
 

 

Faculty of Science and Technology 

Department of Physics and Technology 

Conditional averaging of overlapping pulses 

 

Rolf Annar Berg Nilsen 

FYS-3900 Master’s thesis in physics - 60 ECTS May 2023 





Abstract

Conditional averaging is a signal processing method used to study turbulent fluctuations in a
variety of fields. The method, in its simplest form, works by finding peaks in a signal that fulfill
a certain size threshold. Equally sized excerpts of the signal around every peak are then cut out
and averaged. This yields the average shape of the events that fulfill the condition. Based on
the peak finding within the method one also obtains the amplitudes and waiting times between
the conditional events. the aim of this thesis is to test if these statistics can be used to estimate
underlying properties of the signals we are looking at. We use signals created by superposing pulses
with the same shape at different times and with different amplitudes decided by input probability
distributions, and compare the inputs used to make the signals with the outputs of conditional
averaging. By changing the input distributions, we can alter the degree of pulse overlap within
the signals, and thus see for which degrees of pulse overlap conditional averaging successfully
reproduces the underlying statistics. We will also investigate the methods robustness in the face of
noise, studying how well different conditions recover the underlying pulses, while also attempting
to establish if additional conditions aimed at reducing noise effects are necessary.

Our results conclude that conditional averaging generally works well when predicting the shape
of the underlying pulses, even in the face of pulse overlap. Noise severely affects the pulse shape
estimates without any additional noise-reducing conditions. The noise reducing condition that
we investigate here is one where we enforce a minimum distance between peaks. This additional
condition results in greatly mitigating the effects of noise., leaving us to conclude that this it
should always be used in addition to the size threshold condition to achieve the most robust results.
The amplitude distribution estimates work well if there are not too many overlapping structures.
However, the estimate break down even in the case of a moderate degree of pulse overlap, defined
roughly as when there is on average one pulse arrival per pulse duration time in the signal. The
estimates resemble the tail of the signals probability distribution largely independent of input
amplitudes. Comparing the estimates from different input waiting time distributions, we conclude
that the method fails to predict the underlying distribution, even in the case of little pulse overlap.
We loosely define this as one pulse arrival per ten pulse durations on average within the signal.
When pulses overlap more often, the method predicts exponentially distributed waiting times
independent of input distribution. This leads to the main conclusion of the thesis; that the use of
conditional averaging should in general be limited to estimating the average shape of underlying
events.

Finally, the use of conditional averaging in previous works is also discussed. We find that the
conclusions based on the average pulse shape estimate are valid, as authors use the method in
regimes of pulse overlap where this estimate is still accurate. Contrary to this, conclusions made
from amplitude and waiting time distributions are often made at degrees of pulse overlap where
we have demonstrated the method to give erroneous results. This might lead authors to make
conclusions based on incorrect information.
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1 INTRODUCTION

1 Introduction

What appears to be randomly arriving coherent fluctuations on orders of magnitude comparable
to the mean are observed in many nonlinear systems in many fields and on a variety of scales.
They are found in turbulent winds [1,2], in the flow of rivers [3,4], in turbulent thermal convection
of neutral fluids [5–7], in complex fluids [8], in neutron flux measurements within fission cham-
bers [9], in measurements of plasma turbulence from magnetically confined plasmas [10–13], and
many more [14–17]. One technique that has been used to analyze such fluctuations is conditional
averaging [18–20] for its capabilities on extracting information such as the average fluctuation
structure, amplitude distribution of the fluctuations and waiting time distribution of the waiting
times between fluctuations. In its simplest form this routine picks out events every time a signal
exceeds a given threshold, picks out a fixed size section of the signal around the maximum within
that threshold crossing, and averages all these excerpts to find what the average structure that
crosses the threshold looks like, in addition to recording the event amplitudes and time between
each event. Earlier studies on the method have been focused on the effects of noise and has only
been concerned with non-overlapping structures [4, 20, 21], and on 2D structures [18, 22]. The
regime of non-overlapping structures is certainly not guaranteed in measurements of intermittent
fluctuations, and little is known about the relation between the results of the conditional averaging
and the underlying statistics of the signal when we cannot guarantee this. The goal of this thesis
is thus to investigate and further the understanding on conditional averaging and its abilities to
recover the underlying statistics of the signal.

One widely used way of modelling intermittent fluctuations is with a filtered Poisson process
[4, 8, 9, 13, 23, 24]. The process can be described by a superposition of uncorrelated pulses where
parameters such as the pulse shape, distribution of pulse amplitudes, duration times and waiting
times between pulses can be randomly distributed. In addition, this process easily allows for
different degrees of pulse overlap, making it the perfect test-bed to test if the results of conditional
averaging can be used as accurate estimations for the underlying statistics of the FPP. Pulse overlap
will be a central metric in this thesis and with it we hope to determine in what regimes conditional
averaging give reliable results. Achieving this would help our understanding of experimental data
to uncover if the results of the method represents something inherent about the fluctuations it
analyzes or if it is an ”unfortunate” property of the method and should be disregarded as such.

This thesis is structured as follows: In chapter 2 we describe the conditional averaging routine,
how it works, what conditions we will use, why we use them, and what information we can record
with the method. In chapter 3 we will describe the various distributions used to generate realiza-
tions of the FPP, some useful transformations of random variables used in the thesis and then we
will discuss the FPP before defining a base case of the FPP used for testing and a little section on
the limit of no pulse overlap and how it may affect some of the threshold statistics we are looking
at. In chapter 4 we will go over the experimental results where we will first examine the effects
of different pulse shapes in section 4.1. We will then look at the effects of two types of noise on
the conditional averaged waveform in section 4.1.2. In section 4.2 we will look at the effects of
different amplitude distributions to see if the amplitude distribution of the conditional average
resembles the conditional amplitude distribution of the input amplitude, and investigating how
different amplitude distributions affect the pulse shape. Then, in section 4.3, we will examine the
effects of different waiting time distributions, much like we did for amplitudes, before discussing
some combination cases where both the amplitude- and waiting time distributions are varied for
confirmation or debunking of earlier results. After discussing all the results, we will discuss the
some works where conditional averaging have been used to estimate properties about real-life data
in chapter 5. Here, we will go into if their uses of conditional averaging are good ones or not based
on the observed degree of pulse overlap within the signals. Finally, we will go over all the main
results in a concluding manner in chapter 6, establishing the uses of conditional averaging before
giving some outlooks on how this work could be furthered.
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2 CONDITIONAL AVERAGING

2 Conditional averaging

Conditional averaging is a technique that picks out events from a signal based on a given condition
and averages them, outputting the ”average event” and information such as where the events were
found in the signal or how large the events were. The condition should not be too complex, as too
complex conditions may lead to a self-fulfilling prediction. For example, say you want to learn if
a signal you have is made up of lots of individual triangle pulses. One condition to pick out such
pulses is to say that the condition requires a linear rise, followed by a linear fall over a certain
timescale. The average event picked out by placing such a condition on the technique may then
output the triangle shape you were expecting. But one cannot say if that average event resembles
some intrinsic property of the signal or if it simply picked out the parts of the signal which looked
triangular. This is why it is preferable that the condition we require should be a simple one that is
not biased toward any specific shape. In this chapter we will introduce the conditional averaging
method and the various conditions used.

Before illustrating we introduce some important notation. Φ is the signal. ⟨Φ⟩ is the signal
mean and Φrms is the standard deviation of the signal. Φ̃ is the normalization we will use and it
is defined as

Φ̃ =
Φ− ⟨Φ⟩
Φrms

. (2.1)

Thus the normalized signal Φ̃ has a mean of 0 and a unit standard deviation.
To illustrate how a conditional average works we can look at figure 1. Here a simple amplitude

threshold is the condition. At first we normalize our signal according to equation 2.1. The nor-
malized signal is shown in the first figure. Then we pick an amplitude threshold, in this case one,
and find where the signal crosses the threshold (red in the second figure). Within each crossing
segment we identify the largest peak (lime). We then pick out equally big windows (red in the
third figure) around each peak as shown in the last figure. Within these windows we take the
signal values (orange) and average them so that we get the conditional average. In this thesis
we also normalize each event by its amplitude before averaging, giving us the average shape of
events that fulfill the condition. If one does not normalize each event before averaging the average
itself becomes amplitude biased, meaning the shape of the larger events will be more expressed
in the waveform result. If one has a good reason to expect the larger events to better represent
underlying information about the signal this method might provide better results. However, if one
cannot make such an assumption an amplitude unbiased method might be better suited.
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2 CONDITIONAL AVERAGING

Figure 1: Step wise illustration of how conditional averaging picks out events with a simple amplitude
threshold. The reference signal is constructed as a sum of individual Gaussian pulses arriving at different
times with different amplitudes and different duration times. The arrivals, amplitudes and duration times
of each pulse have been carefully chosen to illustrate many aspects of the peak finding in conditional
averaging.
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2 CONDITIONAL AVERAGING

In this thesis we will study two main conditions, one being the simple amplitude threshold
described earlier, and the other being a prominence threshold. The prominence threshold picks
out large local peaks compared to the signal around it, allowing one to pick up large events that
may occur beneath the more commonly used amplitude threshold. The reason for investigating this
additional threshold condition is that we hypothesize that this method might be able to better pick
out true underlying events in the signal. We also hope that the prominence threshold is inherently
more resistant to the effects of noise, as a requirement of pulses being locally large hoppefully
results in less noise fluctuations being registered as conditional events.

Figure 2: Example of how prominence is calculated.

In figure 2 we see an example of how prominence is calculated. The peak selected for the
example is shown in lime. We start by extending a line (red) from the peak on either side until
it hits the slope of a taller peak or the end of the signal, creating a window. Within this window
we pick out the lowest point on both sides of the peak (brown). The taller one of these is chosen
as a reference (brown right), and the prominence is the distance between this point and the peak
(magenta). To better illustrate the differences between the threshold conditions and how they affect
the peak finding, we first need to explain how the prominence threshold works in the conditional
average method.

To explain how the prominence condition works in conditional averaging we use an illustration.
Looking at figure 3 we start with the same normalized signal as before. All the peaks (lime) in
the signal are found, and their prominence values (magenta and yellow) are calculated according
to the previous description. We then place a condition on the minimum required prominence, in
this case one, and use only the peaks with a prominence value above this threshold (magenta) to
calculate the conditional average with the same use of taking equal windows around each peak
(red) and using the signal values in those windows (orange) for the average. When normalizing
with this method the prominence value of each conditional event is used to normalize it and the
events are shifted so that all the peak points coincide before taking the average.

4



2 CONDITIONAL AVERAGING

Figure 3: Step wise illustration of how conditional averaging picks out events with a prominence threshold.
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2 CONDITIONAL AVERAGING

Figure 4: Example of how different peaks are chosen based on different size thresholds. The dashed grey
line is the amplitude threshold. The yellow lines are prominences below the prominence threshold and
the magenta lines are prominences above the prominence threshold. Peaks that are picked up only when
using the amplitude threshold are shown in orange, only by the prominence threshold in cyan and by both
threshold conditions in lime.

Figure 4 shows the difference in the type of peaks that are picked up with the different threshold
conditions. The common peaks (lime) are the large ones that cross the amplitude threshold (grey)
and that has a prominence that is larger than the prominence threshold (magenta). The peaks that
only the amplitude threshold picks up (orange) are the peaks that cross the amplitude threshold,
but have prominence values smaller than the prominence threshold (yellow). The peaks that are
only picked up by the prominence threshold (cyan) are peaks with a large prominence, but do not
cross the amplitude threshold such as the third and fifth peaks from the right. Peaks that have high
enough prominence values, but are also within one amplitude threshold crossing of another peak,
are also only picked up with a prominence threshold. The peaks that neither method pick up are the
peaks with prominence values less than the threshold and that do not cross the amplitude threshold,
like the two peaks with yellow prominences below the grey line. Another type of peak that neither
pick up are low prominence peaks that are close to a taller peak, but within one amplitude threshold
crossing, such as the third peak from the left. What we see from this comparison is that there
can exist local large amplitude events that are not picked up by the standard amplitude threshold,
but that we would find with a prominence threshold. The prominence condition also enforces an
inherent distance between peaks, as a peak must decay for a certain time before its prominence
value can become big enough to be registered as a conditional event. We hope that this property
creates statistical independence between events, making additional conditions that are created for
just this purpose unnecessary.

An additional condition that is one that states that two separate averaging windows (shown
in red in figure 1 and 3) are not allowed to overlap. What this condition does is that is makes no
single part of the signal appear multiple times in the average. The thought behind this additional
condition is that it introduces some forced independence between events, removing any unwanted
correlations that may arise from including multiple segments of the signal multiple times in the
average. This additional condition will be referred to as overlap=True throughout the rest of this
thesis.
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2 CONDITIONAL AVERAGING

Figure 5: Example of the difference and without the overlap=False condition in the peak finding (top).
And an example of a conditional averaged waveform both with (bottom right) and without (bottom left)
the overlap=False condition. The black dashed line showing the average and the red lines showing
individual contributions in the average. The signal that the conditional averaging was used on consisted
of a superposition of Gaussian pulses with degenerately distributed duration times with a mean of one,
exponential waiting times with a mean of 10 and exponentially distributed amplitudes with a mean of 1.

Looking at figure 5 we can see what the overlap=False condition does. In the top figure we
see the peaks piked out by the amplitude threshold condition together with the overlap=False

condition (lime) and the peaks picked out without the overlap=False condition (orange). The
reason for that the orange peak is not included when we use the overlap=False condition is that it
falls within the window (red) of the larger lime peak to the right of it. In the two bottom figures we
also see the conditionally averaged waveform both with and without the overlap=False condition.
If we do not use the additional condition, we see that in the individual events the occurrence of
larger neighbouring events is more frequent than in the case where we use the overlap=False

condition. We see in the averaged waveform that this condition lowers the observed mean (the
value to which the pulses decay to). Without the overlap=False condition the average decays
to the true mean of 0, but with the overlap=False condition we impose a bias that reduces the
amount of large neighbouring events in the individual conditional events that are picked up. This
naturally occurs as we intentionally choose the largest peak within an averaging window. Keep in
mind that the overlap=False condition does not eliminate the occurrence of larger neighbouring
events in the individual conditional events.
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2 CONDITIONAL AVERAGING

Figure 6: Example of how a neighbouring peak may be larger than the conditional event within an
individual sample when using the overlap=False condition.

In figure 6 we see an example of how neighbouring peaks may still be larger than the conditional
event within an individual sample when using the overlap=False condition. The orange peak is
larger than the lime peaks which become conditional events. The reason it is not registered is
because its averaging window would overlap with the leftmost tallest peak. It still appears in the
average within the rightmost peaks individual sample, thus as a taller peak than the conditional
event itself.

The reason we are looking at both the amplitude threshold and the prominence threshold
is that we want to compare them, both with and without the overlap=False condition. Does
the prominence threshold inherently provide statistical independence between events without the
overlap=False condition? Is either method better than the other at predicting underlying ampli-
tude and waiting time distributions? Is the overlap=False condition necessary for either method?
These are all interesting questions that we will attempt to answer within this thesis but the main
goal remains to provide further insight into how the results of conditional averaging fair when it
comes to predicting underlying information about test signals.

8



3 STOCHASTIC MODELLING

3 Stochastic modelling

3.1 The filtered Poisson process

To test the results of conditional averaging we need to be able to control the parameters that con-
ditional averaging is said to estimate, letting us compare estimates against the input information.
One stochastic process that fits this bill perfectly is the filtered Poisson process (FPP). In this
chapter we will introduce this stochastic process and some important aspects of it.

The filtered Poisson process can be described as a sum of uncorrelated pulses on a given time
interval. If the number of pulses are K and the interval has a length of T then the process Φ can
be described by [23]

ΦK(t) =

K(T )∑
k=1

Akϕ

(
t− tk
τk

)
(3.1)

where Ak are the amplitudes of each pulse, tk is the arrival time of each pulse, τk is the duration
time of each pulse and ϕ is the pulse function. As this stochastic process is easily manipulated
it is the ideal test bed for conditional averaging. The outputs of conditional averaging are an
average pulse shape, the amplitudes of all the events found and the waiting time between those
events. As we see from 3.1 we can draw amplitudes from any given distribution to use as the
amplitude distribution. We can specify the pulse function and then compare the input together
with the conditionally averaged waveform. And we can construct the arrival times from different
waiting time distributions by cumulatively summing them up, then comparing the waiting time
distribution with the one from the conditional averaging.

