
Faculty of Science and Technology
Department of Computer Science

Sneak
A secure multiparty computation module for Python

Torkel Syversen
INF-3990 Master’s Thesis in Computer Science - [May] 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
Secure multiparty computation (SMC) is a technique that allows multiple par-
ties to jointly compute a function while keeping their inputs private. This tech-
nique has gained significant attention due to its potential applications in various
fields, including privacy-preserving healthcare, politics and finance.

SMC involves a set of protocols that enable parties to achieve secure computa-
tion and analysis. These protocols typically involve a trusted third party or a
cryptographic algorithm that ensures the privacy of the inputs. Some popular
cryptographic algorithms used in SMC include homomorphic encryption, se-
cret sharing, and the one discussed in this thesis, denoted as the round-robin
scramble.

This thesis focuses on the realization of a secure system for analysing sensi-
tive data across multiple nodes in a distributed network. The thesis discusses
the approach, design, and implementation of such a system with emphasis
on security, usability, and scalability. Security is of upper importance to pre-
vent information disclosure, followed by usability to ensure practicality and
ease of use. Scalability is addressed to accommodate networks of varying sizes.
The proposed system, named Sneak, offers near-zero information disclosure
by leveraging Python, enabling robust and valid complex analysis operations
across distributed networks.

Contents
Abstract i

List of Figures v

List of Tables vii

1 Introduction 1

2 Related work 5
2.1 The millionaires problem 5
2.2 A practical approach to solve SMC problems 6
2.3 Secret sharing . 7
2.4 Snoop middleware . 8

3 Concepts 9
3.1 Secure multiparty computation 9
3.2 Coordinator . 12
3.3 Ciphering data . 12

3.3.1 Encryption . 12
3.3.2 Symmetric . 13
3.3.3 Asymmetric . 13

3.4 Digital signature . 14
3.5 X.509 certificate and Certificate Hierarchies 14
3.6 Server . 15

4 Architecture and design 17
4.1 Initialising the node graph 18
4.2 Security requirements . 19
4.3 Minimum nodes needed . 27
4.4 Sneak communication . 27
4.5 Cryptography module . 28
4.6 Setting up servers . 29
4.7 Shutting down server . 31
4.8 Running SMC operations 32

iii

iv contents

5 Examples and experiments 37
5.1 The fair competition problem 37
5.2 Performance . 44

6 Discussion 53
6.1 Experiments . 53
6.2 Library security . 54
6.3 Library simplicity . 55
6.4 Library scalability . 56
6.5 Computational issues with Sneak 57
6.6 Preventing man in the middle attack 58
6.7 Onion encryption vs partial encryption 59
6.8 Future work . 59

6.8.1 Automacy . 59
6.8.2 Databases . 60
6.8.3 Executable code . 60

7 Conclusion 61

Bibliography 63

A Appendix 67

List of Figures
3.1 SMC algorithm . 10
3.2 Encryption to ciphertext . 13
3.3 Digital signature verification 14

4.1 Node graph illustration . 19
4.2 No encryption . 20
4.3 𝑁𝑎 injection . 20
4.4 Eavesdropper listening . 20
4.5 𝑛𝑎 injection, encryption but no signature used 21
4.6 SMC: Signing data . 22
4.7 SMC: With scramble . 24
4.8 SMC: Scramble issue . 24
4.9 Unique scrambles . 25
4.10 Unique scrambles issue . 26

5.1 Alice’s server . 38
5.2 Bob’s server . 38
5.3 Charlie’s server . 38
5.4 Coordinator’s server . 39
5.5 Alice’s server . 40
5.6 Bob’s server . 41
5.7 Charlie’s server . 41
5.8 Coordinator’s server . 42
5.9 Contestant received their vote result 42
5.10 Sequential requests running on a simulated Sneak SMC net-

work on a local machine. First image is zoomed in. 45
5.11 Concurrent requests running on a simulated Sneak SMC net-

work on a local machine. 46
5.12 Concurrent requests running on a Sneak SMC network on the

UiT cluster. 46
5.13 Sequential VS Concurrent requests running on a simulated

Sneak SMC network on a local machine. 47
5.14 Sequential VS Concurrent requests running on a simulated

Sneak SMC network on a local machine. 47

v

vi l ist of figures

5.15 Sequential VS Concurrent requests running on a simulated
Sneak SMC network on a local machine. 48

5.16 Sequential VS Concurrent requests running on a simulated
Sneak SMC network on a local machine. 48

5.17 Sequential VS Concurrent requests running on a simulated
Sneak SMC network on a local machine. 49

5.18 Time used on coordinator to initialize a request compared to
the total time used on a request. (On local machine) 50

5.19 Time used on coordinator to initialize X concurrent requests
compared to the total time used on X concurrent request (on
local machine). 51

5.20 Time used for a single request with/without compression.
(On local machine) . 52

List of Tables
4.1 List of denotations . 17

vii

1
Introduction
Data can be anything, including sensitive personal information. For hospitals,
this type of data is health records and is essential in order to diagnose and
cure diseases. This is just one type of sensitive data in a sea of many. The com-
mon factor is that sensitive data should not be shared with anyone without
specialized granted access, both for safety and personal purposes of patients.
However, data is the foundation for which further knowledge can be extrap-
olated. Combining the data from different sources is crucial for an increased
individual or group knowledge in a distributed setting. As Covid-19 showed,
being able to track the spread of the disease is very important in the event of a
pandemic. To share the sensitive information about where you have been in a
secure way, can therefore help reduce the spread of a highly contagious disease.
The privacy concerns here can be questionable. Therefore, to analyse patients
health records introduces privacy concerns that undoubtedly must be respected.
If health records for patients are scattered between many institutions, many
cities and potentially many countries. Their personal records will be data sets
located on different databases and machines. Since jointly analysing this data
imposes ethical and legal privacy concerns, it poses the question; How can a
patient’s sensitive health records be analysed if the data sets are scattered on
different institutions, while still not disclosing the data sets to any other insti-
tutions? There should be at all times only one institution that can read and
analyse the health records of patients and that is the institution who stores it.
There is none to the exception. By relaxing this constraint will potentially allow
for leak of information, which can have social impacts on whom it concerns.
Preventing leak of information is therefore the overall goal when analysing

1

2 chapter 1 introduction

distributed data sets of this kind.

Secure multiparty computation(SMC) is a way of achieving this goal. With
nodes (computers) connected together in some form, creating a network of
communicating computers. Each node will perform their own analysis on their
own data. Add their data to a result sum and pass it on to the next connected
node in the network. Eventually, all of the nodes will have added their analysis
result to the overall result. The fundamental idea is assuring that no one else
will have access to ones sensitive data. Having this strict rule makes it compli-
cated to share the result of the computed analysis data. Often the result itself is
sensitive too and must be treated as such. For instance, if it’s possible to deduce
sensitive information from the result of one single node, then the algorithm
discloses information for that node. However, add enough results together and
it will be safe to share the unified sum of results as it will be impossible to
deduce any individual node’s result from the sum. The result sum mentioned
here effectively means the result of the analysis performed across all nodes.
Which in theory could be anything, a single percentage value, to a complex
matrix of values.

To give an example I introduce the analogy of the fair competition problem,
which is similar to the millionaires problem [1]. It contains the SMC specific
problems with relation to joint analysis of distributed data sets.
A singer competes in a contest where the winner gets fame, money and glory if
they manage to win. The competition consist of two judges who must both agree
yes for the singer to continue to the next stage. The constraint is that the votes
must be anonymous, judges cannot know the other judge’s decision in order to
keep the contest as fair as possible for the people who compete. How can the judges
reach a decision on whether or not the singer moves on to the next stage of the
competition?

Using the SMC algorithm from this example, if one judge votes yes and the
other votes no, the singer will not pass through. The judge who voted yes can
then deduce that the other judge must have voted no, as there is no other pos-
sible outcome for the result that occurred. Data has therefore been disclosed
from one of the judges. The judge who voted no, will however not know what
the other judge voted for. Nonetheless, if we change the number of judges from
two to three, the votes can no longer be deduced from the results, thus there is
no more obvious information disclosure from this example. It is however ques-
tionable if three judges is enough to effectively hide the individual vote results,
but these are special cases. This is the premise that allows this SMC algorithm
to work as data is not disclosed between the connected nodes, as long as there
exist enough nodes in the network. Data can therefore be analysed and shared
securely. Notably, in the fair competition problem, a judge’s vote is regarded as
sensitive (and hidden) information.

3

In this thesis, how to realise a system to perform analysis on sensitive data
involving multiple nodes across a distributed network, in a secure manner,
is investigated. The thesis is based on some early work from the SNOOP [2]
platform. Moreover, in this work, explaining how to approach, design and
implement such a system is discussed in more detail. The important factors
this implementation focuses on will be (i) security, (ii) usability/simplicity and
(iii) scalability.

i There is no surprise that security is the most important factor as the
algorithm would be meaningless if not properly secure. SMC must be
ensured to not disclose vital information.

ii Usability is the number two concern as to make it practical and easy to
use. A complex system is often tedious to work with and can be quite
error prone if not handled correctly. A user who doesn’t understand the
usage could accidentally make it less secure or accidentally introduce
loopholes to its sensitive data. A Python library that is simple is therefore
preferred.

iii SMC networks might differ in sizes. Three connected parties will by de-
fault work faster than 20 connected parties. The scalability issues should
not be incomprehensible in such cases. Depending on the involved par-
ties, the algorithm should work within a feasible time frame, to make it
a realistic and practical library module.

Ideally we want zero information disclosure for a SMC algorithm. However,
this can prove quite difficult to achieve in a practical sense. This is due to
nodes that can have malicious intent and communicate with each other out-
side the scope of the library module. Therefore, near zero disclosure has been
designed and implemented leveraging Python in a way to hide complexity and
maintaining the security requirements. It will be a library module capable of
performing SMC across a distributed network of computers, each containing
sensitive data. Furthermore, it will support a wide range of complex analysis
operations, whether it’s uniquely defined for separate nodes or consistent. Any
complex result data can therefore be calculated, making the system robust and
valid for most use cases. We introduce Sneak, a practical approach for realising
a SMC algorithm.

2
Related work
2.1 The millionaires problem

The problem of secure multiparty computation was first introduced by Andrew
C. Yao in 1982 [1]. In his paper he introduced the millionaires problem,which is
a simple yet insightful example of a specific SMC use case. However, because of
the prerequisites, the problem proves quite difficult to resolve. The millionaires
problem involves two richmillionaires who wish to knowwho is richer between
the two. The prerequisite is that they can’t tell each other how much money
they have to the other person. Additionally, even though it’s not mentioned in
Yao’s paper, they can’t tell anyone else about their wealth either. In such a case,
how can they carry out their conversation and reach a conclusion? In a practi-
cal sense it seems impossible, but it can be achieved leveraging mathematical
expressions.

What Yao proposes is essentially, hiding the data by using one-way functions,
which is a way to make it easy to calculate a result but hard to know what input
was given to produce the result (invert the function), thus promptly named
one-way functions. To give an intuitive and over simplistic example of how
it works with the best of my understandings. The two millionaires asks each
other; do you have X million? Do you have X+1 million? Do you have X+2
million? And so on, until one of the millionaires says yes. Then the other can
know he has more or less millions of the two. This assuming their wealth is
differentiated in the millions. X here is any positive number. For the sake of a
simple example, it’s not completely accurate, but is the foundation of how it

5

6 chapter 2 related work

works. By using the one-way functions, they won’t know what specific number
they ask for, but they know if they are above or below it which is how they are
able to deduce if they are richer or poorer than the other. It also makes it very
difficult (but not impossible) to disclose information to the other person.

Yao’s paper is mentioned as it is a fairly different implementation from what
is proposed in this paper but nonetheless as valid. It simply applies to another
branch of SMC problems. There are many different SMC specific problems and
not all of them can be solved by a general SMC implementation, at least not
efficiently [3].

2.2 A practical approach to solve SMC problems

Wenliang Du and Zhijun Zhan discusses various specific SMC problems and
mentions that it’s hard to create a practical implementation which handles
all of them in a general form. They discuss what is referred to as the secure
two-party model. If the two-party model can provide a practical solution, we
do not need another model. However, according to our past experience, efficient
solutions for this model are usually difficult to find [3]. The millionaires problem
mentioned above is one example of a two-party problem. If a good practical
and general solution to this could be formed, then it should be able to solve
most if not all other SMC problems as well. However, since this is not the case,
practical solutions to SMC problems is therefore usually developed for specific
problems.

Their paper a practical approach to solve SMC problems [3] was released in 2002.
They write that achieving an ideal security model is not difficult but achieving
it efficiently is. Additionally, using a general solution for special cases of multi-
party computation can be impractical. Special solutions should be developed
for special cases for efficiency reasons [3]. Their paper allows for efficiency
gains by sacrificing some security in an acceptable way. Parameters can be
tuned which can allow for higher or lower security measures. It is achieved
by using data disguising techniques, such as polynomial function disguise and
linear transformation disguise with the combination of a commodity server. The
commodity server is not part of any computations, therefore not responsible
for any disclosed information, but does provide data in order to hide data for
participants. They also note that practical solutions to the ideal model might
not exist. The ideal model is where no data is disclosed to any connected or
third party programs, while still being optimal enough to run over a distributed
network of nodes in real time.

Such systems must use secure communication, and safe encryption schemes on

2.3 secret sharing 7

top of an SMC algorithm. Depending on the size of the data being transmitted,
this can prove quite inefficient and difficult. Optimization techniques such as
compressing data can be used but might not be enough. Importantly, compress-
ing data should always be done first as then it will be less to encrypt/decrypt. In
these cases, special solutions can be made to sacrifice some security if it’s still
within an acceptable rate. All depending on what the end user need in these
cases. This means that their solution can partially disclose information, but
does so to improve performance. The amount of disclosed data can be tuned
for special cases to still keep it secure enough.

