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“
In the fish processing industry,

Where time is money and speed is key,
The need for innovation and efficiency,

Led to the rise of computer vision’s proficiency.
Machines equipped with cameras and sensors,

Analyze fish with precision and candor,
Sorting by size, species, and quality,

Reducing labor and boosting productivity.
No longer do workers need to strain their eyes,

Or rely on their experience to realize,
Which fish to keep, which fish to discard,
Computer vision makes the task less hard.

The machines work tirelessly day and night,
Ensuring that the process runs just right,

Sorting fish into categories so neat,
Making sure the products are always top-grade and complete.

With computer vision on their side,
The fish processing industry takes in stride,
The challenges that come with each catch,

Ensuring that their products meet every batch.
”

– Generated by ChatGPT from the text: ’write a poem about using computer
vision in the fish processing industry’ https://chat.openai.com/chat

https://chat.openai.com/chat 


Abstract
This master project was inspired by challenges faced by commercial fisheries
in the north of Norway of controlling food quality and food safety. In this
thesis, four different ML models’ ability to do object and keypoint detection on
specific anatomy parts of fish, has been studied. With the aim of recommending
a suitable model to be part of a CV system for an industrial fish gutting machine
that cuts open the fish belly between the pelvic fins and the anus. Requirement
that the rotating knife shall not cut into the flesh behind the anus opening,
and cut should end (or start) maximum 5 millimeters from the anus opening.
Likewise, at the pelvic fins, the cut shall start (or end) 15 millimeters from target
along the centerline of the fish, and a sideways offset of roughly ±5millimeters
can be acceptable, depending on the length of the fish.
The experiments were performed with two YOLOv7 and two Detectron2models,
YOLOv7 for object detection with bounding boxes, and Detectron2 for keypoint
detections. The results showed that only one of the Detectron2 models was able
to do keypoint detection repeatedly, but the achieved accuracy was not good
enough. Both the YOLOv7models were able to meet the cut length requirements
and both got recommended for use in the suggested CV solution.
More work still remains before one of the YOLOv7 models can be taken in use,
such as determining the object detection speed, finding a suitable embedded
computer with GPU to run the CV system on, determining the best way of
communication between the PLC in Folla and the CV system and finding a
suitable location for a camera inside the Folla machine.
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Glossary
data annotation is the technique of marking specific regions of data so to

supervise aMLmodel to learn to recognize the different regions. Each
type of region need to be labelled with some meaningful information,
see data labels.

aquaculture in the context of this project, is fish farming in Norwegian coastal
areas, ref. fig.1a in [1].

ChatGPT is a language ML model trained to produce text, optimized for human
dialogue. Developed and deployed by the AI research and deployment
company OpenAI..

Cod Cluster is a national and state-funded innovation cluster operated by
Innovation Norway, Siva and the Research Council of Norway.

COCO is an abbreviation for Common Objects in Context. It is a large-scale ob-
ject detection, segmentation, and captioning dataset fromMicrosoft.

COCO-annotator is a web-based image annotation tool that exports annota-
tions in the well-known COCO format.

COCO-format is a data formatmade for the COCO dataset. The annotations are
stored using JSON, structured in the key-value pairs {"info": info, "im-
ages": [image], "annotations": [annotation], "licenses": [license]},with
associated subkey-subvalue pairs such as {"bbox": [x,y,width,height]}
and {"keypoints": [x1,y1,v1,...]}.

CV is an acronym for Computer Vision. IBM[2] defines CV as: "Computer
vision is a field of artificial intelligence (AI) that enables computers and
systems to derive meaningful information from digital images, videos
and other visual inputs — and take actions or make recommendations
based on that information. If AI enables computers to think, computer
vision enables them to see, observe and understand."

CVAT is an acronym for Computer Vision Annotation Tool. It is an interactive
video and image annotation tool for computer vision.

Det2-1cls-6kpts is a shorthand notation of "Detectron2 model of 1 class with
6 keypoints", a custom model used in this project.

Det2-3cls-2kpts is a shorthand notation of "Detectron2 model of 3 classes with
2 keypoints each", a custom model used in this project.

Det2-4cls-2kpts is a shorthand notation of "Detectron2 model of 4 classes with
2 keypoints each", a custom model used in this project.

data labels is in this context, meaningful information about key features
present in different types of data for training a supervised ML model.
Every data annotation need to be assigned a data label.

Detectron2 is Facebook AI Research’s next generation library that provides
state-of-the-art detection and segmentation algorithms.
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FHF (Norwegian Seafood Research Fund) is a state-owned limited company
owned by the Ministry of Trade, industry and fisheries, and financed
by the industry through a levy on exports of Norwegian Seafood at 0,3
%. FHFs goal is to create added value to the seafood industry through
industry-based research and development (R&D).

fisheries in the context of this thesis, fisheries is the professional fishing con-
ducted by fishing vessels in the ocean around the Norwegian coast,
ref. fig.1b in [1].

fish wholesale is the sale of fish in large quantities to retailers.
fish grading is sorting the fish on size, before and/or during processing.
gutting is the process of cutting open the fish’ belly in order to remove it’s

intestines.
JSON is an acronym for JavaScript Object Notation. It is a lightweight data-

interchange text format that is completely independent of the pro-
gramming language. It is easy for humans to read and write and it is
easy for computers to parse and generate. The structure is built up by
a collection of name/value pairs and ordered lists of values.

fish processing is defined here as the whole (industrial) process, that starts
immediately after the catch, of making high quality food products of
the fish.

hydraulics is a power system that uses pressurized hydraulic oil to transmit
power. In such systems, hydraulic oil is pressurized by a pump and
then transmitted through hoses and pipes to actuators, which can be
cylinders, rotating motors, or other types of devices, to produce linear
or rotational motion.

IMR is Norway’s Institute of Marine Research, one of the biggest marine re-
search institutes in Europe, with about 1,100 employees. Through its
research and advice, the IMR seeks to help society to continue ex-
ploiting the valuable assets in the sea sustainably. IMR is a neutral
knowledge provider, and publicise the research results both in Norway
and internationally.

MD is an acronym for Machine Directive. MD is a European Union directive
with mandatory specifications in health and safety combined with
harmonized standards that machines must comply with.

ML is an acronym for Machine Learning. IBM[3] defines ML as: "Machine
learning is a branch of AI and computer science which focuses on the
use of data and algorithms to imitate the way that humans learn,
gradually improving its accuracy.".

pelvic fins also called ventral fins, are a set of paired fins located ventrally in
the frontal part of the fish abdomen..

pneumatics is a power system that uses pressurized air to transmit power. In
such systems, air is pressurized by a compressor and then transmitted
through hoses and pipes to actuators, which can be cylinders, rotat-
ing motors, or other types of devices, to produce linear or rotational
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motion.
salmonids is a common name for fish from the Salmonidae family, such as

salmon, trout, arctic char. Their flesh is orange/reddish in color, and
have a more fatty or oily consistence than the flesh of white fish.

Springfield is the codename for the GPU cluster owned and operated by the
UiT Machine Learning Group.

white fish is a fisheries term for species of fish having white or light-coloured
flesh, including Atlantic cod (Gadus morhua), whiting (Merluccius
bilinearis), haddock (Melanogrammus aeglefinus), hake (Urophycis),
pollock (Pollachius), and others.

YOLO is an acronym for You Only Look Once, It is a state-of-the-art, real-time
object detection system. There are several official versions of YOLO,
but in this project only YOLO version 7 (YOLOv7) has been used, so
in this thesis every YOLO reference is to YOLOv7, unless otherwise
stated.
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AI Artificial Intelligence.
CNN Convolutional Neural Network.
GT Ground Truth.
LF Lower Farside keypoint.
LO Lower Opside keypoint.
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RoI Region of Interest.
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1
Introduction
1.1 About the Norwegian fish processing

industry

In Norway, fish is one of the top economic export articles. According to a SIN-
TEF article about the Norwegian seafood industry[1], Norway was the world’s
second largest exporter of fish and seafood in 2017, with NOK 94.5 billion in
export value. That constitutes for 7.9% of the total national export revenue. The
authors group the seafood value chain into two sub-chains by fish raw materi-
als, fisheries and aquaculture, both further divided into fish processing and fish
wholesale. Workspace of this thesis is within fish processing in general.
In the SINTEF article, they estimate a total number of 58,123 employees in the
total seafood value chain for 2017, an increase of 35.6% from 2004. However,
looking specifically at the share of employees for fish processing, it has dropped
from 20% to 6% within the aquaculture value chain, while for fisheries it
has increased from 21.5% to 27.8%.iThe authors claim that automation and
new technology is the reason for increased productivity and hence the strong
reduction of employees within aquaculture. The small increase of employees in
fisheries is explained due to a stable relationship between the different players
and an increased demand for seafood in the market. This could imply that
the fisheries processing facilities are and have been highly automated for a
long time, or that new technology to a lesser extent have been implemented
here. Another reason is that a usual catch delivered by a fishing vessel along the
coast of Norway, consists of several fish species in total, each of varying sizes. In
fisheries, the fish processing facilities need to handle all that variation while still

i. FTE numbers from table 6 and 7 in [1].

3



4 chapter 1 introduction

maintaining efficiency and quality. One of the major challenges within the fish
processing industry is that the machines are not able to handle fish of different
sizes and shapes in an effective manner. Fish of odd sizes or low volumes, that
are not handled well in the machines will have to be manually processed by the
employees. In comparison, with salmonids in aquaculture, fish shape and size
are more consistent and hence it is easier to automate the associated machines
as compared to other fish, like for instance cod. That makes it more convenient
and less costly to automate and scale the production lines.

1.2 Machine Learning and Computer Vision in
the Norwegian fish industry

ML and CV are nowadays finding ever more use cases in the fish industry. For
aquaculture, there exists equipment for fish ID control, fish health control,
fish lice detection and removal[4], food control and nets inspection, among
others. In fisheries onboard boats, there can be equipment like multifrequency
echosounders/sonars combined withML for prediction of fish species and sizes,
catch control using CV for active segregation of fish at the trawl inlet[5]. In
fisheries processing facilities, CV have been taken in use for fish grading and
sorting fish, in quality control for estimating level of trapped blood in the fish
meat or locating remaining bones in the fish fillets, among others.
In this project, we are trying to utilize ML and CV for automatic detection of
specific anatomic parts of the fish in order for the machine to automatically
adjust its parameters for each individual fish. To the best of our knowledge this
is the first project with this scope.

1.3 Company Havfront – Manufacturer of fish
processing machines

The collaborating company of this master thesis, Havfront AS, is manufacturing
machines for cutting and gutting fish. At the moment, Havfront is focusing on
the fish processing market in fisheries only. Founded 10 years ago and having
sales of NOK 10 million (2021), Havfront is a relatively small and young com-
pany. Currently, they have two different machines in production, Loppa and
Folla. Both machines are designed for performing gutting and head removal,
the main difference is in size and technology. Loppaiiis small in size, intended
for smaller boats, handles up to 20 fish per minute of size 1 to 12 kilos, runs
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on 24VDC + hydraulics and adjusting cutting parameters is done manually.
Follaiiiis much larger, intended for onshore processing facilities, handles 18 to
23 fish per minute of size 1 to 20 kilos, runs on 230/440VAC + pneumatics +
fresh water supply, and has automatic adjustment of the cutting parameters.
This master thesis is a part of a project of adding CV to Folla in order to improve
accuracy of the cut for fish gutting.

(a) Folla (b) Loppa

Figure 1.1: Illustrations of the Folla and Loppa machines. Note: The images are dif-
ferently scaled, in reality Folla is considerably larger than Loppa.

1.3.1 Development funding

Havfront is member of Cod Cluster[6], and participating in the workgroup for
fish processing where they seek to optimize fish processing in order to increase
the utilization of fish and profitability. The project of adding CV to Folla is
partly funded by FHF (Norwegian Seafood Research Fund)[7].

ii. https://www.havfront.no/maskiner/loppa100/
iii. https://www.havfront.no/maskiner/folla/

https://www.havfront.no/maskiner/loppa100/
https://www.havfront.no/maskiner/folla/
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Background

Figure 2.1: Illustration of an ideal belly cut for gutting of fish to customer’s request,
shown with dashed line in blue. The starting point is centered between the
pelvic fins, and the cut should end at or very close to the anus opening, but
must not go past the anus and cause damage the meat. Note that the actual
cut, although a little side-shifted from the blue line, is still acceptable.

2.1 Problem

One of Havfront’s fish farming customers wants the machine to cut open the
belly only from around the midpoint between the pelvic fins to the anus, see
illustration in fig. 2.1. Originally, Folla is designed for cutting open the belly
from the throat to the anus, using a mechanical depth pin (located immediately

7



8 chapter 2 background

below the rotating knife) to end the cut at the correct position, but for this
specialized belly cut where the knife has to start cutting from in between the
anus and pelvic fins, shown in fig. 2.2, the depth pin need to be removed. Then,
the machine does not have a robust method to determine the cutting length,
and a number of belly cuts gets too short or, even worse, goes beyond the anus
opening and cuts into the flesh. The latter reduces the food quality and shelf
life. Havfront’s experience is that 5-10% of the belly cuts are either too long or
too short, and they want to improve the precision in order to lower the number
of unacceptable cuts. Hence, the challenge is to come up with a better solution
to estimate the starting and stopping points for gutting each individual fish
that enters the Folla machine.

Figure 2.2: Showing gutting process in Folla, the rotating knife opening the fish’ belly.

2.2 Desired outcome

Besides improved cutting precision, there is also a wish for increased efficiency,
i.e. that the proposed solution would also open for a higher processing rate
(more fish per minute) than of today. The two Havfront machines are being
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used both onboard small and large fishing vessels, and at onshore processing
facilities, for both wild catch and fish farming. At many locations they have their
own specification for how the fish should be gutted. In addition to the specific
problem mentioned above, some want the cut at an angle, some need different
cut length for different fish species, and yet another wants a side-shifted cut
because a machine further down the processing line then gives better output.
Havfront has not done any cost-benefit calculations specifically for a precision
improving solution, as their customers are not sharing how much more they
get paid for better quality fish. Only by being out in the market, discussing
with customers and "wrestling" with competing machine builders, one gets a
sense of what they are willing to pay for efficient and precise machinery. But
being able to offer higher precision and speed as options, will give Havfront
an advantage towards competitors and make Folla even more attractive for
demanding customers.
The aim for the cutting length precision is that the cut should end (or start)
as close to the anus opening as possible, and not extend past it. Havfront’s
customers have not dictated a strict set of limits, but Havfront would like to
get the cut within 5 millimeters from the opening. In the opposite end, at the
pelvic fins the requirement is less strict. Up to 15 millimeters from target along
the centerline of the fish, and roughly ±5 millimeters sideways offset can be
acceptable, depending on the length of the fish.

