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Abstract 
This master’s thesis evaluates the scalability and cost-effectiveness of the AWS cloud 

platform used to collect and utilize data generated by the 87 digitally equipped trams. 

The SL-18 Cloud Platform was developed before the trams arrived, and resource 

configuration estimates were made to handle the data generated by the trams. 

However, with a few trams currently operational, it is crucial to evaluate the allocation 

of resources to the services based on actual data. Thus, the thesis's objective is to 

estimate the data generated by all 87 trams and evaluate the current resource 

provisioning on the AWS Cloud Platform in terms of scalability and cost. By doing so, 

this study will provide insights into the optimal resource allocation required for the AWS 

Cloud Platform to accommodate the data generated by the trams. 

In this study, we use an existing Digital Twin tool for the trams to evaluate the 

scalability of the platform, ensuring that it can handle the load while keeping the cost 

low. To achieve this, the existing Digital Twin is modified to run 87 or more instances 

concurrently. Using this modified tool, the SL-18 IT platform, which processes real-

time data from all 87 trams simultaneously, is evaluated.  

We monitored the metrics of AWS services to identify any issues. Then based on 

measurements, we make recommendations for each service's upgrading, 

downgrading, or keeping the current configuration. Most services are recommended 

to scale down to reduce costs, while three services require scaling up to be 

operational. Although our process is well-defined and could be replicated by other 

studies, it is crucial to have in-depth discussions with the relevant teams for each 

service and perform repeated validations and evaluations. This is also a necessary 

protocol in Sporveien to present the results to the various stakeholders and implement 

the recommended changes. With these changes, Sporveien can save costs and most 

importantly have a platform capable of handling the data load of 87 SL-18 trams. 
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CHAPTER 1: Introduction 
This paper presents an industrial collaboration thesis with Sporveien AS.  

1.1 The mission of Sporveien 

Sporveien is the largest supplier of public transport in Norway. In the year 2021, 156 

million individual journeys were provided by Sporveien to the public in Oslo, Norway. 

It is 100% owned by the city of Oslo. Sporveien works with vehicles, rails, stations, 

tunnels, buildings and signaling systems.  Sporveien develops, owns, upgrades, and 

maintains the infrastructure related to metros and trams in Oslo and Viken.  

Sporveien’s mission is to provide more public transport for less money. They aim to: 

➢ Transport as many passengers as possible. 

➢ Providing satisfaction to the customers by sending them to their destination 

quickly and safely 

➢ Providing cheaper transportation 

➢ Being Environment friendly [1]  

 

1.2 Tram Transportation in Oslo 

As the population of Oslo continues to grow at a rapid pace, the demand for efficient 

and high-quality public transport has become increasingly important. Being one of the 

fastest growing cities in Europe, Oslo requires a robust transportation system to cater 

to its residents and visitors. Sporveien, as a key player in the public transport industry, 

operates multiple types of vehicles, including trams, which are the focus of this project. 

With a population of 600,000 in Oslo and around 1 million people in the metropolitan 

area, the trams carry out 51 million individual journeys per year in the capital city, 

according to Sporveien. However, this number is set to double by 2030, with an 

estimated 100 million individual journeys to be made. In response to this demand, 

Sporveien, on behalf of the city council, launched the Tram program.[2] 

In the Tram Program, Sporveien planned to develop a futuristic tram service in Oslo 

by procuring 87 new, modern trams from a Spanish tram supplier called CAF. This 

agreement was signed in 2018 which is why these trams are called SL-18. This is the 

biggest-ever investment in trams-procurement in the history of Norway. The cost 

framework for this procurement is 4.1 billion NOK. The tram program also included 

upgradation of parking, a workshop in the Grefsen and many other small and big 

construction projects in Oslo. Workshop and Parking upgradation were required to 

accommodate new SL-18 trams into the system smoothly and an additional budget of 

NOK 3.2 billion was allocated for this purpose. Tram Program also included the 

upgradation of streets, and an additional NOK 1 billion budget was provided [3]. 
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SL-18 trams got a lot of attention from the Norwegian media (Figure 1). The tramway 

network in the OSLO is one of the oldest tramway networks in the world. But it has not 

changed much since the fall of trams' popularity in the 1970s. Before SL-18, SL-79, 

and SL-95 trams are running in OSLO. So, there is another important aspect to 

modernize the design and features of the trams to attract more public and adhere with 

other important points in Sporveien’s mission. [4],[5] 

The design of SL-18 trams is modern (Figure 2). It has a lower floor as compared to 

some of the older trams which had stairs. Masking it easy for the people with 

wheelchairs or kids in cradles to travel in trams. They are also very advanced in terms 

of collecting data. Sporveien refers to them as “Computers on Rails.”  

Sensor data coming from a SL-18 tram: 

Passenger counters, Cameras, stop buttons, Destination signs, Travel information 

screens, Advertising screens, Trolley motion sensor, Temperature measurement 

Inside / Outside, Door sensors, Location GPS, Traffic light prioritization, Software 

distribution, Messaging, Ticket validation, Driver information, Communication, Flight 

recorder backup, Configuration deployment, Active vehicle information, Emergency 

stop information and Tram Track Lubrication. 

 

1.3 Information Technology (IT) and SL-18 Trams 

The Sporveien IT Team is dedicated to enhancing the efficiency, maintenance, and 

data management of SL-18 trams by offering a range of IT services, including: 

➢ tramTracker: The control room can use the TramTracker system to monitor the 

movement of trams and make informed decisions about managing the tram 

network.  

➢ Real time communication with the tram and stakeholders. 

➢ Condition monitoring of the SL-18 trams 

➢ Data Lake: Storage of the historical data generated by SL-18 trams. 

➢ Update Operational Data: Managing Data related to the trips of the trams. 

➢ Mileage information of trams 

➢ Facilitation of Data for traffic follow up. 

➢ Tram Track Lubrication: Automatic Lubrication of the tram tracks after a specific 

mileage is covered.  
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Figure 1: The arrival of the SL-18 Trams, the newest addition to Oslo's public transportation 

fleet, is met with ample media coverage as they make their debut in the Norwegian Capital. 

 

 

Figure 2: The SL-18 Tram design highlights a modern and stylish look with a sleek exterior 

that exhibits sophistication and efficiency. 

 



   

 

13 

 

 

1.4 Problem Statement 

 

The SL-18 trams generate telemetry data that is transmitted to a cloud-based solution 

developed by Sporveien for analysis. This data includes GPS location, passenger 

count, delay and transfer information, and other sensor data. When the SL-18 Cloud 

Platform was set up in 2019, an initial assessment was made to estimate the expected 

data volume. However, this analysis was based on rough estimates as there was no 

real data available at the time. As a result, resources were allocated to the services 

based on these estimates. 

Since the project's inception, the scope has changed, and more functionalities have 

been added based on customer requirements. In August 2022, there were three SL-

18 trams running in Oslo, but this number is expected to grow to 87 by January 2025. 

With this increase in the number of vehicles, it has become critical to understand the 

actual load and scale of the cloud-based platform beforehand. Re-evaluating the 

allocation of resources based on actual data is necessary. Additionally, the Sporveien 

IT Team has Service Level Agreements (SLAs) in place regarding the precision and 

latency of data with another internal team managing trams (Trikken AS). So, the 

objective of this thesis is to deliver: 

1. Estimate the data volume produced by the 87 trams, based on the actual data 

coming from three operational SL-18 trams. 

2. Evaluate if Sporveien’s cloud platform services and other SL-18 related 

services scale to the data volume of 87 SL-18 trams? Recommendations for 

scaling Sporveien's Cloud Platform and Services to support 87 SL-18 trams. 
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1.5 Thesis Summary 

The SL-18 IT platform was developed in the AWS cloud platform before any vehicle 

arrived in Oslo. It will be necessary to evaluate this system with the aggregated data 

load produced by the SL-18 trams before all the trams are in service. The main aim is 

to ensure that the system scales by identifying any scalability issues. The estimation 

and correct evaluation beforehand will also be important to lower the cost. 

Prior to the arrival of any tram, Sporveien estimated the amount of real-time traffic 

flowing through their cloud platform. This thesis aims to estimate the data load again, 

using data generated by existing trams, and then provide recommendations to scale 

the platform accordingly. However, the challenge lies in the fact that scaling is not 

always directly proportional, rendering theoretical estimates unreliable. In certain 

cases, increasing the load of one tram to that of 87 trams might require more than 87 

times the platform's capacity. To address this issue, a digital twin of the tram will be 

used. It was developed by the lead developer at Sporveien IT team for testing 

purposes and this tool simulates the functionality of a single SL-18 tram. The tool will 

be scaled in this thesis to replicate the functioning of 87 or more trams. 

The modified version of Digital Twin will be used to evaluate the existing SL-18 IT 

platform that processes real-time data from the 87 SL-18 trams simultaneously. There 

will be two sides to the problem – impacting performance and cost: Do we need to 

scale up certain services, or can they be scaled down? 

The study [29] developed a digital twin system for a subway train and demonstrated 

its effectiveness in predicting the train's behavior in real-time. The use of a digital twin 

tool for the SL-18 trams in the current study could similarly provide a valuable testing 

and evaluation tool for the IT platform. 

The same tools and methods can be employed for testing whenever new functionality 

has been created that changes real-time communication, such as introducing more 

frequent or larger data size of messages (volume, size), to check whether earlier 

estimates still hold or whether services will need to be scaled. 
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CHAPTER 2: System Overview 
The Sporveien Cloud platform team offers a range of SL-18 Services, including a 

data lake for storing all the data generated by trams for analysis, and TramTracker to 

monitor trams in real-time, aimed at improving the efficiency of traffic managers.    

SL-18 Components combine to provide SL-18 Services. These SL-18 components 

are running on Amazon Web Services (AWS), a cloud computing platform offered by 

Amazon.  

2.1 SL-18 Services 

To explain the SL-18 Cloud Platform and the terminologies used in this thesis, this 

section describes two important SL-18 services. The services will serve as a 

foundation for the readers to understand the basic communication happening on the 

SL-18 platform. 

2.1.1 Data Lake 

Data Lake is defined as a single repository of a huge amount of data in all forms. It 

could be structured data which is relational data structured in the form of rows and 

columns, semi-structured data which includes XML, JSON and CSV files, 

Unstructured data which is text files, and binary data which could be images, audio, 

and video files. A data lake allows organizations to store, process and then analyze 

all their data to retrieve useful information out of it and use it for their benefit. It also 

allows businesses to ask new questions and get better answers for their growth. [24] 

For SL-18 project in Sporveien Amazon Simple Storage Service is being used as data 

lake. SL-18 Data Lake is designed to store all the data which is produced in 

communication between SL-18 trams, Sporveien and Ruter. 

A) Ruter 

Ruter is another transport company responsible for providing the trip information to the 

SL-18 trams. This data is in the form of MQTT messages, generated by MQTT brokers. 

