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Abstract  

During the present study the relative abundance variations between Phaeocystis pouchetii 

(Hariot, Lagerheim) and diatoms were investigated. Both biological and environmental 

factors related to P. pouchetii and diatoms were studied in order to reveal possible inherent 

orderliness connected to their relative abundance variations in time and space. The areas 

sampled were the Barents Sea (May 2006, 2007 and 2009), the Vestfjord archipelago (April 

2006, 2007 and 2009) and East Finnmark (May 2009). In order to get a vertical and horizontal 

overview of their dominance distribution, a ratio denoting their relative dominances was 

generated. I investigated three depths (0m, 10m and 50m) and the relative dominance of P. 

pouchetii and diatoms at each depth were plotted against latitude and longitude in the areas 

sampled. Their presence and distribution were interpreted based on correlations to co-

occurring species and environmental variables. The vertical distribution showed a trend for P. 

pouchetii to dominate at 10m and diatoms at 0m in all three areas sampled. P. pouchetii 

seemed to be more abundant in the southern Barents Sea and East Finnmark relative to 

Vestfjord archipelago. Diatoms on the other hand seemed to be more abundant in the northern 

Barents Sea, especially at the ice edge and in Vestfjord archipelago relative to East Finnmark. 

P. poucetii was observed most dominant in 2009 in all three main areas sampled, while 

diatoms dominanted in 2006 in the Barents Sea and the Vestfjord archipelago. In the Barents 

Sea and East Finnmark, P. pouchetii was positively correlated to late spring bloom diatom 

species as well as environmental variables which also indicated a later appearance of P. 

pouchetii in the spring bloom. In the Vestfjord archipelago P. pouchetii was positively 

correlated to both early and late spring bloom species indicating P. pouchetii to be present 

throughout the spring bloom season. The environmental variables that P. poucehtii was 

positively correlated to however indicated a somewhat later appearance of P. pouchetii. Total 

diatom stock (ñTot. Dò) was correlated to species reported to have peak abundance earlier 

than the species P. pouchetii was positively correlated to in the Barents Sea and in East 

Finnmark. In Vestfjord archipelago ñTot. Dò was positively correlated to both early and late 

spring bloom species, indicating the main species to stay abundant throughout the bloom 

season, as was also indicated for P. pouchetii. However, according to the physical parameters 

the main species constituting ñTot. Dò generally seemed to be more abundant in the early 

spring bloom compared to P. pouchetii in both the Barents Sea, East Finnmark and Vestfjord 

archipelago. The vertical and horizontal distribution of P. pouchetii and diatoms in time and 
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space is probably connected to both interspesific competition but also to life history strategies. 

P. pouchetii is probably better adapted to less turbulence than diatoms and it does not require 

silicate, thus avoiding competition with diatoms when silicate concentrations are low late in 

the spring bloom season. The life history strategies for P. pouchetii is however difficult to 

outline since their entire life cycle is not yet resolved. Most of the diatoms common during a 

spring bloom are spore producers. Whereas diatom spores requires deep mixing and 

irradiance to germinate, P. pouchetii resting stage (if any) is still not conclusively detected 

and its functioning can thus not be resolved. The bentic-pelagic dynamics is most likely 

important clues in the distribution of phytoplankton in time and space. As to the taxonomic 

identity of P. pouchetii genetic analyses performed indicated that it could also belong to both 

Phaeocystis cordata and Phaeocystis antarctica. However, examined from a morphological 

point of view the Phaeocystis cell-material collected from the Barents Sea in 2007 and 2009 

were identified as Phaeocystis pouchetii. 

Key words: spring bloom, phytoplankton dominance, Phaeocystis pouchetii, diatoms, 

Barents Sea, East Finnmark, Vestfjorden 
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1. Introduction  

What is a phytoplankton bloom? As Smayda (1997) pointed out, a bloom is not simply a 

biomass issue. It also has regional, seasonal and species-specific aspects.  

The most striking feature in the annual cycle of phytoplankton in the northern coastal and 

shelf areas, the north Norwegian coast and the Barents Sea, is the spring bloom. The spring 

bloom is relatively fixed in time, starting at the earliest late March, often lasting into May 

with peak abundances in April (Degerlund & Eilertsen 2009). Exceptions though exists, for 

example in Porsangerfjord where the spring bloom continues into the summer (Hegseth et al. 

1995, Eilertsen & Frantzen 2007) or in Vestfjord where peaks in shallow areas may be 

observed in March (Degerlund & Eilertsen 2009). This annual increase in phytoplankton 

biomass is important in that it feeds the entire marine system during the spring when it is 

breeding season for northern marine organisms, e.g. newly hatched fish schools (match-

mismatch, Cushing (1990). Thus the assessment of the timing and mechanisms regulating the 

spring bloom is important in order to understand variations in e.g. fisheries being crucially 

important along the coast of northern Norway and in the Barents Sea. This was originally 

historically the first motivation for studying the northern spring bloom. Vestfjord, an area that 

serves as the main spawning ground for north east atlantic cod, was the first area in northern 

Norway where extensive phytoplankton studies were performed (Føyn 1929, Gran 1930, 

Braarud et al. 1958, Braarud & Nygaard 1980, Huseby 2002). Several other extensive studies 

have later taken place in north Norwegian fjords, e.g. Skjomen (Schei 1974, Eilertsen 1983), 

Balsfjord (Gaarder 1938, Eilertsen et al. 1981b, Eilertsen & Taasen 1984, Lutter 1989, 

Sandberg 1996), Malangen (Gaarder 1938, Throndsen & Heimdal 1976, Hegseth et al. 1995, 

Sandberg 1996), Ullsfjord (Heimdal 1974) and Altafjord and Porsangerfjord (Hegseth et al. 

1995, Eilertsen & Frantzen 2007). In the Barents Sea the phytoplankton studies ranges over 

more than a century (Cleve 1883, 1899, Gran 1902, Gran 1904, Braarud 1935, Smayda 1958, 

Heimdal 1983, Eilertsen et al. 1989, Heimdal 1989, Hegseth 1992, Hegseth 1997, Wassmann 

et al. 1999). Characteristic of these are though that they cover only limited periods of time, i.e. 

they do not discuss annual variations. Only three Norwegian sources covers larger periods of 

the year (Eilertsen et al. 1989, Evensen 1994, Degerlund & Eilertsen 2009). There also exists 

several Russian publications that, peculiarly enough, seldom are cited. However, the extensive 

monograph by Kuznetsov (1992) is one to take note of.  
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Another aspect of phytoplankton blooms are harmful algae blooms, influencing ecosystems 

and causing economically losses to the fish- and shellfish industry. This has though not been 

so much in focus in the north, probably due to seldom occurrences, but it is a fact that e.g. 

Phaeocystis pouchetii may act toxic (Hansen et al. 2004). The understanding of the dynamic 

mechanisms regulating biomass, species succession and assemblages of phytoplankton 

blooms are also crucially important for an understanding of biological events at higher trophic 

levels. 

The area northwards from the Polar Circle is unique in that large seasonal fluctuations in 

environmental conditions influence phytoplankton biomass changes. Much effort has been put 

into research on physical-biological regulatory mechanisms since the last period of the 19
th
 

century (Cushing 1978) when researchers hypothesized that variability in physical parameters 

influenced marine life (Sars 1879). The most common explanatory mechanism associated 

with the bloom onset is the Sverdrup paradigm (1953), assuming that nutrients are not 

limiting and stating that a mixed depth has to be equal to or shallower than a critical depth. 

