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Abstract Stationary adiabatic flows of real gases issued from a source of given
intensity are studied. Thermodynamic states of gases are described by Legen-
drian or Lagrangian manifolds. Solutions of Euler equations are given implic-
itly for any equation of state and the behavior of solutions of the Navier-Stokes
equations with the viscosity considered as a small parameter is discussed. For
different intensities of the source we introduce a small parameter into the
Navier-Stokes equation and construct corresponding asymptotic expansions.
We consider the most popular model of real gases — the van der Waals model,
and ideal gases as well.
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1 Introduction

Stationary three-dimensional flows of viscous fluid or gas are described by the
following system (see [1] for example):ρ(u,∇)u = −∇p+ η∆u +

(η
3

+ ζ
)
∇(divu),

div(ρu) = 0,
(1)

where u(x) is the velocity field, p(x) is the pressure, ρ(x) is the density, x ∈ R3,
η and ζ are viscosity coefficients, which are assumed to be constants. The first
equation in (1) is the Navier-Stokes equation corresponding to the momentum
conservation law, the second one is the continuity equation responsible for the
conservation of mass. In addition to (1) we take the isentropicity condition:

(u,∇σ) = 0, (2)

where σ(x) is the specific entropy. This condition means that the specific
entropy σ(x) is constant along the stream lines.

Exact solutions of the Navier-Stokes equations corresponding to the jets
issued from a source have been of interest since the middle of the 20th cen-
tury. Landau seems to be one of the first who found a solution, which can be
considered as a jet in an unrestricted incompressible medium, so-called sub-
merged jet [2]. It is worth to say that incompressibility condition was crucial in
his approach and moreover, thermodynamics of the flow was not considered.
His solution has two significant drawbacks. The first one is vanishing of the
flow for inviscid fluids and the second one is zero mass flux. Landau’s solu-
tion was improved by Broman and Rudenko [3]. Using the incompressibility
condition, they showed that Landau jet is the particular case of more gen-
eral flows with nonzero mass flux and admitting the passage to inviscid fluids.
Thermodynamics of such flows was investigated by Squire in [4]. He considered
the heat balance equation in addition to the Navier-Stokes system and found
the distribution of the temperature in the jet. He supposed that the fluid was
incompressible, but since the temperature changes along the flow, one has to
take into account the changing of the density, which can be done by means of
equation of state. Some of invariant solutions of the Navier-Stokes equations
for incompressible viscous fluid and corresponding flows are studied in [5] by
means of symmetries of differential equations [6,7].

We can see that system (1)-(2) is incomplete and in this paper we suggest
using the equations of state of gases instead of incompressibility condition to
make it complete. For this reason, we recall the geometrical description of
thermodynamic states in a brief manner (see [8–10] for details). The first re-
sults in investigating one-dimensional Navier-Stokes flows with equations of
state taken into account are obtained in [11]. Here, we restrict ourselves on
a case of stationary isentropic flows in three-dimensional space depending on
the distance from the source. In this case we are able to construct exact solu-
tions for Euler equations. The solutions obtained are multivalued and different



Real gas flows issued from a source 3

branches of these solutions are defined by different conditions at infinity. In
case of viscous gases, we observe step-like solutions of the Navier-Stokes equa-
tions, and a smooth jump from one branch of Euler equation onto another
occurs.

2 Thermodynamic states

In this section we recall some basic ideas in geometrical representation of
thermodynamic states following [8–10].

Let (R5, θ) be a contact space equipped with coordinates (e, v, T, p, σ),
where v = ρ−1 is the specific volume, e and T are the specific energy and the
temperature respectively, and structure 1-form

θ = dσ − T−1de− T−1pdv.

By a thermodynamic state we mean a 2-dimensional Legendrian manifold
L ⊂ (R5, θ), such that θ|L = 0. This condition means that the first law of
thermodynamics holds on L and if the specific entropy σ is given in the form
σ = σ(e, v), the Legendrian manifold L is defined completely by relations
(equations of state):

σ = σ(e, v), T =
1

σe
, p =

σv
σe
. (3)

But in physics equations of state establish the connection between measurable
quantities and are provided by experiments, that is why we have to eliminate
the specific entropy σ by means of projection

π : R5 → R4, π : (e, v, T, p, σ) 7→ (e, v, T, p).

