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Preface

This thesis has been submitted in fulfillment of the requirements of the degree
Philosophiae Doctor at UiT – The Arctic University of Norway, campus Narvik.
The research presented in the thesis has been conducted between 2018 and 2023 at
UiT – The Arctic University of Norway, campus Narvik, under the supervision of
Klas Pettersson, and under co-supervision of Irina Pettersson and Rune Dalmo.

The thesis is a collection of four papers, presented in chronological order of writ-
ing. The common theme for them is sound propagation. The papers are preceded
by an introductory chapter that relates them to each other and provides state-of-
the-art and motivation for the work, as well as a chapter covering main approaches
and methods used in the analysis.
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Chapter 1

Introduction

This thesis concerns the study of acoustical performance and characterisation of
solid-liquid composites. The main body of the thesis consists of four papers, I–IV.
Paper I presents the results of the experimental work, the main goal of which is
to perform a comparative study of the insertion loss for macro-perforated plates
filled with viscoelastic material and layered solid-liquid composites. The interaction
between the solid matrix and the viscous filling influences the acoustic behavior of
the composite structure. In Paper II we address the acoustic fluid-solid interac-
tion problem for plates with a rough surface, and propose an iterative method for
numerical solution.

One of the fundamental tasks in acoustics is to model the sound pressure field
under harmonic excitation. In most cases, the studied domain has a complex ge-
ometry. In the case when there is a need to study many different geometries, the
computing of the harmonic sound pressure fields by means of solving the Helmholtz
equation can quickly become unfeasible. In Paper III we apply a machine learning
approach, and present a feedforward dense neural network for computing the aver-
age sound pressure over a frequency range. We demonstrate the effectiveness of this
method for polygonal cylinders.

The sound waves propagation in fluid media is described by the wave equation
with the corresponding boundary and initial conditions. Given the parameters of the
medium, one can determine the acoustic pressure, which is called a direct task. One
can also formulate a coefficient inverse problem: Given the acoustic pressure in some
domain, we want to determine the wave speed function in the time-harmonic acoustic
wave equation. In Paper IV we solve a coefficient inverse problem by employing the
Lagrangian approach for the optimization of the Tikhonov functional.

In the next sections, we discuss the existing closely related results on the topic
and describe the main contributions of the thesis.

1.1 Motivation and related works

Noise pollution across the globe affects millions of people. According to the Euro-
pean Environment Agency Report No 22/2019 [1], about 20% of Europe’s popu-
lation are exposed to long-term noise levels that are harmful to their health, that
corresponds to more than 100 million people within Europe. Road traffic is traced

1
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2 CHAPTER 1. INTRODUCTION

to about 80% of the noise problems. The sound baffles along the roads are often
quite primitive structures, and the construction of such noise barriers apparently
does not use modern physical or mathematical results. One of good examples of
how science can help with it is the noise abatement wall [2]. The authors were able
to increase the sound absorption of the wall by modifying its surface geometry and
using a prefractal structure. It had led to increased interaction between acoustic
waves and absorbing material.

In building acoustics, the sound insulation materials are typically formed as pan-
els. They are used in construction of enclosing structures, cladding panels, etc. The
panels ensure protection of residential premises from increased noise levels providing
acoustic comfort for living quarters. Sound absorption materials find also applica-
tions in the construction of special rooms such as recording studios, meeting rooms
and anechoic chambers. Sound insulation in passive security systems is of great
importance. It serves to avoid interception and disclosure of oral communications
through acoustic and/or vibroacoustic channels. The energy of the acoustic signal is
dissipated in the traveling media, i.e. there is a transition of mechanical vibrations
to heat, and the sound absorption occurs. This is the phenomenon of the irreversible
transition of the energy of a sound wave into other forms of energy, in particular
into heat. Absorption of sound occurs always whenever the sound waves propagate
through a medium or meet the boundary between two media. Let us consider the
slab shown in Figure 1.1.1.

Winc Wrelf

W 1
inc

Wtr

W 1
refl

(S)

Figure 1.1.1: Transmission of a sound through the slab (S).

When sound waves with energy Winc impinge on a interface between two media,
a certain part of sound energy is reflected (Wrefl). Then sound is transmitted and
absorbed within the slab. In the end, the sound gets out of the slab carrying certain
amount of energy Wtr. The absorption α, reflection β, transmission coefficient γ,
and the sound insulation R are defined as follows:

α =
Winc −Wrefl

Winc

, β =
Wrefl

Winc

,

γ =
Wtr

Winc

, R = 10 lg
Winc

Wtr

.

The amount of sound energy transferred from one medium to another depends on
the ratio of their acoustic impedances. The acoustic impedance Z is defined as the
ratio of sound wave pressure p to the particle velocity v [3],

Z =
p

v
.
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1.1. MOTIVATION AND RELATED WORKS 3

In room acoustics, one of the challenges is to provide a certain acoustic per-
formance of multi-purpose auditoriums. In [4] the authors present a technique of
variable sound absorption to control acoustic phenomena like reverberation, related
to perception of sound. The idea is to utilize perforated systems to achieve variable
solution for acoustic design of a room. There are two main approaches in variable
acoustics: active and passive ones. The first approach is based on electronic control
system. The sound field is captured and digitally processed to adjust reproduced
sound. In passive variable acoustic approach, a large variation in sound absorption
is required. It may be achieved by using specially designed curtains, movable reflec-
tors, etc. In [4] the authors present an explored passive variable acoustic concept
which could be used with automated control in multipurpose halls. The main idea
is to use layered structure with movable parts (see Figure 1.1.2). This panel system
has varying acoustic properties keeping the surface appearance constant.

1 2 3 4 5

daw
dw

Figure 1.1.2: Cross-section of a layered structure: (1) perforated facing, (2) and (4) air,
(3) mineral wool, (5) rigid surface. Tuning absorption is achieved by changing the position
of the mineral wool (5) inside the air gap (2),(4).

During the last decades, the development and usage of composite materials in
acoustics has become a must. In particular, in the design of sound-proof panels, the
use of perforation is justified by the energy absorption due to the friction between
the walls of the pores and the fluid, such as air or liquid. It is well-established that
one can achieve a good damping of high frequencies using materials with very fine
microstructure, such as porous materials [5]. Solid–liquid composites have been ex-
tensively studied for the last decades, and now, there are numerous examples where
such structures show unexpected novel properties [6]. There is a great variation in
form and dimension of the liquid inclusions, depending on the specific applications,
including droplets, liquid networks, and isolated liquid inclusions. Solid-liquid com-
posites find their applications in soft robotics, soft electronics, as well in chemical
and biological systems.

Acoustic performance of micro- and macro-perforated screens are well studied
both experimentally and numerically. Classical models for absorption and transmis-
sion coefficients for perforated screens and porous materials with perforated facings
have been developed in [5, 7]. Modelling the porous media as an equivalent fluid,
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4 CHAPTER 1. INTRODUCTION

acoustic characteristics are then written in terms of the effective density, bulk mod-
ulus, and acoustic impedance.

The geometry of the perforation might also affect the sound attenuation. For ex-
ample, in [8] the authors study sound absorption for perforated panels with oblique
perforations backed by an air cavity. It is shown that such geometry of the resonator
leads to the increase of the effective thickness of the panel, essentially improving
the low-frequency performance of the sound absorber. There are also studies ad-
dressing a possibility to increase the sound absorption by adding isolated masses
in the poroelastic material. For example, [9] describes the effect of circular peri-
odic inclusions on the sound absorption. In particular, this theoretical study shows
that a structure with inclusions can possess a quasi-total absorption peak below
the quarter-wavelength resonance frequency. Another example is the experimental
study of the insertion loss for a poroelastic material with randomly placed inclu-
sions [10]. The mass inclusions act as resonant systems, increasing the structure
impedance, that leads to the increase in the insertion loss. It should be noted that
the authors observe some reduction in the insertion loss at higher frequencies, but
it is much less than the increases in the targeted bandwidth.

Inspired by the latter results, we decided to combine the idea of the perfora-
tion usage together with inclusions in order to investigate if it is possible to achieve
higher sound reduction. To the best of our knowledge, such measurements have not
been described in the literature. In Paper I, we have chosen to focus on one of the
standard acoustic characteristics, the insertion loss, which is defined in terms of the
sound pressure level and does not require the knowledge of the source strength. Due
to this reason, the insertion loss is often used for comparison of sound insulation
properties of different structures and materials. In Paper I, we perform a compara-
tive experimental study for macro-perforated plates with the perforation filled with
polyurethane and grease for the frequency range 200–3150 Hz.

The acoustic behaviour of the composite structure depends on the interaction be-
tween a solid matrix and a viscous filling, and it takes place on the interface between
the two media. A coupled fluid-solid acoustic problem shows an interplay between
structural deformations in the solid and the pressure load in the acoustic medium.
In other words, acoustic waves in the fluid give rise to structural vibrations and vice
versa. It is the interface interactions that determine the intensity of sound propaga-
tion in the structure. Moreover, the shape of the interface plays an important role
for the sound propagation between fluid and solid parts. In [11] the authors consider
closed resonators with absorbing properties and irregular geometry. It is shown that
the geometrical irregularity of the absorbent material leads to the so-called “astride”
mode localization. These localized modes determine the dissipation of the acoustic
energy in the non-absorbing regions. In the noise abatement walls production, the
geometry of the interface is an important factor, together with the speed of sound
and the material-air density ratio [12]. One of the tasks in engineering design is
to find an optimal shape for a structure susceptible to imposed constraints, as for
example shape optimization in fluid-structure interaction problems (see e.g. [13,
14, 15]). There are many works devoted to the numerical methods for fluid-solid
interaction acoustic problems. We refer to [16, 17, 18] and references therein. All
these methods can be divided into monolithic and partitioned. In the monolithic
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1.1. MOTIVATION AND RELATED WORKS 5

approach, the entire coupled system is solved simultaneously by using, e.g., the fi-
nite element method, see [19, 20, 21, 22, 23, 24]. As noted in [16], this approach
might be more accurate for some multidisciplinary problems, but is often very com-
putationally expensive, that is why the partitioned approach is often used. In such
cases, the solid and fluid domains are considered as two computational domains
with the interface conditions used explicitly as a coupling between the two domains.
The partitioned approach is specially advantageous when the interface between the
solid and fluid domains has a complicated structure. In Paper II we use the par-
titioned approach: We split the fluid-structure problem into fluid and structural
subproblems and use separate solvers for these subproblems (see also [25]). There
are several numerical PDE tools providing FEM calculations, e.g. FreeFem++ [26]
(the one we have chosen for our computations) and FEniCS [27]. We verify the
convergence of a suitable energy to confirm the convergence of the iteration scheme.
The developed method is applied for a numerical comparative study of rough inter-
faces with different geometry. Namely, we compare the displacement on the side of
the plate opposed to the fluid for five different periodic geometries: flat, squared,
toothed, circles, and random. In this method, we divide the problem into fluid and
solid subproblems, and solve them alternately, taking into account the conditions
on common interface. The sound propagation in fluid part in the frequency domain
is described by the wave equation. The behavior of the solid part is given by the
solution of the elasto-dymanic equation. As the outcome we consider the frequency
response of fluid-solid configuration.

In practice, perforated panels are often a part of more complex systems. In [4]
the authors propose the layered structure for automated control of acoustic perfor-
mance in multipurpose halls. The structure is formed by perforated facing backed
by movable parts, and the geometry of air part can be complex. Modeling acoustics
problems in building acoustics, vehicle interior noise problems, or noise reduction,
requires computing average sound pressure, which in its turn is based on the com-
putation of natural frequencies and the response to a dynamic excitation. This can
be done in the time or in the frequency domain. Sound waves, as vibrations, are de-
scribed by a time dependent wave equation, which can be reduced to a time indepen-
dent Helmholtz equation by assuming harmonic dependence on time [28]. Moreover,
it is sometimes necessary to model sound pressure field under harmonic excitation
for many different geometries of fluid domain. In this case, solving Helmholtz equa-
tion may become too costly. On the other hand, application of machine learning
methods in acoustics has made significant progress in recent years. A comprehensive
overview of the recent advances is given in [29]. The frequency response problem,
being the basis in modeling of acoustic problems, is not specifically addressed in [29],
as any other combination of machine learning techniques and modeling with partial
differential equations (PDEs).

In Paper III we consider a family of cylinders with the same height and varying
cross-sections. We use five points defining the polygonal cylindrical domain. The
idea is to build a neural network, which has the coordinates of five points on input,
and the output is a scalar function giving the average pressure level over certain
frequency range in the given domain. It turns out, that it is possible to construct
such a neural network which predicts the scalar function for over 95% of the cases
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with mean absolute error of 0.01 (the accuracy of the numerical data) if the training
set includes 200,000 data points.

To find out how the sound propagates in a medium, and to determine the sound
pressure, one needs to solve a time-dependent acoustic wave equation with the ap-
propriate initial and boundary conditions. In this case, the material parameters of
the medium must be known in advance. If the fluid medium is homogeneous and
isotropic, then the speed of sound is constant. The presence of local changes in the
material properties of the medium indicates that the latter contains heterogeneities.
In turn, this means that the speed of sound waves becomes a function of the point.
In many cases it is possible to reconstruct material parameters of the medium by
solving an inverse problem. Namely, given the observed data in the bulk or on the
boundary of the domain of interest, one determines the speed function (coefficient in
the time-dependent wave equation). The inverse problem can be solved in time- and
frequency domains. There are numerous practical applications of inverse problems,
and in particular of the coefficient inverse problems. Among them are the subsur-
face imaging, nondestructive testing of materials and detection of landmines [30, 31,
32, 33], construction of photonic crystals [34] and cloaking materials [35], remote
sensing and medical imaging [36, 37].

In Paper IV we reconstruct material parameters of the medium by solving an
inverse problem given the observed data in the pseudo-frequency domain. This is a
so-called coefficient inverse problem. We employ the Lagrangian approach for the
optimization of the Tikhonov functional, that is similar to the one applied in [30,
38, 39] for the solution to time-dependent coefficient inverse problems. Most of
the inverse problems appearing in natural sciences are ill-posed and unstable. In
particular, it means that any arbitrarily small errors in the input data lead to large
errors in the solution of the inverse problem. To overcome these difficulties, we
have used a regularizing functional introduced by Tikhonov [40]. The essence of
this regularization method is to add some additional (a priori) constraints in order
to solve the ill-posed problem. For example, we may assume that the solution of
the direct task has a certain degree of smoothness. In our work we consider several
regularizing terms for different arrangements of inclusions. In the result, it becomes
possible to provide reconstruction procedure. It turns out, that the approach gives
a acceptable reconstruction even for very noisy data.

1.2 Summary of main results

In accordance with the objectives, the following has been carried out: an exper-
imental study of the insertion loss for layered solid-liquid composites and macro-
perforated plates filled with viscoelastic material. The experimental data have been
processed, and a comparison of the data with existing models has been provided. In
order to improve the computational methods for modeling of interaction of the solid
framework of perforated panels with viscoelastic filler, an iterative scheme within
fluid-solid interaction has been proposed and validated. A machine learning model
to predict the average sound pressure for the domains with complex geometry has
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been proposed and validated. The solution of an inverse problem for material het-
erogeneity recovery, based on the scattered acoustic field data in a computational
domain, has been presented and evaluated.

Paper I

In this paper, we present a comparative experimental study of sound insertion loss
for perforated plates with viscoelastic filling. The plates are made of steel and high
density polyethylene. We use polyurethane and an emulsified oil lubricant as filling
materials. In the first part of the experiment, we study the effect of the filling on
the sound absorption for throughout filled perforation. The conclusion is that the
insertion loss for both solid and perforated plates complies the mass law for most
of the frequencies. However, we observe a considerable difference in the insertion
loss for some narrow frequency ranges. For example, the insertion loss of 20 mm
thick plastic plates with the polyurethane filling reveals the difference up to 17 dB
compared with the solid plate, in the frequency range 1450–1600 Hz. The second
part of the experiment is devoted to layered plates with viscoelastic inclusions. We
have found that for most of the frequencies, the inserting a perforated layer with
pseudoplastic filling (grease) between two solid plates without considerable changes
in mass, results in the effective decrease of the insertion loss. For example, the mass
of a layered sample with 10 mm filled perforated plate between the two solid plastic
ones and of a 10 mm solid metal sample differ by about 2%. However,the difference
in the sound insertion loss achieves 10 dB for frequencies in the range 800–1600 Hz.
Similar results is for a solid 10 mm plastic sample and a layered 9 mm plastic sample
with pseudoplastic inclusions, the difference in the insertion loss is more than 10 dB
for frequencies 630–3150 Hz, for essentially the same mass.

Paper II

In Paper II, we present an iterative algorithm for solving a fluid-structure interaction
problem under a harmonic excitation. We study the convergence of the iterative
algorithm numerically, and apply the proposed algorithm for fluid-solid structures
with different periodic, as well as random interface structure. Aiming to get an
indication about the impact of the geometry on the sound damping, we calculate the
L2-norm of the displacement on the back side of the elastic plate. It has been found
that all studied structures reveal a similar trend and similar values of the L2-norm
of the displacement in the solid part. However, for a few frequencies, the norm of
the displacement for the random geometry is larger compared to periodic interface.
For example, at the frequency fa = 860 Hz, there is a peak in the displacement plot
for all materials and interfaces. This peak is associated to the resonance in the fluid
domain. We compute the cross energy on the interface, as well as the H1-norms of
the sound pressure and displacements in fluid and solid domains, respectively. The
algorithm converges in all cases already after ten iterations.
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Paper III

The sound pressure field in fluids under a harmonic load is modeled by the Helmholtz
equation. If the objective of study is the harmonic sound pressure on the domains
with many different geometries for wide ranges of frequencies, then solving the
Helmholtz equation might quickly become too costly. In this paper, we consider
polygonal cylinders, and proposed a feedforward dense neural network to predict
the average sound pressure over a frequency range. To generate the data, we use
finite elements, and numerically compute the frequency response of the average
sound pressure by an eigenmode decomposition of the pressure. We evaluate the
performance of the neural network. We provide the analysis for the accuracy of
the approximation. The neural network predicts the average pressure level for over
95% cases with mean absolute error 0.01 (the accuracy of the numerical data) if the
training set includes 200,000 data points.

Paper IV

The acoustic coefficient inverse problem (CIP) aims to reconstruct material pa-
rameters of the medium, in particular, to determine the wave speed function in the
time-harmonic acoustic wave equation, if the scattered acoustic field is given in some
domain or on its boundary. In Paper IV, we solve a CIP problem in the case when
the data is given in the pseudo-frequency domain, after the Laplace transform of
the time-dependent data. We utilize the Lagrangian approach for the minimization
a time-independent Tikhonov functional. The main contribution of the paper is the
numerical study of how the higher derivatives in the functional influence the recon-
struction of the material parameters. We compare functionals with L2, H1, and H2

regularizing terms for different positions of inclusions. In case of the penalty term
being the square of the L2-norm, the standard functional does not yield adequate
reconstruction results. We obtain the best reconstruction for smooth data, with the
functional containing second derivatives of the solution to the direct problem, along
with the conjugate gradient method for the functional minimization. For noisy data,
the best performance is achieved by means of H1 functional in combination with
suitable smoothing of the data and constraining of wave speed function during the
reconstruction procedure.

1.3 Discussion and possible future research

The experimental results in Paper I evoke several questions. It should be noted that
there are neither numerical studies nor theoretical models describing sound atten-
uation in solid-liquid composites even with such simple geometry as filled periodic
perforation. As we have observed a deviation from the classical mass law for the
particular choice of the pseudoplastic filling (shear-thinning fluids with the viscosity
that decreases with increasing shear rate), it would be interesting to study, both
experimentally and numerically, other kinds of liquid and pseudoplastic inclusions.
It is also clear that the isolated inclusions give rise to a different acoustic behaviour
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compared with the exposed (throughout) filled perforation. A theoretical model
could help to explain the nature of this difference.

In Paper II we have compared several geometries for the rough interface between
the solid and the fluid domains, including periodic and random interfaces. It has
been shown that there are only a few frequencies in the studied frequency range for
which the displacement on the back side of the plate differs for different geometries.
On the other hand, [2] shows that the geometry does play an important role for the
soundproof properties of a plate. Inspired by [2], a next step could be to apply the
proposed iterative algorithm to a fluid-solid interaction problem with a prefractal
geometry of the interface, and to prove the convergence analytically. A more ambi-
tious goal is to use shape optimization technique in order to minimize the norm of
the displacement on the back side of the plate.

The results in Paper III can be improved by using a more complex neural net.
We expect that a convolutional neural net can give a better accuracy for less com-
putational effort.

The coefficient inverse problem solved in Paper IV uses the data after the Laplace
transform in the whole computational domain. The present algorithm, performing
well even on noisy data in the bulk domain, in its current form, does not give an
adequate reconstruction if the data is only given on the boundary of the computa-
tional domain. The next step would be to modify the algorithm in order to be able
to reconstruct the wave speed function from the boundary data.
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Chapter 2

Approaches and Methods

In this chapter we present methods and approaches for experimental studies of sound
attenuation in panels and concomitant computational problems. We describe shortly
the mass law for the insertion loss, and some impedance models for perforated
screens. Then we introduce functional spaces and variational methods, as well as
sensitivity analysis with shape derivatives. Finally, we describe the machine learning
approach focusing on the stochastic gradient descent optimizer ADAM.

2.1 Experimental study of sound attenuation

There are several classical techniques to study sound attenuation experimentally. In
room acoustics, the standard technique for measurement of the sound transmission
loss (TL) is given in [1] and [2]. These standards require entering two rooms with
separating frame where the studied specimen is mounted. Then the specimen is
exposed to the diffuse acoustic field excitation in the reverberant source room. One
measures the average sound pressure level in both receiving and source rooms, as
well as the reverberation time in the receiving room. Then the TL is derived based
on the pressure-pressure calculations. There is another way to derive the TL, which
is based on the pressure-intensity calculations. In this case, the measurement of the
sound pressure level in the source room and the sound intensity on the receiving
side are required [3, 4].

A procedure for measurement of the absorption coefficient is described in [5].
This standard requires diffuse field conditions in the reverberant room. The sample
area should be between 10 m2 and 12 m2. Another approach is to measure the
absorption coefficient under normal incidence using a wave tube [6]. The classical
Brüel & Kjær Impedance Tube Kit type 4206 [7] allows to measure samples of two
possible diameters: 29 mm and 100 mm, in the frequency range 50 Hz to 6.4 kHz.

In Paper I we present the insertion loss (IL) measurements done in a much more
flexible experimental setup. We measure the IL for different solid-liquid composites
with the one for solid plates. The experimental results are then compared with the
theoretical models, in particular, with the classical mass law model presented below.

13
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2.1.1 Mass law

Any sound barrier (panel) inserted in the acoustic field change it in some way. For a
relatively wide frequency range above the first panel resonance, the surface density
of the panel determines its transmission loss. The upper limit of the frequency range
is defined by the critical frequency fc, at which the wave coincidence phenomenon
is encountered.

The transmission loss TL or sound reduction index for large panels in the diffusive
incident field depends on surface mass density of the plate µ in kgm−2, angular
frequency ω in rad s−1, and characteristic impedance of the surrounding media ρ0c
in Pam−1 s as follows [8]:

TL = 20 log10

(
µω

2ρ0c

)
− 10 log10

(
ln
[
1 +

(
µω

2ρ0c

)2 ])
, (2.1.1)

where ρ0 and c are the mass density in kgm−3 and speed of sound in m s−1 in the
fluid medium, correspondingly.

The second term in (2.1.1) is a slowly varying function of the frequency. More-
over, in practice, the following formula for the sound transmission loss is used [8]:

TL ≈ 20 log10 µ+ 20 log10 f − 47. (2.1.2)

In the case of normal incidence in air, the acoustic behaviour of the single leaf panel
is given by

TLn ≈ 20 log10 (µf)− 42, (2.1.3)

where f denotes frequency, µ the mass per unit area of the panel in kgm−2.
Formulae (2.1.1) and (2.1.3) represent the so-called mass law for f << fc. The

mass law shows the quasilinear dependence of the transmission loss on the mass of
the panel. According to (2.1.1), (2.1.3) the transmission loss is complemented by 6
dB per octave. Another view on the mass law is that doubling of the mass of a plate
yields approximately 6 dB reduction in the level of sound transmitted through the
plate (see Figure 2.1.1).

For the frequencies above the critical one f > fc, the transmission loss for single
leaf panels starts to deviate from the mass law. In the case of diffusive incident field
TL is written as

TL = 20 log10(µf) + 10 log10
f

fc
+ 10 log10 η + 5 log10

(
1− fc

f

)
− 47, (2.1.4)

where η is the loss factor defined by the bending stiffness of the plate D as D =
D0(1+ iη). The radiation losses should also be added to the total loss. For frequen-
cies f > fc, the radiation losses can be calculated as follows:

ηrad =
ρ0c

ωµ
√

1− fc/f
,

with ω = 2πf being the angular frequency. It should be noted that for plate of
finite size separating closed spaces, the effect of the boundary conditions can affect
the sound transmission through the plate [8].
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m
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f , Hzf1 f2

Figure 2.1.1: Mass law: doubling either the weight of the panel or the frequency brings
a 6 dB increase in transmission loss.