However, the spring bloom in northern areas often starts in unstratified water masses, i.e. 

prior to a measurable density stratification of the water column (Gaarder 1938, Heimdal 1974, 

Schei 1974, Eilertsen et al. 1981b, Eilertsen & Taasen 1984, Skofteland 1985, Hansen & 

Eilertsen 1995, Eilertsen & Frantzen 2007), contrary to what is observed in more southern 

areas. This delayed northern stratification is a result of less effective solar heating and surface 

salinities being higher due to less runoff compared to southern Norway. Northern Norway has 

a smaller drainage basin in addition to later ice melting, with a peak in runoff in June, due to 

the characteristic light regime (Eilertsen et al. 1981a). In the winter twilight period the sun is 

below the horizon from 27 November to 15 January and during summer the sun is above the 

horizon from the 20 May to 22 July in the Tromsø area (69
o
N). In this intervening time the 

daily incident irradiation increases rapidly with increasing day number and latitude. During 90 

days at 70
o
N the day-length increases from 8.3 to 24 h with a mean increase in day-length of 

0.081 h day
-1

. At 80
o
N the day-length increases from 2.5 to 24 h in only 45 days which results 

in a mean increase in day-length of 0.48 h day
-1

. Another factor also weakening the 

stratification of the water column early in the spring is the prolonged period with winter 

overturning of the water masses (Sælen 1950, Svendsen & Thompson 1978, Eilertsen et al. 

1981a). Measurements from a 23 years period show a positive heat flux (cooling of the sea) 

from September to April and a negative heat flux during May-August for the northern coastal 
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areas (Eilertsen & Skarðhamar 2006). This is however true for coastal areas north of Tromsø, 

i.e. areas hypothesised to be much less influenced by seaborne telecommunication 

mechanisms than southern temperate areas (Eilertsen & Skarðhamar 2006). The northernmost 

coastal areas that are significantly influenced by seaborne telecommunication mechanisms are 

according to Eilertsen and Skarðhamar (2006) Vestfjord. The Vestfjorden basin traps and 

slows down the north flowing Norwegian Coastal Current (NCC), which both influences the 

atmospheric and ocean climate in that particular area. The Barents Sea is also to a greater 

extent influenced by seaborne telecommunication mechanisms by warm and salty Atlantic 

Water (AW) flowing through the Barents Sea Opening (BSO).  

The succession of species during a bloom is most often explained by changing physical, as 

well as chemical and biological conditions during spring (Margalef 1958, Smayda 1980). 

Nevertheless, when phytoplankton start to appear in the water masses in early spring, they 

most often show a characteristic pattern. Typically small species appear in early spring, 

followed by larger ones (Gaarder 1938, Schei 1974, Eilertsen et al. 1981b). This is in 

accordance with Margalef`s (1958) succession scheme which consists of three defined 

succession steps. Starting out with small-celled diatoms there is a shift to a mixed community 

of bigger diatom cells followed by a third step dominated by dinoflagellates (Margalef 1958). 

However, the sampling along the north Norwegian coast and in the Barents Sea has often 

been sporadic both in time and space. Attempts to monitor the species succession are 

therefore difficult. However, there are fewer drawbacks with such data when investigating 

species assemblages and key species. Several attempts have been made to define species 

assemblages connected to spring blooms, by assemblages meaning typical associations of 

species connected to specific geographical areas (Cleve 1896, Gran 1900, Gran 1902, 

Jørgensen 1905, Gran 1927, Gaarder 1938, Sakshaug 1972, Heimdal 1974, Braarud & 

Nygaard 1980, von Quillfeldt 2000, Degerlund & Eilertsen 2009).  

An inherent property of the northern phytoplankton works cited above is also that they 

most often show that P. pouchetii may be abundant and that its amount relative to diatoms 

may vary. P. pouchetii is also considered one of the main species in the Arctic spring bloom 

in terms of both cell numbers and biomass (Lagerheim 1896, Eilertsen et al. 1989, Degerlund 

& Eilertsen 2009). The literature connected to P. pouchetii is extensive due to its great 

ecological and economical impact, and a focus on all aspects of P. pouchetii biology is 

beyond the scope of the present text. A extended collection of some ñcentralò P. pouchetii 
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literature is though compiled in Appendix C. Peculiarly enough, few of the formerly 

suggested species assemblages mention P. pouchetii, although it is a commonly occurring 

species during the spring bloom in temperate and polar areas. However, the latest species 

assemblage suggested for the north Norwegian coast and the Barents Sea (68-80
o
N) by 

Degerlund and Eilertsen (2009) consists of P. pouchetii and several diatoms like 

Fragilariopsis oceanica, Chaetoceros socialis, Chaetoceros furcellatus, Chaetoceros 

compressus, Chaetoceros debilis, Skeletonema costatum, Thalassiosira spp. and Bacterosira 

bathyomphala.  

In addition to being taxonomically different, i.e. P. pouchetii belongs to Class 

Prymnesiophyceae and the diatoms belong to Class Bacillariophyceae. They thus exhibit 

different physiological and ecological characteristics (e.g. nutritive value) which in turn may 

have great ecological impacts. Worth taking note of is also that P. pouchetii only is 

(assumedly) one species whereas the ñdiatomsò consists of 164 genera and 1365ð1783 

species which was said to be underestimated by Sournia in 1991 and increasing with 

approximately 320 per year (Sournia et al. 1991). However, this is an estimate of the diatom 

species in the world and not in temperate and cold water areas where the number is much 

lower but though relatively high. Despite this, P. pouchetii is a very successful species both 

concerning biomass and abundance in comparison to the total bulk of diatoms during the 

spring bloom. Characteristic for P. pouchetii is the formation of gelatinous colonies, 

consisting of a variety of polysaccharides (van Rijssel et al. 2000).This has been considered 

being the main reason for the success of this species (Lancelot & Rousseau 1994, Hamm 

2000, Veldhuis et al. 2005). Maximum colony size reported by Jahnke and Baumann (1987) 

for P. pouchetii is 1,5-2 mm in diametre. In addition high doubling rates (faster than 1 

division per day) has been reported for colonial cells of P. pouchetii (Eilertsen 1989, Veldhuis 

et al. 2005, Verity et al. 2007). Its massive potential for rapid increase in biomass makes 

colony-forming Phaeocystis spp. one of a few phytoplankton taxa with significant 

biogeochemical impact on a global scale. P. pouchetii plays a key role as an intermediary in 

the transfer of carbon as well as sulphur between ocean and atmosphere and vice versa. 

However, unlike diatoms they carry no stable frustules/cell wall (needs no silicon) and is 

therefore not as easily traced in the carbon cycle as diatoms i.e. sediment records. The lack of 

a ñheavy and protectiveò frustule might also be the reason for the reported higher vertical flux 

attenuation efficiency for P. pouchetii than for diatoms. The overall contribution of P. 

pouchetii to vertical carbon export has been reported to be small (Reigstad & Wassmann 
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2007). Studies show that at the end of the spring bloom P. pouchetii colonies sink out of the 

euphotic zone. However, due to autolysis, leakage, rapid microbal degradation and 

zooplankton grazing marine snow disintegrates in the upper part of the euphotic zone 

(Wassmann et al. 1990). In addition P. pouchetii and diatoms as mentioned differ in their 

metabolic behavior. Fernández (1992) found an active protein metabolism during a diatom 

bloom whereas a carbohydrate-dominated metabolism in a Phaeocystis spp. outburst. In 

addition does fatty acids (EPA and DHA), which are essential for the growth of multicellular 

animals, probably only occur in trace amounts in Phaeocystis, whereas they are common in 

many other phytoplankton species (Nichols et al. 1991). This will have great effect on the 

trophic structure assuming the classical food web to dominate during a diatom bloom and the 

microbial loop to dominate during a P. pouchetii boom. Also supporting this is several 

authors reporting zooplankton to favor diatoms over P. pouchetii due to nutritional value, size 

and/or toxicity (Verity & Smayda 1989, Estep et al. 1990, Weisse et al. 1994, Haberman et al. 