2.3 Proposed solution

The figure 2.3, attempts to illustrate the proposed solution, which is a Computer
Vision (CV) system with automatic object detection of specific anatomy parts
on the fish. CV involves camera and a Machine Learning (ML) algorithm that
have been trained to recognize the anatomy details of interest. Details about
the scene, extracted from the video feed by the algorithm, will give the machine
controller the information needed to precisely adjust the cutting blade to each
fish individually, independent of it’s size or body shape.
For this solution, there are two points on the fish that are important: 1. the
center point between the pelvic fins, and 2. the anus opening. In addition, in
order to make estimates of the positions and the distance between the two
points on the fish, at least two fixed objects of the background (with known
positions and measures) are needed for quality control and calibration of the
camera.
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Object
detection

Fish in rack,
ready for
cutting

Cut fish
according
to object
detection

Eject
processed

fish

Figure 2.3: Illustration of the gutting process in the Folla machine. Emphasized with
the dashed line in red, automated object detection with computer vision,
is the proposed solution for improving the cutting process. The green
rectangles on the fish figure are meant to visualize the anatomy parts of
interest. The illustration originates from my feasibility study report[8].

2.4 Project overview

Figure 2.4: Workflow of Master Thesis / Folla Computer Vision project.

In this project, aim is to develop and train some object detection algorithms
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ready for further fine-tuning, testing and implementation in Folla. The plan
is to develop some ML models for doing object and keypoint detection on de-
tails of the outer anatomy of the fish entering the Folla machine. The project
workflow is illustrated in fig. 2.4. As a starting point, two state-of-the-artML al-
gorithms that can do both object and keypoint detection were selected, namely
YOLOv7[9] andDetectron2[10]. Aworkingmodel proposed in this projectwould
enable further experimentation to be performed during the development, im-
plementation and testing stage at Havfront’s premises.
The experimental phase of the project starts with selection of some ML mod-
els that could be suitable for the project, followed by data preparation for the
different models. The most important data preparation is annotation of the
dataset, and the selected models need different sets of annotations. The an-
notation process is covered in chapter 3. Chapter 4 deals with the ML models
for this project. The writing order of the models has been attempted to remain
the same throughout the document. The experiments and results are found
in chapter 5 and 6, respectively. The thesis is rounded off with discussion and
conclusion in chapter 7 and 8. Results in the form of data tables and the models’
config files are included in the appendices.

2.4.1 ChatGPT – Declaration of use in this project

Yes, ChatGPT has been used to solve problems during this project. Not to gener-
ate bodies of text for this report, but as an efficient tool for solving programming
problems like ML configurations and tuning, efficient interaction with JSON
files, Linux CLI commands and regex search patterns, Python classes, func-
tions and plotting, LATEXmacros and mathematical expressions. And also, not to
forget, the epigraph poem.
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Dataset and ML models
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3
Dataset
3.1 Dataset source

The dataset was collected (during the pre-project[8] for this Master Thesis)
at Namdal Seafood, a processing facility for farmed cod. In total, the dataset
consist of almost 106 minutes (11 videos or 4506 frames) with recordings of
207 fish individualsiv. The videos have numbered names from 17.1 to 17.6 and
18.1 to 18.5. In this project, video 17.1 was used for annotation and 18.5 for
prediction.
An ordinary action camera (GoPro Hero8) was used to record fish entering the
Folla machine. The camera was mounted on the sidewall looking down at fish
being transported on a conveyor, lying upside down in a rack, just before en-
tering the processing zone. Although the viewing angle and lighting condition
was not ideal for getting low distortion and good contrast imaging, it was the
most convenient camera position to record fish in the conveyor racks. Ideally,
the camera should have been mounted inside the machine, directly over or in
close vicinity of the gutting position, but space limitations and need to cover
for splashing debris from the rotating knife made that an impossible option for
this project. Figure 3.1 shows a typical frame from the dataset. The improper
lighting condition caused poor contrast between the conveyor rack and the
background panel, especially on the left side. For every fish in the dataset, for
both training and test images, the ideal cutting length for gutting was measured
by hand and recorded (fig. 3.2).

iv. The only fish species recorded on video was cod.

15
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Figure 3.1: Typical image from the dataset.

Figure 3.2: Measuring the cut length for gutting each fish individually.
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3.2 Data preparation

Before annotation, all the frames capturing a fish were extracted from the
dataset videos. As recorded with a wide-angle camera, a lot of unimportant
surroundings were included in the scene, so the surroundings were cropped
out. The final image size (in pixels) became 1178x1080 after cropping.

3.3 Objects of interest

For this particular project, the anus opening and the pelvic fins were the obvious
candidates for annotations on the fish. Since plan was to estimate the ideal
cutting distance, one would also need to locate the position for some fixed
points on the machine, with known distance between them. The idea is that
the estimated cutting distance should become more precise and invariant to an
eventual change of camera. The outer edges, left and right on the two top plates
of the rack, was chosen for this purpose. They are relatively close to the fish
and their relative positions to the fish are more or less stationary when moving
over the frame/scene. In addition, for possible future use as safety measure,
the ML model should also be able to detect a human hand. The names for the
rack keypoints describes their relative position in the image. Position ’Opside’
is towards the right in the scene, where the machine operator is standing.
Position ’Farside’ is towards the left in the scene, far from the operator. ’Upper’
is towards the top of the image, and ’Lower’ is then towards the bottom of the
image. Further in this thesis, the rack keypoints are denounced Upper Farside
keypoint (UF), Upper Opside keypoint (UO), Lower Farside keypoint (LF) and
Lower Opside keypoint (LO).
Please note that the idea behind using positional rack and fish keypoints is to
use the known length of the rack to make an estimate of the real world length of
the optimal cutting line between the pelvic fins and the anus of the fish.

3.3.1 Annotating training data

Out of the complete dataset, only video 17.1 with 624 images of 12 different
fish were annotated for this project. The limited time available did not allow
for more, as different data annotation types were needed for the different ML
models. Two different annotation tools were used to label the training images,
CVAT and COCO-annotator. CVAT was the initial choice due to simple imple-
mentation and efficient workflow, but for this project it was a little cumbersome
to make keypoint annotations, where COCO-annotator was found to make the
job more easy and in less time. Both CVAT and COCO-annotator are web-based
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image annotation tools, and can be run on a local computer with a Docker
image.
Not all the annotation data are presented in this report. Tables given in ap-
pendix C contains annotation data and corresponding statistics from the an-
notations of fish number two and five from video 17.1, respectively. These are
thought to represent the annotations well in general.

Annotations for Yolo

(a) CVAT - Annotating pelvic fins on fish. (b) CVAT - Annotating top plate of rack.

Figure 3.3: Annotation example screenshots from CVAT.

The annotations for YOLOv7 was done with CVAT. Different annotation shapes
were tried, such as rectangles, polylines, polygons, keypoints. For the actual
YOLOv7 model, polylines and polygons did not work, and when trying to use
keypoint annotations, it came for a day that it is not straight forward to imple-
ment a custom keypoint modelvin YOLOv7. Searching the Internet revealed that
other people has also been looking for ways of doing custom keypoint models
in YOLOv7, but no hints/solutions/tutorials were found at the time of writing
this report. YOLOv7 can be used for human pose estimation as per COCO 2020
Keypoint Detection Task, detecting 17 keypoints on a human body, but to make
a custom YOLOv7 model with less number of keypoints, and for more than one
class, one would need to get well under the hood of the YOLOv7 algorithm.
Since tweaking the existing YOLOv7 code (from the source on GitHub[11]) to
achieve a better estimate would require a lot of development time, an alterna-
tive approach was opted for with Detectron2. Thus, only rectangular bounding
box annotations were made for the YOLOv7 model. However, a possible future
implementation of custom keypoint detection might not turn out be so difficult
and time consuming as anticipated here.

v. Custom model here means a model that is built for a different task than the standard

https://cocodataset.org/#keypoints-2020
https://cocodataset.org/#keypoints-2020
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For the anus opening, the bounding box should be centered on the opening,
and be wide enough so that a small part of the anal fin behind be present inside
the rectangle. Idea of including part of the anal fin is to prevent false detections
from scattered blood stains or other debris on the fish that incorrectly could
be recognized as an anus opening. For the pelvic fins, the midpoint of the
bounding box should be centered on the centerline between the two fins. The
ideal starting point for the cutting process should be on, or very close to the
midpoint of the left edge of the rectangle. See example in figure 3.3a. The
neighboring figure 3.3b shows an annotation example of the conveyor rack.
In the first annotation round, only one of the long side edges of the rack tops
was covered by the bounding box, but after training the model was not able to
detect the rack tops, so the annotations had to be changed so that the bounding
boxes were completely surrounding the rack tops.
YOLOv7 has it’s own annotation format, and for bounding boxes YOLOv7 is
using coordinates relative to the image size (fractional number between 0 and
1), and is referencing the box by it’s center point coordinates, height and width.
The CVAT format for a bounding box is referencing it in absolute coordinates (in
pixels) by it’s top left corner and bottom right corner. Yet another format is the
"standard" COCO-format, which is using the top left corner, height and width
in absolute coordinates to reference the same bounding box. Hence, it is very
important to choose the correct format when exporting the final annotations.
YOLOv7 also requires the annotations in ordinary text files, one text file with
annotations per image stored in a separate "labels" folder. The corresponding
images must be in a neighboring "images" folder. In addition, the filenames
need to be equal for both images and labels(except for the filetype suffix).
Tables C.1 and C.2 in appendix C.1 contain annotation data relevant for the
suggested solution. The ideal cutting length for the actual fish is located in
the rightmost column. In the neighboring column to the left, is the estimated
cutting length to be compared with the ideal cutting length. The estimated
cutting length is computed by dividing the annotated cutting distance [pix-
els] by the pixel-per-millimeter scale [pix./mm]. As the fish, from one image
to another, propagates over the scene, the scale values are slowly increasing
due to the perspective of the camera. The scale is computed for the center-
line between the lower and upper rack tops, which is approximately also the
centerline of the fish. The scale computation is done by first finding the rack
top width at the centerline. This is simply done by adding the widths of lower
and upper rack top and dividing by two. Although not 100% representative
for the rack top width at the centerline, the deviation from the true centerline
is negligible. The centerline width is then divided by the true measure of the
rack top width in millimeters to get the pixel scale. The true rack top width
is 463 millimeters. The bottom part of the table contains statistics about the

COCO challenges that many of these algorithms are built for and evaluated against.
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values in each column. This to be able to say something about the annotation
quality. The variation and standard deviation for the width of the rack tops
seems relatively large (in pixels), this is the perspective giving variable values
along the scene, and these statistics can be ignored. The important statistics
are those about the cut length. are just under 1 millimeter, and that implies
the annotations have consistent size and position relative to the target. So, the
annotations are quite accurate, but they also seem to constantly miss the target
by around 5 millimeters. Explanation for this is that the width of bounding
boxes are always outside of the object (rack tops), hence the pixel scale value
will become slightly too large, and subsequently the cut length will always be
a bit short of the target value. It is possible to correct for this just by including
an offset in the calculations.

Annotations for Detectron2

(a) COCO-Annotator - 4 classes with 2 key-
points.

(b) COCO-Annotator - 1 class with 6 key-
points.

Figure 3.4: Annotation example screenshots from COCO-Annotator.

While custom keypoints was not so simple to implement in YOLOv7, it was rela-
tively easy to customize Detectron2 for any number of keypoints simply by modi-
fying some settings in the configuration. Detectron2 supports the COCO-format,
and as the keypoint annotations forDetectron2were done with COCO-annotator
which only exports in COCO-format, one did not have to think about the correct
annotation format conversion/export. However, Detectron2 has a limitation re-
garding custom keypoints. If there are more than one class having keypoint
annotations, the number of keypoints has to be equal for all classes.
During the keypoint experiments, one model evolved into three different De-
tectron2 models, each needing their own set of annotations. The first keypoint
model had 4 classes with 2 keypoints each, as can be seen in figure 3.4a. From
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here on called Det2-4cls-2kpts. The classes and keypoints were given logical
and descriptive names:

1. "Cod"
• Keypoints: ("Anus", "Pelvic fins")

2. "Rack top, Lower"
• Keypoints: ("Farside", "Opside")

3. "Rack top, Upper"
• Keypoints: ("Farside", "Opside")

4. "Hands"
• Keypoints: ("Index finger", "Middle finger")

The second model have 1 class with 6 keypoints, as shown in figure 3.4b, from
here on called Det2-1cls-6kpts:

1. "Fish_in_rack"
• Keypoints: ("Rack-L_farside", "Rack-L_opside", "Rack-U_farside", "Rack-

U_opside", "Anus", "Pelvic fins")

Finally, the third and last Detectron2 model got 3 classes with 2 keypoints each,
from here on called Det2-3cls-2kpts:

1. "Cod"
• Keypoints: ("Anus", "Pelvic fins")

2. "Rack top"
• Keypoints: ("Farside", "Opside")

3. "Hands"
• Keypoints: ("Index finger", "Middle finger")

In appendix C.2 and C.3 are tables showing relevant annotation data for the
Det2-4cls-2kpts and Det2-1cls-6kpts models. The column headers and the statis-
tics part are same as for the YOLOv7 annotation tables (described in 3.3.1), so
no need to give another explanation of the content. The Det2-3cls-2kpts model
was abandoned late in the project as it proved impossible to differ between
the keypoints of the lower and upper rack tops, and the model also failed to
detect rack top keypoints, so all data from this model has been taken out of
this report.
Just like for the YOLOv7 annotations, the variance and standard deviation seems
quite large for the rack widths, but again the corresponding statistics for the
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cut lengths are acceptably smaller, roughly between one and two millimeters
only, for both Det2-4cls-2kpts and Det2-1cls-6kpts. When comparing the anno-
tated cut length with the ideal cut length, one can see that it is roughly 7 to 8
millimeters shorter than the target for fish #2 with 150 millimeters, but just a
tiny fraction below the target of 180 millimeters for fish #5. It is not absolutely
clear why, but the measurements were done with a flexible measuring band, so
one explanation could be that the band was following along the circumference
of the fish belly, and therefore measured a longer distance than the direct hori-
zontal distance as seen by the camera. For farmed cod in this case, small/short
fish tend to have a more "balloon-like" belly curvature than the larger/longer
fish, and thus the difference in estimated and measured length would be larger
for the smaller fish.