Going further we need to define some useful parameters of the model. ⟨A⟩ is the average pulse
amplitude, τw = ⟨TW⟩ = T/⟨K⟩ is the average waiting time between pulses and τd = ⟨τk⟩ is
the average duration time of the pulses. The ratio of the average pulse duration and the average
waiting time is defined as the intermittency parameter [23]

γ =
τd
τw

(3.2)

This parameter determines how intermittent a signal is. For low values of gamma there is a large
waiting time between pulses compared to the duration time and there will be little overlap between
pulses, while for large values of γ there will on average be a large amount of pulses per duration
time, and thus much pulse overlap. Thus, γ can also be viewed as the parameter that determines
the degree of pulse overlap. Varying this parameter will be the central focus of this thesis. Earlier
work on conditional averaging has been done where the pulses were not allowed to overlap [4,20,21]
and will be comparable to the work done here for small values of γ. The main goal of this thesis
will be to determine the regimes of γ where conditional averaging give useful results that relate to
the input distributions and pulse functions.

With these important parameters in mind we can define some of the moments of the process [23].
The expected value

⟨Φ⟩ = τd
τw

I1⟨A⟩ = γI1⟨A⟩ (3.3)

Where the integer moments of the pulse function, In, are defined as

In =

∫ ∞

−∞
dx[ϕ(x)]n (3.4)

The second moment and the rms value

⟨Φ2⟩ = ⟨Φ⟩2 + γI2⟨A2⟩ (3.5)

Φ2
rms = γI2⟨A2⟩ (3.6)

The skewness and flatness can be obtained from the cumulants an are [25]

SΦ =
1

γ1/2

I3

I
3/2
2

⟨A3⟩
⟨A2⟩3/2

(3.7)

FΦ = 3 +
1

γ

I4
I22

⟨A4⟩
⟨A2⟩2

(3.8)
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3 STOCHASTIC MODELLING

We see that for small γ both the mean and the rms value tend to be small but the relative
fluctuation level given by

Φ2
rms

⟨Φ⟩2
=

1

γ

I2
I21

⟨A2⟩
⟨A⟩2

(3.9)

becomes large for small γ indicating that the process varies a lot in relation to its mean for very
intermittent realizations. We also see that when γ becomes large the relative fluctuation level, the
skewness and the excess kurtosis (FΦ − 3) become small while the mean and the rms-values get
large. This indicates that the distribution becomes more symmetric and the flatness approaches
that of a normal distribution as γ increases.

3.1.1 The base case

As there are numerous ways the different input distributions and pulse functions the FPP can take,
and as we can only look at a limited number of cases, we choose one base case of the FPP which
has some nice analytical expressions for a number of statistics. The base case is defined as

A ∼ Exp(1) (3.10)

τ ∼ Degenerate(1) (3.11)

Tw ∼ Exp

(
1

γ

)
(3.12)

ϕ(x) =

{
exp(−x), x > 0

0, otherwise
(3.13)

where we have exponentially distributed amplitudes and waiting times, meaning we have uniformly
distributed arrival times and the number of pulses given a certain time interval is thus distributed
according to a Poisson distribution [26]. The duration time distribution is degenerate with a mean
of one and the pulse function is chosen to be a one-sided exponential pulse.

In this case the mean and rms values are

⟨Φ⟩ = γ (3.14)

Φrms =
√
γ (3.15)

as In = 1
n and ⟨An⟩ = n! for this case. The probability density function for the base case is a

gamma distribution

pΦ(Φ) ∼ Γ(γ, 1) (3.16)

10



3 STOCHASTIC MODELLING

Figure 7: Example of realizations of the base case with different degrees of intermittency.

In figure 7 we see examples of the normalized base case at different levels of intermittency. In
the γ = 10−1 signal we easily see the distinct pulses that are superposed to make up the signal.
This will serve as our high intermittency case for which we expect conditional averaging to provide
the most reliable results. In the γ = 1 signal we see that the overlap of individual pulses is more
prevalent, but one can still distinguish individual pulses from one another. Looking at the γ = 10
signal we see the effects of pulse overlap, here it is much harder to tell what the underlying pulse
shape is, or if there even is one. Intuitively based on this decline in being able to tell underlying
pulse information, one can hypothesize that the results from conditional averaging would decline
in quality with increasing pulse overlap in the signals.

3.1.2 Noise

Noise is an unavoidable element we encounter if we do any form of analysis on real life data, which
is why it is also one of the aspects of conditional averaging that has been studied previously. For
example [20] focused on creating a more complicated condition and averaging scheme to reduce
the effects of noise. However, the underlying structures were not allowed to overlap. As real life
data may include the effects of overlapping underlying structures and noise at the same time it
is important to investigate how conditional averaging performs under the variation of both these
parameters.

In this thesis we will concern ourselves with two different forms of noise. One is simply additive
or observational noise, analogous to measurement noise. This is denoted by [27]

Ω(t) = Φ(t) + σN(t) (3.17)

where σ denotes the noise intensity and N(t) is a normally distributed random process with a man
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3 STOCHASTIC MODELLING

of zero and a unit standard deviation. The other noise type is dynamical noise and is denoted
by [27]

Ψ(t) = Φ(t) + σY (t) (3.18)

where σ again denotes the noise intensity parameter and Y (t) is an Ornstein-Uhlenbeck process
with zero mean and unit standard deviation. Both noise types are independent of Φ(t) but the
difference is that N(t) varies around the mean on a timescale defined by the sampling time, whereas
Y (t) varies on the same timescales as the process itself as they have the same auto-correlation
function [27]. With these types of noise in mind we can define the relative noise level ε

ε =

(
Xrms

Φrms

)2

=
σ2

γ⟨A⟩2
(3.19)

where X represents either of the noise processes σN or σY . It is this parameter we will use to
control the amount of noise as we generate realizations of these processes.

Figure 8: Example of realizations of the base case with γ = 1 and additive noise for different degrees of
the relative noise level.

12



3 STOCHASTIC MODELLING

Figure 9: Example of realizations of the base case with γ = 1 and dynamic noise for different degrees of
relative noise level.

In figures 8 and 9 we see examples of the base case with the different types of noise at different
levels of ε with γ = 1. We observe that additive noise is the noise type that affects our visual
ability to distinguish individual pulses in the signal the most. While dynamic noise does affect it
as well we are still able to pick out more pulses at higher degrees of ε. With this in mind, we might
expect the results of conditional averaging work better with dynamic noise. Conditional averaging
picks out and averages the large amplitude events within the signals, with the hope being that this
procedure averages out the fluctuations created by noise, giving us a waveform that resembles the
underlying pulse shape.

3.1.3 The high intermittency case

In the case where γ << 1 we have a highly intermittent signal. In this situation we assume no pulse
overlap as the probability of overlapping events become vanishing as γ becomes small if we have
uniformly distributed arrivals. In this ideal scenario all threshold crossings are determined solely by
the amplitude distribution. The amplitude distribution from the conditional average should then
match the theoretical conditional amplitude distribution given by B.5. For exponential amplitudes
this expression becomes

pAc(Ac) =
1

⟨A⟩
exp

(
−Ac − c

⟨A⟩

)
(3.20)

for the pure threshold method with the base case the threshold is given by

c = 2.5Φrms + ⟨Φ⟩ = 2.5
√
γ + γ (3.21)
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and the conditional amplitude distribution becomes

pAc
(Ac) = exp(−Ac + 2.5

√
γ + γ) (3.22)

on the interval [2.5
√
γ+γ,∞]. The waiting time distribution of events above the threshold is then

also determined by the amplitude distribution. For uniformly distributed arrivals the events above
threshold are also uniformly distributed, but the mean time between events will be larger as there
will be fewer events above the threshold than the total events. The ratio determining the new
mean waiting time will then be given by the amplitude distribution and the threshold. The new
mean is thus given by

⟨Twc⟩ = ⟨Tw⟩(1− PA(c)) = ⟨W ⟩ exp(−(2.5
√
γ + γ)). (3.23)

In the base case where τd = 1 this can also be expressed as

⟨Twc⟩ =
1

γ
exp(−(2.5

√
γ + γ)). (3.24)

And the waiting times between events above the threshold is distributed exponentially according
to

Twc ∼ Exp

(
1

γ
exp(−(2.5

√
γ + γ))

)
. (3.25)
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4 Results and discussion

In this chapter we will examine the different estimates that conditional averaging gives us. To do
this we will construct different realizations of the filtered Poisson process as described in section
3.1 and use conditional averaging to attempt to recover what we used to generate the realizations.
The inputs we will attempt to recover is the pulse function ϕ through the conditionally averaged
waveform, the duration time τd from the waveform estimate, the conditional amplitude distribution
PA through the amplitude and prominence values of the conditional events, and the waiting time
distribution PW through the times between conditional events. We will examine two different
threshold conditions, the amplitude threshold and the prominence threshold to see if one better
recovers the inputs than the other. The role of the overlap=True condition will also be investigated
to see if its property of providing more independent events is a useful one, or if it is a superfluous
condition.

All the analysis in this section is done with the intermittency parameter γ in mind. It determines
the degree of intermittency of the signals and therefore the degree of overlap between individual
pulses. We can therefore examine the results of conditional averaging as the degree of pulse overlap
within the signal increases. When we have highly intermittent signals, equivalent to a small γ-
value, the individual events that make up the signals are more likely to ”stand alone” and be clearly
distinguishable from one another if one simply visually inspects the signal. In this case we expect
conditional averaging to accurately recover the input parameters of the signals as the average will
be dominated by actual underlying events crossing the chosen threshold. As γ increases the signals
become less intermittent with more pulse overlap and threshold crossings become more and more
due to individual events overlapping. In this transitional intermittency, where some crossings are
caused by individual events, and some by overlap, we wish to test conditional averaging to see how
overlap affects the estimates. As γ increases even more the probability of threshold crossings due to
individual events vanishes and the conditional average will be wholly dominated by overlap induced
crossings. We also wish to examine the results of conditional averaging in this regime. Because of
this we chose to mainly investigate three different orders of the intermittency parameter. γ = 10−1

as the highly intermittent case, γ = 1 as the transitory stage of intermittency and γ = 10 as the
overlap dominated case. This can also be motivated from experimental data measuring plasma
turbulence in the scrape-off layer of toroidal fusion reactors where one has used the filtered Poisson
process to describe such fluctuations. Here γ is often found to be somewhere in between 1 and
10 [11, 27, 28], making any results from this investigation highly relevant for this field as both the
FPP-framework and conditional averaging is used here.

The section is structured as follows. At first, we will look into how well conditional averaging
recovers the underlying shape and duration time of the pulses by varying the true pulse shape,
ϕ in section 4.1.1. We will also investigate the effects of overlap on estimated pulse symmetry.
Afterwards we explore the effects of noise on the average waveform and find the main effect of
the ovelap=False condition in section 4.1.2. Furthermore, in section 4.1.3, we will examine sig-
nals where the amplitudes and waveforms of individual events are correlated to see if conditional
averaging can pick up such a correlation by varying the size of the threshold. In section 4.2 we
examine different input amplitude distributions to reveal if the conditional average can recover
them in their conditional forms. We will also study how different amplitude distributions affect
the waveform. Finally we will investigate different waiting time distributions and their effects on
the estimates obtained from conditional averaging in section 4.3.

Figure 10: Example of a realizations of the base case with γ = 50 at the build-up phase of the signal.
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The simulation parameters common for all signals are as follows. The total duration of the
signals is T = 105, the signal is generated in sample increments of ∆ = 10−2, making each signal
have 107 data points. Each signal was initially generated with T ′ = 1.002·105 where 102 points was
stripped of each end to eliminate possible end effects such as removing the non-stationary section
where the signal builds up as observed in figure 10. This results in γ = 10−1 signals consisting
of on average 104 individual pulses, γ = 1 signals consisting of 105 individual pulses and γ = 10
signals on average consisting of 106 individual pulses when the duration time of all the pulses is
τd = 1. This ensures that the signals are long enough that we should not encounter any large
problems related to a lack of data.

4.1 Waveform analysis

The main use of conditional averaging has been its use to obtain an estimate for the shape of
underlying events within a given signal. It is therefore obvious that we should study this ability, as
discerning its robustness is important to be able to distinguish good results from bad ones. To do
this we will examine the averaged waveform results from conditional averaging for the amplitude
and prominence threshold conditions both with and without the overlap=False condition for
different degrees of intermittency. We will explore the methods ability to recover different pulse
functions, both symmetric and asymmetric. In addition to exploring the waveform estimate in the
presence of noise within the signals. We hope to find out conclusively where the waveform estimates
break down and how intermittency affects different underlying pulse shapes in the conditional
average.

4.1.1 Different pulse functions

Signals as constructed from a filtered Poisson process have different statistical properties based
on the underlying pulse function [23]. Therefore predicting this waveform is an important task
that can help us understand more about the signals we study. Conditional averaging estimates
this pulse shape, making it important to test this property to see if it can be trusted at increasing
degrees of pulse overlap. To test this we will construct realizations of the FPP with different input
pulse functions, get the conditionally averaged waveform from taking a conditional average, then
finding the best fit of the input pulse function to the waveform to be able to compare the input
parameters of the pulse to the fitted parameters from the waveform

To generate the signals used in the pulse function analysis the base case 3.1.1 parameters were
used but with different pulse shapes. Meaning the true amplitude and waiting time distributions
are both exponential together with the time axis being normalized by the true duration time.

17



4 RESULTS AND DISCUSSION

Figure 11: Conditionally averaged waveform for the threshold method (blue) and the prominence method
(orange), without windowing (left) and with windowing (right). γ =0.1 (top), 1 (middle) and 10 (bottom).
A Gaussian pulse function was used to generate the signal.

Looking at figure 11 we see that the conditionally averaged waveform overlaps nicely with the
true pulse function for γ = 10−1 with there being no significant difference between the estimates
of either condition. The overlap=False condition also seem to have little effect. This is again the
case for γ = 1 where the estimates differ little from each other, however the estimated duration
time is consistently larger than the true value for all cases. This becomes even more apparent in
the γ = 10 case where all estimated duration times are significantly larger than the true one. For
this case it also seems like the prominence condition yields more accurate estimates independent of
allowing overlap. From a general standpoint one could say all these waveforms look Gaussian, so if
anything the method accurately picks out the general shape even though it tends to overestimate
the duration time of the pulses when γ > 10−1.
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Figure 12: Conditionally averaged waveform for the threshold method (blue) and the prominence method
(orange), without windowing (left) and with windowing (right). γ =0.1 (top), 1 (middle) and 10 (bottom).
A Rayleigh pulse function was used to generate the signal.

In figure 12 we see the results of conditional averaging used on a signal with a Rayleigh pulse
function as shown in appendix D.8. For γ = 10−1 both conditions provide waveforms that overlap
nicely with the true pulse function. However there is ”waviness” in the waveforms where overlap-
ping windows are allowed which is not there with the overlap=False condition. This may be an
effect caused by multiple parts of the signal being included more than once in the average, due to
not using the overlap=False condition, however there is no strong evidence for this. The shape
is a Rayleigh pulse in the most intermittent case, with a clear difference between the polynomial
rise and the Gaussian fall of the pulse. As γ increases this shape become harder to discern. When
γ = 1 this difference between a rise and a fall is less visible, and one could not certainly claim this
to be a Rayleigh pulse. The fall looks to be accurately represented, but the rise is slower, giving us
something more symmetric in the end. The prominence method also produces two clear troughs
about two duration times away from the center of the pulse when overlapping windows are allowed.
With overlap=False there is no clear difference between the waveforms, as they both yield the
same shape. If we look at the γ = 10 case, we see much of what we saw in the γ = 1 case but
more exaggerated. The pulses are almost completely symmetric in all cases, making it look more
like a Gaussian pulse. The troughs of the prominence condition with overlap allowed are also more
distinct, while still being located at about the same spot. If we look at the estimated duration
times they are consistently lower for all γ, however it is clear from the γ = 1 and γ = 10 cases
that one might not consider a Rayleigh pulse at first glance, making these duration time estimates
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somewhat flawed.

