Test on a physical system

To test and validate the layout, the system is tested on a physical
RMS. The RMS consists of five platforms:

• Robot arm 1 (Nachi MZ07)
• Robot arm 2 (Scara Adept 604)
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Fig. 15. The result after running optimization for layout one. On the left side is the input to the Pymoo optimizer, in the middle is the result from the optimization, and on the
right side is the simulation.

Fig. 16. The result after running optimization for layout two. On the left side is the input to the Pymoo optimizer, in the middle is the result from the optimization, and on the
right side is the simulation.

Fig. 17. The result after running optimization for layout three. On the left side is the input to the Pymoo optimizer, in the middle is the result from the optimization, and on the
right side is the simulation.
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Fig. 18. The result after running optimization for layout four. On the left side is the input to the Pymoo optimizer, in the middle is the result from the optimization, and on the
right side is the simulation.
Fig. 19. Illustration of how the system works. On the left side, the input to the optimization, then the resulting layout from optimization, which is transferred over to the
simulation/digital model, and on the right side the layout on the physical RMS.
Table 1
The table shows the optimization time, for the layouts tested.

Rotation Optimization
time (min)

Generations Number of
platforms

Layout 1: 0–360 0.88 393 3
Layout 1: 0, 90, 180, 270 0.72 325 3

Layout 2: 0–360 25.66 1400 7
Layout 2: 0, 90, 180, 270 12.72 750 7

Layout 3: 0–360 77.75 3985 8
Layout 3: 0, 90, 180, 270 17.99 800 8

Layout 4: 0–360 1838.49 8380 25
Layout 4: 0, 90, 180, 270 898.95 2685 25

• 3D print platform
• Conveyor platform
• Conveyor with lifting platform

These platforms can be moved and rearranged automatically by the
use of a mobile robot. The mobile robot is equipped with a docking
module on top, which allows it to fasten itself to the platform, and
can pull the platform. The system is controlled through the OPC UA
standard and it is therefore possible to connect the optimization and
digital model simulation in Visual Components directly to the physical
system. An illustration of the connection can be seen in Fig. 19.

When testing the layout of the physical system, it was shown that it
is not feasible to have the platforms too close to each other. This is due
to the mobile robots’ low accuracy when reconfiguring the platform.
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To solve this issue, all platforms receive a safety distance between each
other, which equals 200 mm.

A video demonstrating the system can be found at https://youtu.
be/TqimTSBvpTs. In the video, a layout is generated with NSGA2
optimization, tested with the digital model simulation, and then sent
to the physical system for automatic reconfiguration with the mobile
robot.

5. Discussion

The idea of RMS is to have a manufacturing system that can rapidly
be changed depending on what is being manufactured. However, de-
signing and reconfiguring such a system is both time-consuming and
costly due to the requirement of excessive human labor. In this paper,
we propose a new approach to automize the reconfiguration process
of RMS. We combine optimization with industry 4.0 technologies,
i.e., IIoT, digital model, simulation, and advanced robotics to create
a smart layout design system for RMS.

We first formulate a mathematical model for a platform-based RMS
proposed by Arnarson [10]. The mathematical model for the system
is used to yield a score for the system, where penalties are added
to the score if certain criteria are not met. The main goal of the
system is to reduce the distance between the points of the platforms
while all movement platforms can reach the points. This model is
then used with an NSGA2 optimizer to find a near-optimal layout. The
model can be used for manufacturing platforms of different shapes, and
different constraints can be added depending on the requirements of
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the platforms. Constraints and platforms can easily be changed, and the
system can consider other optimization requirements or constraints.

Only using the mathematical model for optimization can be limited,
and it can be time-consuming to model all constraints. Therefore,
adding a digital model and simulation helps test the manufacturing
system. It can be used as a verification tool to validate if the solution
from the optimization work in a simulation environment. In addition,
connecting the optimization model to the simulation can allow for
bi-directional communication between both systems. As a result, the
simulation software can provide a quality check and safeguard on the
optimization program’s solution.

In this project, we tested different rotations for the platforms. One
with fixed 0, 90, 180, and 270 degrees and one which is between 0 to
360 degrees. As can be seen from the four layouts (Figs. 15–18), when
0–360 degrees is used, the optimization function will not converge and
will therefore not give an optimal layout. By limiting the rotation to 0,
90, 180, and 270 degrees, an improved solution is obtained compared
to using 0 to 360 degrees. Having the rotation between 0–360 degrees
adds more complexity and possibilities to the system and from the
optimization, it looks like the NSGA2 gets stuck. This may be due to
the hyper-parameters for the NSGA2 are not exploratory enough.