2.1.2 Impedance approach for perforated screens

Describing the sound attenuation of perforated plates requires a different approach.
Namely, the perforated plates do not follow the mass law. A unified approach for
macro-perforated plates based on calculating the impedance of the plate, is presented
in [9]. The main idea is to evaluate the normal surface impedance of the perforated
plate based on the surface impedance of a single perforation. The panel can be
backed either by a semi-infinite fluid (air in our case) or by a cavity.

In the model developed in [9], the plates with throughout perforation are de-
scribed in terms of an equivalent fluid based on the Johnson–Allard‘s theory of
porous media, taking into account equivalent tortuosity, that is the ratio of actual
flow path length to the straight distance between the ends of the flow path. When
the sound impinges the perforated panel, the distortion of the air flow occurs in a
small region around the perforation. It turns out that in order to take into account
this flow distortion, one needs to correct the tortuosity of the perforated panel. The
correction of the tortuosity must be provided in accordance with the media in which
the perforated system emits sound waves. The tortuosity is modified by the correc-
tion term which is a function of the correction length ϵe. The latter is connected
to the radiation of a circular piston in free air as well as to the tortuosity of the
medium in which the perforated panel radiates.

Different perforated systems considered in [9] are shown in Figure 2.1.2, and the
corresponding equivalent tortuosities are given in (2.1.5), (2.1.6), and (2.1.7) below.

αa
∞(ω) = 1 +

2ϵe
d
, (2.1.5)

αb
∞(ω) = 1 +

2ϵe
d
, (2.1.6)

αc
∞(ω) = 1 +

2ϵe
d

(1 +Re(α̃p)) , (2.1.7)
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Figure 2.1.2: Perforated systems: (a) a perforated panel coupled with a semi-infinite
fluid medium, (b) a perforated plate backed by a cavity, and (c) a perforated plate in
contact with a rigid frame porous layer.

where Re(α̃p) is the real part of the dynamic tortuosity of the porous layer.

A B

Figure 2.1.3: Cut through perforation.

The general model developed in [9], leads to different expressions for the to-
tal input impedance ZA (see Figure 2.1.3) for each perforated systems shown in
Figure 2.1.2.

For the case of macro-perforated plate coupled with a semi-infinite fluid medium
(air) as shown in Figure 2.1.2(a), in front of the perforated panel the impedance Za

A

is as follows

Za
A = j

ωρ0
ϕ
dαa

∞

(
1 +

αa
∞
4

)
+ σd+ Za

B, (2.1.8)

where ω is angular frequency, ρ0 is the air density, ϕ is the porosity of the perforated
plate, σ is the flow resistivity, Za

B is the free air impedance.

For the case of perforated-air layer combination shown in Figure 2.1.2(b):

Zb
A = 2(2ϵe + d)

Rs

rϕ
+ j(2ϵe + d)

ωρ0
ϕ

+ Zb
B, (2.1.9)

where r is the radius of perforation, Rs = 0.5
√
2ηωρ0 denotes the surface resistance

with the dynamic viscosity of air η, Zb
B = −jρ0c0 cot( ω

c0
L) is the normal surface

impedance of the air layer with the thickness L and speed of sound c0.
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2.2. FUNCTIONAL SPACES AND VARIATIONAL METHODS 17

For the case of perforated plate in contact with porous layer backed by a rigid
wall (Figure 2.1.2(c)):

Zc
A =

1

ϕ
(ϵe(1 +Re(α̃p)) + d)jωρ0 +

Z0,0(B)

ϕp

, (2.1.10)

where Z0,0(B) = −jZc cot(kpL) with characteristic impedance Zc and wave num-
ber kp in material with porosity ϕp.

2.2 Functional Spaces and Variational methods

In this section we give a brief introduction to the Sobolev spaces, describe the
idea of weak formulation, and present the key results used in Chapters II–IV. The
presentation highlights only the essential definitions and propositions used in the
following chapters. We follow the books [10], [11], and [12].

Classically, many physical quantities, like the temperature in a rod or the dis-
placement of a beam from its equilibrium position, are modelled by partial differ-
ential equations satisfied in each point of the domain of interest. Modern numerical
methods for solving partial differential equations, such as the finite element method,
the finite volume method, the gradient discretization method, etc., make use of the
variational approach, and rather analyze the integrals of functions describing such
quantities with appropriate test functions, and not the values of these functions
at each point. To allow for certain discontinuities of the data and the solutions,
one needs to extend functional spaces, introduce a notion of weak derivative, and
provide a weak formulation of the problem. Moreover, depending on the order of
the differential equation, classical solutions require several continuous derivatives
of the solution (second-order derivatives for heat equation and fourth-order deriva-
tives for beam bending problems). The variational approach reduces the solution’s
smoothness requirements.

Indeed, let us study a simple example. Consider a one-dimensional composite
material (one can think about a thin rod with length 1) made of two parts with
different conductivity. In other words, the conductivity is modelled as a piecewise
function:

a(x) =

{
1, 0 ≤ x ≤ 0.5,

2, 0.5 < x ≤ 1.

Consider the Dirichlet boundary value problem for a heat equation in this rod:{
(a(x)u′(x))′ = 0, x ∈ (0, 1),

u(0) = 0, u(1) = 1.
(2.2.1)

Here u(x) is interpreted as the temperature at point x ∈ [0, 1], and the Dirichlet
boundary conditions decide the temperature at the ends of the rod. Integrating
equation (2.2.1) once, we see that the first derivative u′ is discontinuous:

u′(x) =
C

a(x)
=

{
C, 0 ≤ x ≤ 0.5,

C/2, 0.5 < x ≤ 1,
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18 CHAPTER 2. APPROACHES AND METHODS

where C is a constant. Consequently, u(x) is not two times continuously differen-
tiable, and a classical solution to problem (2.2.1) does not exist. To get the solution
of boundary value problem (2.2.1), one needs to reformulate it in terms of differen-
tiable in weak sense functions. In this case the functional space for problem (2.2.1)
is the Sobolev space H1(0, 1) of square integrable functions with square integrable
derivatives.

2.2.1 Functional spaces

Throughout the current section, Ω is an open set in Rd with a Lipschitz bound-
ary ∂Ω.

We denote by L2(Ω) the set of measurable square (Lebesgue) integrable functions
in Ω with the scalar product

(u, v)L2(Ω) =

∫
Ω

u(x)v(x) dx.

The corresponding norm is ∥u∥L2(Ω) = (
∫
Ω
|u|2 dx)1/2.

Let C∞
0 (Ω) be a set of infinitely many times differentiable functions with compact

support. A function from this space φ ∈ C∞
0 (Ω) is called a test function. One of

the most important statements in the calculus of variations is the du Bois-Reymond
lemma.

Lemma 2.2.1. Let f ∈ L2(Ω). If for any φ ∈ C∞
0 (Ω) we have∫

Ω

f(x)φ(x) dx = 0,

then f(x) = 0 almost everywhere in Ω, that is there exists a subset E ⊂ Ω such that
the Lebesgue measure of it is zero and f = 0 in Ω \ E.

Proof. Using the density of smooth functions C∞
0 (Ω) in L2(Ω) (see [13]), one can

construct a sequence fn ∈ C∞
0 (Ω) converging to f in L2(Ω), that is lim

n→∞
∥f −

fn∥L2(Ω) = 0. Then, by the assumption,

0 = lim
n→∞

∫
Ω

f(x)fn(x) dx =

∫
Ω

|f(x)|2 dx,

that yields f(x) = 0 almost everywhere.

Now define the weak derivative in L2(Ω).

Definition 2.2.2. We say that u ∈ L2(Ω) is differentiable in the weak sense if there
exist vi ∈ L2(Ω), i = 1, . . . , d, such that∫

Ω

u(x)∂xi
φ(x) dx = −

∫
Ω

vi(x)φ(x) dx,

where ∂xi
φ(x) is the partial derivative of φ with respect to xi. We write vi = ∂xi

u(x).



C
H
A
P
T
E
R

2
.

A
P
P
R
O
A
C
H
E
S

A
N
D

M
E
T
H
O
D
S

C
H
A
P
T
E
R

2
.

A
P
P
R
O
A
C
H
E
S

A
N
D

M
E
T
H
O
D
S

2.2. FUNCTIONAL SPACES AND VARIATIONAL METHODS 19

Clearly, if u is differentiable in the classical way, it is also possesses weak deriva-
tives, which coincide with the classical (strong) ones. Weak derivatives can also be
defined for u ∈ L1

loc(Ω), locally integrable in Ω functions. A weak derivative, if it
exists, is unique up to a set of measure zero (see [10]). Having defined the weak
derivative, we can also introduce differential operators as divergence.

Definition 2.2.3. Consider a vector-valued function u : Ω → Rd. We say that
w ∈ L2(Ω) is the divergence of u and write w = divu if∫

Ω

u(x) · ∇φ(x) dx = −
∫
Ω

w(x)φ(x) dx,

for any function φ ∈ C∞
0 (Ω).

Now we can introduce the Sobolev spaces.

Definition 2.2.4. The space H1(Ω) consists of all functions u ∈ L2(Ω) such that
∂xi
u ∈ L2(Ω), i = 1, . . . , d.

We define a norm in H1(Ω) by

∥u∥H1(Ω) =
(∫

Ω

(|u|2 + |∇u|2) dx
)1/2

.

The space H1
0 (Ω) is defined as the closure of C∞

0 (Ω) in H1(Ω). For continuously
differentiable in Ω functions u it means simply that u = 0 on the boundary ∂Ω.

For functions continuous in some domain containing Ω, it is straightforward to
define the value on the boundary. For a general function from L2(Ω), the value at
a particular point is not defined since the functions are now defined up to a set of
measure zero. The trace theorem allows one to define the trace of a H1(Ω) function
u on the boundary ∂Ω and prove that u

∣∣
∂Ω
∈ L2(∂Ω). Actually, a stronger result

holds saying that the trace of a H1(Ω) function belongs to a subset of L2(Ω), which
is denoted by H1/2(Ω).

A mapping from some functional space to R (or C) is called a functional. For
example, F (u) =

∫
Ω
|∇u|2 dx is a real-valued functional defined on H1(Ω). The

space of all linear continuous functionals on H1
0 (Ω) is called the dual space and is

denoted by H−1(Ω).
Another important result concerns the normal derivative of a H1(Ω) function on

the boundary ∂Ω. Namely, given u ∈ H1(Ω) such that ∆u ∈ L2(Ω), the normal
derivative is ∇u · n ∈ H−1/2(∂Ω), where H−1/2(∂Ω) is the dual space of H1/2(∂Ω).
The normal derivative is in this case defined by the duality

⟨∇u · n, v⟩ :=
∫
∂Ω

(∇u · n) v dσ =

∫
Ω

(v∆u+∇u · ∇v) dx.

In Paper II we use the Sobolev spaces and the trace theorem in order to write
down a weak formulation of problem (II.2.7).

In Paper IV we see an example of a distribution, which is not a regular function,
namely a delta function δ(t). We also define its weak derivative δ′(t) and show
how to approximate it by piecewise smooth functions. The delta function δ(t) is
an element of H−1(Ω) and is the weak derivative of the Heaviside function (which
otherwise is not differentiable).
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2.2.2 Weak formulation and functional derivatives

In this section we sketch the variational approach for a scalar elliptic problem. Simi-
lar arguments are used in Paper II for a fluid-solid interaction problem where a linear
elasticity system is coupled with a Stokes equation, in Paper III for an eigenvalue
problem for the Laplace operator, and in Paper IV for an elliptic partial differential
equation obtained by the Laplace transform of the time-dependent problem.

As a model problem, we consider a Dirichlet boundary value problem for a
second-order elliptic operator with variable coefficients in divergence form:

−div(A(x)∇u(x)) = f(x), x ∈ Ω, (2.2.2)

u = 0, x ∈ ∂Ω. (2.2.3)

We assume that f ∈ L2(Ω) and A(x) is a measurable scalar function such that
for almost all x ∈ Ω,

0 < A− ≤ A(x) ≤ A+.

The weak formulation of (2.2.2) is obtained by multiplying (2.2.2) by a smooth
test function v ∈ C1

0(Ω) and integrating by parts using the Green formula:∫
Ω

A(x)∇u · ∇v dx =

∫
Ω

fv dx. (2.2.4)

By density of C1
0(Ω) in H1

0 (Ω) (see [11]), we extend the test function space to
H1

0 (Ω). The weak (variational) formulation reads: Find u ∈ H1
0 (Ω) such that (2.2.4)

is satisfied for any v ∈ H1
0 (Ω). It is convenient to write (2.2.4) is a shorter form:

a(u, v) = l(v),

where a(u, v) =
∫
Ω
A∇u · ∇v dx is a bilinear form on H1

0 (Ω), and l(v) =
∫
Ω
fv dx is

a linear continuous functional on H1
0 (Ω).

Given a Hilbert space H, a bilinear form a : H ×H → R is called continuous if
there exists a constant C such that

|a(u, v)| ≤ C∥u∥H∥v∥H , ∀u, v ∈ H.

The bilinear form is called coercive if there exists a constant C0 > 0 such that

a(u, u) ≥ C0∥u∥H , ∀u ∈ H.

The existence and uniqueness of a solution is established by the Lax-Milgram
lemma (see Corollary 5.8 in [11]).

Lemma 2.2.5. Let a(u, v) be a continuous coercive bilinear form on H (Hilbert
space), and let f ∈ H∗, with H∗ being the dual space. There exists a unique u ∈ H
such that a(u, v) = l(v) for any v ∈ H.

Moreover, if the bilinear form a is symmetric, then u is a unique minimizer of

min
v∈H

F (v) = min
v∈H

(1
2
a(v, v)− l(v)

)
.
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We compute the the directional (Gateaux-) derivative of the functional F at u
in the direction of v:

lim
ε→0

F (u+ εv)− F (u)
ε

=
d

dε
F (u+ εv)

∣∣
ε=0

=
d

dε

[1
2

∫
Ω

A∇u · ∇u dx−
∫
Ω

fv dx

+ ε

∫
Ω

A∇u · ∇v dx− ε
∫
Ω

fv dx+
ε2

2

∫
Ω

A∇v · ∇v dx
]∣∣

ε=0

=
[
ε

∫
Ω

A∇u · ∇v dx− ε
∫
Ω

fv dx+
ε2

2

∫
Ω

A∇v · ∇v dx
]∣∣

ε=0

=

∫
Ω

A∇u · ∇v dx−
∫
Ω

fv dx.

The point u ∈ H is critical if the directional derivative is zero, that is u satisfies
(2.2.4) for any v ∈ H.

Another type of functional derivative is the Fréchet derivative.

Definition 2.2.6. A functional F : H → R is Fréchet differentiable at the point u
if there exists a linear map F ′(u) ∈ H∗ (differential of F at u) such that

lim
∥v∥H→0

|F (u+ v)− F (u)− F ′(u)v|
∥v∥H

= 0.

The differentiability of a functional depends crucially on its growth. The fol-
lowing lemma (see Appendix C.1 in [14]) applies to the integral functionals of the
type

F (u) =

∫
Ω

G(x, u(x),∇u(x)) dx,

and in particular, to the functionals JL2 , JH1 in Paper IV.

Lemma 2.2.7. Assume that the function G : Ω × R × Rd → R is measurable in
x ∈ Ω, continuously differentiable in u ∈ R and p ∈ Rd, and the following growth
conditions are satisfied:

• |G(x, u, p)| ≤ C(1 + |u|s1 + |p|2), where s1 ≤ 2d/(d− 2) for d ≥ 3.

• |∂uG(x, u, p)| ≤ C(1+ |u|s2 + |p|t2) with t2 < 2 if d ≤ 2, and s2 ≤ (d+2)/(d−
2), t2 ≤ (d+ 2)/d if d ≥ 3.

• |∂pG(x, u, p)| ≤ C(1 + |u|s3 + |p|) with s3 ≤ d/(d− 2) if d ≥ 3.

Then the functional F is Fréchet differentiable, and the derivative is given by

⟨F ′(u), v⟩ =
∫
Ω

(∂uG(x, u,∇u)v + ∂pG(x, u,∇u) · ∇v) dx.

If the functional F is Fréchet differentiable with the Fréchet derivative F ′(u),
then

d

dε
F (u+ εv)

∣∣
ε=0

= ⟨F ′(u), v⟩ = F ′(u)v.
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2.3 Sensitivity Analysis

In Paper IV we will differentiate functionals with respect to the coefficient a(x).
It is the so-called derivatives with respect to the design. Following the ideas in
Section 2.2 of [15], we will show how the derivative with respect to the design is
computed in our particular case of functional (IV.3.2). Namely, let us consider the
following mixed boundary value problem:

∆u− s2 a(x)u(x) = 0, x ∈ Ω, (2.3.1)

∇u · ν + su = s, x ∈ ∂Ω.

Problem (2.3.1) is obtained by applying the Laplace transform to a time-dependent
wave equation. The weak form (2.3.1) reads: Find u ∈ H1(Ω) such that

aa(u, v) =

∫
Ω

∇u · ∇v dx+
∫
Ω

s2auv dx+

∫
∂Ω

suv dσ =

∫
∂Ω

sv dσ, ∀v ∈ H1(Ω).

(2.3.2)

Here we indicate the dependence on a explicitly by setting a subindex in the
bilinear form. The coefficient inverse problem consists in recontructing the coeffi-
cient a(x) given the observed data ũ in the domain Ω. To this end, as described in
Paper IV, we minimize a Tikhonov functional, and one of the choices is

JH1(a) = JH1(u(a), a) =
1

2

∫
Ω

(u− ũ)2 + 1

2

∫
Ω

|∇(u− ũ)|2 dx+ γ

2

∫
Ω

(a− 1)2 dx.

(2.3.3)

Here u = u(a) solves (2.3.1) for a given a(x), and γ > 0 is a constant. Our
current goal is to compute the Fréchet derivative of JH1(a) with respect to the
coefficient a (called the design in this case). The proof of the differentiability of the
bilinear form aa(u, v) can be found in [15], Section 2.4, it is rather technical, and is
not addressed here. We focus on using the methods and results for our particular
case. Namely, we prove the following lemma.

Lemma 2.3.1. The Fréchet derivative of JH1(a) at point a in the direction of δa is
given by

J ′
H1(a)δa =

∫
Ω

(−s2uλ+ γ(a− 1)) δa dx, (2.3.4)

where λ solves the adjoint problem

aa(λ, v) =

∫
Ω

(u− ũ)v dx+
∫
Ω

∇(u− ũ) · ∇v, ∀v ∈ H1(Ω), (2.3.5)

with the bilinear form aa(λ, v) defined in (2.3.2).

Proof. We start by computing the variation of the functional JH1(a):

d

dτ
JH1(u(a+ τδa), a+ τδa)

∣∣∣
τ=0

=

∫
Ω

(u− ũ)u′a dx+
∫
Ω

∇(u− ũ) · ∇u′a dx+ γ

∫
Ω

(a− 1)δa dx.
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Obviously, the derivatives with respect to the design (coefficient a) u′a and ∇u′a
depend on the direction of the change in design δa. The derivative u′a is the first
variation of the solution u at design a in the direction of the design change δa is
defined by

u′a =
d

dτ
u(a+ τδa)

∣∣∣
τ=0

.

Our goal is to obtain an explicit expression for the variation of the functional
without u′a and ∇u′a. To do so, we introduce an adjoint variable λ solving (2.3.5).
Then the terms containing u′a and ∇u′a in the variation of the functional will take
the form ∫

Ω

(u− ũ)u′a dx+
∫
Ω

∇(u− ũ) · ∇u′a dx = aa(λ, u
′
a).

Since the bilinear form is symmetric, we have a(λ, u′a) = a(u′a, λ), and the vari-
ation of JH1(a) becomes

d

dτ
JH1(u(a+ τδa), a+ τδa)

∣∣∣
τ=0

= aa(u
′
a, λ) + γ

∫
Ω

(a− 1)δa dx. (2.3.6)

It is left to compute aa(u
′
a, λ). Taking the variation on both sides of (2.3.2) we

obtain

d

dτ
aa+τδa(u(a+ τδa), v)

∣∣∣
τ=0

= a′δa(u, v) + aa(u
′
a, v) = l′δa(v).

Thus,

aa(u
′
a, λ) = l′δa(λ)− a′δa(u, λ),

and it is left to compute the derivatives of the bilinear form a(u, v) and the right-
hand side l(v) with respect to the design:

a′δa(u, v) =
d

dτ
a(u(a+ τδa), v)

∣∣∣
τ=0

=
d

dτ

[ ∫
Ω

∇u · ∇v dx+
∫
Ω

s2(a+ τδa)uv dx+

∫
∂Ω

suv dσ
]∣∣∣

τ=0

=

∫
Ω

s2uv δa dx;

l′δa(v) = 0.

Combining the last expressions and (2.3.6) yields (2.3.4). The proof is complete.

2.3.1 Shape derivatives

In Section 2.4, Paper III we compute the shape derivative of an integral functional
written in terms of the eigenfunctions of the Laplace operator in a cylinder.
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In this section, we give a short introduction to the material derivatives for shape
design sensitivity problem (see Section 3.2 in [15]). The goal is to establish a rela-
tionship between the variation in shape and the variation in a given functional. The
proofs of differentiability and regularity are quite technical and is not the purpose
of our exposition. For rigorous mathematical proofs we refer to [15].

We will think about the domain Ω as a continuous medium, and introduce a
parameter describing the evolution (transformation) of Ω. Namely, denote by T the
mapping that for each x ∈ Ω gives a new point xτ = T (x, τ). One can think about
the parameter τ as time, and at τ = 0 we have the original domain Ω. The design
velocity is defined by

V (xτ , τ) =
dxτ
dτ

=
dT (x, τ)

dτ
=
∂T (x, τ)

∂τ
, (2.3.7)

where in the last equality we have used that the initial point x does not depend
on τ . We assume also that the deformation can be reversed, that is one can come to
the initial point by inverting the mapping x = T−1(xτ , τ). We can now write down
a differential equation describing the design trajectory:

ẋτ =
dxτ
dτ

= V (xτ , τ), x0 = x.

For small times close to τ = 0, we can linearize the transformation T :

T (x, τ) = x+ τV (x), V (x) := V (x, 0). (2.3.8)

The transformed domain is denoted by Ωτ = T (Ω, τ), and the boundary of Ωτ

is denoted by Γτ .
Since the design now is the shape of the domain, it is convenient to indicate the

dependence on the domain in the weak formulation of the problem. Let uτ (xτ ) be
a solution of the problem in the deformed domain Ωτ :

aΩτ (uτ , vτ ) = lΩτ (vτ ), vτ ∈ Zτ , (2.3.9)

where Zτ ⊂ H1(Ωτ ) is the space of kinematically admissible displacements.

Definition 2.3.2. The material derivative u̇(x) at Ω, if it exists, is defined by

lim
τ→0

uτ (x+ τV (x))− u(x)
τ

− u̇(x) = 0.

In case of classical solutions, the limit is pointwise, while for weak solutions we
take the limit in the Sobolev norm, since the pointwise derivatives do not need to
exist in the latter case. It turns out that it facilitate the computations if we write
the material derivative as the sum

u̇(x) = lim
τ→0

uτ (x+ τV (x))− u(x)
τ

= lim
τ→0

uτ (x)− u(x)
τ

+ lim
τ→0

uτ (x+ τV (x))− uτ (x)
τ

= u′(x) +∇u · V (x).
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Thus, the material derivative is the sum of the partial derivative u′(x) and the
convective term ∇u · V :

u̇(x) = u′(x) +∇u · V (x). (2.3.10)

The notation u′(x) should not be confused with the partial derivatives with
respect to xi, i = 1, . . . , d. The limits are understood in pointwise sense for classical
solutions u(x) and in the Sobolev norm for weak solutions.

For our purposes, we need to obtain the expression for the material derivatives of
bilinear forms and linear integral functionals. Making the change of variables under
the integral so that the integration domain becomes Ω, one can prove the following
lemma for the material derivative of an integral functional.

Lemma 2.3.3 (Lemma 3.2.1 [15]). Consider ψ1 =
∫
Ωτ
Gτ (xτ )dxτ , where Gτ is a

function defined on Ωτ . The material derivative of ψ1 at Ω is

ψ′
1 =

∫
Ω

G′(x) dx+

∫
Γ

G(x)(V · ν) dσ.