Figure 13: Conditionally averaged waveform for the threshold method (blue) and the prominence method
(orange), without windowing (left) and with windowing (right). γ =0.1 (top), 1 (middle) and 10 (bottom).
A one-sided exponential pulse function was used to generate the signal.

Taking the non-symmetric pulse to an extreme we look at the base case in section 3.1.1 with
its one-sided exponential pulse from appendix D.1 in figure 13. For γ = 10−1 we see an accurate
representation of the true pulse function for all variations of the condition. The asymmetry pa-
rameter λ describes the asymmetry in a double exponential pulse shape as described in appendix
D.2, where λ → 0 corresponds to a one-sided exponential pulse and lambda = 1

2 corresponds to a
perfectly symmetric double exponential pulse. The asymmetry parameter is accurately estimated
and the duration time is only slightly underestimated with no significant difference between the
methods. However, issues arise when γ = 1 both conditions yield a waveform that rises slowly
followed by the expected steepness of a one-sided pulse. The fall is then consistently faster for all
conditions. The resulting estimated duration time is then smaller as the fall time is shorter. When
using the overlap=False condition the methods differ little, but in the case of allowing overlap
there is a clearer difference. The amplitude threshold condition gives a waveform with both a
longer rise and fall time compared to the prominence condition. From the general shape one could
still make an educated guess on that the signal is made up of one-sided pulses, as the instant rise
is still captured in the waveform. Moving on to the γ = 10 signal we see that this instant rise
of the pulse is completely washed out, yielding what looks like a two sided pulse. This is also
reflected in the λ estimates. Again, the fall time is underestimated in all cases, but as the pulses
are more symmetric the rise is grossly overestimated. For the prominence condition with allowing
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overlap we see some hints of the troughs that we saw for the Rayleigh pulse. They are again
located at about two duration times away from the center, and this bias might be what causes
this condition to underestimate duration times. This may also be the situation for the γ = 1 case
for the prominence condition with overlap. With the overlap=False condition the methods have
the same general shape, but they still do not resemble the true pulse function any better as one
would not guess the true pulse would be a one-sided exponential pulse just from looking at the
conditional average.

Figure 14: Asymmetry and duration time estimates from the conditionally averaged waveform of different
realizations of the FPP with different asymmetry parameters. Each point on the graph represents an
average of 100 estimates from 100 realizations of the stochastic process.

In figure 14 we see how asymmetry and duration time estimates from conditional averaging
develop with increasing γ for two sided exponential pulses. This figure is based on some excellent
earlier work done by Rasmus Nordal [29]. The γ = ∞ case is approximated numerically by
convolving a signal consisting of uncorrelated Gaussian noise together with the double exponential
pulse shape. What we observe is that the overlap=False condition improves the duration time
estimates at γ = 10−1 and γ = 1. The asymmetry estimates differ little between the threshold
conditions, especially together with the overlap=False condition. We also see a general trend in
that duration times are often estimated to be larger depending on the asymmetry of the input pulse
function, supporting the claim that symmetric pulses generally tend to lead to a larger duration
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time estimate from conditional averaging. We also see clearly that the effects of pulse overlap
lead to more symmetric estimates, with the γ = ∞ case yielding completely symmetric estimates
independent of input pulse.

The other pulse functions that were analysed was the Lorentz pulse in appendix D.5, the gamma
pulse in appendix D.7, the triangle pulse in appendix D.4 and the box pulse in appendix D.6. The
figures from these can be found in appendix F.1. In general, from looking at different pulse shapes
we can conclude that conditional averaging works very well in reproducing the pulse shape when
the signal consists of many distinct pulses that tend not to overlap with each other (when γ is
small). There is one exception for this and that is the box pulse as shown in appendix F.1 in figure
62. The reason for this pulse failing so drastically under the effects of pulse overlap is because of
the characteristic way box pulses tend to overlap. If successive box pulses arrive closely the rise
of the resulting conditional event will look like a staircase with uneven steps. These steps will
continue to go up until the either the last pulse have arrived or until the duration time of the first
pulses have passed. This results in a staircase shape somewhat inversely mirrored (the rise of the
first ascending step becomes the decline of the first descending step) on the other side of the peak.
When many such staircase events are averaged out the staircase shapes disappear and we get the
gradual slopes we observe leading to a sharp peak in the conditionally averaged waveform.

When pulse overlap becomes more prevalent the waveform results of conditional averaging,
independent of conditions, become worse. The degree of error is dependent on the true pulse
shape. Conditional averaging works well for symmetric pulses with no instant rises or falls up to
γ = 1 when estimating pulse parameters. The shape of the pulse is also in general preserved for
γ = 10, however the duration of the pulses tend to be overestimated by 10-40% for this regime. The
overlap=False condition also significantly improves the prominence condition across the board, as
this condition yields characteristic troughs in the waveform for higher γ if overlapping windows are
allowed. These troughs in turn influences the waveform, artificially reducing the apparent duration
times. The overlap=False condition also influences the amplitude threshold condition, however
not to the same degree, and it is not clear if this yields improved results from simply looking at
the produced waveforms. Looking at the non-symmetric pulses however we see that the error is
much more distinct as the pulse overlap in the signals increase. When γ increases the conditionally
averaged waveforms become more and more symmetric. This influences different pulses in different
ways, such as a one-sided exponential pulse still being clear when γ = 1 because of its instant rise,
but an average from a signal consisting of Rayleigh pulses may be misinterpreted as a Gaussian
pulse even for γ = 1. When γ = 10 the asymmetry is almost completely washed out independent
of the chosen threshold type and enforcement of window overlap. The estimated duration time is
also consistently lower than the true value for the asymmetric pulses when γ ≥ 1.

To conclude the section we have shown that the conditionally averaged waveforms are heavily
dependent on the underlying pulse shape. The method works better at higher degrees of pulse
overlap for symmetric pulse functions than asymmetric ones. Asymmetry in the estimate is also
lost with higher γ-values. This may lead to incorrect conclusions based on the waveform, meaning
one should ideally estimate asymmetry in conjunction with other methods to not be led astray by
the effects of pulse overlap.

4.1.2 The effects of noise on the waveform

Noise is a phenomenon any data analyst will come across, making it a necessary point of study for
any signal processing method. In this section we will look at the average waveform from conditional
averaging for the prominence and amplitude threshold conditions, both with and without the
overlap=False condition on the averaging windows. We will concern ourselves with two types
of noise, observational, also known as additive noise and dynamic noise as described in section
3.1.2. An attempt at finding the best threshold condition will be made and we will establish if the
overlap=False condition is required or not.

To generate the signals used in the noise analysis the base case 3.1.1 was used with the two noise
types described in 3.1.2. Meaning the amplitudes and waiting times are exponentially distributed,
the duration time is one, and the pulse function is a one-sided exponential pulse.

From the results in the previous section we know that the waveforms become largely symmetric
and give unreliable results when γ = 10, so we will mainly concern ourselves with γ = 10−1 and
γ = 1 in this section. If the figures for γ = 10 are of interest, they can be found in appendix F.2.
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Figure 15: ε = 10−2 Additive noise. Conditionally averaged waveform for the threshold method (blue)
and the prominence method (orange), without windowing (left) and with windowing (right). γ =0.1 (top)
and 1 (bottom). A double exponential pulse function with λ = 0 was used to generate the signal.

Figure 16: ε = 10−1 Additive noise. Conditionally averaged waveform for the threshold method (blue)
and the prominence method (orange), without windowing (left) and with windowing (right). γ =0.1 (top)
and 1 (bottom). A double exponential pulse function with λ = 0 was used to generate the signal.
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In figures 15 and 16 we see the waveform results of conditional averaging used on signals
with ϵ = 10−2 and ϵ = 10−1. The figures share the same traits, making it natural to discuss
them together. Here we see that the waveform from the amplitude condition is not reproduced
accurately if we allow overlapping windows, The fall is rather well reproduced, but the rise is
completely wrong. The prominence condition is not affected by this and resembles mostly the
same shapes as we saw in section 4.1 without noise. The overlap=False condition drastically
improves the results from the amplitude threshold while at the same time removing the troughs
in the prominence method that we still see hints of. For ε = 10−1 we also see hints of the noise in
the waveform itself where the peak has this small jump which comes from the additive noise for
both the γ = 10−1 and γ = 1 cases.

Figure 17: ε = 1 Additive noise. Conditionally averaged waveform for the threshold method (blue) and
the prominence method (orange), without windowing (left) and with windowing (right). γ =0.1 (top) and
1 (bottom). A double exponential pulse function with λ = 0 was used to generate the signal.

The effects of noise are further exacerbated when the noise to signal fluctuation ratio, ε, is
increased as we see in figure 17 where both the prominence and the amplitude threshold methods
break down completely without the added overlap=False condition. The reasons for breakdown
are however different. The amplitude threshold method breaks down because of noise jitter just
before and just after the crossing of the threshold caused by an underlying event. To explain this
we can look to figure 5. Say the second lime peak from the left is an underlying event, then small
peaks caused by noise around the threshold level will cause the signal to dip up and down around
the threshold during the rise and the fall of the underlying pulse. This will result in many peaks
like the orange peak that are close to a taller peak, but are being registered because it dips below
the amplitude threshold before the taller peak. The prominence method breaks down because the
noise itself fluctuates on scales comparable to the signal, making noise events much more prominent.
There are as many noise events as there are signal data points (107), meaning there are significantly
many more prominent noise events than prominent underlying signal events. This leads to the noise
events dominating the average, resulting in a simple spike on the average waveform. However, the
overlap=False condition again drastically improves the waveform estimate, where they resemble
more of the structures we saw in 13 but with a clearly expressed noise jump at the center. There is
also little difference between the two threshold conditions when using the overlap=False condition,
making us unable to say one is better than the other. The parameter estimates are also clearly
affected by this jump, meaning one should be careful when estimating pulse parameters from a
signal with additive noise, with this care being more important with increasing ε.
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Figure 18: ε = 10−2 Dynamic noise. Conditionally averaged waveform for the threshold method (blue)
and the prominence method (orange), without windowing (left) and with windowing (right). γ =0.1 (top)
and 1 (bottom). A double exponential pulse function with λ = 0 was used to generate the signal.

Figure 19: ε = 10−1 Dynamic noise. Conditionally averaged waveform for the threshold method (blue)
and the prominence method (orange), without windowing (left) and with windowing (right). γ =0.1 (top)
and 1 (bottom). A double exponential pulse function with λ = 0 was used to generate the signal.
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For dynamical noise in figure 18 the results largely resemble what we saw in figure 13. Both
methods are viable for low γ and the same issues of an underestimated fall time together with a
small rise before the true instant rise being apparent in the γ = 1 case. But again, we see that
with more noise comes more issues in figure 19. The prominence waveform is not affected by the
noise in comparison to the amplitude threshold waveform. Even for small γ without enforcing
overlap we again see a small bump before the steep rise with this bump looking more exponential
in the γ = 1 case. However, this issue is again mitigated by the overlap=False condition, yielding
similar results for both threshold conditions.

Figure 20: ε = 1 Dynamic noise. Conditionally averaged waveform for the threshold method (blue) and
the prominence method (orange), without windowing (left) and with windowing (right). γ =0.1 (top) and
1 (bottom). A double exponential pulse function with λ = 0 was used to generate the signal.

In figure 20 we see the the waveform results of conditional averaging when ε = 1 for dynam-
ical noise. There is not much different from the ε = 10−1 case, however the γ = 1 case with
overlap=False looks more symmetric than the ε = 10−1 case which is also reflected in the asym-
metry estimate λ.

After having looked at both additive and dynamic noise the most obvious takeaway is that the
additional overlap=False condition improves the waveform estimate for any degree of intermit-
tency. The only case where one might argue it does not make a difference is in the dynamic noise
case with ε = 10−2 and γ = 10−1. We hoped that the prominence condition would inherently be
insensitive to noise because of a preference for an inherent distance between peaks because of the
nature of decay between events and how prominence is defined. This is supported for all but the
ε = 1 case of additive noise. The waveforms look similar to the ones observed in section 4.1 without
the overlap=False condition. However the prominence conditions issues of the troughs persists,
making the overlap=False condition necessary despite what we had hoped. These troughs show
up only in the cases without overlap=False and represents events that are close together with
significant prominence each, thus the slow decay and rise before and after the troughs respectively
are a result of the neighbouring peaks that average out to a generally larger level than what would
be the case if we use the overlap=False condition. The amplitude threshold method is signif-
icantly improved result wise with overlap=False. Without this condition the method picks up
lots of noise jitters that just rises above amplitude threshold, often during the rise or decay of
an underlying event. An interesting observation is that the different noise types also come with
different shapes on the waveform for this condition which might be because of the dynamical noise
fluctuates on a longer timescale than the additive noise, making the threshold crossings fewer

26



4 RESULTS AND DISCUSSION

and therefore affecting the average in a different way. Additive noise also looks to be the type
that affects the average the most, with the distinct jump on t = 0 only showing for this type of
noise for larger ε. We have also observed that the threshold conditions have negligible differences
between them when using the overlap=False condition. Comparing our high intermittent cases
with the results of earlier studies [20, 21] we arrive at the same conclusion. Conditional averaging
is well suited to reproduce the shape of underlying events in the face of noise if one introduces an
additional condition that ensures some robustness against picking up the same underlying event
multiple times due to noise fluctuations. The overlap=False condition being one example of such
a condition as long as one chooses a window size that is not too small. From these results we can
conclude that the additional overlap=False condition is necessary to obtain the most accurate
waveform compared to the true pulse shape, especially when there is noise in the signal. This is
relevant independent of the intermittency as results are improved for both highly intermittent and
non-intermittent signals with the overlap=False condition.

4.1.3 Mixed waveforms

Underlying events may have different shapes depending on their sizes. This may come in the
form of completely different shapes at different amplitudes, perhaps indicating a mix of different
processes, or in the form of the symmetry varying with amplitude, possibly displaying an underlying
property of the process. With conditional averaging we can adjust the threshold to look for different
shapes between different thresholds, possibly uncovering such a correlation. The filtered Poisson
process also allows for such a correlation when generating realizations as we can use the distributed
amplitudes to determine the pulse shape as well.

To correlate the amplitude distribution with the pulse function the asymmetry parameter λ of
the double exponential pulse function was made a function of the amplitudes according to

λ(A) =



0.5, 0 ≤ A < a

0.4, a ≤ A < b

0.3, b ≤ A < c

0.2, c ≤ A < d

0.1, d ≤ A < e

0, e ≤ A.

(4.1)

What this relationship does is that it makes pulses more asymmetric as the amplitudes grow,
with completely symmetric pulses at the lowest amplitudes and one-sided pulses at largest ampli-
tudes.

Figure 21: Conditionally averaged waveforms and the estimated λ and τd for γ = 10−1 (left) and 1 (right).
The thresholds are > 2.5 (blue), 2 − 4 (lime), 4 − 6 (red) and 6 − 8 (black) in units of the signals rms
value. The a, b, c, d, e values were 2, 4, 4, 6, 6 in units of the signals rms value plus the mean of the signal.
The input amplitude distribution was Exp(1).

In figure 21 the results of conditional averaging between different amplitude thresholds are
shown for a signal with waveforms correlated with amplitudes so that one there is simply one
waveform within each interval, λ = 0.5 between 0 and 2 standard deviations, λ = 0.4 between 2
and 4 standard deviations, λ = 0.2 between 4 and 6 standard deviations and λ = 0 for any events
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with amplitudes above 6 standard deviations. We see from the waveforms that in the γ = 10−1-
case the averaged waveform estimates coincide well with the pulses placed within the threshold
windows. However, in the γ = 1-case this distinction is not as clear. There is an overall decrease
between the increasing threshold windows, but not as steep as the true relationship between pulses
and waveform asymmetry. It is evident that the effects of overlap diminish our abilities to discern
the true asymmetry parameter, even for the most idealized example at γ = 1. For γ = 10 it is
hard to create such an idealized scenario with thresholds above two standard deviations as the
probability of singular events crossing the threshold vanishes at this γ.