4
MLmodels
4.1 State-of-the-art

Computer vision and machine learning have made significant progress in re-
cent years, with many applications in areas such as object detection, image
classification, and face recognition. This section is an overview of the related
research in the field of computer vision and machine learning that is relevant
for the fish industry.
Object detection is a fundamental problem in computer vision, which involves
identifying the presence and location of objects in an image. Over the years,
several approaches have been proposed to address this problem, including slid-
ing window-based methods, region-based methods, and anchor-based methods.
One of the most popular anchor-based methods is YOLO, which was first intro-
duced in 2015[12]. Since then, several versions of YOLO have been proposed,
which is known for their high accuracy and fast inference speed.
Another popular approach for object detection is two-stage detection, which
involves generating region proposals followed by classification and bounding
box regression. One of the most widely used two-stage detectors is Faster R-
CNN, which was introduced in 2015. Since then, several variations of Faster R-
CNN have been proposed, includingMask R-CNN,which adds a mask prediction
branch to the original Faster R-CNN. Facebook’s Detectron2[10] is also a two-
stage detector, with ability to perform detection tasks such as bounding-box
detection, instance and semantic segmentation, and keypoint detection.
Keypoint detection is another important problem in computer vision, which
involves identifying specific points or landmarks on an object. One of the most
popular methods for keypoint detection is the DeepPose model[13], which
was introduced in 2014. Since then, several variations of DeepPose have been
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proposed, including the convolutional pose machines (CPMs)[14], which use a
sequence of convolutional networks to refine the initial predictions. Recently,
there has been a growing interest in using deep learning techniques within
fisheries, aquaculture and agriculture. Several approaches have been proposed
for detecting fish in underwater images and videos, including deep learning-
based methods. Listed below are a few studies that have been relevant for this
project.

• A peduncle detection method of tomato for autonomous harvesting[15]
• Multi-level feature fusion for fruit bearing branch keypoint detection[16]
• Improving fish from catch to the consumer[17]
• Robust automatic net damage detection and tracking on real aquaculture

environment using computer vision[18]
• Deep Semisupervised Semantic Segmentation inMultifrequency Echosounder

Data[19]
• A visual detectionmethod for nighttime litchi fruits and fruiting stems[20]
• Vegetable Size Measurement Based on Stereo Camera and Keypoints

Detection[21]
• Yolov4-tiny with wing convolution layer for detecting fish body part[22]

Since both the object detection models mentioned above have well developed
source code[11][10], and relatively easy to take in use, they were chosen for the
ML experiments in this project were we compared keypoint based Detectron2
models with region based single shot detectors such: YOLOv7 models. Our
initial assumption was that a keypoint based model could be better suited for
our task.

4.2 YOLO

YOLOv7[9] is the latest versionviof the YOLO series and is considered one of
the fastest object detection models available. Research on YOLOv7 has focused
on improving its accuracy and efficiency, including the use of feature pyramids,
anchor boxes, and multi-scale training. YOLOv7 is a one-stage object detection
model that directly predicts the class and location of objects in the image.
YOLOv7 takes an image as input and passes it through a series of convolutional
and max pooling layers to extract features. For feature extraction, YOLOv7 uses
a series of convolutional and max pooling layers to extract features from the
input image. Then the extracted features are passed through several prediction
layers thatmake predictions about the presence of objects in the image and their
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locations. Next, YOLOv7 uses anchor boxes to make predictions about the size
and shape of objects in the image. To eliminate overlapping bounding boxes
and obtain the final detections, YOLOv7 applies Non-Maximum Suppression
(NMS) on the predictions. The YOLOv7 model is trained using a multi-scale
training approach and uses a custom loss function that takes into account the
accuracy of bounding box predictions, objectness predictions, and classification
predictions.

4.2.1 Choice of YOLO models

There are different sized YOLOv7 models to chose from, ranging from roughly
151 million down to 6 million parameters. The larger ones from 100 million
parameters are meant for running on high-end cloud GPUs, the small ones
between 6 to 70million parameters are meant for consumer (normal) GPUs and
edge GPUs. For this project the two models with the least number of parameters
were selected, YOLOv7 std. with 37 million parameters and YOLOv7 tiny with
6 million parameters. These are mentioned further in this document just as
YOLOv7 std. and YOLOv7 tiny. Plan is to run the finalCV system on an embedded
computerwith an edge GPU and one would like the predictions to be reasonably
fast, so the final, recommended model should not be too big.
For the two YOLOv7models, their standard configuration was used, only adapted
for number of classes and class names. The configuration for both models are
found in appendix A. For training, the model reduced the input images to
640x640 pixels.

4.3 Detectron2

Detectron2 is a popular open-source framework for computer vision and ma-
chine learning developed by Facebook AI. It is used for various computer vision
tasks including object detection, instance segmentation, and keypoint detec-
tion. Research on Detectron2 has focused on improving its performance and
efficiency, as well as exploring its use for various computer vision tasks.
Detectron2 is a two-stage object detection model that uses a backbone network,
such as ResNet or FPN, to extract features from the input image, and a Region
of Interest (RoI) head predicts the class and location of objects in the image.
Detectron2 is trained using a multi-task loss function that takes into account
the loss from multiple heads and the accuracy of multiple predictions.

vi. A bird twittered that a YOLO version 8 has been released recently, but at the time of writing
there has not been time to verify this.
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4.3.1 Setup of Detectron2

The source code for Detectron2 is made flexible for users to customize for own
projects, but it takes some effort to get your custom code to work properly.
For this project, functions like file/folder handling, trainer, augmentation and
evaluation were modularized.
Pre-trained weights for ResNet-50 were used for training to keep the number
of parameters around same level as the YOLOv7 std. model. The configuration
for both models are found in appendix B. For training, the model reduced the
input images to 640x571 pixels (original aspect ratio).

4.4 Computing resources for training

Mainly free, open source software has been used in this project. The most
important ones being VSCode and Anaconda with Spyder for programming
theML algorithms in Python, and a LATEXcombination of MikTex, TexMaker and
VSCode for writing this thesis. All running on a consumer grade, Windows 10
laptop, without an ML compatible GPU from Nvidia.

4.4.1 WSL2 and Docker

The two web-based data annotation programs were both installed locally on the
Windows laptop with Docker images on Windows Subsystem for Linux, version
2 (WSL2). They could then be opened in the standard internet browser of
the computer and have direct access to the file system, without the need for
transferring a lot of image files over the internet.

4.4.2 Google Colab

The very first training of the YOLOv7 std. model was done online with Google
Colab Pro (paid subscription). The power and speed of Google’s high-end GPUs
made the training very fast, but due to a combination of cost and cumbersome,
time consuming data transfer ofmany largeML files, this option was abandoned
in favor of a local hardware alternative at the UiT The Arctic University of Norway
(UiT).
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4.4.3 Local GPU cluster

The ML group at UiT has a GPU cluster called Springfield[23], that is put avail-
able for graduate students. All but one training session and all the predictions
were run on Springfield. Getting access to and learning how to use Springfield
took a few days, but then it was easy and straightforward to get a good setup
for folder structure and a decent work flow.
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5
Experiments
5.1 YOLOv7 training

TheYOLOv7 std. model was trained for 100 epochs and the YOLOv7 tiny model
for 200 epochs. Pretrained weights from the COCO dataset (provided with the
YOLOv7 source code[11]) were used to get a "flying" start for bothmodels.
The first training of the YOLOv7 std.model was not successful as it was not able
to detect the rack tops during validation. The problem seemed to be that the
height/width ratio of the bounding boxes was very small, only covering one
of the long edges of the rack tops, so the annotated features probably became
too small for the model to make a good feature map. After increasing height
of the rack top annotations, so that whole of the lower/upper rack top was
inside the bounding box, the model performed better and was able to detect
all of the five classes after training. The confusion matrices in figures 5.1 and
5.2 gives a good visualization of the improvement from first to second model.
The confusion matrix and loss/performance curves for the training are shown
in figure 5.3 and 5.4, respectively. The precision and recall curves peaks close
to 1, as does the mAP curves.
YOLOv7 tiny was quickly set up same way as YOLOv7 std., only adapted the
standard config files with number of classes and class names before training.
The confusion matrix and evaluation curves for the training are shown in figure
5.5 and 5.6, respectively. Like for YOLOv7 std., the performance is peaking close
to 1. The val Classification loss curve is a bit unstable with an increasing trend,
but none of the other loss curves have any particular signs of overfitting, so no
changes in config or number of epochs done.
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Figure 5.1: YOLOv7 std. confusion matrix from initial test training - with slim (long
and thin) rack top annotations.
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Figure 5.2: YOLOv7 std. confusion matrix after enlargement of the rack top annota-
tions.
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Figure 5.3: Confusion matrix from training of YOLOv7 std..

Figure 5.4: Loss and performance curves from training of YOLOv7 std..
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Figure 5.5: Confusion matrix from training of YOLOv7 tiny.

Figure 5.6: Loss and performance curves from training of YOLOv7 tiny.
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5.2 Detectron2 training

The idea to develop a keypoints model is that keypoint detection could pos-
sible be more precise for the purpose of accurately estimating position of and
distance between the keypoints than would be for a more "floating" bounding
box detection. Three different Detectron2 keypoint models were used for the
experiments. Annotating images is a time consuming task and for this project,
in order to achieve a first working model, we had to use quite a lot of time on
annotation and setup of the model programming codes.
To start with, a few short training runs were made to find a suitable learning
rate range for the experiments. ForDet2-1cls-6kpts andDet2-4cls-2kpts the range
(0.005 - 0.015) was ok, but for Det2-3cls-2kpts lr = 0.015 was close to the upper
limit as giving occasional early stops in training due to infinite values.
As the standardDetectron2 source code does not do augmentations on the input
images, another experiment was to add augmented images of the dataset. At
first, a few different augmentations and transformations from the Python Albu-
mentation[24] package were added, like Spatter, RandomFog and RandomRain.
Idea was to make the model more robust by imitating debris on the camera
lens, like blood stains or water condensation and water drops. However, this
gave a performance drop in object detection under normal conditions for all
models. In a second augmentation attempt, in order to improve the general
performance, made only color transformations and image enhancement (also
from the Albumentation package) like ChannelShuffle, Sharpen, FancyPCA[25],
CLAHEvii.
Of all the three Detectron2 models, Det2-3cls-2kpts had the lowest performance.
The average precision for the rack keypoints was never better than 5%, and
adding color- and contrast-enhanced images made it even worse, as can be seen
in figure 5.7. Most likely, due to having both the lower and upper rack top as one
class, made the model confused. Not a problem for the bounding box detection,
but since the keypoints are positional related, the keypoints positional order
flips between the lower and upper rack top due to their symmetry. This duality
caused the model to fail, and it also became impossible to compute prediction
statistics, so all work on this model stopped here, and no results from this model
is presented in this report.
Of the remaining Detectron2 models, Det2-1cls-6kpts had clearly the best key-
point precision curves, with AP with roughly 70% andmAP close to 100%. With
Det2-4cls-2kpts, AP for the rack top keypoints was peaking at only 10%, and
peaking at 40% for the cod keypoints. The respective curves are put next to
each other in figure 5.8 for comparison.

vii. Contrast Limited Adaptive Histogram Equalization
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(a) Keypoint precision curves without extra augmentations.

(b) Keypoint precision curves with extra augmentations.

Figure 5.7: Keypoint precision curves for Det2-3cls-2kpts. Adding color- and contrast-
augmented images made the model’s performance worse.
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(a) Keypoint precision curves for Det2-4cls-2kpts.

(b) Keypoint precision curves for Det2-1cls-6kpts.

Figure 5.8: Keypoint precision curves for Det2-4cls-2kpts and Det2-1cls-6kpts.
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Results
6.1 YOLOv7 results

Although the YOLOv7 models was only run with the standard configurations,
they show very good performance. The predictions are precise and stable,
definitely not bad for non-tweaked algorithms. As one can see in the subsequent
prediction data tables and regression plots, it is clear that the YOLOv7 std.
model has the absolute lowest variation and standard deviation of all the ML
models in this project. YOLOv7 tiny being second best, and even outperforms
all the other models on the difficult first fish in the prediction dataset, missing
only one detection of the pelvic fins. This first fish is quite small and has an
awkward posture, like it is on the brim of sliding out of the rack, therefore the
algorithms seem to have trouble making good detections on that one. In figure
6.1, is shown the predictions done by YOLOv7 std. and YOLOv7 tiny on the same
image, for which YOLOv7 tiny were able to detect all Regions of Interest (RoIs),
while YOLOv7 std. missed the pelvic fins. For all the frames of fish #1, YOLOv7
std. did miss in total seven detections of the pelvic fins and so failed to compute
a cut length for the image-ids 12 to 18.
In the predictions data tables D.1 through D.4, are the predictions in numbers
and the corresponding statistics for four selected fish sequences. Again, like for
the annotation data tables, the variance and standard deviation of the rack top
widths are not so interesting. The important numbers are for how precise the
estimated cut length will be. For YOLOv7 std., the standard deviation for the
estimated cut length is just under 2 millimeters for all sequences, except for
the first, difficult fish where it jumps to 4 millimeters. YOLOv7 tiny estimated
cut length has a standard deviation of just over 5 millimeters for the first fish
and between 1 and 3 millimeters for the other fish sequences.
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(a) Predictions on fish #1 - YOLOv7 std. (b) Predictions on fish #1 - YOLOv7 tiny

Figure 6.1: Comparing object detection performance on image-id #13 of fish #1. Cor-
responding data tables D.1 and D.5 for (a) and (b) respectively.

(a) Predictions on fish #3 - YOLOv7 std. (b) Predictions on fish #3 - YOLOv7 tiny

Figure 6.2: Comparing object detection performance on image-id #48 of fish #3.
Corresponding data tables D.2 and D.6 for (a) and (b) respectively.
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(a) Predictions on fish #5 - YOLOv7 std. (b) Predictions on fish #5 - YOLOv7 tiny

Figure 6.3: Comparing object detection performance on image-id #106 of fish #5.
Corresponding data tables D.3 and D.7 for (a) and (b) respectively.

(a) Predictions on fish #8 - YOLOv7 std. (b) Predictions on fish #8 - YOLOv7 tiny

Figure 6.4: Comparing object detection performance on image-id #173 of fish #8.
Corresponding data tables D.4 and D.8 for (a) and (b) respectively.
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6.1.1 Linear regression of the YOLOv7 models’ predictions

Another quality check of the model’s performance, is to extract some important
data and perform regression on them to visually present the results. Here, it
is natural to use the rack width data, as they are definitely moving linearly
and they have a rigid, fixed size. The fish has a soft and flexible body, and
although it’s fixed in the rack, it might move around a bit, so the points on the
fish will be less fit for this purpose. Figure 6.5 shows plots of the Ordinary Least
Squares (OLS) regression lines fitted to the rack top keypoints. Both models
show relatively steady predictions. The YOLOv7 std. model have some odd
outliers at the scene extremities, but the variation is quite low. The YOLOv7 tiny
model has no outliers, but the variance is somewhat larger than for YOLOv7
std.. Looking through all predictions, the outliers come from six false positives
with confidence values ranging from 0.29 to 0.62. The confidence threshold
was set as low as 0.25, an upping to 0.35 would have removed half of the false
detections. The remaining three comes from the lower left corner of the scene,
for when the conveyor comes to a certain position, the structure looks just like
the corner of a lower rack top. A more tight cropping of the scene would have
removed this situation, but was impossible to see beforehand. With camera
mounted in a more appropriate position, this exact problem is not likely to be
an issue in the future.
In the regression tables 6.1, 6.2, 6.3 and 6.4 are the cumulated statistics for each
of the midpointsviiiof the rack’s side edges, as they move from top to bottom of
the scene for every fish in the predictions dataset.

viii. These midpoints are being used as "rack keypoints" so the YOLOv7 models’ predictions can
be comparable to the two Detectron2 models.
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(a) Linear regression of the YOLOv7 std. predictions on the racks. Corresponding statistics tables
6.1 and 6.2

(b) Linear regression of the YOLOv7 tiny predictions on the racks. Corresponding statistics tables
6.3 and 6.4

Figure 6.5: Plots of the rack top predictions together with corresponding regression
lines for both YOLOv7 std. and YOLOv7 tiny model.
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Table 6.1: OLS coefficients statistics from regression of rack keypoints from predictions
of YOLOv7 std., cumulated per fish-scene for whole of dataset 18.5.