B) MQTT 

MQTT is a standard messaging protocol, or standard set of rules for machine-to-

machine communication. IoT devices including sensors, and wearables use MQTT to 

transmit data. MQTT is used to communicate IoT data efficiently. It supports messaging 

between the devices to cloud and cloud to devices. MQTT is easy to implement, as it 

requires minimal resources for implementation. It is secure because it enables 

developers to use modern authentication protocols like OAuth. It is also reliable and 

well-supported in programming languages like Python.[25] 
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Figure 3: All three data sources, Tram Broker, Sporveien Broker and Ruter Broker 

sending data to the S3 DATA LAKE. 

 

C) Data Sources 

The Figure 3 shows a high-level overview of the Data Lake created for the SL-18 Cloud 

Platform. Data Lake has three data sources. Communication of the three data sources 

is simplified here.  

i) SL-18 Tram Broker: This MQTT broker is implemented in trams and sends 

all the data collected by the sensors in the tram to the Sporveien MQTT 

broker. It also receives the data from Sporveien broker regarding the 

information of the trip/Journey. 

ii) Sporveien Broker: It is acting like an intermediary and stores the entire data 

into the data lake. 

iii) Ruter Broker: It sends the trip information which includes the starting point, 

ending point, number of journeys on a specific track to the Sporveien broker. 

Data Lake is being used to store all the generated data. 

2.1.2 tramTracker 

tramTracker is a web application that tracks the trams in real-time. Traffic managers 

use this Application to control the traffic. It not only provides the real time location of 

trams on the map, but also their status if a tram is ready to go into the traffic. 
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2.2 Amazon Web Services 

With cloud computing, computing resources such as servers, storage, and 

databases are delivered over the internet on a pay-per-use basis, eliminating the 

need for companies to build and maintain their own infrastructure. [14] 

AWS offers a broad range of services, including computing, storage, databases, 

analytics, networking, security, and enterprise applications. These services are 

accessible globally, enabling companies to use them from anywhere in the world. AWS 

has become the industry leader in cloud computing, serving millions of customers 

ranging from startups to government organizations. The platform provides scalability, 

reliability, and flexibility to meet the needs of Sporveien. [15] 

SL-18 Components are running on the following services provided by AWS. 

2.2.1 Amazon EC2 

Amazon Elastic Compute Cloud (EC2) is a cloud computing service provided by 

Amazon Web Services (AWS). EC2 allows users to rent virtual computing resources 

in the cloud, such as virtual servers or instances, that can be used to run various 

applications and workloads. [16] 

EC2 instances are highly customizable and can be configured to meet various 

performance and capacity requirements. Users can choose from a wide range of 

instance types, such as general-purpose, compute-optimized, memory-optimized, 

storage-optimized, and GPU instances, each optimized for different types of 

workloads. 

EC2 instances are billed on a pay-as-you-go basis, with pricing based on factors such 

as instance type, usage duration, and data transfer rates. This makes EC2 a flexible 

and cost-effective solution for organizations of all sizes, from small startups to large 

enterprises.[17] 

 

 

2.2.2 Amazon ECS  

Amazon Elastic Container Service (ECS) is a fully managed container orchestration 

service provided by Amazon Web Services (AWS). ECS allows users to easily deploy 

and manage containerized applications in the cloud using popular containerization 

technologies such as Docker. 

ECS supports two different launch types for running containers: EC2 and Fargate. 

With the EC2 launch type, users can launch containers on a cluster of EC2 instances, 

while with the Fargate launch type, users can run containers without having to manage 

the underlying EC2 instances. This allows users to choose the most appropriate 

launch type based on their specific needs. ECS has become a popular choice for 
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organizations that need to deploy and manage containerized applications in the cloud, 

due to its ease of use, scalability, and flexibility. [18][19] 

i) Docker 

Containers are lightweight virtualization technology that package applications and 

their dependencies into a portable, isolated environment.[41] Unlike virtual machines, 

containers share the host operating system kernel and do not require a separate guest 

operating system. Docker is a popular containerization platform that provides tools and 

APIs for building, packaging, and deploying applications in containers.[42] 

Containers and Docker provide numerous benefits, including improved application 

portability, easier deployment and scaling, and better resource utilization.[43] 

2.2.3 DynamoDB 

Amazon DynamoDB is a fully managed NoSQL database service provided by Amazon 

Web Services (AWS). DynamoDB is designed to provide high-performance, highly 

scalable storage and retrieval of structured and unstructured data. [20] 

DynamoDB provides the following key features: 

i) Fully managed service with fault tolerance. 

ii) Support for both document and key-value data models. 

iii) Flexible querying and indexing capabilities. 

iv) Encryption at rest and in transit, as well as fine-grained access control.  

v) Low-latency, high-throughput performance with the ability to handle millions of 

requests per second.[21] 

 

2.2.4 Kinesis Data Streams 

Kinesis Data Streams is an AWS service for collecting, processing, and analyzing real-

time streaming data. It can handle large volumes of data and is scalable and fault-

tolerant manner. Record Producers, like sensors or applications, can send data 

records to Kinesis Data Streams, which stores and replicates the data across multiple 

availability zones. Data records are stored in ordered sequences called data streams, 

which can have multiple shards to accommodate changes in data volume. Kinesis 

Data Streams provides automatic scaling, data retention policies, and integration with 

other AWS services like Amazon S3 (storage service). It is a powerful tool for real-time 

data processing. [30] 

2.2.5 Apache Flink 

Kinesis Data Analytics for Apache Flink is a fully managed AWS service that enables 

users to utilize Apache Flink applications for processing streaming data. Flink can 

perform analytics on real time data using multiple programming languages including 

Java, Python, Scala, or SQL. The service enables the user to write and execute the 

code to perform time-series analysis, feed dashboards in real time and create metrics 
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in real time. Apache Flink reads from the Kinesis stream, performs processing and 

analytics, and writes back on another stream or data store. It is a powerful tool to 

perform real time transformations and analytics on data as it performs in-memory 

computations. [7] 
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Chapter 3 : Requirement Analysis 
The platform enables communication in both directions - from the trams to the cloud 

and vice versa. The SL-18 platform is quite extensive and SL-18 Components affected 

by the increased data load were identified. Based on the Requirement Analysis, 

components were classified into two categories: included and excluded. In this 

chapter, an overview of all the Included Components is provided, while only a few 

excluded components are described. 

Included components are those where data travels from the trams to the Cloud 

Platform. These components process data from all the trams simultaneously, and they 

are impacted by the increased data load. Examples of included components are the 

transmission of data from trams to the Sporveien broker and then to AWS (Figure 4). 

On the other hand, excluded components are those where data goes from the Cloud 

platform to the trams. For instance, the Realtime tram status component examines the 

status of each tram before it starts operating and communicates with each tram 

individually. Similarly, components that send data about weather conditions to the 

trams are excluded. Also, the components used by older trams (SL-79 and SL-95) are 

excluded. 

 

Figure 4: Trams (MQTT broker in trams) sending data to Sporveien Broker and as the number 

of trams increases, the data load on Sporveien Broker and Cloud Platform (includes data lake) 

will increase. 
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3.1 Included SL-18 Components 

This thesis examines how increased data load affects components responsible for 

processing tram data.  An overview of the components in the Data Lake  architecture 

for moving data from trams to the data lake is in Figure 5.  

 

Figure 5: Flow Diagram of the shortlisted SL-18 Components for the thesis which moves data 

from trams to data lake. 

3.1.1 MQTT Brokers 

These are also called Sporveien brokers. These brokers receive all the data from the 

trams as well as Ruter in the form of MQTT messages and then pass to the rest of the 

components.  

Master MQTT is the preferred broker, and MQTT slave is the backup. HA Proxy 

(described in next subsection) is handling the active-passive failover configuration of 

the two brokers. 

Both the master and slave brokers are also connected with the Ruter Broker (Figure 

5). If the master fails all the connections get terminated and clients are redirected to 
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the slave by HA Proxy. When the master comes back online, all connections to the 

slave are served to the master. It is important to keep all the clients in the same broker. 

Both brokers are running on 2.2.1 Amazon EC2. 

3.1.2 HA Proxies and Network Load Balancer 

AWS Network Load balancers (NLB) do SSL/TLS (secure communication protocol) on 

the data that came from the tram , perform load balancing, and then send this data to 

the High Availability (HA) Proxies. Both HA proxies receive data and set up in 

active/passive configuration. These HA Proxies provide fault tolerance capabilities to 

the MQTT Brokers, making sure that MQTT brokers are always available. Overall, this 

system helps to ensure smooth communication within the tram network and helps to 

prevent downtime or other issues that could impact the network's reliability. 

The AWS Network Load Balancer (NLB) is a load balancer designed to be highly 

scalable and fault-tolerant, capable of managing millions of requests per second. [6] 

HA proxies are running on 2.2.1 Amazon EC2. 

3.1.3 Record Producer 

The data is received by the Record Producer from 3.1.1 MQTT Brokers (Figure 5). The 

Record Producer is allocated resources such as CPU and network based on the 

number of messages received from the MQTT Broker. 

The Record Producer performs additional tasks such as message collection, 

segregation (e.g., separating media messages from regular messages), and message 

enrichment (e.g., adding tramID, QoS, and MQTT Topic to the messages).  

Record Producer is Running on 2.2.1 Amazon EC2. 

 

3.1.4 Kinesis Data Stream 

Kinesis Data Stream (KDS) is the main ingestion point where Record Producer sends 

the messages. Capacity in KDS is handled by the shards and it depends on the 

expected load during deployment. 

KDS Component is an Amazon Web Service and described in 2.2.4 Kinesis Data 

Streams. 

3.1.5 Kinesis Firehose 

Amazon Firehose prepares the kinesis streaming data before it is saved in storage. It 

is used to convert the raw data from the source(Kinesis Data Stream) in the formats 

required by the destination(S3 Data Lake), without building  data processing pipelines.  

Amazon Firehose is fully managed service which automatically manages, scales and 

provide resources (memory, compute, network etc.) 
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Kinesis Data stream writes data to the Kinesis Firehose to aggregate, and Firehose 

sends the data to S3 Bucket. AWS scales it automatically according to the data load. 

It is described here in the context of data Lake shown in Figure 5. 

3.1.6 S3 Bucket 

Amazon S3 (Simple Storage Service) is a cloud-based storage service offered by 

Amazon Web Services (AWS) that provides object storage with high scalability, 

availability, security, and performance. Amazon S3 is used for data storage, 

archiving and data analysis.[22] 

S3 is the main storage for all the messages arriving. Kinesis Firehose sends all the 

data to S3. 

3.1.7 Apache Flink 

It is a powerful tool to perform real time transformations and analytics on data as it 

performs in-memory computations. Kinesis Data Analytics for Apache Flink is an AWS 

service in it itself and an overview is provided here: 2.2.5 Apache Flink. 

The trams can be driven from either side, but there is only one antenna located on one 

side. This means that when the tram is driven from the other side, the antenna does 

not provide accurate location data. To compensate for this, an extra distance of “x” 

meters needs to be added to the coordinates. The correction in the coordinates is done 

using Apache Flink. This is just one example: Flink is being used for other purposes 

in the SL-18 Project. However, when this component is evaluated, it will account for 

all the use-cases and not just the mentioned example. 