Figure 22: Conditionally averaged waveforms and the estimated λ and τd for γ = 10−1 (left) and 1 (right).
The thresholds are > 2.5 (blue), 2 − 4 (lime), 4 − 6 (red) and 6 − 8 (black) in units of the signals rms
value. The a, b, c, d, e values were 2, 3, 4, 5, 6 in units of the signals rms value plus the mean of the signal.
The input amplitude distribution was Exp(1).

Similarly in figure 22 we have an idealized example with certain pulses carefully placed in
different threshold windows depending on their amplitude. Between 0 and 2 standard deviations
the pulses are symmetric with λ = 0.5, within 2-4 standard deviations there are both λ = 0.4
and λ = 0.3 pulses, between 4 and 6 standard deviations there are λ = 0.2 and λ = 0.1 pulses,
while anything above 6 standard deviations is a one-sided λ = 0 pulse. In the figure for γ = 10−1

we see the results of conditional averaging between these threshold windows, and we see that the
asymmetry estimates resemble an average between the waveforms within each threshold window,
as we would expect from the previous example. However just as in the previous figure we see that
this accuracy quickly vanishes as γ = 1 where we are only able to discern a decreasing relation
between higher amplitudes and the asymmetry parameter without accurately estimating the true
waveforms.
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Figure 23: Conditionally averaged waveforms and the estimated λ and τd for γ = 10−1 (left), 1 (right)
and 10 (bottom). The thresholds are > 2.5 (blue), 2 − 4 (lime), 4 − 6 (red) and 6 − 8 (black) in units of
the signals rms value. The intervals were spaced so that an equal amount of events were made for each
value of λ. The input amplitude distribution was Exp(1).

It is highly unlikely that one would come across such highly idealized examples. To construct
another example we make it equally likely for any event to be in any asymmetry bracket while
still making the correlation be amplitude dependent. This was done, giving us an equal amount
of events for each λ-value and the results of conditional averaging used on such a realization can
be seen in figure 23. In the γ = 10−1 case we can see that the averaged waveforms give us again
this λ-average in each bracket, showing us that for this example most of the threshold crossings
are due to the higher amplitude events with an asymmetry of λ = 0.2 and below. From this, one
would not be able to conclude the true distribution of an equal number of events in each bracket,
and perhaps infer that the signal consists of largely asymmetric events. In the γ = 1 case the
distinction is even harder to make where most threshold crossing stem from the λ = 0-events and
overlap effects, making the more symmetric events mostly undetected by conditional averaging.
This makes the underlying distribution impossible to detect in this case, even suggesting symmetry
increases slightly for larger pulses. For γ = 10 the waveform estimates about the same independent
of threshold bracket. The effects of pulse overlap dominate the averages, making this method of
detecting differences in waveforms on different amplitude scales entirely unreliable at this γ-scale.
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Figure 24: Conditionally averaged waveforms and the estimated λ and τd for γ = 10−1 (left), 1 (right)
and 10 (bottom). The thresholds are > 2.5 (blue), 2−4 (lime), 4−6 (red) and 6−8 (black) in units of the
signals rms value. There is no correlation between pulse shapes and amplitudes in the signal. The input
amplitude distribution was Exp(1).

As a reference we also use this method on a signal with no correlation between amplitudes
and pulse shape in figure 24. We see little difference in the estimated asymmetries between the
threshold brackets, leading us to conclude that increasing pulse overlap does not lead to observed
correlations between amplitudes and the shape of the waveform. The duration time estimates
change depending on the bracket for γ = 1 and γ = 10. This may be due to the effects of overlap
being normalized out to different degrees depending on the amplitude of the conditional events.
If we for simplicity assume that overlap affects the pulse shape by raising or lowering the rise
and tail of underlying large amplitude events by a fixed amount, then normalizing based on peak
amplitudes will make the effect of overlap appear stronger for the smaller conditional events within
the average, while lager events will appear with more suppressed effects of overlap in the average
due to normalizing by a bigger peak value.

From looking at amplitude correlated pulse-shapes we have observed that conditional averaging
only works reliably in the highly intermittent case where one obtains more accurate asymmetry
estimates within each threshold bracket. This was clear from the highly idealized cases with the
correlation being tailored to the specific threshold windows. However, the methods ability to
accurately pick out the true waveform within these brackets disappear even for moderately inter-
mittent signals with γ = 1 where one is only able to uncover the general decreasing trend between
symmetry and increasing amplitudes. For γ = 10 we observed that the ability to pick out any
difference in waveforms based on amplitude thresholds is largely lost, as the effects of pulse overlap
cause almost all threshold crossings at this intermittency scale. Using conditional averaging in this
way for signals where overlap is even somewhat apparent is problematic for accurate waveform
representations, and one should only use it to find general trends in the correlation at when γ is on
the order of one. For highly intermittent signals this way of predicting the underlying correlation
works fine. Although if the correlation is more continuous in nature one might have to divide up
the intervals even more, making even longer signals necessary for statistically robust results as
smaller and more brackets will inevitably have fewer events within them per bracket.
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4.2 Amplitude distribution analysis

Conditional averaging as we use it picks out peaks in a signal based on different threshold con-
ditions. One important piece of information about the peaks are their heights which have been
used to estimate the amplitude distributions of the underlying events of the signal [13, 28, 30, 31].
In this section we will examine the empirical amplitude and prominence distributions obtained
through conditional averaging using the amplitude and prominence thresholds respectively. The
distributions will be compared to the amplitude distributions used to generate the signals and
the signals conditional distribution above the set threshold as well. As we previously found the
overlap=False condition is vital for good waveform results all the analysis in this section will be
done with that condition as well.

In this section all signals were generated according to the base case 3.1.1 but with different
amplitude distributions. Meaning the waiting times are exponentially distributed, the duration
time is one and the pulse function is a one-sided exponential. In addition, the mean amplitude
is always set to be one, where the scale parameter of the distribution is used to specify the mean
according to how the shape parameter (if there is any) is chosen. The notation ⟨A⟩ind denotes
the mean of the values above the threshold for each individual distribution shown. For instance
for the amplitudes from the conditional average it denotes the mean of these amplitudes, while
for the signal probability distribution it denotes the mean of the signal values above the same
threshold and for the theoretical distribution it denotes the mean above the threshold B.6. For
the prominence method the prominence distribution is shown, which is strictly not the same as
the amplitude distribution, however we will investigate if this distribution is a good estimate for
the amplitude distribution. The main distributions we will investigate is the exponential, Lomax,
Rayleigh and degenerate distributions. The reason for choosing these distributions are the their
properties. The exponential distribution is the one used in the base case and is often one that is used
in the literature [13,31]. The Lomax distribution is investigated because of its heavy tail, making
larger amplitudes more likely which would help us investigate a broader range of amplitudes. The
Rayleigh distribution would help us investigate if any unimodality is preserved and to see the effects
of an even steeper tail than for the exponential distribution. And finally, the degenerate distribution
allows for a nice idealized test case where all amplitudes are the same, and we essentially look at
the effects of pulse overlap in isolation. It turns out that the amplitude distribution estimates
from conditional averaging often align with the conditional probability density function of the
signal itself in the case of the amplitude threshold. If it also does not follow the true distribution,
then one could interpret this as the method effectively picking out random points on the signal
instead of being biased toward underlying events. The points that conditional averaging cannot
be seen as truly random points on the signal as the method picks out peak values, however these
peak values tend to look like random points on the signal as the effects of overlap increase. This
would be a major issue as conditional averaging is hypothesized to pick out individual underlying
events, making conclusions drawn from the conditional average amplitude distribution estimates
inaccurate. For the prominence threshold it is hard to make the same case, as what it provides
is a prominence distribution. The reason we don’t compare the prominence distribution to the
signal distribution is that it is only the peaks in the signal have prominence values. For this same
reason one cannot obtain a prominence distribution of the signal, and therefore it is hard to check
if the prominence distribution estimated from conditional averaging converges to the prominence
distribution of the signal itself.

This section is structured as follows. Firstly we look at the effects of different amplitude
distributions in the waveform estimate, discussing distributions together in order of increasing γ.
Then we discuss the amplitude estimates themselves, comparing them to each other, the underlying
amplitude distribution and to the conditional distribution of the signal itself. In the end we
conclude the section with the most important takeaways from this analysis.

4.2.1 Effects of different amplitude distributions on the averaged waveforms

In this section we will discuss the effects of different amplitude distributions on the conditionally
averaged waveform. There is little difference between the estimates from the two methods when
it comes to the waveform with the overlap=False, meaning we will discuss them together. We
will discuss them in increasing order of γ comparing them to one another between input amplitude
distributions.
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A ∼ Exp(1) A ∼ Rayleigh
(√

2
π

)

A ∼ Lomax(3, 2) A ∼ Degenerate(1)

Figure 25: γ = 10−1. Conditionally averaged waveform for both methods. The distributions denote the
underlying amplitude distributions of each signal that the methods were used on.

Starting with the highly intermittent case in figure 25 where we see the different waveform esti-
mates from conditional averaging used on signals with different input amplitude distributions. We
that three of the four waveforms are reproduced accurately, except for the signal with degenerately
distributed amplitudes. The waveform estimate in this case is affected by the underlying amplitude
distribution in the form of a small, elevated region. This region may stem from a combination of
the waiting time distribution and the degenerate amplitudes. In cases where two pulses are closely
spaced together, as in within one window size of each other, the conditional averaging method
would pick up the taller event and make an excerpt around this peak. In the case where every
event has the same amplitude the taller signal value is always at the peak of the event that arrived
the latest as it will arrive on top of the decay of the first event. As the excerpt is around the
taller peak the earlier peak presents itself in the average as we see in this small, elevated region.
With a small probability of pulse overlap this does not happen too often in highly intermittent
signals, but we still see that there is some effect from it on the waveform. The reason this does
not happen in the case of other distributions, despite having the same amplitude mean, is that
for those distributions the latest peak within an averaging window is not always the tallest. If an
earlier event is larger, then that event is most likely going to be the one picked up by the method
(as long as it is not within one window size of an even taller, earlier event). The excerpt is thus
taken around the earlier event, effectively lowering the ”mean level before arrival” compared to
the degenerate distribution where this mean is higher because all events have the same amplitude.
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A ∼ Exp(1) A ∼ Rayleigh
(√
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)

A ∼ Lomax(3, 2) A ∼ Degenerate(1)

Figure 26: γ = 1. Conditionally averaged waveform for both methods. The distributions denote the
underlying amplitude distributions of each signal that the methods were used on.

In figure 26 we see the estimated waveforms from conditional averaging used on signals with
differently distributed amplitudes. The waveform from the exponentially distributed amplitudes
resemble the same traits as we found in section 4.1, with a slight rise before the instantaneous
jump of an underlying event. However, what is interesting is that this rise is evidently different in
its appearance on the average waveform for all the different distributions. We start to see a trend
in how the waveform estimate is affected by the input amplitude distributions. The heavier the
tail of the input distribution the smaller this initial rise before the jump for this particular pulse
shape. This also makes sense as in signals with with a bigger large-to-small ratio of amplitude
events there would be more events that ”stick out” distinctly from the rest of the signal, making the
effects of pulse overlap on the waveform not as pronounced in the average. For a signal dominated
by small amplitude events most threshold crossings would be due to pulse overlap, no matter if
it is an amplitude or a prominence threshold, making the average being dominated by crossings
of this type instead of singular events exceeding the threshold. Thus, the waveform estimate of
conditional averaging might be more accurate depending the probability of large amplitude events
in the signal it analyzes.
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A ∼ Exp(1) A ∼ Rayleigh
(√

2
π

)

A ∼ Lomax(3, 2) A ∼ Degenerate(1)

Figure 27: γ = 10. Conditionally averaged waveform for both methods. The distributions denote the
underlying amplitude distributions of each signal that the methods were used on.

Looking at the conditionally averaged waveforms from signals with differently distributed am-
plitudes in the γ = 10 case we observe much the same as in the γ = 1 case. From our earlier
waveform analysis in section 4.1 we concluded that the results of the method were largely inac-
curate for asymmetric pulses at this intermittency. However here we see that the effects of pulse
overlap can be mitigated by broadening the amplitude distribution, making waveforms from signals
with γ = 10 appear closer to the underlying waveform. The broader the underlying distribution,
the smaller the initial rise and the better the estimates. This further supports the hypothesis that
the results of conditional averaging are more robust when the underlying amplitude distributions
are heavy-tailed.

4.2.2 Amplitude distribution estimates

In this section we will look at signals with differently distributed underlying amplitudes to see if
the estimates from conditional averaging coincide with the true amplitude distribution or not. We
will also compare the amplitude estimates between the two threshold conditions, attempting to
establish if either one is better suited to amplitude estimation than the other.

Highly intermittent signals γ = 10−1

To start this analysis we will explore highly intermittent signals, where the effects of pulse
overlap are negligible. Here we expect to accurately reproduce the underlying amplitude distri-
bution as the large majority of conditional events will coincide with underlying events because of
negligible pulse overlap.
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Figure 28: γ = 10−1 A ∼ Exp(1). Amplitude distribution for the pure threshold (blue) method, promi-
nence distribution (orange) for the prominence method and conditional signal distribution (green).

In figure figure 28 we see the amplitude distribution estimates from conditional averaging
used on a signal with exponentially distributed amplitudes. We see that both the prominence
and amplitude threshold methods closely follow the true conditional amplitude distribution in
an exponential tail. However, the signals conditional distribution is also exponential, making
the estimate look like good reproductions of both the signal distribution and the true amplitude
distribution.

Figure 29: γ = 10−1 A ∼ Rayleigh
(√

2
π

)
. Amplitude distribution for the pure threshold (blue) method,

prominence distribution (orange) for the prominence method and conditional signal distribution (green).

In figure 29 we see the amplitude distribution estimates from conditional averaging used on
a signal with Rayleigh distributed amplitudes. We see that both the prominence and amplitude
threshold methods closely follow the true conditional amplitude distribution initially, but as it
tails off it is hard to say if the tail is Gaussian or exponential due to the lack of data. The signal
distribution has an exponential tail, which could look to align with the estimates from conditional
averaging for larger amplitudes, but it is still not a distinct enough difference that we can rule out
which distribution the estimated distributions follow.
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Figure 30: γ = 10−1 A ∼ Lomax(3, 2). Amplitude distribution for the pure threshold (blue) method,
prominence distribution (orange) for the prominence method and conditional signal distribution (green).

In figure 30 we see the estimated amplitude and prominence distributions from a signal with
Lomax distributed amplitudes. The estimated amplitude distributions closely follow the true
amplitude distribution, but as the signal distribution is also power-law distributed we must again
conclude that the estimate from conditional averaging reproduces both the signal and the true
amplitude distributions.

Figure 31: γ = 10−1 A ∼ Degenerate(1). Amplitude distribution for the pure threshold (blue) method,
prominence distribution (orange) for the prominence method and conditional signal distribution (green).

Looking at the conditional averaging results from a signal with degenerate amplitudes in figure
31 we see that the estimated amplitude distributions exhibit a clear spike which indicates that the
methods mainly pick up one amplitude which is what we would expect. The reason this spike does
not align with the true distribution is because of the normalization mentioned at the start of this
section. The conditional signal distribution also has a sharp jump before it tails off exponentially.
The reason for this jump is cases of pulse overlap. In highly intermittent signals it us unlikely that
there is pulse overlap, thus the density before the jump represents the region up until the mean
of the amplitudes. Anything above this amplitude mean will be unlikely because of pulse overlap,
which is why we see this sharp jump in probability at this value. The estimated distributions do
not match up with the signal distribution, giving us some confidence that the method might be
accurate for highly intermittent signals.