Here G′(x) is the partial derivative of f with respect to τ (not to be confused with
partial derivatives in xi, i = 1, . . . , d).

Note that it is only the normal component of the velocity V · ν that contributes
to the material derivative, which is intuitively clear since the tangential component
of the velocity does not deform the domain Ω.

Now we turn to the derivation of the weak formulations (bilinear forms and linear
functionals) with respect to the shape. Below, we present the formal computations,
which are justified by the differentiability results in [15], Section 3.5.4. Consider the
weak formulation in the form

aΩτ (uτ , vτ ) =

∫
Ω

c(uτ , vτ ) dxτ =

∫
Ωτ

fvτ dxτ = lΩτ (vτ ), vτ ∈ Zτ , (2.3.11)

where Zτ ⊂ H1(Ωτ ) is the space of kinematically admissible displacements, c(·, ·) is
a bilinear mapping, and uτ = 0 on Γτ . The proof of the following statement can be
found in [15].

Lemma 2.3.4. The material derivative u̇(x) at Ω solves the sensitivity equation

aΩτ (u̇, v) =

∫
Ω

(c(u,∇v · V ) + c(∇u · V, v)− f(∇v · V )) dx

+

∫
Γ

(fv − c(u, v))(V · ν) dσ, v ∈ Z,

and is such that u̇ = 0 on Γ. Here Z is the corresponding functional space.

It should be emphasized that the last result provides u̇ as a solution to a problem
with the same bilinear form, as for u, but with a different right-hand side. The latter
is known as soon as we solve (2.3.11) for τ = 0 (in the initial domain Ω) and take a
given velocity vector V .
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To give an example, let us study a problem which is closely related to one in
Paper III, the eigenvalue shape design sensitivity problem. It is clear that the
natural frequencies and modes depend on the shape of the structure. We follow the
ideas in Section 3.4 [15] and differentiate a simple eigenvalue with respect to the
shape of the domain. To fix the ideas, let us consider the first eigenvalue ζ of the
Dirichlet Laplacian. In the deformed domain Ωτ , the eigenvalue problem in weak
form is

aΩτ (uτ , vτ ) =

∫
Ωτ

∇uτ · ∇vτ dxτ = ζτ

∫
Ωτ

uτvτ dxτ = ζτbΩτ (uτ , vτ ), ∀vτ ∈ H1
0 (Ωτ ).

(2.3.12)

We normalize the eigenfunctions by

∥uτ∥L2(Ωτ ) = 1.

It is proved in [15], Section 3.5.5 that the first eigenvalue (which is simple) is
differentiable. We take the material derivative on both sides of (2.3.12):

(aΩ(u, v))
′ = ζ ′bΩ(u, v) + ζ(bΩ(u, v))

′. (2.3.13)

Our goal is to derive an explicit expression for ζ ′ in terms of the first eigenpair
(ζ, u) in the undeformed domain Ω and the velocity V (x).

Lemma 2.3.5. The material derivative of the first eigenvalue ζ of the Dirichlet
Laplacian in the direction of V is given by

ζ ′ = −
∫
Γ

|∇u · ν|2(V · ν) dσ.

where u is the first eigenfunction corresponding to the eigenvalue ζ, and ν is the
external unit normal vector to Γ.

Proof. Using (2.3.10) we get:

(aΩ(u, v))
′ =

∫
Ω

(∇u′ · ∇v +∇u · ∇v′) dx+
∫
Γ

∇u · ∇v(V · ν) dσ

=

∫
Ω

(∇(u̇−∇u · V ) · ∇v +∇u · ∇(v̇ −∇v · V )) dx+

∫
Γ

∇u · ∇v(V · ν) dσ.

Since vτ is an arbitrary element of H1
0 (Ωτ ), the material derivative can be as-

sumed to be zero v̇ = 0, and we get

(aΩ(u, v))
′ =

∫
Ω

(∇(u̇−∇u · V ) · ∇v −∇u · ∇(∇v · V )) dx+

∫
Γ

∇u · ∇v(V · ν) dσ

=

∫
Ω

(∇(u̇−∇u · V ) · ∇v −∇u · ∇(∇v · V )) dx+

∫
Ω

div
(
(∇u · ∇v)V

)
dx.
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In the last equality we have integrated by parts to transform the boundary

integral into the volume integral. Similarly, using the boundary condition u
∣∣∣
Γ
= 0,

we have

(bΩ(u, v))
′ =

∫
Ω

((u̇−∇u · V )v − u(∇v · V )) dx+

∫
Γ

u v (V · ν) dσ

=

∫
Ω

((u̇−∇u · V )v − u(∇v · V )) dx.

Next, we take u as a test function in (2.3.13) and using the normalization con-
dition bΩ(u, u) = 1, we obtain

ζ ′ = (aΩ(u, u))
′ − ζ(bΩ(u, u))′. (2.3.14)

Since u̇ can be taken as a test function in (2.3.12), and u is the solution of
(2.3.12), then

aΩ(u, u̇) = ζ bΩ(u, u̇),

and the material derivatives of the bilinear form (aΩ(u, u))
′ and (bΩ(u, u))

′ reduce
to

(aΩ(u, u))
′ = −2

∫
Ω

∇(∇u · V ) · ∇u dx+
∫
Ω

div
(
|∇u|2V

)
dx;

(bΩ(u, v))
′ = −2

∫
Ω

(∇u · V )u dx.

The last two equalities combined with (2.3.14) yield

ζ ′ = 2

∫
Ω

[
−∇u · ∇(∇u · V ) + ζu(∇u · V )

]
dx+

∫
Ω

div
(
|∇u|2V

)
dx

= 2

∫
Ω

[
−∇u · ∇(∇u · V ) + ζu(∇u · V )

]
dx+

∫
Γ

|∇u|2(V · ν) dσ,

Now we integrate by parts one more time and use again the fact that (ζ, u) solves
(2.3.12):

ζ ′ = −2
∫
Γ

(∇u · ν)(∇u · V ) dσ +

∫
Γ

|∇u|2(V · ν).

Since u = 0 on Γ, the tangential component of u is also equal to zero on Γ, and
∇u = (∇u · ν)ν. Thus, (∇u · ν)(∇u · V ) = |∇u · ν|2(V · ν), and the final expression
for the material derivative of the first eigenvalue is

ζ ′ = −
∫
Γ

|∇u · ν|2(V · ν) dσ.

The methods in this section are used in Paper III to compute the material
derivative of the average sound pressure level in cylindrical domains.
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2.4 Machine Learning

Paper III presents a machine learning approach for computing the average sound
pressure under the harmonic load over some frequency range. We generate the test
data by numerically computing the eigenmodes of the Laplace operator in polygonal
domains. For machine learning we have used Tensorflow [16], and the stochastic
gradient descent optimizer ADAM [17].

In this section, we briefly describe the ideology of machine learning and the
stochastic gradient descent algorithm. For a rigorous description of the the deep
neural networks construction we refer to [18] and [19].

The main goal of the machine learning algorithms is to construct a function
(black box), performing well on the test data, to make predictions concerning the
unseen data. For example, in the case of the recognition of hand-written digits,
an input to this learning function is a matrix of pixels and the desired output is
a digit. Machine learning tackles many different kind of tasks. Among them are
classification problems (as object recognition), regression (given an input, predict
the value of the output), transcription (optical character recognition), and machine
translation. To evaluate the machine learning performance, we need to specify a
performance measure. In many cases we are interested in the performance on the
unseen data, so the algorithms are evaluated on the test data separated from the
training data.

It is interesting to note that the success of machine learning algorithms is sup-
ported not only empirically but also theoretically. It was shown that for a given
continuous function f(v) with the input vector v in a cube in Rd, there exists a
net approximating it with any desired accuracy [20]. In [21] it has been proved
that feedforward networks with as few as a single hidden layer and an appropriately
smooth hidden layer activation function can approximate an arbitrary function and
its derivatives with desired accuracy. Moreover, it is possible to approximate func-
tions which are only weakly differentiable. In fact, a priori it is not obvious that
there exists a set of weights that provides an approximation to both the function
itself and its derivatives. It is proved in [21] that such a set of weights does indeed
exist.

In our case in Paper III, the input to the neural network is the coordinates of
five points defining the cylindrical domain, and the output is a scalar Ψml giving
the average pressure level in the given domain. Since the output is a real number,
we have a regression type of problem. Having generated a data set containing
values of the average pressure level Ψ for N polygonal cylinders, we train a learning
function on a part of this set (minibatch). Assigning weights to the inputs, we
create a function so that the mean-mean-square error in the approximation of Ψ is
minimized. Then we evaluate the performance of our function Ψml by applying it
to the unseen data and measure the accuracy of the predicted average pressures.

The simplest learning function is affine Ψml = Ax+ b (x is the vector of inputs).
In this case the entries of the matrix A are the weights to be learned, and b is called
a bias vector. But it is usually too simple to give a good result. For example, if
one tries to recognize Roman numbers, then II might be something between I and
III [18].
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2.4. MACHINE LEARNING 29

The learning function has the form of a composition

Ψml(v) = LM(R(LM−1(R · · · (L1v)))),

where Lkv = Akv + bk are affine functions, and R is a nonlinear function, the
activation function. The weights to be learned to get a reasonable approximation are
the entries in Ak and bk. In this way the output is a recursively nested composition
function of inputs: input to the first hidden layer, input from the first to the second
hidden layer, . . ., input from the last (M − 1):th hidden layer to output layer. An
schematic illustration of a deep neural network is given in Figure III.4.1 in Paper III,
where each diagonal represents a weight. Each hidden layer in Figure III.4.1 contains
both the linear Lk and the nonlinear activation function R. In a typical situation,
more hidden layers will give a higher accuracy. In order to have a high accuracy
on unseen data, one needs to stop the minimization process before one overfits.
Typically, if the learning function performs poorly on the training set, one underfit,
while if it does well on the training set and poorly on the test set, one overfit. In
other words, when we overfit, we create a learning function that does not generalize
(from the training set to the test set).

There are many options for the nonlinear function R. A widely used choice of
nonlinearity is a so-called “sigmoidal” functions (having S-shaped graph). A smooth
sigmoidal function like tanhx/2 = (ex − 1)/(ex + 1) has been a popular choice, but
after that numerous numerical experiments indicated that this might not be an
optimal. In many examples, it has turned out that a piecewise linear function
ReLU(x) = max{0, x} (the positive part x+ of the linear function x, sometimes
called a rectified linear unit) performs better [18].

The goal of the learning is to choose the weights to minimize the error over
training sample, such that it generalize well to unseen data. This is a large-scale
optimization problem, and the choice of the algorithm is crucial for the result.

By construction of the learning function, the input to RL1 is v coming from
the training set, the input to RLk+1 is vk = R(Lkvk−1). On each layer, this gives
vk = R(Akvk−1 + bk), a vector of length Nk, where the weights are obtained by the
optimization algorithm. Thus, the matrix Ak is Nk × Nk−1, and the vector bk has
Nk components. The final composition in the case of ReLU nonlinearity is piesewise
affine with respect to the input vector v. This creates a fully connected neural
network.

Since the training phase of the machine learning assumes the penalization of
the difference between the predicted and observed values of dependent variables,
it obviously requires the use of optimization techniques. Most of the optimization
problems are minimization problems, and the classical idea of the gradient descent
method is a natural choice.

A key ingredient in the training of a deep neural network is the stochastic gra-
dient descent (SGD) [22] allowing to minimize the loss function L(x) for the test
data. This is a method converging to the optimum in probability.

Recalling the classical gradient descent, in order to minimize a function f(x), one
needs to move in the direction opposite to its gradient, i.e. −∇f(x), to approach
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the minimum:

xk+1 = xk − sk∇f(xk), k = 1, 2, . . . .

Here sk is called the stepsize of the learning rate.
The classical gradient descent becomes too expensive on large data sets. SGD

does not use the whole test set, but only a part of it called mini-batch on each step,
which essentially reduces the computational cost.

Among the parameters, the learning rate is probably one of the most difficult
to choose. At the same time, since the choice of the learning rate affects the model
performance, it is important to adapt it during the training. Among the mini batch-
based methods, ADAM is one of the methods that adapt the learning rates of model
parameters. ADAM was introduced by Kingma and Ba in [17]. The name comes
from “adaptive moments”.

The method of momentum aims to accelerate learning, in particular when the
gradients have noisy component, or they are small with high curvature. The algo-
rithm of momentum introduces a variable v. This variable gives the direction and
speed at which the parameters move through parameter space. This is the reason
why v is called velocity.

Stochastic gradient descent with momentum requires learning rate ϵ and mo-
mentum parameter α. The update of the parameters θ of a neural network is as
follows θ ← θ + v. In turn, the velocity v is updated by momentum parameter α.
Moreover, v accumulates the elements of the gradient of the loss with respect to the
parameters for that minibatch g given by

g =
1

m
∇θ

∑
i

L(f(x(i);θ),y(i)). (2.4.1)

where a minibatch of m examples from the training set {x(1), ...,x(m)} with corre-
sponding targets y(i). The update of velocity v is carried out as follows

v← αv − ϵg. (2.4.2)

Formula (2.4.2) allows to treat the momentum algorithm as accumulation an
exponentially decaying average of previous gradients and moving in their direction.

The idea behind the ADAM algorithm is as follows: to apply the method of mo-
mentum to the rescaled gradients. On practice it means that the algorithm includes
both updates and correction of moments corresponding to gradient and squared
one. The Adam algorithm requires step size ϵ, exponential decay rates for moment
estimates ρ1 and ρ2, and small constant δ served for numerical stabilization [23].
The parameters θ, 1st and 2nd moment variables s and r, and time step t must be
initialized. During adaptive learning rate optimization, i.e. the following update:
θ ← θ +∆θ, the next scheme is realized [23]

• sample a minibatch of m examples from the training set {x(1), ...,x(m)} with
corresponding targets y(i),

• compute the gradient g by (2.4.1) and update time step t,
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• update s and r moments: s← ρ1s+ (1− ρ1)g, r← ρ2r+ (1− ρ2)g ⊙ g with
element-wise (Hadamard) product denoted as ⊙,

• correct bias in both moments: ŝ← s
1−ρt1

, r̂← r
1−ρt2

,

• compute ∆θ: ∆θ = −ϵ ŝ√
r̂+δ

.

ADAM is usually considered as being pretty robust to the choice of hyperpa-
rameters. It should be noted, however, that sometimes there is a need to change
the learning rate from the proposed default.
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PAPER I

Insertion loss of macro-perforated
plates with viscoelastic filling1

Andrei Karzhou2

UiT The Arctic University of Norway

Irina Pettersson
Chalmers University of Technology and Gothenburg University, Sweden

Klas Pettersson
UiT The Arctic University of Norway

Abstract

An experimental comparative study of sound insertion loss for macro-
perforated plates filled with viscoelastic material is presented. The effect
of viscosity is captured in cases of filling exposed to the acoustic field,
and for isolated inclusions in a layered material setup. Steel and high
density polyethylene are considered as plate materials, and polyurethane
and an emulsified oil lubricant as filling materials. It is observed that
the plates with exposed fillings show sound insertion loss levels similar
to solid plates, and in line with the mass law within the frequency range
200–3150 Hz. The layered plates, with filling as inclusions, show sound
insertion loss levels substantially lower than solid plates of the same mass
for the mid-range 300–2000 Hz range, and higher for low frequencies.

Keywords: Sound insertion loss, macro-perforated plates, layered material, vis-
coelastic filling, pseudoplastic fluid inclusions.

1Submitted to Acta Acustica, 2023.
2Corresponding author. E-mail andrei.karzhou@uit.no.
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I.1 Introduction

The design of soundproofing and sound absorbing materials attracts attention of
both engineers and physicists. Structure and properties of such materials depend
strongly on the frequency range and the area of applications. The use of perforation
in acoustic panels is justified by the energy absorption due to the friction between
the walls of the pores and the fluid, such as air or liquid. One can achieve a good
damping of high frequencies using materials with very fine microstructure, such
as porous materials [1]. One of the most appropriate descriptors of the acoustical
characteristics of a structure is the sound insertion loss (IL). Since the IL is defined
in terms of the sound pressure level, it does not require the knowledge of the source
strength, and is often used for comparison of sound insulation properties of different
materials and structures.

There are numerous works devoted to the study of acoustical characteristics
of perforated screens. Depending on the size of the perforation, one distinguishes
micro- and macro-perforated screens. In the present work we study the latter ones.

Classical models for absorption and transmission coefficients for perforated screens
and porous materials with perforated facings, have been developed in [1, 2] (see also
the references therein). Modelling the porous media as an equivalent fluid, acous-
tic characteristics are then written in terms of the effective density, bulk modulus,
and acoustic impedance. In [3], perforated plates coupled with free air, air gap, or
porous layer, are modelled as equivalent fluids in the context of the transfer matrix
method. It is shown that the effect of the viscosity dominates over the thermal
effects in the absorption of sound energy for macro-perforated plates, with radius of
perforations between 1 mm and 1 cm, with a viscous filling. By increasing the total
area between matrix material of the plate and viscoelastic one it is expected that
the sound energy of incoming waves will be reduced.

A method for calculating the sound transmission loss of a perforated screen at
frequencies below 4 kHz is presented in [4]. The authors use a two-dimensional plane
wave theory, and compare the theoretical model with laboratory measurements for
different materials, thicknesses and percentages of perforation.

In [5] the results of theoretical, numerical and experimental studies of multilayer
partitions made up of macro- or micro- perforated rigid panels in linear regime are
presented. The authors develop enhanced modal matching theory of the acoustic
absorption, transmission and dissipation for unbacked multi-layer macro-perforated
panels under oblique incidence of sound waves.

In [6], the authors consider macro-perforated samples with different pore sizes
and porosities in the microporous medium. For the 3D printed samples, the mea-
surements of sound absorption coefficient have been done in a impedance tube for
both non-perforated and macro-perforated sample sets. An improved absorption
performance is observed for the macro-perforated samples. One of the important
conclusions of the work is that the application of the additive manufacturing allows
to achieve a good sound absorption performance which ultimately avoids the using
of complex microstructures.

The work [7] concerns the study of sound absorption of specific acoustics res-
onators and considers perforated panels with oblique perforations backed by an air
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cavity. It turns out that such geometry of the resonator leads to the increase the
effective thickness of the panel, severely improving the low-frequency performance
of the sound absorber.

To achieve a higher damping, a viscoelastic material might be added to the open
pores. The viscous absorption of sound energy is used in buildings acoustics. For
example, by adding a layer of viscoelastic material to the sheet one can increase the
damping of bending waves [8].

There are many studies investigating a possibility to increase the sound absorp-
tion by adding isolated masses in the poroelastic material. For example, [9] describes
the effect of circular periodic inclusions on the sound absorption. In particular, this
theoretical study shows that a structure with inclusions can possess a quasi-total
absorption peak below the quarter-wavelength resonance frequency. It should be
noted that the absorption increases at some frequencies but also reduce sound ab-
sorption at the rest of frequencies significantly as the size of inclusion increases.
We observe this effect in the present study, when an inner layer with visco-elastic
inclusions is added between two solid plates (see Section I.4.2).

The influence of the inclusion shape on the absorption properties of the porous
material have been investigated in [10]. In this numerical study, it has been found
that specific configurations might improve the broadband sound absorption com-
pared with reference material with no inclusion.

An experimental study of the IL for a poroelastic material with randomly placed
inclusions is performed in [11]. The mass inclusions act as resonant systems, and so
increase the structure impedance, that leads to the increase in the IL. It should be
noted that the authors observe some reduction in the IL at higher frequencies, but
it is much less than the increases in the targeted bandwidth.

Solid–liquid composites have been extensively studied for the last decades, and
there are now numerous examples where such structures show unexpected novel
properties [12]. There is a great variation in form and dimension of the liquid in-
clusions, depending on the specific applications, including droplets, liquid networks,
and isolated liquid inclusions. Solid-liquid composites find their applications in soft
robotics, soft electronics, as well in chemical and biological systems. A review of
solid-liquid composites, their morphology, fabrication methods, and applications are
presented in [12]. In the present work we investigate the effect of incorporating a
pseudoplastic fluid (grease) into a perforated plate and a layered structure on their
acoustic properties. Note that filling the perforation creates isolated inclusions, in
contrast with the classical case of fluid-saturated porous media, where both the
matrix and the fluid components are connected [13].

There are several standards of measuring sound insulation, for example ASTME [14]
and ISO [15, 16], as well as there are restrictions for sample dimensions according
to the standardized methods. The ISO 354:2003 standard specifies a method of
measuring the sound absorption coefficient of acoustical materials used in room
acoustics [16], and requires the test specimen area between 10 and 12 m2. Tech-
nological solutions also exist, such as the Brüel & Kjær Impedance Tube Kit type
4206 which allows to measure samples which are 29 and 100 mm in diameter [17]
in the frequency range 50 Hz to 6.4 kHz. The Acoustic test cabin [18] developed
by Mecanum offers a possibility to measure transmission loss and sound absorption
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in the diffuse-field condition. According to Mecanum’s technical data sheet [19],
the cabin is suitable for test samples between 0.36 m2 and 1.3 m2. The exterior
dimensions of the test cabin are 2.6× 1.6× 2.0 m3, and the weight is 1200 kg.

In building acoustics there are two commonly used methods to measure the pan-
els’ transmission loss. Both methods are provided in connected reverberant-anechoic
rooms. The first technique requires pressure-pressure calculations based on the mea-
surements of reverberation time in receiving room and average sound pressure level
in both anechoic and reverberant rooms [20, 21]. The second technique represents
a pressure-intensity calculations rely on measurement of the sound pressure level
in reverberant room with sound source and a measurement of sound intensity in a
receiving anechoic room [22, 23]. There is still ongoing work to develop new ap-
proaches for sound transmission loss measurements. In [24] the authors present new
approach for transmission loss estimation of panels in coupled reverberant-anechoic
rooms. The idea is to use two succeeding each other sound intensity measurements
which ultimately leads to a new intensity-intensity approach. The sound intensity
measurements are made before and after a test sample is mounted between the
anechoic and reverberant rooms.

The present work is motivated by the challenge to create composite sound-
proof panels using perforated plates filled with some viscoelastic material. We
present a comparative experimental study of the IL in the range 200–3150 Hz for
macro-perforated plates with the perforation filled with polyurethane and grease for
thoughout perforation as well as isolated filled inclusions in layered structures. We
show that the IL for the throughout perforated plates with filling follows the mass
law, and is close to the IL for solid plates. The IL of the layered structures with
inclusions show, however, a different behaviour. Namely, the IL for these layered
plates is substantially (up to 10 dB) lower than the IL for solid plates of approxi-
mately the same mass for middle frequencies 315–1600 Hz, while for the 250 Hz and
2000 Hz third octave bands the IL is about 10 dB greater than the one for the solid
plates.

The rest of this paper is organized as follows. In Section I.2 we present the
material properties and geometry of the studied samples. The experimental setup
for small-scaled experiments is described in Section I.3. This bench installation has
length of about 1.2 m and the internal diameter 0.26 m. The dimensions of the setup
and the flexibility in the samples’ dimension makes this setup attractive for those
aiming to test samples of different thickness and dimensions greater than those used
in impedance tubes, but at the same time smaller than those installations/test cabins
used for room acoustics. The IL is measured for both plain and perforated plates of
different thickness, with and without viscoelastic filling. The influence of the filling
and the thickness of the plates on the IL is analyzed in Section I.4.1. In Section I.4.2
we consider layered plates with an inner layer containing viscoelastic inclusions. The
IL for the latter is compared with the one for solid plates of approximately the same
mass. Finally, in Section I.5 we compare our experimental results with classical
theoretical models of the sound attenuation [25].
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I.2 Samples

The studied samples are metal and plastic square plates of size 40× 40 cm2, and of
various thicknesses. The plates are made from steel and from high density polyethy-
lene. In what follows we will write ME for steel plates and PE for the polyethylene
ones. The mass density and the linear isotropic elastic material parameters are given
in Table I.1. The metal and plastic plates are perforated periodically with cylindri-

Table I.1: Material parameters.

Material Young modulus E (GPa) Poisson ratio ν Density ρs (kgm
−3)

Steel 200 0.3 7.86× 103

Polyethylene 1 0.4 0.96× 103

cal holes, and the size and position of the holes are chosen in such a way that the
rigidity of the perforated samples is about 90% of the solid ones. Each perforated
sample has 25× 25 cells with dimensions a×a, a = 1.6 cm, and a circular hole with
radius b = 0.3 cm in each cell. The macro-porosity ϕp [2] is defined as the ratio
between volume of all pores and the total volume of the plate, ϕp = πb2/a2 = 0.11.
A perforated plate is illustrated in Figure I.2.1a. The volume removed by perfo-
ration is then filled with a viscoelastic material, specifically polyurethane sealant
(PU) [26], and a soap emulsified with oil grease lubricant (GR).