3.1.8 MQTT Receiver 

It has subscribed to the Sporveien Broker (3.1.1 MQTT Brokers) and listen MQTT 

messages related to the GPS location of the trams. This component is not being used 

for Data Lake but for tramTracker, and that’s why it takes data only related to the GPS 

location to track the trams in real-time. It then publishes data to Kinesis Data Stream. 

It is running on 2.2.2 Amazon ECS. 

3.1.9 MQTT Fusion 

Kinesis Data Stream writes the data to MQTT Fusion published by MQTT Receiver. It 

then publishes those messages(data) to the DynamoDB table which is being used by 

tramTracker Web Application. 

It is running on Amazon ECS. 

3.1.10 DynamoDB  

It caches the messages for tramTracker Web Application in a table called tram state. 

DynamoDB is also a storage service provided by AWS and details about it can be 

found here: 2.2.3 DynamoDB. 
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3.1.11 Safety switch 

Instead of the processed data in 3.1.7 Apache Flink, it sends data without processing. 

It is a back-up for the GPS data stream to Ruter and tramTracker if Apache Flink fails. 

As aforementioned Flink compensates the extra distance of “x” meters when tram is 

being driven in opposite side of antenna. However, if Flink fails it is fine to get “x” 

meters wrong position rather than getting no GPS data at all. 

It is running on Amazon ECS. 

3.1.12 Snap Cache 

SL-18 data lake is used to store historical data for gaining insights. However, this 

transaction-based storage system can take some time to return results. For services 

that require quick access to recent data, a short-term storage option (cache) is used. 

This component is called Snap Cache. This Snap Cache stores a small subset of 

MQTT topics and their payloads for a maximum of 24 hours. It consists of containers 

that read MQTT messages and store them in a document database. Originally 

developed for tramTracker, this Snap Cache is now used for other SL-18 services as 

well. 

It is running on 2.2.2 Amazon ECS. 

 3.1.13 Message Latency Tracker 

 The Figure 6 shows the conceptual design of message latency tracking on the SL-18-

Platform. The Data sources are the same as mentioned in the data lake in Figure 3: 

All three data sources, Tram Broker, Sporveien Broker and Ruter Broker sending data 

to the S3 DATA LAKE. This system is built to capture the travel time of each message 

that goes through the platform(Figure 6). There are two containers connected to the 

Sporveien’s broker and the Ruter’s broker. The servers in these containers are 

listening to all the messages coming into these brokers. Then these containers store 

these messages in AWS managed database called Document DB. Document DB is 

connected to an API Container which is responsible for performing the calculations of 

message travel time and then serve this data to a User Interface which was developed 

in-house. 
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Figure 6:Message Latency Tracker to calculate the travel time from Sporveien to ruter. This 

architecture diagram is created by the architect of this component. 

 

Message Latency Tracker is running on 2.2.2 Amazon ECS. 

 

 

3.2 Excluded SL-18 Components 

The components mentioned here are not impacted by the data load of 87 trams. 

However, they are only described here to give the reader an idea about the IT team's 

operations.  

3.1 Realtime tram status 

This functionality is responsible for monitoring the tram in real-time before it goes into 

the traffic. It is a dynamic check which ensures that everything is all right before the 

kickoff of a tram. It provides the status of each tram on a User-interface (UI) developed 

in-house. This UI is responsive and used by technicians in handheld devices and 

monitoring screens. Each tram could be in following four states:  

1. SHUTDOWN = Tram is turned off. 

2. READY = Tram is On, and all checks are OK. 
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3. WARNING = Tram has checks that are failing but are not crucial. 

4. ERROR = Tram is NOT ready, because key/crucial checks are failing. 

It is running on 2.2.2 Amazon ECS. 

3.1.2 MQTT Ping 

It is a checker if Sporveien’s 3.1.1 MQTT Brokers are working or not? It continuously 

sends signals to numerous services and stops sending when it loses connection with 

the MQTT broker. So, it provides the status of the Sporveien broker. It also tries to 

reconnect with MQTT Broker and starts sending again if it establishes the connection. 

3.1.3 XML to JSON 

It takes the XML data from the Sporveien MQTT broker and converts it into JSON 

format and sends it back to MQTT. This functionality was developed for the older trams 

because those trams were sending data in XML format. But the modern SL-18 trams 

send data directly in JSON format. So, this service is only being used for older trams 

and will not be considered for this thesis. 

 

3.3 Metrics of Included Components 

Included components are supposed to be affected by the increases data load. These 
components operate on various services offered by the AWS Cloud Platform, namely 
Amazon ECS, EC2, Apache Flink, DynamoDB, and Amazon Kinesis. This subsection 
describes the relevant metrics for each Included SL-18 Component and the resource 
utilization before the experimentation was performed.   
 

3.3.1 SL-18 Components running on Amazon EC2  

Table 1 displays the included SL-18 Components running on Amazon EC2. 

The key metrics for the EC2 instances are: 

1. CPU utilization: This metric measures the percentage of CPU utilization on an 

EC2 instance over a given period.  

2. Network traffic: This metric measures the amount of incoming and outgoing 

network traffic on an EC2 instance. High network traffic can indicate that the 

instance is processing a large volume of data or that there is a network issue. 

3. Memory utilization: This metric measures the percentage of memory utilization 

on an EC2 instance. High memory utilization can indicate that the instance is 

running out of memory or that there is a memory leak. 
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Table 1: The first column of the table lists the SL-18 Components running on EC2, while the 

second column presents the allocation of resources. The remaining columns illustrate the 

utilization of significant metrics before introducing a data load of 87+ trams. 

SL-18 
Components 

Allocated 
Resources 

Network -
in 

(KB/ 
second) 

Network-
out 

(KB/ 
second) 

CPU 
Utilization 

Memory 
Utilization 

MQTT 
Master 

C5n.xlarge 44 142 14 % 12.2% 

Record 
Producer 
Host 

C5n.xlarge 185 147 10.3% 2.57% 

HA-Proxy M5n.large 66 67 3.59 % 3.73% 

HA-Proxy 2 M5n.large 89 90 2.46% 3.85% 

 

Amazon Elastic Compute Cloud (EC2) provides a variety of instance types to meet 

different workload requirements. The M5n and C5n instance families are two of the 

many instance types available on EC2. 

1. M5n.large: It provides 2 virtual CPUs (vCPUs), 8 GB of memory. 

2. C5n.xlarge: It provides 2 vCPUs, 5 GB of memory.[23] 

 

3.3.2 SL-18 Components running on Amazon ECS 

 

 

 

Table 2  displays the SL-18 services that operate on 2.2.2 Amazon ECS.  
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Table 2: The first column of the table lists the SL-18 Components running on Amazon ECS, 

the second column shows the allocation of resources, and the remaining columns illustrate 

the utilization of significant metrics before introducing the data load. 

SL-18 
Component
s 

Allocated 
Resource
s 

Networ
k -in 

(KB / 
second) 

Network
-out 

(KB / 
second) 

CPU 
Utilizatio
n 

Memory 
Utilizatio
n 

Task 
Coun
t 

Snap Cache  5 vCPU, 1 
GB 
memory 

0.164 0.096 0.241 % 0.849% 1 

Message 
Latency 
Tracker 

5 vCPU, 1 
GB 
memory 

3.586 1.431 2.9 % 1.86% 1 

Safety 
switch 

5 vCPU, 1 
GB 
memory 

1.216 0.209 1.17% 0.781% 1 

MQTT 
FUSION 

1 vCPU, 
2GB 
memory 

88.322 99.194 15% 10.9% 1 

MQTT 
RECEIVER 

1 vCPU, 
2GB 
memory 

1.143 3.830 0.283% 3.69 1 

 

Amazon Elastic Container Service (ECS) provides several metrics that can be used to 

monitor the performance of containerized applications running on ECS. These metrics 

help to identify issues and optimize the performance of ECS tasks and services. 

Some of the key metrics for ECS include: 

1. CPU and memory utilization: These metrics measure the CPU and memory 

utilization of ECS tasks and services. High CPU or memory utilization can 

indicate that a task or service is under heavy load or that there is a performance 

bottleneck. 

2. Network traffic: This metric measures the amount of incoming and outgoing 

network traffic for ECS tasks and services. High network traffic can indicate that 

the tasks or services are processing a large volume of data or that there is a 

network issue. 
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3. Task Count: A task represents a running instance of a containerized 

application. Each task is associated with a specific task definition that defines 

the container image, configuration parameters, and other details necessary to 

run the container. The task count in ECS refers to the number of tasks that are 

currently running or have been run over a specified period. This metric can be 

used to monitor the availability and scalability of containerized applications 

running on ECS. 

 

3.3.3 Apache Flink 

Table 3  presents a SL-18 service that runs on Apache Flink.  

Table 3: The first column of the table lists the SL-18 Component running on Apache Flink, the 

second column shows the allocation of resources, and the remaining columns illustrate the 

utilization of important metrics before introducing the data load of 87+ trams. 

SL-18 
Component 

Allocated 
Resources 

CPU Utilization Memory 
Utilization 

Apache Flink KPUs = 2 43.8% 60% 

 

Kinesis Data Analytics for Apache Flink provides automatic scaling by default. The 

application is automatically scaled up or down based on the amount of incoming data. 

This ensures that the application can handle the increased load without any manual 

intervention. [26] But a default configuration is provided, which scales automatically 

according to the load.[28] 

 

Current Configuration Provided for Apache Flink: 

Parallelism = 4 

The Parallelism parameter specifies the total number of tasks that will be running 

simultaneously. In the current configuration, 4 tasks will be running in parallel. 

Parallelism per KPU = 2 

The Parallelism per KPU parameter specifies the maximum number of subtasks that 

can be run simultaneously on a single KPU. In this case, it is 2, which means that each 

KPU can run up to 2 subtasks simultaneously. 

KPUs required to allocate = Parallelism/Parallelism per KPU = 2 

1 KPU = 1 core CPU, 4 GB memory 
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As shown in Table 3 currently 2 KPUs are allocated to Apache Flink. 

Some of the Key metrics for Apache Flink are: 

1. CPU Utilization: This measures the percentage of CPU resources being used 

by the system. High CPU utilization can lead to performance issues. 

2. Memory Utilization: This measures the percentage of memory resources being 

used by the system. High memory utilization can also lead to performance 

issues. 

3. The "number of records in" metric measures the number of input records that 

an operator or task receives, while the "number of records out" metric measures 

the number of output records that the same operator or task produces. These 

metrics are important for monitoring and optimizing the performance of Flink 

jobs, as they can help identify bottlenecks or issues in the data processing 

pipeline. For example, a high "number of records in" and a low "number of 

records out" can indicate that an operator is processing data inefficiently or is 

encountering errors. 

 

3.3.4 DynamoDB 

 

Table 4 presents a SL-18 service that runs on 2.2.3 DynamoDB. 

 

Table 4: The first column of the table lists the SL-18 Components running on DynamoDB, the 

second column shows the allocation of resources, and the remaining columns illustrate the 

utilization of important metrics before introducing the data load of 87+ trams. 