OLS coeffs. OLS coeffs.
Keypoint mean median

id b0 b1 b0 b1

UF 983.9 −5.973 1.004 × 103 −6.247
UO −7.521 × 103 8.360 −8.038 × 103 8.921
LF 915.9 −5.225 947.3 −5.905
LO −8.196 × 103 9.141 −8.914 × 103 9.897

OLS coeffs. OLS coeffs.
Keypoint var std

id b0 b1 b0 b1

UF 9.975 × 103 1.061 99.87 1.030
UO 4.931 × 106 5.533 2.221 × 103 2.352
LF 1.038 × 104 4.054 101.9 2.013
LO 4.974 × 106 5.325 2.230 × 103 2.308

Table 6.2: OLS residuals statistics from regression of rack keypoints from predictions
of YOLOv7 std., cumulated per fish-scene for whole of dataset 18.5.

Keypoint Cumulated OLS residuals
id mean median var std

UF −1.642 × 10−15 −1.553 4.832 × 103 41.41
UO −3.290 × 10−13 −1.291 2.619 × 103 34.67
LF 1.156 × 10−14 0.9265 792.5 18.93
LO −4.210 × 10−13 −1.235 2.215 × 103 34.58
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Table 6.3: OLS coefficients statistics from regression of rack keypoints from predictions
of YOLOv7 tiny, cumulated per fish-scene for whole of dataset 18.5.

OLS coeffs. OLS coeffs.
Keypoint mean median

id b0 b1 b0 b1

UF 937.8 −5.790 928.0 −5.727
UO −7.015 × 103 7.748 −6.972 × 103 7.701
LF 1.032 × 103 −6.457 1.027 × 103 −6.365
LO −8.044 × 103 8.963 −8.112 × 103 9.020

OLS coeffs. OLS coeffs.
Keypoint var std

id b0 b1 b0 b1

UF 1.156 × 103 1.079 34.00 0.3285
UO 1.334 × 106 1.421 1.155 × 103 1.192
LF 2.862 × 102 1.052 16.92 0.3243
LO 4.662 × 105 4.942 682.8 0.7030

Table 6.4: OLS residuals statistics from regression of rack keypoints from predictions
of YOLOv7 tiny, cumulated per fish-scene for whole of dataset 18.5.

Keypoint Cumulated OLS residuals
id mean median var std

UF 5.189 × 10−14 2.709 750.7 26.45
UO 1.498 × 10−13 −0.5961 1.739 × 103 41.14
LF 9.978 × 10−14 −2.679 682.2 25.86
LO 1.286 × 10−13 2.200 1.855 × 103 42.13
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6.2 Detectron2 results

The Det2-4cls-2kptsmodel has big problems detecting the rack keypoints, result-
ing in none or completely incorrect cut length estimations. The prediction data
tables in appendix ?? presents the predictions in numbers and statistics.
On the other hand, Det2-1cls-6kpts is giving much better numbers, in appendix
D.4 the data tables D.13 through D.16, one can see that the variation and stan-
dard deviation of the pixel scale values are on par with YOLOv7. However,
Det2-1cls-6kpts is a bit more unstable than YOLOv7 in general. Like YOLOv7
for the image-ids 12 to 18, it failed to compute a adequate cut length on the
difficult fish #1. On figure 6.6 one can see that Det2-4cls-2kpts fails to correctly
detect the rack keypoints, and Det2-1cls-6kpts fails to detect the keypoints for
anus and pelvic fins.
In the predictions data tables D.9 through D.12 for Det2-4cls-2kpts and D.13
through D.16 for Det2-1cls-6kpts, are the predictions in numbers and the corre-
sponding statistics for the same four selected fish sequences as for the YOLOv7
models. For Det2-4cls-2kpts, the standard deviation for the estimated cut length
is not giving reasonable values for any sequences. This model fails to detect
the rack keypoints, and therefore is not able to estimate the cut length prop-
erly. Det2-1cls-6kpts gives stable values close to the target cut length, and the
estimated cut lengths have standard deviations varies from 2 to 12 millimeters,
and goes up to just over 23 millimeters for the first fish.

(a) Predictions on fish #1 - Det2-4cls-2kpts (b) Predictions on fish #1 - Det2-1cls-6kpts

Figure 6.6: Comparing object detection performance on image-id #13 of fish #1. Cor-
responding data tables D.9 and D.13 for (a) and (b) respectively.
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(a) Predictions on fish #3 - Det2-4cls-2kpts. (b) Predictions on fish #3 - Det2-1cls-6kpts.

Figure 6.7: Comparing object detection performance on image-id #48 of fish #3.
Corresponding data tables D.10 and D.14 for (a) and (b) respectively.

(a) Predictions on fish #5 - Det2-4cls-2kpts. (b) Predictions on fish #5 -Det2-1cls-6kpts.

Figure 6.8: Comparing object detection performance on image-id #106 of fish #5.
Corresponding data tables D.11 and D.15 for (a) and (b) respectively.

6.2.1 Linear regression of the Detectron2 models’
predictions

Like done for YOLOv7, figure 6.10 shows plots of the OLS regression lines fitted
to the rack top keypoints. The regression lines for Det2-4cls-2kpts The predicted
points are more or less chaotically spread around the scene, and hence the
regression lines are going anywhere but the direction they are expected to do.
The Det2-1cls-6kpts model does much better, only the lower rack keypoint on
the operator’s side that are heavily influenced by outliers. The regression lines
are drawn up using the median of the fitted parameters in order to be less
affected by the outlier predictions. Towards the center of the plots, one notices
a series of stand-alone UF keypoints. Taking a look at figure 6.9, it is easy to
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(a) Predictions on fish #8 - Det2-4cls-2kpts. (b) Predictions on fish #8 - Det2-1cls-6kpts.

Figure 6.9: Comparing object detection performance on image-id #175 of fish #8.
Corresponding tables D.12 and D.16 for (a) and (b) respectively.

spot the reason, a thick line of blood residue across the upper rack is being
wrongly detected as the UF keypoint by both models.
In data tables 6.5, 6.6, 6.7 and 6.8 are the cumulated statistics for each of the
rack keypoints, as they move from top to bottom of the scene for every fish in
the predictions dataset.

Table 6.5: OLS coefficients statistics from regression of rack keypoints from predictions
of Det2-4cls-2kpts, cumulated per fish-scene for whole of dataset 18.5.

OLS coeffs. OLS coeffs.
Keypoint mean median

id b0 b1 b0 b1

UF 351.0 −0.4122 364.1 −0.026 74
UO −469.1 1.061 66.74 0.3534
LF 659.3 −3.109 779.2 −4.076
LO 539.5 −0.4342 585.9 −0.1620

OLS coeffs. OLS coeffs.
Keypoint var std

id b0 b1 b0 b1

UF 4.839 × 104 2.750 220.0 1.658
UO 1.783 × 106 2.856 1.335 × 103 1.690
LF 8.973 × 104 1.184 299.5 3.442
LO 6.788 × 104 2.615 260.5 1.617
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(a) Linear regression of the Det2-4cls-2kpts predictions on the rack keypoints.

(b) Linear regression of the Det2-1cls-6kpts predictions on the rack keypoints.

Figure 6.10: Plots of the rack top predictions together with corresponding regression
lines for both Det2-4cls-2kpts and Det2-1cls-6kpts model.
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Table 6.6: OLS residuals statistics from regression of rack keypoints from predictions
of Det2-4cls-2kpts, cumulated per fish-scene for whole of dataset 18.5.

Keypoint Cumulated OLS residuals
id mean median var std

UF 4.436 × 10−14 0.057 13 2.896 × 103 44.58
UO −2.254 × 10−13 1.491 2.545 × 103 41.33
LF 1.858 × 10−13 1.444 1.180 × 103 30.15
LO 3.792 × 10−14 1.075 2.950 × 103 45.02

Table 6.7: OLS coefficients statistics from regression of rack keypoints from predictions
of Det2-1cls-6kpts, cumulated per fish-scene for whole of dataset 18.5.

OLS coeffs. OLS coeffs.
Keypoint mean median

id b0 b1 b0 b1

UF 830.7 −5.531 875.5 −6.151
UO −7.580 × 103 9.936 −7.644 × 103 10.04
LF 806.0 4.813 815.9 −4.962
LO −1.923 × 103 3.044 −834.7 1.708

OLS coeffs. OLS coeffs.
Keypoint var std

id b0 b1 b0 b1

UF 1.401 × 104 2.775 118.4 1.666
UO 1.719 × 105 0.2717 414.6 0.5213
LF 1.277 × 103 0.7318 35.74 0.8554
LO 8.761 × 106 12.98 2.960 × 103 3.603

Table 6.8: OLS residuals statistics from regression of rack keypoints from predictions
of Det2-1cls-6kpts, cumulated per fish-scene for whole of dataset 18.5.

Keypoint Cumulated OLS residuals
id mean median var std

UF 3.076 × 10−14 −0.094 56 1.844 × 103 29.17
UO −2.299 × 10−13 −1.099 528.3 22.55
LF 6.115 × 10−14 −6.408 4.615 × 103 62.34
LO −3.128 × 10−14 2.208 1.435 × 104 111.7
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7
Discussion
7.1 Proposed solution

From the results of the experiments, there is not a clear winner of the four
remaining ML models, but there is one clear loser. Det2-4cls-2kpts is falling
behind on all measures. It has the absolute lowest numbers of acceptable cut
length estimations (in millimeters) because of problems detecting the rack
keypoints, even though it’s estimated belly line (in pixels) doesn’t actually
deviate much from the other models. Since, in these models, the computation
of the cut length is dependent on proper detection of the rack keypoints, Det2-
4cls-2kpts cannot work as intended. If, however, the camera had been looking
vertically down on the conveyor racks, there wouldn’t have been much of a
perspective to account for in the scene, and a fixed pixel scale could have been
used to compute the cut length in millimeters. Then, Det2-4cls-2kpts would
probably been able to do make some decent cut length estimations. However,
one weakness of setting a fixed pixel scale, is that the cut length estimation
becomes wrong if (sometime in the future) the camera is being replaced by
one with a higher resolution, or if the distance between camera and rack/fish
changes. A dynamically computed pixel scale is invariant of camera resolution
or changes in distance. In the end, it is also about trusting the predictions, and
Det2-4cls-2kpts seems too inaccurate to be trusted for this project.
Taking a closer look at the spread in the models’ estimated cut length, it is
timely to ask what the acceptable limits are. Thus, if the algorithm is very
good at accurately detecting the anus opening and the width of the rack tops
(or trained to recognize any other background object with fixed and known
measures), then it will satisfy the requirement to be used in a CV system for
Folla. Unfortunately maybe, that extracting the the anus detections data was
not done before deadline for this thesis, as it would also be good to know how
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well these models performs on that. Should be done in the continuation of this
project.
The next Detectron2 model, Det2-1cls-6kpts, is much more trustworthy in it’s
predictions of the rack keypoints. The standard deviation in estimated cut
length, for the selected fish in chapter 6, lies in general between 2.5 mm to
11.9 mm, increasing up to 23.5 mm for the small and oddly positioned fish #1.
However, in figure 6.6b one can see an issue with this model; the anus keypoint
detection is completely wrong. According to [21] and [26], keypoint detection
networks using low-level feature maps and a small training dataset, can have
problems detecting small objects and keypoints. It seems reasonable to believe
that this is exactly what is being observed here with Det2-4cls-2kpts and Det2-
1cls-6kpts. Again, with the camera mounted inside the Folla machine, looking
vertically down on the conveyor, and retraining the model with a expanded
dataset, the problems with small and odd fish would much likely be reduced
to a negligible level. And occasional odd cut length estimations are possible
to average out over a few detections, and also excluding estimations located
outside a specified range of coordinates or having too large of an angle. Since
this model need extra work to improve the accuracy, while still having some
extra uncertainty attached, it cannot be recommended for use in the Folla
machine at the moment.
Predictions with the two YOLOv7 models are definitely more stable than the
Detectron2 models. However, they are not directly comparable the way it has
been done here in this project. Thinking about it now at the end of working
on this thesis, also the bounding boxes of the Detectron2 models should have
been analyzed. Then it would have been possible to do a direct comparison,
but then again only for Det2-4cls-2kpts which detects the rack tops equally as
the YOLOv7 models. Anyway, the important part here is to obtain accurate and
repeatable predictions within the desired limits for the cutting the fish belly,
so if done with bounding boxes or keypoints doesn’t really matter. Here in this
project, both the two YOLOv7 models have shown ability to do exactly that.
Figure 6.5 shows that YOLOv7 tiny has the "keypoints" a little bit more spread
out, which should be expected given the lightweight network size. The results
from this project shows that both the YOLOv7 models can be recommended for
use in a CV system for Folla.

7.2 Future work

There was hope that this Master thesis would also manage to explore the imple-
mentation of CV in the Folla machine, but the time spent for extra annotations
and experimenting with keypoint detections, pushed this over to future work.
Roughly speaking, the remaining work can be listed like this:
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• Determine detection speed (FPS) of the recommended ML models, and
what speed that is needed for the machine to process the fish fast enough.
Then select the best overall model for the CV.

• Find and select a suitable embedded computer for running the CV system.
NVIDIA’s Jetson seems like a good option.

• Fine-tune, shrink the numbers of parameters and deploy the model.
• Find the best way of communication/interaction between CV system and

the PLC in Folla.
• Find suitable location for camera in Folla.
• Obtain new, purpose-built dataset with camera mounted in Folla.
• Annotate new dataset.
• Retrain and fine-tune the selected ML model.
• Install and test embedded CV system.
• Make a plan for how the CV system should handle unknown situations or

unexpected events, and how the operator could be able to resolve such
problems.

7.2.1 Future development

The suggested solution is only monitoring the conveyor racks in 2D, so there
might come to situations where 3D vision is needed for making proper cuts.
Then one would better see the profile of the belly. 3D vision will make it possible
to maneuver the knife more precisely and adapt the cutting depth from start
to end, causing less damage to the intestines with consumer value e.g., liver
and roe. Perhaps also an evaluation of the cut can be made in posteriori, and
thereby perform some kind of calibration of the knife positioning system or
other measures.