From looking at the results with different input amplitude distributions in the case when γ =
10−1 we can see that the amplitude estimates generally reproduce both the signal and the true
distribution well.
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Moderately intermittent signals γ = 1
In this part we will move on to look at signals with an intermittency of γ = 1 where individual

events and the effects of pulse overlap are both apparent. It is on this intermittency that we hope
to see how pulse overlap starts to affect the amplitude estimate.

Figure 32: γ = 1 A ∼ Exp(1). Amplitude distribution for the pure threshold (blue) method, prominence
distribution (orange) for the prominence method and conditional signal distribution (green).

In figure 32 we see the amplitude distribution estimates from conditional averaging used on a
signal with exponentially distributed amplitudes. The distribution estimates are again exponential
together with the signal distribution, giving us the same conclusion as earlier with the estimate
reproducing both. We also start to see some difference between the estimates from the different
types of condition, with the prominence estimate looking broader with an initial flatter region.

In figure 33 we see the amplitude estimates obtained from conditional averaging used on a signal
with Rayleigh distributed amplitudes. From the amplitude threshold method, we can clearly see
that the estimated distribution follows the signal distribution rather than the true distribution,
supporting the claim that conditional averaging might simply pick out random points on the signal
as γ increases. The estimate from the prominence method also fails to predict the true distribution,
with the distribution having obtained an uni-modal shape in contrast to the Gaussian tail from
the true distribution.
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Figure 33: γ = 1 A ∼ Rayleigh
(√

2
π

)
. Amplitude distribution for the pure threshold (blue) method,

prominence distribution (orange) for the prominence method and conditional signal distribution (green).

Figure 34: γ = 1 A ∼ Lomax(3, 2). Amplitude distribution for the pure threshold (blue) method,
prominence distribution (orange) for the prominence method and conditional signal distribution (green).

In figure 34 we see the amplitude estimation results of conditional averaging from a signal with
Lomax distributed amplitudes. Here we see the same characteristics exhibited in the γ = 10−1

case in figure 30. Both the amplitude estimates follow the true distribution but also the signal
distribution, making it hard to draw any new conclusions.
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Figure 35: γ = 1 A ∼ Degenerate(1). Amplitude distribution for the pure threshold (blue) method,
prominence distribution (orange) for the prominence method and conditional signal distribution (green).

figure 35 shows the amplitude distribution estimates of conditional averaging used on a signal
with degenerately distributed amplitudes. Examining the amplitude estimates we see that the
amplitude threshold estimate, and the signal distribution is exponential. The reason we do not see
the true conditional distribution here is that it is the simple fact that the threshold of 2.5

√
γ+γ =

3.5 is too high, making no single event able to cross as all events has the same amplitude of 1. The
shape of the prominence distribution is also similar to the one from figure 33 while not resembling
any jumps that could indicate an underlying degenerate distribution.

As evident from the γ = 1 examination of the estimates from conditional averaging we see that
the results already start to differ from the true distributions. In all cases but the exponential and
Lomax distributed amplitudes we can confidently say that the amplitude threshold condition picks
out random points on the signal, rather than uncovering underlying information about the distribu-
tion of individual events. The prominence condition also fails to predict the amplitude distribution
in its own characteristic way, however as the signal does not have a prominence distribution to
directly compare with it is hard to pinpoint the exact reason as to why it fails.

The pulse overlap dominated signals γ = 10
We will now study signals with an intermittency of γ = 10, where the effects of pulse overlap

dominate. Almost all conditional events are due to a random build up due to small underlying
events. Our main interest at this degree of pulse overlap is the heavy-tailed Lomax distribution.
We seek to know if the finite probability of very large amplitude events will shine through in the
amplitude distribution estimate, or if the effects of pulse overlap has completely taken over.
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Figure 36: γ = 10 A ∼ Exp(1). Amplitude distribution for the pure threshold (blue) method, prominence
distribution (orange) for the prominence method and conditional signal distribution (green).

In the case of exponentially distributed amplitudes in figure figure 36 we see that the amplitude
distribution estimate from the prominence method has taken on the characteristic shape we saw
earlier in some of the γ = 1 cases. The amplitude threshold estimate follows the signal distribution
and looks exponential in the tail. The shift compared to the theoretical distribution stems from
their individual normalizations. It is clear the the prominence method provides an inaccurate
estimate for the amplitude distribution. From the general trend we have seen we are safer to
assume that the reason the amplitude threshold condition predicts an exponential distribution is
because of the tail of the signal distribution being exponential, rather than providing an accurate
estimate of the underlying exponential amplitude distribution.
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Figure 37: γ = 10−1 A ∼ Rayleigh
(√

2
π

)
. Amplitude distribution for the pure threshold (blue) method,

prominence distribution (orange) for the prominence method and conditional signal distribution (green).

Figure 38: γ = 10 A ∼ Degenerate(1). Amplitude distribution for the pure threshold (blue) method,
prominence distribution (orange) for the prominence method and conditional signal distribution (green).
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In figure 37 and figure 38 we see the results of conditional averaging used on a signal with
Rayleigh and degenerately distributed amplitudes respectively. The takeaway from these figures
is much the same as in the γ = 1 case with both threshold conditions failing to predict the true
distribution. The prominence estimate takes on the same shape and the amplitude threshold
estimate closely follows the signal distribution rather than the true amplitude distribution.

Figure 39: γ = 10 A ∼ Lomax(3, 2). Amplitude distribution for the pure threshold (blue) method,
prominence distribution (orange) for the prominence method and conditional signal distribution (green).

The most interesting case is the results of conditional averaging used on a signal with Lomax
distributed amplitudes as we see in figure 39. From the earlier γ = 10−1 and γ = 1 cases concluded
that the distribution matches both the signal and underlying distributions. From looking at the
amplitude estimates here we do not see the characteristic shape of the prominence distribution
that we have seen in the other γ = 10 cases. The tail of the amplitude estimate looks to follow the
signal distribution more than the true polynomial decay of the true distribution, giving us slightly
more confidence in assuming that the effects of pulse overlap cause the method to pick up random
signal values. However, this is by far the best performing case compared to the lighter-tailed
distributions mentioned earlier.

From the amplitude estimation results it is obvious that conditional averaging fails to repro-
duce the true amplitude distributions as γ increases. As the degree of pulse overlap increases the
conditional events of both the amplitude and prominence thresholds become more and more due to
overlap than due to individual events. This causes the events picked up by conditional averaging
to appear as random points on the signal itself instead of predicting an underlying distribution of
amplitudes for the individual events it tries to capture. The effects of pulse overlap is somewhat
mitigated based on the distribution of amplitudes. For a distribution with a high probability of
a small range of amplitudes the estimates from conditional averaging are less accurate than for
a distribution where a wider range of amplitudes are more probable. This is based on the rough
order that we saw the method fail in depending on amplitude distribution estimates. Degener-
ately distributed amplitude signals have the most inaccurate results, followed by the Rayleigh
distributed cases, then the exponential and finally the Lomax distributed amplitudes which still
showed decently accurate estimates at γ = 10. The main takeaway from this section is that condi-
tional averaging already fails to predict amplitude distributions at degrees of intermittency on the
order of γ = 1, showing that conclusions based on conditional averaging amplitude distribution
estimates in this regime should be taken with a grain of salt. One should also be careful when using
the method for more intermittent signals and at least check the amplitude distribution estimates
against the signal distributions as a sanity check before concluding anything definitively.
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What is also evident is that the conditionally averaged waveform is dependent on the input
amplitude distribution. Heavier tails in the underlying distributions lead to more distinct events
in the signals, making singular events responsible for more threshold crossings than in signals with
lighter tails where most conditional events are due to pulse overlap. This might suggest that one
could use this observation, in combination with another type of waveform estimate, to estimate
the broadness of the underlying amplitude distribution.

4.3 Waiting time distribution analysis

Knowing the waiting times between individual events is a useful metric. Say you are building large
bridge in an area susceptible to wind gusts. If you can estimate the distribution of waiting times
between gusts you can design your bridge so that you avoid the bridge’s resonant frequency being
around the average frequency found from estimates based on an observed waiting time distribution.
Or perhaps you are forecasting large avalanches in an area based on avalanche data from earlier
seasons. Knowing how the times between avalanches are distributed would help predict at what
times in that area is unsafe for skiing or hiking. Conditional averaging is one method that has
been used to estimate waiting time distributions, and in this section we will examine its ability
to do so. The filtered Poisson process is a process with exponentially distributed waiting times
because of the underlying Poisson process determining where the individual events are located.
This implies the locations are memoryless, making the probability of event locations independent
of one another. As we want to examine other waiting time distributions than the exponential one
we must move away from the underlying Poisson process for this section and instead work in the
regime of a more general renewal process described in appendix C. This allows us to construct
the arrival times based on other waiting time distributions. This is done by drawing random
waiting times from a distribution and then cumulatively summing them up to create the arrival
times. The intermittency parameter was maintained by deciding the mean of the distributions
beforehand while keeping the unit duration times.

To generate the signals in this section the base case in section 3.1.1 was used with the modifica-
tion to waiting times mentioned above. In this section we will examine the exponential, Rayleigh,
Lomax and degenerate distributions for waiting times. The reason for this is much the same as
in the amplitude analysis. The exponential distribution is the one used most in the literature, the
Rayleigh distribution allows us to investigate an even steeper tailed distribution while also looking
into if unimodality is recovered. The Lomax distribution lets us look into the effects of a heavy
tailed distribution and the degenerate distribution allows us to see if conditional averaging can be
used to pick up periodicity in the signal. All distributions are normalized by the true mean τw.
As we keep τd constant this means that τw ∼ 1

γ . In addition, we use the overlap=False condi-
tion as we have deemed it necessary in section 4.1.2. The true distributions shown are therefore
conditional as overlap=False enforces a chosen distance between the events found, making any
waiting time shorter than this distance impossible to procure.
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Figure 40: Tw ∼ Exp( 1
γ
). Conditionally averaged waveform and waiting time distributions for both the

pure threshold (blue) and prominence (orange) methods.

In figure 40 we see the waveform and waiting time estimates obtained from conditional averaging
for the usual exponentially distributed waiting times. We see that the slope clearly does not
match the slope of the true distribution, however this is expected as introducing a threshold would
inevitably make it so that the method does not pick up all the events. This would result in us
expecting to see an exponential distribution still, as the events we do pick up are still uniformly
distributed if they are indeed the true events. Thus, we expect an exponential distribution but
with a larger mean, which is just what we see here for γ = 10−1. As γ increases this we see this
trend continue for the amplitude threshold method, clear exponential tails which do not match
the true distributions slope. The prominence method looks to also tail of exponentially, but with
a certain break. However, observing an exponential waiting time distribution in the estimate does
not necessarily indicate an underlying exponential distribution. As we concluded earlier from the
amplitude distribution discussion we know that the method largely picks out random points on
the signal because of overlapping structures even for γ = 1. Then analogue to this when discussing
waiting times would be picking out random points on the time axis, and if these points are uniformly
distributed the resulting waiting time distribution would then be exponential. Because of this it we
cannot conclude either way from just looking at the base case at different degrees of intermittency.
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Figure 41: Tw ∼ Rayleigh
(√

2
π

1
γ

)
. Conditionally averaged waveform and waiting time distributions for

both the pure threshold (blue) and prominence (orange) methods.

In figure 41 we see the waveform and waiting time estimates from conditional averaging used
on a signal with Rayleigh distributed waiting times. At first look we see that the estimated waiting
time distributions look much like the case with exponentially distributed waiting times, with there
being clear exponential tails for both threshold conditions independent of γ. For γ = 1 and
γ = 10 this can be explained by by the method picking up random points on the signal, resulting
in exponentially distributed waiting times independent of the input distribution. However, for
the γ = 10−1 case we cannot jump to this same conclusion because of the inconclusive results
obtained when discussing the amplitude distributions in this γ-regime. One way to explain the
observed exponential waiting time distribution, even for highly intermittent signals is to look to
the amplitude distribution. If we start with the amplitude threshold condition we know that the
signal must cross a certain threshold for an event to be picked up. What determines this threshold
crossing as high degrees of intermittency (low γ) can be assumed to be solely the amplitude
distribution because of the very low degree of pulse overlap. As the amplitudes and waiting times
are uncorrelated each pulse arrival has an independent probability of crossing this threshold with
respect to its temporal position. Thus, the crossing positions will seemingly have exponential
waiting times between in the tail of the distribution. This is not a very strong argument, nor does
it hold for peaked distributions as we would still see more crossings with waiting times around
this peak, simply because there would be more events with temporal spacing around this peak.
However when we use the overlap=False condition the peak of unimodal distributions usually
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become ”windowed out” as the peak location lies within the window size, making the conditional
distribution monotonically decreasing from the threshold point. Another interesting point is the
γ = 1 waveform. Here we see a small bump before the instant rise of the pulse. The most probable
explanation for this is that closely spaced events are highly unlikely for Rayleigh distributed waiting
times because the probability of short waiting times is small. This makes it so that every event on
average gets at least some time to decay before the next event, even with pulse overlap, giving us
a small bump on the waveform. This is something we can also see in the other unimodal waiting
time distributions in F.4.

Figure 42: γ = 10−1 Tw ∼ Lomax(3, 2
γ
). Conditionally averaged waveform and waiting time distributions

for both the pure threshold (blue) and prominence (orange) methods.

In figure figure 42 we see the waveform estimates and waiting time estimates from conditional
averaging used on a signal with Lomax distributed waiting times. Again we observe much the
same in the γ = 1 and γ = 10 cases with exponential tails for both methods, with a break in the
prominence estimate. In the γ = 10−1 case it is not entirely clear, it looks to start off exponential,
but around tw/τw = 10 it becomes unclear. The waveform estimate is marginally better at γ = 1
than for exponentially distributed waiting times. The reason for this might be that longer waiting
times are more probable, making the decay of events clearer when they occur. This might affect
the average, but not to a very large degree.

46



4 RESULTS AND DISCUSSION

Figure 43: γ = 10−1 Tw ∼ Degenerate( 1
γ
). Conditionally averaged waveform and waiting time distribu-

tions for both the pure threshold (blue) and prominence (orange) methods.

In the case of the conditional average results from a periodic signal or degenerately distributed
waiting times in figure 43 it is plain that the tails are exponential. In the case of small γ one
could say that we would even expect the true distribution to be geometric. Every arrival is equally
spaced from each other, making the observed waiting times multiples of the chosen waiting time.
As the probability of crossing is determined solely by the amplitude distribution one could deem
each crossing a success. Thus, each observed waiting time would represent a number of trials in
units of the mean waiting time before a successful threshold crossing, which can be described by
a geometric distribution. The waveform estimates show the effects of a periodic signal on the
average pulse shape ass one can clearly see the individual pulses arriving within fixed times from
each other.

4.3.1 Effects of amplitude distributions in the highly intermittent case

As we now have seen, the waiting time distribution estimates generally do not match the true
waiting time distributions, event at high intermittency. We can then ask ourselves if the method
actually estimates the underlying waiting time distribution. As there is a size threshold involved
what we really estimate is the underlying waiting time distribution conditioned on a certain am-
plitude threshold. To test this if the method estimates the underlying waiting time distribution or
the amplitude conditioned waiting time distribution, we can generate highly intermittent signals
and from the underlying amplitudes and waiting times we can generate this amplitude conditional
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waiting time distribution by looking at the waiting times between the underlying events that cross
the threshold. This can then be compared with the estimates from conditional averaging and the
underlying waiting time distribution to see which is actually predicted by conditional averaging.
The notation ⟨·⟩ind again denotes the individual means of each respective distribution. Meaning
the distributions are normalized by their respective means.

Tw ∼ Exp( 1γ ), A ∼ Degenerate(1) Tw ∼ Lomax(3, 2
γ ), A ∼ Degenerate(1)

Tw ∼ Rayleigh(
√

2
π

1
γ ), A ∼

Degenerate(1)

Figure 44: γ = 10−1. Waiting time distribution estimates for both the pure threshold (blue) and promi-
nence (orange) methods together with the waiting time distribution given the amplitude threshold (black)
and the underlying waiting time distribution (grey).