SL-18 
Component 

Allocated 
Resources 

Write-
capacity-
units (WCUs) 
sum 

Read-
capacity-
units (RCUs) 
sum 

Write throttle 
events count 

DynamoDB 
table (tram 
state) 

WCUs = 1200, 
RCUs= 500 

700 40 34 

 

Some of the key metrics of DynamoDB: 

1. Read and Write Capacity Units: DynamoDB uses read and write capacity units 

to measure the throughput capacity of a table or index. Monitoring read and 
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write capacity units helps ensure that your DynamoDB workload is provisioned 

for optimal performance and cost efficiency. 

2. Throttled Requests: DynamoDB may throttle read or write requests if the 

workload exceeds the provisioned capacity of a table or index. Monitoring 

throttled requests can help identify workload spikes or performance 

bottlenecks. 

3.3.5 Kinesis Data Stream 

Table 5 presents a SL-18 service that runs on Kinesis Data Stream.  

Table 5: The first column of the table lists the SL-18 components running on Kinesis Data 

Stream, the second column shows the allocation of resources, and the remaining columns 

illustrate the utilization of important metrics before introducing the data load of 87+ trams. 

SL-18 
Component 

Allocated 
Resources 

Incoming 

data rate 

 

Incoming 
data count 

Get 
records 
count 

Get records 
rate 

Kinesis Data 
Stream 

12 shards 0.044 MB 
/s 

7.4k 8k 0.194 MB/s 

 

1 shard = 1MB/s writes or 1000 writes in 1 second, 2 MB/s reads or 2000 read count 

per second. 

It's important to consider both the size and quantity of messages being processed. For 

instance, if 1000 writes are achieved using only 0.5 MB of data, then the shard's write 

capacity would be 0.5MB/s instead of 1MB/s. 

Some of the key metrics of Kinesis Data Stream: 

1. Incoming data rate refers to the amount of data that a system receives within 

a specific time. It is measured in Mega Bytes per Second here. 

2. Incoming data count refers to the total number of data items or records that 

are written into the system within a specific period. It is measured in terms of 

the number of records or data items. 

3. Get records count is the total number of data items or records that are 

retrieved or read from a system or database within a specific period. It is usually 

measured in terms of the number of records or data items. 

4. Get records rate measures the rate at which data items or records are 

retrieved or read from a system or database.  
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CHAPTER 4: Methodology 
The focus of the thesis is to evaluate the scalability of SL-18 Cloud Platform to ensure 

it handles the load of 87 trams. At the start of the thesis (01-Aug-2022) only 03 trams 

were operational in the city. However, the number was increasing gradually and by the 

end of March,2023 21 trams were operational , and their data is stored in the S3 Data 

Lake. The data was collected by the trams, and we considered two approaches to 

predict the load and evaluate the system: 

i) Theoretical Method (modelling) 

ii) Experimental Evaluation (simulation) 

4.1 Theoretical Method 

to determine the maximum amount of data we use data from the three SL-18 trams 

currently operating (as of September 2022). It is crucial to establish the upper limit 

because configuring resources based on average loads will not be enough to handle 

data loads that exceed the average. It is, therefore, essential to ensure that the system 

is always operational, and take the upper bound as reference. To determine the 

maximum amount of data generated by a single SL-18 tram per hour, we utilized in-

house monitoring tools to detect the peak times when the trams were generating more 

data. We then collected over 50 readings at those peak times and dates to get a 

representative sample, during the peak times. Table 6 showcases a few of these 

results, revealing that a single tram can generate a maximum of 17.5 MB (Mega Bytes) 

of data per hour. 

 

Table 6: Data generated by a single SL-18 trams in MBs collected from the Data Lake 

Date Size in MB Tram ID Source Duration 

29.08.2022 26 401 Data Lake 2 hours (8Am-10Am) 

29.08.2022 35 402 Data Lake 2 hours (8Am-10Am) 

25.08.2022 35 402 Data Lake 2 hours (8Am-10Am) 

03.08.2022 35 401 Data Lake 2 hours (8Am-10Am) 

04.08.2022 17.50 401 Data Lake 1 hours (11Am-12Am) 

22.08.2022 17.30 401 Data Lake 1 hours (11Am-12Am) 

15.08.2022 17.50 402 Data Lake 1 hours (11Am-12Am) 

02.09.2022 16.70 402 Data Lake 1 hours (11Am-12Am) 
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4.1.1 Estimation of Resources 

The initial step involved determining the amount of data transmitted by more than 87 

trams. The primary goal is to assess how components shortlisted in Requirement 

Analysis react to this data load. This includes predicting the components’ resource 

consumption, evaluating its current resource allocation, and recommending scaling 

up or down to prevent system outages and save costs. 

 

1. Kinesis Data Stream (KDS) 

Starting with the 3.1.4 Kinesis Data Stream. Mathematical prediction for how many 

kinesis shards will be required to handle the data load of 87+ trams. 

Amazon offers two modes to configure the KDS: 

1. Auto Scaling mode 

2. Provisioned mode 

The Auto Scaling mode was not available during the development of the SL-18 

platform, but it was considered for this study. It configures the system based on the 

load, eliminating the need for manual intervention. However, after comparing the costs 

of both modes, a significant difference was observed (Appendix 1 provides the 

calculations). We can save around 600 dollars per month by using Provisioned mode 

in the current scenario. Also, since it is possible to predict the load, and the provisioned 

mode was chosen. 
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Calculation for Kinesis shards in provisioned mode: 

                +----------------------------------+ 

                |    Data Throughput Calculations  | 

                +---------------+------------------+ 

                                | 

      Data coming from          |   17.5 MB/hour (single tram) 

      a single tram per hour    |    (Source: S3 Data Lake) 

      --------------------------+--------------------------------- 

                                | 

      Data coming from          |   298.6 KB/minute  

      a single tram per minute  |    (translating previous input) 

      --------------------------+--------------------------------- 

                                | 

      Data coming from          |   281 KB/minute (Source : S3 Data Lake) 

      Data Lake per minute      |    (To validate the previous translation) 

      --------------------------+--------------------------------- 

                                | 

      Data coming from          |   5 KB/second (single tram) 

      a single tram per second  |   (translating previous input) 

      --------------------------+--------------------------------- 

                                | 

      Data coming from          |   435 KB/second (87 trams) 

      87 trams per second       |   (previous result * 87) 

      --------------------------+--------------------------------- 

                                | 

      Data coming from          |   600 KB/second (120 trams) 

      120 trams per second      | 

                                | 

      +-------------------------+---------------------------------+ 

      |    Assumptions:                                           | 

      |   - Calculations are based on buffer for 120 trams        | 

      +-----------------------------------------------------------+ 

 

Data coming from 120 trams per second = 600KB per second 

      +--------------------------------------------------------------+ 

      |1 kinesis shard = 1MB/second write or 1000 write requests/sec | 

      |             and 2MB/second reads or 2000 read requests/sec   | 

      +--------------------------------------------------------------+ 

 

To calculate kinesis shards, simply knowing the size of the data is not sufficient. It is 

also crucial to determine the number of messages that the data comprises, particularly 

since the data is transmitted via MQTT messages. Therefore, calculating the message 

count is also necessary when computing kinesis shards. 
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4.1.2 Downsides of theoretical methodology 

The study initially considered using theoretical methodology. However, upon further 

examination, it was discovered that this approach had some limitations: 

1. The theoretical methodology was more time-consuming to calculate all the 

metrics for all the Components shortlisted in Requirement Analysis. It is also 

possible to overlook some important metrics in theoretical methodology. 

Furthermore, as all components are connected, it is possible to move fake 

data through all the services in a flow and note down metrics on a centralized 

dashboard. 

 

2. Scaling could be non-linear. A service might require more than 87x capacity to 

operate smoothly. 

 

3. Additionally, there might be a relationship between components which could 

increase the load, which was not calculated mathematically, as all components 

are interconnected. Mathematical models are based on assumptions and 

predictions, which may not hold up in such unforeseen circumstances. On the 

other hand, practical evaluations allow us to observe and measure the effects 

of several factors in the real world, providing more accurate results.[13] 

So, because of the above reasons a better methodology is presented in section 4.2 

which will be utilized in this study. However, theoretical methodology helped to 

estimate the maximum data coming out from trams. 

4.2 Experimental Evaluation 

To evaluate the resource utilization of Sporveien's SL-18 services on the AWS Cloud 

Platform, we use  a digital twin of the SL-18 tram named SL-18 Twin that is used to 

test various functionalities by the Sporveien Cloud Platform team. It is based on pre-

recorded GPS paths of "real-live" trams, along with data on the journey. Data from the 

existing trams and journeys has been fed to the SL-18 twin. 

In this study, SL-18 Twin is modified to provide the workload for a scalability test. 120 

simulations will be carried out concurrently, and the resulting data will be fed to the 

SL-18 services running on the AWS Cloud platform. The main objective of this 

approach is to gain valuable insights into the system's performance and identify areas 

for optimization. By conducting this Practical evaluation, recommendations for 

optimizing the SL-18 services can be made. These recommendations could potentially 

improve the utilization of resources. 

 

4.2.1 SL-18 Twin 

SL-18 Twin (digital twin) aims to simulate the functionality of an actual tram. To 

understand its operation, it is essential to comprehend how a tram works. When a 

driver enters a tram, they sign in with a block number that determines all the journeys 
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the vehicle will drive in one day. This information is obtained from a trip 

planning/scheduling system called Hastus. Once signed in, the driver receives journey 

information, including the starting point, ending point, and the next few stops from the 

current location. The driver then operates the tram, and sensors within the tram 

generate data continuously. 

 

 

Figure 7: Architecture of Docker-Compose SL-18 Twin (Digital Twin). 

 

SL-18 Twin uses three Docker containers shown in Figure 7 to simulate this 

functionality. 

1.  The first container is a Nginx webserver that downloads Hastus data from the 

Cloud, containing all the available blocks for the day's journey. It also includes 

a simulated version of MADT (Multi Application Driver Terminal), the driver 

assistance system for signing on to a block/journey in the Ruter's system and 

getting the Journey information. 

2. The second container is the Push Container, which continuously sends 

simulated MQTT messages from the tram, including information about the 

tram's coordinates, speed, door-lock, and passenger count. 

3. The third container is the MQTT Broker, which is a mock broker designed to 

test the system and has the same configuration as the central broker within the 



   

 

37 

 

tram. It receives tram data and travel information from the Push-Container and 

sends it further to the AWS Cloud Platform. 

 

Docker-Compose is used to define and run multi-container applications. It allows the 

definition of application services, networks, and volumes in a single YAML file and 

provides a single command to start or stop the entire application.[10],[11] 

The SL-18 Twin operates in the following manner: 

i) First, it randomly selects a block number from hastus data and sign-in to 

MADT(Multi Application Driver Terminal). Then, Ruter sends trip information 

based on that block number. 

ii) The SL-18 Twin has hundreds of data files of the tram data including starting 

point, ending point. These files are generated by operational trams and 

essentially contain pre-recorded data. Based on the trip information 

received from Ruter, the SL-18 Twin selects the appropriate data file and 

runs a simulation. The simulation runs continuously until it is stopped by the 

docker-compose down command. 

iii) If a trip on the selected route is completed, the SL-18 Twin automatically 

picks up the next data file and continues running the simulation. 

iv) It continuously pushes the pre-recorded data to the SL-18 Cloud Platform, 

like a real tram. 