A similar concept to scrambling data is mentioned in [3]. This concept is adding
bogus data into a database. It’s another disguise technique where if one can’t
distinguish between the bogus records and the real records, then the data
would be hidden. Whether or not this is effective and secure might be ques-
tionable and quite situation dependent but it’s definitely an interesting option
worth mentioning. It also somewhat similar to Sneak’s round robin [4] scram-
ble, which will be detailed in the design section.

2.3 Secret sharing

Shamir’s Secret Sharing (SSS) is a useful technique within SMC as it has math-
ematical properties which can guarantee that a secret which has been split into
n keys, can be reconstructed based on a minimum threshold k, denoted as a
(k, n) threshold scheme from [5]. If any one key is leaked, it does not disclose
any information about the secret. For example, if k=2, usually denoted as a
(2,n) scheme, at least 2 out of n shares must be present in order to gain the
full secret. Secret sharing is especially useful where a single point of failure
becomes an issue, such as if a node becomes unavailable, the secret can still
be reconstructed by the other k nodes.

It works by generating k random points on a 2D plane, with k=3, the line
created by these 3 points will define a polynomial of degree k-1. Any n number
of keys can be constructed on the polynomial line, and any 3 out of n points
will together define the polynomial, which will regain the secret for the (3,n)
scheme [5, 6].

Many secret sharing techniques are based on SSS. The effects this scheme has
on SMC is allowing joint computation of data. For example, this can be used
by SMC algorithms to jointly compute the average, if Alice has secret value 102,
she can make two shares, (54, 48) which sums up to 102. Bob has secret value
765 and two shares (249, 516). If Bob shares 249 with Alice and Alice shares
54 with Bob, neither party knows the other participants secret value. However,

8 chapter 2 related work

they can compute the average of both their secret value by combining their
shares. Bob will have 54 + 516 = 570 and Alice will have 48 + 249 = 297. The
average of this data becomes (570 + 297)/2 = 433.5, which is equal to the
average of their original secret value, (765 + 102)/2 = 433.5. However, this
comes with computational costs which is why newer techniques, such as [7, 8]
aims to optimize it.

2.4 Snoop middleware

One practical approach to solve many SMC problems related to health services
is the SNOOP middleware [9] by A.Andersen. Another SNOOP paper [2] men-
tion that databases often are partitioned vertically and horizontally, such that
data is contained on many distributed nodes. Performing calculations on these
sets can therefore raise a number of security concerns if the data is marked
sensitive. Even though data might relate to the same person, these concerns
must be held appropriately. In health community services, patients can have
many general practitioners who each store data about their patient. SNOOP
mentions that for these cases, "the legal, ethical and privacy aspects at managing
those data sets have to be respected" [2]. In fact, this paper and implementation
is based on SNOOP, showing a practical approach to how such a system can be
implemented.

The basis for the SNOOPmiddleware is this. "The combination of SMC algorithms
and Public-key encryption (in combination with symmetric key encryption) ensure
that each node is unable to learn about the other nodes local data, input data
and intermediate results. A PKI and its certificate authorities (CAs) are used to
ensure that the participants can distribute and trust public keys. The PKI enables
public-keys as the tool to authenticate participants and maintain the integrity
and privacy of the data exchanged." [2] By using public keys, certificates and
CA’s, the SMC algorithm is secure to be used in a real world setting. It can
be used to perform joint computation on distributed data sets, preserving the
legal and ethical privacy concerns.

3
Concepts
3.1 Secure multiparty computation

SMC is generally described as a cryptographic technique designed to provide
privacy and security in situations where parties do not fully trust each other
or where the data being used is sensitive or confidential [10, 11]. With SMC,
parties can perform computations over their data without revealing it to the
other parties or to any external entities, using various cryptographic techniques
such as encryption, secure communication channels, and the use of trusted third
parties like Certificate Authorities (CAs) to establish trust.

In SMC, no data should be leaked or disclosed to another party under any
circumstances. In other words, SMC algorithm is a guarantee that data remains
private for the respective participating nodes. The main idea is to be able to
perform some analysis individually on a per node basis, and pool the individual
results together to form a sum result. The process of adding the performed
analytic data to a sum, is what is most difficult to achieve successfully while
still maintaining an optimal security certainty. 𝑁𝑜𝑑𝑒1 cannot simply add the
result to a sum and further the sum to 𝑁𝑜𝑑𝑒2. Then 𝑁𝑜𝑑𝑒2 will know the
sensitive information disclosed in the sum from 𝑁𝑜𝑑𝑒1 which is in violation of
the SMC presumption. In worst case scenario,𝑁𝑜𝑑𝑒2 could deduce the sensitive
information from the result sum it received. It is only after a certain amount of
results have been added together safe to assume that it’s impossible to deduce
any information from the result sum. Theoretically, to get to this step is not
too difficult, however practically, it’s more to it than meets the eye. This will be

9

10 chapter 3 concepts

explained in more detail under the architecture - security requirements section
where the specific issues are highlighted.

Essentially, a coordinator node must start off the algorithm and preset the
result sum to a random scramble value. As figure 3.1 shows, 𝑁𝑜𝑑𝑒2 will not
be able to know 𝑁𝑜𝑑𝑒1 result, but it’s still able to add its own analysis result
to it. This will remain the case for all nodes the result passes through. Once
passed through every node, it’s sent back to the coordinator who can subtract
the random scramble value. The coordinator is left with the true result from
all nodes participating, and no nodes have received any others disclosed data.
Figure 3.1 shows an example of the use of scramble value and furthering data
from one node to another.

Figure 3.1: SMC algorithm

At this point the sum can be freely and safely distributed, as previously stated
this can only happen when there has been enough results added together. One
example of this is the fair competition problem, where individual votes should
not be known, but the total voting result has to be in order to know who won.
Meaning that the result is publicly available but a judge’s individual vote are not.
Another example is the election infrastructure (for instance the presidential
election process) which works similar but on a much larger scale.

In some cases within SMC, the result does not have to be shared and can still
be kept private. An example of this is when analysing relations between data
sets. If node 𝑛𝑎 wants to know the relation it has with 𝑛𝑏 and 𝑛𝑐 then only 𝑛𝑎
needs to know the SMC result. 𝑛𝑎 can in this case be the coordinator as well
as a regular node in the SMC network. This will ensure that the result is only
available to one node.

3.1 secure multiparty computation 11

Why do we need secure multiparty computation algorithms? Secure multiparty
computation has many use cases in the real world. Especially when keeping
information private is as crucial as it is today. In an election system, only the
overall result should be public and the individual votes should remain a secret.
In the case where someone is able to deduce ones individual vote, suddenly
there is a possibility to sell votes which can skew the election in favor of one
party or politician.

In auctions, knowing who bid what for which item can raise or lower its value.
Therefore using SMC can be a good option to prevent information being public
which keeps the auction fair for both sellers and buyers [12].

A group of people can sign a document without knowing who or which other
person has signed it. Then the document only passes if it exceeds a given thresh-
old of signatures [12]. If passed or not, the anonymity will still remain.

In health information, SMC is a viable option to perform analysis. Often Pear-
son’s R coefficient is used to calculate the correlation between data. For in-
stance, this could be used to determine whether someone has Covid-19 or is
more likely susceptible to Covid-19 by looking at their health records. Data sets
with coherent data correlations is very viable in a SMC context for sensitive
data.

Additionally, it can be used to track the spread of a disease and to prevent it
further. For example there can be a SMC app on mobile phones, each phone
will then be a node in the SMC network. If there has been an outbreak in a
supermarket X, and an authority wants to know how many is potentially in-
fected by being at the store. Then instead of sending GPS data about where the
person has been, it can calculate whether or not the person (phone) has been
to X within a given time frame, completely anonymously. It would otherwise
not be anonymous if the authority asked the person one by one whether it has
been at X.

Tracking using location data is under law sensitive information and can not be
done without consent [13, 14]. Whenever location data is used, it can be sent
to a centralized server for storage and analysis. For instance to your google
account [15]. Applications (apps) can ask to use the location data in some way.
Google Maps is a default app on android smartphones and is one example of
this usage. It can be hard for users to keep track of where all their data are
being stored on the internet, as well as being uncomfortable. While SMC can’t
prevent the provider storing your location data. It can prevent applications
leaking information, and prevent unnecessary storing of this data by keeping
users anonymous. This is by not sharing the result at all, but rather perform
all calculations locally on the phone in the context where it is applicable and

12 chapter 3 concepts

anonymously share the result if needed. Another situation where this could be
used is anonymously study behaviour patters of people (or a certain group of
people), by looking at where they go and where they have been.

Applications could need less consent, as SMC will guarantee the safe handling
of information. Users will be guaranteed that their data is not spread or stored
somewhere on the internet by the use of the algorithm. Location, and health
information is very sensitive for many and should not be public knowledge.
Having a secure way to perform analysis is therefore the motivation for Sneak
and for reliable SMC algorithms in general.

3.2 Coordinator

A coordinator is also known as a master or leader node. It is a node in a SMC
network that is responsible for coordinating the computation process between
different parties or nodes. The coordinator’s role is to ensure that all parties
follow the same protocol and that the computation is performed correctly, se-
curely and efficiently. The coordinator is typically the first point of contact in the
system, and is responsible for distributing and verifying certificates to ensure
that nodes are who they claim to be. The coordinator may also perform other
tasks, such as generating or distributing keys, managing inputs and outputs,
and verifying computation results. The coordinator is a critical component of a
SMC system that helps to ensure the security and integrity of the computation
process. Coordinator can act as any other SMC node but is agreed by everyone
in the network to be the leader.

3.3 Ciphering data

3.3.1 Encryption

Both symmetric and asymmetric encryption is used. Symmetric is used to en-
crypt large data in an efficient way. The problem is that the symmetric key is
generated for each message and the other party doesn’t know it. This is why
the key itself is sent with the encrypted data. The key must therefore also be
encrypted asymmetrically using the receivers public key within the RSA encryp-
tion structure. Asymmetric encryption should not be done on large text as it is
generally considered slow. However, for a small key of fixed size it seems perfect.
This ensures that the data is only readable to the intended receiver.

3.3 ciphering data 13

Figure 3.2: Encryption to ciphertext

3.3.2 Symmetric

When dealing with symmetric encryption AES is a good algorithm. AES has
different encryption modes and it’s important to not use ECB mode. ECB is
the simplest mode, it encrypts identical plaintext blocks to identical ciphertext
blocks[16, pp.48]. This means that the algorithm reveals patterns even after
it has been encrypted, making it possible for an attacker to understand and
possibly retrieve data. Instead, CBC should be used, this mode does not suffer
from the same fault by using an initialization vector(IV). The IV is a randomly
generated 128 bit number, unique for each cipher. The IV is needed along with
the secret symmetric key when encrypting/decrypting data. However, the IV
is not meant to be secret as with the key, it only obscures the data. Therefore,
when sending encrypted data, the IV must be sent with it in order for the
receiver to decrypt it. An Attacker will know the IV, but as long as he doesn’t
have the secret key, it will not matter.

3.3.3 Asymmetric

RSA is an asymmetric encryption/decryption algorithm. It scales and handles
the key-distribution problem natively. Each user generates a public and a secret
key. Anyone can encrypt data using the receivers public key, and only that
receiver can decrypt the data. It scales because if some attacker manages to get
the secret key to one user, they only have access to that users secret data[16,
pp.53]. Additionally, each participants generate the keys themselves and there
is no need for a key distribution middleman.

The problem is nonrepudiation. When sending one message, it’s difficult to
prove the author of the message if there are more than 2 parties involved. If
Bob encrypts a message to Alice, Alice can say she created the message and
furthers it to Charlie. It will be troublesome for Charlie to validate who the
original author was. Luckily, certificates based on digital signatures and a CA
handles this very issue and is therefore also important in the context of an SMC
algorithm.

14 chapter 3 concepts

3.4 Digital signature

Digital signature is used to verify the message that is sent. It makes it possible
to know who sent the message and whether the message has been modified
in transit (by an attacker). The concept of signature works with the sender
hashing the entire message content (into lets say a 256 bit value), the hash
value is then encrypted using the senders own secret key (which forms the
signature) and sent along with the actual encrypted message. Anyone who
knows the senders public key can then decrypt the hash value (opposite of how
RSA encryption/decryption works). And create their own hash value from the
actual received and decrypted message content, and then compare the two. If
the hash values match, then they know that only the correct sender has sent
this message and that it has not been modified during transit. This is known
as they used the senders public key to decrypt the signature, rather than using
their own secret key. This means that no one else could possibly encrypt the
message without having the senders secret key.

Digital signatures is very important when it comes to SMC as it adds a layer
of integrity to each and every message. Preventing any unwanted or invalid
messages both due to hackers/exploiters and possible glitches when sending
data over the internet.

With digital signatures we know that the sender is the owner of the private key,
but not necessarily who he is.

Figure 3.3: Digital signature verification

3.5 X.509 certificate and Certificate Hierarchies

A certificate is the combination of an identity and a public key, signed by a
trusted authority. This will ensure that the public key is belonging to that
identity.

3.6 server 15

An X.509 certificate contains information about the identity of a computer or
entity, and is widely used to establish that a public key belongs to a given com-
puter [17], as certified by a certificate authority (CA). The CA is a trusted entity
that distributes certificates to ensure that computers are who they claim to be.
When buying a new computer, a certificate is typically integrated into the sys-
tem, which is the base of a certificate hierarchy. The certificate is also automat-
ically renewed at regular intervals to ensure that it remains valid [18].