We perform the IL measurements for the following samples:

Set A: Perforated ME plates filled with PU, with thickness d = 6 and 10 mm.

Set B: Perforated PE plates filled with PU and GR, with thickness d = 3, 6, 10,
and 20 mm.

Set C: Layered plates consisting of two solid PE plates with thickness l = 3
mm, and a perforated ME plate of thickness d = 6 and 10 mm, filled with GR
placed in between the two solid ones.

Set D: Layered plates consisting of two solid PE plates with thickness l = 3
mm, and a perforated PE plate of thickness d = 3, 10, and 20 mm, filled with
GR placed in between the two solid ones.

The layers in Set C, D are in contact, without air gap in between them, and not
glued together. A periodicity cell for Sets A and B is illustrated in Figure I.2.1b
(left), and for Sets C and D in Figure I.2.1b (right).

As a point of reference, we also consider solid plates:

Set E: Solid ME plates of thickness 6, 10 mm, and solid PE plates of thickness
3, 6, 10, and 20 mm.

The filled plates of Sets A–D will be referred to as ME-PU, PE-GR, ME-GR, and
PE-GR, respectively, and the solid plates by ME and PE.
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L

a

b a

(a)

2b

d d
l

l

(b)

Figure I.2.1: Samples geometry: (a) Perforated plate with L = 0.4 m and radius of
perforation b = 0.3 cm; Cross section of a periodicity cell for (b) perforated plates with
filling (left) and layered plates with viscoelastic inclusions (right).

I.3 Experimental setup

The experimental setup is shown and illustrated in Figure I.3.1. After a signal is
generated by Daqarta [27] (PC “1”), it passes through the power amplifier LV-103
“2”, and is then reproduced by the loudspeaker “3”. Sound waves from the loud-
speaker are transmitted through the sample “4” and registered by the microphone
“5”. The signal from the microphone is registered by a MANOM-4 sound meter “6”,
and converted into the sound pressure levels without sample L0 and with sample
Lp. The measurements have been performed under normal ambient conditions.

We analyze the IL, that is the difference between sound pressure level L0 mea-
sured without the plate sample, and the sound pressure level Lp when the sound
passes through the sample.

IL = L0 − Lp. (I.3.1)

The installation is a tube assembled from two acoustically isolated metal pipes with
wall thickness 0.6 cm, internal diameter 26 cm, and length of the two parts 80 and
40 cm. A sample is placed between the two pipes and fixed by circular flanges with
rubber gaskets using a lead screw. The short metal pipe can be moved by means of
a worm-gear mechanism. This method of moving of the short pipe with the sound
source allows to avoid centering, which, in its turn, makes the installation more
convenient to use. In particular, it makes it possible to study structures made of
materials with low values of hardness and brittleness.

To reduce the diffuse component of the sound field, the inner surfaces of both
long and short tubes are covered with bitumen aluminum foil and, in addition, lined
with a porous sound-absorbing material based on melamine foam.

The sound pressure level is given by a frequency sweep in the range 200–3150
Hz in steps of 10 Hz. Based on that, we compute the frequency sweep IL and the
third octave band IL with geometric mean frequencies 200, 250, . . . , 3150 Hz. In
Section I.4, the third octave band IL is presented for sample Sets A–E.
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(a)

1  2 3 5 6

4

(b)

Figure I.3.1: Experimental setup: (a) External view, and (b) schematic representation.

I.4 Experimental results

In Section I.4.1 we present the third octave IL for samples in Sets A and B, as
described in Section I.2, that is perforated metal and plastic plates with PU and
GR fillings. Section I.4.2 contains the measurement results for Sets C and D, that
is layered metal and plastic plates with viscoelastic inclusions. We compare with
these IL values with the ones for solid plates in Set E.

I.4.1 Macro-perforated plates with viscoelastic filling

For Sets A and B, we focus on analyzing the influence of the filling on the IL, for
fixed thickness, as well as on comparing the plates of different thickness with the
same filling.

Influence of filling for fixed thickness

Compared with the solid plates, for a fixed thickness, the filled perforated steel
plates show in general slightly lower IL, as can be seen in Figure I.4.1, which is
more pronounced in the case of 10 mm thick plates and reaches 10 dB at 315 Hz.

In Figure I.4.2 we compare plastic samples of the same thickness with different
filling.

We observe, in particular, that there are several frequency ranges where the
presence of PU and GR filling yields a higher IL than the IL for solid plates.

We look for third octave bands in which the filled polyethylene plates are showing
greater IL than the solid plates, and in these selected regions we perform a linear
sweep. The measured IL in the linear sweeps are shown in Figures I.4.3 and I.4.4. We
observe that for 3 mm plates, the PU and GR filled plates both show greater IL than
the solid plate in the regions 1200–1450 Hz, and in this interval the polyurethane
filled plates show greatest IL, which is shown in Figure I.4.3a. For the 6 mm plate,
in Figure I.4.3b and I.4.3c, we note that in the regions 400–550 Hz, the PU and
GR filled plates show higher IL than the solid plate, and also here the PU filled
plate shows the maximum IL, yet less distinct than in the case of 3 mm plates. In
the same frequency range, the solid sample has the best sound insulation with the
maximum of 35 dB at 630 Hz.

For the 10 mm filled polyethylene plates, in Figure I.4.4a, we observe that in
the wide range 1100–1900, the IL of the PU filled plate is higher than the solid and
higher or on par with the grease filled plate. As in the case of 6 mm thick metal
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plates, one can see a well-marked drop at about 250 Hz. This can be explained by the
coincidence of the sound signal frequency with eigenfrequency of the corresponding
sample.

As shown in Figure I.4.4b and I.4.4c, the 20 mm filled polyethylene plates show
greater IL than the solid plate in the ranges 400–700 Hz and 1400–1650 Hz. In
particular, we observe an substantial peak in the IL of the PU filled plate close to
1500 Hz, as shown in Figure I.4.4c. Note that for low frequencies, the sample with
GR filling yields the highest insertion loss of approximately 20 dB.

200 400 800 1600 3200
Frequency (Hz)

10

20

30

40

50

In
se

rio
n 

Lo
ss

 (d
B)

Filled steel plates

6 mm ME
6 mm ME-PU

(a)

200 400 800 1600 3200
Frequency (Hz)

20

25

30

35

40

45

50

55

In
se

rio
n 

Lo
ss

 (d
B)

Filled steel plates

10 mm ME
10 mm ME-PU

(b)

Figure I.4.1: Third octave band IL measurements for throughout perforated steel plates
with polyurethane filling (Set A) and for solid plates of the same thickness (Set E) as
reference: (a) 6 mm and (b) 10 mm.

Influence of plate thickness

In Figure I.4.5, the third octave IL for the PU-filled metal plates is presented. The
10 mm thick sample has substantially better sound insulation properties in the
frequency range 200–315 Hz than the 6 mm sample. For frequencies in 400–3150 Hz
interval the sound insulation of both samples varies between 38–48 dB.

The IL for plastic samples of different thicknesses with polyurethane filler are
presented in Figure I.4.6a. For frequencies in the range 200–250 Hz, the 6 mm
thick sample has the lowest sound insulation. The 3 mm thick sample has negative
insertion loss near 315 Hz and a drop in third octave band. The 20 mm thick sample
has the highest value of sound insulation in third octave band at about 1000 Hz.

The IL for samples of different thickness with GR filling are presented in Figure
I.4.6b. Qualitative behaviour of the IL for these samples is similar to the one with
PU filling. In 200–250 Hz frequency range the 3 mm thick sample introduces a
greater IL than 6 and 10 mm samples. The 20 mm thick sample has the highest
value of sound insulation in the whole studied range of frequencies except the region
1470–1520 Hz. In this region 10 mm thick sample is the most effective in the sense
of sound insulation.
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Figure I.4.2: Third octave band IL measurements for throughout perforated polyethy-
lene plates with polyurethane (PU) and grease (GR) filling (Set B) and for solid polyethy-
lene plates of the same thickness (Set E) as reference: (a) 3 mm, (b) 6 mm, (c) 10 mm,
and (d) 20 mm.

1200 1250 1300 1350 1400 1450 1500
Frequency (Hz)

22

24

26

28

30

In
se

rio
n 

Lo
ss

 (d
B)

Filled polyethylene plates
3 mm PE
3 mm PE-PU
3 mm PE-GR

(a)

400 450 500 550 600 650
Frequency (Hz)

26

28

30

32

34

36

38

40

In
se

rio
n 

Lo
ss

 (d
B)

Filled polyethylene plates
6 mm PE
6 mm PE-PU
6 mm PE-GR

(b)

700 750 800 850 900 950 1000
Frequency (Hz)

20

25

30

35

40

In
se

rio
n 

Lo
ss

 (d
B)

Filled polyethylene plates
6 mm PE
6 mm PE-PU
6 mm PE-GR

(c)

Figure I.4.3: Linear sweep of narrow ranges for Set B: (a) 3 mm, and (b)–(c) 6 mm
filled polyethylene plates.

I.4.2 Layered macro-perforated plates with viscoelastic fill-
ing

The measured IL for layered metal and plastic plates with cylindrical grease inclu-
sions are shown in Figure I.4.7. The mass of the layered metal plates of thickness 12
mm and 16 mm are 95% and 93% of the corresponding solid plates, respectively. As
a point of reference, we use the solid metal plate of thickness 10 mm. We observe
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Figure I.4.4: Linear sweep of narrow ranges for Set B: (a) 10 mm, and (b)–(c) 20 mm
filled polyethylene plates.
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Figure I.4.5: Third octave band IL for Set A of filled steel plates.
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Figure I.4.6: Third octave band IL for filled polyethylene plates in Set B: (a)
polyurethane and (b) grease.

that both the layered 12 mm and 16 mm plates show lower IL than the solid 10 mm
plate. This corresponds to at least 6 dB of lower IL for the same mass for the metal
plates.

The layered plastic plates show a similar deviation form the mass law. The
layered plate of thickness 9 mm shows a significantly lower IL than the solid PE
plate of thickness 10 mm, and we observe over 6 dB difference in IL for frequencies
630–3150 Hz, for essentially the same mass.
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The layered 16 mm plastic plate with grease inclusions in the inner layer shows
the IL close to the one of the solid 10 mm plate for frequencies 315–1600 Hz. How-
ever, below the 315 Hz third octave band and above the 1250 Hz third octave band,
the layered 16 mm PE plate filled with grease, has in average about 10 dB lower IL
than the 10 mm solid PE plate. The difference reaches almost 20 dB in the 2000
Hz third octave band.
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Figure I.4.7: Third octave band IL for plates in Sets C and D: (a) Layered composite
plates with grease (GR) inclusions in the inner steel layer, and (b) layered plastic plates
with GR inclusions in the inner layer.

I.5 Comparison with existing models

In this section we compare the measured IL with the theoretical one. For non-
perforated plates one can use the corrected mass law [25].

The mass law states that a doubling of the mass of a plate yields approximately
6 dB reduction in the level of sound transmitted through it. Sound attenuation
results from an interplay between mass, stiffness and damping. The mass law is
affected by resonance at lower frequencies, and by coincidence for high frequencies.
Namely, since coincidence between airborne and structure borne waves might occur
in the frequency range of interest, and the mass law should be modified to include
the change in transmission at the critical frequency and above [28, 25].

We consider the IL of the solid plates, and compare with the mass law in the
frequency ranges where stiffness effects and radiation losses may be negligible. De-
noting by fc the critical frequency, the mass law assumes the scaling of an increase in
transmission loss of about 6 dB when the mass per unit area of the plate is doubled.
We get the following approximation to the IL for f ≪ fc, ignoring other absorbing
effects,

IL = 20 log10(µf)− 48, (I.5.1)

where µ denotes the plate mass density per unit area in kgm−2, and f the frequency
in Hz. For thin plates made from isotropic material, one considers the following
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Figure I.5.1: Third octave band IL for the solid plates of Set E: (a) steel and (b)
polyethylene.

approximation [25] of the critical frequency fc in Hz:

fc =
c2

πh

√
3ρ(1− ν2)

E
, (I.5.2)

where c denotes the speed of sound in the air in m s−1, h the thickness of the plate
in m, ν the Poisson ratio, and E the Young modulus in GPa. To take into account
radiation losses for frequencies above the critical frequency fc, we follow [25] and
approximate the IL for f > fc by

IL = 20 log10(µf) + 10 log10
f

fc
+ 10 log10 η + 5 log10

(
1− fc

f

)
− 47, (I.5.3)

where the radiation losses are for f > fc are given by

η =
ρ0c

ωµ
√

1− fc/f
,

with ρ0 being the mass density of the air in kgm−3, and ω = 2πf the angular
frequency.

For the steel and polyethylene plates we record the rounded frequencies according
to formula (I.5.2) in Table I.2. We note that for steel the critical frequencies fc are
in the center of our measurement range, while for the polyethylene plates only the 20
mm plate has a critical frequency in the range and it is close to the upper bound. In
Figure I.5.2, we show the measured IL in the third octave bands, for (a) steel plates
of thickness 6 mm and 10 mm, and (b) polyethylene plates of thickness 3–20 mm. In
Figure I.5.2a, we combine the IL approximations (I.5.1) and (I.5.3). In Figure I.5.2b,
we only show the mass law approximation (I.5.1), neglecting the radiation losses.
We observe that for the steel and polyethylene plates, the measured IL agree quite
well with the mass law (I.5.1) the in frequency ranges below the critical frequencies
fc. For the steel plates, in the frequency regions above the critical frequencies,
we observe that the measured IL is significantly lower than what is indicated by
the mass law (I.5.1), and that the radiation loss approximation (I.5.3) captures the
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level of sound reduction in the sense that the predicted IL is reduced below the
mass law. Also for the polyethylene plates, we observe that the measured IL stays
significantly below the mass law well before the critical frequencies. A reason for
this might be bigger radiation losses than predicted by our chosen model, as well as
some significant viscous losses due to shear forces for the polyethylene plates.

For the ME and PE plates, drops in the IL are observed well below the critical
frequencies fc, which is visible in Figures I.5.1, as compared with half of the critical
frequency fc/2 according to Table I.2. This might be caused by stiffness controlled
resonances of the plates or some part of the experimental setup.
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Figure I.5.2: Third octave band measured IL for the solid plates of Set E and the mass
law approximation for (a) steel and (b) polyethylene plates.

Table I.2: Critical frequencies fc for the solid plates.

Plate Thickness (mm) fc (kHz)

ME 6 2.0
ME 10 1.2
PE 3 19
PE 6 9.7
PE 10 5.8
PE 20 2.9

Conclusions

In the present work a comparative experimental study of sound insertion loss (IL)
for perforated plates with viscoelastic filling is performed. Since the diameter of the
perforation is 6 mm, it is the case of so-called macro-perforation. We compare the
IL for perforated plates filled with polyurethane and grease, with the IL for solid
plates.

In the first part of the experiment, we investigate the effect of the filling on the
sound absorption properties for throughout filled perforation, and compare the IL
with the one for solid plates. We conclude that the IL for both solid and perforated
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plates follows the mass law for most of the frequencies. However, for some narrow
frequency ranges, we observe a considerable difference in the IL. For example, for
20 mm thick plastic plates, the PU filling gives up to 17 dB IL difference in the
frequency range 1450–1600 Hz, compared with the solid plate.

The second part of the experiment concerns layered plates with viscoelastic in-
clusions. We have found that inserting a perforated layer with pseudoplastic (grease)
filling between two solid plates without considerable changes in mass, leads to the
effective decrease of the IL for most of the frequencies. Namely, the mass of a 10
mm solid metal sample and of a layered sample with 10 mm filled perforated plate
between the two solid plastic ones differ by about 2%, while the difference in the
sound IL reaches 10 dB for frequencies in the range 800–1600 Hz. Similarly, consid-
ering a solid 10 mm plastic sample and a layered 9 mm plastic sample with grease
inclusions, we observe more than 10 dB difference in IL for frequencies 630–3150
Hz, for essentially the same mass. It would be of large interest to compare both
theoretically and experimentally the plates with throughout filled perforation and
isolated inclusions for several types of filling, as well as investigate the influence of
the perforation size and shape.
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PAPER II

Iterative FEM-Scheme for a
Solid-Fluid Acoustic Problem1

Andrei Karzhou2

UiT The Arctic University of Norway

Abstract

We propose an iterative method for solution of a coupled acoustic fluid-
solid interaction model. Assuming harmonic excitation in time, we use
the pressure-displacement formulation of the acousto-elastic problem.
The fluid is assumed to be ideal inviscid compressible medium governed
by a wave equation for the acoustic pressure. The linear isotropic elastic
structure is described by elasto-dynamic equations for the displacement
field. We impose kinematic and dynamic conditions at the interface:
The fluid particles velocity matches the velocity of the solid, and the
balance of normal stresses holds. In the proposed iterative method, the
fluid and solid subproblems are solved alternatingly, taking into account
the interface conditions. The convergence of the iterative algorithm is
demonstrated numerically for fluid-solid structures with different peri-
odic, as well as random interfaces. The algorithm is applied for com-
parison of acoustic properties of fluid-solid structures depending on the
geometry of the rough interface.

Keywords:Solid-fluid interaction, pressure-displacement formulation, iterative method,
sound attenuation.

1Submitted to AIP Conference Proceedings: Harmonic Analysis, related Function Spaces, and
their Applications, 2023.

2Corresponding author. E-mail andrei.karzhou@uit.no.
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II.1 Introduction

The present work concerns the numerical simulation of an incompressible fluid in-
teracting with a thin elastic structure through an interface with periodic geometry.
The target application is the description of the acoustic properties of plates with
rough surfaces, although the method presented here applies to other fluid–structure
interaction problems.

Fluid-structure interactions arise in many engineering problems dealing with
noise vibrations, structural-acoustic problems, wind-turbine aerodynamics, as well
as in bio-medical problems like cardiovascular fluid-structure interactions (see e.g.
[1], [2]). A coupled fluid-solid acoustic problem shows an interplay between struc-
tural deformations in the solid and the pressure load in the acoustic medium. In
other words, acoustic waves in the fluid give rise to structural vibrations and vice
versa. It is the interface interactions that determine the intensity of sound prop-
agation in the structure. In [3] the authors show acoustic insulation of a hollow
core periodic sandwich panel with incorporated resonant structures. These host
structures with resonant cells are acoustic metamaterials. One of the main fea-
tures of such materials is the presence of certain frequency ranges (acoustic stop
bands) wherein the transmission of sound through the structure is significantly re-
duced compared to bulk materials without microstructure. The main advantage of
using metamaterials in acoustics is that “waves can be affected by incorporating
structural resonant elements of sub-wavelength sizes, i.e. features that are actu-
ally smaller than the wavelength of the waves to be affected” [3]. The geometry of
the interface might also cause mode localization. In [4] the authors consider closed
resonators with absorbing properties and irregular geometry. It is shown that the
geometrical irregularity of the absorbent material leads to a special “astride” mode
localization. These localized modes play significant role in the dissipation of the
acoustic energy in the non-absorbing regions. In the noise abatement walls produc-
tion, the geometry of the interface is an important factor, together with the speed of
sound and the material-air density ratio [5]. One of the tasks in engineering design
is to find an optimal shape for a structure susceptible to imposed constraints, as for
example shape optimization in fluid-structure interaction problems (see e.g. [6, 7,
8]).

There are several reviews of numerical methods to compute fluid-solid interaction
in acoustics [9, 10, 11]. Numerical methods for solving fluid-structure interaction
problems can be divided into monolithic and partitioned. In a monolithic approach
the whole system, that is the solid domain, the fluid one, and their coupling at the
interface, is solved simultaneously. As noted in [9], this approach might be more
accurate for some multidisciplinary problems, but is often very computationally ex-
pensive and heavy. A common tool to solve such coupled problems is the Finite
Element Method (FEM) [12, 13, 14, 15, 16, 17]. That is why the partitioned ap-
proach is often used. In such case, the solid and fluid domains are considered as two
computational domains with the interface conditions used explicitly as a coupling
between the two domains. The partitioned approach is specially advantageous when
the interface between the solid and fluid domains has a complicated structure, as in
the examples we consider in Section “Numerical results”. In the present work we
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use the partitioned approach: We split the fluid-structure problem into fluid and
structural subproblems and use separate solvers for these subproblems [18]. We ver-
ify the convergence of a suitable energy to confirm the convergence of the iteration
scheme. The numerical computations are done in the partial differential equations
solver FreeFEM++ [19].

In this paper we propose an iterative method for coupled acoustic fluid-solid in-
teraction models for an interface with periodic microstructure. Assuming harmonic
excitation in time, we use the pressure-displacement formulation for the acousto-
elastic problem [20, 21]. The fluid is assumed to be ideal inviscid compressible
medium governed by the wave equation for acoustic pressure. The linear isotropic
elastic structure is described by elasto-dynamic equations for the displacement field.
We impose kinematic and dynamic conditions at the interface: the fluid particles
velocity matches the velocity of the solid, and the balance of normal stresses holds.
The method is applied to the sound damping problem for interfaces with different
geometries. Namely, we compare the displacement on the side of the plate opposed
to the fluid for five different geometries: flat, squared, toothed, circles, and random.
We derive strong and weak formulation of a coupled solid-fluid interaction problem
in Section “Model problem”. The computational process of solving the problem is
described in Section “Iterative algorithm”. Then we demonstrate the solution of
the problem for various materials and interfaces, and numerical convergence of the
iterative scheme in Section “Numerical results”. Finally we summarize our work in
Section “Conclusion”.

II.2 Model problem

In this section we formulate a mathematical model which is used in the sequel for
the numerical computations (see, e.g. [20]). Let the solid (elastic strip) and the fluid
(air) occupy rectangular domains such that Ωf = (0, L)×(0, L) be the fluid domain,
and let the solid domain Ωs have thickness W > 0, as shown in Figure II.2.1. The
interface between the two domains is denoted by Γ. The rest of the boundary of the
solid part is ΓNs ∪ ΓDs = ∂Ωs \ Γ. The boundary of the fluid part consists of three
parts ∂Ωf = ΓNf ∪ Γ ∪ ΓDf

, as shown in Figure II.2.1.

We emphasize that the problem formulation and the proposed iterative algorithm
for solution of the fluid-structure interaction problem is valid in three dimensions.
We choose, however, to present a model problem and numerical examples in two
dimensions.

We consider several interface geometries shown in Figure II.2.2. There is a
geometrical constraint for the solid samples of different interface shape, namely,
the area of the domain Ωs is preserved. In the case of squared and triangular
interfaces shown in Figure II.2.2 (b), (c) respectively, the width of the tooth forming
corresponding interface is equal to half the width of the sample with a straight
interface. The height of each tooth is chosen from the condition of dividing the height
L of the sample with a flat interface into N equal parts (N = 37 for the squared
interface, N = 38 for the triangular one). The diameter of each circle forming the
rounded interface presented in Figure II.2.2 (d) is chosen based on splitting the
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ΩfΩs

Γ

W L

L

ΓDf

ΓNf

ΓNf

ΓDs

ΓNs

Figure II.2.1: Geometry in the solid-fluid interaction model problem.

(a) (b) (c) (e)(d)

Figure II.2.2: Interface geometries: (a) flat, (b) squared, (c) triangular, (d) rounded,
(e) random.

height of the sample with a flat interface into N = 37 elements. Random interface
shown in Figure II.2.2 (e), is built up from N = 37 straight elements. The length
of each element is randomly chosen.

II.2.1 Strong and weak formulation of a coupled solid-fluid
interaction problem

In this section we present strong and weak formulation of the problem. We use the
equations of elastodynamics on solid domain Ωs with boundaries ΓNs, ΓDs and Γ
and wave equation on the domain Ωf with boundaries ΓNf , ΓDf and Γ as shown in
Figure II.2.1. Denoting by U the displacement in the elastic material, and by σ the
stress matrix, we obtain the following wave (balance) equation on the domain Ωs

div σ = ρs
∂2U

∂t2
in Ωs,

where ρs is density of the elastic material. By Hooke’s law, the stress is σ = Aε(U),
and the balance equation reads

div(Aε(U)) = ρs
∂2U

∂t2
in Ωs,

where A is the material matrix, and ε is symmetrical part of gradient, that is
ε = (∇+∇T )/2.
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Considering a harmonic excitation with a certain frequency ω, and denoting
U(x, t) = ũ(x)e−iωt, we obtain the following balance equation for ũ(x)

divσ(ũ) = −ω2ρsũ in Ωs. (II.2.1)

Two of the four sides of the rectangle Ωs are fixed, where we impose homogeneous
Dirichlet conditions for the displacement ũ

ũ = 0 on ΓDs, (II.2.2)

while Γ is subjected to an external (from the fluid side) excitation.
We set traction-free boundary condition on ΓNs

σ(ũ)ns = 0 on ΓNs,

where ns is the external unit normal vector to Ωs.
In the air part Ωf , the harmonically varying in time sound pressure is P (x, t) =

p̃∗(x)e−iωt. The acoustic wave equation for the sound pressure P is

∆P =
1

c2a

∂2P

∂t2
in Ωf , (II.2.3)

where ca = 344 m/s is speed of sound in the air at normal ambient conditions. For
p̃∗(x) the acoustic wave equation (II.2.3) is transformed into Helmholtz equation

∆p̃∗ +
ω2

c2a
p̃∗ = 0 in Ωf .