 

4.2.2 SL-18 Twin Modifications 

All the containers in SL-18 Twin are running in isolated networks and communicating 

through various ports. These networks and ports are hard-coded in the docker-

compose.yaml file and need to be made dynamic. For that purpose, we wrote a shell 

script which passes different network IPs, port numbers and unique value of tramID 

to the containers in each instance of Docker-Compose SL-18 Twin using different 

environment files. 

 

4.2.2.1 Evaluation system 

SL-18 Twin was modified locally on a Windows Machine, and 3 instances were run 

successfully. However, to run the 87+ instances mean running 261+ containers 

greater resource allocation was required. 

AWS offers numerous services to run such docker-compose files. 2.2.2 Amazon ECS 

(Elastic Compute Service) is one of such services which could be used to docker-

compose files. But it was hard to convert all the parameters described in docker-

compose SL-18 Twin to ECS Task definition. 

Instead docker-compose on a 2.2.1 Amazon EC2 instance and no conversion of 

Docker-Compose was required, and it is possible to run the Docker-compose like on 
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a Windows machine. Also, SL-18 Twin was supposed to run for a few hours to evaluate 

the system, so a system with powerful specifications could be used by paying just a 

few dollars. So, this solution seems convenient, economical and time saving. 

Appendix 2 describes the steps to run modified SL-18 Twin on EC2. 

 

4.2.2.3 Size of EC2 to Run 87+ SL-18 Twins 

The purpose of this activity was to investigate the feasibility of running many SL-18 

Twin instances on an Amazon EC2 windows image. Initially, three instances of 

Docker-Compose SL-18 Twin were successfully run simultaneously on a low cost EC2 

instance (t2.micro). t2.micro offers 1vCPU, 1GB RAM and 8GB Memory at a price of 

0.0116 dollars per hour. However, when the number of SL-18 Twin instances was 

increased to six, an error of Insufficient disk space occurred. The SL-Twin with 120 

instances required more resources but was supposed to run for just two hours. For 

that purpose, m5a.12xlarge was used which offers 48vCPU, 192GB RAM and 60 GB 

Memory at a cost of 2.3 dollars per hour. The findings show that running a considerable 

number of Docker Compose instances on an Amazon EC2 windows image for few 

hours is a viable economical option, provided that sufficient resources are allocated.  

 

4.2.2.4 Push-container 

SL-18 Twin program was running successfully on the EC2, but it was giving the invalid 

output. It was observed that multiple trams were being assigned to the same trip, which 

resulted in Ruter not sending data to all the trams for the same trip. This problem was 

addressed by modifying the Push-Container component of the SL-18 Twin program. 

The aim was to assign different trams to different journeys so that each tram receives 

the correct data from Ruter. 

To achieve this, the Push-Container was modified to ensure an even distribution of 

journeys among the available tram simulations. For example, if there were 20 journeys 

scheduled for a day and 10 tram simulations running, the first 10 journeys would be 

assigned to the 10 trams, and any remaining journeys would be allocated using the 

modulus operator. It was crucial to ensure that each journey was assigned to only one 

tram, to avoid Ruter withholding journey information from other trams. 

By making these changes to the Push-Container, the problem of multiple trams being 

assigned to the same trip was resolved, and all necessary information was received 

correctly. This modification allowed the SL-18 Twin program to run smoothly, without 

any further errors encountered. 
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4.2.2.5 Validation of correct operation 

The simulation's accuracy was demonstrated by using MQTT Explorer to visualize 

data and confirm that all 87+ runs operated simultaneously, received, and transmitted 

correct information, and behaved as legitimate vehicles with respect to Ruter. MQTT 

Broker is where the GPS information is transmitted continuously by Push Container. 

It also shows the travel information received from the ruter. It includes the information 

of Destination, stops and audio announcements in the tram. MQTT Explorer is a tool 

to visualize all the information received in MQTT Broker. It was validated from there 

that trams are generating the data continuously and receiving information from ruter. 

To further validate the correction, we examined the data generated by the simulations 

in the Data Lake during the simulation period. We observed that the 120 tram 

simulations generated a total of 2080 MB of data over the course of an hour (Table 7). 

This translates to an average of 17.6 MB of data generated by a single tram per hour, 

which is very similar to the theoretical result of 17.5 MB. Notably, the simulator was 

fed with actual data from three trams, and our theoretical estimations were also based 

on this data. 

 

Table 7: Data generated by  SL-18 Twins (simulations) in MBs in 1 hour collected from the 

Data Lake 

Date Size in MB tramID Source No. of 
trams 

14.04.2023 
(13:00 - 14:00) 

17.6 601 Data Lake 1 

14.04.2023 17.4 602 Data Lake 1 

14.04.2023 17.6 670 Data Lake 1 

14.04.2023 2120 601 to 720 Data Lake 120 

 

Sample Data Lake Query to retrieve data: 

SELECT * 

FROM sl18_mqtt_analytics m 

WHERE m.year='2023' AND m.month='04' AND m.day='14' 

AND (m.tramid LIKE 'SL18TIB0000000670') 

AND m.recordtimestamp >= CAST('2023-04-14 13:00:00.000' AS TIMESTAMP) 

AND m.recordtimestamp <= CAST('2023-04-14 14:00:00.000' AS TIMESTAMP) 

ORDER BY m.recordtimestamp; 
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4.3 Monitoring 

In this thesis, we used Prometheus to monitor the resource usage of the SL-18 

Components. 

4.3.1 Prometheus 

Prometheus [8] is an open-source time series database used to collect and visualize 

metrics. Prometheus can collect all types of metrics directly or through various “metric 

exporters.” A metric can be CPU usage, memory usage, count/type of MQTT 

messages, or other measurable variables.  

4.3.1.1 Prometheus Exporter Set-Up Guide for AWS EC2 

To set up Prometheus for this study, we followed these step-by-step instructions for 

configuring the Prometheus exporter on AWS to collect and visualize metrics: 

i) First, we set up a Prometheus server on an AWS EC2 instance and installed 

Prometheus, node exporter, and Grafana [9]. 

ii) Next, we set up the target machines (EC2 instances and ECS clusters) and 

labeled them as target 01 and target 02 as shown in Figure 8. Then Installed 

the node exporter on these target machines. 

iii) Then we modified the configuration files on the Prometheus server to add 

the targets and updated the Grafana configuration by adding the 

Prometheus URL to include it in Grafana. 

iv) For detailed instructions on how to set up Prometheus, we used this guide 

"Set up Prometheus Node Exporter on AWS EC2 Instance | by Aniket Patel 

| Towards AWS" by Aniket Patel. This guide provides all the necessary 

details and commands to complete the setup process. 

 

https://towardsaws.com/set-up-prometheus-node-exporter-on-aws-ec2-instance-648111fb5221
https://towardsaws.com/set-up-prometheus-node-exporter-on-aws-ec2-instance-648111fb5221
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4.3.1.2 Architecture 

a) Node Exporter is a configurable file that measures server and OS (Operating 

System) metrics, including RAM, disk space, and CPU utilization. Prometheus 

has node exporters that are configured into applications or containers as 

described in the set-up guide. It has a data retrieval worker to pull out the 

resource usage metrics from the application or container. 

 

b) The collected metrics are stored in a database for time-series data, allowing 

customization of the analysis period. For instance, in my experimentation on 

14-03-2023 and 15-03-2023, I set the time span for the entire dashboard to 

observe the resource utilization during that specific period. 

 

c) Prometheus also offers a powerful query language called PromQL for complex 

calculations and aggregations on the collected metrics. The Prometheus Web 

UI accepts PromQL queries and displays the results. To visualize the results 

for specific services' resources, I utilized PromQL queries in my analysis. 

Figure 8:Prometheus Set up to capture metrics from services and integration with 

Grafana. 
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4.3.1.3 Features 

AWS has a CloudWatch monitoring service to monitor the services. But Prometheus 

is preferred here because some of its features, including: 

1. Better Support for containers: Prometheus is designed to have native 

integration with containers. Cloud watch also has integration with containers 

but that could be more complex to set up and manage. There are some services 

in my requirement analysis running on ECS Containers. So, Prometheus is a 

better choice. 

 

2. Multi-dimensional data model: Prometheus has a powerful multi-dimensional 

data model that allows the collection and storage of time series data with labels 

that can be used for querying and grouping. This makes it easier to slice and 

dice the metrics and create dashboards. CloudWatch uses a simpler 

namespace-based data model, which is less flexible. Although complex 

querying is not required for this experimentation, it might be necessary in the 

future.  

 

A sample query to find out the maximum utilization of memory by a service: 

 

 

 

3. Integration with Grafana: Prometheus can integrate with Grafana [9], a powerful 

visualization tool used to display dashboards for monitoring data. In this 

experimentation, Grafana is used to visualize all the results. 

 

4. Real-time metrics collection: Prometheus can be used cross-platform and has 

real-time metrics collection, whereas CloudWatch is an AWS-specific service 

that shows metrics with a delay of 1-5 minutes. For example, in this thesis, 

digital twins were run in an EC2 instance, and it was crucial to notice the metrics 

in real-time when gradually increasing the number of instances to have precise 

resources for the EC2 instance. 

 

5. Richer query language and broader online community: Prometheus has a richer 

query language and a broader online community.  

Moreover, it is already being used by the Sporveien Cloud Platform team for 

monitoring purposes. 

 

      aws_ecs_memory_utilization_maximum 

      {job="SL18 Staging/Test",service_name="snapcache-ecs-service"} 
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Chapter 5: Results  
We evaluate the behavior of the SL-18 Cloud Platform when the data load was 

gradually increased from 30, 60, 90, to 120 trams to identify which SL-18 Components 

need to be scaled up, scaled down, or remain unchanged. The load was gradually 

increased to carefully monitor the behavior, but the results for the maximum load (120 

trams which is 2120 MB per hour) are presented. Prometheus was used to track the 

utilization  of resources by the SL-18 Components.  

5.1 Experiment Results 

This section describes the results of each shortlisted component after applying the 

data load of 120 trams. Our thesis's objective is to manage the load of 87 trams while 

ensuring optimal performance with lower costs. However, the SL-18 IT team is 

sensitive towards the operations of the services, we have decided to take some extra 

buffers and use 120 trams. To achieve this goal, we strive to maintain resource 

utilization at an optimal level, while also being willing to make some compromises on 

minimal cost. 

 

 

  

Figure 9: Maximum CPU Utilization of Snap Cache is shown on Y-axis, whereas x-

axis shows the date and time, Point A, B, C, and D correspond to the data load of 

30,60,90 and 120 trams, respectively. 
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Figure 10: Maximum Memory Utilization of Snap Cache is shown on Y-axis, whereas 

x-axis shows the date and time, Point A, B, C, and Dare corresponding to the data 

load of 30,60,90 and 120 trams, respectively. 