2003). However, the nutritional value of P. pouchetii is highly debated and is not straight 

forward, but probably depend on several factors.  

Few of the dominating diatom species of the northern spring bloom are reported to be toxic. 

This is however not the case for P. pouchetii which has been shown to act toxic towards 

marine organisms. Different effects like reduced appetite and weight loss in Atlantic salmon 

and cod larvae (Eilertsen & Raa 1995), lethal effect on cod larvae (Aanesen et al. 1998), toxic 

and anaesthetic properties in Blowflies (Calliphora vomitoria) (Stabell et al. 1999), avoidance 

of P. pouchetii blooms by herring (Savage 1932) and copepode avoiding grazing upon healthy 

(young) colonies of P. pouchetii (Estep et al. 1990), have probably been caused by a toxin 

produced by P. pouchetii. The toxic compound polyunsaturated aldehyde (PUA) 2-trans-4-

trans-decadienal (DD), known to inhibit mitotic cell division in several different cell types, 

identified in P. pouchetii by Hansen et al. (2004) was first identified in the diatoms 

Skeletonema costatum, Pseudo-nitzschia delicatissima and Thalassiosira rotula (Hansen & 

Eilertsen 2007). These diatom species are also occasionally present in northern spring blooms, 

but at minor amounts and therefore probably have little biogeochemical effect on the 

ecosystem in question. The exception may be S. costatum which has been reported 

occasionally being one of the main species making up the bulk of the biomass along the north 

Norwegian coast, especially early in spring bloom season (Gaarder 1938, Eilertsen et al. 

1981b, Hegseth et al. 1995). The allelopathic function of the PUA is still connected to 
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uncertainty. It is assumedly released by diatoms and P. pouchetii as a response to mechanical 

stress, possibly triggered by grazing activity (Pohnert 2000, Wolfe 2000, Pohnert 2002). 

However, any adverse effects on co-occurring phytoplankton species during ñnormalò bloom 

progress may be difficult to pinpoint (Hansen & Eilertsen 2007). In addition to being toxic, P. 

pouchetii has been regarded a nuisance species. The gelatinous polysaccharide matrix of the 

colonies can cause clogging of fishing nets and accumulation of fetid foam on beaches 

(Lancelot 1995). There is no doubt that the inter-specific differences between the two taxa are 

great. Therefore the relative abundance variation between these taxa will have great impact on 

the ecosystem in question both from a biological, economical and environmental point of 

view.   

The relative abundance variation between P. pouchetii and diatoms is in fact a main and 

important characteristic of the northern spring blooms (Eilertsen et al. 1989b (Svalbard); 

Heimdal 1974 (Ullsfjord); Pedersen et al. 1989 (Trondjord); Eilertsen et al. 1981b (Balsfjord); 

Føyn. 1929 (Lofoten); Schei 1979 (Skjomen); Sakshaug 1972 (Trondheim). The aim of this 

study is therefore to look into the characteristics of these variations interannually, and also 

seek for what causes changes in the ratios between P. pouchetii and diatoms. 
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2. Materials and methods 

2.1 Area description  

The data used in this study was collected during the cruises to the Barents Sea in May 2006, 

2007 and 2009, Vestfjord (Vestfjord archipelago) in April the same years and East Finnmark 

in May 2009 (Table 1, Fig. 1, 2, 3 and Appendix C). In May 2009, data was collected both in 

the Barents Sea and East Finnmark. I myself participated on five of these cruises, i.e. in 2007 

in the Barents Sea, 2009 in the Barents Sea and East Finnmark and in 2006, 2007 and 2009 in 

the Vestfjord archipelago. The locations sampled in the Barents Sea varied between years due 

to different focus of the projects. The cruise to the Barents Sea in 2006 was part of an EU 

project (MARISCO), and the 2007 and 2009 cruises were part of a RCN bioprospecting 

project (MabCent). In the Vestfjord archipelago the four locations Vestfjorden, 

Henningsværstraumen, Austnesfjord and Tysfjord were sampled all three years. The cruises to 

the Vestfjord archipelago were part of a Marine Ecology course 

(http://www0.nfh.uit.no/phaeocystis/mar/) led by Professor Hans Christian Eilertsen. See 

Appendix B for further details on sampling locations and periods for the different cruises. 

Table 1: Overview of sampling periods, maximum and minimum latitude (
o
N) and longitude (

o
E) and number of 

stations sampled during each cruise (positions are decimal degrees). 

Location 

 

Year 

 

Latitude (
o
N) 

(min-max) 

Longitude (
o
E) 

(min-max) 

Sampling 

periods 

No. stations 

Barents Sea 2006 76.56-81.77 09.34-33.34 10-15 May 24 

Barents Sea 2007 73.87-78.69 10.26-33.94 10-18 May 17 

Barents Sea 2009 72.85-77.99 09.03-31.27 15-25 May 24 

East Finnmark 2009 69.68-71.69 25.18-31.00 26-30 May 12 

Vestfjord archipelago 2006 67.56-68.35 13.27-16.48 01-07 Apr. 20 

Vestfjord archipelago 2007 67.82-68.35 13.65-16.48 12-18 Apr. 19 

Vestfjord archipelago 2009 67.56-68.35 13.28-16.47 15-19 Apr. 12 

2.2 The Barents Sea and East Finnmark 

The Barents Sea is an open arcto-boreal shelf sea, bordering the Norwegian Sea in the west 

and the Arctic Ocean in the north. The eastern border is Novaja Zemlya and the southern 

border is the Norwegian and Russian coast. The average depth is 230m and the sea covers 

approximately 1.4 million km
2
 (Ottersen & Chr 2001). The shallowest shelf areas are located 

around Svalbard and south from Hopen to Bjørnøya (Spitsbergenbanken). The bathymetry 

plays a crucial role in the circulation pattern in the Barents Sea, especially the trough between 
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Bear Island and Fugløya. In this section, named the Barents Sea Opening (BSO), the Atlantic 

water (AW) bifurcates into the North Cape Current (NCC) flowing eastward into the Barents 

Sea through BSO and the West Spitsbergen Current (WSC) flowing northwards along West 

Svalbard into the Fram Strait (Hopkins 1991). In the northern part of the BSO there is an 

outflow of Barents Polar Water (BPW). The inflow is varying over time and is profoundly 

influencing the temperature of the Barents Sea (Loeng 1991, Ingvaldsen et al. 2004). North of 

the AW the Polar Front separates this water mass from BPW. All in all it can be said that the 

climate in the Barents Sea is variable, and this variation is closely linked to both the 

characteristics of the inflowing water-masses and to the prevailing atmospheric conditions, 

again being linked to e.g. NAO (Furevik 2001). 