The boundary ∂Ωf consists of the interface Γ between the solid and the air, the free
part ΓNf where we impose Neumann boundary conditions, and ΓDf where we have
nonhomogeneous Dirichlet boundary conditions

∇p̃∗ · nf

∣∣
ΓNf

= 0, p̃∗
∣∣
ΓDf

= pe.

Here pe is the pressure acting on the right side of Ωf as illustrated in Figure II.2.1,
and nf is an exterior unit normal to Ωf .

As mentioned above, on the interface Γ we impose the continuity of pressure
condition

σ(ũ)ns = −p̃∗ ns,

Note that nf = −ns on the interface Γ.
Recalling the linearized Euler equation in the fluid part Ωf , we obtain

∇P · nf = −ρf
∂2Uf

∂t2
· nf on Γ,

where Uf is the displacement in the fluid. Using the harmonic time dependence,
and using the continuity of the displacement on the interface Γ, we get

∇p̃∗ · nf

∣∣
Γ
= ω2ρf ũ · nf

∣∣
Γ
.
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To deal with the non-homogeneous Dirichlet boundary condition on ΓDf , we intro-
duce p̃ by setting

p̃ = p̃∗ − pe.

Then p̃ satisfies the homogeneous Dirichlet boundary condition on ΓDf and Neu-
mann boundary conditions on ΓNf

p̃
∣∣
ΓDf

= 0, ∇p̃ · nf

∣∣
ΓNf

= 0. (II.2.4)

Continuity of pressure condition reads

σ(u)ns = −(p̃+ pe)ns, (II.2.5)

and the equation for p̃ is

∆p̃+
ω2

c2a
p̃ = −ω

2

c2a
pe in Ωf . (II.2.6)

Finally, the coupled system for u and p∗ takes the form

divσ(ũ) = −ω2ρsũ in Ωs,

σ(ũ) = Aε(ũ) in Ωs,

ũ = 0 on ΓDs,

σ(ũ)ns = 0 on ΓNs,

σ(ũ)ns = −(p̃+ pe), on Γ,

∇p̃ · nf = ω2ρf ũ · nf on Γ, (II.2.7)

∆p̃+
ω2

c2a
p̃ = −ω

2

c2a
pe in Ωf ,

∇p̃ · nf = 0 on ΓNf ,

p̃ = 0 on ΓDf .

Equations (II.2.7) present a strong formulation of our problem. To derive a weak
formulation of (II.2.7), which is used for the computations in FreeFEM++, we
i) multiply both governing equations (II.2.1), (II.2.6) for ũ and p̃ by smooth test
functions, and ii) integrate by parts over the corresponding domains Ωs and Ωf .
The weak formulation for balance equation (II.2.1) with the homogeneous Dirichlet
boundary condition (II.2.2) and the interface condition (II.2.5) is: Find ũ ∈ H1(Ωs)
such that ũ = 0 on ΓDs and satisfying the following integral identity:∫

Ωs

ϵ(ũ) · Aϵ(v) dx− ω2ρs

∫
Ωs

ũ · v dx = −
∫
Γ

p̃ ns · v dS −
∫
Γ

pe (ns · v) dS, (II.2.8)

for any test function v ∈ H1(Ωs) such that v = 0 on ΓDs.
The weak formulation for the acoustic wave equation (II.2.6) with the homoge-

neous boundary condition (II.2.4) is: Find p̃ ∈ H1(Ωf ) such that p̃ = 0 on ΓDf and
satisfying the following integral identity:∫

Ωf

∇p̃ · ∇q dx− ω2

c2a

∫
Ωf

p̃q dx =
ω2

c2a

∫
Ωf

peq dx+ ω2ρf

∫
Γ

(ũ · nf )q dS, (II.2.9)
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for any test function q ∈ H1(Ωf ) such that v = 0 on ΓDf .
Equations (II.2.8) and (II.2.9) constitute a coupled system in a weak form. For

verification of existence of solutions to this system, it is convenient to write it as
follows: Find (ũ, p̃) ∈ H1(Ωs)×H1(Ωf ) such that ũ = 0 on ΓDs and p̃ = 0 on ΓDf ,
and ∫

Ωs

ϵ(ũ) · Aϵ(v) dx+
∫
Ωf

∇p̃ · ∇q dx− ω2ρs

∫
Ωs

ũ · v dx− ω2

c2a

∫
Ωf

p̃q dx

− ω2ρf

∫
Γ

(ũ · nf )q dS +

∫
Γ

p̃ ns · v dS

=
ω2

c2a

∫
Ωf

peq dx−
∫
Γ

pe (ns · v) dS, (II.2.10)

for all (v, q) ∈ H1(Ωs)×H1(Ωf ), such that v = 0 on ΓDs and q = 0 on ΓDf .
By the Fredholm alternative, as long as ω is not on the spectrum of the problem∫

Ωs

ϵ(u) · Aϵ(v) dx+
∫
Ωf

∇p · ∇q dx− ω2ρs

∫
Ωs

u · v dx− ω2

c2a

∫
Ωf

pq dx

− ω2ρf

∫
Γ

(u · nf )q dS +

∫
Γ

p ns · v dS = 0, (II.2.11)

for any pe ∈ H1(Ωf ), there exists a unique solution (ũ, p̃) ∈ H1(Ωs)×H1(Ωf ), such
that ũ = 0 on ΓDs and p̃ = 0 on ΓDf , of (II.2.10). Also under suitable orthogo-
nality condition on the data pe, uniqueness may be guaranteed. Some eigenvalues
to (II.2.11) appear as peaks in the frequency response graphs, and this is illustrated
in the numerical examples below.

In the next section we develop an iterative procedure for numerical solution of
(II.2.8)–(II.2.9). To this end, we pass to the dimensionless variables.

II.2.2 Nondimensionalization

In this subsection we pass to the dimensionless variables. Namely, let us introduce
the following dimensionless quantities

x =
x̃

d
, A =

Ã

E
, p =

p̃

p0
, p∗ =

p̃∗

p0
=
p̃− pe
p0

ui =
ũi
d
, (II.2.12)

where p0 is some reference pressure value, pe is the pressure acting on the right side
of Ωf , and E is the Young modulus. Under the change of variables (II.2.12) we have

dx̃ = d2dx, dS̃ = d dS, ∇x̃ =
1

d
∇x.

Making the change of variables in (II.2.8) and (II.2.9), and keeping the same nota-
tions for the rescaled domains Ωs,Ωf (that are now rectangles of size 1× (L/d) and
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(L/d)× (L/d)) and their boundaries, we get



E

p0

∫
Ωs

ϵ(u) · Aϵ(v) dx+
∫
Γ

p ns · v dS +
pe
p0

∫
Γ

ns · v dS = ω2d2
ρs
p0

∫
Ωs

u · v dx,

∫
Ωf

∇p · ∇q dx− ω2d2

c2a

∫
Ωf

pq dx− ω2d2
ρf
p0

∫
Γ

(u · nf )q dS =
ω2d2

c2a

pe
p0

∫
Ωf

q dx.

u = 0 on ΓDs, p = 0 on ΓDf .
(II.2.13)

System (II.2.13) is solved using an iterative procedure presented in the next section.

II.3 Iterative algorithm

The solution of the task is provided by iterative approach. On each iteration two
weak formulations, one for fluid part and another one for solid part, are solved
separately. Both weak formulations have a cross-term coming from the interface
condition. The latter plays the main role in the iterations between the fluid and
solid parts.

Iterative algorithm

Step 0: Set u0 = 0 on Γ.

Step 1: On the ith iteration (i = 1, . . . , N),

1) Solve for the pressure in the fluid part pi given the displacement ui−1 on the
interface from the previous iteration:

∫
Ωf

∇pi · ∇q dx−
ω2d2

c2a

∫
Ωf

piq dx = ω2d2
ρf
p0

∫
Γ

(ui−1 · nf )q dS +
ω2d2

c2a

1

p0

∫
Ωf

pe q dx.

For i = 1 use u = u0.

2) Solve for the displacement ui in the solid, given the calculated pressure on
interface:

E

p0

∫
Ωs

ϵ(ui) · Aϵ(v) dx+ ω2d2
ρs
p0

∫
Ωs

ui · v dx = −
∫
Γ

pi ns · v dS −
1

p0

∫
Γ

pe ns · v dS.
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To establish the convergence of the iterative procedure, we rewrite (II.2.13) mov-
ing the interface terms to the right-hand side and summing up the two equations:

E

p0

∫
Ωs

ϵ(u)TAϵ(v) dx− ω2d2
ρs
p0

∫
Ωs

u · v dx+
∫
Ωf

∇p · ∇q dx (II.3.1)

− ω2d2

c2a

∫
Ωf

pq dx− ω2d2

c2a

pe
p0

∫
Ωf

q dx

= −
∫
Γ

p ns · v dS −
pe
p0

∫
Γ

ns · v dS + ω2d2
ρf
p0

∫
Γ

(u · nf )q dS. (II.3.2)

Similarly, summing up the weak forms on the ith iteration for u and the (i + 1)th

iteration for p, and then subtracting (II.3.1) we obtain:

E

p0

∫
Ωs

ϵ(ui − u)TAϵ(v) dx − ω2d2
ρs
p0

∫
Ωs

(ui − u) · v dx +

∫
Ωf

∇(pi+1 − p) · ∇q dx

− ω2d2

c2a

∫
Ωf

(pi+1 − p)q dx = −
∫
Γ

(pi − p)ns · v dS − ω2d2
ρf
p0

∫
Γ

(ui − u) · nsq dS.

(II.3.3)

Here we have taken into account that nf = −ns. We write a similar equation for
the jth iteration, and subtract the latter from (II.3.3) to get

E

p0

∫
Ωs

ϵ(uj − ui)TAϵ(v) dx − ω2d2
ρs
p0

∫
Ωs

(uj − ui) · v dx +

∫
Ωf

∇(pj+1 − pi+1) · ∇q dx

− ω2d2

c2a

∫
Ωf

(pj+1 − pi+1)q dx+ ω2d2
ρf
p0

∫
Γ

(uj − ui) · nsq dS +

∫
Γ

(pj − pi)ns · v dS = 0.

(II.3.4)

We introduce the cross term Ej,i built up from two last terms in (II.3.4):

Ej,i = ω2d2
ρf
p0

∫
Γ

(uj − ui) · ns(pj − pi) dS +

∫
Γ

(pj − pi)ns · (uj − ui) dS,

as equation (II.3.4) hold for any admissible q and v. To investigate the convergence
of the iterative process, we study numerically how Ej,i decays when the number of
iterations grows. We consider two cases

a) Ei+1,i = Ei (ui+1, ui, pi+1, pi) =

(
1 + ω2d2

ρf
p0

)∫
Γ

(ui+1 − ui) · ns(pi+1 − pi) dS,

b) EN,i = Ei (uN , ui, pi+1, pi) =

(
1 + ω2d2

ρf
p0

)∫
Γ

(uN − ui) · ns(pN − pi) dS.
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Table II.1: Material parameters.

Material Young’s modulus E, GPa Poisson’s ratio ν Density ρs, t/m
3

Steel 200.00 0.30 7.86
Glass 50.00 0.20 2.60
Concrete 17.00 0.15 1.50
Lead 13.80 0.43 11.35
HDPE 1.00 0.40 0.96
Rubber 0.05 0.49 0.92

In the next section we compute the energies Ii+1,i and IN,i

Ii+1,i =

∫
Γ

(ui+1 − ui) · ns(pi+1 − pi) dS, (II.3.5)

IN,i =

∫
Γ

(uN − ui) · ns(pN − pi) dS, (II.3.6)

and show that the iterative algorithm converges numerically in selected cases.

II.4 Numerical results

To illustrate the proposed iterative scheme, we compute (u, p) for different geome-
tries of the interface (see Figure II.2.2) and different materials (see Table II.1). Ge-
ometric parameters are as follows: L = 0.4 m, W = 0.02 m, d = 0.01 m. Reference
pressure p0 is chosen to be equal to 1 Pa.

The computations are performed in FreeFEM++ software [19] in two dimensions.
Let the domains and the boundaries be denoted as shown in Figure II.2.1. The parts
of the boundary ΓNs, ΓDs, ΓNf , and ΓDf are discretized by the number of elements
proportional to the length of the corresponding boundary part with five elements
per unit length, i.e. the size of each element is h = 0.2. In the case of straight
interface we take NΓ = 1078 elements distributed uniformly with 16 elements per
unit length on the boundary Γ. In the computational domains Ωs and Ωf the mesh
has been generated by FreeFEM++. The mesh in Ωs contains ns

v = 8327 vertices,
ns
t = 15671 triangles, and ns

s = 981 edges on the boundary. The mesh in Ωf contains

nf
v = 97046 vertices, nf

t = 192629 triangles, and nf
s = 1461 edges on the boundary.

We use piecewise affine finite elements P1.

Figure II.4.1 presents the result of applying an iterative algorithm to the case of
squared interface between rubber and air for the excitation with frequency f = 500
Hz. In Figure II.4.1(a) we present the original not deformed solid domain. As the
result of the excitation of the solid-fluid structure, the solid domain is deformed as
illustrated in Figure II.4.1(b). Figure II.4.1(c) demonstrates the distribution of von
Mises stress in the solid body.
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00.0

40.0

20.0

00.0

40.0

20.0

(a) (b) (c)

Figure II.4.1: Solid domain: (a) non-deformed, (b) deformed after excitation with f =
500 Hz and magnified by 200, (c) normalized von Mises stress with σmax = 0.000469408
Pa.

II.4.1 Sound damping properties for different interface ge-
ometries

In order to compare the sound damping properties for different interface geometries,
we calculate the L2-norm of the displacement u on the backside boundary part ΓNs

for frequencies in the range [0, . . . , 1500] Hz. For brevity, we write L2(u) for the
norm ∥u∥L2(ΓNs). Figures II.4.2–II.4.7 show the result of the frequency sweep for
all the studied materials and different interfaces between solid and fluid domains.
There is one common feature in which we observe for all solid materials, namely,
the presence of a peak at the frequency fa = 860 Hz. This peak is due to the reso-
nance in the fluid domain. The shape of the interface plays a significant role in the
interaction between fluid and solid for frequencies in the range [170, . . . , 860] Hz for
the solids made of steel Figure II.4.2, concrete Figure II.4.3 and glass Figure II.4.4.
In the case of HDPE Figure II.4.5 and lead Figure II.4.6, the influence of the dif-
ferent interfaces on the displacement is most pronounced for the frequency ranges
[140, . . . , 190] Hz, [500, . . . , 860] Hz, and [1200, . . . , 1500] Hz. For the solid made of
rubber Figure II.4.7, the plot of the L2-norm of the displacement for different shapes
of the interface has peaks for the whole frequency range.

II.4.2 Numerical convergence of the iterative method

To validate the convergence of the proposed iterative method, we provide numerical
computations of the energies Ii+1,i (II.3.5) and IN,i (II.3.6) for different interface
shapes. The numerical computations confirm that both Ii+1,i and IN,i decrease
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Figure II.4.2: Frequency sweep for the different geometries of the steel solid interface.

Figure II.4.3: Frequency sweep for the different geometries of the concrete solid interface.

Figure II.4.4: Frequency sweep for the different geometries of the glass solid interface.

monotonously for all interface geometries and for all the materials under consider-
ation. Both interface energies stabilize after a certain amount of iterations.

Figure II.4.8 shows the dependence of the absolute values of Ii+1,i and IN,i on the
number of iterations for solids made of concrete with straight, squared, and random
shapes of the interface. Similarly, Figure II.4.9 shows Ii+1,i and IN,i vs. the iteration
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Figure II.4.5: Frequency sweep for the different geometries of the HDPE solid interface.

Figure II.4.6: Frequency sweep for the different geometries of the lead solid interface.

Figure II.4.7: Frequency sweep for the different geometries of the rubber solid interface.

number for the rubber elastic part with straight, squared, and random shapes of the
interface.

In addition to the cross energies on the interface, we illustrate the convergence of
the iterative process by evaluating the H1 norm of the difference between neighbor
iterations of displacement u and sound pressure p for the case of concrete (Figure



P
A
P
E
R

II
.
F
E
M

F
O
R

S
O
L
ID

-F
L
U
ID

IN
T
E
R
A
C
T
IO

N
P
A
P
E
R

II
.
F
E
M

F
O
R

S
O
L
ID

-F
L
U
ID

IN
T
E
R
A
C
T
IO

N
P
A
P
E
R

II
.
F
E
M

F
O
R

S
O
L
ID

-F
L
U
ID

IN
T
E
R
A
C
T
IO

N
P
A
P
E
R

II
.
F
E
M

F
O
R

S
O
L
ID

-F
L
U
ID

IN
T
E
R
A
C
T
IO

N

62 PAPER II. FEM FOR SOLID-FLUID INTERACTION

(a) (b)

Figure II.4.8: Absolute value of (a) Ii+1,i and (b) IN,i for concrete-air interface at
f = 500 Hz.

(a) (b)

Figure II.4.9: Absolute value of (a) Ii+1,i and (b) IN,i for rubber-air interface at f = 500
Hz.

II.4.10) and rubber (Figure II.4.11). Formulas for H1 norms are as follows

H1
Ωs
(ui+1 − ui) := ∥ui+1 − ui∥H1(Ωs) =

(∫
Ωs

(
|ui+1 − ui|2 + |∇(ui+1 − ui)|2

)
dx
)1/2

,

H1
Ωf
(pi+1 − pi) := ∥pi+1 − pi∥H1(Ωf ) =

(∫
Ωf

(
|pi+1 − pi|2 + |∇(pi+1 − pi)|2

)
dx
)1/2

.

The value of the discrepancy becomes small and stabilizes already after about ten
iterations.

Conclusion

In this work we have presented an iterative algorithm for solving a fluid-structure
interaction problem under a harmonic excitation. The target problem is the descrip-
tion of acoustic properties, and in particular the insertion loss, for elastic plates with
rough interface. We investigate the convergence of the iterative scheme numerically,
and illustrate the proposed algorithm by applying it to a fluid-structure interaction
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(a) (b)

Figure II.4.10: H1-norm of the difference between neighbor iterations for (a) displace-
ment in concrete and (b) sound pressure in air for f = 500 Hz.

(a) (b)

Figure II.4.11: H1-norm of the difference between neighbor iterations for (a) displace-
ment in rubber and (b) sound pressure in air for f = 500 Hz.

problem with a rough interface. Several different periodic geometries of the inter-
face are considered, as well as a random one. We have compared the L2-norm of
the displacement on the back side of the plate, looking for an optimal geometry for
sound damping. All these structures show similar trend and similar values of the
L2-norm of the displacement in the solid part, except for a few frequencies where the
norm of the displacement for the random geometry is larger compared to periodic
interface. Moreover, because of the resonance in the fluid domain, at the frequency
fa = 860 Hz we observe a peak in the displacement plot for all materials and inter-
faces. The convergence of the iterative scheme is shown numerically by computing
the cross energy on the interface, as well as the H1-norms of the displacements and
sound pressure in solid and fluid domains, respectively. In all cases we observe good
convergence already after ten iterations.

References

[1] Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Computational fluid-structure
interaction: methods and applications. John Wiley & Sons, 2013.



P
A
P
E
R

II
.
F
E
M

F
O
R

S
O
L
ID

-F
L
U
ID

IN
T
E
R
A
C
T
IO

N
P
A
P
E
R

II
.
F
E
M

F
O
R

S
O
L
ID

-F
L
U
ID

IN
T
E
R
A
C
T
IO

N
P
A
P
E
R

II
.
F
E
M

F
O
R

S
O
L
ID

-F
L
U
ID

IN
T
E
R
A
C
T
IO

N
P
A
P
E
R

II
.
F
E
M

F
O
R

S
O
L
ID

-F
L
U
ID

IN
T
E
R
A
C
T
IO

N

64 PAPER II. FEM FOR SOLID-FLUID INTERACTION

[2] Jing T. X. “Chapter 1 - Introduction”. In: Fluid-Solid Interaction Dynamics.
Ed. by T. X. Jing. Academic Press, 2019, pp. 1–42. doi: 10.1016/B978-0-
12-819352-5.00001-X.

[3] C. Claeys, E. Deckers, B. Pluymers, and W. Desmet. “A lightweight vibro-
acoustic metamaterial demonstrator: Numerical and experimental investiga-
tion”. In: Mechanical Systems and Signal Processing 70-71 (2016), pp. 853–
880. issn: 0888-3270. doi: 10.1016/j.ymssp.2015.08.029.

[4] S. Félix, B. Sapoval, M. Filoche, and M. Asch. “Enhanced wave absorp-
tion through irregular interfaces”. In: Europhysics Letters 85.1 (Jan. 2009),
p. 14003. doi: 10.1209/0295-5075/85/14003.

[5] V. Kubytskyi, M. Filoche, and B. Sapoval. “Increased absorption due to lo-
calized resonances”. In: 41st International Congress and Exposition on Noise
Control Engineering 2012, INTER-NOISE 2012 10 (Jan. 2012), pp. 8196–
8203.
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Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 307–315. isbn: 978-
3-642-11795-4.

[19] F. Hecht. “New development in FreeFem++”. In: J. Numer. Math. 20.3-4
(2012), pp. 251–265. issn: 1570-2820. url: https://freefem.org.
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PAPER III

Feedforward Neural Network for
Frequency Response1

Klas Pettersson
Chalmers University of Technology, Sweden

Andrei Karzhou
UiT The Arctic University of Norway

Irina Pettersson
Chalmers University of Technology and Gothenburg University, Sweden

Abstract

The Helmholtz equation has been used for modeling the sound pres-
sure field under a harmonic load. Computing harmonic sound pressure
fields by means of solving Helmholtz equation can quickly become un-
feasible if one wants to study many different geometries for ranges of
frequencies. We propose a machine learning approach, namely a feedfor-
ward dense neural network, for computing the average sound pressure
over a frequency range. The data is generated with finite elements, by
numerically computing the response of the average sound pressure, by
an eigenmode decomposition of the pressure. We analyze the accuracy
of the approximation and determine how much training data is needed
in order to reach a certain accuracy in the predictions of the average
pressure response.

Keywords: Frequency response, sound pressure, Helmholtz equation, machine
learning, feedforward dense neural network.

1Published in Acoustics Australia, 50(2), 185-201 (2022).
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III.1 Introduction

Modeling such acoustics problems as building acoustics, vehicle interior noise prob-
lems, noise reduction, insertion and transmission loss, often requires computing
average sound pressure, which in its turn is based on the computation of natu-
ral frequencies and the response to a dynamic excitation. There are two main
approaches to modeling of acoustic systems under small frequency excitation: To
model acoustics in the time domain or in the frequency domain. Sound waves, as
vibrations, are described by a time dependent wave equation, which can be reduced
to a time independent Helmholtz equation by assuming harmonic dependence on
time [1]. If the geometry of the domain is complex, it is decomposed into subdo-
mains, in each subdomain the analysis is performed. Given an acoustic system, one
needs to solve the Helmholtz equation repeatedly for given frequency, which might
be very costly. In addition, the most important and costly part in a FEM-analysis
is the computation of eigenfrequencies and eigenfunctions in each subdomain. We
propose a feedforward dense neural network (multi-layer perceptron) for computing
the average sound pressure in cylindrical cavities with polygonal boundary.

Some motivation for studying the average pressure response over a range of
frequencies can be found in engineering applications. For example, standardized
frequency ranges can be found in the ISO standard [2].

For an overview of deep learning in neural networks, we refer to [3] and for
overview of basic mathematical principles to [4, 5] and literature therein. Appli-
cation of machine learning methods in acoustics has made significant progress in
recent years. A comprehensive overview of the recent advances is given in [6]. The
frequency response problem, being the basis in modeling of acoustic problems, is not
specifically addressed in [6], as any other combination of machine learning techniques
and modeling with partial differential equations (PDEs).

There are many work devoted to solving PDEs, forward as well as inverse prob-
lems, by means of machine learning techniques. We mention just some of them. The
work [7] propose an algorithm to solve initial and boundary value problems using
artificial neural networks. The gradient descent is used for optimization. In [8] the
authors propose an algorithm to solve an inverse problem associated with the cal-
culation of the Dirichlet eigenvalues of the anisotropic Laplace operator. The finite
elements are used to generate the training data. The main goal is to characterize
the material properties (coefficient matrix) through the eigenvalues.