Certificate hierarchy refers to the structure of trust between CAs and end enti-
ties (computers). A certificate hierarchy can be thought of as a tree structure,
with the root CA at the top and the end entities at the bottom. Intermediate
CAs can also be present in the tree, which sign and issue certificates to other
CAs. The root CA is at the top of the hierarchy and is responsible for issuing
certificates to intermediate CAs. Intermediate CAs can then issue certificates
to other intermediate CAs or end entities. This creates a chain of trust that can
be verified by following the chain of certificates from the end entity up to the
root CA [18].

To have a certificate signed by a trusted authority can potentially involve phys-
ical validation. If the CA is Helsenett and if they sign a coordinator’s certificate,
then each node receiving requests from this coordinator know they can safely
trust it. Subsequently, each request from the coordinator must contain their
valid and signed certificate, otherwise the request must be ignored by all nodes.
Certificates adds a layer of security as it’s then possible to assume the coordi-
nator will always be a trusted node. Having this assurance is the only way to
make Sneak completely integrity safe, as the coordinator can potentially gain
knowledge of other nodes sensitive data otherwise.

Using a self signed certificate will guarantee that the certificate (and other data)
has not been modified during transmission. The contents of the certificate will
therefore be valid in terms of what the sender sent. However, with self signed
certificate anyone can generate it and sign it themselves on their own private
key. Theoretically any machine (or node) can pretend to be another, as long
as their certificate states it. This is why self-signed certificates are insufficient
for an SMC algorithm, and why it is necessary to have certificates signed by a
trusted CA.

3.6 Server

The server mentioned in this thesis is the foundation for which communication
is performed. It is a way to receive and send messages between participants
in the SMC network. For this server, communication is achieved by sending

16 chapter 3 concepts

TCP packets over the internet to the correct recipient. Each TCP packet carries
information and will be from now on referred to as requests. For instance,
node A can send a request (a TCP packet with information) to node B. The
TCP protocol guarantees that requests will be sent, which is implemented by
the OS [19]. Our server therefore does not need to worry about the reliability
of sending data over the internet as it is handled for us. One important thing
to keep in mind is that, although TCP guarantees that the full message will
be sent, it can’t guarantee that the request is actually received on the remote
end. The remote server might be down or have crashed due to an unknown
reason. This specific case is not a big issue for the implementation of a practical
SMC library. The result will be invalid and the SMC system will throw an error,
letting the end user know about their unattainable server. To make the SMC
library as little complex as possible, it is run as a background server, hiding it
as well as its functionality from any user.

4
Architecture and design

Table 4.1: List of denotations

Denote Description

whitelist / nodefile Text file of allowed nodes
n Node / computer

Dirty node A node which has malicious intent
Clean node A node which is compliant

Co Coordinator
m Message
s Scramble
m𝑎 M encrypted to node a
m𝑏 M signed by node b
m𝑎

𝑏
M encrypted to a and signed by b

The design details of a Python developed SMC library is discussed here. De-
tailed examples of usages however will be presented in the experiments sec-
tion.

17

18 chapter 4 architecture and design

Since one of the main goals of this library is to keep it simple to use while
preserving the fundamentals of SMC. In short, there will be a background
process which runs a server that is used to connect nodes together. Each node
in the distributed network has a server to handle HTTP requests. It operates as
a background process which means that the user does not have to think, worry
or even know that it exists, it just works. This will only be the case after the
node has been initially setup and run.

The Sneak client is like the front-end in this Python library and is an interme-
diate to the underlying SMC network. It communicates with the background
server in order to send messages over the network in a secure SMC session.
The Sneak client is therefore used when starting and ending SMC operations,
as well as retrieving the results.

4.1 Initialising the node graph

The node graph, also referred to as send_list is the order of which analysis
operation is performed for each subsequent node. It’s initialized by Coordinator
and its content is partial encrypted to each node. An illustration of the generated
node graph is shown in figure 4.1 with 4 nodes and 1 Coordinator node. To
make the understanding of a node graph clear, it’s a list of nodes containing
the corresponding nodes address (IP-address and port). When a node receives
the node graph, they pop the first element in the list to gain information (IP-
address+port) of the next node in the system and can then further the SMC
operation to this next node.

Another example of a possible node graph from figure 4.1 is [𝑛𝑏, 𝑛𝑑 , 𝑛𝑎,𝐶𝑜].𝐶𝑜
sends data to 𝑛𝑐 , 𝑛𝑐 sends data to 𝑛𝑏 , 𝑛𝑏 sends to 𝑛𝑎, and 𝑛𝑎 sends the final
result back to 𝐶𝑜. As you can see, node 𝑛𝑐 is not in the list. This is because
Coordinator knows to send 𝑛𝑐 the request and already has its address. In the-
ory the initial node graph could also be written as; [𝑛𝑐, 𝑛𝑏, 𝑛𝑑 , 𝑛𝑎,𝐶𝑜] or even
[𝐶𝑜, 𝑛𝑐, 𝑛𝑏, 𝑛𝑑 , 𝑛𝑎,𝐶𝑜], but this additional information is redundant.

In figure 4.1, the message𝑚𝐶𝑜 contained from coordinator is each individual
node-address, partially encrypted to each node. Together this forms the node
graph and is necessary data for a valid SMC result. Node 𝑛𝑎 receives the IP
address for node 𝑛𝑏 . This allows 𝑛𝑎 to know who to send the current result to.
Additionally it allows the coordinator to specify a random order in which to
perform the SMC and re-shuffle it for every operation. Importantly, the message
that is sent from each node to the nextmust also contain the current result value
up to this point to make this work. This is not shown in Figure 4.1 for simplicity,
but will be showcased later in other figures under section Security requirements.

4.2 security requirements 19

Figure 4.1: Node graph illustration

The result value is sensitive data and must be hidden from each node securely,
while still being able to add the results together after each succeeding analysis
step. Achieving this is also shown under Security requirements.

4.2 Security requirements

To show the security requirements needed to ensure a valid and secure SMC
operation takes place. There will be displayed potential issues that can arise
and subsequently explained why it happens and a possible way to fix it. A series
of figures is shown with the same layout consisting of 5 nodes; Coordinator,
Node-a, Node-b, Node-c and Node-d.

Starting with the most basic issue, where no data is encrypted. It’s entirely
built on trust. The network is extremely prone to eavesdroppers and frail to
a large number of attacks. Any node can essentially pick up network packets,

20 chapter 4 architecture and design

alter them easily (as no encryption is used) and deliver the packets to the in-
tended receivers. This issue is shown in figures 4.2 - 4.4 where it uses the node
graph as an example. It displays why it’s so important to partially encrypt the
node graph. Otherwise, each node is able to alter the SMC order specified by
the coordinator. One dirty node is all it takes to receive the analysis result of
another node, which discloses a node’s sensitive information. An example of
how it could be achieved is if 𝑛𝑎 alters the send_list by injecting its IP, such
that 𝑛𝑏 sends its result back to 𝑛𝑎, shown in figure 4.3. Another example is to
simply eavesdrop the result shown in figure 4.4.

Figure 4.2: No encryption Figure 4.3: 𝑁𝑎 injection

Figure 4.4: Eavesdropper listening

4.2 security requirements 21

Evidently, as can be seen, having no encryption does not work well. It must
be present in the implementation of an SMC algorithm. Figure 4.5 displays
the send_list partially encrypted as well as the result values encrypted between
each step. The encryption data is however not signed by the coordinator or
by any nodes when data is being sent from one node to the next. Having
encryption prevents any eavesdroppers to gain restricted knowledge as was
previously possible. The most obvious unintentional information disclosure has
been fixed, a step in the right direction. However, the SMC network is again
very frail and all it takes is one dirty node to have information disclosure.

Figure 4.5: 𝑛𝑎 injection, encryption but no signature used

Suppose 𝑛𝑎 is again dirty and wants access to 𝑛𝑏 ’s analysis results. It should
be illegal to gain this information. 𝑛𝑎 can’t alter the message to 𝑛𝑏 from coor-
dinator, as it has been encrypted to 𝑛𝑏 only. What it can do however is remove
the message altogether, recreate it and re-encrypt it to 𝑛𝑏 ’s public key. Since
signing data is not used in this scenario, 𝑛𝑏 has no way of knowing who the
author of the message is and thus can’t ensure the validity of the message. 𝑛𝑏
will assume it’s encrypted from the coordinator (which it originally was) and
will send its result values to the received decrypted IP address from this mes-
sage. 𝑛𝑏 doesn’t know that 𝑛𝑎 changed it, such that 𝑛𝑏 sends the result value
back to 𝑛𝑎. 𝑛𝑎 has managed to trick the system to gain private information not
intended for it to know, by injection itself in the node graph.

As was mentioned in the Concepts section of this paper, signing data allows
for data integrity. By signing with a private key, anyone can validate that the

22 chapter 4 architecture and design

original author is who he says he is, by verifying it with their public key. As
figure 4.5 shows, signing each message is a necessary requirement to prevent
any information disclosure by injection and dirty inside nodes.

Figure 4.6: SMC: Signing data

Signing data is critical for a valid SMC operation. Figure 4.6 displays data
encryption as well as data signing between each node. To make the figure
easier to read, lst is denoted as the node graph, identical to the one shown in
figure 4.1. lst therefore contains the entire partially encrypted and signed node
graph. 𝑛𝑎 is no longer able to inject itself into the node graph to confuse 𝑛𝑏 .
This is because 𝑛𝑏 will now validate each message it receives to make sure it’s
from the correct sender, and that data has not been altered during transmission.
Information disclosure by injection is no longer possible.

Still, the algorithm is not complete. There are two subtle yet critical issues
remaining. As shown in figure 4.6, the Coordinator sends a result of zero to

4.2 security requirements 23

𝑛𝑎. No node has added their results to the sum result yet. 𝑛𝑎 will perform its
analysis operation and add its result value to the result sum. It pops𝑛𝑏 ’s address
from the partially encrypted node graph and furthers everything to 𝑛𝑏 . The
issue lies here, 𝑛𝑏 will receive 𝑛𝑎 ’s result value. 𝑛𝑏 must be able to decrypt this
result as it will add its own result value to it, but this discloses 𝑛𝑎 ’s information.
The premise of our SMC algorithm has been broken. The individual analysis
result is sensitive information. The result can only be viewed if enough nodes
has added their result together, thereby obscuring the result for the individual
value.

Issue number two is the opposite of injecting data into the node graph. Every
node can in theory delete information from it. Additionally, every node can
set the result to any value they prefer. If node 𝑛𝑐 sets the result sum to zero
and furthers it to the last node 𝑛𝑑 . 𝑛𝑑 will add and send its individual result to
coordinator. Only 𝑛𝑐 will know that the entire result consist of only 𝑛𝑑 ’s values.
If coordinator then makes the result public, then 𝑛𝑐 can request the data and
𝑛𝑑 ’s information has been disclosed.

This is the reason for the circular structure of the SMC algorithm. It’s because
the Coordinator must initialize the result value to some random data, and at
the end subtract it when it received the result back. This process is referred to as
the round-robin [4] scramble in this thesis. To prevent information disclosure
by furthering data to the next node, the result value is scrambled for all nodes
except the coordinator. Coordinator starts of the SMC algorithm and sets the
result to be equal to some random scramble value. It furthers the request to 𝑛𝑎
who performs its own analysis and adds it to the result. When 𝑛𝑎 furthers the
request to 𝑛𝑏 , 𝑛𝑏 will not know 𝑛𝑎 ’s result value anymore. The scramble value
has hidden it. When coordinator then receives the result back from 𝑛𝑑 , it can
remove its own scramble data and be left with the total analysis result from all
nodes participating. Each individual result value can’t be interpreted from the
total result either, as long as there is enough nodes participating.

Concerning issue number two as previously stated, if 𝑛𝑐 deletes information
by setting the result to zero and sends it to 𝑛𝑑 . Then 𝑛𝑑 ’s information will
only be disclosed to the coordinator node, as 𝑛𝑑 will further the data back to
coordinator. Additionally, coordinator does not realize that𝑛𝑑 ’s information was
disclosed as it assumes its scramble value is still present. Coordinator removes
its scramble and the end result will be wrong. 𝑛𝑐 will not be able to retrieve 𝑛𝑑 ’s
information. Scrambling the data will therefore prevent information disclosure
by deleting node graph elements. As well as prevent the second node in the
node graph to see the first nodes information.

The figure is updated in 4.7 to apply a scramble. It will not be possible for any
clean node to understand the previous node’s data. It’s impossible to know

24 chapter 4 architecture and design

Figure 4.7: SMC: With scramble Figure 4.8: SMC: Scramble issue

what’s real and what’s scrambled between each analysis step. Node 𝑛𝑏 can
therefore not know 𝑛𝑎 ’s result anymore. However, if two dirty nodes communi-
cate, it is possible for them to figure out the coordinator’s scramble, thus able
to disclose a nodes hidden information. As illustrated in figure 4.8, 𝑛𝑎 and 𝑛𝑐
are dirty nodes (represented by their evil purple horns), 𝑛𝑎 receives the initial
result value from the coordinator node. This value will simply be the scramble
value. 𝑛𝑎 communicates the scramble value with 𝑛𝑐 , such that 𝑛𝑐 knows what
the secret scramble is. 𝑛𝑎 then continues the SMC operation, adds zero to the
result and furthers it to 𝑛𝑏 . The clueless node 𝑛𝑏 performs its analysis and adds
it to the result and furthers the operation to the dirty node 𝑛𝑐 . Since 𝑛𝑐 already
received the coordinator’s scramble value from 𝑛𝑎, it can subtract it from the
sum result from 𝑛𝑏 , and its information is disclosed.