The ice conditions in the Barents Sea in May 2006 made it possible to conduct 

sampling much further north than during 2007 and 2009 (Fig. 1). This was exploited well and 

the sampling area was located north and east of Svalbard (Fig. 1). The cruise period was from 

10 to 15.05.06. The cruise started north of Svalbard at 80.13
o
N - 9.58

o
E. North of Svalbard, at 

81.73
o
N - 15.80

o
E, six stations were sampled during a 24 hour sampling programme (diurnal 

station). Further a new diurnal sampling programme including six stations was set up east of 

Svalbard at 80.90
o
N - 30.00

o
E. The last station sampled was the southernmost station 

(76.56
o
N - 27.40

o
E), located west of Hopen. The 2007 sampling in the Barents Sea was 

conducted during the period 10 to 18.05.07.  The sampling started north of Bjørnøya at 

75.51
o
N - 20.02

o
E (Fig. 1). Further the cruise went into the ice at the east side of Svalbard as 

far north as 78.08
o
N - 33.90

o
E. Three stations south of Bjørnøya were sampled, with the 

southernmost location situated at 73.87
o
N - 18.63

o
E. The last stations to be sampled were on 

the western side of Svalbard where the northernmost point in 2007 was sampled, i.e. at 

78.69
o
N - 10.26

o
E. The 2009 sampling took place in the waters around southern Svalbard plus 

the area between Svalbard and the Norwegian mainland where sampling also was conducted 

around Bjørnøya and along the eastern coast of Finnmark (Fig. 1 and 2). The cruise period 

was from 15 to 30.05.09. The first station sampled was at the northernmost position, 77.99
o
N 

- 9.03
o
E, i.e. outside Isfjorden on the western side of Svalbard. Further the cruise went into 

the waters around Bjørnøya and then to the eastern side of Svalbard where sampling was 

conducted as far north as the ice condition allowed, i.e. at 77.72
o
N. When leaving the ice edge 

a transect was made towards Honningsvåg at the northern tip of the Norwegian mainland. 

Along the coast of East Finnmark the first sampling was conducted in Varangerfjord and 

thereafer in Porsangerfjord. Varangerfjord is the most water-rich fjord in Norway. However, 
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in a strict sense it is a false fjord as it does not have a sill. The circulation in Varangerfjord is 

structurally different from other fjord areas due to its wide entrance, maybe comparable to 

Porsangerfjord, and is mainly driven by wind and Coriolis force (Pedersen et al. 2009), see 

Table 2. Porsangerfjord is the largest fjord in Northern Norway and the third largest fjord in 

Norway, and because of its size the water circulation is here also mainly driven by wind and 

the Coriolis force (Svendsen 1991). The sill in the inner part of Porsangerfjord, situated 30 m 

from the fjord head, prevents basin water from having free exchange with the open sea. 

However, the outer part of Porsangerfjord has free exchange with the open sea (Table 2). The 

innermost Porsangerfjord is considere true Arctic.  

 

  12oE   18oE   24oE   30oE   36oE 
  72oN 

  74oN 

  76oN 

  78oN 

  80oN 

  82oN 

 

Figure 1: Map of the Barents Sea showing sampled stations in 2006, 2007 and 2009, green (*) is 2006, blue (+) 

is 2007 and red (Ǐ) is 2009. The location of the ice edge is shown in same color as the station color for each 

year. 
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Figure 2: Map of East Finnmark showing sampled stations in 2009. 

2.3 The Vestfjord archipelago 

The southernmost studied location was the Vestfjord archipelago with its adjacent fjords 

located in Nordland. Three fjords in the Vestfjord archipelago were selected for further 

investigation in the present study: Vestfjorden, Austnesfjord and Tysfjord, in addition to the 

sound Henningsværstraumen (Table 2, Fig. 3 and Appendix C). Vestfjorden lies between the 

mainland of Norway and the Lofoten Island archipelago (67-69
o
N - 11-19

o
E). It is an atypical 

fjord due to its size, even though it has a deep sill. The sill is located between Bodø and Røst 

and is at 227m depth. From a dynamical point of view Vestfjorden is rather a coastal 

embayment, being wider and deeper than most other fjords (Mitchelson-Jacob & Sundby 

2001). The characteristic topography of the Vestfjord archipelago captures an inner branch of 

the Norwegian Coastal Current (NCC). The NCC originates from the warm and salty Atlantic 

Water (AW) and mixes with fresh water run-off from the Norwegian coast (Sætre & Mork 

1981). The North Norwegian coastal areas are all to some degree under influence of the 

northward flowing NCC. The NCC turns into Vestfjord archipelago on the south-east side and 

flows out on the north-west side (Furnes & Sundby 1981). Austnesfjord which is situated on 

the western side of Vestfjord archipelago has quite similar water structure as Vestfjorden due 

to the absence of a sill (Furnes & Sundby 1981). This is not the case for Tysfjord, the second 

deepest fjord in Norway, which is located on the eastern side of Vestfjord archipelago. 

Tysfjord has three sills, and the innermost is 60 m, influencing the inflow of dense and warm 



 

13 

 

NCC into the fjord. The sound Henningsværstraumen is relatively shallow, no deeper than 

maximum 130m, causing strong currents due to the tides. 

All  three years a transect in Vestfjorden consisting of four to five stations were 

sampled, i.e. the two fjords Austnesfjord and Tysfjord in addition to the sound 

Henningsværstraumen. In 2006 the sampling started in the innermost part of Vestfjorden. At 

first a transect including five stations was made throughout Vestfjorden. Then the western 

side of Vestfjord archipelago was sampled where a diurnal station including four stations in 

Henningsværstraumen and a diurnal station including five stations in Austnesfjord were set 

up. At last a transect consisting of five stations was made throughout Tysfjord, located on the 

east side of Vestfjord archipelago. The sampling period was from 1 to 7.04.06 (Fig. 3). The 

2007 cruise to the Vestfjord archipelago followed the same sampling route as in 2006, except 

that Austnesfjord was visited before Henningsværstraumen. The cruise was from 12 to 

18.04.07. In Vestfjorden a transect consisting of four stations were sampled. As much as 12 of 

the stations sampled were part of a diurnal sampling programme. The first diurnal station 

included six stations and was located in Austnesfjord. The second diurnal station also 

included six stations and was located in Henningsværstraumen. In Tysford three stations were 

sampled (Fig. 3). In 2009 the cruise period was from 15 to 19.04. The sampling started in the 

innermost part of Vestfjorden, and a transect including five stations was made throughout 

Vestfjorden. Then the western side of Vestfjord archipelago was sampled, at first three 

stations in Henningsværstraumen and secondly two stations in Austnesfjord. In Tysfjord, on 

the east side of Vestfjord archipelago, two stations were sampled (Fig. 3). 
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Figure 3: Map of the Vestfjord archipelago showing sampled stations in 2006, 2007 and 2009, green (*) is 2006, 

blue (+) is 2007 and red (Ǐ) is 2009.  

Table 2: Overview of fjord systems investigated showing depth of sill(s) (m), length (km), max. depth (m) and 

max. width (km). 