In [9] the authors approximate solutions to high-dimensional PDEs with a deep
neural network which is trained to satisfy the differential operator, initial condition,
and boundary conditions. The convergence of the neural network to the solution of
a PDE is proved. In contrast to [7], the algorithm in [9] is mesh-free.

In [10] a partially learned approach is employed for the solution of ill-posed
inverse problems. The paper contains also a good literature overview for inverse
problems. In [11] the authors propose deep feedforward artificial neural networks
(mesh-free) to approximate solutions to partial differential equations in complex
geometries. The paper [12] focuses on the nonlinear partial differential equations.
Some other network inspired approaches in the study of PDEs are [13, 14, 15, 16].
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In [17] the authors propose an iterative solver for the Helmholtz equation which
combines traditional Krylov-based solvers with machine learning. The result is a
reduced computational complexity.

In the present paper we use feedforward fully connected neural networks with
the ReLU activation function in hidden layers in order to approximate the average
pressure function originated in frequency response problems. We choose to use
three hidden layers, 128 nodes in each, and ADAM optimizer. The step size in the
gradient descent is scheduled to have polynomial decay. A more detail description
of the neural network is provided in Section III.4.

The feedforward neural network is designed to directly learn the average pressure,
in contrast to the works cited above, where the neural networks are tailored to
predict the coefficients of the inverse problem or solutions to PDEs.

It is known that a neural network can approximate any continuous function
to an arbitrary accuracy [18]. We focus on the frequency response problem (low
frequencies) in two-dimensional polygonal cylinders. Assuming harmonic load on
a part on the boundary, we arrive at a time independent Helmholtz equation for
the sound pressure. The mean-value of the average pressure over a given frequency
range is an important quantity for characterizing the sound attenuation, insertion
and transmission losses. The numerical solution of this problems implies solving
the Helmholtz equation for many different values of the spectral parameter, which
is a costly problem. Besides, the pressure function is singular near the eigenvalues
of the Laplace equation, and the standard quadrature schemes cannot be applied
in order to compute the average Ψ over a frequency range (see Section III.2.3 and
Figure III.2.3(b) for the explanation). Instead, we represent the average pressure
Ψ (objective function) in terms of a Hilbert basis, the eigenmodes of the Laplace
operator. We generate data sets containing around 700 000 randomly generated
points which define polygonal cylinders and the corresponding objective functions
Ψ computed using finite elements. A feedforward neural network with five input
nodes (coordinates defining cylinders), three hidden layers and one output node
(scalar objective function Ψml) is then constructed to approximate the objective
function.

We analyze the performance of the model, and show the dependency of the
mean squared error (MSE) on the training set size. Moreover, we analyze how
many samples is needed to reach a desired approximation accuracy. For example,
for polygonal cylinders defined by five randomly generated points, on average over
95% are predicted with mean absolute error less than 0.01 when the training set
contains 200 000 data points. The data used for machine learning in this paper is
available at [19].

The sound pressure as a function of frequency is nonlinear, and thus the linear
regression methods perform poorly. In Section III.6, we show the results of the
approximation of the objective function by means of linear regression vs. feedforward
fully connected neural network with ReLU nonlinearity. The proposed method
performs much better, as expected.

For machine learning we have used Tensorflow [20], and the stochastic gradi-
ent descent optimizer ADAM [21]. For the numerical computation of the average
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pressure we used primarily the SLEPc [22], with user interfaces and numerical PDE
tools FreeFem [23] and FEniCS [24] to the standard numerical packages.

Our method can be applied for analyzing frequency response in elastic bodies
and fluid-structure interaction problems. In three-dimensional case the frequency re-
sponse problems become computationally heavy, and the effectiveness of the stochas-
tic gradient descent gives some hope for significant reduction of data needed for
training.

The rest of this paper is organized as follows. In Section III.2, the numerical
method for computing the average sound pressure response is described. Using
the numerical method, the data sets for polygonal cylinders are generated and the
data sets are described in Section III.3. In Section III.4, we specify the feedforward
dense neural network and the choices of for the training procedure. The model
obtained after training is evaluated in Section III.5, and compared to a linear model
in Section III.6.

III.2 Frequency response problem and average pres-

sure

Assume that a domain Ω is occupied by a inviscid, homogeneous, compressible
fluid (liquid or gas). There are several options for choosing a primary variable for
small amplitude vibrations: fluid displacement, acoustic pressure or fluid velocity
potential. We are going to use a description in terms of the scalar pressure function
P . Let c be the speed of sound in the fluid, and ρ be the mass density of the fluid,
both assumed not to depend on the pressure P . The equation of motion without
taking in account the damping is the wave equation for the acoustic pressure [1]:

ρ
∂2P (t, x)

∂t2
− c2∆P (t, x) = F (t, x). (III.2.1)

Here F is the applied load. The solution of the last equation is by linearity a sum
of a particular solution to a non-homogeneous equation (forced motion) and the
general solution of the homogeneous equation (natural motion). If the excitation
is harmonic F (t, x) = f(x) cos(ωt) = f(x)ℜeiωt, the forced motion is called the
steady-state response. The real-valued pressure together with the phase angle is
then called the dynamic frequency response of the system [25]. To eliminate the
time dependency in the wave equation, we substitute P (t, x) = ℜ(p(x)eiωt) into it
and obtain a time independent Helmholtz equation for the amplitude p:

−∆p(x)− ω2ρ

c2
p(x) = f(x).

If the acoustic medium is contained in a bounded domain Ω, we will need to impose
boundary conditions on the boundary ∂Ω. We will impose a harmonic load cos(ωt)
on the part of the boundary ΓD, which results in the non-homogeneous Dirichlet
boundary condition p = 1. On the rest of the boundary ΓN = ∂Ω \ ΓD is assumed
to be sound hard (zero-flux condition). The problem in the frequency domain takes



P
A
P
E
R

II
I.

M
L

F
O
R

F
R
E
Q
U
E
N
C
Y

R
E
S
P
O
N
S
E

P
A
P
E
R

II
I.

M
L

F
O
R

F
R
E
Q
U
E
N
C
Y

R
E
S
P
O
N
S
E

P
A
P
E
R

II
I.

M
L

F
O
R

F
R
E
Q
U
E
N
C
Y

R
E
S
P
O
N
S
E

P
A
P
E
R

II
I.

M
L

F
O
R

F
R
E
Q
U
E
N
C
Y

R
E
S
P
O
N
S
E

P
A
P
E
R

II
I.

M
L

F
O
R

F
R
E
Q
U
E
N
C
Y

R
E
S
P
O
N
S
E

III.2. FREQUENCY RESPONSE PROBLEM AND AVERAGE PRESSURE 71

the form

−∆p− ω2ρ

c2
p = 0 in Ω,

p = 1 on ΓD, (III.2.2)

∇p · ν = 0 on ΓN ,

where ν is the exterior unit normal.
We are going to solve (III.2.2) analytically for cylinders Ω with constant and

non-constant cross-section. We will obtain expressions for the mean-value of the
solution to (III.2.2) with respect to the spatial variable ⟨p⟩ = |Ω|−1

∫
Ω
p dx, and its

average with respect to the spectral parameter

λ =
ω2ρ

c2
.

The domain may be an open set in Euclidean space Rn. In what follows, we will
work with Ω a bounded Lipschitz domain in R2, that is a bounded open connected
subset of R2 with Lipschitz continuous boundary. Specifically, Ω will be a finite
cylinder with polygonal boundary.

We will in the sequel assume the quantities and variables to be scaled in such
a way they are nondimensionalized, and thereby also suppress units from both ma-
nipulations and figures.

III.2.1 Uniform cylinders

We start with cylinders with constant cross-section, where one can find explicit
formulas for eigenfunctions and eigenvalues for the Laplace operator and therefore
solve the frequency response problem analytically.

Let us denote Ω = (0, 1) × (−a, a) for rmin ≤ a ≤ rmax a uniform cylinder. The
boundary of Ω consists of two parts, and we denote ΓD = {(x1, x2) : x1 = 0} (the
part where a Dirichlet boundary condition will be imposed) and ΓN = ∂Ω\ΓD (with
a Neumann boundary condition). Consider the frequency response problem (III.2.2)
in Ω. By the Fredholm alternative, there exists a unique solution pλ ∈ H1(Ω)
to (III.2.2) if and only if λ is not an eigenvalue of the Laplace operator in the
cylinder:

−∆ψ = λψ in Ω,

ψ = 0 on ΓD, (III.2.3)

∇ψ · ν = 0 on ΓN .

By the Hilbert-Schmidt and the Riesz-Schauder theorems, the spectrum of (III.2.3)
is positive, discrete, countably infinite, and each eigenvalue of finite multiplicity,

0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn →∞, n→∞.
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Moreover, the eigenfunctions ψi form an orthonormal basis under a proper nor-
malization. By separation of variables, choosing a convenient enumeration, the
eigenvalues λi,k,l to (III.2.3) are given by

λi,k,l = µk + ηi,l, i = 1, 2, k, l = 0, 1, . . . , (III.2.4)

where

µk =
(2k + 1)2π2

4
, k = 0, 1, . . . , (III.2.5)

η1,l =
l2π2

a2
, η2,l =

(2l + 1)2π2

4a2
, l = 0, 1, . . . . (III.2.6)

The sequences µk > 0 and ηi,l ≥ 0 are the Dirichlet-Neumann eigenvalues of the
Laplace operator on (0, 1), and the Neumann eigenvalues of the Laplace operator
on (−a, a), respectively. The eigenfunctions ψi,k,l to (III.2.3) corresponding to the
eigenvalues λi,k,l are

ψ1,k,l = a1,k,l sin(
√
µkx1) cos(

√
η1,lx2), (III.2.7)

ψ2,k,l = a2,k,l sin(
√
µkx1) sin(

√
η2,lx2),

where ai,k,l are L
2(Ω) normalization factors defined by∫

Ω

ψi,k,lψj,p,q dx =

{
1 if (i, k, l) = (j, p, q),

0 otherwise.

Explicitly, a1,k,0 =
√

1/a, and otherwise ai,k,l =
√

2/a.
Let λ ∈ R not be an eigenvalue to (III.2.3). Then the method of separation of

variables gives a solution pλ to (III.2.2) in the case of uniform cylinder:

pλ = 1 +
∞∑
k=0

λ

µk − λ
2
√
µk

sin(
√
µkx1)

= cos(
√
λx1) + tan(

√
λ) sin(

√
λx1). (III.2.8)

Remark that pλ is constant in the x2-direction for this particular choice of harmonic
load p(0, x2) = 1.

When analyzing the acoustic response, one could be interested in the average
pressure defined for a frequency sweep, namely the average of pλ with respect to x
and λ. Let us first compute the average pressure ⟨pλ⟩ with respect to x:

⟨pλ⟩ =
1

|Ω|

∫
Ω

pλ dx =


tan(
√
λ)√

λ
if λ > 0,

1 if λ = 0.

(III.2.9)

The pressure pλ and its mean-value with respect to the space variable as a function
of λ is shown in Figure III.2.1.

The form of the response ⟨pλ⟩ in (III.2.9) indicates that it could be challenging to
numerically evaluate an integral of ⟨pλ⟩ in λ over an interval (λmin, λmax) that con-
tains a pole, because the computation of the Cauchy principal value of the integral
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requires both the location of the poles and their orders. For the uniform cylinder
we obtain the following explicit formula for the objective function:

Ψ =
1

λmax − λmin

p.v.

∫ λmax

λmin

⟨pλ⟩ dλ

=
1

λmax − λmin

p.v.

∫ λmax

λmin

tan(
√
λ)√

λ
dλ

=
2

λmax − λmin

log

∣∣∣∣ cos(√λmin)

cos(
√
λmax)

∣∣∣∣ , (III.2.10)

which is defined as long as both λmin, λmax are not eigenvalues of (III.2.3). More
precisely, if λ = λi,k,l is an eigenvalue to (III.2.3), the response pλ exists if and
only if

∫
Ω
ψi,k,l dx = 0 for all eigenfunctions corresponding to λi,k,l, by the Fredholm

alternative. One notes that
∫
Ω
ψ1,k,l dx = 0 for l ≥ 1, and

∫
Ω
ψ2,k,l dx = 0 for l ≥ 0.

Thus for λ = λ1,k,l with l ≥ 1, and for λ = λ2,k,l with l ≥ 0, the solution pλ
is unique modulo a linear combination of the corresponding eigenfunctions. Such
eigenfunctions do not contribute to the mean-value ⟨pλ⟩ and therefore also not to Ψ.
It follows that (III.2.9) holds for λ ̸= µk, and (III.2.10) holds for λmin, λmax ̸= µk.
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Figure III.2.1: The response pλ for λ = 20 (a), and the average pressure ⟨pλ⟩ (b) for a
uniform cylinder.

III.2.2 Cylinders with varying cross-section

In this section we will show how a Hilbert basis can be used to compute the average
in λ of ⟨pλ⟩ (the objective function) in the case when cylinders have varying cross-
section. The explicit formulas for the eigenvalues and eigenfunctions like (III.2.4)–
(III.2.7) are not available any more, and we will use the finite elements to compute
the eigenpairs of the Laplace operator.
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Let p, as before, for a given λ solve the frequency response problem

−∆p− λp = 0 in Ω,

p = 1 on ΓD, (III.2.11)

∇p · ν = 0 on ΓN .

The cylinder Ω is not uniform any more, and can be described by Ω = {x =
(x1, x2) : x1 ∈ (0, 1), x2 ∈ I(x1)}, where I(x1) = (−a(x1), a(x1)) is an interval such
that rmin ≤ a(x1) ≤ rmax.

We will represent the solution pλ of (III.2.11) in terms of the eigenpairs of the
Laplace operator

−∆ψ = κψ in Ω,

ψ = 0 on ΓD, (III.2.12)

∇ψ · ν = 0 on ΓN .

As before, the spectrum 0 < κ1 < κ2 ≤ · · · ≤ κj →∞ is discrete, and the eigenfunc-
tions ψi form a Hilbert basis in L2(Ω), and we assume that they are orthonormalized
by
∫
Ω
ψiψj dx = δij. Writing pλ = 1+

∑∞
i=1 βiψi and substituting into (III.2.11) one

gets

pλ(x) = 1 + |Ω|
∞∑
i=1

λ

κi − λ
⟨ψi⟩ψi(x), ⟨ψi⟩ =

1

|Ω|

∫
Ω

ψi dx. (III.2.13)

The mean value of pλ in Ω is

⟨pλ⟩ =
1

|Ω|

∫
Ω

pλ dx = 1 + |Ω|
∞∑
i=1

λ

κi − λ
⟨ψi⟩2

= 1− |Ω|
∞∑
i=1

⟨ψi⟩2 + |Ω|
∞∑
i=1

λ

κi − λ
⟨ψi⟩2. (III.2.14)

The pressure pλ in a polygonal cylinder, and its mean-value ⟨pλ⟩ with respect to the
space variable as a function of λ is shown in Figure III.2.2.

Let us now average (III.2.14) over (λmin, λmax) to get the objective function:

Ψ =
1

λmax − λmin

p.v.

∫ λmax

λmin

⟨pλ⟩ dλ

= 1 + |Ω|
∞∑
i=1

[
κi

λmax − λmin

log

∣∣∣∣κi − λmin

λmax − κi

∣∣∣∣− 1

]
⟨ψi⟩2. (III.2.15)

As we have seen above, for the case of a uniform cylinder, the right hand side of
(III.2.15) sums up to (III.2.10).
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III.2.3 Numerical computation of the average pressure re-
sponse

In order to compute the objective function Ψ (III.2.15) in the case of a non-uniform
cylinder, we compute the eigenpairs (κj, ψj) of (III.2.12) using the first order La-
grange finite elements.

The variational formulation for (III.2.12) reads: Find κ ∈ R and ψ ∈ H1(Ω)\{0},
ψ = 0 on ΓD, such that ∫

Ω

∇ψ · ∇v dx = κ

∫
Ω

ψ v dx, (III.2.16)

for any v ∈ H1(Ω), v = 0 on ΓD. For a triangulation mesh Th of Ω, we consider
Lagrange triangular finite elements of order 1 as a basis for the finite-dimensional
subspace

V0h =
{
v ∈ C(Ω) : v

∣∣
K
∈ P1 for all K ∈ Th, v = 0 on ΓD

}
. (III.2.17)

The internal approximation for the variational formulation (III.2.16) is∫
Ω

∇ψh · ∇vh dx = κh

∫
Ω

ψh vh dx, (III.2.18)

for all vh ∈ V0h. The eigenvalues of (III.2.18) form a finite increasing sequence

0 < κh,1 ≤ κh,2 ≤ · · · ≤ κh,ndl
, with ndl = dimV0h,

and there exists a basis in V0h consisting of corresponding eigenfunctions which is
orthonormal in L2(Ω). A proof of this statement can be found in [26, Ch. 7.4].

We look for a solution of (III.2.18) in the form ψh(x) =
∑ndl

i=1 U
h
i ϕi(x), where

(ϕi)1≤i≤ndl
is the basis in V0h. Introducing the mass matrix Mh and the stiffness

matrix Kh,

(Mh)ij =

∫
Ω

ϕi ϕj dx, (Kh)ij =

∫
Ω

∇ϕi · ∇ϕj dx, 1 ≤ i, j ≤ ndl, (III.2.19)
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Figure III.2.2: The response pλ for λ = 20 (a), and the average pressure ⟨pλ⟩ (b) for the
polygonal cylinder shown in Figure III.3.1(b). The vertical lines in (b) indicate the poles.
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we get the following discrete finite-dimensional spectral matrix problem:

Khψh = κhMhψh. (III.2.20)

The matricesMh and Kh are symmetric and positive definite.
The error estimate for the eigenvalues corresponding to eigenfunctions in H2(Ω),

which is for instance the case if Ω is convex in R2, is

|κi − κh,i| ≤ Cih
2,

where Ci does not depend on h = max{diam(K) : K ∈ Th}, but does depend on
the number of the eigenvalue, that is why is it important to take a sufficiently fine
mesh to get a good approximation for κi with large i (see e.g. [26]). More precisely,
if κi is an eigenvalue with eigenfunctions in Hk+1(Ω), Ω ⊂ Rn, and 2(k + 1) > n,
then |κi − κh,i| ≤ Cih

2k.
In the numerical method, we truncate the series in (III.2.15) at i = N ,

Ψh = 1 + |Ω|
N∑
i=1

[
κh,i

λmax − λmin

log

∣∣∣∣κh,i − λmin

λmax − κh,i

∣∣∣∣− 1

]
⟨ψh,i⟩2, (III.2.21)

where N is chosen such that the sum ranges over the eigenvalues up to at least
10λmax, and the number of degrees of freedom dimV0h is at least 10 times greater
than the greatest eigenvalue κh,N used in the computation. This ensures that
the eigenvalues κh,i and the eigenfunctions ψh,i of the discrete eigenvalue prob-
lem (III.2.20) are correct approximations to the exact eigenvalues κh,i and exact
eigenfunctions ψh,i of (III.2.16).

In order to evaluate the accuracy of the method, in the case of uniform cylin-
ders, we can compare the exact objective function (III.2.10) (the blue curve) with
its numerical approximation (III.2.21) (the dots). The result is presented in Fig-
ure III.2.3(a). The peaks of the objective function are located at the eigenvalues
µk since pλ has poles at these points. The graph is valid for a uniform cylinder of
arbitrary radius, because the pressure does not depend on the transverse variable.
It is important to note that numerical integration by means of the trapezoidal rule
of the exact response ⟨pλ⟩ given by (III.2.9) with respect to λ does not give a good
approximation for Ψ. In Figure III.2.3(b) one can see that the numerical integration
fails after the first eigenvalue. The reason for this is the singular behavior of pλ near
the eigenvalues µk.

In the case of non-uniform cylinders we do not have any explicit formulas any
more, so we investigate numerically the rate of convergence for the approximation
of Ψ by Ψh. For the sake of completeness, we present the convergence rate for both
uniform and non-uniform cylinders.

In Figure III.2.5(a), one can see a clear quadratic decay of |Ψ−Ψh| with respect
to mesh size h for uniform cylinders (convex). The objective function Ψh (III.2.21)
is computed as the average over (0, λmax) for several λmax and for uniform mesh
refinements. The quadratic decay of the error with respect to the mesh size h is
expected for first order polynomial approximations of a smooth function in L2(Ω).
In R2, the number of degrees of freedom dimV0h grows as h−2 for uniform mesh
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Figure III.2.3: Objective function in a uniform cylinder for intervals (0, λmax) with λmax

on the horizontal axis.
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Figure III.2.4: The objective function in a non-uniform cylinder in Figure III.3.1(b) for
intervals (0, λmax) with λmax on the horizontal axis.
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refinement, which suggests an expected rate of decay (dimV0h)
−1 for non-degenerate

uniform mesh refinement.

In Figure III.2.5(b), we present the rate of convergence while refining the mesh for
several cylinders with polygonal boundary. We observe a subquadratic convergence
rate with respect to the mesh size.
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Figure III.2.5: Rate of convergence of the finite element approximation of the objective
function Ψ. (a) The absolute error for a uniform cylinder. (b) The estimated rate of
convergence for four samples of non-uniform cylinders, and fixed λmax = 60.

III.2.4 Shape derivative of the average pressure response

In this section we compute the derivative Ψ′ of the objective function

Ψ =
1

λmax − λmin

∫ λmax

λmin

⟨pλ⟩ dλ, (III.2.22)

with respect to certain variations of the convex cylindrical domains Ω in R2. The
purpose of this is twofold. One, it ascertains that the accuracy of our trained model
on Lipschitz domains that are close in a precise sense to certain polygonal domains
in our evaluation sets. Two, it enables for some boosting of the training sets that
are otherwise somewhat costly to generate by the method we have chosen.

For a vector field V and a parameter t, we introduce the bi-Lipschitz transfor-
mation T (x) = x + tV (x). We denote by Ωt the image of Ω under T . Let Ψt be
the value of (III.2.22) for the domain Ωt, Ψ = Ψ0. With Ψ′

0, the derivative of Ψ at
t = 0, Ψ is linearized as

Ψt = Ψ0 + tΨ′
0 + o(t),

as t tends to zero.

In this section we employ standard techniques of domain variations in the theory
of elliptic equations. We refer to [27], [28], and [29] for expositions.
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Lemma III.2.1. Let V ∈ W 1,∞(Ω) be a solenoidal vector field on convex Ω. Suppose
that the interval [λmin, λmax] does not contain any eigenvalue κi for which ⟨ψi⟩ ≠ 0.
Then the shape derivative of the objective function (III.2.22) is given by

Ψ′ = lim
t→0

Ψt −Ψ0

t
=

∞∑
i,j=1

ci,j⟨∇V∇ψi · ∇ψj⟩⟨ψi⟩⟨ψj⟩,

where for κi = κj,

ci,j =
2|Ω|2

λmax − λmin

[
log

∣∣∣∣λmax − κi
κi − λmin

∣∣∣∣− κi
λmax − κi

− κi
κi − λmin

]
,

and for κi ̸= κj,

ci,j =
2|Ω|2

λmax − λmin

[
κi

κi − κj
log

∣∣∣∣λmax − κi
κi − λmin

∣∣∣∣− κj
κi − κj

log

∣∣∣∣λmax − κj
κj − λmin

∣∣∣∣] .
Proof. One notes that by elliptic regularity pλ ∈ H2(Ω). Denote by ṗλ ∈ H1(Ω,ΓD)
the material derivative of pλ: ṗλ = p′λ + ∇pλ · V , where p′λ ∈ H1(Ω) denotes the
shape derivative of the response with respect to V . By the regularity of V , there
exist a Sobolev extension, and thereby the shape derivatives with respect to V of the
response and the associated linear and bilinear forms exist in the sense of Fréchet
with respect to the parameter t.

A direct computation of the Gateaux derivative gives

Ψ′ =
1

λmax − λmin

∫ λmax

λmin

⟨pλ⟩′ dλ

=
1

λmax − λmin

∫ λmax

λmin

(⟨ṗλ⟩+ ⟨pλdivV ⟩ − ⟨pλ⟩⟨divV ⟩) dλ.

To compute ⟨ṗλ⟩, we note that ṗλ is an admissible test function in the variational
form of the equation for pλ:∫

Ω

∇(pλ − 1) · ∇v dx− λ
∫
Ω

(pλ − 1)v dx = λ

∫
Ω

v dx.