Then the restriction L = π(L) is an immersed 2-dimensional Lagrangian man-
ifold in a symplectic space (R4, Ω), i.e. Ω|L = 0, where

Ω = −dθ = −T−2dT ∧ de+ T−1dp ∧ dv − pT−2dT ∧ dv,

The condition Ω|L can be expressed as follows:

[f, g] = 0 on L, (4)

where functions f(e, v, p, T ) and g(e, v, p, T ) define the Lagrangian manifold
L:

L = {f = 0, g = 0} , (5)

and [f, g] is the Poisson bracket with respect to the structure form Ω:

[f, g] Ω ∧Ω = df ∧ dg ∧Ω.

Summarising above discussion, thermodynamic state is either Legendrian man-
ifold L ⊂ (R5, θ) defined by (3), or Lagrangian manifold L ⊂ (R4, Ω) defined
by (5) with condition (4). The last can be used to find a caloric equation
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g = e − β(v, T ) if we know a thermic one f = p − α(v, T ) and can also be
considered as a compatibility condition for the system

f

(
e, v,

1

σe
,
σv
σe

)
= 0, g

(
e, v,

1

σe
,
σv
σe

)
= 0,

defining the specific entropy σ(e, v) up to a constant.
One may show, that not all the points on L correspond to thermodynamic

states. Namely, the differential quadratic form κ is defined on L [8]:

κ = d(T−1) · de+ d(pT−1) · dv,

and domains on L, where κ is negative, are applicable. The jumps between
applicable domains preserving intensives (temperature, pressure and chemical
potential) are phase transitions of the first type [8,9]. For further purposes we
need the following theorem [9]:

Theorem 1 The Legendrian manifold L is defined by the Massieu-Plank po-
tential φ(v, T ):

σ = R(φ+ TφT ), p = RTφv, e = RT 2φT . (6)

The domain of applicable states is given by inequalities:

φvv < 0, φTT + 2T−1φT > 0, (7)

where R is the universal gas constant.

3 Formulation of the problem

Suppose that we have an isotropic source at the origin and a thermodynamic
state of the gas is given by the Massieu-Plank potential φ(v, T ). Then, the
condition (u,∇σ) = 0 leads to the constancy of the specific entropy σ = Rσ0.
This allows to express all the thermodynamic values in terms of v. Indeed, due
to (6) we have:

σ0 = φ+ TφT . (8)

Since (7) is valid, relation (8) defines implicitly T (v). Using equations of state
we can find p(v) as well.

All the functions in (1) depend on the distance from the source r =√
x21 + x22 + x23, because the source is isotropic:

u = U(r)r, v = v(r).

Assume that the intensity of the source J is given. This means that the mass
flux across the sphere of radius r is equal to J :

J =

∫
Sr

v−1(u,n)dS = 4πr3v−1(r)U(r), (9)
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where n = r/r. From what follows a relation between U(r) and v(r):

U(r) =
Iv(r)

r3
, (10)

where I = J/4π, and the continuity equation in (1) is satisfied.
We will consider flows in an unrestricted medium R3. For this reason we

have to satisfy the requirement of regularity at infinity, i.e.

u|r→∞ = 0, v|r→∞ = v0. (11)

Thus, the problem can be formulated as follows. We are looking for the
solution of (1) satisfying conditions at infinity (11) with additional requirement
(9).

4 Integration of Euler equations

Let us first consider inviscid media, i.e. put η = ζ = 0 in (1). We get the
following system: 

v−1(u,∇)u = −∇p,
div(v−1u) = 0,

(u,∇σ) = 0.

(12)

Theorem 2 General solution of problem (12), (11), (9) is given implicitly by
the following formula:

v2

2r4
+ I−2f(v)− C0 = 0, (13)

where C0 is a constant defined by means of (11), and

f(v) =

∫
vp′(v)dv.

Proof Since we are looking for solutions depending on the distance from the
source r, ∇ = n∂r, and taking into account (10), we get the following equation
for v(r):

−2v

r5
+
v′

r4
+
p′

I2
= 0.