Fjord  Depth of sill(s) (m) Length (km) Max. depth (m) Max. width (km)  

Vestfjorden  227 180 >400 70 (at the sill) 

Tysfjord 205 (Outer)     

303 (Middle)   

60 (Inner)      

62 897 14 

Austnesfjord No sill 12 120 4 

Porsangerfjord 60 

(30km from fjord head) 

100 310 20 

Varangerfjord No sill 90 420 70 

2.4 Physical oceanography and meteorology 

The vessel FF/Jan Mayen (184 ft) was used during the cruises to the Barents Sea and the 

Vestfjord archipelago. During these cruises vertical profiling of temperature, salinity, density 

(ůt) and in vivo fluroescence (FL) were sampled at all stations applying a CTD (Sea-Bird 

SBE 9) with an attached Seapoint in vivo FL sensor. The degree of stability was computed as 

the density difference from surface (0m) to 10m depth. Metrological data, wind speed (ms
-1

), 

wind direction (
o
), sea and air temperature (

o
C), humidity (0-1) and air pressure (mbar), were 

obtained as means of registrations during station time from the automated meteorological 

station onboard the vessel while cloud cover (scale 0-9; 1= clear, 9=snowy or fog) and 
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visibility (km) was observed manually. Missing data were replaced by data values from the 

previous nearby station. 

2.5 Calculations and modeling 

Surface heat flux (Qt) was computed as Qt=Qh+Qe+Qb+Qs, where Qh is sensible heat, Qe latent 

heat, Qb long-wave radiation (black-body radiation) and Qs is short wave radiation (Gill 

1982). Sensible heat was calculated according to the formula Qh=-Ch ɟ Cp V10 (Tair-Tsea) 

where Ch is heat flux coefficient (1.1 x 10
-3

 for neutral stratification), ɟ is air density (1 Kg m
-

3
), Cp is heat capacity (air) at constant pressure (1004 J Kg

-1
 K

-1
), V10 is wind in ms

-1
 10m 

above sea surface and T is temperature (
o
C) (Brown 1990). Air temperature measurements 

were missing for the Barents Sea 2007 dataset, so the constant value of -5.1 was used in the 

model (as subjectively judged from earlier records). Wind in ms
-1
 was also missing for the 

Barents Sea 2007 dataset, so the constant value of 8.7 (judged as a typical mean for area) was 

used in the model. Latent heat was calculated according to formula Qe= ɟ Lv Ce V10 (qair-qsea) 

where Lv is latent heat of evaporation (2.5 x 10
6
 J Kg

-1
), Ce = Ch and q denotes specific 

humidity at 10m altitude and at the sea surface (0m) (Smith et al. 1983). The qair/qsea=ὑǎ 

air/sea/(ph ï (1 - ὑ) e air/sea) where ὑ=0.622 is the ratio between molecular weight of water vapour 

and dry air. Further is e air/sea= r611.0 x 10
(7.5T air/sea+275.15-35.86))

 where r is the relative humidity 

of the air, 0-1, and ph is mean air pressure in the northern hemisphere (101400 Pa). Humidity 

data was missing for the Barents Sea 2007 and Vestfjord archipelago 2009 dataset, so the 

constant value of 0.7 was used for the Barents Sea and 0.6 for Vestfjord archipelago in the 

model. The net long wave radiation was computed as Qb=ὑgŭ(ä air(273.15+Tair)
4
 ï 

(273.15+Tsea)
4
) (Henderson-Sellers 1986). Further ὑg is long-wave emissivity for sea (0.97), ŭ 

is the Stefan Boltzmannôs constant (5.67 x 10
-8

 J s
-1

 K
4
 m

-2
), ä air is explained by the formula 

(1 ï 0.261 e
-7.77x104T2air

) x (1+0.275 äc) where äc is the relative proportion of cloud cover. 

Cloud cover was missing for the Barents Sea 2007 dataset, so the constant value was set to 6 

in the model. The basis for the short wave irradiance model was the algorithm in Frouin et al. 

(1989) (Eq. 1). Here the short-wave solar irradiance (Qs, PAR) for clear sky is computed in 

Wm
-2

 after input of surface visibility, humidity and regression coefficients for maritime 

atmospheres and solar zenith angle. Visibility measurements were missing for the Barents Sea 

2007 dataset, so the constant value of 97 was used in the model. The solar zenith angle was 

computed at given geographical position and time according to the equations in Iqbal (1983). 
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Equation 1 

Where IR is the monochromatic extraterrestrial irradiance integrated over 400-700nm (PAR), 

d/d0 is the ratio of actual to mean Earth-Sun separation, a and b are regression coefficients 

representing different aerosol types, subscripts v and 0 denotes water vapour and ozone, A is 

albedo, V is surface visibility (km) and U is vertically integrated absorber amount (cm). 

Both surface and sub-surface irradiance were modelled (Eilertsen & Holm-Hansen 

2000). The basis for the surface irradiance (Is) model was integrated 24 hour PAR with cloud 

cover incident on surface in Wm
-2

 at date of measure. The basis for the sub-surface irradiance 

(Id) was the same as for surface irradiance except the integrated 24 hour PAR measurements 

was from the sampling depth calculated from the diffuse attenuation coefficient (k). The 

diffuse attenuation coefficient was modelled by Eilertsen and Holm-Hansen (2000) and based 

on analysis of their Chla and subsurface PAR data sets. For further information on modelling 

see e.g. Eilertsen and Wyatt (2000). 

2.6 Species abundance and composition  

Water samples for cell counts (cells l
-1

) were collected using 5l Niskin water bottles mounted 

on the CTD. Phytoplankton species were enumerated live in an inverted Leica microscope 

using a modified method of Utermöhl (1958) where a 2ml four-well Nunclon counting 

chambers were  used. Cell counts were performed onboard the vessel with a minimum of 2 

hours settling time. Phytoplankton species identification was mainly based on Tomas (1997). 

2.7 Taxonomic identification of Phaeocystis spp. (Class Prymnesiophyceae)  

Molecular methods are becoming increasingly common for taxonomic and ecological studies 

of phytoplankton. At the Planktonlab., Institute for Arctic Marine Biology (AMB), Faculty for 

Bioscience Fishery and Economy (BFE) resources that permit molecular methods were 

provided allowing me to use the polymerase chain reaction (PCR) based techniques to 

identify Phaeocystis spp. in this study. Two runs were preformed with material (Phaeocystis 

spp.) from different locations in the Barents Sea. The first Phaeocystis spp. material (ID 76.2) 

was collected on 18 May in 2007 in the Barents Sea (77.78
o
N ï 12.29

o
E) where a single 
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colony was isolated and kept in culture at the Planteplanktonlab up till  present. Harvesting of 

this culture was done by filtering approximately 100ml of dense culture onto 0.6ɛm 

polycarbonate filter (Millipore Corp.) supported by a pre-burnt GF/C filter (450
o
C in 8h). The 

sample was immediately frozen in liquid nitrogen and stored at -80
o
C. The second 

Phaeocystis spp. material (ID 89) was collected on 22 May in 2009 in the Barents Sea 

(75.64
o
N - 29.92

o
E) by filtration during a massive Phaeocystis spp. monoculture bloom where 

the pellet was immediately frozen in liquid nitrogen and stored at -80
o
C. The extraction of 

total DNA was performed using the spin column based DNeasy Blood and Tissue kit Quiagen 

where the manufactures instructions for total DNA from animal tissues were followed. In 

addition RNase A was used (4ɛl, 100mg/ml) to reduce the amount of free RNA, this was 

listed as optional in the manufactures instruction. Prior to PCR a 24ɛl master-mix containing 

12.5ɛl reddyMix PCR mastermix (Thermo Scientific), 1.5ɛl MgCl2, 1ɛl primer F (forward) 

(10pmol/ɛl), 1ɛl primer R (reverse) (10pmol/ɛl) was added to the template containing 10ng of 

DNA (10ng/10pmol/ɛl), further H2O was added to a total volume of 25 (10pmol/ɛl). Primers 

used was an 18S rRNA gene-target PCR primer pair specific for the haptophyte genus 