8
Conclusion
This master project was inspired by challenges faced by commercial fisheries
in the north of Norway of controlling food quality and food safety. In this
thesis, four different ML models’ ability to do object and keypoint detection on
specific anatomy parts of fish, has been studied. With the aim of recommending
a suitable model to be part of a CV system for an industrial fish gutting machine
that cuts open the fish belly between the pelvic fins and the anus. Requirement
that the rotating knife shall not cut into the flesh behind the anus opening,
and cut should end (or start) maximum 5 millimeters from the anus opening.
Likewise, at the pelvic fins, the cut shall start (or end) 15 millimeters from target
along the centerline of the fish, and a sideways offset of roughly ±5millimeters
can be acceptable, depending on the length of the fish.
The experiments were performed with two YOLOv7 and two Detectron2models,
YOLOv7 for object detection with bounding boxes, and Detectron2 for keypoint
detections. The results showed that only one of the Detectron2 models was able
to do keypoint detection repeatedly, but the achieved accuracy was not good
enough. Both the YOLOv7models were able to meet the cut length requirements
and are both got recommended for use in the suggested CV solution.
More work still remains before one of the YOLOv7 models can be taken in use,
such as determining the object detection speed, finding a suitable embedded
computer with GPU to run the CV system on, determining the best way of
communication between the PLC in Folla and the CV system and finding a
suitable location for a camera inside the Folla machine.
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A
Configuration for Yolov7
A.1 YOLOv7 config

# ------------ From ’data.yaml ’ ----------------------
# dataset paths
train: ../ data/DataSet -17.1/ train/images # 436/624 images (70 %)
val: ../ data/DataSet -17.1/ val/images # 125/624 images (20 %)
test: ../ data/DataSet -17.1/ test/images # 63/624 images (10 %)

# number of classes
nc: 5

# class names
names: [’Anus’, ’Pelvic␣fins’, ’Rack -top␣upper ’,

’Rack -top␣lower’, ’Hands’]

# ------------ From ’hyp. scratch .yaml ’ ---------------------
lr0: 0.01 # initial learning rate (SGD =1E-2, Adam =1E -3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum /Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs ( fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels )
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor - multiple threshold
# anchors : 3 # anchors per output layer (0 to ignore )
fl_gamma: 0.0 # focal loss gamma ( efficientDet default gamma =1.5)
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hsv_h: 0.015 # image HSV -Hue augmentation ( fraction )
hsv_s: 0.7 # image HSV - Saturation augmentation ( fraction )
hsv_v: 0.4 # image HSV -Value augmentation ( fraction )
degrees: 0.0 # image rotation (+/- deg)
translate: 0.2 # image translation (+/- fraction )
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction ),range 0 -0.001
flipud: 0.0 # image flip up -down ( probability )
fliplr: 0.0 # image flip left -right ( probability )
mosaic: 1.0 # image mosaic ( probability )
mixup: 0.0 # image mixup ( probability )
copy_paste: 0.0 # image copy paste ( probability )
paste_in: 0.0 # image paste (prob .), use 0 for faster training
loss_ota: 1 # use ComputeLossOTA , use 0 for faster training

# ------------ From ’hyp.yaml ’ ---------------------
lr0: 0.01
lrf: 0.1
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1
box: 0.05
cls: 0.3
cls_pw: 1.0
obj: 0.7
obj_pw: 1.0
iou_t: 0.2
anchor_t: 4.0
fl_gamma: 0.0
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.0
translate: 0.2
scale: 0.5
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.0
mosaic: 1.0
mixup: 0.0
copy_paste: 0.0
paste_in: 0.0
loss_ota: 1

# ------------ From ’yolov7 .yaml ’ ---------------------
# parameters
nc: 5 # number of classes
depth_multiple: 1.0 # model depth multiple
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width_multiple: 1.0 # layer channel multiple

# anchors
anchors:

- [12,16, 19,36, 40,28] # P3/8
- [36,75, 76,55, 72 ,146] # P4 /16
- [142,110, 192,243, 459 ,401] # P5 /32

A.2 YOLOv7-tiny config

# ------------ From ’data.yaml ’ ----------------------
# dataset paths
train: ../ data/DataSet -17.1/ train/images # 436/624 images (70 %)
val: ../ data/DataSet -17.1/ val/images # 125/624 images (20 %)
test: ../ data/DataSet -17.1/ test/images # 63/624 images (10 %)

# number of classes
nc: 5

# class names
names: [’Anus’, ’Pelvic␣fins’, ’Rack -top␣upper ’,

’Rack -top␣lower’, ’Hands’]

# ------------ From ’hyp. scratch .tiny.yaml ’ ---------------------
lr0: 0.01 # initial learning rate (SGD =1E-2, Adam =1E -3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum /Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs ( fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels )
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor - multiple threshold
# anchors : 3 # anchors per output layer (0 to ignore )
fl_gamma: 0.0 # focal loss gamma ( efficientDet default gamma =1.5)
hsv_h: 0.015 # image HSV -Hue augmentation ( fraction )
hsv_s: 0.7 # image HSV - Saturation augmentation ( fraction )
hsv_v: 0.4 # image HSV -Value augmentation ( fraction )
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction )
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction ),range 0 -0.001
flipud: 0.0 # image flip up -down ( probability )
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fliplr: 0.0 # image flip left -right ( probability )
mosaic: 1.0 # image mosaic ( probability )
mixup: 0.05 # image mixup ( probability )
copy_paste: 0.0 # image copy paste ( probability )
paste_in: 0.05 # image paste (prob .), use 0 for faster training
loss_ota: 1 # use ComputeLossOTA , use 0 for faster training

# ------------ From ’hyp.yaml ’ ---------------------
lr0: 0.01
lrf: 0.01
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1
box: 0.05
cls: 0.5
cls_pw: 1.0
obj: 1.0
obj_pw: 1.0
iou_t: 0.2
anchor_t: 4.0
fl_gamma: 0.0
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.0
translate: 0.1
scale: 0.5
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.0
mosaic: 1.0
mixup: 0.05
copy_paste: 0.0
paste_in: 0.05
loss_ota: 1

# ------------ From ’yolov7 .yaml ’ ---------------------
# parameters
nc: 5 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple

# anchors
anchors:

- [46,25, 88,74, 68,99] # P3 /8.
- [182,108, 461,48, 148 ,1779] # P4 /16.
- [180,157, 529,67, 177 ,218] # P5 /32.



B
Configuration for
Detectron2

B.1 4cls-2kpts config

# Initialize dataset configuration .
self.cfg = get_cfg ()
self.cfg.INPUT.FORMAT = "RGB"
self.cfg.OUTPUT_DIR = self.output_path
self.cfg.merge_from_file(

’configs/COCO -Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml’)
self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(

’COCO -Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml’)
self.cfg.MODEL.DEVICE = ’cuda’ # if no Nvidia GPU use: ’cpu ’.
# Mean of norm. RGB values of ’images -17.1/ frame_000050 .PNG ’.
self.cfg.MODEL.PIXEL_MEAN = [0.34446954 , 0.41759595 , 0.48091757]
# St.dev. of norm. RGB values of ’images -17.1/ frame_000050 .PNG ’.
self.cfg.MODEL.PIXEL_STD = [0.1987732 , 0.23223531 , 0.22960765]
self.cfg.MODEL.RETINANET.NUM_CLASSES = 1 #
self.cfg.DATASETS.TRAIN = (’train ’,)
self.cfg.DATASETS.TEST = (’test’,)
self.cfg.DATALOADER.NUM_WORKERS = 2
self.cfg.SOLVER.IMS_PER_BATCH = 2
self.cfg.SOLVER.BASE_LR = 0.01 #
self.cfg.SOLVER.MAX_ITER = 40000 #
self.cfg.SOLVER.GAMMA = 0.9 # LR multiplied by GAMMA at STEPS.
self.cfg.SOLVER.STEPS = (1100 ,1300 ,1500 ,1700 ,2000 ,2300 ,2700 ,

3100 ,3500 ,3900 ,4300 ,4800 ,5300 ,5800 ,
6300 ,7000 ,7800 ,8700) #

self.cfg.SOLVER.CHECKPOINT_PERIOD = 1000
self.cfg.TEST.EVAL_PERIOD = 1000
self.cfg.MODEL.KEYPOINT_ON = True
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self.cfg.MODEL.thing_classes = [’Cod’,’Lower ’,’Upper ’,’Hands ’]
self.cfg.MODEL.keypoint_names = ["farSide", "opSide"]
self.cfg.MODEL.keypoint_flip_map = [("opSide","farSide")]
self.cfg.MODEL.keypoint_connection_rules = [

("farSide", "opSide", (255 ,0 ,0))] # (R,G,B)
# IOU overlap ratios [ IOU_THRESHOLD ].
# Overlap threshold for an RoI to be considered background
# if < IOU_THRESHOLD and foreground if >= IOU_THRESHOLD .
self.cfg.MODEL.ROI_HEADS.IOU_THRESHOLDS = [0.5]
self.cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512
self.cfg.MODEL.ROI_HEADS.NUM_CLASSES = 4
self.cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS = 2
self.cfg.MODEL.ROI_BOX_HEAD.NORM = "GN" #
self.cfg.TEST.KEYPOINT_OKS_SIGMAS = [.01, .01]

B.2 1cls-6kpts config

# Initialize dataset configuration .
self.cfg = get_cfg ()
self.cfg.INPUT.FORMAT = "RGB"
self.cfg.OUTPUT_DIR = self.output_path
self.cfg.merge_from_file(

’configs/COCO -Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml’)
self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(

’COCO -Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml’)
self.cfg.MODEL.DEVICE = ’cuda’ # if no Nvidia GPU use: ’cpu ’.
# Mean of norm. RGB values of ’images -17.1/ frame_000050 .PNG ’.
self.cfg.MODEL.PIXEL_MEAN = [0.34446954 , 0.41759595 , 0.48091757]
# St.dev. of norm. RGB values of ’images -17.1/ frame_000050 .PNG ’.
self.cfg.MODEL.PIXEL_STD = [0.1987732 , 0.23223531 , 0.22960765]
self.cfg.MODEL.RETINANET.NUM_CLASSES = 1 #
self.cfg.DATASETS.TRAIN = (’train ’,)
self.cfg.DATASETS.TEST = (’test’,)
self.cfg.DATALOADER.NUM_WORKERS = 2
self.cfg.SOLVER.IMS_PER_BATCH = 2
self.cfg.SOLVER.BASE_LR = 0.01 #
self.cfg.SOLVER.MAX_ITER = 40000 #
self.cfg.SOLVER.GAMMA = 0.9 # LR multiplied by GAMMA at STEPS.
self.cfg.SOLVER.STEPS = (1100 ,1300 ,1500 ,1700 ,2000 ,2300 ,2700 ,

3100 ,3500 ,3900 ,4300 ,4800 ,5300 ,5800 ,
6300 ,7000 ,7800 ,8700) #

self.cfg.SOLVER.CHECKPOINT_PERIOD = 1000
self.cfg.TEST.EVAL_PERIOD = 1000
self.cfg.MODEL.KEYPOINT_ON = True
self.cfg.MODEL.thing_classes = [’Fish_in_rack ’]
self.cfg.MODEL.keypoint_names = [

’Rack -L_farside ’,’Rack -L_opside ’,
’Rack -U_opside ’,’Rack -U_farside ’,
’Anus’,’Pelvic␣fins’]

self.cfg.MODEL.keypoint_flip_map = [
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(’Rack -L_opside ’,’Rack -L_farside ’),
(’Rack -U_farside ’, ’Rack -U_opside ’),
(’Pelvic␣fins’, ’Anus’)]

self.cfg.MODEL.keypoint_connection_rules = [
(’Rack -L_farside ’,’Rack -L_opside ’, (0,0,255)),
(’Rack -U_opside ’,’Rack -U_farside ’, (0,0,255)),
("Anus", "Pelvic␣fins", (255 ,0 ,0))] # (R,G,B)

# IOU overlap ratios [ IOU_THRESHOLD ].
# Overlap threshold for an RoI to be considered background
# if < IOU_THRESHOLD and foreground if >= IOU_THRESHOLD .
self.cfg.MODEL.ROI_HEADS.IOU_THRESHOLDS = [0.5]
self.cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512
self.cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
self.cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS = 6
self.cfg.MODEL.ROI_BOX_HEAD.NORM = "GN" #
self.cfg.TEST.KEYPOINT_OKS_SIGMAS = [.01, .01,

.01, .01,

.01, .01]





C
Annotation data tables
C.1 YOLOv7 annotation tables
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Table C.1: Data from annotations to YOLOv7, for image-ids 87 to 103 (fish #2 from
17.1), all of the same fish with an ideal cut length of 150mm: Two leftmost
columns shows the annotated width of lower and upper rack top, "Belly
cut" is the computed Euclidean distance in pixels between the pelvic fins
and anus. The "Pixel scale" column contains the estimated image scale (at
current fish position in frame) in pixels per millimeter. Next column to the
right is the estimated cut length in millimeters computed from the "Belly
cut" and "Pixel scale" columns. For reference, in the rightmost column, is
the ideal cut length (measured by hand during collection of dataset)

Lower rack Upper rack Belly Pixel Annot. cut Ideal cut
Image width width cut scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

87 884.0 799.0 NaN 1.8175 NaN 150.0
88 900.0 807.0 267.9 1.8434 145.3 150.0
89 900.0 815.0 269.2 1.8521 145.3 150.0
90 909.0 818.0 269.4 1.8650 144.4 150.0
91 918.0 827.0 274.0 1.8844 145.4 150.0

92 928.0 833.0 273.0 1.9017 143.5 150.0
93 931.0 838.0 276.9 1.9104 144.9 150.0
94 940.0 846.0 277.7 1.9287 144.0 150.0
95 950.0 854.0 280.8 1.9482 144.1 150.0
96 952.0 860.0 283.7 1.9568 145.0 150.0

97 972.0 871.0 286.8 1.9903 144.1 150.0
98 976.0 876.0 286.8 2.0000 143.4 150.0
99 982.0 884.0 293.6 2.0151 145.7 150.0
100 993.0 893.0 296.4 2.0367 145.5 150.0
101 999.0 902.0 300.5 2.0529 146.4 150.0

102 1017.0 911.0 304.5 2.0821 146.3 150.0
103 1024.0 915.0 305.4 2.0940 145.8 150.0

count 17 17 16 17 16 17
mean 951.5 855.8 284.2 1.9517 145.0 150.0

var 1.836 × 103 1.374 × 103 162.0 0.0074 0.8630 0.0
std 42.85 37.07 12.73 0.0863 0.9290 0.0

min 884.0 799.0 267.9 1.8175 143.4 150.0
25% 918.0 827.0 273.7 1.8844 144.1 150.0
50% 950.0 854.0 282.2 1.9482 145.2 150.0
75% 982.0 884.0 294.3 2.0151 145.6 150.0
max 1.024 × 103 915.0 305.4 2.0940 146.4 150.0
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Table C.2: Data from annotations to YOLOv7, for image-ids 257 to 271 (fish #5 from
17.1), all of the same fish with an ideal cut length of 180mm: Two leftmost
columns shows the annotated width of lower and upper rack top, "Belly
cut" is the computed Euclidean distance in pixels between the pelvic fins
and anus. The "Pixel scale" column contains the estimated image scale (at
current fish position in frame) in pixels per millimeter. Next column to the
right is the estimated cut length in millimeters computed from the "Belly
cut" and "Pixel scale" columns. For reference, in the rightmost column, is
the ideal cut length (measured by hand during collection of dataset).