We have demonstrated four different cases of how the system works
and tested the layout optimization on a physical system. In the physical
test, we connected the optimization, digital model/simulation and the
physical system by using an IIoT (OPC UA) server. Being able to connect
the optimization model and digital model directly to a physical RMS
allows for increased automation. On the other hand, manually design-
ing the same system would require a human operator with expertise in
manufacturing to design the layout. Simulating the system would also
require programming, which is time-consuming. The proposed system
automates the optimization of the layout, virtually test the layout with
simulation, and reconfigure a system with a mobile robot allowing
for full reconfiguration without any human intervention. However, the
system may not be able to provide the shortest moving path for the
workpieces and the most effective use of the RMS modules. Therefore,
this system can work as a support tool to help the human operator
quickly design and adjust the RMS layout for customized orders, which
forms the foundation of the future human–machine interaction in a
collaborative manufacturing environment. This system is well-suited
for manufacturing systems that undergo frequent process reconfigu-
ration, such as companies operating within industries characterized
by high product variety and short product lifecycles, e.g., electronics
manufacturing or manufacturing of customized products. Implementing
a smart layout design system can greatly benefit manufacturing com-
panies specializing in mass customization or mass personalization by
streamlining and reducing the time required for planning and executing
new production runs.

As shown in 18, the layout is chaotic and can be considered as
not acceptable from a safety and industrial standards perspective. This
dilemma is most likely caused by the unrestricted use of platforms to
minimize the total movement distance while simultaneously ensuring
the reach to all points. A possible solution would be to let the opti-
mization system determine how many platforms are needed, thereby
removing unnecessary platforms. Besides, another objective function
may also be added to minimize the use of platforms so that the resource
requirement could be reduced. Moreover, safety rules and industrial
standards can be added to the mathematical model to get a more
realistic system.

6. Conclusion

In this paper, we proposed a novel method on how to solve the
layout design problem for RMS. We used optimization together with
the industry 4.0 technologies, i.e., IIoT, digital model, simulation, and
advanced robotics to create a smart layout design for RMS. First, we
365
propose a new mathematical model for the layout design of a platform-
based RMS. The object of the mathematical model is to find a layout
that minimizes the distance the product has to move while considering
the constraints of the system. Then, the NSGA2 algorithm is used to
search for an optimal or near optimal layout for the system. The layout
is transferred to a digital model simulation software for testing and
verification of the system in a virtual space. To showcase how the
system works, four different demonstrations were created. The results
showed that the mathematical model works and using NSGA2 for
optimization can generate a layout automatically and be tested in the
digital model. In addition, we also connect the optimization and digital
model to a physical RMS to validate the proposed system.

6.1. Future works

6.1.1. Solve the optimization with 0–360 degrees
As mentioned in the discussion, when 0–360 degrees rotation is

used, the system will not converge into a good layout. For further work,
there should be done an investigation on how to make the system
converge. In addition, when the system includes a lot of platforms,
it can take a few days for the system to solve the problem. There
should also be an investigation into how to improve the computational
efficiency of the optimization problem.

6.1.2. Combine optimizations
There has been a lot of work on optimization for process planning,

in what order the machines should be in, how many machines are
required, how often the system should be reconfigured, and what is
the best approach to reconfiguring the system. For further work, these
optimization models should be combined together in one system to
better model a close-to real-world manufacturing system. For example,
when multiple RMSs are set up for different products, some platforms
may need to be shared by different RMSs, so not only the positions of
the platforms but also the timing for their use needs to be optimized.

6.1.3. Add more objectives and constraints to the system
More and different objectives and constraints can be added to the

mathematical model in order to create a more realistic solution. For
instance, in this paper, we assume that all parts move from one single
point on the platforms. Therefore, adding a constraint that considers
an area where parts can be placed would be more realistic and should
be added to the optimization. Furthermore, adding another objective
to minimize the use of platforms while simultaneously ensuring an
acceptable level of reach to all points may help to solve the problem
shown in Fig. 18. Moreover, the model can be developed in a 3D space
and also take into consideration the limitations in the orientation of the
robot arms’ tool center point (yaw, pitch, and roll).

6.1.4. General manufacturing systems
Use the same methods in this project to find the optimal layout

of a general manufacturing system can be created. As manufacturing
systems are usually divided into cells, the position of the machines,
walking areas, where the robot should be placed and the different
stations can be used to create the most optimal layout depending on
the criteria of the model.
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