Phaeocystis (PhaeoF-489 and PhaeoR-683) designed by Nejstgaard et al. (2008). The PCR 

reaction programme was set to a 3 min denaturing step at 94
o
C, followed by 35 cycles of 

(94
o
C for 45 s, 53

o
C for 90 s, 72

o
C for 90 s) and the last step was 7 min at 72

o
C. The reaction 

was run in an Applied Biosystems 2720 Thermal Cycler. Purification of the PCR product was 

done by salt precipitation, where the PCR product, 95% EtOH and 3M NaOAc, pH 5.2 were 

mixed according to ratio 10:20:1. Further the sample was vortexed and incubated on ice for 

30 min, centrifuged on 13200 rpm for 25 min and the supernatant was discarded. The pellet 

was washed with 75% EtOH where 100ɛl was used per pellet and then centrifuged at 13200 

rpm for 5 min. Then the supernatant was again discarded while the pellet was set to dry before 

it was dissolved in 20ɛl MilliQ water. Prior to sequencing PCR the DNA concentration had to 

be diluted to 5ng/ɛl. The DNA concentration was checked using the nano-drop method. The 

sequencing mix consisted of 1ɛl Big Dye v. 3.1 (Applied Biosystems, USA), 2.5ɛl Big Dye 

buffer (5x) and 1.6ɛl primer (2pmol/ɛl of each of the F and R primer), 2 ɛl template (5ng/ɛl) 

and H2O adding up to a total volume of 20ɛl. The PCR sequencing followed the reaction of 

an initial denaturing step at 96
o
C for 5 min, further running 25 cycles of (96

o
C for 10 s, 50

o
C 

for 5 s) and at last 60
o
C for 4 min. The sequences were worked up at the DNA sequencing 

facility at the University hospital in Tromsø where an Applied Biosystems 3130x1 Genetic 

Analyzer was used. Further end-trimming of sequences were performed using 4 Peaks v. 1.7.2 
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(A. Griekspoor and Tom Groothuis, Netherlands). Finally the blast program (basic Local 

Alignment Search Tool), BLASTN v. 2.2.24 at the NCBI GenBank server 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) was used to search for uploaded sequences that 

matched my sequences.   

2.8 Phaeocystis vs. diatom abundance  

Surface maps with abundance indices were generated to illustrate and get an overview of the 

relative variation in Phaeocystis pouchetii and diatoms abundance in time and space at 

different depths. In the present project cell numbers were used as abundance indicators. It is 

obvious that if  the biomass was computed as e.g. cell volume, C, N or similar, it would 

increase diatom abundance relative to P. pouchetii. Hence, the approach applied by me only 

reflects the relative changes in abundances and not in "actual" biomass. In order to operate 

with two variables to be plotted against each other, P. pouchetii solitary and colony cell 

counts were merged and the same was done for the diatom species registered at the specific 

locations. This resulted in the two variables, total P. pouchetii (ñPpò) and total diatoms (ñTot. 

Dò). The two variables were log-10-transformed (since blooms most often increase biomass 

exponentially) and total diatoms were thereafter subtracted from total P. pouchetii. This ratio, 

for simplicity refered to as ñPhaeocystis dominanceò, was used as a measure of the two 

variables total P. pouchetii and total diatoms. A positive ratio denotes P. pouchetii dominance 

and a negative ratio diatom dominance i.e. ñTot. Dò> 0 <Pp. This means that a negative 

ñPhaeocystis dominanceò value is equal to diatoms being more abundant than P. pouchetii. 

The ñPhaeocystis dominanceò was calculated for each station sampled and was plotted 

against latitude and longitude. Prior to analysis the TriScatteredInterp function in MATLAB 

(MATLAB 7.10.0 (R2010a), The MathWorks Inc., MA, 2010) was used to perform 

interpolation on the scattered dataset consisting of three matrices that resides in the 2D 

surface plot. The surface plots were generated using the pcolor function in MATLAB. The 

pcolor(X, Y, C), where X=longitude, Y=latitude and C=ñPhaeocystis dominanceò, draws a 

plot of the elements of C at the locations specified by X and Y. The color system used was set 

to shading flat where the constant color of each cell is the color associated with the corner 

having the smallest x-y coordinates. Hence, C (i, j) determines the color of the cell in the ith 

row and the jth column. Note that due to interpolation between sampling positions there will 

be an increasing uncertainty in the ñPhaeocystis dominanceò value the further one moves 

away from the sampling position.  
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2.9 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) was used to reduce a large number of variables and 

summarize the original information to reveal typical patterns (correlations) between the 

variables. PCA was applied to P. pouchetii and the eight most dominating diatom species 

sampled at each main location during all three years, all depths are included. Since I only had 

data from eastern Finnmark from one year these data were pooled with the Barents Sea data in 

the PCA analyses. Hence, eight dominating diatom species were chosen for the Barents Sea 

and East Finnmark and eight for the Vestfjord archipleago when all data in all three years 

were considered. Total diatoms, (ñTot. Dò) was also included in the analysis, but as a 

supplementary variable whereas the nine phytoplankton species were ordinated as active 

variables. Active variables are used in the derivation of the principal components and the 

supplementary variables are projected onto the factor space computed from the active 

variables. Phytoplankton species are occasionally difficult to distinguish from one another in 

light microscope. This especially applies to Thalassiosira hyalina and Thalassiosira 

antarctica and Fragilariopsis oceanica can be confused with Fossula arctica or 

Fragilariopsis cylindrus (Quillfeldt 2001). However, I chose to use T. hyalina, T. antarctica 

and F. oceanica, though identification was based on light microscope merely, i.e. I considered 

this identification to be precise and appropriate for my purpose. Prior to analysis species 

abundance data were natural-log-transformed. Transformation such as log may improve linear 

relationships between variables (again exponential increase assumed), homogeneity of 

variances and to reduce the influence of outliers. This is according to Quinn and Keough 

(2009), especially the case if the unequal variances and outliers are a result of non-normality 

which often is to be found in phytoplankton datasets. In addition transformation will reduce 

the influence of variables with high values, e.g. species with very high abundances (Quinn & 

Keough 2009). Variables not transformed will have larger ranges and will be more 

represented in the data than others, in this case placing emphasis on phytoplankton group 

biomass rather than pattern. That is why scaling is so crucially in multivariate analysis. 

Correlation was used as the association matrix in PCA. It is important to have in mind that 

data from correlation research cannot be used to conclusively prove causality, but only to 

track relations/correlations among the variables (phytoplankton species). In other words 

concusions are based on ñcircumstantial evidenceò. In addition to variable ñTot. Dò, 

environmental variables were ordinated as supplementary variables. Prior to analysis the 

environmental data were normalized (Eq. 2). 
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N=(X ï (Xmean)) / Xmean 

Equation 2 

Where X is the specific environmental variable and Xmean is the specific mean environmental 

variable for the total Barents Sea and East Finnmark or Vestfjord archipelago dataset 

considering all three years. Environmental variables are more complex than species 

abundance variables concerning units of measurements, which often are different between 

environmental variables. In addition environmental variables naturally have different ranges 

(Cao et al. 1999). Another particularly important complexity pointed out by Cao (1999) is that 

the biology and ecotoxicology, in this case environmental factors, of different variables vary 

greatly. ñLog transformation indiscriminately increases the importance of a low range across 

all variables, and thus distorts the responses of species to pollutionò (Cao et al. 1999). 