Lower rack Upper rack Belly Pixel Annot. cut Ideal cut
Image width width cut scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

257 899.0 813.0 326.0 1.8488 176.4 180.0
258 905.0 817.0 328.4 1.8596 176.6 180.0
259 915.0 823.0 333.7 1.8769 177.8 180.0
260 924.0 831.0 333.6 1.8952 176.0 180.0
261 931.0 835.0 336.5 1.9071 176.5 180.0

262 939.0 843.0 339.3 1.9244 176.3 180.0
263 951.0 850.0 341.2 1.9449 175.4 180.0
264 951.0 857.0 345.1 1.9525 176.7 180.0
265 956.0 863.0 348.2 1.9644 177.3 180.0
266 976.0 868.0 348.1 1.9914 174.8 180.0

267 977.0 876.0 351.1 2.0011 175.5 180.0
268 992.0 885.0 352.9 2.0270 174.1 180.0
269 1000.0 893.0 359.6 2.0443 175.9 180.0
270 1010.0 902.0 365.7 2.0648 177.1 180.0
271 1019.0 910.0 365.5 2.0832 175.5 180.0

count 15 15 15 15 15 15
mean 956.3 857.7 345.0 1.9590 176.1 180.0

var 1.463 × 103 965.8 156.5 0.0056 0.9351 0.0
std 38.24 31.08 12.51 0.0748 0.9670 0.0

min 899.0 813.0 326.0 1.8488 174.1 180.0
25% 927.5 833.0 335.1 1.9012 175.5 180.0
50% 951.0 857.0 345.1 1.9525 176.3 180.0
75% 984.5 880.5 352.0 2.0140 176.7 180.0
max 1.019 × 103 910.0 365.7 2.0832 177.8 180.0
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C.2 Detectron2 4cls-2kpts annotation tables

Table C.3: Data from annotations for Det2-4cls-2kpts, for image-ids 87 to 103 (fish #2
from 17.1), all of the same fish with an ideal cut length of 150mm:
Three left-most columns contains Euclidean pixel distances for lower and
upper rack top and between the pelvic fins and anus ("Belly cut"). The
"Pixel scale" column contains the estimated image scale (at current fish
position in frame) in pixels per millimeter, and in column is the estimated
cut length in millimeters computed from the "Belly cut" and "Pixel scale"
columns. For reference, in the rightmost column, is the ideal cut length
(measured by hand during collection of dataset).

Lower rack Upper rack Belly Pixel Annot. cut Ideal cut
Image width width cut scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

87 862.0 793.0 255.0 1.7873 142.7 150.0
88 870.0 800.0 255.1 1.8035 141.4 150.0
89 875.0 807.0 259.2 1.8164 142.7 150.0
90 886.0 813.0 261.2 1.8348 142.4 150.0
91 894.0 819.0 267.2 1.8499 144.4 150.0

92 900.0 827.0 269.1 1.8650 144.3 150.0
93 909.0 832.0 271.1 1.8801 144.2 150.0
94 915.0 839.0 275.1 1.8942 145.2 150.0
95 924.0 846.0 273.1 1.9115 142.9 150.0
96 931.0 852.0 279.1 1.9255 145.0 150.0

97 938.0 860.0 281.1 1.9417 144.8 150.0
98 948.0 869.0 281.1 1.9622 143.2 150.0
99 957.1 875.0 285.1 1.9785 144.1 150.0
100 967.0 885.0 284.0 2.0000 142.0 150.0
101 974.1 891.0 286.0 2.0141 142.0 150.0

102 983.1 898.0 291.0 2.0315 143.3 150.0
103 994.2 907.0 294.0 2.0531 143.2 150.0

count 17 17 17 17 17 17
mean 925.2 847.8 274.6 1.9147 143.4 150.0

var 1.691 × 103 1.274 × 103 147.4 0.0069 1.2844 0.0
std 41.13 35.69 12.14 0.0829 1.1333 0.0

min 862.0 793.0 255.0 1.7873 141.4 150.0
25% 894.0 819.0 267.2 1.8499 142.7 150.0
50% 924.0 846.0 275.1 1.9115 143.2 150.0
75% 957.1 875.0 284.0 1.9785 144.3 150.0
max 994.2 907.0 294.0 2.0531 145.2 150.0
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Table C.4: Data from annotations for Det2-4cls-2kpts, for image-ids 257 to 271 (fish
#5 from 17.1), all of the same fish with an ideal cut length of 180mm:
Three left-most columns contains Euclidean pixel distances for lower and
upper rack top and between the pelvic fins and anus ("Belly cut"). The
"Pixel scale" column contains the estimated image scale (at current fish
position in frame) in pixels per millimeter, and in column is the estimated
cut length in millimeters computed from the "Belly cut" and "Pixel scale"
columns. For reference, in the rightmost column, is the ideal cut length
(measured by hand during collection of dataset).

Lower rack Upper rack Belly Pixel Annot. cut Ideal cut
Image width width cut scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

257 879.0 803.0 323.6 1.8164 178.2 180.0
258 886.0 811.0 327.0 1.8326 178.4 180.0
259 892.0 817.0 336.3 1.8456 182.2 180.0
260 903.0 820.0 332.4 1.8607 178.7 180.0
261 908.0 830.0 339.0 1.8769 180.6 180.0

262 914.0 835.0 337.9 1.8888 178.9 180.0
263 926.0 842.0 342.4 1.9093 179.3 180.0
264 932.0 848.0 346.6 1.9223 180.3 180.0
265 938.0 856.0 345.9 1.9374 178.5 180.0
266 948.0 863.0 346.8 1.9557 177.3 180.0

267 959.0 871.0 352.6 1.9763 178.4 180.0
268 965.0 879.0 354.6 1.9914 178.1 180.0
269 976.1 888.0 359.5 2.0130 178.6 180.0
270 981.1 895.0 364.4 2.0260 179.8 180.0
271 996.1 903.0 361.6 2.0509 176.3 180.0

count 15 15 15 15 15 15
mean 933.6 850.7 344.7 1.9269 178.9 180.0

var 1.346 × 103 1.012 × 103 151.7 0.0055 2.0277 0.0
std 36.68 31.81 12.32 0.0739 1.4240 0.0

min 879.0 803.0 323.6 1.8164 176.3 180.0
25% 905.5 825.0 337.1 1.8688 178.3 180.0
50% 932.0 848.0 345.9 1.9223 178.6 180.0
75% 962.0 875.0 353.6 1.9838 179.6 180.0
max 996.1 903.0 364.4 2.0509 182.2 180.0
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C.3 Detectron2 1cls-6kpts annotation tables

Table C.5: Data from annotations to model Det2-1cls-6kpts, for image-ids 87 to 103
(fish #2 from 17.1), all of the same fish with an ideal cut length of 150mm:
Three left-most columns contains Euclidean pixel distances for lower and
upper rack top and between the pelvic fins and anus (’Belly’). The ’Scale’
column contains the estimated image scale (at current fish position in
frame) in pixels per millimeter, and in column is the estimated cut length in
millimeters computed from the ’Belly’ and ’Scale’ columns. For reference,
in the rightmost column, is the ideal cut length (measured by hand during
collection of dataset).

Lower rack Upper rack Belly Pixel Annot. cut Ideal cut
Image width width cut scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

87 862.0 795.1 254.0 1.7895 141.9 150.0
88 865.0 800.0 258.0 1.7981 143.5 150.0
89 873.0 806.1 260.2 1.8132 143.5 150.0
90 885.0 814.0 258.3 1.8348 140.8 150.0
91 892.0 819.0 260.1 1.8478 140.8 150.0

92 898.0 827.0 265.0 1.8629 142.3 150.0
93 908.0 833.0 266.0 1.8802 141.5 150.0
94 914.0 838.0 267.0 1.8921 141.1 150.0
95 922.1 845.0 271.0 1.9083 142.0 150.0
96 929.1 852.0 269.1 1.9234 139.9 150.0

97 936.1 861.0 274.1 1.9408 141.2 150.0
98 946.1 868.0 276.0 1.9591 140.9 150.0
99 954.1 875.0 281.1 1.9753 142.3 150.0
100 965.1 883.0 281.0 1.9958 140.8 150.0
101 974.1 890.0 285.0 2.0130 141.6 150.0

102 982.2 897.0 285.0 2.0294 140.4 150.0
103 995.1 907.0 291.0 2.0541 141.7 150.0

count 17 17 17 17.000 17 17
mean 923.6 847.7 270.7 1.9128 141.5 150.0

var 1.731 × 103 1.239 × 103 122.7 0.0069 0.9631 0.0
std 41.61 35.20 11.08 0.0829 0.9814 0.0

min 862.0 795.1 254.0 1.7895 139.9 150.0
25% 892.0 819.0 260.2 1.8478 140.8 150.0
50% 922.1 845.0 269.1 1.9083 141.5 150.0
75% 954.1 875.0 281.0 1.9753 142.0 150.0
max 995.1 907.0 291.0 2.0541 143.5 150.0
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Table C.6: Data from annotations for Det2-1cls-6kpts, for image-ids 257 to 271 (fish
#5 from 17.1), all of the same fish with an ideal cut length of 180mm:
Three left-most columns contains Euclidean pixel distances for lower and
upper rack top and between the pelvic fins and anus ("Belly cut"). The
"Pixel scale" column contains the estimated image scale (at current fish
position in frame) in pixels per millimeter, and in column is the estimated
cut length in millimeters computed from the "Belly cut" and "Pixel scale"
columns. For reference, in the rightmost column, is the ideal cut length
(measured by hand during collection of dataset).

Lower rack Upper rack Belly Pixel Annot. cut Ideal cut
Image width width cut scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

257 880.0 805.0 320.3 1.8197 176.0 180.0
258 889.0 811.0 327.8 1.8359 178.6 180.0
259 893.0 816.0 331.9 1.8456 179.8 180.0
260 903.0 823.0 331.9 1.8640 178.1 180.0
261 910.0 829.0 336.0 1.8780 178.9 180.0

262 914.0 835.0 340.8 1.8888 180.4 180.0
263 929.1 842.0 346.7 1.9126 181.3 180.0
264 933.1 850.0 348.8 1.9255 181.2 180.0
265 939.1 856.0 351.7 1.9385 181.4 180.0
266 950.1 863.0 353.7 1.9580 180.7 180.0

267 959.1 872.0 356.6 1.9774 180.3 180.0
268 966.1 880.0 361.5 1.9936 181.3 180.0
269 978.1 888.0 361.4 2.0152 179.3 180.0
270 983.1 893.0 363.6 2.0260 179.4 180.0
271 996.1 903.0 369.4 2.0509 180.1 180.0

count 15 15 15 15.000 15 15
mean 934.9 851.1 346.8 1.9286 179.8 180.0

var 1.337 × 103 988.2 217.9 0.0054 2.1678 0.0
std 36.56 31.44 14.76 0.0734 1.4723 0.0

min 880.0 805.0 320.3 1.8197 176.0 180.0
25% 906.5 826.0 334.0 1.8710 179.1 180.0
50% 933.1 850.0 348.8 1.9255 180.1 180.0
75% 962.6 876.0 359.0 1.9855 180.9 180.0
max 996.1 903.0 369.4 2.0509 181.4 180.0





D
Prediction data tables

77



78 appendix d prediction data tables

D.1 YOLOv7 std. prediction data tables

Table D.1: Data from predictions of YOLOv7 std., for image-ids 7 to 21 (fish #1 from
preds.), all of the same fish with an ideal cut length of 125mm:
Two leftmost columns shows the predicted width of lower and upper rack-
top, "Belly est. line" is the predicted Euclidean distance in pixels between
the pelvic fins and anus. The "Pixel scale" column contains the estimated
image scale (at current fish position in frame) in pixels per millimeter. Next
column to the right is the estimated cut length in millimeters computed
from the "Belly est. line" and "Pixel scale" columns. For reference, in the
rightmost column, is the ideal cut length (measured by hand during col-
lection of dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

7 884 799 217.1 1.8175 119.4 125
8 894 811 220.0 1.8413 119.5 125
9 896 821 219.0 1.8542 118.1 125
10 911 826 217.0 1.8758 115.7 125
11 922 827 212.2 1.8888 112.3 125

12 929 837 NaN 1.9071 NaN 125
13 935 844 NaN 1.9212 NaN 125
14 947 853 NaN 1.9438 NaN 125
15 955 855 NaN 1.9546 NaN 125
16 963 858 NaN 1.9665 NaN 125

17 962 868 NaN 1.9762 NaN 125
18 973 875 NaN 1.9957 NaN 125
19 984 887 220.2 2.0205 109.0 125
20 993 894 227.0 2.0378 111.4 125
21 1007 901 230.0 2.0605 111.6 125

count 15 15 8 15 8 15
mean 943.7 850.4 220.3 1.9374 114.6 125

var 1.422 × 103 944.5 32.62 0.0054 16.68 0
std 37.71 30.73 5.712 0.0737 4.084 0

min 884 799 212.2 1.8175 109.0 125
25% 916.5 826.5 217.1 1.8823 111.6 125
50% 947 853 219.5 1.9438 114.0 125
75% 968 871.5 221.9 1.9860 118.4 125
max 1007 901 230.0 2.0605 119.5 125
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Table D.2: Data from predictions of YOLOv7 std., for image-ids 47 to 61 (fish #3 from
preds.), all of the same fish with an ideal cut length of 175mm:
Two leftmost columns shows the predicted width of lower and upper rack-
top, "Belly est. line" is the predicted Euclidean distance in pixels between
the pelvic fins and anus. The "Pixel scale" column contains the estimated
image scale (at current fish position in frame) in pixels per millimeter. Next
column to the right is the estimated cut length in millimeters computed
from the "Belly est. line" and "Pixel scale" columns. For reference, in the
rightmost column, is the ideal cut length (measured by hand during col-
lection of dataset). Visualization of the predictions in figure 6.8.