 

 

5.1.1 Results for Components Running on ECS 

Figure 9 and Figure 10 shows the CPU and Memory Utilization of Snap Cache. 

Similarly, resource utilization for all the components was displayed in graphs. But we 

were only interested in maxima when the data from 120 trams (2120 MB per hour) 

was coming. We recorded the maximum results in the tables and presented them in 

this report. 

Table 8 shows the maximum resource Utilization of shortlisted SL-18 Components 

running on Amazon ECS. When the first three components, Snap Cache, Message 

Latency Tracker, and Deadman's Switch components were tested with maximum data 

load (2120 MB per hour), their CPU utilization rates were found to be 12.1%, 16.9%, 

and 4.82%. There is an increase in CPU utilization after applying the load, but the 

percentage is low. We will define later in this chapter what should be the percentage 

of CPU, to scale a component. 

It is worth noting that these components also exhibit low levels of memory utilization, 

and the currently allocated memory is already at a minimum level. Also, the Figure 10 

shows that the increase in Data load is not having any impact on the memory utilization 

of Snap Cache, similar trend was seen for other components. The throughput for the 

network also went to a maximum of 265 KB/seconds in the first three components. 
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Table 8:  Maximum Resource Utilization by ECS containers shortlisted in Requirement 

Analysis after applying the data load of 120 trams. The first column of the table lists 

the SL-18 components running on Amazon ECS, the second column shows the 

allocation of resources, and the remaining columns illustrate the utilization of important 

metrics after introducing the data load of 120 trams. 

SL-18 
Components 

Allocated 
Resources 

Network 
-in 

(KB / 
second) 

Network-
out 

(KB / 
second) 

CPU Memory 
Utilization 

Task 
Count 

Snap Cache  5 vCPU, 1 
GB 
memory 

62  88  12.1 
% 

1.03% 2 

Message 
Latency 
Tracker 

5 vCPU, 1 
GB 
memory 

265  114  16.9 
% 

1.95% 2 

Safety switch 5 vCPU, 1 
GB 
memory 

142  21  4.82% 0.879% 1 

MQTT 
FUSION 

1 vCPU, 
2GB 
memory 

187  874  79.1% 16.7% 2 

MQTT 
RECEIVER 

1 vCPU, 
2GB 
memory 

271  688  99.9% 3.69% 2 

 

As shown in Table 8 , MQTT Fusion and MQTT Receiver showed CPU utilization 

rates of 79.1% and 99.1%, respectively, after subjecting them to maximum data load.  

The memory Utilization is also a bit higher than the earlier three components, but that 

was almost same before applying the data load and we are interested in the change. 

So, it could be concluded from the results that memory was not affected by the 

increased load. 

The throughput requirements are quite high at 688 KB/second and 874 KB/second 

(which was less than 80 KB/s before applying the load), so these components will be 

configured accordingly. 
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5.1.2 Results for Components Running on EC2 

 

Table 9: Maximum Resource Utilization by EC2 instances shortlisted in Requirement Analysis 

after applying the data load of 120 trams. The first column of the table lists the SL-18 

components running on Amazon EC2, the second column shows the allocation of resources, 

and the remaining columns illustrate the utilization of important metrics after introducing the 

data load of 120 trams. 

SL-18 
Components 

Allocated 
Resources 

Network -
in 

(KB/ 
second) 

Network-
out 

(KB/ 
second) 

CPU 
Utilization 

Memory 
Utilization 

MQTT 
master 

C5n.xlarge 100 138.6 29 % 13%  

Record 
Producer 
host 

C5n.xlarge 723 143.6 28.6% 3.05%  

HA-Proxy M5n.large 240 65.3 14.9 % 4.61%  

HA-Proxy 2 M5n.large 230 86.6 5.59% 4.84%  

 

5.1.2.1 MQTT Master 

As shown in Table 9, The MQTT master's CPU consumption currently stands at 29% 

and shows a notable change after applying the data load. Meanwhile, the network 

consumption is 100 KB/s inbound and 138.6 KB/s outbound. 

There was not any notable change in the memory utilization of this component. It is 

13% for MQTT master, but it was 12.2% before applying the load. 

 

5.1.2.2 Record Producer Host 

The Record Producer is currently receiving messages from the MQTT broker, and due 

to the high load, it needs to adhere to higher network latency. During system design, 

it was recommended that if the anticipated load of 87+ trams result in CPU utilization 

higher than 60%, the Record Producer should run on a one-step higher instance than 
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the MQTT master to perform extra tasks, such as message decoration, validation, and 

network communication. However, this study found that the CPU utilization for the 

MQTT master, even under maximum load on the current instance, is only 29%, which 

means it can continue running on the same instance as the MQTT master, although 

we will describe later that if 29% CPU utilization is optimal. The network in and out for 

the Record Producer is higher than that of the MQTT broker. It is standing at 723 KB/s 

(was 185 KB/second before applying the load) inbound and 143.6 KB/s outbound. 

There was not any notable change in memory utilization, and it stands at just 3.05%. 

5.1.2.3 HA Proxies 

Note that the two HA Proxies are not functioning as load balancers in this system but 

provide fault tolerance capabilities to the MQTT brokers. At present, HA Proxy 1 is 

using 14.9% of the allocated CPU, while HA Proxy 2 is using only 5.59%. 

In terms of network performance, HA Proxy 1 has a network-in rate of 240 KB/s and a 

network-out rate of 65.3 KB/s, while HA Proxy 2 has a network-in rate of 230 KB/s and 

a network-out rate of 86.6 KB/s. 

The memory Utilization is less than 5% for both HA proxies. 

 

5.1.3 Apache Flink 

 

Table 10: Maximum Resource Utilization by Apache Flink after applying the data load. The 

first column of the table lists the SL-18 components running on Apache Flink, the second 

column shows the allocation of resources, and the remaining columns illustrate the utilization 

of important metrics after introducing the data load of 120 trams. 

SL-18 
Component 

Allocated 
Resources 

CPU Memory 
Utilization 

Apache Flink 2 KPUs = 2 core 
CPU, 8 GB 
Memory 

66.8% 67.6% 

 

Apache Flink auto scales according to the data load and does not need a manual 

intervention to scale the service. 

Rules to scale described in AWS Documentation [27]: 

1. If CPU Utilization goes more than 75% for 15 minutes, The application 

automatically Scales Up. 
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2. If CPU Utilization goes below 10% for 6 hours, The application automatically 

scales down.  

According to the results presented in Table 10, it can be observed that the maximum 

CPU utilization during experimentation never exceeded 75%, with a peak utilization of 

69.8%. 

Memory Utilization is 67.6%, but it remained almost same when load was gradually 

increased from 30,60,90 and 120 trams, dictating that load does not impact the 

memory. 

 

5.1.4 DynamoDB 

 

Table 11:Maximum Resource Utilization by DynamoDB Table after applying the data load. 

The first column of the table lists the SL-18 components running on DynamoDB, the second 

column shows the allocation of resources, and the remaining columns illustrate the utilization 

of important metrics after introducing the data load of 120 trams. 

SL-18 
Component 

Allocated 
Resources 

Write-
capacity-
units (WCUs) 
count 

Read-
capacity-
units (RCUs) 
count 

Write throttle 
events count 

DynamoDB 
table (tram 
state) 

WCUs = 2500, 
RCUs= 500 

2300  200 190 

 

Prior to the experiment, the Tram state Table in DynamoDB was allocated with a Write 

Capacity Units of 1200 and a Read Capacity Units of 500. However, after loading data 

for 90 trams, log errors were encountered because more resources were required. As 

a result, the Write Capacity Units were increased to 2500 per second, which resolved 

the issue. It was consuming 2300 write capacity units per second when data load of 

120 trams was applied. The data load had minimal impact on read capacity units and 

a maximum of 200 Read Capacity Units per second was achieved after applying the 

load. The reason is that DynamoDB table is being used to store the data temporarily 

for 2.1.2 tramTracker service. It is different than the rest of the services because other 

services are being used to move the data instead of storing it. 
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5.1.5 Kinesis Data Stream 

 

Table 12:Maximum Resource Utilization by Kinesis Data Stream after applying the data load. 

The first column of the table lists the SL-18 components running on Kinesis Data Stream, the 

second column shows the allocation of resources, and the remaining columns illustrate the 

utilization of important metrics after introducing the data load of 120 trams. 

SL-18 
Component 

Allocated 
Resource
s 

Incoming 

data rate 

 

Put 
records 
rate 

Incoming 
data count 

Get 
records 
count 

Get 
records 
rate 

Kinesis Data 
Stream 

12 shards 0.431 MB/s 0.407 
MB/s 

50k per 
minute 

176k per 
minute 

0.458 
MB/s 

 

1 shard = 1MB/s writes or 1000 writes in 1 second, 2 MB/s reads or 2000 read count 

per second. 

1. 12 shards can offer maximum of 12 MB/s of incoming data rate, But 

Table 12 shows that only 0.431 MB/s was utilized after applying the 

data load of 120 trams. 

2. 12 shards can offer maximum of 720k records per minute of incoming 

data count, But Table shows that only 50k records were written after 

applying the data load of 120 trams. 

3. 12 shards can offer maximum of 24 MB/s of Get records rate, But 

Table shows that only 0.458 MB/s was utilized after applying the data 

load of 120 trams. 

4. 12 shards can offer maximum of 1440k records per minute of 

incoming data count, But Table shows that only 176k records were 

retrieved after applying the data load of 120 trams. 

 

The results clearly show that the allocated resources are more than required. 
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5.2 Optimization of Metrics 

Results presented in section 5.1 Experiment Results clearly demonstrate that CPU is 

most significantly impacted after applying the data load of trams in most of the 

components, since that the data is not stored, but transmitted across numerous 

services and it is small data. Consequently, increased processing power and network 

is needed to accommodate the demands of this flow, rather than additional storage.  

5.2.1 Reasonable CPU Utilization 

 

The paper [12] proposes a technique to determine the best upper utilization threshold 

for the provisioning process when handling a high increase in load. The technique 

utilizes an optimization problem with two objectives: minimizing instance usage and 

minimizing response time. The authors tested the method with various input loads and 

discovered that the optimal upper threshold for these loads is 80%. While it is also a 

common practice to leave a buffer rather than utilizing resources to 100%. 

However, the reasonable percentage of utilization is 50% in this study because of the 

following reasons: 

1. There might be a malfunction in services, which could result in the generation 

of additional data. For example, in April 2023, a malfunction in services at Ruter 

caused a significant amount of data to be ingested into SL-18 services. 

2. Prioritizing functionality over small cost differences is crucial. Sporveien's 

platform cannot afford downtime, so it is preferable to pay for a higher-level 

instance rather than experience downtime. Therefore, this study needs to 

provide an extra buffer for that. 

 

Based on the above factors, the reasonable utilization of CPU for this study is 50%. 