Extreme environmental values which can have great effect on biology are ñflatten outò by log 

transformation having the intention of reducing the effect of ñoutliersò. Even if there is a 

greater statistical significant relationship between one environmental variable to a species 

abundance variable than another, the biological significance might be of another character 

(e.g. a surface sensible heat flux increase from 0-50W m
-2 

might have no effect on species 

abundance compared to a pH increase of 0.1 from within the buffering capacity to slightly 

above the buffering capacity of the particular geographical area). Environmental data has thus 

been normalized allowing data on different scales to be compared, transforming them onto a 

common scale.  
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3. Results  

Due to limited availability of resources and vessel-time, the areas sampled in the Barents Sea 

as mentioned varied somewhat between years. Therefore, only some of the areas can be 

directly compared for interannual characteristics. On the other hand, the area close to the ice 

edge can be interannually compared since it is a biotope determined by its environmental state 

(ice-low temperatures) rather than geographical position.  

3.1 Environmental variables, Barents Sea, May in 2006, 2007 and 2009  

The range of the surface (0m) sea temperature in the Barents Sea in May 2006 was from -

1.85
o
C to 2.78

o
C (Fig. 4a). The highest 0m temperature was measured at station 159 located 

northwest of Svalbard. Station 159 differed clearly from the other sampled stations, having 

high temperatures both in surface (2.80
o
C) and deeper (50m), 3.54

o
C (Appendix A, Fig. 1A). 

The lowest 0m temperature was measured at station 193 located between Nordaustlandet and 

Kvitøya. The temperatures down to 50m were at all other stations between -1
o
C and -2

o
C 

(Appendix A, Fig. 1A). The only exceptions, in addition to station 159, were station 179 

(located north of Nordaustlandet) having a 10m temperature of 0.96
o
C and station 181 

(located north of Kvitøya) having a 0m temperature of 1.01
o
C (Appendix A, Fig. 1A).  

In May 2007 the 0m sea temperature range was from -1.88
o
C to 5.89

o
C in the sampled area 

(Fig. 4b). The highest 0m temperature was measured south of Bjørnøya at station 67, i.e. at 

the southernmost station sampled. The lowest 0m temperature was at station 45 which was 

one out of six stations located in ice on the eastern side of Svalbard. The temperatures at 0m 

and 10m were comparable, except at station 5 located between Bjørnøya and Hopen where the 

temperature was 1.72
o
C at 0m and -1.72

o
C at 10m (Appendix A, Fig. 2A). At stations 2, 9, 

19, 28, 32, 41, 45 and 57 located in the eastern part of the sampling area temperatures at 50m 

were comparable to the surface ones (0m and 10m). At stations 12 and 23, also located in the 

eastern part of the sampling area, and stations 103, 109 and 115 on the western side of 

Svalbard the 50m temperatures were higher than the surface ones. The opposite was measured 

at stations 60 and 67 located south of Bjørnøya, and at station 98 west of Svalbard where the 

50m temperature was lower than the surface ones (Appendix A, Fig. 2A).  

The 0m sea temperature range in May 2009 was from -1.72
o
C to 6.27

o
C (Fig. 4c). The highest 

surface temperatures were measured at stations 238 and 241 located northwest of Bjørnøya 
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(6.27
o
C). The lowest temperature at 0m was measured at station 251 which was located in the 

ice east of Svalbard. As for 2006 and 2007, there were no great differences between the 

temperatures at 0m and 10m at the stations (Appendix A, Fig. 3A). The greatest difference 

between 0m and 50m temperatures were at stations 248, 249 and 250, all located northeast 

and station 232 located northwest in the sampling area. All these stations had higher values at 

50m than at 0m. (Appendix A, Fig. 3A). The 0m temperatures at the stations 248, 249, 250 

and 232 were -0.46
o
C, -1.69

o
C, -1.63

o
C and 3.51

o
C while the 50m temperatures were 0.93

o
C, 

0.96
o
C, -0.82

o
C and 4.58

o
C respectively. As much as 12 out of the 24 stations sampled had 

lower temperatures at 50m than at 0m. The mean decrease in temperature from 0m to 50m 

was 0.47
o
C. The station with the greatest decrease in temperature from 0m to 50m was station 

244 located southeast in the sampling area with a 0m temperature of 5.44
o
C and a 50m 

temperature of 4.61
o
C. An overview of temperature characteristics for the years 2006, 2007 

and 2009 is in Table 3. 



 

23 

 

  12oE   18oE   24oE   30oE   36oE 
  72oN 

  74oN 

  76oN 

  78oN 

  80oN 

  82oN 

159

161

163
165166

179

181

193
195

196

202

 

 
Barents Sea, 10.-15. May 2006, 0m

T
e
m

p
e
ra

tu
re

 (o
C

)

-2

-1

0

1

2

3

4

5

6

7

 

  12oE   18oE   24oE   30oE   36oE 
  72oN 

  74oN 

  76oN 

  78oN 

  80oN 

  82oN 

67
60

2 5 9

12

19

57

98

103
109

115

Barents Sea, 10.-18. May 2007, 0m

  12oE   18oE   24oE   30oE   36oE 
  72oN 

  74oN 

  76oN 

  78oN 

  80oN 

  82oN 

259
241242243

244
258239
245238 237

246

247

234 248
233

232 249
250231
251230

229

Barents Sea, 15.-30. May 2009, 0m

 

Figure 4: Sea surface temperatures (0m) in the Barents Sea, May 2006 (a), 2007, (b) and 2009 (c). Note missing 

0m sea temperature data at station 245 in 2009 (station location is though shown). Sampling stations are marked 

with red circles. Bold black numbers are station numbers. Temperature scale color-bar is shown in a. 
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Table 3: Overview of sea temperature characteristics in the Barents Sea in May in 2006, 2007 and 2009 at 0m, 

10m and 50m station depth. Maximum (Max. T
o
C) and minimum (Min. T

o
C) temperatures are shown as well as 

percent of stations (stations at specific year and station depth) with higher and lower temperatures than the mean 

for all stations and depths (=0.73
o
C). Note that stations with missing data are not included. Main areas with high 

and low temperatures are also mentioned. 

Year  Depth 

(m) 

Max. 

T (
o
C) 

Stations 

>0.73
o
C 

(%)  

Main areas with high 

temperatures 

Min. 

T (
o
C) 

Stations 

<0.73
o
C 

(%)  

Main areas with low 

temperatures 

2006 0 2.78 8 Outside northwest 

Svalbard 

-1.85 92 The rest of the sampled area 

was in general below 0
o
C 

2006 10 2.80 8 Same trend as at 0m -1.86 92 Same trend as at 0m 

2006 50 3.54 8 Same trend as at 0m -1.86 92 Same trend as at 0m 

2007 0 5.89 18 North of Bjørnøya and at 

the southernmost station 

west of Svalbard 

-1.88 82 At the ice edge east of 

Svalbard, the northernmost 

stations west of Svalbard 

and northeast of Bjørnøya 

2007 10 5.88 18 Same trend as at 0m -1.88 82 Same trend as at 0m 

2007 50 5.29 37.5 Same trend as at 0m -1.88 62.5 Same trend as at 0m 

2009 0 6.27 74 West of Svalbard and 

south in the sampling area 

-1.72 26 Just south of Bjørnøya and 

at the ice edge east of 

Svalbard 

2009 10 6.27 75 Same trend as at 0m -1.75 25 Same trend as at 0m 

2009 50 6.31 87 Same trend as at 0m -1.65 13 Same trend as at 0m 

The variation in stability (computed as the density difference from 0m to 10m depth) in the 

sampled areas in the Barents Sea varied between years and areas. In 2006 the surface 

stabilities varied between -0.01 and 0.01 (Fig. 5a). The highest stability was at station 179, 

recall that station 179 had a temperature difference of 2.55
o
C between 0m and 10m. Station 

169 had the lowest stability. Both stations were located north of Svalbard whereas station 169 

was located in the ice.  