Therefore,

λ

∫
Ω

ṗλ dx =

∫
Ω

∇(pλ − 1) · ∇ṗλ dx− λ
∫
Ω

(pλ − 1)ṗλ dx

= 2

∫
Ω

∇(∇pλ · V ) · pλ dx−
∫
Ω

div(|∇pλ|2V ) dx

− 2λ

∫
Ω

(∇pλ · V )pλ + λ

∫
Ω

∇pλ · V dx+ λ

∫
Ω

div(pλ(pλ − 1)V ) dx,
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where one in the second step has differentiated the variational form of the equation
for pλ and in that way eliminated ṗλ by using pλ − 1 as a test function. Indeed,∫

Ω

∇ṗλ · ∇v dx− λ
∫
Ω

ṗλv dx

= −
∫
Ω

∇(∇pλ · V ) · ∇v dx−
∫
Ω

∇pλ · (∇v · V ) dx+

∫
Ω

div((∇pλ · ∇v)V ) dx

+ λ

∫
Ω

(∇pλ · V )v dx+ λ

∫
Ω

pλ(∇v · V ) dx− λ
∫
Ω

div(pλvV ) dx,

for any v ∈ H2(Ω) ∩H1(Ω,ΓD). After some manipulation of terms, one concludes
that

⟨pλ⟩′ = ⟨ṗλ⟩+ ⟨pλdivV ⟩ − ⟨pλ⟩⟨divV ⟩

= −⟨pλ⟩⟨divV ⟩+ ⟨p2λdivV ⟩ −
1

λ
⟨|∇pλ|2divV ⟩+

2

λ
⟨∇V∇pλ · ∇pλ⟩,

which for solenoidal V reduces to

⟨pλ⟩′ =
2

λ
⟨∇V∇pλ · ∇pλ⟩.

By substituting the expansion

pλ = 1 +
∞∑
i=1

βiψi, βi = |Ω|
λ

κi − λ
⟨ψi⟩,

and integrating in λ the desired formula is obtained, by the Fubini theorem.

For instance, in the case of a uniform cylinder,

pλ = cos(
√
λx1) + tan(

√
λ) sin(

√
λx1).

For solenoidal V ∈ W 1,∞(Ω), the shape derivative of the averaged pressure response
is

⟨pλ⟩′ =
2

λ
⟨(∂1pλ)2∂1V1⟩

= 2⟨(sin(
√
λx1)− tan(

√
λ) cos(

√
λx1))

2∂1V1⟩,

and

Ψ′ =
1

λmax − λmin

〈[
2 sin(

√
λ) cos(

√
λx1)

2

√
λ cos(

√
λ)

− 2 sin(
√
λx1) cos(

√
λx1)√

λ

]λmax

λmin

∂V1
∂x1

〉

+
1

λmax − λmin

〈[
sin(
√
λx1) cos(

√
λx1)√

λ cos(
√
λ)2

+
x1

cos(
√
λ)2

]λmax

λmin

∂V1
∂x1

〉
.

A somewhat more direct proof of Lemma III.2.1 goes as follows.
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A second proof of Lemma III.2.1. Let p̃tλ be such that p̃tλ − 1 ∈ H1(Ωt, T (ΓD)) and∫
Ωt

∇p̃tλ · ∇v dx− λ
∫
Ωt

p̃tλv dx = 0,

for all v ∈ H1(Ωt, T (ΓD)), supposing that t is small enough. Then by the Lipschitz
transform of the Sobolev space, using that T and T−1 are Lipschitz,

ptλ = p̃tλ ◦ T

is such that ptλ − 1 ∈ H1(Ω,ΓD) and it is the solution to∫
Ω

(∇T−T∇ptλ · ∇T−T∇v)|det∇T | dx− λ
∫
Ω

ptλv|det∇T | dx = 0, (III.2.23)

for all v ∈ H1(Ω,ΓD). Here, ∇T−T denotes the transpose of the inverse of the
gradient of T . Using that ψi form a Hilbert basis, let

ptλ =
∑
i

γi(t)ψi.

Recall that

pλ =
∑
i

βiψi.

Using that

∇T−T = 1− t∇V + o(t),

|det∇T | = 1 + tdivV + o(t),

as t tends to zero, and expanding the coefficients γi(t) as

ptλ =
∑
i

(γ0i + γ1i t)ψi + o(t),

give by equation (III.2.23) that γ0i = βi and

ptλ = pλ + t
∑
i

γ1i ψi + o(t),

where

γ1i =
∑
j

βj
κi − λ

[∫
Ω

∇V∇ψi · ∇ψj dx+

∫
Ω

∇ψi · ∇V∇ψj dx

−
∫
Ω

(∇ψi · ∇ψj)divV dx+ λ

∫
Ω

ψiψjdivV dx

]
+

λ

κi − λ

∫
Ω

ψidivV dx.
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The shape derivative may then be computed as follows:

Ψ′ =
1

λmax − λmin

(
lim
t→0

∫ λmax

λmin
⟨ptλ − pλ⟩ dλ
t

−
∫ λmax

λmin

⟨pλ⟩⟨divV ⟩ dλ

)

=
1

λmax − λmin

lim
t→0

∫ λmax

λmin
⟨ptλ − pλ⟩ dλ
t

− ⟨divV ⟩Ψ

=
1

λmax − λmin

∫ λmax

λmin

∑
i

γ1i ⟨ψi⟩ dλ− ⟨divV ⟩Ψ.

For solenoidal V , the computation results in

Ψ′ =
2|Ω|2

λmax − λmin

∑
i,j

∫ λmax

λmin

λ

(κi − λ)(κj − λ)
dλ⟨∇V∇ψi · ∇ψj⟩⟨ψi⟩⟨ψj⟩.

After evaluation of the integrals the desired formula is again obtained.

The condition that V is solenoidal in Lemma III.2.1 is only for presentation
purpose. The case of non-solenoidal V ∈ W 1,∞(Ω) is covered by both of the above
proofs, except for the last step of integration in λ, which then results in lengthier
formulas.

III.3 Data sets

The data sets consist of the randomly generated coordinates defining polygonal
cylinders and the corresponding objective function Ψ. The coordinates are gener-
ated in such a way that the radius of a cylinder varies between 0.1 and 0.5. The coor-
dinates were sampled as independent and identically uniformly distributed random
variables, using a pseudo-random number generator. The number of points defining
the polygonal boundary might be 1 (uniform cylinder, as in Figure III.3.1(a)), 2
(cone segment), 3, 4, and 5 (as shown in Figure III.3.1(b)). The objective function
is computed, as described in the previous section, with finite elements. In total, we
have about 700 000 data points in the main data set, which we call Random 5. We
have also generated some smaller data sets for evaluation purpose, as well as a set
of 100 000 data points for uniform cylinders. The uniform cylinder set is important
because it is a set for which we have very high accuracy in the numerical value of
the objective function.

For the non-uniform cylinders we have no guarantee that the error is small, as we
are doing non-rigorous numerics with finite elements and floating point arithmetic
without tracing or bounding the round off errors. In the choice of mesh sizes we
have employed standard indicators such as numerically observing what happens
to the solution and the objective function under mesh refinement. By means of
Lemma III.2.1, we can guarantee for certain intervals and modulo round off errors
that the error stays below a threshold τ for small enough domain perturbations of
the convex cylinders if the error on the reference is bounded by 2τ . This can be
exemplified with perturbations of uniform cylinders under bi-Lipschitz mappings
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close to the unit. For the method of validated numerics, bounding the round off
errors, we refer to [30].

In Table III.1, an overview of the data sets is provided, where we have indicated
the size of different data subsets used for training and evaluation (test), as well as
the statistics of mean, variance, minimum, and maximum of the objective function
Ψh.

The data and the code for data generation is available on the GitHub [19].
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Figure III.3.1: A uniform cylinder (a) and a non-uniform polygonal cylinder (b).

Data Set Size Category Mean Variance Min Max
Random 5 200 000 Training 0.0638 0.00860 -0.0918 0.882
Random 5 500 000 Test 0.0636 0.00864 -0.0909 0.991
Random 5 (fine) 20 000 Test 0.0632 0.00869 -0.0876 0.734
Random 3 10 000 Test 0.0833 0.00494 -0.0508 0.631
Random 2 10 000 Test 0.0769 0.00137 -0.0267 0.186
Uniform 100 000 Test 0.0742 0 0.0742 0.0742

Table III.1: Data sets split into training and test categories. The statistics mean,
variance, min, and max of Ψh are truncated.

III.4 Feedforward dense neural network for ap-

proximation of average pressure

As a base model for the average pressure we will use a feedforward fully connected
neural network, with the radii of the cylinder at a discrete set of points (1, 2, 3 or 5)
as input. The base model is nonlinear, it consists of three hidden layers, each with
ReLU activation. We will compare this with a linear model as a point of reference.
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III.4.1 Structure of the neural network

The main goal of the paper is to construct a learned algorithm which for a given
polygonal cylinder outputs the corresponding average pressure. In this section we
describe the main ideas and principles underlying the dense neural network which
is used for the prediction of the average pressure level Ψ over a given frequency
range. For a rigorous and at the same time concise description of the the deep
neural networks construction we refer to [5] and [31].

Let us call Ψml the function that for given cylinders outputs the objective func-
tion Ψh. Inputs to this function are the radial coordinates of the points defining
the boundary, 5 along a uniform segmentation of the interval [0, 1]. The output is
one real number Ψml, that is we have a regression type of problem. Assume that we
have a data set containing values of Ψ for N polygonal cylinders. We will train a
learning function on a part of this set. Assigning weights to the inputs, we create a
function so that the error in the approximation of Ψ is minimized. Then we evaluate
the performance of our function Ψml by applying it to the unseen data and measure
the accuracy of the predicted average pressures.

The simplest learning function is affine, but it is usually too simple to give a good
result. In Section III.6, for the sake of illustration, we compare the results for linear
regression and the proposed algorithm, and show that linear regression gives a poor
result for nonuniform cylinders. A widely used choice of nonlinearity is a composition
of linear functions with so-called “sigmoidal” functions (having S-shaped graph).
A smooth sigmoidal function has been a popular choice, but after that numerous
numerical experiments indicated that this might not be an optimal choice. In many
examples, it has turned out that a piecewise linear function ReLU(x) = max{0, x}
(the positive part x+ of the linear function x, sometimes called a rectified linear
unit) performs better [5]. Specifically, we consider a learning function Ψml in the
form of a composition

Ψml(v) = LM(R(LM−1(R · · · (L1v)))), (III.4.1)

where Lkv = Akv+bk are affine functions, and Rx = ReLU(x) is the nonlinear ramp
function (rectifies linear unit), the activation function. In this way the output is a
recursively nested composition function of inputs: input to the first hidden layer,
input from the first to the second hidden layer, . . ., input from the last hidden layer
to output layer. Each hidden layer in Figure III.4.1 contains both the linear Lk and
the nonlinear activation function R. For our purpose seems sensible to have three
hidden layers with 128 nodes in each layer. In this sense, we use a what could be
called a deep neural network. The elements of the matrices Ak and the bias vectors
bk are weights in our learning function. Note that to have 128 nodes in the first
hidden layer, the first matrix A1 should have 128 rows and 5 columns. The goal
of the learning is to choose the weights to minimize the error over training sample,
such that it generalize well to unseen data.
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Input x ∈ R5 Output Ψ ∈ R

Three hidden layers, 128 nodes in each

Figure III.4.1: A feedforward network with three hidden layers.

III.4.2 Hyperparameters and training

The choice of hyperparameters is important for the learning of the model. We choose
the following:

• Nonlinearity: ReLU.

• Hidden layers: Three hidden layers, 128 nodes in each.

• Optimizer: ADAM.

• Learning rate: The step size sk in the gradient descent is scheduled to have
polynomial decay from s0 = 0.001 to 0.0001 according to sk = s0/

√
k in 10 000

steps.

• Loss function: Mean squared error (MSE).

• Validation split: 20% of the training set.

• Early stopping: In order to avoid overtraining, the change of the MSE for
the validation set 10−5 counts as an improvement. If we have 25 iterations
without improvement, we stop and use the weights that give the minimum
MSE up to this point.

• Initializer: GlorotUniform.

In the last section, we provide a hyperparameter grid that indicates together with
the results of Section III.5, that the performance of the model is not that sensitive
to the values of the parameters around the chosen ones.
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III.5 Performance of the feedforward neural net-

work model

Our aim is to construct a ML algorithm to approximate Ψ based on the data for Ψh

(computed with finite elements) with the same accuracy on the unseen data as the
numerical error Ψ − Ψh. Here, we present the measured performance on our data
sets.

In Figure III.5.1, we present the dependence of the error on the size of the
training set. For each training set, we train the model ten times and take the mean
of the mean squared error (mean MSE). The purple curve in Figure III.5.1(a) shows
the MSE for polygonal cylinders with five random points defining the boundary.
The objective function Ψh is computed on a mesh with density approximately three
times higher than regular (referred to as “fine”). In Figure III.5.1(b), we present
the percentage of the unseen data used for the test that gives the mean absolute
error less than 0.01. Again, here we take the mean value of the percentage after ten
training sessions, the reason being the stochastic gradient descent algorithms used
which results in some nonzero variance.

The choice of the threshold 0.01 is based on numerical indication of what is a
bound on the error for almost all data points. We do not guarantee this bound
on the error in the numerical data. In in spite of that, we believe it serves as an
illustrative example in that similar behavior in the accuracy of the machine learning
model on unseen data is expected if this threshold is increased, or if the error in the
data had been zero.

Numerical values for the best model are presented in Tables III.2 and III.3 in Sec-
tion III.6. For example, for polygonal cylinders defined by five randomly generated
points, over 95% are predicted with mean absolute error 0.01 (the accuracy of the
numerical data) if the training set contains 200 000 data points. The MSE for our
model trained on 200 000 data points is 2.31·10−5 for uniform cylinders and 5.5·10−5

for polygonal cylinders. Clearly, the MSE is much smaller than the variance in the
data for the test set Random 5 (Table III.1).

0 25000 50000 75000 100000 125000 150000 175000 200000
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Figure III.5.1: (a) Dependence of the MSE on the training set size. (b) Percentage of
the unseen data with absolute error less than 0.01 as a function of the training set size.
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Since we present the mean-value of the MSE, we need to analyze the standard
deviation. In Figure III.5.2, we present the MSE error and the percentage of unseen
data with absolute error below threshold (red curve) together with the standard
deviation for polygonal cylinders with five random points (shadowed region). Fig-
ure III.5.3 illustrates the MSE for different epoch numbers for training and validation
sets. We observe that the error on the training set, on the validation set, and on
the test set are close.
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Figure III.5.2: (a) MSE and the standard deviation for polygonal cylinders with 5 ran-
dom points. (b) Percentage of the unseen data and the standard deviation with absolute
error less than 0.01 as a function of the training set size.

When it comes to the choice of hyperparameters, the numerical experiments have
shown that reducing number of layers to two shows poor result, while increasing the
number of layers and number of nodes in each layer does not improve much the
result. We have also tested YOGI [32], but we did not manage to tune it to perform
any better than ADAM. The decaying learning rate gives better accuracy than a
constant one.

III.5.1 Performance on an out of sample set

To complement the evaluation of the trained models on the unseen data, we here
include an out of sample set. Specifically, we choose a one-parameter family of
convex symmetric cylinders defined as follows, and illustrated in Figure III.5.4. For
the model parameters of minimal and maximal radii 0.1 and 0.5, respectively, and
center axis between 0 and 1, we let the midpoint radius r(1/2) be a parameter
varying between 0.1 and 0.5. For each midpoint radius r(1/2), we let r(0) = r(1) =
0.1 and construct a circular arc connecting the points (0, 0.1), (1/2, r(1/2)), (1, 0.1).
In this way, by mirroring the arc, a symmetric convex cylinder is constructed.

As justified by Lemma III.2.1, we may compute approximations of the averaged
response Ψ, using piecewise linear interpolations of the cylinder boundary in local
charts. We do this with 19 uniform grid points on each arc, as well as the down
sampled 5 point uniform grid arcs. The squared error between 19 and 5 points
numerically computed values of Ψ, and the variation of the error over the parameter
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Figure III.5.3: The training history for Ψml with the mean squared error for the total
training set split into training and validation parts. The history shown is for one trained
model using a training set with 200 000 points from the set Random 5.

interval [0.1, 0.5] is shown in Figure III.5.5 with label FEM. The frequency range is
again the interval (λmin, λmax) = (0, 60).

We compute the predictions in Ψ of the models trained with 200 000 points from
the set Random 5, as evaluated in Figure III.5.1. In order to do so, we let the
radius parameter r(1/2) vary on a uniform grid of 100 points, and down sample the
cylinder radius to 5 points on each arc. The mean squared error computed against
the 19 points arc sets is shown in Figure III.5.5 with label ML.

Numerically, the mean squared error in Ψ between 19 points and the down
sampled 5 points cylinder is truncated to 7.55 · 10−5, while the mean error of the
predictions is truncated to 6.10 · 10−5. For comparison, we recall that the best
DNN model evaluated to a mean squared error on the set Random 5 truncated to
5.50 ·10−5, according to Table III.2. This verifies that indeed the performance of the
trained models of the objective function Ψ on sets of convex cylinders is indicated
by the performance on our test sets when the domains are close, as described in
Section III.2.4.

III.6 Comparison with a linear model

One can ask why the linear regression would not be perform well in this case. To
understand the nature of the nonlinearity in our problem, we look at cylinders with
radius r(x1) affine in x1. For radius 0.1 ≤ r ≤ 0.5, and x1 ∈ (0, 1), the set of
cylinders may be parametrized by r(0) and r(1). For the interval (λmin, λmax) =
(0, 60), we compute a numerical approximation Ψh of the objective function Ψ. In
Figure III.6.1(a), Ψh is shown. Of course Ψ is linear for uniform cylinders, as it is
constant. On the diagonal r(0) = r(1) in the Figure III.6.1(a), we see the value of
this constant. Off the diagonal, we see that Ψh is clearly not the graph of a linear
function. A more careful inspection shows that Ψh is smooth and seems to be linear
everywhere except in the upper left corner of the figure, where it shows rapid growth
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Figure III.5.4: The one-parameter out of sample family of convex cylinders.
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Figure III.5.5: The squared error between the 19 and 5 points FEM for radius r(1/2),
and the mean squared error (shadowed area is standard deviation) in the predictions of
the trained models ML. The models used here are the 10 obtained by training on sets
with 200 000 points from the set Random 5. The two peaks come from that the 19 points
cylinder and the 5 point cylinder, both hit the spectrum for exactly one value of r(1/2)
in the interval [0.1, 0.5], nonorthogonal to the data in L2.
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in a narrow region. We know that Ψ and Ψh are defined for intervals (0, λmax) for
almost every λmax > 0, but not for all. Namely, Ψh might show singular behavior
in the vicinity of a set of positive one-dimensional measure, where pλ is singular.
The approximation Ψml we get with the ML algorithm gives largest error exactly
in this singularity region, as seen in Figure III.6.1(b). This verifies the need for a
nonlinear activation function in our problem even if restricted to the cylinders with
affine radii as functions of x1.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
r(0)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

r(1
)

0.022

0.000

0.022

0.044

0.066

0.088

0.110

0.132

0.154

(a)

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
r(0)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

r(1
)

0.0000

0.0008

0.0016

0.0024

0.0032

0.0040

0.0048

0.0056

0.0064

0.0072

(b)

Figure III.6.1: The value of Ψh for cylinders with affine radii and λmax = 60 (a). The
squared error between Ψml and Ψh (b).

In Tables III.2 and III.3, the errors of the approximations on the Uniform and
Random 5 test sets of unseen data are provided. The floating point numbers have
been truncated. For comparison, we include both a linear model and the proposed
nonlinear model DNN. We train the models for polygonal cylinders with five random
points. One can see that the proposed DNN model performs much better than the
linear one, both on uniform and non-uniform cylinders.

TS = Training Set Mean Squared Error

Model TS #(TS) Uniform Random 5
Linear Random 5 200 000 2.56e-3 1.91e-3
DNN Random 5 200 000 2.31e-5 5.50e-5

Table III.2: The performance on unseen data of the converged linear and nonlinear
models. The mean squared error on unseen data. For the dense neural network model
(DNN), the performance is for the best of the sampled models in the sense of minimum
mean squared error. The floating point numbers are truncated.

Conclusions

We have proposed a feedforward dense neural network for predicting the average
sound pressure response over a frequency range. We have shown for polygonal
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TS = Training Set % Abs Err < 0.01

Model TS #(TS) Uniform Random 5
Linear Random 5 200 000 46.9 22.1
DNN Random 5 200 000 98.3 95.7

Table III.3: The performance on unseen data of the converged linear and nonlinear
models. The percentage of unseen data with an absolute error |Ψml − Ψh| less than
0.01). For the dense neural network model (DNN), the performance is for the best of the
sampled models in the sense of minimum mean squared error. The floating point numbers
are truncated.

cylinders that the obtained results are sufficiently accurate in that they reach the
estimated accuracy of the numerical data. Although the amount of data needed
in order to reach the desired accuracy could be considered as big, it is expected
that the results would serve as a point of reference for more advanced machine
learning models. The performance of the feedforward dense neural network has
been evaluated. The dependence of the percentage accurately predicted samples
and the mean squared error on the training set size is presented.
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III.7 A Hyperparameter grid

To supplement Section III.4.2 we here provide a grid around the model and training
parameter values specified. In particular, we choose the parameters (i) number of
hidden layers, (ii) number of nodes in each layer, and (iii) the fraction of the training
data used for the validation split. For each 3-tuple of parameters, we present in
Table III.4 the mean squared error on unseen data from the data sets Uniform and
Random 5. The data sets used for training was 200 000 points from the Random 5
training set.

Hyperparameter Mean Squared Error

Hidden Layers Layer Size Validation Split % Uniform Random 5
2 64 10 3.98e-5 1.17e-4
2 64 20 4.64e-5 1.53e-4
2 64 30 1.37e-4 1.44e-4
2 128 10 4.80e-5 8.45e-5
2 128 20 5.00e-5 8.74e-5
2 128 30 4.65e-5 9.61e-5
2 192 10 1.21e-5 7.38e-5
2 192 20 3.15e-5 7.98e-5
2 192 30 9.42e-6 8.47e-5
3 64 10 5.21e-5 8.25e-5
3 64 20 1.79e-5 7.91e-5
3 64 30 4.44e-5 9.35e-5
3 128 10 1.78e-5 6.01e-5
3 128 20 1.29e-5 5.75e-5
3 128 30 9.45e-5 5.75e-5
3 192 10 1.75e-5 5.09e-5
3 192 20 1.07e-5 5.20e-5
3 192 30 7.97e-6 5.55e-5
4 64 10 2.02e-5 7.40e-5
4 64 20 1.86e-5 6.26e-5
4 64 30 2.47e-5 8.25e-5
4 128 10 1.68e-5 5.34e-5
4 128 20 3.00e-5 5.60e-5
4 128 30 3.31e-5 5.46e-5
4 192 10 1.04e-5 4.91e-5
4 192 20 1.40e-5 5.39e-5
4 192 30 1.80e-5 5.27e-5

Table III.4: The mean squared errors on the unseen data Uniform and Random 5 for
various values of the parameters. The numerical values of the mean squared errors are
truncated.
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PAPER IV

Acoustic Coefficient Inverse
Problem in Pseudo-Frequency

Domain1

Andrei Karzhou
UiT The Arctic University of Norway

Irina Pettersson
Chalmers University of Technology and Gothenburg University, Sweden

Larisa Beilina
Chalmers University of Technology and Gothenburg University, Sweden

Klas Pettersson
Freelance, Sweden

Abstract

We present a Lagrangian approach for the solution to an acoustic co-
efficient inverse problem. Given data in the pseudo-frequency domain,
after the Laplace transform, we minimize a time-independent Tikhonov
functional using the Lagrangian method. We study also the dependence
of the reconstruction on the regularization terms in the Tikhonov func-
tional.

Keywords: Acoustic wave equation, reconstruction, Laplace transform, pseudo-
frequency domain, coefficient inverse problem, Tikhonov functional, Lagrangian ap-
proach.

1To appear in Springer’s conference proceeding Gas Dynamics with Applications in Industry
and Life Sciences – On Gas Kinetic/Dynamics and Life Science Seminar, March 25–26, 2021 and
March 17–18, 2022, Springer, Cham, Switzerland.
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IV.1 Introduction

This paper concerns an acoustics coefficient inverse problem (CIP). Namely, given
a scattered field in a computational domain, we will determine the wave speed
function in the time-harmonic acoustic wave equation. The technique combines the
Lagrangian method and the conjugate gradient algorithm for the iterative update
of the wave speed function.

In a uniform medium with constant material parameters, sound waves propagate
with a constant speed, unless they are refracted, reflected, diffracted, or perturbed
in some other manner. In the presence of a heterogeneity, local variations of the
density of the medium cause a change in the field distribution when acoustic waves
are traveling in the medium. In many cases it is possible to reconstruct material
parameters of the medium by solving inverse problems given the observed data in
the bulk or on the boundary of the domain of interest.

There are numerous practical applications of inverse problems, and in particular
of CIPs. Among them are the subsurface imaging, nondestructive testing of mate-
rials and detection of landmines [1, 2, 3, 4], archaeology, construction of photonic
crystals [5] and cloaking materials [6], remote sensing and medical imaging [7, 8].