Substituting p = p(v(r)), we get

d

dr

(
v2

2r4

)
+ I−2vp′(v)

dv

dr
= 0,

from what follows (13).

The above theorem provides a method of finding solutions of Euler equa-
tions for any equation of state.
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5 Examples

In this section, we illustrate how above methods are applied to different models
of gases. First of all, we elaborate ideal gases case and then discuss real ones.

5.1 Ideal gases

The Legendrian manifold L for ideal gases is given by:

p =
RT

v
, e =

nRT

2
, σ = R ln

(
Tn/2v

)
,

where n is the degree of freedom.
The given level of the specific entropy σ = Rσ0 allows to express the

pressure p and the temperature T as functions of the specific volume v:

p(v) = Rcv−(1+2/n), T (v) = cv−2/n,

where c = exp(2σ0/n).
Then (13) takes the following form:

v2

2r4
+
Rc(n+ 2)

2I2
v−2/n − C0 = 0,

or in terms of density ρ = v−1

1

2r4ρ2
+
Rc(n+ 2)

2I2
ρ2/n − C0 = 0. (14)

Theorem 3 Solution ρ(r) defined by (14) exists if

r >
(

2ρ2∗

(
C0 −RI−2c(n/2 + 1)ρ

2/n
∗

))−1/4
,

where

ρ∗ =

(
2I2nC0

Rc(n+ 1)(n+ 2)

)n/2
.

Let us explore the asymptotic behavior of ρ(r) if the density at infinity is given
ρ|r→∞ = ρ0.

Theorem 4 If ρ0 = 0, then the asymptotic behavior of ρ(r) at infinity is of
the form:

ρ(r) =
1√

2C0r2
+ o

(
1

r2

)
,

if ρ0 6= 0, then

ρ(r) =

(
2C0I

2

Rc(n+ 2)

)n/2
+

∞∑
i=1

βi
r4i

.

Thus, constant C0 is responsible for the density at infinity and we can see that
there are two types of solutions defined by the condition at infinity. The graph
for the density is represented in figure 1.



Real gas flows issued from a source 7

Fig. 1 Graph of function ρ(r) for ideal gases

5.2 van der Waals gases

The most popular model in description of real gases is the van der Waals
model. In this case the Legendrian manifold L is given by state equations

p =
8T

3v − 1
− 3

v2
, e =

4nT

3
− 3

v
, σ = ln

(
T 4n/3(3v − 1)8/3

)
.

Here we use reduced coordinates (e, v, T, p, σ), i.e. the point (1, 1, 1, 1, 1) is the
critical point.

The pressure p and the temperature T are expressed in terms of the specific
volume v in the following way:

T (v) = c(3v − 1)−2/n, p(v) =
8c

(3v − 1)1+2/n
− 3

v2
,

where c = exp(3σ0/4n).
The solution is of the form:

1

2r4ρ2
+ I−2

(
4c(3ρ−1 − 1)−(1+2/n)

(
ρ−1(n+ 2)− n

3

)
− 6ρ

)
− C0 = 0. (15)

Using (15) it is easy to check that the following theorem is valid:

Theorem 5 If ρ0 = 0, then the asymptotic behavior of ρ(r) at infinity is of
the form:

ρ(r) =
1√

2C0r2
+ o

(
1

r2

)
,

if ρ0 6= 0, then

ρ(r) = ρ0 +

∞∑
i=1

βi
r4i

,

where ρ0 and C0 are connected by the relation

3C0ρ0I
2

2
= 2c(3ρ−10 − 1)−(1+2/n)(3n+ 6− nρ0)− 9ρ20.
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The distribution of density for van der Waals gases has the same form as for
ideal gases and is shown in figure 2.

Fig. 2 Graph of function ρ(r) for van der Waals gases

The domain where solution exists can be derived by means of (15) in the
same way as it was done for ideal gases.

5.2.1 Phase transitions

If the temperature of van der Waals gases is under the critical value, i.e. T < 1,
phase transitions may occur along the gas flow. Having a solution given by (15)
it is possible to find the domains in space corresponding to different phases.
We construct such distributions of phases for different levels of the specific
entropy. From now and on, s0 = exp(σ0).