Having one scramble value is not sufficient enough to satisfy our SMC premise
since SMC shouldn’t assume having all clean inside nodes. Therefore there must
be an unique scramble added to the result between each node. Each value is
then protected by the scramble such that the issue where two nodes working
together to disclose information,will not be possible anymore. Inherently, it will
also properly prevent information disclosure by deleting data (setting result
equal to zero). Figure 4.9 shows the structure with unique scrambles for each
node. There are two possible ways of designing this structure in a practical
case. Either coordinator generates all the scrambles and encrypts them to their
corresponding recipient. Or each node generates their own scramble value and
encrypts it to the coordinator. Coordinator must either way know all of the
scramble values to be able to subtract it from the result sum. Therefore it does
not matter which design solution is used in terms of preventing information
disclosure, both are functionally the same. Additionally, it does not matter in
terms of network bandwidth nor for simplicity. This design chose to generate all
scrambles on coordinator, and send it encrypted alongside the other metadata

4.2 security requirements 25

needed when sending SMC analysis requests.

Figure 4.9: Unique scrambles

The SMC algorithm can potentially disclose information again. Even after uti-
lizing unique scrambles for each node. When all nodes in the network are dirty
except one and the coordinator, it will be possible for them to leak information.
Assume 𝑛𝑎, 𝑛𝑐 and 𝑛𝑑 are all dirty nodes and they wish to retrieve 𝑛𝑏 ’s analysis
result. Since the dirty nodes communicate with each other, they can share their
results among themselves. Otherwise, and for simplicity of this example, they
can agree to add zero to the result. 𝑛𝑎 adds zero, furthers the request to 𝑛𝑏
who adds its true result. 𝑛𝑏 then furthers to 𝑛𝑐 who adds zero to the result and
furthers it to 𝑛𝑑 . 𝑛𝑑 does the same thing, adds zero and lastly sends it back to
the coordinator. Eventually, what coordinator will receive is this.

𝑟𝑒𝑠𝑢𝑙𝑡 = (0 + 𝑠𝑎) + (𝑚𝑏 + 𝑠𝑏) + (0 + 𝑠𝑐) + (0 + 𝑠𝑑)
𝑟𝑒𝑠𝑢𝑙𝑡 =��𝑠𝑎 +𝑚𝑏 +��𝑠𝑏 +��𝑠𝑐 +��𝑠𝑑
𝑟𝑒𝑠𝑢𝑙𝑡 =𝑚𝑏

All nodes added their unique scramble values such that when coordinator re-
moves the scrambles, it is left with only 𝑛𝑏 ’s result value. 𝑛𝑏 ’s individual result
has therefore been disclosed. Without necessarily knowing it, coordinator has
received only the result for 𝑛𝑏 . Additionally, if coordinator makes this result
publicly available then all of the other dirty nodes knows𝑛𝑏 ’s private data. Thus
the SMC algorithm has been broken and is no longer reliable for further use
with the same sequence of nodes. Sadly, there is no attainable way to catch nor

26 chapter 4 architecture and design

prevent inside collaboration of nodes in this way. No matter what measures
is done to prevent information leak, if there is full inside collaboration, and if
coordinator makes the result public, data will always be as secure as the nodes
who produced it. The only way to guarantee an ideal SMC operation is if a
certain amount of nodes can be guaranteed clean. This guarantee is impossible
for all practical cases as has been showed, because nodes can always commu-
nicate outside the SMC network. Meaning that it’s outside the scope of what
the SMC algorithm can control. Figure 4.10 shows an example.

Figure 4.10: Unique scrambles issue

Lastly, we have always assumed a clean coordinator node, but what happens if
the coordinator is dirty? In this case, information from any node is very easily
disclosed. All nodes trust the coordinator by default and if coordinator asks for
some result value, it will receive it. Coordinator can fake SMC operations. It
is therefore of significant importance that coordinator must be a clean and a
valid leader node in the network. The whole algorithm relies on it, which is
why the coordinator must have a valid certificate signed by a trusted authority.
For each request that is sent, the certificate must be properly checked to ensure
clean nodes, not only for coordinator but for all other nodes in the network
as well. If nodes are who they claim to be, then the SMC algorithm will be as
safe as the encryption algorithms used within. If Nodes certificates has been
signed by a trustworthy authority then this is as safe as it gets. The baseline for
the security measures in this paper is therefore set with the certificates such
that each node can be trusted to not be dirty, and thus won’t communicate
with other nodes in the network to gain illegal knowledge of other nodes. The
only way to disclose information would be for inside collaboration for all but

4.3 minimum nodes needed 27

one node or if coordinator is dirty. Theoretically possible, but impractical to
assume.

4.3 Minimum nodes needed

Once a valid SMC operation has taken place, at the end of it, coordinator
receives the result sum and because of the size of the network (i.e. 5 nodes in
the network), it won’t know the individual results. It won’t be able to deduce
private information as each individual result added obscures the result sum
further. To keep a simple and uniform design, the minimum number of nodes
in a network must be supplied from a use case perspective. Assume two users,
hospital A and hospital B. They wish to perform Pearsons R coefficient on their
joint data, to see if there are any correlation between their patients health
records and an arbitrary disease. A contains unknown sick patients and B
contains known patients with the disease.

By looking at the correlation, it is possible to predict how likely someone from
A has the disease. In this case, the minimum number of nodes in the SMC
network must be 2 to allow it to pass through. If this is accepted by all three
nodes in the network (coordinator, A and B), then the operation goes forward.
In this special case, A is the only node who needs to know the end result. B
does not need to know, as it was only used to help A decide if their patients
had the disease. Therefore, to make it safer for A, coordinator can be run in
parallel on node A. When coordinator receives the result, it will be received on
A and the result does not need to be made public, B will therefore not know
the end result.

As has been shown, minimum number of nodes in the SMC network is special
case and may vary immensely from different situations. With one node in
the network, coordinator will receive the immediate result of this one node.
In most cases this is a security breach. It can however be allowed by user if
minimum nodes is set to 1. This is a special case where the analysis result is
not deemed sensitive information by the user, therefore this data can be freely
distributed.

4.4 Sneak communication

The server uses a threading variant of the BaseHTTPRequestHandler class from
the http.server module in Python [20, 21]. This allows handling of multiple
requests near simultaneously. Although Python does not support true thread-

28 chapter 4 architecture and design

ing since it’s limited by its global interpreter lock (GIL), it works well for I/O
operations such as handling server requests [22].

When the server starts it sits idle while waiting for requests. If the server is
coordinator, it must be specified in command line argument when starting
and also be given a whitelist (nodefile) of all nodes in the system. Examples
of this can be found in Sneak’s documentation in the appendix section. The
coordinator must also be started last and the reason is because it will send a get
request for the certificates of all the other servers specified in its network.

The background server natively uses the Sneak cryptographymodule for each in-
put and output message request. Which means it operates closely with our own
module. Every time a new message is sent/received it is safely encrypted/de-
crypted. All transmission data is signed and the certificate is properly checked.
Otherwise the server itself functions like any other HTTP server. It uses RESTful
API as the architectural style for handling requests. The distributed network
of servers is centralized with the coordinator and waits for "GET /analysis"
requests.

4.5 Cryptography module

This module consist of a single class called Crypt and also has a test to validate
its correctness. The test is under Sneak’s source code, which can be found when
pip installing Sneak.

The cryptography submodule is meant to be abstracted away from the end-
user completely. However, It’s possible to use it to create any custom imple-
mentations, although this is not needed while using the SMC module. The
sneaksmc.client submodule uses the cryptography submodule to communicates
with the coordinator node for the user.

The cryptography submodule is fairly simple to use for any end-user as they
only have two functions to use, namely encrypt and decrypt. As the name
suggests, encrypt will take a message and encrypt it securely to any public key
given. The return value will be a Python array of bytes (not to be confused
with bytestring). In the background quite a lot more has been done and the
return data contains metadata needed for efficiency and simplicity. Needed
metadata includes senders public key, public key size in bytes, initialization
vector(IV), signature (encrypted hash value), encrypted symmetric key and
lastly the encrypted message. The metadata is handled within the encrypt and
decrypt functions.

4.6 setting up servers 29

Since symmetric encryption uses block ciphering, the message input has to be
a byte length multiple of 16. Naturally, the end-user doesn’t need to handle this
but the message must be padded in the encrypt function to its nearest multiple.
Therefore, the padded message character cannot be used in the original mes-
sage, otherwise undefined behaviour will occur. The null terminator character
’\0’ is used for this purpose. An example of how to use this cryptography sub-
module is shown below in Listing-4.1. Note this does not use the background
server to send messages over HTTP requests. Usually Alice and Bob would be
on two different nodes.

1 from sneaksmc .crypt import Crypt
2

3 bob = Crypt ()
4 alice = Crypt ()
5

6 message = "Hi Alice , this is bob"
7

8 # bob sends to alice
9 encrypted_blob = bob. encrypt (alice. get_public_key (),
10 message)
11 # Alice decrypts
12 msg = alice. decrypt (encrypted_blob)
13

14 print(msg)
15 # ~ Should print "Hi Alice , this is bob"

Listing 4.1: Using the Sneak cryptography module

4.6 Setting up servers

Starting the server requires little effort for regular nodes that isn’t coordinator.
The SMC background server is imported into a Python script, the sneaksmc.server
submodule has a function called run_server() which takes in a number of pa-
rameters. For regular nodes, only the parameter analysis_function and coordi-
nator_addr is strictly needed.

Since the complexity and functionality of the background server is abstracted
away as much as possible from users. The analysis function and coordinator
address holds crucial information needed during runtime. For the analysis
function, this reference must be given during initialization. The reason for this
is that all nodes in the network might store their sensitive data differently, or
might perform analysis on it differently. Meaning it will be hard to have one
predefined function to handle all use cases for all nodes in the system. The
coordinator_addr must similarly also be specified.

30 chapter 4 architecture and design

An example of how to create the Python file and start the background server is
shown in Listing 4.2. The server must be run manually by the user by typing,
"python3 example.py" which will run the background server and use the anal-
ysis function defined in this file.

1 from sneaksmc import server as sneakserver
2

3 def analysis (data_in):
4 # Perform analysis needed on its sensitive data.
5 # How this is done is up to end user.
6 # This example retrieves data from database ,
7 # and adds it to the sum value.
8 db_connect = db. connect (db_connection , db_password)
9 sensitive_data = db_connect .get(" sensitive_data ")
10

11 assert type(data_in) is int
12 data_out = data_in + sensitive_data
13

14 # Must return same format as argument given.
15 assert type(data_out) is int
16 return data_out
17

18 if __name__ == " __main__ ":
19 # Runs server on this thread but can be spawned
20 # on a new thread here if needed .
21 sneakserver . run_server (analysis_function =analysis ,
22 coordinator_addr =" localhost :8080")
23

24

Listing 4.2: Using the Sneak SMC server

When coordinator starts up, it must know about all other nodes in the system.
This is achieved by using a nodefile, which is a list that contains all addresses
(ip:port) of nodes allowed in the network. Therefore, to run the server as co-
ordinator node, an additional parameter is needed for run_server(), which is
nodefile. It’s the location and filename for where this file exists. Listing 4.3 sim-
ilarly shows how to set up the coordinator server. Note that coordinator does
not need to be started from a custom script like the other "regular" servers who
provide the analysis function. After pip installing the library, the coordinator
can be run directly from the terminal. This goes for the client (sneaksmc.client)
as well.

Alternatively running coordinator server is done by typing "python3 sneaksm-
c/server.py -n nodes.txt" in terminal. This way prevents the need for a custom
python script and is therefore meant as the main way of running the coordina-
tor.

4.7 shutting down server 31

1 from sneaksmc import server as sneakserver
2

3 # Coordinator does not need analysis function
4 # if it’s not part of the smc analysis operation part.
5

6 if __name__ == " __main__ ":
7 sneakserver . run_server (nodefile ="nodes.txt",
8 min_nodes =4,
9 auto_shutdown =60*15) # 15 min
10

11

12

Listing 4.3: Using the Sneak SMC server as coordinator

Coordinator does not need to define coordinator_addr as this will be defined by
the nodefile argument. Additionally, it does not need to be part of the analysis
operations, thus not need an analysis function argument to be defined. Once
the coordinator is set up, the nodefile will be broadcast to each of the nodes
contained in it. Allowing everyone to know about every other node, such that
messages can be validated and properly encrypted to their public keys upon
communication in an SMC operation.

Optionally, min_nodes can be set as well which decides the minimum number
of nodes the network must have to perform a valid SMC operation. This can
vary immensely for different use cases and is therefore best left open for users
to decide. The last optional parameter is auto_shutdown which decides when
the server should automatically shut down. This is time given in seconds and
prevents unnecessary use of resources if it’s left running idle.

Leveraging this structure makes it possible to perform complex analysis in any
way the user needs. It is also convenient and easy to integrate into other code
as it’s segregated, and then shut the server down whenever it isn’t needed. The
user can in theory build an automatic system to perform their SMC operations
for one time or continuous use. The server, cryptography and client module is
all segregated and can be used independently.

4.7 Shutting down server

To shut down the server, the Sneak client module can be used to send a shut-
down request to the coordinator. Subsequently, coordinator will further this
shutdown request to all other nodes in the system, causing every node to shut
down gracefully. Listing 4.4 shows an example use.

32 chapter 4 architecture and design

1 from sneaksmc import client as sneakclient
2

3 if __name__ == " __main__ ":
4 coordinator_addr = " 196.112.90.35 "
5 sneakclient . shutdown_smc (coordinator_addr)
6

7

Listing 4.4: Using the Sneak client module

To shut down specific nodes can also be done either on local machine or remote
by using the Sneak client. Sending a shutdown request to any node except
coordinator, will shut down that node specifically.