This percentage was estimated based on the spikes that occurred after the 

malfunctioning of services in April 2023. Additionally, after discussing with the solution 

architects of the SL-18 Platform, they also recommended this percentage based on 

their previous experiences. This number will be utilized as a reference to make 

recommendations. 
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CHAPTER 6: Discussion 
The SL-18 Cloud Platform is a large system made up of several SL-18 Components 

that provide IT services on the AWS cloud. To prepare for influx of data from 87 trams, 

the components that would be affected were identified, and the data load was 

estimated using information from operational trams stored in a data lake. To simulate 

the data generated by the trams, a Digital Twin was created by a project developer 

and modified for this study to run 87+ instances simultaneously. The data generated 

by the digital twin was ingested into the SL-18 Cloud Platform, and the performance 

of the shortlisted components was monitored on a unified dashboard. Results were 

recorded on tables and presented in this report. It was discovered that in most of the 

components, network and CPU were the most impacted parameters. A reasonable 

percentage of CPU utilization was defined. 

In this discussion, it is important to highlight a crucial aspect, namely that the system's 

sensitivity and performance take precedence over cost. Any estimates or predictions 

made must consider this priority. For instance, in our experimentation testing the 

system with 100 trams may have sufficed, but we opted to test with 120 trams to 

ensure optimal performance. When selecting the CPU utilization, we also factored in 

this priority and provided extra buffer. However, other considerations specific to the 

CPU are described in the relevant section. In summary, we are willing to compromise 

on minimal costs to ensure the system operates effectively, while still striving to 

minimize costs. 

Finally, we will make recommendations to consider scaling the components according 

to the results and finding of this study. 

6.1 Recommendations 

The following section provides recommendations for each SL-18 service identified 

during the requirement analysis phase. These recommendations are based on the 

experiment results and findings of this study. Findings of the study suggest that CPU 

is most significantly impacted after applying the data load of trams, since the data is 

not stored, but transmitted across numerous services and it is small data. 



   

 

52 

 

6.1.1 Components running on EC2 

Table 13:Recommendations for components running on EC2. 

SL-18 
Component
s 

Allocated 
Resource
s 

Networ
k -in 

(KB / 
second) 

Network
-out 

(KB / 
second) 

CPU Memory 
Utilizatio
n 

Recommendatio
ns 

MQTT 
master 

C5n.xlarg
e 

100 138.6 29 % 13% Scale down 

Record 
Producer 
host 

C5n.xlarg
e 

723 143.6 31% 3.05% Scale down 

HA-Proxy M5n.large 240 65.3 14.9 
% 

4.61% Scale down 

HA-Proxy2 M5n.large 230 86.6 5.59
% 

4.84% Scale down 

 

6.1.1.1 MQTT Master 

The MQTT master's CPU consumption currently stands at 29%, which falls below the 

reasonable threshold of 50%. Meanwhile, the network consumption is 100 KB/s 

inbound and 138.6 KB/s outbound. The MQTT master is currently deployed on a 

C5n.xlarge instance, which is a compute-optimized instance with improved network 

throughput. AWS provides a diverse range of C5n instance types. To achieve optimal 

CPU utilization, it is recommended to scale down the MQTT master instance. 

 

6.1.1.2 Record Producer Host 

The CPU consumption of Record Producer currently stands at 31%, which falls below 

the reasonable threshold of 50%. The network in and out for the Record Producer is 

higher than that of the MQTT broker and stands at 723 KB/second inbound. It is 

currently operating on a C5n.xlarge instance, which is a compute-optimized resource 

with improved network throughput. To achieve optimal CPU performance without 

compromising the network, it is recommended to scale down the Record Producer, for 

example, to a C5n.large instance, as the entire range of C5n instances provides 

enhanced network throughput. 

6.1.1.3 HA Proxies 

At present, HA Proxy 1 is using 14.9% of the allocated CPU, while HA Proxy 2 is using 

only 5.59%, which falls below the reasonable 50% threshold. 
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In terms of network performance, HA Proxy 1 has a network-in rate of 240 KB/s and a 

network-out rate of 65.3 KB/s, while HA Proxy 2 has a network-in rate of 230 KB/s and 

a network-out rate of 86.6 KB/s. 

Both the HA Proxies are currently running on M5n.large instances. It also provides 

enhanced Network throughput and sufficient to cope with the Network Load of 

230KB/s and it is possible to decrease the CPU cores within the same instance family. 

6.1.2 Components running on ECS Containers 

 

Table 14: Recommendations for components running on Amazon ECS 

SL-18 
Components 

Allocated 
Resources 

Network 
received 

(KB / 
second) 

Network 
transmitted 

(KB / 
second) 

CPU Memory 
Utilization 

Task 
Count 

Recommendations 

Snap Cache  5 vCPU, 1 
GB 
memory 

62 88 12.1 
% 

1.03% 2 Scale down 

Message 
Latency 
Tracker 

5 vCPU, 1 
GB 
memory 

265 114 16.9 
% 

1.95% 2 Scale down 

Safety 
switch 

5 vCPU, 1 
GB 
memory 

142 21 4.82% 0.879% 1 Scale down 

MQTT 
FUSION 

1 vCPU, 
2GB 
memory 

187 874 79.1% 25% 2 Scale Up 

MQTT 
RECEIVER 

1 vCPU, 
2GB 
memory 

271 688 99.9% 8.62% 2 Scale Up 

 

Table 14  shows that when the first three services, Snap Cache, Message Latency 

Tracker, and Deadman's Switch components were tested with maximum data load, 

their CPU utilization rates were found to be 12.1%, 16.9%, and 4.82%. This suggests 

that the CPU cores assigned to these components are more than needed to meet the 

50% CPU utilization target. 
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It is worth noting that these components also exhibit low levels of memory utilization, 

and the currently allocated memory is already at a minimum level. Therefore, reducing 

the number of CPU cores should not have a significant impact on memory usage. 

As shown in Table 14, MQTT Fusion and MQTT Receiver services have CPU 

utilization rates of 79.1% and 99.1%, respectively, after subjecting them to maximum 

data load. These rates are significantly higher than the optimal threshold of 50% and 

may lead to potential outages or performance issues in the system. 

Therefore, it is recommended to scale up these services to avoid such problems. 

Scaling up will increase the number of CPU cores allocated to these services, allowing 

them to handle the increased workload without causing any disruptions. By doing so, 

the system can ensure that it continues to operate smoothly and efficiently even under 

heavy data loads of 87+ trams. 

 

6.1.3 Apache Flink 

 

Table 15: Recommendations for Apache Flink 

SL-18 
Component 

Allocated 
Resources 

CPU Memory 
Utilization 

Recommendation 

Apache 
Flink 

2 KPUs = 2 
cores of CPU 
and 8GB 
memory 

66.8% 67.6% Remain Unchanged 

 

As discussed in detail in the results of the study, it could be concluded that the 

resource allocation for this service can remain unchanged, as it can auto scale itself. 
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6.1.4 DynamoDB 

 

Table 16: Recommendation for DynamoDB Table. 

SL-18 
Component 

Allocated 
Resources 

Before 
experiments 

Allocated Resources 

After experiments 

Recommendation 

DynamoDB 
table (tram 
state) 

Write Capacity 
Units = 1200, 
Read Capacity 
Units = 500 

Write Capacity Units = 
2500, Read Capacity Units 
= 500 

Already Scaled Up 

 

This service was scaled up during the experimentation process. Table 16 shows the 

resources scaled up after the experimentation. 

 

6.1.5 Kinesis Data Stream 

 

Table 17: Recommendation for Kinesis Data Stream 

SL-18 
Component 

Allocated 
Resource
s 

Incoming 

data rate 

 

Put 
records 
rate 

Incoming 
data count 

Get 
records 
count 

Get 
records 
rate 

Recommend
ation 

Kinesis Data 
Stream 

12 shards 0.431 MB/s 0.407 
MB/s 

50k per 
minute 

176k per 
minute 

0.458 
MB/s 

Scale Down 

 

Based on the study results, it is evident that the current resource allocation for the 

component is excessive. In addressing the problem statement, the study 

recommends scaling down the service. Furthermore, the findings suggest that 

around 2 shards would be enough to handle the data load. However, it is important 

to acknowledge that an exact resource allocation cannot be recommended at this 

time. Further discussions are necessary to validate the numbers, and additional 

evaluations need to be conducted. It is also a protocol in Sporveien to present the 

results to stakeholders for approval to implement the recommended changes. 
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It's worth noting that many of the components have been allocated more resources 

than they require due to the SL-18 platform's sensitivity. This decision was made to 

ensure the platform remains operational and doesn't compromise performance at the 

cost savings. Furthermore, it was based on just theoretical data and methodology. 

However, the primary goal of this study is to provide recommendations to optimize 

the cloud platform's scaling capabilities to efficiently handle the data load of 87 trams 

based on actual data and methodology. It's also important to fine-tune resource 

allocation to achieve cost savings without compromising on performance. 

 

6.2 Related Work 

The aim of this master's thesis is to improve utilization of AWS Cloud platform 

resources  by reducing costs without sacrificing performance and ensuring scalability. 

During our research, we came across papers with similar titles, but they had different 

use-cases and approaches which are not applicable to this case. For example, a paper 

titled "Cost-Aware Cloud Metering with Scalable Service Management Infrastructure" 

[44] appeared to be relevant to our study, but it differed significantly from our approach. 

The authors of that paper used machine learning to optimize resource usage based 

on pre-existing data, while we had to generate data for our study. 

6.2.1 Digital Twins 

Digital twins have emerged as a powerful tool for simulating and testing complex 

systems in a virtual environment. The concept originated in the aerospace industry in 

the early 2000s, where virtual replicas of aircraft systems were created to predict their 

behavior and performance under various conditions.[32] The term "digital twin" was 

coined by Michael Grieves, a professor at the University of Michigan, to describe this 

concept in 2002. Grieves envisioned digital twins as a bridge between the physical 

and virtual worlds, enabling engineers to design and test systems more efficiently and 

effectively.[33] 

Since then, digital twins have been applied to various fields, including healthcare, 

energy, and production lines, enabling them to optimize their operations and reduce 

their environmental impact.[34] The rise of Industry 4.0 and the Internet of Things (IoT) 

has further fueled the development of digital twins, as sensors and other IoT devices 

allow data to be collected in real-time, improving the accuracy and precision of the 

virtual models. [35] 

In recent years, the concept of digital twins has gained increasing attention in various 

industries due to its potential for improving efficiency, reducing costs, and enabling 

innovation. Digital twin technology involves creating a virtual replica of a physical 

system, object, or process, which can be used to monitor, simulate, and control the 

behavior of the physical system in real time [36]. 
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One valuable contribution to the field of transportation systems is the Mobility Digital 

Twin (MDT) introduced by Wang and Gupta in their paper [31]. The MDT is a virtual 

replica of a real-world mobility system that uses real-time data to simulate the behavior 

of the physical system, and has potential applications in route optimization, traffic 

management, and vehicle fleet management. 

Similarly, our study utilizes a digital twin to simulate the behavior of digitally equipped 

trams and evaluate the scalability and cost-effectiveness of the AWS cloud platform 

used to collect and utilize data generated by the trams. Our digital twin consists of 

multiple components that simulate the trams' behavior and need increased power to 

operate, and the use of a cloud platform provides increased computational or storage 

power for the digital twin. 