In figure 44 we see the true amplitude conditional waiting time distribution, the estimates
from conditional averaging, and the underlying waiting time distribution for different variations of
underlying waiting time distributions. All the amplitude distributions are degenerately distributed,
showing that all the distributions match. This is to be expected as when the amplitudes are
degenerately distributed every event (except for a few cases of overlapping events) is picked up by
conditional averaging. Every event also crosses the threshold, making the amplitude conditioned
waiting time distribution equal to the unconditioned waiting time distribution.
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Figure 45: γ = 10−1. Waiting time distribution estimates for both the pure threshold (blue) and promi-
nence (orange) methods together with the waiting time distribution given the amplitude threshold (black)
and the underlying waiting time distribution (grey).

In figure 45 we see what happens if the amplitudes are randomly distributed together with
Rayleigh distributed waiting times for the conditional average estimates and the two waiting time
distributions. What we see is that the tails become exponential. This can be explained analogous
to how the degenerately distributed waiting times looked geometric in the distribution. The tail
distributed events essentially get a random chance of crossing the threshold, and as the true tail
is sharper than an exponential the differences between the events that cross the threshold become
exponentially distributed because there are enough events in this range.

The counterexample to the previous figure we can see in figure 46 where the conditional av-
erage estimates and the true waiting time distributions, both the amplitude conditioned and the
unconditioned one, again line up nicely. Here we have underlying heavy-tailed distributions such
as the Lomax and beta prime distributions with different amplitude distributions. What we see is
that the estimates generally match the true distributions. The reason that these distributions do
not become exponential in their tails, despite the random chance of a threshold crossing, is because
of the tails being heavier than that of an exponential. For example, say we have two events with a
temporal spacing that corresponds to a tail event from an underlying Lomax distribution. If both
events are picked up by conditional averaging we get the true distance which is fine. If only the first
is picked up then the waiting time to the next pulse can only be longer than to that of the second
event, thus conditional averaging estimates a heavy tail independent of amplitude distribution.
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Figure 46: γ = 10−1. Waiting time distribution estimates for both the pure threshold (blue) and promi-
nence (orange) methods together with the waiting time distribution given the amplitude threshold (black)
and the underlying waiting time distribution (grey).

Table 1: Table of the mean values from the different estimates and distributions shown in figures 44, 45
and 46. The two leftmost columns showing which combination of distributions and the four rightmost
columns showing the means of their respective distribution or estimates.

Wait dist Amp dist ⟨Amp⟩ ⟨Prom⟩ ⟨Pw⟩ ⟨Pw|Ac
⟩

Exp Degenerate 10.7 10.9 10.0 10.1
Lomax Degenerate 10.7 11.1 10.0 9.9
Rayleigh Degenerate 10.0 10.0 10.0 10.0
Rayleigh Rayleigh 14.4 13.3 10.0 14.6
Rauleigh Lomax 38.5 35.3 10.0 39.1
Lomax Rayleigh 15.28 15.23 10.0 15.7
Lomax Lomax 38.7 38.4 10.0 42.3

β′ Exp 23.2 21.8 10.0 24.0

We see in table 1 that the mean values for the estimates correspond with both the waiting
time distribution and the amplitude conditioned waiting time distribution when the amplitudes
are degenerately distributed. This is in agreement with what we saw earlier in figure 44. However,
as soon as the amplitudes become distributed we see the means abandon the mean of the waiting
time distribution with the conditional average estimates more closely matching the amplitude
conditioned waiting time distribution, even in the cases where we saw a nice functional match
between all distributions such as in figure 46. This supports the waiting time estimates from
conditional averaging being an estimate of the amplitude conditioned waiting time distribution
rather than the unconditioned waiting time distribution.

From this we can conclude that conditional averaging is really only able to estimate the true
waiting time distribution if the signal is highly intermittent and the true amplitude distribution
is degenerate as this is the case when the amplitude conditioned and unconditioned waiting time
distributions coincide. This severely limits the use cases where one can draw reliable conclusions
from the waiting time estimates.
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4.3.2 Conclusion on the waiting time distribution estimates

Overall what we can see that the waiting time distribution estimates are not a good estimate for
the true waiting time distribution for any degree of intermittency except for highly intermittent
waiting time distributions with degenerately distributed amplitudes. This stems from the threshold
condition in the conditional average and threshold crossings being determined by the amplitude
distribution in addition to pulse overlap. The waveform estimate is also affected by the waiting
time distribution, but in a different way than the amplitude distribution. Unimodal waiting time
distributions such as the Rayleigh or gamma distributions have differently shaped distortions in
the averaged waveform, as the probability of closely spaced events are so small, creating a small
bump-like distortion rather than the slower rise created by monotonically decreasing distributions
such as the Lomax and exponential distributions. In the case of low γ the exponential look of
the tails can be somewhat explained by the independent amplitude distribution making threshold
crossings look more uniformly distributed than their arrivals. In the case where pulse overlap
becomes more prevalent the events picked up can be seen as random points on the signal, the time
difference between these random points on the signal then become exponential. From this it is clear
that conditional averaging should not be used to estimate waiting times directly, as involving a
size threshold on the signal inherently involves the underlying amplitude distribution of the signal
as well.

4.3.3 Tail rate estimation

As we saw looking at waiting times the tails of the distributions were exponential, one interesting
piece of information is then looking at how the slope of this tail changes with increasing γ. In this
section we will explore this slope for various γ-values to see if it can be used to give an estimate
of the mean waiting time of the underlying signal. This is has been done in the literature [?, 32],
making it relevant for us to see if the slope of this tail represents valuable information. The mean
waiting time can be used to estimate γ based on a given τd, giving us a plot of γest against γ.
For low gamma we expect waiting times between threshold crossings to be distributed according
to equation 3.25 for exponentially distributed waiting times. As γ → ∞ the FPP approaches an
Ornstein-Uhlenbeck process [33]. To estimate the upper limit we use conditional averaging on
a realization of this process, then estimating the exponential slope of the resulting waiting time
distribution estimate.
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Figure 47: Decay rate estimation of the tail of waiting time distributions for different degrees of in-
termittency and different waiting time distributions. Each point on the blue graph is an average of
estimates from ten different realizations with Tw ∼ Exp( 1

γ
). The green graph shows tail estimates with

Tw ∼ Rayleigh
(√

2
π

1
γ

)
. The red graph shows tail rate estimates with Tw ∼ β′(3, 3, 2

3γ
). The left limit

is the analytical limit with no pulse overlap. The right limit is from using decay rate estimation on an
Ornstein-Uhlenbeck process which is the limit of the FPP as γ → ∞ [33].

What we see in figure 47 is how the exponential tail of different signals varies with increasing γ.
The first and most obvious observation is that the rates do not vary much with the variation being
between 10−2 and 10−1, not even spanning a whole decade while γ spanning over four decades.
The filtered Poisson process approaches the Ornstein-Uhlenbeck (OU) process, however the rate
of approach is very slow. The renewal processes with Rayleigh and beta-prime distributed waiting
times have the same general shape as the FPP. It looks as if beta-prime distributed waiting times
do not approach the limit of an OU-process, however as this is only one sample per point, we
cannot conclude that this is not because of statistical fluctuations. All of the maxima lay at γ = 1,
meaning it is in this range conditional averaging picks up the largest number of events. The main
takeaway from this is that the number of events picked up by conditional averaging cannot be used
as an accurate predictor of the number of underlying events.
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5 The use of conditional averaging in other works

Within the fusion plasma community the filtered Poisson process has been widely used to model
turbulent fluctuations of magnetically confined plasmas in the outer region of toroidal fusion de-
vices, this region is often referred to as the scrape off layer (SOL) [24,27,31, 32,34]. Conveniently
for us, conditional averaging is also a widely used method to retrieve the shape, amplitude and
waiting time distributions within in the same field [18,30], letting us use estimates of intermittency
to review the validity of the results obtained from conditional averaging. In this chapter we will go
over 3 papers where conditional averaging has been used to estimate the waveform, the amplitude
distribution and the waiting time distribution.

The first one is [32] where they looked at plasma fluctuations in the SOL of the Korea Super-
conducting Tokamak Advanced Research (KSTAR) device. Here the γ-values were estimated to
lay between 1.7 and 2.4 with a noise to signal fluctuation ratio of ε = 0.11. From this we already
know that the amplitude and waiting time results may not be trusted entirely.

Figure 48: Conditionally averaged wave-forms with peak amplitudes larger than 2.5 times the rms value
for the ion saturation current (full blue line), the synthetic data (dotted black line) and the best fit of a
double-exponential pulse shape to the measurement data (dashed green line). Figure and figure description
from [32] fig 11.

In figure 48 we see their results of conditional averaging on the normalized ion saturation
current. In this figure they have used conditional averaging with an amplitude threshold and the
overlap=False condition. What we quickly see is that this is the method that does not normalize
each event, resulting in an averaged waveform that exceeds 1. This choice creates an inherent bias
for large amplitude events, meaning if the pulse shape changes depending on pulse height then the
shape of the larger pulses will be more apparent in the average. Without having compared them we
can hypothesize that this bias somewhat mitigates the effects of pulse overlap as if one biases larger
events then the shape of those events will be more distinct than smaller events due to overlap. To
model this signal they used a one-sided exponential pulse with a duration time of 30µs, based on
an estimate from the auto correlation function (ACF) of the signal, to generate a realization of
the FPP with exponentially distributed amplitudes and waiting times. The conditional average of
this realization we also see in figure 48. Looking at the mismatch between the conditional averages
of the ion saturation current and the FPP-realization it is clear that a one-sided pulse used in
the synthethic data is perhaps not the best suggestion. In the article the stated rise time is 11µs
and the fall time is 19µs based on the double exponential fit to the waveform. This gives an
estimated asymmetry of λ = 0.37. The duration time estimate of 30µs agrees with the estimate
from the ACF. We expect the duration time estimates from conditional averaging to be relatively
accurate as γ is not too high and the underlying pulse is most likely not severely asymmetric.
Knowing that pulse overlap at this degree of intermittency increases symmetry in the waveform
leads us to conclude that a double exponential pulse shape with asymmetry below 0.37 would be a
better choice for the underlying waveform. However, without having thoroughly investigated the
amplitude biased method we cannot conclude that this is for certain.
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Figure 49: Conditionally averaged burst wave-forms for the ion saturation current signal with peak
amplitudes in units of the rms value given by the range indicated in the legend. Figure and figure description
from [32] fig 12.

Figure 49 describes the conditional averaging done between different threshold brackets, much as
we did in section 4.1.3. The method is again assumed to be amplitude biased with the waveforms
being normalized after the conditional averaging is done. Here the author concludes that the
waveform does not change with increased amplitudes, which looks to be a reasonable conclusion.
In context with using the amplitude biased method it also helps to show that a possible amplitude
bias in the averaging will not skew the shape of the waveform toward higher amplitudes. This
further strengthens the earlier waveform discussion because we know we are not working with an
amplitude biased average. As we know, on this scale of γ we would expect to be able to reveal
a general correlation trend between the waveform shape and amplitudes, but not the specific
correlation. This makes this figure a valid use of conditional averaging as it is used to attempt to
reveal a general correlation trend.

Figure 50: Probability distribution function for burst amplitudes with peak values larger than 2.5 times
the rms level for the ion saturation current (blue circles), the synthetic data (black diamonds), and an
exponential fit to the measurement data (dashed green line). Figure and figure description from [32] fig
13.

Figure 50 describes the amplitude distribution estimate of the fluctuations, an estimate from
a realization of an FPP and an exponential fit to the fluctuation estimate. As γ > 1 in this case
we know that at this point most underlying non heavy-tailed distributions will appear exponential
like the tail of the signal distribution itself. Earlier in the paper the signal distribution is shown
with a clear exponential tail, which from our earlier conclusions would result in an exponential
estimate from the conditional average as well. The author mentions this expected exponential
tail from the probability density of the signal. However we cannot rule out other underlying
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amplitude distributions based on what we see here as other input amplitude distributions also
result in exponential tails in the signal at this level of intermittency.

Figure 51: Probability distribution function for waiting times between large-amplitude events with peak
values larger than 2.5 times the rms level for the ion saturation current (blue circles), the synthetic data
(black diamonds) and an exponential fit to the measurement data (dashed green line). Figure and figure
description from [32] fig 14.

In figure 51 we see the waiting time distribution obtained from using conditional averaging on
the plasma fluctuation signal and a realization of the FPP, together with an exponential fit. The
mean waiting time above threshold is also estimated to be 0.8µs. We know that the mean waiting
time estimated from this tail is not a good measure for the true mean, as this tail rate will vary
little across many decades of γ like we saw in figure 47. As γ > 1 we can safely say that any waiting
time distribution here would look exponential in the conditional average, as the effects of overlap
are quite a large factor at this intermittency. And if the amplitudes are distributed randomly, and
not degenerate, we know that conditional averaging would not be able to reveal the true waiting
time distribution even at high intermittency. This figure illustrates a use of conditional averaging
within the regime where we have shown the results from the method to be unreliable. We have
shown that the waiting time distribution estimate should not be used to conclude anything about
the underlying waiting time distribution in almost all cases.

The second one is [13] where they looked at plasma fluctuations in the SOL of the Tokamak à
configuration variable (TCV) device. The author does not directly mention it but the intermittency

can be estimated by ⟨J⟩2
J2
rms

[13]. As Jrms

⟨J⟩ ≈ 0.7 from the paper we can estimate that the intermittency

of the fluctuation signal being γ ≈ 2. From knowing this intermittency, we expect only the
waveform estimates to be somewhat robust based on our earlier conclusions.
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Figure 52: Conditionally averaged wave-form for the ion saturation current with peak amplitudes larger
than 2.5 times the rms value (full line) together with a fitted double-exponential pulse shape (broken line).
Figure and figure description from [13] fig 10.

In figure 52 we see the waveform of conditional averaging used on the fluctuating signal, together
with a double-exponential fit. Initially we see that the amplitude biased method is used, and the
overlap=False condition is also in use. With a mentioned rise time of 5µs and an estimated
duration time of 15µs the estimated asymmetry is λ = 1

3 . The authors do not make any asymmetry
conclusions about the underlying pulse shape, but they mention that the general shape of large
amplitude bursts is a double exponential which is a perfectly valid conclusion to make in light of
the findings of this thesis as we expect conditional averaging to recover the functional shape of
underlying pulses at this intermittency.

Figure 53: Conditionally averaged burst wave-form for the ion saturation current signal with peak ampli-
tudes in units of the rms value given by the range indicated in the legend. Figure and figure description
from [13] fig 12.

Figure 53 describes the results of conditional averaging done in different threshold brackets
to unveil possible correlations between asymmetry and the size of underlying events. What the
authors observe is that there appears to be no such correlation, which is a valid conclusion as we
would expect to pick out a general trend in such a correlation at this intermittency. This is also
an important test to do when using the amplitude biased method to check if the earlier waveform
can be trusted.

57



5 THE USE OF CONDITIONAL AVERAGING IN OTHER WORKS

Figure 54: Complementary cumulative distribution function for ion saturation current burst amplitudes
with peak values larger than 2.5 times the rms level (full line). The broken line shows the fit of a truncated
exponential distribution. Figure and figure description from [13] fig 15.

The amplitude complimentary cumulative distribution (CCDF) function estimate from condi-
tional averaging used on the fluctuating signal is shown in figure 54 together win an exponential
fit. An exponential CCDF indicates an exponential PDF, meaning here the amplitudes are as well
estimated to be distributed exponentially. However, as γ = 2 and the tail of the signal PDF is also
exponential we would expect to find that the conditional averaging picks acts as to pick out peaks
which appear as random points on the signal in this case. Other amplitude distributions also lead
to exponential tails in the signal distribution at higher degrees of pulse overlap which means that
one cannot draw the conclusion of the underlying pulses being exponentially distributed at this
intermittency just from the conditional average estimate.