4.8 Running SMC operations

A client is the one starting SMC operations and any node can be a client. It
means that the sneaksmc.client submodule is used to send a "start_analysis"
request to the coordinator. There are two ways of sending this request. The
client can be run directly in terminal after having installed the library, i.e.
"python3 sneaksmc/client.py -coordinator localhost:8089". Otherwise the sneaksmc.client
submodule can be imported to any Python script and started from there. Listing
4.5 shows an example.

1 from sneaksmc . client import Client
2

3 if __name__ == " __main__ ":
4 coordinator = " localhost :8089"
5 c = Client ()
6 code , id = c. request_analysis (coordinator)
7

8 if code == 200:
9 code , res = c. get_result (id)
10 print(" Result is " + res)
11 else:
12 # Error requesting analysis
13 pass

Listing 4.5: Using the client submodule to start a SMC operation and retrieving the
result.

Once a "/start_analysis" request is received in Sneak, the operation is initialized
and begun. Firstly, if the server receiving the request is not coordinator then
an error is raised and the request is simply dropped. Additionally, if the client
sending the request does not have a valid certificate, nor is in the coordinator’s
whitelist of nodes, then the request is similarly dropped. This ensures that the
coordinator has full control over all operations.

4.8 running smc operations 33

Next, coordinator initializes a dictionary which contains all the relevant data
being transmitted. The dictionary has mainly two key-value pairs, "send_list"
and "data". The "send_list" is the node graph and the scramble data needed
by each node. This will be showcased in Listing 4.6 below. To reiterate, the
node graph is a Python list of node’s IP addresses (using ip:port format) and
is the overall sequence of nodes to perform their analysis tasks. This sequence
is randomized for each operation that takes place. The first node 𝑛𝑎 will not
be in the "send_list" as the coordinator knows to send it there (to 𝑛𝑎). Node 𝑛𝑏
will therefore be first, and 𝑛𝑎 can pop 𝑛𝑏 ’s IP address from the list and further
the operation there once its done.

The "data" element in the dictionary holds the result produced by nodes, in
addition to their scramble data to make it unreadable. Each IP address in the
"send_list" is encrypted to a node’s public key and therefore only that node can
decrypt the next address in order to progress the operation. This is a partial
encryption design to prevent unnecessary encryption if comparing to layered
encryption. The code snippet below (Listing 4.6) shows the code for how the
coordinator sets up the analysis operation to be performed across all nodes
in the distributed system. It’s important to note that the coordinator node is
the last node in the "send_list" and is therefore the last node to (potentially)
perform the analysis operation. This means that the coordinator node will have
the end result of all the analysis data that has been done on other nodes. The
coordinator is the one with the random scramble values that obscured the re-
sult ("data") and can therefore subtract all scrambles to obtain the true result
of the SMC analysis securely. It’s also important that the coordinator is the one
storing the result as the client can then send a get request for this end result
once the operation is done.

1 elif self.path. startswith ("/ start_analysis "):
2 global scramble_list
3

4 is_valid , msg = self. validate_request ()
5 if not is_valid :
6 send_response (404 , " Request not valid: "+msg)
7 return
8

9 send_list = []
10 dictionary = {’send_list ’: send_list , ’data ’: 0}
11

12 # Read node IPs + public key from file
13 node_list = []
14 with open(certificate_file , "r") as f:
15 for line in f. readlines ():
16 addr , strkey = line.split("@")
17 node_list . append ((addr , cryption .
18 string2key (strkey)))
19

34 chapter 4 architecture and design

20 # Shuffle the node list to make the order random
21 random . shuffle (node_list)
22

23 # Partially encrypt the send list
24 for i in range(len(node_list)):
25 addr , key = node_list [i]
26

27 # Last node sends back to coordinator
28 if i >= len(node_list) -1:
29 co = cryption . encrypt (key , coordinator_address)
30 scramble = get_scramble ()
31 scramble_list . append (scramble)
32 msg = {’next ’: co , ’scramble ’: scramble }
33 msg = json.dumps(msg)
34 send_list . append (msg. decode (’latin -1’))
35 break
36

37 sendto_ip , _ = node_list [i+1]
38 scramble = get_scramble ()
39 scramble_list . append (scramble)
40 msg = {’next ’: sendto_ip , ’scramble ’: scramble }
41 msg = json.dumps(msg)
42 msg = cryption . encrypt (key , msg)
43 send_list . append (msg. decode (’latin -1’))
44

45 # Dump the dictionary to string such that it can be sent
over http

46 str_dictionary = json.dumps(dictionary)
47

48 # Send the string dictionary to the first node in the list.
49 first_node , first_node_pkey = node_list [0]
50

51 enc_dictionary = cryption . encrypt (first_node_pkey ,
52 str_dictionary)
53

54 status , content = client . send_client_request (type="POST",
55 url="/ analysis ",
56 body_= enc_dictionary ,
57 receiver = first_node)
58

59 if status != 200:
60 send_response (404 , "Error occurred : %s" % content)
61 return
62

63 # Send ok response back to client .
64 send_response (200 , "ok")

Listing 4.6: Start analysis snippet

A way to improving the scalability of this design is to make it compatible with
concurrent requests. Each SMC operation must have an unique ID such that
when coordinator receives the last "analysis" request, it can store the result by
mapping it with the ID. A client who request to start an analysis operation will

4.8 running smc operations 35

receive the ID of the operation back from the coordinator as a reply. The client
can then request the result by specifying the operation ID. This can be seen in
Listing 4.5 above.

5
Examples and experiments
5.1 The fair competition problem

To show an example of the library and some of it use cases, we first look at
the fair competition problem and how it can be solved practically with Sneak.
We already know that it can’t be solved with only two judges as it’s impossible
while still maintaining the anonymous votes. Instead there will be three judges,
Alice, Bob and Charlie. Each of the three judges must set up their server and
provide their vote function (to figure out if they vote yes or no). Listing 5.1
shows how Alice, Bob and Charlie sets up the server. Note that the vote function
uses input() which blocks and waits for user input. If they write 1, this means
yes and 0 means no. This way they are able to run multiple SMC operations
without having to restart the server.

1 import sneaksmc . server as sneak
2

3 def vote(sum_votes):
4 result = input ()
5 while (result != "0" and result != "1"):
6 print("Vote must be either 0 or 1")
7 result = input ()
8

9 print("You voted %s" % ("yes" if result == "1" else "no"))
10

11 sum_votes += int(result)
12 return sum_votes
13

14 if __name__ == " __main__ ":

37

38 chapter 5 examples and experiments

15 caddr = " localhost :8089"
16 sneak. run_server (analysis_function =vote , coordinator =caddr)

Listing 5.1: Alice Bob and Charlie starting server

Figures 5.1 - 5.4 shows what it looks like after running the servers with the
terminals up. Additionally, there must be a coordinator server running shown
in figure 5.4.

Figure 5.1: Alice’s server

Figure 5.2: Bob’s server

Figure 5.3: Charlie’s server

5.1 the fair competit ion problem 39

Figure 5.4: Coordinator’s server

Coordinator’s server has sent a GET request for the certificates of Alice, Bob and
Charlie which can be seen on their servers ("GET /certificate"). These certificates
is printed out on the coordinator’s server for the convenience of this example.
The servers are connected together and been fully initialized.

Now a contestant can send a request to start the vote. The script for the con-
testant is shown in listing 5.2.

1 from sneaksmc . client import Client
2

3 if __name__ == " __main__ ":
4 coordinator = " localhost :8089"
5 c = Client ()
6 code , id = c. request_analysis (coordinator)
7 code , res = c. get_result (id)
8 print("Vote result : %s" % res)

Listing 5.2: Contestant starting a vote operation and retrieving the result

Note that in order for the contestant to be able to start an SMC operation with
Sneak, the contestant must either be known to the coordinator (whitelisted), or
the SMC network is publicly available (public setting is set to true). If so then
anyone can start an operation on this network and retrieve the result. From
Listing 5.2 we can see that an ID is returned when requesting to perform an
analysis operation. This ID is from the coordinator and must be used in order
to retrieve the correct result.

Figures 5.5 - 5.8 shows each of the servers after having run the SMC operation
to vote for the contestant. Figure 5.5 and 5.6 has quite a lot of unreadable text
shown. The reason is to show the encrypted node graph (send_list) created
by the coordinator server. It also shows the "data" component which holds the
current SMC result. This value is seen completely different from each judge

40 chapter 5 examples and experiments

server. Alice sees 316320, Bob sees 59923 and Charlie sees -3940. This is due
to the scrambling done to protect their individual results. We can also see the
data that is encrypted and the volume of it for only 3 participating judges. All
of the encrypted data is the node graph (on Figure 5.5 and 5.6).

Figure 5.5: Alice’s server

5.1 the fair competit ion problem 41

Figure 5.6: Bob’s server

Figure 5.7: Charlie’s server

Charlie’s server (figure 5.7) does not have all the unreadable text in the terminal,
so it’s possible to see the steps done from start to finish. It firstly receives the
"GET /certificate" request from coordinator. Then coordinator sends a "GET
/get_public_key" request in order to partially encrypt the node graph. The
next "GET /get_public_key" is likely from Bob who finished his vote and wants
to further the operation to Charlie, but must have his public key to encrypt
the message. Once Charlie then receives the "POST /analysis" request, he will

42 chapter 5 examples and experiments

validate the request and validate the certificate received. The second "validating
certificate" which can be seen is Charlie validating the coordinator’s certificate
from the encrypted node graph. It will make sure that Charlie furthers the data
to the correct IP address given to him. After validation, the vote function is
performed, and we can see Charlie voted yes for this contestant. 1 is therefore
added to the "data" element and the operation is furthered to the next node
(which is the coordinator in this case). Charlie sent a "GET /get_public_key"
request to coordinator and received its public key to be able to encrypt the
message.

Figure 5.8: Coordinator’s server

Figure 5.9: Contestant received their vote result

5.1 the fair competit ion problem 43

On coordinator’s server (figure 5.8) we can see it has received the "POST
/analysis_done" request. It validated the request and the certificate, and has
subtracted all the scrambles used. When coordinator then receives a "GET
/get_result" request from a contestant, it can successfully return the result
from the judges votes.

Figure 5.9 shows the contestant receiving the result 2, which means two judges
voted yes and one voted no. We don’t know which judge voted what (except
Charlie since it was purposefully shown). However, we do know that the con-
testant passed this stage of the competition 2/1 and goes through to the next
stage.

More examples, such as calculating correlation using Pearson’s R coefficient,
can be found in Sneak’s documentation in the appendix. It includes cases where
input parameters must be given from the client to then be used in the SMC
operations.

44 chapter 5 examples and experiments

5.2 Performance

Figure 5.10 - 5.12 below shows how Sneak scales from a network size of 2 up
to 128 nodes with milliseconds on the Y axis, and number of requests on the X
axis. Figure 5.10 shows sequential requests running. Sequential requests means
sending a single analysis requests to the network, waiting for the result before
sending the next request. This measure shows the scalability when multiple
SMC loops are necessary (for instance with Pearson’s correlation). It also shows
the baseline for concurrent requests. As expected, sequential should double the
time it takes to perform operations. 2 should be twice as fast as 4 and so on.
The network is shown to be consistent.

Figure 5.11 and 5.12 shows the scalability when requests are run simultaneously.
It no longer shows the time as approximately doubled, as with sequential re-
quests, but rather decreased from the double. With an example from UiT cluster
figure 5.12, 64 nodes and 3 concurrent requests, it took about 4.2 seconds. For
6 concurrent requests it took about 5.8 seconds, which is a decrease of about
19% from running sequential requests.

It’s worth to note that with these measures from the UiT cluster, nodes are not
equal. Some nodes can be quite slow and some quite fast which can differenti-
ate the result. For instance, running 4 concurrent requests should in theory be
more similar in terms of time when compared to running 2 concurrent requests.
This is because of the idle time between requests on single nodes in a large
network is quite big. Therefore handling multiple requests shouldn’t increase
the time as significantly as it does. However, this is shown to not be the case as
nodes have different computer hardware (among other factors shown below
with bottleneck). Arguably, the UiT cluster therefore shows a more realistic rep-
resentation of the scalability, as real nodes usually contain different hardware.
Additionally, some nodes might run a lot of other processes simultaneously
which can slow down the computing power further.

5.2 performance 45

Figure 5.10: Sequential requests running on a simulated Sneak SMC network on a local machine. First
image is zoomed in.

46 chapter 5 examples and experiments

Figure 5.11: Concurrent requests running on a simulated Sneak SMC network on a local machine.

Figure 5.12: Concurrent requests running on a Sneak SMC network on the UiT cluster.

5.2 performance 47

Figure 5.13: Sequential VS Concurrent requests running on a simulated Sneak SMC network on a local
machine.

Figure 5.14: Sequential VS Concurrent requests running on a simulated Sneak SMC network on a local
machine.

48 chapter 5 examples and experiments

Figure 5.15: Sequential VS Concurrent requests running on a simulated Sneak SMC network on a local
machine.

Figure 5.16: Sequential VS Concurrent requests running on a simulated Sneak SMC network on a local
machine.

5.2 performance 49

Figure 5.17: Sequential VS Concurrent requests running on a simulated Sneak SMC network on a local
machine.

Figures 5.13 to 5.17 show a direct comparison between sequential and concur-
rent requests. The SMC network size is shown with 2, 4, 8, 16 and 32 servers
respectively, with up to 50 requests. From the graphs, the data seems to be
approaching a limit where concurrent requests is limited to slightly below half
of the speed of sequential requests. With a lower amount of servers (i.e. 2, 3, 4)
the concurrent speed is closer to that of sequential requests, which is especially
apparent on figure 5.13.