Inverse problems are usually ill-posed problems, that is at least one of the three
conditions for a well-posed problem (existence, uniqueness, or stability) is violated.
One reason for this is that measurement data resulting from observations and exper-
iments, the input data, are accompanied by inevitable errors, so the sought solutions
to inverse problems will also be determined with an error. It turns out that most of
the inverse problems in natural sciences are unstable, that is arbitrarily small errors
in input data correspond to large errors in the computed solution to the inverse
problem. To overcome these difficulties, one can use a regularizing functional intro-
duced by Tikhonov (see [9] and [10]) and named after him. In the present work, we
use an optimization approach, and minimize the regularized Tikhonov functional by
minimizing a Lagrangian. Based on the optimality conditions for the Lagrangian,
we formulate a conjugate gradient algorithm for the iterative update of the unknown
function. The Lagrangian method is similar to the one applied in [1, 11, 12] for the
solution to time-dependent CIPs. In many applications, computational domains
are large, and the parameters of the media are approximately constant everywhere
except for a small part, where the coefficients change. In such cases the domain de-
composition method described in [11, 12, 13] is beneficial for the numerical solution
to the CIP.

The rest of this paper is organized as follows. In Section IV.2, we formulate
forward and inverse problems. In Section IV.3, we present the Tikhonov functionals
to be minimized, and describe the Lagrangian approach to solve the CIP. The
numerical method and results are presented in Sections IV.4–IV.5, as well as a case
of noisy data in Section IV.6. In Section IV.7, we describe the Laplace transform of
a sinusoidal impulse related to the model problem.
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IV.2. MODEL PROBLEM IN THE PSEUDO-FREQUENCY DOMAIN 99

IV.2 Model problem in the pseudo-frequency do-

main

As a model problem, we consider a stationary boundary value problem stated in
Ω = (0, 1)×(0, 1) ⊂ R2. The boundary of Ω consists of three parts (see Fig. IV.2.1):

Γ1 = {(x1, x2) : 0 ≤ x1 ≤ 1, x2 = 1}, Γ2 = {(x1, x2) : 0 ≤ x1 ≤ 1, x2 = 0},
Γ3 = {(x1, x2) : 0 ≤ x2 ≤ 1, x1 = 0} ∪ {(x1, x2) : 0 ≤ x2 ≤ 1, x1 = 1}.

Ω

Γ3

Γ2

Γ1

Figure IV.2.1: Computational domain Ω with boundary Γ = Γ1 ∪ Γ2 ∪ Γ3.

For s ≥ 0, let u(s, x) be a unique solution to the following problem:

∆u(s, x)− s2a(x)u(s, x) = 0, x ∈ Ω, (IV.2.1)

∇u(s, x) · ν + s u(s, x) = s, x ∈ Γ.

Here ν is the external unit normal. The forward problem consists of determining
the solution u(s, x) given the coefficient a(x). The main goal of the present work
is to solve the inverse problem, that is, to reconstruct the coefficient a(x) given the
data ũ(s, x) in the pseudo-frequency domain, for x ∈ Ω.

The weak form of (IV.2.1) reads: Find u ∈ H1(Ω) such that

(∇u,∇ϕ)Ω +
(
s2a u, ϕ

)
Ω
− (s u− s, ϕ)Γ = 0, (IV.2.2)

for any smooth test function ϕ ∈ C1(Ω), where

(u, v)Ω =

∫
Ω

u · v dx, (u, v)Γ =

∫
Γ

u · v dσ.

The motivation for using (IV.2.1) in the reconstruction of a given the data ũ(s, x)
in the pseudo-frequency domain is that (IV.2.1) can be obtained by applying the
Laplace transform to the time-domain wave equation, where an absorbing boundary
condition is assumed on the boundary Γ, and the wave is initialized by a sinusoidal
impulse. Namely, consider the following time-dependent problem:

a(x)∂ttU(t, x)−∆U(t, x) = 0, (t, x) ∈ (0, T ]× Ω,

∇U · ν + ∂tU = fω(t), (t, x) ∈ (0, T ]× Γ, (IV.2.3)

U(0, x) = ∂tU(0, x) = 0, x ∈ Ω,
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where, for a fixed angular frequency ω > 0,

fω(t) =


ω2

2π
sin
(
ωt
)
, for t ∈

(
0,

2π

ω

]
,

0, otherwise.

Denote the Laplace transform of U(t, x) by L{U} = u(s, x). It will be showed
below (see Lemma 1), that L{fω}(s) converges in the sense of distributions to
L{δ′}(s) = s, as ω → ∞, where the derivative of the delta function δ′(t) is de-
fined on smooth test functions φ ∈ C∞

0 (R) by ⟨δ′, φ⟩ = −φ(0). In this way, as
ω → 0, we obtain (IV.2.1). Note that, by the linearity of the problem, the solution
with L{fω}(s) present on the whole boundary can be regarded as a superposition
of four solutions with L{fω}(s) only on one of the sides at a time.

The spatial domain where a wave propagates might be demandingly large for
numerical computation. To limit this domain, we impose boundary conditions that
are intended to give a solution approximating the result in a larger domain. Such
artificial boundary conditions are sometimes called absorbing, and a main difficulty
is that physical absorbing boundary conditions may be nonlocal and thus computa-
tionally more expensive. For simplicity, we choose absorbing boundary conditions
by introducing ∂tU on Γ.

Remark 1. One can also initiate the wave from one of the sides in (IV.2.1) or
(IV.2.3), for example on Γ1. With absorbing boundary conditions on Γ2 ∪ Γ3, the
stationary problem becomes

∆u− s2a(x)u = 0, x ∈ Ω,

∇u · ν + s u = s, x ∈ Γ1, (IV.2.4)

∇u · ν + s u = 0, x ∈ Γ2 ∪ Γ3.

In this case it is more difficult to reconstruct small inclusions close to Γ2, using the
method of this paper.

IV.3 Lagrangian approach for CIP

To reconstruct the coefficient a(x) given the data ũ(s, x) in Ω, we study the mini-
mization problem for a Tikhonov functional using the Lagrangian method. We focus
on investigating how the presence of derivatives ∇u, ∇∇u in the regularization term
affects the reconstruction. We consider the following Tikhonov functional for three
different choices of regularization:

JL2(u, a) =
1

2

∫
Ω

(u− ũ)2 dx+ γ

2

∫
Ω

(a− 1)2 dx, (IV.3.1)

JH1(u, a) =
1

2

∫
Ω

(u− ũ)2 + 1

2

∫
Ω

|∇(u− ũ)|2 dx+ γ

2

∫
Ω

(a− 1)2 dx, (IV.3.2)

JH2(u, a) =
1

2

∫
Ω

(u− ũ)2 dx+ 1

2

∫
Ω

|∇u−∇ũ|2 dx (IV.3.3)

+
1

2

∫
Ω

|∇∇u−∇∇ũ|2 dx+ γ

2

∫
Ω

(a− 1)2 dx,
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IV.3. LAGRANGIAN APPROACH FOR CIP 101

subject to the constraint that u is the solution to problem (IV.2.1) with coefficient
a, where ∇∇ denotes the Hessian, and γ > 0 and s are treated as parameters. The
function ũ represents the observed data. We assume that u and ũ are sufficiently
smooth.

For each choice of the functional J(u, a) in (IV.3.1)–(IV.3.3), we introduce the
Lagrangian L(u, a, λ):

L(u, a, λ) = J(u, a)− (∇u,∇λ)Ω −
(
s2au, λ

)
Ω
+ (s− su, λ)Γ . (IV.3.4)

Now we compute the derivatives of the Lagrangian with respect to λ, u, and a, and
apply the optimality condition. Equating L′

λ(u, a, λ) = 0 yields the direct problem
(IV.2.1) with weak formulation (IV.2.2).

Differentiating (IV.3.4) with respect to u gives the adjoint problem in the weak
form:

(∇λ,∇φ)Ω + (s2 a λ, φ)Ω + (sλ, φ)Γ = ⟨∂u J, φ⟩, (IV.3.5)

for all φ ∈ C1(Ω). For the three choices of the functional (IV.3.1)–(IV.3.3), we
obtain the following derivatives:

⟨∂u JL2 , φ⟩ = (u− ũ, φ)Ω, (IV.3.6)

⟨∂u JH1 , φ⟩ = (u− ũ, φ)Ω + (∇(u− ũ),∇φ)Ω, (IV.3.7)

⟨∂u JH2 , φ⟩ = (u− ũ, φ)Ω + (∇(u− ũ),∇φ)Ω + (∇∇(u− ũ),∇∇φ)Ω. (IV.3.8)

For the numerical computations, we are going to use the weak formulations (IV.3.6)–
(IV.3.8). The corresponding strong formulations are derived in the standard way.
For example, the strong formulation of (IV.3.5) with (IV.3.7) is

∆λ− s2aλ = −(u− ũ) + ∆(u− ũ), x ∈ Ω,

∇λ · ν + sλ = 0, x ∈ Γ. (IV.3.9)

Then the Fréchet derivative of JH2(u, a) at a given a, with u = u(a) solving (IV.2.1),
and λ = λ(a) solving (IV.3.5), in the direction of small enough bounded δa is

J ′
H2
(a)δa := ∂aJH2(u(a), a)δa =

∫
Ω

δa
[
− s2uλ+ γ(a− 1)

]
dx.

This derivative will be be used in the gradient descent method, and we denote

g = −s2λu+ γ(a− a0). (IV.3.10)

Note that the extra terms containing the derivatives of u show up only in the adjoint
problem, and affect neither the direct problem, nor the derivative of the Lagrangian
with respect to a.

Remark 2 (Variational approach to CIP). One can also apply the variational ap-
proach directly, avoiding introducing a Lagrangian. We consider, as above, the
Tikhonov functionals (IV.3.1)–(IV.3.3) subject to the constraint that u is the so-
lution to problem (IV.2.1) with coefficient a, and γ > 0 and s are treated as pa-
rameters. Note that in the Lagrangian approach, we do not assume that u solves



P
A
P
E
R

IV
.
A
C
O
U
S
T
IC

C
O
E
F
F
IC

IE
N
T

IN
V
E
R
S
E

P
R
O
B
L
E
M

P
A
P
E
R

IV
.
A
C
O
U
S
T
IC

C
O
E
F
F
IC

IE
N
T

IN
V
E
R
S
E

P
R
O
B
L
E
M

P
A
P
E
R

IV
.
A
C
O
U
S
T
IC

C
O
E
F
F
IC

IE
N
T

IN
V
E
R
S
E

P
R
O
B
L
E
M

P
A
P
E
R

IV
.
A
C
O
U
S
T
IC

C
O
E
F
F
IC

IE
N
T

IN
V
E
R
S
E

P
R
O
B
L
E
M

P
A
P
E
R

IV
.
A
C
O
U
S
T
IC

C
O
E
F
F
IC

IE
N
T

IN
V
E
R
S
E

P
R
O
B
L
E
M

P
A
P
E
R

IV
.
A
C
O
U
S
T
IC

C
O
E
F
F
IC

IE
N
T

IN
V
E
R
S
E

P
R
O
B
L
E
M

102 PAPER IV. ACOUSTIC COEFFICIENT INVERSE PROBLEM

(IV.2.1). Here, we minimize functionals subject to a PDE constraint, and consider
the functionals to depend on a only, denoting JL2 = JL2(a) = JL2(u(a), a), and so
on. The function ũ is the observed data, that is a solution to (IV.2.1) with given
coefficient a.

Denote the variational form of (IV.2.4) by b(u, v) = l(v), that is

b(u, v) =

∫
Ω

∇u · ∇v dx+ s2
∫
Ω

a u v dx+ s

∫
Γ

uv dσ = s

∫
Γ

v dσ = l(v),

for all admissible test functions v. Then the Fréchet derivative of JH2(a) at a given
a in the direction of small enough bounded δa is given by

J ′
H2(a)δa = l′(λ)− b′(λ, u) + γ

∫
Ω

δa(a− 1) dx

=

∫
Ω

δa
[
− s2uλ+ γ(a− 1)

]
dx, (IV.3.11)

noting that the derivatives of the bilinear and linear forms, with respect to a in the
direction of δa, are

b′(u, v) = s2
∫
Ω

δa uv dx, l′(v) = 0,

and λ solves the adjoin problem

b(λ, v) =

∫
Ω

(u− ũ)v dx+
∫
Ω

∇(u− ũ) · ∇v dx+
∫
Ω

∇∇(u− ũ) · ∇∇v dx,

(IV.3.12)

for all admissible test functions v. The linearizations of the functionals JL2(a) and
JH1(a) are given by (IV.3.11), after suppressing the corresponding higher order
terms in the adjoint problem (IV.3.12) accordingly.

IV.4 Algorithm

Reconstruction Algorithm

Fix a target ũ and s ≥ 0.

Step 0. Choose an initial guess a0, the function f0, and let u0 be the solution to the
problem (IV.2.1) with a = a0, and let λ0 be the solution to the problem (IV.3.12)
with a = a0, u = u0, and target ũ.

Step 1 (Gradient descent). For m ≥ 1, let am be defined by

am = am−1 + δ(s2um−1λm−1 − γ(am−1 − 1)), (IV.4.1)

following the gradient descent of the considered JL2 , JH1 , JH2 according to (IV.3.10),
with suitable parameters δ, γ > 0. In each step of the recursion, um−1 is the solution
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IV.5. NUMERICAL RESULTS 103

to (IV.2.1) with a = am−1, and λm−1 is the solution to (IV.3.12) with a = am−1,
u = um−1.

For the conjugate gradient method [14], Step 1 is adjusted as follows:

Step 1’ (Conjugate gradient method). For m ≥ 1, in place of (IV.4.1) in Step
1, let am be defined by

am = am−1 + δdm−1,

where

dn =

{
−gn if n = 0,

−gn + βndn−1, otherwise,

and, by (IV.3.10) and the conjugate gradient method,

gn = −s2unλn + γ(an − 1), n ≥ 0,

βn =

∫
Ω
(gn)2 dx∫

Ω
(gn−1)2 dx

, n ≥ 1.

IV.5 Numerical results

To illustrate the performance of the selected functionals and the numerical method
for the corresponding optimization problems with PDE constraints, we give two
examples: Test 1 – The original coefficient a(x) has three bumps, and Test 2 – a(x)
is an annulus with a bump inside. The computational domain will be Ω = (0, 1)2 in
both examples.

For the initial guess a0 = 1, we follow the steps outlined in Section IV.4 to
update the reconstructed coefficient am, and evaluate the relative L2 error in the
reconstruction.

To solve the direct and adjoint problems numerically, we use the numerical PDE
tool FEniCS [15]. For a triangulation mesh of Ω, we use Lagrange finite elements.
The data ũ in Ω are generated by solving (IV.2.1) for a given a(x). The conver-
gence is shown using both gradient descent and conjugate gradient descent method
with the stopping criterion that the relative change of the functional between the
neighboring iterations is less than a threshold.

In this section, we use the data without noise. A case of noisy data is considered
in Section IV.6, which will also be exemplified by the coefficient a(x) of Test 1.

IV.5.1 Test 1

In Ω = (0, 1)2 we consider the following coefficient a, which consists of three bumps
on top of the constant 1, as illustrated in Fig. IV.5.1:

a(x) = 1 +
3∑

i=1

Ci exp
(
− |x− ci|

2

Di

)
, (IV.5.1)
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with D1 = D2 = D3 = 1/100, and

C1 = 4, c1 = (1/4, 1/4); C2 = 10, c2 = (3/4, 3/4); C3 = 7, c3 = (7/20, 3/4).

Given ũ in Ω, generated by solving (IV.2.1) with a(x) defined in (IV.5.1), we aim
to reconstruct the coefficient. For the reconstruction algorithm, we set

a0 = 1 in Ω,

and s = 3. For m = 0, . . . , 150, we follow the reconstruction algorithm of Sec-
tion IV.4, for the functionals JL2 , JH1 , JH2 , given by (IV.3.1)–(IV.3.3), using the
parameters δ = γ = 1/100. Pictures of the resulting am, and the convergence
graphs of JH2 for both gradient descent and conjugate gradient method are shown
in Fig. IV.5.1 and IV.5.2.
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Figure IV.5.1: Reconstruction in Test 1: (a) Original a(x) given by (IV.5.1); (b) Recon-
struction using functional JL2 ; (c) Reconstruction using functional JH1 ; (d) Reconstruc-
tion using functional JH2 .

In Fig. IV.5.1, we present the reconstruction for three bumps with different
amplitudes, for the three functionals (IV.3.1)–(IV.3.3). We see that the presence of
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Figure IV.5.2: Convergence: (a) The value of the functional JH2 vs. iteration number;
(b) The relative error ∥a− am∥L2(Ω)/∥a∥L2(Ω) in Test 1.

the derivatives in the regularization term improves substantially the quality of the
reconstruction. In Fig. IV.5.2, we show the functional value and the relative error
∥a− am∥L2(Ω)/∥a∥L2(Ω) depending on the number of iterations for gradient descent
and conjugate gradient descent.

IV.5.2 Test 2

The second example is the reconstruction of an annulus with a bump inside. Specif-
ically, the coefficient a(x) is given by

a(x) = 1 + C exp
(
− |x− c|

2

D

)
+ C exp

(
−
∣∣|x− c|2 − r2∣∣

D1

)
, (IV.5.2)

with

C = 4, c = (1/2, 1/2), r = 1/4, D = 1/100, D1 = 1/20.

Given ũ in Ω, generated by solving (IV.2.1) with a(x) defined in (IV.5.2), we aim
to reconstruct the coefficient.

The value of the functional JH2 and the relative L2-error ∥a− am∥L2(Ω)/∥a∥L2(Ω)

depending of the number of iterations are shown in Fig. IV.5.4.

IV.6 Noisy data

To evaluate the method for noisy data, we add Gaussian noise to ũ. To compensate
for the increased sensitivity this introduces in the reconstruction algorithm, we
smooth ũ in the functionals (IV.3.1)–(IV.3.3) using a Savitzky-Golay filter [16].
Furthermore, we modify the gradient descent (IV.4.1) by adding a cutoff ϕ restricting
am to stay at initial level in the vicinity of the boundary, as well as restricting the
resulting am to stay withing a given range [amin, amax]:

am = am−1 + δϕ(s2um−1λm−1 − γ(am−1 − 1)),
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Figure IV.5.3: Reconstruction of a in Test 2: (a) Original a(x) given by (IV.5.2); (b)
The reconstruction using JH2 .
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Figure IV.5.4: Convergence in Test 2: (a) Functional JH2 vs. number of iterations; (b)
The relative error ∥a− am∥L2(Ω)/∥a∥L2(Ω) in Test 2.

and if necessary apply the function x 7→ min{amax,max{amin, x}} on am. The
conjugate gradient method is modified accordingly.

The noise is modelled by ũ + αv, where v is normally distributed N(0, σ̂(ũ)2)
with σ̂(ũ) being the numerically estimated standard deviation of the data ũ, and α
being the noise level.

The cutoff function ϕ is chosen as the following Butterworth filter:

ϕ(x) =
2∏

i=1

1

1 + (2(1 + 2b)xi − (1 + 2b))n
. (IV.6.1)

As a numerical example we take Test 1 in Section IV.5.1, and use the parameter
values specified therein, and set amin = 1, amax = +∞ as restrictions of a. We
consider the noise parameter values α = 0.05, 0.1, and 0.5, which represent the
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noise levels 5%, 10%, and 50%, respectively. For the cutoff defined in (IV.6.1), we
use the parameter values n = 40 and b = 1/40. The obtained reconstructions are
shown in Fig. IV.6.1 and IV.6.2.

After reconstructing a using the functionals JL2 , JH1 , and JH2 , at a noise level of
5%, we observe that the smoothing prior regularizes a, as illustrated in Fig. IV.6.1.
For our considered parameter values, the JH1 functional performs best, and in
Fig. IV.6.2 we compare various noise levels. We observe that at noise level 10%, the
reconstruction is almost on par with the corresponding at 5% (Fig. IV.6.1), and even
at a high level of noise 50%, one can visually recognize the original three bumps of
Test 1.

(a) JL2 (b) JH1 (c) JH2

(d) JL2 , smoothing (e) JH1 , smoothing (f) JH2 , smoothing

Figure IV.6.1: Reconstruction of a(x) in Test 1 with 5% noise, for functionals (IV.3.1)–
(IV.3.3), with and without smoothing.
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(a) Noise 0% (b) Noise 10% (c) Noise 50%

Figure IV.6.2: Reconstruction in Test 1 using JH1 and smoothing for various noise
levels.

IV.7 Impulse excitation of wave equation

In numerical simulations, impulse excitations are often used to initiate an acoustic
wave. For example, a sinusoidal excitation of finite duration is used as an approx-
imation of the derivative of delta function δ′(t). In this section we justify such
approximation. Indeed, let us introduce the sine-impulse fω(t) by

fω(t) =


ω2

2π
sin
(
ωt
)
, for t ∈

(
0,

2π

ω

]
,

0, otherwise.
(IV.7.1)

The following statement holds:

Lemma IV.7.1. In the sense of distributions, fω(t) converges to the derivative of
the delta function, that is

⟨fω, φ⟩ → −φ′(0) = ⟨δ′, φ⟩, as ω →∞, (IV.7.2)

for any test function φ. Moreover, the corresponding Laplace transforms converge
pointwise:

L{fω}(s)→ L{δ′}(s) = s, as ω →∞. (IV.7.3)

Proof. Clearly, sin(ωt) is positive for t ∈ (0, π
ω
) and negative for t ∈ (π

ω
, 2π

ω
). The

function fω(t) can be written as

fω(t) =
ω

π

[ω
2
sin(ωt)1[0, π

ω
] +

ω

2
sin(ωt)1[ π

ω
, 2π
ω
]

]
=
ω

π
(gω(t) + hω(t)). (IV.7.4)

Since

ω

2

∫ π/ω

0

sin(ωt) dt = 1,
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by the mean-value theorem, we have for any smooth φ,∣∣∣ ∫
R

gω(t)φ(t) dt− φ
( π
2ω

)∣∣∣ = ∣∣∣ω
2

∫ π/ω

0

sin(ωt) dt− φ
( π
2ω

)∣∣∣
≤ ω

2

∫ π/ω

0

sin(ωt)
∣∣φ(ξ)∣∣ ∣∣∣t− π

2ω

∣∣∣ dt ≤ π

2ω
max

0≤ξ≤π/(2ω)
φ′(ξ)

∫ π/ω

0

ω

2
sin(ωt) dt.

Thus, ∫
R

gω(t)φ(t) dt→ φ
( π
2ω

)
, ω →∞. (IV.7.5)

Similarly, ∫
R

hω(t)φ(t) dt→ −φ
(3π
2ω

)
, ω →∞, (IV.7.6)

where the sign in (IV.7.6) comes from the sign of sine on the corresponding interval.
Note also that φ(t0) = ⟨δ(t− t0), φ⟩.

Combining (IV.7.4)–(IV.7.6) and using the triangle inequality, we obtain

π

ω

∫
R

fω(t)φ(t) dt =

∫
R

gω(t)φ(t) dt− φ
( π
2ω

)
+

∫
R

hω(t)φ(t) dt+ φ
(3π
2ω

)
+
(
φ
( π
2ω

)
− φ

(3π
2ω

))
,

and thus, ∫
R

fω(t)φ(t) dt+
ω

π

(
φ
(3π
2ω

)
− φ

( π
2ω

))
→ 0, ω →∞. (IV.7.7)

Applying the mean-value theorem one more time, we get∫
R

fω(t)φ(t) dt→ −φ′(0), ω →∞.

This proves (IV.7.2).
The second statement (IV.7.3) follows from the first one and the Lévy continuity

theorem for Laplace transform. In this case, it can also be proved directly, since the
Laplace transform of fω can be computed exactly:

L{fω} =
1

2π

ω3

ω2 + s2

(
1− e−

2π
ω
s
)
.

By the l’Hôpital rule, L{fω} → s as ω →∞.

Conclusion

We present a solution to a CIP problem in the case when the data is given in
the pseudo-frequency domain, say after an application of the Laplace transform.
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We employ the Lagrangian approach for the optimization of the Tikhonov func-
tional. The focus of the present numerical study is on the effect of derivatives in
the functional on the reconstruction. We consider functionals with L2, H1, and H2

regularizing terms for different arrangements of inclusions. The standard functional
with a penalty term being the square of the L2-norm does not produce satisfac-
tory reconstruction results. The best reconstruction for smooth data is obtained, as
expected, for the functional containing second derivatives of the solution to the di-
rect problem, in combination with the conjugate gradient method for the functional
minimization. For noisy data, we observe that the H1 functional performs best in
combination with suitable smoothing of the input data and constraining of a during
the reconstruction procedure.
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