Suppose that the level is “small”, s0 = 0.5. The solution is multivalued
and we start with its lower branch.

Figure 3 shows that if the temperature decreases along the gas flow, the
gas is in an unstable state corresponding to condensation process.

Figure 4 shows that if the temperature increases while the distance in-
creases, the condensation process is concentrated near the source and at large
distance from the source the medium is in a liquid phase.

If the temperature T at infinity is greater then critical value, i.e. T0 > 1,
the distribution of phases may be as in figure 5.

Suppose now that the level is “big”, s0 = 200.

Figure 6 shows that if the temperature decreases along the gas flow, the gas
is in an unstable state corresponding to condensation process and the picture
is exactly the same as in the previous case.

Figure 7 shows that the condensation process is concentrated near the
source and at large distance from the source the medium is in a gas phase.
The picture is very similar to filtration processes [9].



Real gas flows issued from a source 9

(a) (b)

Fig. 3 Dependence of temperature on the distance from the source and the distribution
of phases in space for van der Waals gases: (a) represents lower branch of solution; (b)
represents the corresponding phases. Variable y = 0.5 means that the medium is in an
intermediate state (condensation process).

(a) (b)

Fig. 4 Dependence of temperature on the distance from the source and the distribution
of phases in space for van der Waals gases: (a) represents higher branch of solution; (b)
represents the corresponding phases. Variable y = 0.5 means that the medium is in an
intermediate state (condensation process), y = 1 stands for the liquid phase

6 Solutions of the Navier-Stokes equation

6.1 Singularly perturbed problem

Let us now take into account the viscosity of the medium. In this case the
equation for the specific volume v(r) contains viscosity coefficients η and ζ
and can be written in the following form:

− v

r3
(rv′′ − 2v′)µ+

d

dr

(
v2

2r4
+ I−2f(v)

)
= 0, (16)

where

µ = I−1
(
ζ +

4η

3

)
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Fig. 5 The distribution of phases in case T0 = 1.1. If y = 1, the medium is in a liquid
phase, if y = 0.5, the medium is in an intermediate state (condensation process), if y = 0,
the medium is in a gas phase

(a) (b)

Fig. 6 Dependence of temperature on the distance from the source and the distribution
of phases in space for van der Waals gases: (a) represents lower branch of solution; (b)
represents the corresponding phases. Variable y = 0.5 means that the medium is in an
intermediate state (condensation process)

is considered to be a small parameter.

Note that in (16) the small parameter µ is multiplied by the higher deriva-
tive. Such problems are called singularly perturbed. Their main feature is that
their solutions do not converge to the solution of an unperturbed problem
obtained by putting µ = 0. In [12] it is shown that step-like solutions of such
problem are typical, and methods of estimation of the location of the step are
developed as well as the structure of asymptotic series for solution is suggested.

Numerical computations show that solution of (16) has a step-like form,
and the bigger the viscosity µ, the smoother the step. It is shown in figure 8.
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(a) (b)

Fig. 7 Dependence of temperature on the distance from the source and the distribution
of phases in space for van der Waals gases: (a) represents higher branch of solution; (b)
represents the corresponding phases. Variable y = 0.5 means that the medium is in an
intermediate state (condensation process), y = 0 stands for the gas phase

Fig. 8 The distribution of the density ρ for ideal gas

6.2 Asymptotics for the Navier-Stokes equation

Here, we consider the intensity of the source I as either small or big parameter.
First of all, let us rewrite equation (16) in the form:

v

r3
(rv′′ − 2v′) =

I

k

d

dr

(
v2

2r4
+ I−2f(v)

)
,

where k = 4η/3 + ζ. Introduce new variables (x,w) in the following way:

r = Iαx, v = Iβw,

where α and β are constants. We get

w

x3
(xw′′ − 2w′) = k−1

d

dx

(
I1−αw2

2x4
+ I3α−2β−1f

(
Iβw

))
. (17)
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Require that function f(v) satisfies the inequality |f(v)| ≤ CvA. For both
ideal and van der Waals gas this condition holds putting A = −2/n. In this
case a small parameter can be introduced into the right hand side of (17) by
choosing (α, β) in the following way:

– if I � 1, then {
3α− 2β − 1 +Aβ > 0,

1− α > 0.