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

47 885 804 305.0 1.8240 167.2 175
48 894 792 304.0 1.8207 167.0 175
49 896 811 307.0 1.8434 166.5 175
50 911 820 309.0 1.8693 165.3 175
51 920 821 311.0 1.8801 165.4 175

52 931 831 310.0 1.9028 162.9 175
53 931 838 310.0 1.9104 162.3 175
54 943 843 315.0 1.9287 163.3 175
55 948 852 315.0 1.9438 162.1 175
56 961 857 322.0 1.9633 164.0 175

57 968 862 322.1 1.9762 163.0 175
58 975 869 326.1 1.9914 163.8 175
59 985 875 328.1 2.0086 163.3 175
60 993 881 330.2 2.0238 163.1 175
61 1015 892 332.1 2.0594 161.3 175

count 15 15 15 15 15 15
mean 943.7 843.2 316.4 1.9297 164.0 175

var 1.518 × 103 893.6 90.72 0.0055 3.386 0
std 38.96 29.89 9.525 0.0741 1.840 0

min 885 792 304.0 1.8207 161.3 175
25% 915.5 820.5 309.5 1.8747 162.9 175
50% 943 843 315.0 1.9287 163.3 175
75% 971.5 865.5 324.1 1.9838 165.4 175
max 1015 892 332.1 2.0594 167.2 175
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Table D.3: Data from predictions of YOLOv7 std., for image-ids 94 to 110 (fish #5 from
preds.), all of the same fish with an ideal cut length of 180mm:
Two leftmost columns shows the predicted width of lower and upper rack-
top, "Belly est. line" is the predicted Euclidean distance in pixels between
the pelvic fins and anus. The "Pixel scale" column contains the estimated
image scale (at current fish position in frame) in pixels per millimeter. Next
column to the right is the estimated cut length in millimeters computed
from the "Belly est. line" and "Pixel scale" columns. For reference, in the
rightmost column, is the ideal cut length (measured by hand during col-
lection of dataset). Visualization of the predictions in figure ??.

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

94 878 792 309.3 1.8035 171.5 180
95 879 800 312.3 1.8132 172.2 180
96 887 799 318.6 1.8207 175 180
97 900 810 319.8 1.8467 173.2 180
98 904 821 320.5 1.8629 172.0 180

99 922 821 325.4 1.8823 172.9 180
100 927 827 324.2 1.8942 171.1 180
101 933 837 326.2 1.9114 170.6 180
102 943 844 332.3 1.9298 172.2 180
103 946 851 332.3 1.9406 171.2 180

104 960 855 334.3 1.9600 170.5 180
105 966 861 337.2 1.9730 170.9 180
106 975 866 338.2 1.9881 170.1 180
107 984 876 339.1 2.0086 168.8 180
108 988 884 343.1 2.0216 169.7 180

109 992 891 349.1 2.0335 171.7 180
110 NaN 898 352.1 NaN NaN 180

count 16 17 17 16 16 17
mean 936.5 843.1 330.2 1.9181 171.5 180

var 1.527 × 103 1.118 × 103 149.5 0.0057 2.158 0
std 39.08 33.44 12.23 0.0758 1.469 0

min 878 792 309.3 1.8035 168.8 180
25% 903 821 320.5 1.8588 170.6 180
50% 938 844 332.3 1.9206 171.4 180
75% 968.3 866 338.2 1.9768 172.2 180
max 992 898 352.1 2.0335 175.0 180
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Table D.4: Data from predictions of YOLOv7 std., for image-ids 167 to 181 (fish #8 from
preds.), all of the same fish with an ideal cut length of 165mm:
Two leftmost columns shows the predicted width of lower and upper rack-
top, "Belly est. line" is the predicted Euclidean distance in pixels between
the pelvic fins and anus. The "Pixel scale" column contains the estimated
image scale (at current fish position in frame) in pixels per millimeter. Next
column to the right is the estimated cut length in millimeters computed
from the "Belly est. line" and "Pixel scale" columns. For reference, in the
rightmost column, is the ideal cut length (measured by hand during col-
lection of dataset). Visualization of the predictions in figure 6.9.

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

167 887 800 285.2 1.8218 156.5 165
168 897 799 287.4 1.8315 156.9 165
169 901 812 288.7 1.8499 156.0 165
170 924 820 295.4 1.8834 156.9 165
171 933 829 295.4 1.9028 155.3 165

172 926 833 298.7 1.8996 157.3 165
173 941 838 301.2 1.9212 156.8 165
174 948 846 302.4 1.9374 156.1 165
175 953 851 310.0 1.9482 159.1 165
176 966 857 313.3 1.9687 159.1 165

177 972 865 311.5 1.9838 157.0 165
178 976 872 309.7 1.9957 155.2 165
179 985 883 307.0 2.0173 152.2 165
180 994 889 311.9 2.0335 153.4 165
181 995 897 314.6 2.0432 154.0 165

count 15 15 15 15 15 15
mean 946.5 846.1 302.2 1.9359 156.1 165

var 1.231 × 103 977.2 99.86 0.0051 3.646 0
std 35.09 31.26 9.993 0.0714 1.910 0

min 887 799 285.2 1.8218 152.2 165
25% 925 824.5 295.4 1.8915 155.2 165
50% 948 846 302.4 1.9374 156.5 165
75% 974 868.5 310.8 1.9897 157.0 165
max 995 897 314.6 2.0432 159.1 165
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D.2 YOLOv7 tiny prediction data tables

Table D.5: Data from predictions of YOLOv7 tiny, for image-ids 7 to 21 (fish #1 from
preds.), all of the same fish with an ideal cut length of 125mm:
Two leftmost columns shows the predicted width of lower and upper rack-
top, "Belly est. line" is the predicted Euclidean distance in pixels between
the pelvic fins and anus. The "Pixel scale" column contains the estimated
image scale (at current fish position in frame) in pixels per millimeter. Next
column to the right is the estimated cut length in millimeters computed
from the "Belly est. line" and "Pixel scale" columns. For reference, in the
rightmost column, is the ideal cut length (measured by hand during col-
lection of dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

7 881 799 217.0 1.8143 119.6 125
8 890 810 219.1 1.8359 119.4 125
9 891 830 215.0 1.8585 115.7 125
10 908 827 220.0 1.8737 117.4 125
11 913 838 214.0 1.8909 113.2 125

12 926 862 206.2 1.9309 106.8 125
13 922 862 203.6 1.9266 105.7 125
14 929 868 204.1 1.9406 105.2 125
15 943 874 NaN 1.9622 NaN 125
16 955 875 207.6 1.9762 105.1 125

17 971 878 211.4 1.9968 105.9 125
18 974 883 213.3 2.0054 106.4 125
19 988 897 223.0 2.0356 109.6 125
20 995 902 223.0 2.0486 108.9 125
21 1015 905 227.0 2.0734 109.5 125

count 15 15 14 15 14 15
mean 940.1 860.7 214.6 1.9446 110.6 125

var 1.720 × 103 1.085 × 103 55.02 0.0063 29.41 0
std 41.47 32.94 7.418 0.0793 5.423 0

min 881 799 203.6 1.8143 105.1 125
25% 910.5 834 208.6 1.8823 106.0 125
50% 929 868 214.5 1.9406 109.2 125
75% 972.5 880.5 219.8 2.0011 115.1 125
max 1015 905 227.0 2.0734 119.6 125
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Table D.6: Data from predictions of YOLOv7 tiny, for image-ids 47 to 61 (fish #3 from
preds.), all of the same fish with an ideal cut length of 175mm:
Two leftmost columns shows the predicted width of lower and upper rack-
top, "Belly est. line" is the predicted Euclidean distance in pixels between
the pelvic fins and anus. The "Pixel scale" column contains the estimated
image scale (at current fish position in frame) in pixels per millimeter. Next
column to the right is the estimated cut length in millimeters computed
from the "Belly est. line" and "Pixel scale" columns. For reference, in the
rightmost column, is the ideal cut length (measured by hand during col-
lection of dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

47 891 814 311.0 1.8413 168.9 175
48 890 811 310.0 1.8369 168.8 175
49 900 827 312.0 1.8650 167.3 175
50 902 830 313.1 1.8704 167.4 175
51 901 835 314.0 1.8747 167.5 175

52 911 861 312.0 1.9136 163.1 175
53 913 852 314.0 1.9060 164.7 175
54 928 851 316.0 1.9212 164.5 175
55 931 857 317.0 1.9309 164.2 175
56 942 863 326.0 1.9492 167.2 175

57 953 877 327.0 1.9762 165.5 175
58 959 881 329.0 1.9870 165.6 175
59 962 891 335.0 2.0011 167.4 175
60 984 891 337.0 2.0248 166.4 175
61 999 907 340.0 2.0583 165.2 175

count 15 15 15 15 15 15
mean 931.1 856.5 320.9 1.9305 166.2 175

var 1.178 × 103 855.4 108.8 0.0046 2.995 0
std 34.33 29.25 10.43 0.0679 1.731 0

min 890 811 310.0 1.8369 163.1 175
25% 901.5 832.5 312.6 1.8726 165.0 175
50% 928 857 316.0 1.9212 166.4 175
75% 956 879 328.0 1.9816 167.4 175
max 999 907 340.0 2.0583 168.9 175
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Table D.7: Data from predictions of YOLOv7 tiny, for image-ids 94 to 110 (fish #5 from
preds.), all of the same fish with an ideal cut length of 180mm:
Two leftmost columns shows the predicted width of lower and upper rack-
top, "Belly est. line" is the predicted Euclidean distance in pixels between
the pelvic fins and anus. The "Pixel scale" column contains the estimated
image scale (at current fish position in frame) in pixels per millimeter. Next
column to the right is the estimated cut length in millimeters computed
from the "Belly est. line" and "Pixel scale" columns. For reference, in the
rightmost column, is the ideal cut length (measured by hand during col-
lection of dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

94 884 812 308.3 1.8315 168.3 180
95 895 820 314.4 1.8521 169.7 180
96 889 825 317.5 1.8510 171.5 180
97 903 838 319.8 1.8801 170.1 180
98 903 835 322.5 1.8769 171.8 180

99 908 850 323.3 1.8985 170.3 180
100 914 845 325.2 1.8996 171.2 180
101 915 855 326.1 1.9114 170.6 180
102 927 856 327.2 1.9255 169.9 180
103 939 862 334.3 1.9449 171.9 180

104 935 875 335.1 1.9546 171.4 180
105 954 871 336.1 1.9708 170.5 180
106 959 879 340.1 1.9849 171.4 180
107 976 894 340.1 2.0194 168.4 180
108 982 894 345.1 2.0259 170.3 180

109 993 897 350.1 2.0410 171.5 180
110 1024 911 350.1 2.0896 167.5 180

count 17 17 17 17 17 17
mean 935.3 859.9 330.3 1.9387 170.4 180

var 1.633 × 103 849.8 152.5 0.0056 1.676 0
std 40.41 29.15 12.35 0.0745 1.295 0

min 884 812 308.3 1.8315 167.5 180
25% 903 838 322.5 1.8801 169.9 180
50% 927 856 327.2 1.9255 170.5 180
75% 959 879 340.1 1.9849 171.4 180
max 1024 911 350.1 2.0896 171.9 180
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Table D.8: Data from predictions of YOLOv7 tiny, for image-ids 167 to 181 (fish #8
from preds.), all of the same fish with an ideal cut length of 165mm:
Two leftmost columns shows the predicted width of lower and upper rack-
top, "Belly est. line" is the predicted Euclidean distance in pixels between
the pelvic fins and anus. The "Pixel scale" column contains the estimated
image scale (at current fish position in frame) in pixels per millimeter. Next
column to the right is the estimated cut length in millimeters computed
from the "Belly est. line" and "Pixel scale" columns. For reference, in the
rightmost column, is the ideal cut length (measured by hand during col-
lection of dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

167 895 821 282.4 1.8531 152.4 165
168 900 845 289.2 1.8844 153.5 165
169 905 835 288.5 1.8790 153.5 165
170 914 857 292.4 1.9125 152.9 165
171 920 861 295.3 1.9233 153.6 165

172 923 871 295.5 1.9374 152.5 165
173 923 875 302.9 1.9417 156.0 165
174 934 870 304.3 1.9482 156.2 165
175 940 870 314.0 1.9546 160.6 165
176 954 870 314.0 1.9698 159.4 165

177 969 888 311.5 2.0054 155.4 165
178 968 890 312.7 2.0065 155.8 165
179 986 896 313.3 2.0324 154.1 165
180 992 913 312.9 2.0572 152.1 165
181 1018 915 315.5 2.0875 151.1 165

count 15 15 15 15 15 15
mean 942.7 871.8 303.0 1.9595 154.6 165

var 1.368 × 103 696.6 130.2 0.0045 7.124 0
std 36.99 26.39 11.41 0.0674 2.669 0

min 895 821 282.4 1.8531 151.1 165
25% 917 859 293.9 1.9179 152.7 165
50% 934 870 304.3 1.9482 153.6 165
75% 968.5 889 313.1 2.0059 155.9 165
max 1018 915 315.5 2.0875 160.69 165
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D.3 Prediction tables for Det2-4cls-2kpts

Table D.9: Data from predictions of Det2-4cls-2kpts (training201-preds1), for image-
ids 7 to 21 (fish #1 from preds.), all of the same fish with an ideal cut length
of 125mm: Three left-most columns contains Euclidean pixel distances for
lower and upper rack-top and between the pelvic fins and anus ("Belly
est. line"). The "Pixel scale" column contains the estimated image scale (at
current fish position in frame) in pixels per millimeter, and in column is
the estimated cut length in millimeters computed from the "Belly est. line"
and "Pixel scale" columns. For reference, in the rightmost column, is the
ideal cut length (measured by hand during collection of dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

6 684.4 NaN 180.7 NaN NaN 125
7 646.9 NaN 180.9 NaN NaN 125
8 738.9 NaN 177.7 NaN NaN 125
9 706.6 NaN 172.2 NaN NaN 125
10 0.0 NaN 177.3 NaN NaN 125

11 0.0 NaN 168.7 NaN NaN 125
12 2.2 694.3 164.0 0.7521 218.0 125
13 0.0 28.9 135.8 0.0312 4.360 × 103 125
14 1.1 0.0 136.0 0.0012 1.142 × 105 125
15 NaN 0.0 1.1 NaN NaN 125

16 803.9 695.9 169.9 1.6197 104.9 125
17 2.2 28.9 176.8 0.0336 5.270 × 103 125
18 NaN 748.8 177.4 NaN NaN 125
19 NaN 686.4 181.2 NaN NaN 125
20 NaN 694.0 185.8 NaN NaN 125

count 11 9 15 5 5 15
mean 326.0 397.5 159.0 0.4875 2.483 × 104 125

var 1.409 × 105 1.325 × 105 2.136 × 103 0.5007 2.502 × 109 0
std 375.4 364.0 46.22 0.7076 5.002 × 104 0

min 0 0 1.104 0.0012 104.9 125
25% 0.5515 28.85 166.3 0.0312 218.0 125
50% 2.209 686.4 176.8 0.0336 4.360 × 103 125
75% 695.5 694.3 179.2 0.7521 5.269 × 103 125
max 803.9 748.8 185.8 1.6197 1.142 × 105 125
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Table D.10: Data from predictions of Det2-4cls-2kpts (training201-preds1), for image-
ids 47 to 61 (fish #3 from preds.), all of the same fish with an ideal cut
length of 175mm: Three left-most columns contains Euclidean pixel dis-
tances for lower and upper rack-top and between the pelvic fins and anus
("Belly est. line"). The "Pixel scale" column contains the estimated im-
age scale (at current fish position in frame) in pixels per millimeter, and
in column is the estimated cut length in millimeters computed from the
"Belly est. line" and "Pixel scale" columns. For reference, in the rightmost
column, is the ideal cut length (measured by hand during collection of
dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