As an attempt to figure out why concurrent requests scaling hit this limit of
about 2x(++) performance. The time used for each request on coordinator
node was compared to the total time used for the same request. Figure 5.18
shows this comparison. As can be seen, the coordinator takes up a considerable
amount of time. Where coordinator time approaches approximately 28% of
the total request time (for 128 nodes).

For concurrent requests, this limits the speedup, meaning there is a maximum
theoretical increases of (100-28) 72% per request. However, this assumes perfect
conditions where no requests interferes with another, except for on coordinator.
However, interference on coordinator does happen, and it’s shown to be quite
substantial in figure 5.19.

50 chapter 5 examples and experiments

Figure 5.18: Time used on coordinator to initialize a request compared to the total time used on a request.
(On local machine)

This figure (5.19) shows how much time X amount of requests uses on the coor-
dinator node alone compared to the total time for all nodes (X is the number of
requests on the X axis), with 64 servers. For one request, similar to what figure
5.18 shows, the time is relatively low on coordinator (approximately 28%). Two
requests however shows the time almost doubled, and the time increases sub-
stantially for each succeeding request. Interestingly, for 50 concurrent requests,
the coordinator uses approximately 96% of the total time.

This suggest that the limit seen from figure 5.13 to 5.17 is due to coordinator
not being able to initialize SMC operations fast enough. Thus, each concurrent
requests is enqueued and blocked on coordinator (a client sending requests will
be blocked while waiting for a HTTP response from coordinator). If we assume
28% of the total request time is 350 MS (milliseconds) (based on what we can
see from figure 5.19). When coordinator receives two concurrent requests, the
second request has to wait at least 350MS before it can be started. Third request
would wait 700 MS and the fourth request would have to wait 1050 MS. This
gives the equation 𝑏 ∗ (1+0.28∗𝑥), where b is the base time for a single request
and x is the number of concurrent requests minus 1. For 50 requests the equation
gives us 1300∗(1+0.28∗50) = 19500MS. This corresponds to the data in figure
5.19. The equation makes it possible to calculate how much time a request has
to wait before it will be processed in the system. I.e. running 1000 concurrent

5.2 performance 51

Figure 5.19: Time used on coordinator to initialize X concurrent requests compared to the total time used on X
concurrent request (on local machine).

requests, the last request has to wait 1300 ∗ (1 + 0.28 ∗ 1000) = 365300 MS
(365 seconds), due to the bottleneck of the coordinator.

Once the last concurrent request is initialized,most of the other SMC operations
is likely done already. The coordinator node seems to be the biggest bottleneck
in Sneak. Note, this does not include additional requests the coordinator might
receive (such as "get_result"), which would add even more overhead. Addition-
ally, the equation 𝑏 ∗ (1 + 0.28 ∗ 𝑥) is only formed from the data from Figures
5.13 to 5.17.

As an effort to improve aforementioned scalability issue, I tried implementing
data compression to reduce the encryption and decryption times. Simultane-
ously, this reduces data sent from one node to another. Figure 5.20 shows a
bar diagram of the result, a single request with and without compression used
for different network sizes. Interestingly, the added overhead of performing
compression and decompression seems to be consistently higher than without
compression altogether. The difference averages approximately 14.6%, and the
effort seems to be redundant. The issue lies with coordinator and to improve
performance, the work coordinator does should be as little as possible.

52 chapter 5 examples and experiments

Figure 5.20: Time used for a single request with/without compression. (On local machine)

To sum up the experiments, Figure 5.10 was compared to Figures 5.11 and 5.12
and it showed that running simultaneous requests is faster than sequential
requests. It also showed how much faster, which is around twice the speed
consistently for higher number of network sizes and number of requests.
Figures 5.13 to 5.17 also supports this scalability, but it shows graphs with di-
rect comparison between sequential and concurrent requests. It shows that
the speedup for executing concurrent requests hits a limit. A limit due to co-
ordinator not being fast enough to initialize SMC operations and becoming a
bottleneck. This causing a chain of delays which blocks and essentially forces
sequential execution from that point on. Compressing the data was measured
as well with the goal to improve performance but was proved to be less efficient
overall.

6
Discussion
6.1 Experiments

From the experiments taken we can see how Sneak performs on varying sizes.
Overall Sneak scales linearly for each request. As can be seen on each figure,
running a higher number of SMC network sizes results in higher throughput
time. What Figure 5.10 ∼ 5.17 effectively shows is a comparison between run-
ning requests one by one (sequential) and simultaneously. From these graphs
we can see the improvements made, but also some limitations of Sneak, bottle-
necks and which parts that can be improved.

For instance, we know that the coordinator is a bottleneck from Figure 5.19,
thus the work on coordinator should be relieved as much as possible. When
developing Sneak, and before any measurements were taken, a design decision
was made to have coordinator create the unique scrambles, encrypt them and
send it to each participating node. With a SMC network size of 128 nodes, this
effectively means that coordinator has to perform 128 extra computations while
also having to encrypt additional data. Originally, I thought that it didn’t matter
if coordinator was the one who created and encrypted the secret scramble value
for each node. After all, it does not matter in terms of information disclosure,
network bandwidth and simplicity of the system. However, it has become clear
after the measurements from Figure 5.19. that it does in fact matter in terms
of efficiency and scalability. Coordinator has to encrypt all of the data, thus
has more work than any other node in Sneak. Moving some of the workload
from coordinator out to other nodes will therefore improve the system as it

53

54 chapter 6 discussion

will relieve some of the bottleneck on the coordinator node.

The UiT cluster is a number of distributed nodes that is connected together.
Testing Sneak on this cluster showed to be fairly similar to tests on a local
machine. It scales linearly as shown in Figure 5.12. There is one noticeable
difference however which is more fluctuations in the data. This especially the
case when testing with 128 nodes. The theory behind these fluctuations is that
nodes have different hardware and therefore operating on different speeds.
Interestingly, for size 128 there wasn’t enough separate nodes available, such
that some nodes would need to handle multiple servers simultaneously in order
to hit the quota of 128, whereas some handled only one (as it should be). This
would explain the bigger fluctuations that can be seen on the data.

Overall Sneak runs efficiently with higher number of SMC network sizes, where
it takes approximately 15 seconds to run 9 requests on a network size of 128
(figure 5.12). It also shows to scale up to (and slightly above) 2x performance
from sequential requests.

6.2 Library security

The security of Sneak has been shown to be valid with the use of nodelist,
certificates and CAs under the architecture and design section. Having strict
security measures increases the overall complexity of using Sneak. The com-
plexity could otherwise be simpler but it would not be a feasible solution. It is
something that has been investigated but practically difficult to support. One
such investigation were if only coordinator needed a valid certificate and all
other nodes would not. A situation like this would allow the SMC algorithm
to be less computationally heavy. The performance would be improved and
subsequently the scalability of the network would be improved. It is however
not possible as it leaves too much room for malicious intent, nodes could be
impersonated.

Another investigation were if the certificates could be self signed. Thus not
having to reach out to a CA and have them sign the certificates. This suffers
from the same fault where anyone could create a certificate and sign it. One in-
teresting approach for this issue was to have a CA sign coordinator’s certificate
and have the coordinator act like the CA for all other nodes in its SMC network.
Having nodes with self signed certificates be approved and signed by the co-
ordinator instead. The theory behind this approach was that nodes can trust
each other since they already trust the coordinator. Still, the same question
would remain, how could coordinator fully trust the nodes if all they have are
the self signed certificates? Even if this question could be properly answered,

6.3 library simplic ity 55

making coordinator a CA when one already exists seems redundant. Neither
this is a feasible solution to improve performance and reduce complexity. It
was therefore deemed best to have each node validated by a CA.

The security aspects of sneak has been showed in detail, where potential issues
for various conditions has been handled. The faults that can occur was high-
lighted and presented with figures in the architecture and design section. It has
been shown that these issues is mitigated by the use of asymmetric encryption,
symmetric encryption, IV initialization for symmetric CBC mode, signing and
verifying message request and unique scramble for each participating node.
Additionally, it has been highlighted why it’s so important to trust other fellow
nodes in an SMC distributed network.

Otherwise, as long as two or more nodes and the coordinator in the network
are clean then the security of Sneak is guaranteed to be reliable and safe. The
guarantee of whether a node is clean or not is trusted by a known CA.

Furthermore, to make the library trustworthy, the source code is openly avail-
able on github. Usually people don’t trust starting a server if they have no idea
what it does in the background. Making it open source allows for some level
of trust, such that users feel safe using this library. The downside is of course
that hackers have access to the same source code and can potentially find a
loophole somewhere. Additionally, the source code of Sneak can be inspected
after downloading it from pip.

6.3 Library simplicity

We have showed the low complexity of using Sneak, with setting up servers,
shutting them down and running SMC operations. The client submodule can
start an operation and retrieve the result directly in the terminal window. Oth-
erwise, the client can be imported in a python script and do the aforementioned
in two lines of code.

We have showed how servers are set up initially and the complexity of what has
been done in the background which users can’t see. The coordinator server can
be imported and run with 1 line of code, otherwise it can also be run directly
from the terminal window, similarly to the client. Normal servers must import
the Sneak module to a custom python script in order to run, but does so to
hide a vast amount of needed complexity in the background of SMC operations.
Servers can still be run with only a few lines of code depending on the size of
the analysis function.

56 chapter 6 discussion

We have showed an example of using Sneak to solve the fair competition prob-
lem. This example shows in detail the usage of Sneak and the low complexity it
offers for handling otherwise complex operations. Setting it all up took merely
a few lines of code that could handle unlimited amount of unique vote rounds
(SMC operations), and it could then guarantee the complete anonymity of a
judge’s vote.

We have showed how Sneak can be used as a general medium to run SMC
operations with the use of custom analysis functions. To have the analysis
function user definedmeans that users can return results ofmore complex types
(if they need), such as a matrix of different values, rather than a simple integer.
The desired simplicity will still be achieved, where the added complexity of
scrambling complex data types is hidden from users.

Finally, we have showed the simplicity of using the cryptography module when
communicating with other servers. Users doesn’t have to know that it exist,
as such, the cryptography module is abstracted away completely from users.
The complexity of ensuring valid communication requests is otherwise quite
substantial, which includes encrypting, signing and verifying certificates in
addition to other metadata. This is between each request that is sent and
received. It is all handled internally.

6.4 Library scalability

The last goal of Sneak was to keep the level of scalability within a practical
frame of use. However, the scalability by default has an issue on single cycle
operations and that is that it can only execute the analysis of one node at
a time (single cycle execution). Meaning that each node has to wait for the
previous node to finish before the next will receive an analysis request. Slow
nodes will therefore slow down the process for all other nodes. The overall
execution time of single operations will increases quite drastically for each
node participating in the SMC network (see figure 5.10). This is the case for
each operation running, and it must be this way to maintain the round-robin
structure of nodes and to ensure optimal levels of security.

To battle some of these constraints the servers in Sneak utilize a threadding
variant of BaseHTTPRequestHandler [20, 21] to support concurrent operations.
Whichmeans that a SMC network can runmultiple operations simultaneously if
the system receives two or more different "start_analysis" requests from clients.
Since single cycle execution hurts the performance most (at least for larger
networks), Sneak improves scalability by reducing the amount of loop opera-
tions needed to be run, thereby reducing the single cycle execution to as few

6.5 computational issues with sneak 57

as possible. Where one loop is the most optimal to keep the minimal desired
overhead. This factor is heavily influenced however by the users need. For in-
stance to calculate Pearson’s coefficient, a minimum of two SMC operations is
needed regardless. The first must be done to retrieve the mean value of some
data. And the second iteration is then able to calculate the data coherency with
Pearson’s R coefficient, where the mean input was given from the previous
iteration.

As can be seen in the experiments section, reducing the loops from two to one, or
more drastically from four to one, increases the overall efficiency by substantial
amounts for single cycle execution operations. For larger networks, reducing
loop iterations is the best way to improve the scalability aspects. This design
has shown an optimal way of running SMC operations where all analysis is
done efficiently within one loop iteration. However, there are specific cases
where multiple loops are unavoidable, such as with Pearson’s coefficient.

Other aspects of scalability is that the workload is naturally split among each
node. Only the node itself can perform the analysis on its own data, as such the
work will be balanced. Therefore running multiple concurrent SMC operations
will not slow down the execution time excessively. The scalability of Sneak
is shown to be improved when dealing with simultaneous requests. This can
however be influenced by users implementation of the analysis function. As an
example with the fair competition problem shown in the experiments section,
this is a very special case where it can only handle one operation at a time since
it waits for user’s input. Special cases like this are rare but can occur.

6.5 Computational issues with Sneak

As much as a general SMC solution is preferred, it is very hard to achieve
flawlessly. The solution mentioned in this paper can’t perform certain special
SMC operations optimally and effectively. The millionaires problem is one
of these instances where it would be tedious and inefficient to perform the
calculations needed. Not to mention that it will partially disclose information
to other nodes. To implement the millionaires problem with Sneak, the two
nodes must be asked, e.g. do you have 100 millions? They must supply a yes-no
answer, and if coordinator receives two no’s then it must ask, do you have 50
millions? This is done until there is no more money left to differentiate the two.
If now coordinator receives a 1-1 result then it can broadcast the result to the
two nodes. Both of the nodes will know that one has above 50 million and one
has below 50 million. The range of the disclosed data d will be
0 ≤ d < 50 and 50 ≤ d < 100 (millions).

58 chapter 6 discussion

It might be an acceptable range, however, consider instead of their wealth being
differentiated between 50 million to be differentiated between 10 000. This
might not be an acceptable range. It can also be very costly to perform as
the number of SMC operations needed to calculate the result has worst case
scenario O(𝑙𝑜𝑔2 M). This is expressed with big O notation where M is the
starting number used to ask participants. With M=1-billion, by continuously
splitting the half (log base 2) it could potentially result in 30 SMC operations.
As you can see, the work and the disclosed information can vary immensely.
Therefore it is not an optimal strategy for this type of problem with the current
implementation of Sneak.