– if I � 1, then {
3α− 2β − 1 +Aβ < 0,

1− α < 0.

6.2.1 Ideal gases

For ideal gases

f(v) = Rc
(n

2
+ 1
)
v−2/n.

Taking β = n(n + 1)−1(2α − 1) and α = 1/2 for I � 1, α = 2 for I � 1 we
get:

w

x3
(xw′′ − 2w′) = ε1,2

d

dx

(
w2

2kx4
+ f(w)

)
, (18)

where ε1 =
√
I for I � 1 and ε2 = 1/I for I � 1.

We are looking for the solution of (18) in the following form:

w(x) = w0(x) + ε1,2w1(x) + . . . ,

and for the zeroth w0(x) and the first w1(x) order terms we have expressions:

w0(x) = C1x
3 + C2,

w1(x) = − Rcn

6C1k
(C1x

3 + C2)−2/n +
1

6xk
(2x4C3k − 3C1x

3 + 6kxC4 − 3C2),

where Cj (j = 1, 4) are constants.

6.2.2 van der Waals gases

For van der Waals gases we have:

f(v) =
8c

3(3v − 1)2/n+1
+

4c(n+ 2)

3(3v − 1)2/n
− 6

v
.

We restrict our consideration on the case of monatomic gases, i.e. put n = 3.
If I � 1 one may take α = 2, β = 6 and get the following result:

w(x) = w0(x) + εw1(x) + . . . ,
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where ε = 1/I,

w0(x) = C1x
3 + C2, w1(x) =

1

6xk
(2x4C3k − 3C1x

3 + 6C4kx− 3C2),

and Cj (j = 1, 4) are constants.
The case of I � 1 can be elaborated in the same way.

6.3 Regular asymptotic expansions

Here, we consider I as a small parameter and look for the solution of equation
(16) written as

Iv

r3
(rv′′ − 2v′) = k−1

d

dr

(
I2v2

2r4
+ f(v)

)
in the following form:

v(r) = v0(r) + Iv1(r) + I2v2(r) + . . .

Then, the zeroth order term can be found from equation f(v0) = f0, from
what follows that

v0 = f−1(f0), (19)

where f0 is a constant.
Invertibility conditions for f(v) in case of ideal and van der Waals gases

will be elaborated below.
The equation for the first order term is

(f ′(v0)v′1 + f ′′(v0)v′0v1)r5 − kv0r(r2v′0)′ = 0.

Since v0(r) = v0 = const, we have constant solution for the first order term as
well:

v1(r) = v1. (20)

One may show that solutions for the second v2(r) and the third order terms
v3(r) are

v2(r) =
v20

2f ′(v0)r4
+ α1,

v3(r) =
2v0

r4(f ′(v0))2

(
kv20
r3
− v1

4
(v0f

′′(v0)− 2f ′(v0))

)
+ α2,

(21)

where αi are constants.
Thus, for any thermodynamic state we have found an asymptotic expansion

for the Navier-Stokes equation and due to (19)-(21) the corresponding solution
for the density ρ = v−1 and for the velocity field is regular at infinity. If I = 0,
the velocity field vanishes due to (10), while the density is constant.
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6.3.1 Ideal gases

As we have seen, the invertibility problem of f(v) needs to be investigated. In
case of ideal gases the following theorem is valid:

Theorem 6 The function f(v) for ideal gases is invertible and the corre-
sponding zeroth order term is uniquely determined:

v0 =

(
2f0

Rc(n+ 2)

)−n/2
,

where c = exp(2σ0/n).

6.3.2 van der Waals gases

For van der Waals gases we have the following result [9]:

Theorem 7 The function f(v) is invertible if the specific entropy constant
c = exp(3σ0/4n) satisfies the inequality:

c >
1

4α
(1 + α)1+α(2− α)2−α, (22)

where α = 1 + 2/n.

Thus, if condition (22) holds, the zeroth order term is uniquely determined,
otherwise, equation for the zeroth order term f(v0) = f0 has a number of
solutions.
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