Figure 55: Complementary cumulative distribution function for waiting times between large-amplitude
events in the ion saturation current signal with peak values larger than 2.5 times the rms level (full
line). The broken line shows the fit of a truncated exponential distribution. Figure and figure description
from [13] fig 17.

In figure 55 we see the waiting time CCDf estimate from conditional averaging together with
an exponential fit. Again, we know that an exponential CCDF implies an exponential PDF.
The authors use this exponential estimate to support their hypothesis that the underlying events
follow a Poisson process. Most waiting time distributions, and thus other renewal processes,
lead to exponential waiting time estimates from conditional averaging at intermittency levels of
γ > 1. This makes this an example of conditional averaging used at intermittency where we have
demonstrated the method to provide misleading results, as we cannot rule out other underlying
renewal processes based on an exponential estimate.

The third one is [30] where they looked at plasma fluctuations in the SOL of the Alcator C-mod
device. In this paper they looked at different signals from different runs where each run was under
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different conditions to compare them and see if the FPP could describe them all. The intermittency
parameter has been estimated from the probability density functions. For the ohmic low density
signal (red) γ = 3

4 . The ohmic high density signal has an estimated intermittency of γ = 2. For
the ELM-free H signal (blue) γ = 3 and the EDA H-mode (black) signal has γ = 5. From here on
they will be referred to by their colours. We expect the most reliable results from the red signal
as γ < 1 and the most unreliable results from the black signal as γ = 5.

Figure 56: Conditionally averaged waveform for large-amplitude events in the GPI intensity signals mea-
sured at (R, Z)=(90.69, –2.99) cm for various plasma parameters and confinement modes. Also shown is a
two-sided exponential pulse with a rise time of 5 µs and a fall time of 15 µs (grey line). Figure and figure
description from [30] fig 8.

In figure 56 we see the conditionally averaged waveforms of all the different signals, together
with a double exponential pulse. Here the authors used the overlap=False condition and the
amplitude biased method. One important mention is that the method found hundreds of events
for each signal, making the average more affected by outlier events than what we have worked
with. The black sheep of the waveforms is fittingly the black signal with a significantly longer fall
time than the other signals. As the waveforms are largely the same the authors conclude that the
the underlying pulse shape of all the signals are also equal. In unsymmetrical pulses we know that
pulse overlap increases symmetry in the conditionally averaged waveform. This info would lead
us to conclude that the underlying pulses get less symmetric with increasing γ if the conditionally
average waveform remain largely the same independent of increasing γ. However, as the authors
used the amplitude biased method we cannot say this for certain, as this bias may lead to a
smaller degree in loss of asymmetry depending on γ compared to the amplitude unbiased method.
Conditional averaging is able to pick out different functional pulse shapes at this intermittency,
making the conclusions of the authors valid. The waveforms clearly resemble a double exponential
pulse independent of intermittency.
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Figure 57: PDF of peak amplitudes in the GPI intensity signals above 2.5 standard deviations measured
at (R, Z)=(90.69, –2.99) cm for various plasma parameters and confinement modes. The full line shows a
truncated exponential distribution. Figure and figure description from [30] fig 9.

Figure 57 describes the estimated amplitude distribution of the underlying pulses for all the
signals. As the author comments all follow an exponential distribution. However the PDFs of
all the signals themselves also featured exponential tails, not letting us rule out other amplitude
distributions at intermittency values of one and above. We can only really rule out a heavy tailed
amplitude distribution for all the signals based on the presented evidence. Overlap affects the
amplitude distribution estimate in such a way that what we see here is more likely a sample of
peak values that look like random points on the signal itself.

Figure 58: PDF of waiting times between large-amplitude events with peak amplitudes above 2.5 standard
deviations measured at (R, Z)=(90.69, –2.99) cm for various plasma parameters and confinement modes.
The full line shows a truncated exponential distribution. Figure and figure description from [30] fig 10.

The waiting time distribution estimates in figure 58 shows a clear exponential tail for all the
signals. From this the author concludes that the events are uncorrelated as an underlying expo-
nential waiting time distribution would mean an underlying Poisson process. However, based on
the degree of intermittency and what we have learned, this is a case where one cannot trust the
distribution estimate. Most underlying renewal processes would result in exponentially distributed
waiting time estimates from conditional averaging. Both sharper decaying Gaussian tails and
slower decaying polynomial decays resulted in exponential estimates from our testing in section
4.3 making waiting time distribution estimates a bad way of using conditional averaging.
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What we see is that the estimates from conditional averaging are often used in intermittency
regimes where those results are not actually valid. The waveform estimate is the most robust one,
being especially well suited to reproduce the functional form of symmetric smooth pulse shapes.
Authors rarely keep in mind that an inherent property of conditional averaging is that asymmetry
in the underlying pulse shape is gradually lost with increasing pulse overlap. Amplitude estimates
are often taken for granted to be exponential at higher γ-values. What we would predict at these
intermittency values is that the estimate resembles the tail of the signal distribution rather than
the true distribution. The cases where authors most often use conditional averaging in what we
have concluded to be the the most misleading way are conclusions made from the waiting time
distribution estimates. The most common conclusion that is often made is that an exponential
waiting time distribution estimate from conditional averaging is a sign of an underlying Poisson
process. We have shown that the waiting time distribution estimate should rarely be interpreted
as a pointer toward the underlying waiting times. All distributions studied in this thesis resulted
in exponential estimates from conditional averaging when γ ≥ 1. The waiting time estimate from
conditional averaging is also amplitude dependent as the amplitudes are one important parameter
that decides if an event is picked up or not, the other being pulse overlap. For amplitude and waiting
time distribution estimates one should instead look to other methods, such as the deconvolution
method mentioned in [35].
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6 Conclusions and outlook

Using the filtered Poisson process as a test bed for conditional averaging we have obtained valuable
information about the regimes of overlap the method provides accurate, and not so accurate pre-
dictions about the underlying process. Throughout this thesis we examined two different threshold
conditions, an amplitude threshold which is the standard [13, 28, 30] and a prominence threshold,
to attempt to establish if one is better than the other for all the different estimates. At first, we
looked into how different pulse shapes were affected by increasing intermittency. Then, moving
on with the one-sided exponential pulse, we investigated the effects two different types of noise
on the waveform, establishing the importance of the additional overlap=False condition. In the
following section we examined a simple correlation between the asymmetry parameter λ from a
two-sided exponential pulse shape and the amplitude distribution, exploring if conditional averag-
ing can be used to uncover such a correlation at different levels of intermittency. We then proceeded
with changing the underlying amplitude distribution and examining both the effects on the wave-
form and the accuracy of the estimated conditional amplitude distribution compared to the true
conditional distribution. Finally, we moved away from the underlying Poisson process, working
with a more general renewal process to generate signals with different waiting time distributions
to attempt to establish if the estimated distribution from conditional averaging can be used as a
predictor for the underlying one, and also looking at how different waiting time distributions affect
the averaged waveform itself. Finally we looked into a general trend of exponential tails from the
waiting time distribution analysis, investigating how the slope of this tail evolves with increasing
γ.

Conditional averaging has been used to estimate all these properties [18, 27, 28, 36, 37] but
without a good understanding of if the method is actually valid when pulse overlap is allowed.
The method has previously been investigated in terms of noise while not allowing the underlying
pulses to overlap [4,20,21], where the results have been robust, which is why we have sought out to
mainly investigate the effects of pulse overlap on the results we obtain from conditional averaging.

After looking into different waveforms we established that conditional averaging reproduces
symmetric pulse shapes to a much better degree than asymmetric pulses. We observed that as in-
herent pulse overlap in the signal increased, the averaged waveform converged toward a symmetric
one. Increasing overlap also affected the symmetric pulses, but to a less serious degree in the form
of an overestimation in the average duration time τd as the shape of most symmetric pulses could
still clearly be distinguished from one another at γ = 10. We also found that the overlap=False

condition is necessary for the prominence threshold to eliminate distinct troughs in the averaged
waveform, stemming from closely spaced conditional events. After looking at both additive and
dynamic noise we established that the overlap=False condition is also vital for the amplitude
threshold condition if one wants accurate estimates, even for low degrees of noise-to-signal fluctu-
ation ratios ε on highly intermittent signals. The results from correlating the asymmetry of the
waveform with the size of the event lead to the conclusion that we can indeed estimate an average
waveform between different threshold brackets at high intermittency, however accuracy is quickly
lost with increasing pulse overlap, as even at γ = 1 we were only able to discern the general trend
of decreasing asymmetry with increasing amplitudes, but not with accurate estimates of the true
correlation. At γ = 10 the effects of overlap dominate, making even such a distinction of the
correlation trend indiscernible.

From looking at different amplitude distributions in section 4.2 we observed an interesting
correlation between the broadness of the distribution and the waveform estimates. If a signal has
a relatively large probability of high amplitude events compared to low amplitude events, then
more threshold crossings will be because of singular events than due to the effects of overlap,
making the conditional events represent underlying events to a larger degree than in signals where
there is a large probability of a small number of events. The effects of overlap for the one-sided
exponential pulse shape is a small initial rise before the instantaneous rise, leading to a perceived
loss in asymmetry. With heavy tailed distributions this effect is mitigated by the relatively large
probability of large amplitude events and with degenerately distributed amplitudes the effects of
overlap is most prevalent, leading to the quickest loss in asymmetry. Thus, the main conclusion from
looking at the amplitude distributions effect on the waveform is that the broadness of the amplitude
distribution mitigates the effects of pulse overlap. From looking at the amplitude distribution
estimates we also observed that both methods failed at predicting the underlying distribution
at γ = 1 and above. For γ = 0.1 the amplitude distribution estimates reproduced both the
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signal distribution and the underlying amplitude distributions in all cases but the degenerately
distributed amplitudes. The methods failed in different ways. The estimate from the prominence
method converged toward the same unimodal shape for almost all input distributions. The estimate
from the amplitude threshold converged toward the conditional signal distribution, allowing us to
make the conclusion that the amplitude threshold leads to picking out peaks that appear as random
points on the signal when the effects of overlap increase. We again observed that the distribution
that allowed for the most accurate amplitude distribution estimates was the heavy-tailed Lomax
distribution, showing again that broader distributions mitigate the effects of overlap. The main
takeaway from this section being that conditional averaging is not generally a good way to predict
the underlying amplitude distribution for anything but highly intermittent signals.

What we saw in section 4.3 is that the waiting time distribution affects both the waveform and
the waiting time distribution estimate. The waveform is affected mostly by the shape of distribution
in the form that purely tailed distribution creates different distortions on the waveform than
unimodal distributions. The distortion in the waveform for purely tailed waiting time distributions
is a small initial rise which leads to an increase in symmetry. For unimodal distributions the
distortion is in the form of a small bump which stems from the low probability of very small waiting
times, lowering the signal ”mass” just before each pulse arrival. The waiting time distribution
estimates quickly become exponential independent of the underlying distribution. In the highly
intermittent case this is because of the amplitude distribution also affects the estimated waiting
time distribution, as one would expect from a size-threshold condition in the method. The only
situation the high intermittency estimate represents the true underlying waiting time distribution
is when the amplitudes are degenerately distributed, otherwise the tail will appear exponential
for most input waiting time distributions. In the cases where pulse overlap is more pronounced
one can draw the analogy to the conclusion from the amplitude section of random signal points
being picked out, leading to essentially uniformly distributed random arrival times which signifies
an exponential waiting time distribution. This leads to the conclusion that the waiting time
distribution estimates from conditional averaging should not be used unless one has a highly
intermittent signal with equally sized events. From the tail rate estimation, the main takeaway is
that the number of conditional events cannot accurately be used to predict the underlying amount
of singular events.

After discussing how conditional averaging is used when looking at experimental data in sec-
tion 5 we found that conclusions made from the waveform estimates of conditional averaging are
generally valid within the intermittency regimes they have been used in. However, that is not the
case for amplitude and waiting time distribution estimates. Authors interpret amplitude estimates
as information on the amplitude distribution of the underlying events in γ-regimes where we know
the amplitude estimate will follow the tail of the signal distribution rather than the underlying
distribution. This is based on our findings effectively equivalent of concluding that the amplitudes
of underlying events are distributed according to the tail of the probability density function of
the signal itself. In terms of waiting time estimates authors often conclude that the underlying
process is a Poisson process based on seeing an exponential estimate. We have learned that this
may be misleading, as all underlying renewal processes we looked at led to exponential estimates
from conditional averaging at γ = 1 and above, because of pulse overlap. It is only for a few highly
intermittent niche cases that the waiting time estimates from conditional averaging coincide with
the underlying distribution.

To further this work there are multiple avenues one could explore. One could combine more pa-
rameters to conduct a more comprehensive study, looking at how the conditional average estimates
are affected by other combinations of underlying pulse shapes, amplitude distributions and waiting
time distributions to either strengthen the conclusions in this thesis or make new ones based on
observations arising from new combinations. Another road would be to explore distributed dura-
tion times, where one could investigate if duration time estimates from the conditionally averaged
waveform coincide with the mean duration time of the underlying pulses. One could also explore
more correlations within the signal, correlating pulse shapes with waiting times could reveal an
underlying bias for large waiting times within the method. Another interesting correlation would
be waiting times and amplitudes to see how that affects the results. For example, one would expect
that if one makes a correlation between amplitudes and waiting times in a way that makes large
waiting times equal large amplitudes then conditional averaging would yield better waveform esti-
mates, as such a correlation would lead to more distinct events in the signal. Or the reverse, large
waiting times leading to small amplitudes, which one could imagine would lead to worse waveform
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estimates because of more prevalent pulse overlap around the large events that are picked up by
the method. One could also inquire into the different normalizations, examining the effects of the
amplitude/prominence biased methods to uncover possible aspects that make them preferable over
the normalization methods. The threshold conditions can also be investigated together, to attempt
to see if using both threshold conditions at the same time alleviate the effects of noise, making the
overlap=False condition superfluous. Another way of proceeding would be to examine the if the
conclusions of this thesis can be used to develop new methods. Can one use the waveform estimate
to somehow determine the broadness of the underlying amplitude distribution? Can the waveform
estimate be used to detect different waiting time distributions? These are all interesting lanes one
could take to further explore conditional averaging.
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A PROBABILITY DISTRIBUTIONS AND THEIR STANDARDIZED MOMENTS

A Probability distributions and their standardized moments

In this appendix we present the probability distributions encountered in this thesis where most are
used as both amplitude and waiting time distributions when generating test signals.

A.1 The normal distribution

The location and scale parameters are µ and σ. The distribution is denoted by N (µ, σ).
The probability density function is given by [38]

p(x) =
1

σ
√
2π

exp

(
−1

2

x− µ

σ

)2
)

(A.1)

The cumulative distribution function is given by

P (x) =
1

2

(
1 + erf

(
x− µ

σ
√
2

))
(A.2)

Mean Variance Skewness Excess kurtosis
µ σ 0 0

A.2 The Poisson distribution

The rate parameter is λ. The distribution is denoted by Poisson(λ).
The probability mass function is given by [38]

p(n) = exp(λ)
(λ)n

n!
, n = 0, 1, 2... (A.3)

The cumulative distribution function is given by

P (x) = exp(−λ)

⌊n⌋∑
j=0

λj

j!
(A.4)

Mean Variance Skewness Excess kurtosis
λ λ 1√

λ
1
λ

A.3 The uniform distribution

The support parameters are a and b. The distribution is denoted by U(a, b). The probability
density function is given by [38]

p(x) =

{
1

b−a , a ≤ x ≤ b

0, elsewhere
(A.5)

The cumulative distribution function is given by

P (x) =


0, x < a
x−a
b−a , a ≤ x ≤ b

0, elsewhere

(A.6)

Mean Variance Skewness Excess kurtosis
1
2 (a+ b) 1

12 (b− a)2 0 − 6
5
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A.4 The exponential distribution

The scale parameter of the distribution is β. The distribution is denoted by Exp(β)..
The probability density function is given by [38]

p(x;β) =

{
1
β exp

(
− x

β

)
, x ≥ 0

0, x < 0
(A.7)

The cumulative distribution function is given by

P (x;β) =

{
1− exp

(
− x

β

)
, x ≥ 0

0, x < 0
(A.8)

Mean Variance Skewness Excess kurtosis
β β2 2 6

A.5 The gamma distribution

The shape and scale parameters of the distribution are α and β. The distribution is denoted by
Γ(α, β).