The paper by Ziran Wang [37] proposes a framework for utilizing digital twin 

technology and cloud computing infrastructure to process and analyze real-time data 

generated by vehicles for advanced driver assistance systems (ADAS). While this 

study focuses on vehicle-to-cloud communication and ADAS systems, our study 

focuses on evaluating the behavior of a complex IT platform against an increased data 

load, highlighting the potential of digital twins as a tool for evaluating and optimizing 

complex IT systems in various fields, especially transportation. 

The challenge of scaling the Digital Twin for evaluating the SL-18 IT Platform was 

highly specific to the problem and resources presented by Sporveien. Despite 

thorough research, no relevant literature was found on this topic. The scaling process 

was carefully adapted to meet the requirements of the evaluation. There were many 

errors and issues encountered but those were very specific to the system. 

Overall, these studies contribute to the growing body of research on digital twin 

technology and its potential applications in various industries, offering benefits such 

as improved performance, reduced downtime, saving costs and increased efficiency. 

6.2.2 Monitoring on Cloud Platforms 

The paper [40] "Monitoring IaaS Using Various Cloud Monitors" by Stephen and Absa 

explains the significance of monitoring resource utilization in Infrastructure-as-a-

Service (IaaS) clouds. The authors stress that tracking resource utilization metrics is 

crucial to assess the overall health and performance of the cloud infrastructure and to 

find areas for improvement. Overall, this paper emphasizes the significance of 

resource utilization monitoring in cloud computing. 

This study describes the process of setting up a monitoring system to record the 

resource usage of each component of SL-18 on AWS Cloud Platform. Then this study 

thoroughly discusses the importance of the chosen monitoring tool. 

6.2.3 Resource Utilization on Cloud 

The literature search on resource utilization yielded results aimed at cloud service 

providers. However, it is crucial for us as users of these services to focus on using 

resources efficiently, rather than developing the platforms themselves. For instance, 
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the review [38] "Energy Efficient Live Virtual Machine Provisioning at Cloud Data 

Centers - A Comparative Study" by Soni, Shalini (2015), published in the International 

Journal of Computer Applications, discusses the energy efficient provisioning of 

resources. Our study does not cover how cloud platforms develop their services but 

emphasizes how to use the existing services more efficiently. 

The paper [39] by Buyya et al. suggests techniques for efficient resource provisioning 

in cloud computing environments. These techniques involve workload 

characterization, which analyzes resource requirements and usage patterns of 

applications running in the cloud, and predictive resource provisioning, which forecasts 

future resource requirements based on workload characterization. The authors also 

recommend SLA-based resource allocation techniques, such as differentiated 

resource allocation and priority-based scheduling, to allocate resources based on the 

importance of applications and SLA (Service Level Agreements) requirements. By 

using these techniques, cloud services users can achieve efficient resource 

management while meeting SLA requirements. 

 

Our study aimed to assess the use of resources of the Amazon Web Services (AWS) 

cloud platform. To do this, we used a digital twin to simulate the behavior of digitally 

equipped trams that transmit data to a cloud platform. We did not use predictive 

modeling or SLA techniques mentioned in the paper by Buyya et al. to allocate 

resources or evaluate the utilization of already allocated resources. Instead, we 

monitored the maximum data generated by the existing trams and evaluated the 

resource utilization by the components. Furthermore, the amount of data coming from 

trams is constant unlike other studies where the amount of data fluctuates. Based on 

our findings, we made recommendations on whether already provisioned resources 

need to be scaled up or down or remain the same. 

Although our study did not use the predictive modeling or SLA techniques mentioned 

in the paper [39] by Buyya et al., we were still able to provide insights into how 

components can be efficiently provisioned with resources in cloud computing 

environments. Our findings complement the research done by Buyya et al. and 

highlight the importance of efficient resource allocation in cloud computing. This can 

lead to cost savings and improved performance, making it a crucial area of research 

for cloud computing users. 
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6.3 Challenges Faced 

During this thesis, we encountered various challenges that we had to overcome to 

achieve our objectives. One of the significant hurdles was understanding the existing 

SL-18 Cloud Platform, which was complex, extensive, and constantly changing 

based on customer requirements. We had to simplify it and provide a brief overview 

to the reader, which was another hurdle. 

Another challenge we faced was finding relevant literature. While many papers with 

similar objectives already had data available, they used machine learning models to 

predict resource usage. In contrast, our study focused on optimizing AWS resources 

in terms of cost and performance by estimating the maximum possible data output, 

which does not change drastically, from the 87 digitally equipped trams. As a result, 

we divided the thesis and found literature relevant to each aspect of the study. 

In addition, we also faced difficulty modifying the digital twin as it was developed by 

someone else on a different Personal Computer. Running the digital twin on our 

Personal Computer and scaling it for the 87+ simulations was another significant 

obstacle. However, we overcame these challenges and were able to run the digital 

twin on a cloud platform. We also pushed the code to a version control platform 

(GitHub) and made it easier for anyone within Sporveien to run it again on any cloud 

platform. Due to security and data concerns, we have not shared the code for this 

study.  

Despite all these challenges, we were able to successfully solve the problem. 
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6.4 Future Work 

While this thesis offers recommendations for efficiently providing resources to the 

SL18-components, determining the precise allocation of resources such as CPU 

cores, memory, and network capacity is outside the scope of this study. Instead, the 

Sporveien Cloud Platform team will use the report's recommendations as a basis for 

discussing the accurate allocation of resources to each component. They will then 

perform repeated validation and evaluations of each component in a test environment 

on the recommended changes. After evaluating the entire SL-18 Cloud Platform to 

ensure it meets the Service Level Agreements, the report's additional findings will be 

presented to Sporveien's various stakeholders to seek approval. Finally, the 

necessary changes will be implemented in the production environment. 

In addition, while the initial title of the thesis was SL-18 Data Analysis, it has changed 

because it specifically focuses on scaling the cloud infrastructure to collect data and 

provide other services. At present, only around 21 trams are operational, but when all 

87 trams are in operation and data is stored for a longer period, numerous use cases 

could be developed to benefit travelers. For instance, data analysis could inform 

travelers when there is no more space left for cradles or wheelchairs on the current 

tram and advise them to wait for the next one. The data could also be analyzed to 

identify the routes that are more crowded and increase the number of trams on those 

routes. While these are only a few examples of how data analysis could enhance the 

travel experience, there are many other use cases that could be developed to fulfill the 

mission of Sporveien and provide greater value to its customers. 
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6.5 Conclusion 

The SL-18 Cloud platform is a big system that provides IT services on the AWS cloud. 

To prepare for an influx of data from 87 trams, the system's components were 

identified and analyzed that were supposed to be affected by the data load. Digital 

Twin was modified to simulate the data generated by the trams. The study observed 

the system's real-time processing of the simulated data, established a monitoring 

system, and presented the results in the form of tables. The study found that in most 

of the component’s network and CPU were the most affected parameters, and 

reasonable percentage of CPU utilization was identified and solution to cope with 

network requirements was presented. Based on these findings, we recommend 

changes to the components to save costs, ensure scalability and optimal performance.  

Overall, the thesis emphasizes the need for evaluating the system with the aggregated 

data load produced by all trams before they are in service and fine-tuning resource 

allocation to optimize performance and costs. The thesis concludes that the use of a 

Digital Twin tool for testing and evaluation can provide valuable insights into the 

optimal resource allocation required for the AWS Cloud Platform to accommodate the 

data generated by the sensors (trams). 

This research provides valuable insights into how to handle data in complex IT 

systems. It contributes to the existing body of knowledge by providing a detailed 

analysis of the performance of an IT system that handles data from multiple sources, 

including sensors on trams. The results of this study can be applied to other systems 

with similar characteristics, helping organizations to evaluate their Cloud Platform to 

handle data and provide numerous services. Therefore, this study encourages the 

further exploration of research in this area. 
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Appendices 
 

Appendix 1 

 

Kinesis Data Streams is a popular service used to ingest and process large volumes 

of streaming data in real-time. In this comparison, we focus on two modes of Kinesis 

Data Streams: On-Demand and Provision. 

 

Assuming a data rate of 1000 records per second, with each record being 3KB in size 

and one month, we calculate the costs for both modes. 

 In the On-Demand mode, we find that the total cost of data ingestion for one stream 

is $621.84. This includes the data-write charges of $593 and the data stream cost of 

$28.84. 

 

On the other hand, in the Provision mode, we need three shards to handle the data 

ingestion rate of 3MB per second. The cost for three shards per day, including write 

and read operations, is $0.36. Over one month, this amounts to $33.48. Additionally, 

the cost for putting payloads is $0.014 for 100,000 units of 25KB each. 

 

For the same period, on the same size and quantity of data Autoscaling mode costs 

621.84 $ whereas Provisioned mode costs less than 33.5$. Although there were some 

conversions that were made to equalize days, minutes, and seconds. While it is 

difficult to make a precise comparison due to differences in parameters and 

conversions, it is evident that the On-Demand mode is way more expensive than the 

Provision mode.  
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Detailed calculations: 

 

Let us assume we have: 

Number of Records = 1000/ second, 

Size of Each Record = 3 KB, 

Period = 1 Month 

On-Demand mode: 

Data ingested = 1000 records/s * 3KB / record = 3000 KB/ second 

3000 KB/ Second = 7413.12 GB/month  

Data-write charges for 1 GB / month = $0.08 

Data-write charges for 7413.12 GB / month = 7413.12 * $0.08 = 593 $ 

 

Assuming we have one stream running. 

1 stream per hour costs = 0.04 $ 

Data stream cost for 1 month = 0.04 * 24 * 31 = 28.84 $  

 Total ingestion cost in On-Demand mode= 593 + 28.84 = 621.84 $ 

Provision mode: 

Data ingested = 3000KB / s = 3 MB /s 

Ingestion offered in 1 shard = 1MB / s 

Number of shards required = Data ingested / Ingestion offered in 1 shard = 3 

Shard Hour (1MB/s write, 2MB/s read) costs $0.015. 

0.015 * 24 = 0.36 $ per day = 0.36 * 3 shards = 1.08 * 31 days (about 1 month) in a 

month = $33.48 

Put Payloads (for 100,000 units, 1 unit = 25 KB) costs $0.014 

Total ingestion cost in Provisioned mode=33.494$ 
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Appendix 2 

To run modified SL-18 Twin on EC2, follow these steps: 

 

1. Start by creating an EC2 instance according to your needs for duration and 

number of instances. 

2. Configure SSH (secure shell) on the EC2 instance to clone the SL-18 Twin 

repository from Git Hub. 

(To download the modified code of SL-18 Twin from a versioning control 

system) 

3. Install Docker on the EC2 instance. 

4. Install Docker Compose on the EC2 instance. 

5. Add confidential credentials to the environment file. 

6. Edit the run.sh file (from the downloaded code) to specify the number of trams 

you want to run. 

7. Execute ./run.sh in the EC2 terminal to begin running the trams. 

8. When you are done running the trams, stop the containers by running docker 

compose down. 

9. Finally, shut down the EC2 instance to avoid incurring unnecessary costs. 
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