What Sneak is optimized and works well for however are scenarios where the
intention is to keep everything anonymous, either by keeping the result hidden
or having individual values hidden by scrambling. These types of operations
work well with relationship between data. It can be used within healthcare
analysis, joint database analysis and voting structures to name a few.

6.6 Preventing man in the middle attack

The most probable attack to a system using public key structure such as Sneak
is man in the middle attack (MitM). If Alice wants to connect to a coordinator
(Bob), she sends her public key to Bob. However, the message is caught by an
attacker (Eve) who swaps Alice’s public key to her own and re-transmits the
message to Bob. On initialization neither party knows each others public key
such that the first message must be unencrypted, opening up the possibility for
MitM. Bob has no way of knowing that he received Eve’s public key and not
Alice’s. Eve can now continue to pick up messages that is transmitted between
Alice and Bob, decrypt it to be able to read its contents, re-encrypt the message
and then re-transmit them to the other party. This type of attack is prevented
by the use of a certificate along with a trusted CA. Since the message is signed
by a trusted CA, when Alice receives a message from Eve (who she thinks is
Bob), she can validate that the certificate she received does not correspond to
the sender who sent it, thus catch the MitM attack. Alice prevents sharing any
private data by ignoring the message completely and drop the communication
session with Eve.

Preventing such attacks is important in Sneak to maintain valid and secure
communication sessions. Even if eve managed to insert herself between two
or more nodes communicating, she will still not understand the sensitive data
as it has been scrambled. The only way to interpret it is if she has the secret
scramble value that was sent from the coordinator.

6.7 onion encryption vs partial encryption 59

6.7 Onion encryption vs partial encryption

When coordinator node sets up the SMC operation it has a choice on how it
proceeds with delivering information securely. With onion encryption (or layer
encryption) there will be layers on top of layers of encryption. This means that
node 1 can decrypt the message and only be able to read its own message. The
rest is still encrypted with node 2’s public key (another layer). Then node 3
depending on how many nodes there are in the system. To make this system
work, the order of who decrypts when matters as the coordinator node sets a
specific sequence when encrypting the data.

Partial encryption don’t need this ordering as the encryption is separated. It
requires less encryption power and will therefore also run faster because of it.
The only issue that can make onion encryption preferred is that other nodes
won’t know how many nodes are left to decrypt messages. In partial encryption
there is a list of encrypted data which eventually is popped from the lists as
nodes reads the information they need and furthers the list to the next node.
This can be seen on figure 4.1 in the architecture and design section. Information
which is not needed for nodes could therefore be learned by examining the list.
This would not be the case with layered encryption.

6.8 Future work

6.8.1 Automacy

The broadcasting of the whitelist allows for an added feature where if the co-
ordinator node crashes, then another node can take its place. To be able to
automatically choose a new coordinator, all nodes must agree to the change,
including the client (connected to coordinator). Generally, small distributed
networks does not need this added overhead as nodes will rarely crash or have
latency issues among each other. In the case that it does, it will be easy to
reboot. Bigger systems with millions of nodes might always assume some node
has crashed or doesn’t respond due to connectivity issues. Here, automacy could
be essential. An issue is when a client tries to communicate with a crashed coor-
dinator. Normally this won’t work, however, the crashed node should eventually
be rebooted again such that the client can continue to communicate with it
without any interference. If this happens then it’s possible to update the coor-
dinator address for the client, such that it can re-correct itself. For instance, the
crashed coordinator node sends the new coordinator address back to the client.
It can take some time before a node is able to be rebooted and the election of a
new coordinator node might introduce complex consensus algorithms. This is
therefore mentioned here in future work, as an idea of how to progress and au-

60 chapter 6 discussion

tomate the SMC operations and prevent faults that can occur. It’s even possible
to introduce another mode to this SMC design, specifically for larger systems
which require extra work, and thus causing more complexity when starting up.
Segregating it from the current design could keep the desired simplicity for
smaller systems and having an option for larger ones.

6.8.2 Databases

The whitelist doesn’t need to be stored in a traditional database like MySQL. It
could just be a simple file that acts like a database (as with the current design).
However, this depends on the size of the distributed system. If the system has 10
nodes, then a simple file is more than good enough. If the system has 1 million
nodes, then the file overhead might be too big and a database will improve
disk i/o performance. The database could additionally store operation ID’s and
its results, as well as executable code for the analysis functions. However, this
has not been explored during the work of this thesis, but could be relevant for
future work when improving performance for large scaling networks.

6.8.3 Executable code

Other future work is having coordinator send the executable code to perform
the analysis on data. This would eliminate the need to define specific analysis
functions for each node. Instead they will receive the work by the coordinator.
The upside for this scheme is that a server could be run directly from the termi-
nal (for instance as sneak runserver -port 8080). It would allow for dynamically
altering the analysis functions without having to restart any server. To achieve
this sufficiently, the execution code could be supplied by a client to the coor-
dinator, and then by coordinator broadcasted to the entire network of nodes.
Additionally, this allows a client to specifically query the information it needs
directly. It can provide the correct input and define the output data structure
it wants. The only restriction this imposes is that the analysis data must be
uniformly stored on each node. Otherwise, the executable code must handle
the analysis differently for each node, which can make the analysis function
overly complex and difficult to implement. Ultimately, if nodes have the same
analysis function, then sending executable code allows for higher degree of
simplicity and usability.

7
Conclusion
SMC is a technique for performing computations on data without revealing the
data itself. This technique is particularly useful when dealing with sensitive
data or when parties do not trust each other with their data. The Sneak library
is a practical implementation of SMC that has been shown to provide secure
handling of SMC operations over a distributed network of nodes. It is optimized
for handling data where anonymity is important, such as in healthcare analysis,
joint database analysis, and voting structures. The way it achieves anonymity is
by scrambling individual values, and as more nodes add their results to a sum,
making it increasingly difficult to read. Sneak’s architecture and implementa-
tion have been presented, which includes a round-robin structure that allows
the coordinator to initialize random and unique operation orders and unique
scramble values given to each node. The coordinator also communicates with
clients, allowing them to start new operations, retrieve results, and shut down
the network.

Furthermore, the design details and issues of Sneak have been highlighted, and
the mitigations it implemented to prevent faults and insecure operations were
demonstrated. Examples were provided to show how Sneak can perform secure
analysis on sensitive data involving a network of distributed nodes. With Sneak,
sensitive data can be analysed securely without compromising the privacy of the
participants. Sneak is a powerful tool for performing secure computations, and
it can be easily integrated into existing systems to ensure privacy and security.
Through detailed examples, Sneak’s capabilities have been demonstrated, and
its faults have been mitigated to improve its security.

61

Bibliography
[1] Andrew C. Yao. Protocols for secure computations. [Available at

https://ieeexplore.ieee.org/document/4568388]. University of Califor-
nia Berkeley, California.

[2] Merete Saus Anders Andersen. Privacy preserving dis-
tributed computation of community health data. [Available at
https://www.sciencedirect.com/science/article/pii/s1877050917317295].
University of Tromsø, Norway.

[3] Wenliang Du and Zhijun Zhan. A Practical Approach to
Solve Secure Multi-party Computation Problems. [Available at
https://dl.acm.org/doi/10.1145/844102.844125]. Syracuse Univer-
sity.

[4] Lawrence Williams. Round robin scheduling. URL https://www.guru99.
com/round-robin-scheduling-example.html.

[5] Adi Shamir. How to share a secret. [Available at
https://dl.acm.org/doi/10.1145/359168.359176]. ACM digital library.

[6] Tiina Turban. A Secure Multi-Party Computation Protocol
Suite Inspired by Shamir’s Secret Sharing Scheme. [Available at
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/262970]. NTNU.

[7] Zheng-an Yao Chunming Tang. A New (t,n)-
Threshold Secret Sharing Scheme. [Available at
https://ieeexplore.ieee.org/abstract/document/4737091]. IEEE.

[8] Kazuhide Fukushima Toshiaki Tanaka Jun Kurihara, Shinsaku Kiyomoto.
A New (k, n)-Threshold Secret Sharing Scheme and Its Extension. [Avail-
able at https://www.researchgate.net/publication/220905280𝑎𝑛𝑒𝑤𝑘𝑛 −
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑒𝑐𝑟𝑒𝑡𝑠ℎ𝑎𝑟𝑖𝑛𝑔𝑠𝑐ℎ𝑒𝑚𝑒𝑎𝑛𝑑𝑖𝑡𝑠𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛] .Research gate.

[9] Anders Andersen. SNOOP: privacy preserving middle-

63

https://www.guru99.com/round-robin-scheduling-example.html
https://www.guru99.com/round-robin-scheduling-example.html

64 bibl iography

ware for secure multi-party computations. [Available at
https://dl.acm.org/doi/10.1145/2677017.2677025]. University of Tromsø,
Norway.

[10] Yehuda Lindell. Secure Multiparty Computation (MPC). [Available at
https://dl.acm.org/doi/10.1145/3387108]. ACM digital library.

[11] Inpher. What is secure multiparty computation. URL https://inpher.io/
technology/what-is-secure-multiparty-computation/.

[12] Shafi Goldwasser. Multi-party computations: past and present. [Available at
https://dl.acm.org/doi/10.1145/259380.259405]. Conference: Proceedings of
the sixteenth annual ACM symposium on Principles of distributed computing.

[13] Daniele Francioli. General data protection regulation (gdpr) and location data.
URL https://joinup.ec.europa.eu/collection/elise-european-location-
interoperability-solutions-e-government/news/gdpr-and-location-data.

[14] Stacey Grey. A closer look at location data: privacy and pandemics.
URL https://fpf.org/blog/a-closer-look-at-location-data-privacy-
and-pandemics/#:~:text=Precise%20location%20data%20is%20legally,
requirement%20of%20affirmative%20express%20consent.

[15] Google. Google privacy and terms. URL https://policies.google.com/
technologies/location-data.

[16] Dennis Byrne. Full stack python security. Manning publications, 2021. ISBN
9781617298820.

[17] Sharon Shea Alexander S. Gillis. X.509 certificate. URL https://www.
techtarget.com/searchsecurity/definition/X509.

[18] Toby Gaff. Certificate chain of trust. URL https://www.keyfactor.com/blog/
certificate-chain-of-trust/.

[19] computer security resource center Nist. Transmission control protocol
(tcp). URL https://csrc.nist.gov/glossary/term/transmission_control_
protocol.

[20] Python documentation. http.server— http servers, . URL https://docs.python.
org/3/library/http.server.html.

[21] Python documentation. Asynchronous mixins, . URL https://docs.python.
org/3/library/socketserver.html#asynchronous-mixins.

https://inpher.io/technology/what-is-secure-multiparty-computation/
https://inpher.io/technology/what-is-secure-multiparty-computation/
https://joinup.ec.europa.eu/collection/elise-european-location-interoperability-solutions-e-government/news/gdpr-and-location-data
https://joinup.ec.europa.eu/collection/elise-european-location-interoperability-solutions-e-government/news/gdpr-and-location-data
https://fpf.org/blog/a-closer-look-at-location-data-privacy-and-pandemics/#:~:text=Precise%20location%20data%20is%20legally,requirement%20of%20affirmative%20express%20consent.
https://fpf.org/blog/a-closer-look-at-location-data-privacy-and-pandemics/#:~:text=Precise%20location%20data%20is%20legally,requirement%20of%20affirmative%20express%20consent.
https://fpf.org/blog/a-closer-look-at-location-data-privacy-and-pandemics/#:~:text=Precise%20location%20data%20is%20legally,requirement%20of%20affirmative%20express%20consent.
https://policies.google.com/technologies/location-data
https://policies.google.com/technologies/location-data
https://www.techtarget.com/searchsecurity/definition/X509
https://www.techtarget.com/searchsecurity/definition/X509
https://www.keyfactor.com/blog/certificate-chain-of-trust/
https://www.keyfactor.com/blog/certificate-chain-of-trust/
https://csrc.nist.gov/glossary/term/transmission_control_protocol
https://csrc.nist.gov/glossary/term/transmission_control_protocol
https://docs.python.org/3/library/http.server.html
https://docs.python.org/3/library/http.server.html
https://docs.python.org/3/library/socketserver.html#asynchronous-mixins
https://docs.python.org/3/library/socketserver.html#asynchronous-mixins

bibl iography 65

[22] Diego Barba. Python concurrency — threading and the gil. URL
https://towardsdatascience.com/python-concurrency-threading-and-
the-gil-db940596e325.

https://towardsdatascience.com/python-concurrency-threading-and-the-gil-db940596e325
https://towardsdatascience.com/python-concurrency-threading-and-the-gil-db940596e325

A
Appendix

67

Sneak documentation

May 2023

Contents

1 Cryptography submodule 2
1.1 Public methods . 2

1.1.1 Cryption.key2string(key) 2
1.1.2 Cryption.string2key(strkey) 2
1.1.3 Cryption.get keysize() . 2
1.1.4 Cryption.get public key() 3
1.1.5 Cryption.encrypt(to user pkey, str msg) 3
1.1.6 Cryption.decrypt(cipher) 3

1.2 Private methods . 4
1.2.1 Cryption. init (self) . 4
1.2.2 Cryption.generate key(key size) 4
1.2.3 Cryption.Pad message(msg) 4
1.2.4 Cryption.Remove pad(msg) 5
1.2.5 Cryption.sign(msg) . 5
1.2.6 Cryption.verify(key, msg, signature) 5

2 Client submodule 7
2.1 Functions . 7

2.1.1 send client request(type, url, body, receiver, timeout) . . 7
2.2 Client class methods . 7

2.2.1 Client. init (self) . 7
2.2.2 Client.request analysis(coordinator‘ address, data) 7
2.2.3 Client.get result(id, tries, ms) 8
2.2.4 Client.shutdown(node) . 8

3 Server submodule 10
3.0.1 Server.run server(coordinator, analysis function, nodefile,

ip, port, timeout, request timeout, min nodes) 10

4 Examples 11
4.1 Example 1 . 11
4.2 Example 2 . 12

1
68

1 Cryptography submodule

This module consist of a single class called cryption and can also be run as a
main script to test its correctness. Meaning only running ”python3 crypt.py”.
The functions is divided into public and private. All private functions is inter-
nally handled and is not necessary to know about when importing this mod-
ule.