45 NaN 224.3 294.4 NaN NaN 175
46 663.6 NaN NaN NaN NaN 175
47 717.6 NaN 268.6 NaN NaN 175
48 1.1 0.0 273.0 0.0012 2.279 × 105 175
49 701.3 NaN 264.2 NaN NaN 175

50 1.1 36.4 271.8 0.0405 6.706 × 103 175
51 0.0 NaN 274.0 NaN NaN 175
52 715.3 1.1 280.9 0.7736 363.0 175
53 757.5 0.0 274.2 0.8181 335.2 175
54 NaN 0.0 273.1 NaN NaN 175

55 NaN 0.0 277.4 NaN NaN 175
56 2.2 603.5 285.2 0.6541 436.0 175
57 4.4 0.0 289.5 0.0047 6.105 × 104 175
58 NaN 1.6 289.6 NaN NaN 175
59 NaN 729.9 300.6 NaN NaN 175

count 10 11 14 6 6 15
mean 356.4 145.2 279.7 0.3820 4.947 × 104 175

var 1.403 × 105 7.168 × 104 112.1 0.1643 8.207 × 109 0
std 374.5 267.7 10.59 0.4053 9.059 × 104 0

min 0 0 264.2 0.0012 335.2 175
25% 1.383 0 273.0 0.0137 381.3 175
50% 334.0 1.109 275.8 0.3473 3.571 × 103 175
75% 711.8 130.4 288.4 0.7437 4.747 × 104 175
max 757.5 729.9 300.6 0.8181 2.279 × 105 175
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Table D.11: Data from predictions of Det2-4cls-2kpts (training201-preds1), for image-
ids 94 to 110 (fish #5 from preds.), all of the same fish with an ideal
cut length of 180mm: Three left-most columns contains Euclidean pixel
distances for lower and upper rack-top and between the pelvic fins and
anus ("Belly est. line"). The "Pixel scale" column contains the estimated
image scale (at current fish position in frame) in pixels per millimeter, and
in column is the estimated cut length in millimeters computed from the
"Belly est. line" and "Pixel scale" columns. For reference, in the rightmost
column, is the ideal cut length (measured by hand during collection of
dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

90 691.3 0.0 1.6 0.7465 2.1 180
91 698.3 NaN 1.1 NaN NaN 180
92 1.1 NaN 1.1 NaN NaN 180
93 713.5 NaN 267.5 NaN NaN 180
94 732.7 NaN 270.0 NaN NaN 180

95 692.8 NaN 274.7 NaN NaN 180
96 703.6 0.0 273.4 0.7598 359.9 180
97 755.4 534.9 275.4 1.3934 197.7 180
98 1.1 0.0 276.6 0.0012 2.314 × 105 180
99 0.0 NaN 280.9 NaN NaN 180

100 0.0 701.2 283.0 0.7573 373.7 180
101 1.1 0.0 289.5 0.0012 2.438 × 105 180
102 787.7 27.7 293.0 0.8806 332.7 180
103 1.1 0.0 289.5 0.0012 2.434 × 105 180
104 1.1 1.1 289.5 0.0024 1.208 × 105 180

105 1.1 0.0 297.6 0.0012 2.501 × 105 180
106 NaN 747.2 297.2 NaN NaN 180

count 16 11 17 10 10 17
mean 361.4 182.9 233.0 0.4545 1.091 × 105 180

var 1.392 × 105 9.688 × 104 1.231 × 104 0.2622 1.449 × 1010 0
std 373.1 311.3 111.0 0.5120 1.204 × 105 0

min 0 0 1.105 0.0012 2.096 180
25% 1.102 0 270.0 0.0012 339.5 180
50% 346.2 0 276.6 0.3745 6.058 × 104 180
75% 706.1 281.3 289.5 0.7592 2.404 × 105 180
max 787.7 747.2 297.6 1.3934 2.501 × 105 180
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Table D.12: Data from predictions of Det2-4cls-2kpts (training201-preds1), for image-
ids 167 to 181 (fish #8 from preds.), all of the same fish with an ideal
cut length of 165mm: Three left-most columns contains Euclidean pixel
distances for lower and upper rack-top and between the pelvic fins and
anus ("Belly est. line"). The "Pixel scale" column contains the estimated
image scale (at current fish position in frame) in pixels per millimeter, and
in column is the estimated cut length in millimeters computed from the
"Belly est. line" and "Pixel scale" columns. For reference, in the rightmost
column, is the ideal cut length (measured by hand during collection of
dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

161 NaN NaN 307.3 NaN NaN 165
162 1.1 1.1 2.2 0.0024 931.7 165
163 706.6 0.0 1.1 0.7631 1.4 165
164 1.6 20.0 1.1 0.0233 47.4 165
165 724.3 1.6 1.1 0.7838 1.4 165

166 0.0 1.1 247.7 0.0012 2.084 × 105 165
167 738.1 1.1 253.6 0.7982 317.7 165
168 714.0 NaN 252.1 NaN NaN 165
169 738.3 NaN 254.4 NaN NaN 165
170 758.5 0.0 258.9 0.8192 316.0 165

171 1.1 0.0 255.9 0.0012 2.155 × 105 165
172 0.0 521.6 269.1 0.5633 477.7 165
173 0.0 529.3 266.1 0.5716 465.7 165
174 1.1 528.8 264.3 0.5722 461.9 165
175 2.2 539.7 269.7 0.5852 460.9 165

count 14 12 15 12 12 15
mean 313.3 178.7 193.6 0.4570 3.561 × 104 165

var 1.403 × 105 6.730 × 104 1.459 × 104 0.1193 6.785 × 109 0
std 374.6 259.4 120.8 0.3454 8.237 × 104 0

min 0 0 1.102 0.0012 1.415 165
25% 1.101 0.8154 124.9 0.0180 248.9 165
50% 1.877 1.333 254.4 0.5719 461.4 165
75% 721.7 523.4 265.2 0.7683 591.2 165
max 758.5 539.7 307.3 0.8192 2.155 × 105 165
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D.4 Prediction tables for Det2-1cls-6kpts

Table D.13: Data from predictions of Det2-1cls-6kpts (training202-preds4), for image-
ids 7 to 21 (fish #1 from preds.), all of the same fish with an ideal cut
length of 125mm:
Three left-most columns contains Euclidean pixel distances for lower and
upper rack-top and between the pelvic fins and anus (’Belly’). The ’Scale’
column contains the estimated image scale (at current fish position in
frame) in pixels per millimeter, and in column is the estimated cut length
in millimeters computed from the ’Belly’ and ’Scale’ columns. For refer-
ence, in the rightmost column, is the ideal cut length (measured by hand
during collection of dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

7 729.0 675.7 182.0 1.5169 120.0 125
8 727.5 679.9 174.1 1.5198 114.6 125
9 744.8 680.4 173.2 1.5391 112.5 125
10 751.5 696.0 160.0 1.5632 102.3 125
11 750.2 698.0 167.7 1.5639 107.3 125

12 758.9 708.9 154.6 1.5850 97.5 125
13 754.7 711.3 125.8 1.5831 79.5 125
14 788.0 714.7 110.2 1.6228 67.9 125
15 769.7 723.1 43.9 1.6122 27.2 125
16 785.6 725.6 140.2 1.6320 85.9 125

17 805.5 730.1 156.5 1.6583 94.4 125
18 795.4 728.8 160.7 1.6460 97.6 125
19 797.9 737.8 175.9 1.6584 106.1 125
20 831.3 744.8 186.7 1.7021 109.7 125
21 839.3 752.7 186.7 1.7193 108.6 125

count 15 15 15 15 15 15
mean 775.3 713.9 153.2 1.6082 95.40 125

var 1.187 × 103 577.2 1.391 × 103 0.0039 550.2 0.0
std 34.45 24.03 37.29 0.0624 23.46 0.0

min 727.5 675.7 43.87 1.5169 27.21 125
25% 750.9 697.0 147.4 1.5636 90.14 125
50% 769.7 714.7 160.7 1.6122 102.3 125
75% 796.6 729.4 175.0 1.6522 109.1 125
max 839.3 752.7 186.7 1.7193 120.0 125
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Table D.14: Data from predictions of Det2-1cls-6kpts (training202-preds4), for image-
ids 47 to 61 (fish #3 from preds.), all of the same fish with an ideal cut
length of 175mm: Three left-most columns contains Euclidean pixel dis-
tances for lower and upper rack-top and between the pelvic fins and anus
("Belly est. line"). The "Pixel scale" column contains the estimated im-
age scale (at current fish position in frame) in pixels per millimeter, and
in column is the estimated cut length in millimeters computed from the
"Belly est. line" and "Pixel scale" columns. For reference, in the rightmost
column, is the ideal cut length (measured by hand during collection of
dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

47 731.2 665.8 265.3 1.5086 175.8 175
48 736.5 675.5 266.2 1.5248 174.6 175
49 749.3 680.5 268.6 1.5440 174.0 175
50 747.7 692.3 274.0 1.5550 176.2 175
51 754.7 689.2 271.9 1.5594 174.4 175

52 762.7 706.0 283.1 1.5861 178.5 175
53 753.3 705.6 269.6 1.5754 171.1 175
54 784.3 717.7 278.4 1.6220 171.7 175
55 777.8 714.5 275.2 1.6116 170.8 175
56 767.9 717.9 273.0 1.6045 170.1 175

57 808.7 722.2 282.9 1.6532 171.1 175
58 787.0 723.7 287.5 1.6315 176.2 175
59 821.1 733.5 291.9 1.6789 173.8 175
60 831.3 740.3 298.6 1.6973 175.9 175
61 829.8 752.2 299.5 1.7084 175.3 175

count 15 15 15 15 15 15
mean 776.2 709.1 279.1 1.6040 174.0 175

var 1.111 × 103 608.4 124.9 0.0038 6.186 0
std 33.33 24.67 11.17 0.0617 2.487 0

min 731.2 665.8 265.3 1.5086 170.1 175
25% 751.3 690.8 270.8 1.5572 171.4 175
50% 767.9 714.5 275.2 1.6045 174.4 175
75% 797.9 723.0 285.3 1.6423 175.9 175
max 831.3 752.2 299.5 1.7084 178.5 175
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Table D.15: Data from predictions of Det2-1cls-6kpts (training202-preds4), for image-
ids 94 to 110 (fish #5 from preds.), all of the same fish with an ideal
cut length of 180mm: Three left-most columns contains Euclidean pixel
distances for lower and upper rack-top and between the pelvic fins and
anus ("Belly est. line"). The "Pixel scale" column contains the estimated
image scale (at current fish position in frame) in pixels per millimeter, and
in column is the estimated cut length in millimeters computed from the
"Belly est. line" and "Pixel scale" columns. For reference, in the rightmost
column, is the ideal cut length (measured by hand during collection of
dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

94 723.1 667.7 268.7 1.5019 178.9 180
95 726.8 672.4 266.8 1.5109 176.6 180
96 734.4 676.7 270.1 1.5239 177.2 180
97 730.9 683.2 277.8 1.5270 181.9 180
98 758.2 690.5 272.6 1.5645 174.2 180

99 747.5 698.7 287.5 1.5618 184.1 180
100 755.3 706.5 286.2 1.5786 181.3 180
101 763.1 704.3 287.3 1.5846 181.3 180
102 787.0 711.4 298.6 1.6182 184.5 180
103 795.0 716.2 295.4 1.6320 181.0 180

104 774.3 718.8 297.4 1.6123 184.5 180
105 780.3 719.3 286.4 1.6194 176.9 180
106 801.5 725.9 300.9 1.6495 182.4 180
107 808.1 732.4 313.0 1.6636 188.1 180
108 836.9 741.5 315.3 1.7046 185.0 180

109 811.1 749.0 309.6 1.6847 183.8 180
110 834.8 754.9 308.7 1.7168 179.8 180

count 17 17 17 17 17 17
mean 774.6 710.0 290.7 1.6032 181.3 180

var 1.329 × 103 692.2 253.1 0.0045 13.27 0
std 36.45 26.31 15.91 0.0671 3.643 0

min 723.1 667.7 266.8 1.5019 174.2 180
25% 747.5 690.5 277.8 1.5618 178.9 180
50% 774.3 711.4 287.5 1.6123 181.3 180
75% 801.5 725.9 300.9 1.6495 184.1 180
max 836.9 754.9 315.3 1.7168 188.1 180
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Table D.16: Data from predictions of Det2-1cls-6kpts (training202-preds4), for image-
ids 167 to 181 (fish #8 from preds.), all of the same fish with an ideal
cut length of 165mm: Three left-most columns contains Euclidean pixel
distances for lower and upper rack-top and between the pelvic fins and
anus ("Belly est. line"). The "Pixel scale" column contains the estimated
image scale (at current fish position in frame) in pixels per millimeter, and
in column is the estimated cut length in millimeters computed from the
"Belly est. line" and "Pixel scale" columns. For reference, in the rightmost
column, is the ideal cut length (measured by hand during collection of
dataset).

Lower rack Upper rack Belly Pixel Est. cut Ideal cut
Image width width est. line scale length length

id [pixels] [pixels] [pixels] [pix./mm] [mm] [mm]

167 723.5 674.7 249.0 1.5099 164.9 165
168 726.3 519.0 261.0 1.3448 194.1 165
169 745.8 523.8 253.3 1.3711 184.8 165
170 741.6 524.0 264.5 1.3668 193.5 165
171 760.5 701.7 259.0 1.5790 164.0 165

172 760.4 707.1 273.3 1.5847 172.5 165
173 781.5 709.3 269.1 1.6099 167.2 165
174 792.7 715.0 276.1 1.6282 169.5 165
175 806.4 726.5 267.3 1.6553 161.5 165
176 775.7 549.3 270.2 1.4309 188.9 165

177 792.2 721.2 271.2 1.6344 165.9 165
178 795.7 732.5 278.7 1.6503 168.8 165
179 828.8 735.6 273.2 1.6894 161.7 165
180 836.5 746.8 272.1 1.7099 159.2 165
181 840.4 571.8 271.1 1.5251 177.7 165

count 15 15 15 15 15 15
mean 780.5 657.2 267.3 1.5526 172.9 165

var 1.427 × 103 8.082 × 103 70.45 0.0149 142.1 0
std 37.78 89.90 8.394 0.1222 11.92 0

min 723.5 519.0 249.0 1.3448 159.2 165
25% 753.1 560.6 262.8 1.4704 164.5 165
50% 781.5 707.1 270.2 1.5847 168.8 165
75% 801.0 723.8 272.7 1.6424 181.3 165
max 840.4 746.8 278.7 1.7099 194.1 165
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