The probability density function is given by [38]

p(x;α, β) =

{
xα−1

Γ(α)βα exp
(
− x

β

)
, x ≥ 0

0, x < 0
(A.9)

The cumulative distribution function is given by

P (x;α, β) =

{
1

Γ(α)γ(α,
x
β ), x ≥ 0

0, x < 0
(A.10)

Mean Variance Skewness Excess kurtosis
αβ αβ2 2√

α
6
α

A.6 The Rayleigh distribution

The scale parameter of the distribution is σ. The distribution is denoted by Rayleigh(σ).
The probability density function is given by [39]

p(x;α, β) =

{
x
σ2 exp

(
− x2

2σ2

)
, x ≥ 0

0, x < 0
(A.11)

The cumulative distribution function is given by

P (x;α, β) =

{
1− exp

(
− x2

2σ2

)
, x ≥ 0

0, x < 0
(A.12)

Mean Variance Skewness Excess kurtosis

σ
√

π
2

4−π
2 σ2 2

√
π(π−3)

(4−π)3/2
− 6π2−24π+16

(4−π)2
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A.7 The Lomax distribution

The shape and scale parameters of the distribution are α and β. The distribution is denoted by
Lomax(α, β). This is also known as the Pareto type II distribution.

The probability density function is given by [40]

p(x;α, β) =

α
β

(
1 + x

β

)−α−1

, x ≥ 0

0, x < 0
(A.13)

The cumulative distribution function is given by

P (x;α, β) =

1−
(
1 + x

β

)−α

, x ≥ 0

0, x < 0
(A.14)

Mean Variance Skewness Excess kurtosis{
β

α−1 , α > 1

Undefined elsewhere


β2α

(α−1)2(α−2) , α > 2

∞, 1 < α ≤ 2

Undefined elsewhere

{
2(1+α)
α−3

√
α−2
α , α > 3

Undefined elsewhere

{
6(α3+α2−6α−2)
α(α−3)(α−4) , α > 4

Undefined elsewhere

A.8 The degenerate distribution

The parameter of the distribution is k. The distribution is denoted by Degenerate(k).
The probability density function is given by

p(x; k) = δ(x− k) (A.15)

where δ is the Dirac delta function.
The cumulative distribution function is given by

P (x; k) =

{
1, x ≥ k

0, x < k
(A.16)

Mean Variance Skewness Excess kurtosis
k 0 Undefined Undefined

A.9 The beta prime distribution

The shape and scale parameters of the distribution are α, β and q. The distribution is denoted by
β′(α, β, q).

The probability density function is given by [41]

p(x;α, β, q) =

{
( x
q )

α−1(1+ x
q )

−(α+β)

qB(α,β) , x ≥ 0

0, x < 0
(A.17)

The cumulative distribution function is given by

P (x;α, β) =

{
I x

q+x
(α, β), x ≥ 0

0, x < 0
(A.18)

Mean Variance Skewness{
qα
β−1 , β > 1

Undefined elsewhere

{
q2α(α+β+1)
(β−2)(β−1)2 , β > 2

Undefined elsewhere

{
2(2α+β−1)

β−3

√
β−2

α(α+β−1) , β > 3

Undefined elsewhere
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A.10 The inverse gamma distribution

The shape and scale parameters of the distribution are α and β. The distribution is denoted by
Γ−1(α, β, q).

The probability density function is given by [42]

p(x;α, β, q) =

{
βα

Γ(α) (
1
x

α+1
) exp

(
−β

x

)
, x ≥ 0

0, x < 0
(A.19)

The cumulative distribution function is given by

P (x;α, β) =

{
Γ(α, βx )

Γ(α) , x ≥ 0

0, x < 0
(A.20)

Mean Variance Skewness Excess kurtosis{
β

α−1 , α > 1

Undefined elsewhere

{
β2

(α−1)2(α−2) , α > 2

Undefined elsewhere

{
4
√
α−2

α−3 , α > 3

Undefined elsewhere

{
6(5α−11)

(α−3)(α−4) , α > 4

Undefined elsewhere

B Transformation and normalization

In this appendix we go into the different normalizations used in this thesis and the transformation
rules that apply when performing them.

It is often useful to normalize data before working with. This makes the analysis more universal
as you can more easily compare results between data sets. The normalization we are going to use
the most is

X̃ =
X − ⟨X⟩
Xrms

(B.1)

To work within the regime of this normalization we need to make sure we correctly transform the
random variable. If X is a continuous random variable with probability density function pX(x)
on the interval A ⊆ R and the transformed random variable is Y = g(X) where g is a strictly
increasing or decreasing function, the probability density function of Y becomes [38]

pY (y) = pX(g−1(y))| d
dy

(
g−1(y)

)
| (B.2)

defined on the interval B = {y = g(x) : x ∈ A}. Thus a linear transformation Y = aX + b yields
the transformed probability density function [38]

pY (y) =
1

|a|
pX

(
y − b

a

)
. (B.3)

Making the probability density function of our normalized random variable [38]

pX̃(x̃) = XrmspX(Xrmsx̃+ ⟨X⟩). (B.4)

As this thesis is primarily concerned with the conditional average it is also useful to define
the conditional probability distribution so we can compare with analytical expressions. The usual
condition used here will be a simple threshold value. If we again let X be our random continuous
variable defined on the interval [a, b] where a < c < b, with PDF pX(x) then the conditional PDF
given that the condition is X ≥ c is

pXc
(xc) = pX(x|x ≥ c) =

pX(xc)

1− PX(c)
(B.5)

defined on the interval [c, b]. F is the cumulative distribution function and S is the survival
function. If the threshold c is placed above the upper limit of support for the random variable
then the probability of finding values above the threshold is obviously zero. The mean above the
threshold is then defined as

⟨Xc⟩ =
∫ b

c

pXc(xc)dxc =
1

1− PX(c)

∫ b

c

pX(x)dx (B.6)
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C The renewal process

In this appendix we present the general renewal process. This is relevant as we are working with
different waiting time distributions within this thesis.

A renewal process can be defined in the following way [43]. Let the waiting times between
events wk be independent identically distributed (IID) with a finite positive expectation value,
and the arrivals times tk of the events be defined as

tk = w1 + w2 + ...+ wk−1 + wk, k ≥ 1. (C.1)

Then

N(T ) = max{k : tk ≤ T}, T ≥ 0 (C.2)

is the renewal process which tells us the number of arrivals up until time T .

C.1 The Poisson process

The Poisson process {N(t), t ≥ 0} is a renewal process and can be defined in the following way [26].

• N(0) = 0.

• The process has stationary and independent increments.

• P(N(t) = n) = exp(λt) (λt)
n

n! , n = 0, 1, 2...

Where λ is the rate parameter in the Poisson distribution. The Poisson process and the exponential
distribution are closely related. Let w1 be the time until the first event of a Poisson process and wn

be the time between the (n− 1)th and the nth event, then W ∼ Exp( 1λ ) [26]. Another important
relation referred to in this thesis is the relation between the Poisson process and the uniform
distribution. Let tn ≥ 0 be the arrival times of events from a Poisson process, then the arrival
times within an interval [0, T ) are uniformly distributed according to U(0, T ) [26]. To summarize
the relation between the Poisson process and the distributions can be stated as follows. On a finite
temporal interval [0, T )

• The number of events are distributed according to N ∼ Poisson(λT ).

• The arrivals are distributed according to tn ∼ U(0, T ).

• The time between arrivals are distributed according to W ∼ Exp( 1λ ).

D Pulse functions

All the pulse functions are defined in a way so that the first integer moment I1 = 1. Thus we can
seek inspiration in unimodal probability density functions when define different pulse functions as
the integral over all possible values for any valid probability density function is 1.

D.1 The one-sided exponential pulse

The one-sided exponential pulse function is given by

ϕ(x) =

{
exp(−x), x > 0

0, otherwise
(D.1)

D.2 The two sided exponential pulse

The double exponential pulse function is given by

ϕ(x;λ) =

{
exp
(
x
λ

)
, x ≤ 0

exp
(
− x

1−λ

)
, x > 0

(D.2)

Where λ is the asymmetry parameter and can take values in the interval (0, 1).
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D.3 The Gaussian pulse

The Gaussian pulse function is given by

ϕ(x) =
1√
2π

exp

(
−x2

2

)
(D.3)

D.4 The triangle pulse

The triangle pulse function is given by

ϕ(x) =

{
1− |x|, |x| < 1

0, otherwise
(D.4)

D.5 The Lorentz pulse

The Lorentz pulse function is given by

ϕ(x) =
1

π (1 + x2)
(D.5)

D.6 The box pulse

The box pulse function is given by

ϕ(x) =

{
1, |x| < 1

0, otherwise
(D.6)

D.7 The gamma pulse

The gamma pulse function is given by

ϕ(x;α) =

{
1

Γ(α)x
α−1 exp(−x), x ≥ 0

0, otherwise
(D.7)

where α is a shape parameter, just as in the PDF of the gamma distribution and Γ is the gamma
function.

D.8 The Rayleigh pulse

The Rayleigh pulse function is given by

ϕ(x;α) =

{
x exp

(
−x2

2

)
, x ≥ 0

0, otherwise
(D.8)

E Special functions

In this appendix we present the non-elementary functions used to define some of the probability
distributions earlier.

• The gamma function is defined as

Γ(x) =

∫ ∞

0

tx−1 exp(−x)dt. (E.1)

• The beta function is defined as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt (E.2)

• The error function is defined as

erf(x) =
2√
(π)

∫ x

0

exp
(
−t2

)
dt (E.3)
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F ADDITIONAL FIGURES

F Additional figures

In this appendix we present additional figures that was used to support the results in section 4.

F.1 Additional waveforms

In this appendix more figures used in the waveform analysis in section 4.1 is presented. The
reason why they are included here, and not in the discussion, is because of the traits of conditional
averaging that they demonstrate were already demonstrated by other figures.

Figure 59: Conditionally averaged waveform for the threshold method (blue) and the prominence method
(orange), without windowing (left) and with windowing (right). γ =0.1 (top), 1 (middle) and 10 (bottom).
A two sided symmetric exponential pulse function was used to generate the signal.
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Figure 60: Conditionally averaged waveform for the threshold method (blue) and the prominence method
(orange), without windowing (left) and with windowing (right). γ =0.1 (top), 1 (middle) and 10 (bottom).
A triangular pulse function was used to generate the signal.
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Figure 61: Conditionally averaged waveform for the threshold method (blue) and the prominence method
(orange), without windowing (left) and with windowing (right). γ =0.1 (top), 1 (middle) and 10 (bottom).
A Lorentz pulse function was used to generate the signal.
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Figure 62: Conditionally averaged waveform for the threshold method (blue) and the prominence method
(orange), without windowing (left) and with windowing (right). γ =0.1 (top), 1 (middle) and 10 (bottom).
A box pulse function was used to generate the signal.
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Figure 63: Conditionally averaged waveform for the threshold method (blue) and the prominence method
(orange), without windowing (left) and with windowing (right). γ =0.1 (top), 1 (middle) and 10 (bottom).
A gamma pulse function with α = 2 was used to generate the signal.
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F ADDITIONAL FIGURES

Figure 64: Conditionally averaged waveforms and the estimated λ and τd for γ = 10−1 (top), 1 (middle)
and 10 (bottom). The thresholds are > 2.5 (blue), 2−4 (lime), 4−6 (red) and 6−8 (black) in units of the
signals rms value. The left figures has the a, b, c, d, e values of 1/2, 1, 3/2, 2, 5/2 (more assymetric events)
and the right figures has the values 1, 2, 3, 4, 5 (fewer assymetric events). The input amplitude distribution
was Exp(1).
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F.2 Additional waveforms with noise

In this appendix we present additional figures from the waveform analysis with noise in section
4.1.2. The reason why they are included here, and not in the discussion, is because of the traits of
conditional averaging that they demonstrate were already demonstrated by other figures.

Figure 65: ε = 10−2 Additive noise. Conditionally averaged waveform for the threshold method (blue)
and the prominence method (orange), without windowing (left) and with windowing (right). A double
exponential pulse function with λ = 0 was used to generate the signal.

Figure 66: ε = 10−1 Additive noise. Conditionally averaged waveform for the threshold method (blue)
and the prominence method (orange), without windowing (left) and with windowing (right). A double
exponential pulse function with λ = 0 was used to generate the signal.
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F ADDITIONAL FIGURES

Figure 67: ε = 0.5 Additive noise. Conditionally averaged waveform for the threshold method (blue)
and the prominence method (orange), without windowing (left) and with windowing (right). A double
exponential pulse function with λ = 0 was used to generate the signal.

Figure 68: ε = 1 Additive noise. Conditionally averaged waveform for the threshold method (blue)
and the prominence method (orange), without windowing (left) and with windowing (right). A double
exponential pulse function with λ = 0 was used to generate the signal.
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Figure 69: ε = 10−2 Dynamic noise. Conditionally averaged waveform for the threshold method (blue)
and the prominence method (orange), without windowing (left) and with windowing (right). A double
exponential pulse function with λ = 0 was used to generate the signal.

Figure 70: ε = 10−1 Dynamic noise. Conditionally averaged waveform for the threshold method (blue)
and the prominence method (orange), without windowing (left) and with windowing (right). A double
exponential pulse function with λ = 0 was used to generate the signal.
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Figure 71: ε = 0.5 Dynamic noise. Conditionally averaged waveform for the threshold method (blue)
and the prominence method (orange), without windowing (left) and with windowing (right). A double
exponential pulse function with λ = 0 was used to generate the signal.

Figure 72: ε = 1 Dynamic noise. Conditionally averaged waveform for the threshold method (blue)
and the prominence method (orange), without windowing (left) and with windowing (right). A double
exponential pulse function with λ = 0 was used to generate the signal.

82
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F.3 Additional amplitude distributions

In this appendix we present additional figures from the amplitude analysis in section 4.2

Figure 73: γ = 10−1 A ∼ Γ(5, 1
5
). Conditionally averaged waveform for both methods. Amplitude

distribution for the pure threshold (blue) method, prominence distribution (orange) for the prominence
method and conditional signal distribution (green).
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F ADDITIONAL FIGURES

Figure 74: γ = 1 A ∼ Γ(5, 1
5
). Conditionally averaged waveform for both methods. Amplitude distribution

for the pure threshold (blue) method, prominence distribution (orange) for the prominence method and
conditional signal distribution (green).

Figure 75: γ = 10 A ∼ Γ(5, 1
5
). Conditionally averaged waveform for both methods. Amplitude distribu-

tion for the pure threshold (blue) method, prominence distribution (orange) for the prominence method
and conditional signal distribution (green).

84
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F.4 Additional waiting time distributions

In this appendix we present additional figures from the waiting time distribution analysis in section
4.3. The reason why they are included here, and not in the discussion, is because of the traits of
conditional averaging that they demonstrate were already well demonstrated by other figures.

Figure 76: γ = 10−1 Tw ∼ Γ(5, 1
5γ

). Conditionally averaged waveform and waiting time distributions for
both the pure threshold (blue) and prominence (orange) methods.

85



F ADDITIONAL FIGURES

Figure 77: Tw ∼ Γ−1(3, 2
γ
). Conditionally averaged waveform and waiting time distributions for both the

pure threshold (blue) and prominence (orange) methods.
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Figure 78: Tw ∼ β′(3, 3, 2
3γ

). Conditionally averaged waveform and waiting time distributions for both
the pure threshold (blue) and prominence (orange) methods.
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G PYTHON CODE

G Python code

In this appendix links to the GitHub pages where the main code used in this project is located is
presented.

• The self produced code https://github.com/RolfNi/Master

• The filtered Poisson process framework, statistical analysis, and conditional averaging code
by the UiT Complex Systems Modelling group https://github.com/uit-cosmo/
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