1.1 Public methods

1.1.1 Cryption.key2string(key)

Converts a key object to string format in order to send it easily over a network
and reconstruct it on the receiving side.

• Parameters

@ key: The key to be converted to string.

• Returns

← The CryptKey as string

Note: key2string is a static class method.

1.1.2 Cryption.string2key(strkey)

Converts string to a key object defined within the RSA library. The strkey must
be created from the @Cryption.key2string method.

• Parameters

@ strkey: The string key to be converted to CryptKey object.

• Returns

← CryptKey object.

Note: string2key is a static class method.

1.1.3 Cryption.get keysize()

Returns the key size used in bytes.

• Parameters

• Returns

2
69

← Integer.

1.1.4 Cryption.get public key()

Returns the public key object on this instance.

• Parameters

• Returns

← CryptKey object.

1.1.5 Cryption.encrypt(to user pkey, str msg)

Encrypts given message and adds meta data. Generates a symmetric key used
to obscure the data along with a random IV. Encrypts the symmetric key to
the given public key and signs the encrypted message. The return value is a
sequence of bytes which includes its own public key, such that the receiver is
able to validate the message by comparing the signature hash. Returns public-
key-size(4 bytes) + IV + public-key + signature + key + encrypted-msg, as a
byte stream.

• Parameters

@ to user pkey: The public key object.

@ str msg: The message to be encrypted to the public key to user pkey.

• Returns

← Byte stream sequence.

Note: Metadata is added to the returned byte stream. It can only be decrypted
by the @Cryption.decrypt method.

1.1.6 Cryption.decrypt(cipher)

Decrypts the encrypted message from encrypt function. First reads all values
from the byte stream. Then decrypts the secret symmetric key and uses it to
decrypt the message. The senders public key is converted from string to a key
object and used to verify the message (by checking hash). Returns the decrypted
message.

• Parameters

3
70

@ cipher: The encrypted message cipher from the @encrypt method.

• Returns

← The decrypted string.

Note: This method can only decrypt encrypted messages from the @Cryp-
tion.encrypt method.

1.2 Private methods

1.2.1 Cryption. init (self)

Initializes self by creating the public and private RSA keys used for encryp-
tion/decryption of data.

• Parameters

• Returns

← self.

1.2.2 Cryption.generate key(key size)

Generates an unique random symmetric key (used for each message encrypted).

• Parameters

@ key size: The key size in bytes.

• Returns

← Key.

1.2.3 Cryption.Pad message(msg)

Pads a message to a byte multiple of size 16. Since symmetric encryption
obscures blocks of 16 bytes per iteration. Note this block size can be changed
but must be similar to the key size used. This library uses key size of 16.
The padded message is the null-terminator sign ’\0’ to ensure that it won’t
ever be used in the actual message content and cause wrong message to be
received.

• Parameters

4
71

@ msg: The message to be padded.

• Returns

← The new padded message.

Note: This is a static method.

1.2.4 Cryption.Remove pad(msg)

Removes the pad used in the msg.

• Parameters

@ msg: The padded message.

• Returns

← The message without padding.

Note: This is a static method.

1.2.5 Cryption.sign(msg)

Sign by hashing the message and encrypting it with the secret key. Anyone
with the signers public key can decrypt and compare the hashed value, to verify
that the message is from the correct sender and hasn’t been altered during
transmission. Hashes is performed using the SHA-256 algorithm.

• Parameters

@ msg: The message to sign.

• Returns

← The signed message.

1.2.6 Cryption.verify(key, msg, signature)

Verifies the signature with the message and public key given. Returns true or
false.

• Parameters

@ msg: The message to sign.

5
72

• Returns

← True if @msg was signed by given public key.

← False if @msg was not signed by given public key.

6
73

2 Client submodule

This module consist of one function @send client request and one class @Client().

2.1 Functions

2.1.1 send client request(type, url, body, receiver, timeout)

Sends a request to another node/server. Returns HTTP response code and a
message reply as a tuple.

• Parameters

@ type: The http request type (”GET”, ”POST”, etc..). Default type
is ”GET”.

@ url: The url that should correspond to this request.

@ body: The message body to send (string).

@ receiver: The server address which will receive this request, in
”ip:port” format.

@ timeout: The request timeout in seconds. Should be applied in case
server can’t be reached.

• Returns

← (Status-code, Message) as tuple object

← (None, None) as tuple object on error.

Note: Blocks until response is received.

2.2 Client class methods

2.2.1 Client. init (self)

Initializes a sneak cryption object.

• Parameters

• Returns

← The Client object.

2.2.2 Client.request analysis(coordinator‘ address, data)

Sends a request to start a Sneak SMC analysis operation to the given coordinator
node. If the coordinator address given is not coordinator then the request will be

7
74

simply dropped by the SMC network. Returns (response-code, response-msg)
tuple from coordinator. Raises exception on error.

• Parameters

@ coordinator address: The address for the leader of the Sneak SMC
network, in ”IP:port” format.

@ data: Additional data supplied to coordinator, such as input argu-
ments for special SMC operations.

• Returns

← (200, <operation-id>) tuple received from coordinator if successful.

Note: Raises exception on error.

2.2.3 Client.get result(id, tries, ms)

Sends HTTP request to coordinator node for the result of a requested analysis
operation. Returns the result (if ready) as (response-code, response-msg) tuple,
otherwise if not received, returns from last message sent. Raises exception on
error. Returns immediately if given operation id is not valid.

• Parameters

@ id: The operation ID received from @request analysis method.

@ tries: Specifies the max number of get-requests sent until giving up.

@ ms: Specifies the sleep time in ms between each request try.

• Returns

← (200, <result>) tuple if successful.

← (<error-code>, <error-message>) tuple if fail.

Note: Raises exception on error.

2.2.4 Client.shutdown(node)

Shutdown given node (or entire SMC network if coordinator node is given), in
”IP:port” format. If node=None then tries to shut down coordinator from last
analysis request sent.

• Parameters

8
75

@ node: The node address in ”IP:port” format to shut down. Node=None
will shutdown coordinator from previous @request analysis sent.

• Returns

← (200, ”ok”) tuple if successful.

← (<error-code>, <error-message>) tuple if fail.

Note: Raises exception on error.

9
76

3 Server submodule

3.0.1 Server.run server(coordinator, analysis function, nodefile, ip,
port, timeout, request timeout, min nodes)

Shutdown given node (or entire SMC network if coordinator node is given), in
”IP:port” format. If node=None then tries to shut down coordinator from last
analysis request sent.

• Parameters

@ coordinator: The coordinator address.

@ analysis function: The analysis function.

@ nodefile: The nodefile, list of node ”IP:port” allowed in the system.

@ ip: The server IP address to use, ”localhost” for local ip, or None to
automatically find the public IP address for this machine.

@ port: Port to use, or None to automatically find a port.

@ timeout: The timeout until server shuts down automatically, or
None for the default 2 hours.

@ request timeout: The Timeout for each request sent in order to
prevent any type of hang ups on error/unavailable nodes.

@ min nodes: The minimum amount of nodes needed for a valid SMC
operation.

• Returns

← Nothing.

Note: Raises exception on error.

Note: Only coordinator needs nodefile and min nodes. Coordinator does not
need to define an analysis function.

10
77

4 Examples

Two examples will be shown, the first is a simple example and the second will
more complex taking input argument from a client.

4.1 Example 1

This example will show how to compute a simple sum of private data with three
parties involved. First, all three servers must be set up and run. Listing-1 shows
how this is done.

1 import sneaksmc.server as sneak

2

3 def get_sum ():

4 return 100

5

6 # The analysis function

7 def sum_analysis(prev_sum , input_argument):

8 my_sum = get_sum ()

9 return prev_sum+my_sum

10

11 if __name__ == "__main__":

12 # Coordinator address

13 caddr = "localhost :8089"

14

15 sneak.run_server(analysis_function=sum_analysis , coordinator=

caddr , ip="localhost")

Listing 1: Setting up servers

Next, the coordinator server must be run. Listing-2 similarly shows the code
for this.

1 import sneaksmc.server as sneak

2

3 if __name__ == "__main__":

4 nodes = "nodefile.txt"

5 sneak.run_server(nodefile=nodes , ip="localhost", port =8089,

min_nodes =3)

Listing 2: Setting up coordinator

Coordinator must supply a nodefile of all nodes accepted in the system. A
nodefile should look like Listing-3 for this example.

1 localhost :8080

2 localhost :8081

3 localhost :8082

Listing 3: Example of a nodefile

11
78

Now Sneak has been initialized and is ready to receive operation requests from
clients. Listing-4 shows the client code to send requests and receive results.

1 from sneaksmc.client import Client

2

3 if __name__ == "__main__":

4 coordinator = "localhost :8089"

5 c = Client ()

6 code , id = c.request_analysis(coordinator)

7 code , res = c.get_result(id)

8

9 # Should print 300

10 print("Sum result: %s" % res)

Listing 4: Client starting a SMC operation and receiving the result

The client will receive an operation ID from the coordinator after sending a
request analysis request. A coordinator might have multiple simultaneous re-
quests running. Therefore, this ID must be given to correctly identify which
operation to receive the result for.

When a client is done and the SMC network will not be used anymore, client
can send a shutdown request to coordinator, which subsequently will shutdown
all other nodes as well. Example is shown in Listing-5.

1 from sneaksmc.client import Client

2

3 if __name__ == "__main__":

4 coordinator = "localhost :8089"

5 c = Client ()

6 code , id = c.request_analysis(coordinator)

7 code , res = c.get_result(id)

8

9 # Should print 300

10 print("Sum result: %s" % res)

11

12 # Clean up

13 c.shutdown(coordinator)

Listing 5: Client shuts down the SMC network after running an operation

4.2 Example 2

This example will show how to compute correlation between private data using
Pearson’s R coefficient with three parties involved. Pearsons R coefficient is
special as it requires the average before it is able to calculate the result. This
means that we must run two loops in our SMC network (2 operations). The first
must retrieve the average. This example will continue from Example 1 where
we divide the sum data by 3 to gain the average.

Setting up all the servers will be exactly identical, however, we need to adjust
the analysis function. The new function is shown in Listing-6.

12
79

1 import sneaksmc.server as sneak

2

3 def get_sum ():

4 return 100

5

6 def calculate_pearson(average):

7 # Perform the calculations

8 ...

9 return data

10

11 # The analysis function

12 def sum_analysis(prev_sum , input_argument):

13 if input_argument is not None:

14 return prev_sum + calculate_pearson(input_argument)

15 else:

16 my_sum = get_sum ()

17 return prev_sum+my_sum

18

19 if __name__ == "__main__":

20 # Coordinator address

21 caddr = "localhost :8089"

22

23 sneak.run_server(analysis_function=sum_analysis , coordinator=

caddr , ip="localhost")

Listing 6: Setting up servers for handling two SMC operations

Now each server is able to handle both SMC operations, one for calculating the
average and the other for calculating Pearson’s R coefficient.

The client must also give the input variable for the second SMC operation. An
example is shown in Listing-7.

1 from sneaksmc.client import Client

2

3 if __name__ == "__main__":

4 coordinator = "localhost :8089"

5 c = Client ()

6

7 # Retrieving the average

8 code , id = c.request_analysis(coordinator)

9 code , average = c.get_result(id)

10

11 # Retrieving the data correlation

12 code , id = c.request_analysis(coordinator , average)

13 code , correlation = c.get_result(id)

14

15 print("Correlation between data: %s" % correlation)

16

17 # Clean up

18 c.shutdown(coordinator)

Listing 7: Client running two operations

13
80

	Abstract
	List of Figures
	List of Tables
	1 Introduction
	2 Related work
	2.1 The millionaires problem
	2.2 A practical approach to solve SMC problems
	2.3 Secret sharing
	2.4 Snoop middleware

	3 Concepts
	3.1 Secure multiparty computation
	3.2 Coordinator
	3.3 Ciphering data
	3.3.1 Encryption
	3.3.2 Symmetric
	3.3.3 Asymmetric

	3.4 Digital signature
	3.5 X.509 certificate and Certificate Hierarchies
	3.6 Server

	4 Architecture and design
	4.1 Initialising the node graph
	4.2 Security requirements
	4.3 Minimum nodes needed
	4.4 Sneak communication
	4.5 Cryptography module
	4.6 Setting up servers
	4.7 Shutting down server
	4.8 Running SMC operations

	5 Examples and experiments
	5.1 The fair competition problem
	5.2 Performance

	6 Discussion
	6.1 Experiments
	6.2 Library security
	6.3 Library simplicity
	6.4 Library scalability
	6.5 Computational issues with Sneak
	6.6 Preventing man in the middle attack
	6.7 Onion encryption vs partial encryption
	6.8 Future work
	6.8.1 Automacy
	6.8.2 Databases
	6.8.3 Executable code

	7 Conclusion
	Bibliography
	A Appendix