The highest stability in 2007 was registered at station 60 just south of Bjørnøya, 0.004, while 

the lowest stability was at station 103 located on the western side of Svalbard, -0.004 (Fig. 

5b).  

In 2009 the highest stability was registered at the northernmost station, station 229 located 

west of Svalbard (0.58) and the lowest stability was at station 233 also west of Svalbard (-

0.003) (Fig. 5c). An overview of surface stability for the years 2006, 2007 and 2009 is in 

Table 4. 
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Figure 5: Stability (ȹůt difference, the degree of stability was computed as the density difference from 0m to 

10m depth) in the Barents Sea in May in 2006 (a), 2007 (b) and 2009 (c). Note missing stability data at station 
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245 in 2009 (station location is though shown). Sampling stations are marked with red circles. Bold black 

numbers are station numbers. Stability color-bar is shown in a. 

Table 4: Overview of stability (density difference from 0m to 10m depth) in the Barents Sea in May in 2006, 

2007 and 2009. Maximum (Max. stab.) and minimum (Min. stab.) stabilities are shown as well as percent of 

stations (stations at specific year and depth) with higher and lower stabilities than the mean for all the years 

(0.01). Note that stations with missing data are not included. Main areas with high and low stabilities are also 

shown. 

Year  Max. 

stab. 

Stations 

>0.01 

(%)  

Main areas with high 

stabilities 

Min. 

stab. 

Stations 

<0.01 

(%)  

Main areas with low 

stabilities 

2006 0.014 4 Area between 

Nordaustlandet and the ice 

edge 

-0.014 96 The stability was evenly 

low in the rest of the area 

2007 0.004 0  -0.004 100  

2009 0.580 22 The northernmost areas 

west and east of Svalbard, 

west of Bjørnøya and 

southeast in the sampling 

area 

-0.003 78 The stability was evenly 

low in the rest of the area 

3.2 Environmental variables, East Finnmark, May in 2009  

The 0m sea temperature range in East Finnmark was from 4.45
o
C to 6.15

o
C (Fig. 6). The 

highest temperature was observed northwest of Nordkapp at station 260, the outermost 

station. The temperatures decreased from the outermost stations to the inner part of the two 

main fjords sampled (Porsangerfjord and Varangerfjord). However, exceptions were stations 

265 located in the outer part of Jarfjord and 264 located in the outer part of Kobbholmfjord 

which both had temperatures of ca. 5.5
o
C. Jarfjord and Kobbholmfjord are located in the outer 

part of Varangerfjord, more precise on the southern side. The lowest 0m temperatures were 

observed at stations 275 in the inner part of Porsangerfjord and 270 in the inner part of 

Varangerfjord, 4.45
o
C and 4.64

o
C respectively. The 0m and 10m temperatures were 

comparable between the sampled stations except from stations 264 and 267 in Varangerfjord 

where the temperatures at 0m were higher than at 10m, i.e. 0m temperatures were 5.49
o
C and 

5.38
o
C and 10m temperatures were 4.11

o
C and 4.12

o
C respectively (Appendix A, Fig. 4A). In 

addition the 0m temperature (4.69
o
C) was lower than the 10m temperature (5.56

o
C) at station 

272 located in Porsangerfjord. All 50m temperatures were lower than the surface ones. The 

temperature differences between 50m and 0m were however minimal at the outermost stations 

(160, 161, 162 and 163) where the mean decrease in temperature was 0.57
o
C from 0m to 50m. 

The greatest temperature difference between 50m and 0m were observed in Porsangerfjord at 
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stations 271, 272 and 275 where the mean temperature decreased with 5.09
o
C from 0m to 

50m. The mean temperature for all depths was 4.38. All 0m temperatures were higher than the 

mean temperature and 75% of the 10m temperatures and 50% of the 50m temperatures were 

higher than the mean temperature. 

  20oE   22oE   24oE   26oE   28oE   30oE   32oE 

 30' 

  70oN 

 30' 

  71oN 

 30' 

267
264

268
270275

272

263

271
262

261

260

 

 
East Finnmark, 15.-30. May 2009, 0m

T
e
m

p
e
ra

tu
re

 (o
C

)

4

4.5

5

5.5

6

6.5

7

 

Figure 6: Sea surface temperatures (0m) in East Finnmark in May in 2009. Sampling stations are marked with 

red circles. Bold black numbers are station numbers. 

In East Finnmark the highest stabilities were at stations 271 located in the outer part of 

Porsangerfjord and 267 in the inner part of Jarfjord, both with a stability of ca. 3.0 (Fig. 7). 

The lowest stabilities were at stations 264 in the outer part of Kobbholmfjord and 265 in the 

outer part of Jarfjord, both with stability -0.13. The mean stability (calculated as the density 

difference from 0m to 10m depth) for all stations was 0.68, whereas 25% of the stations had 

higher stabilities than this mean value. 
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Figure 7: Stability (ȹůt, the degree of stability was computed as the density difference from 0m to 10m depth) 

in East Finnmark in May 2009. Sampling stations are marked with red circles. Bold black numbers are station 

numbers.  

3.3 Environmental variables, Vestfjord archipelago, April in 2006, 2007 and 2009  

The 0m sea temperature range in the Vestfjord archipelago in April 2006 was from 2.88
o
C to 

4.47
o
C in the sampled area (Fig. 8a). The highest 0m temperature was measured at station 89, 

the innermost station in Tysfjord. The lowest 0m temperature was measured at station 76 

located in Austnesfjord (Fig. 8a). A dirunal sampling station was set up both in 

Henningsværstraumen, four samplings, and in Austnesfjord including five samplings (Fig. 

8a). The individual samplings at the diurnal stations are not shown on the surface color map in 

Figure 8a. This is since the stations were sampled in the same geographical area and 

consequently the mean of the stations are expressed in the plot at each location since the 

temperature ranges were minimal. The temperature difference between 0m and 10m was 

minimal, on average the temperatures decreased only with 0.042
o
C from 0m to 10m at all 

stations (Appendix A, Fig. 5A). The greatest difference between 0m and 10m temperature 

was at station 76 (the station with the lowest 0m temperature in the area sampled) where the 

temperature decreased with 0.29
o
C (Appendix A, Fig. 5A). The temperature difference 

between 0m and 50m could only be calculated at stations 82, 93 and 94 located in Tysfjord, 

since these stations were the only ones where both the 0m and 50m temperatures were 

measured. Here the temperature differences between 0m and 50m were great. On average the 

265 
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50m temperatures, that varied between 0.06
o
C and 0.26

o
C were 3.19

o
C lower than the 0m 

temperatures, which again were between 3.24
o
C and 3.47

o
C (Appendix A, Fig. 5A).  

In April 2007 the 0m sea temperatures varied between 4.03
o
C and 4.95

o
C in the sampled area 

(Fig. 8b). The highest and the lowest 0m temperatures were at stations 56 which was the 

outermost station in Vestfjorden and 53, the innermost station in Vestfjorden (Fig. 8b). Note 

that the 0m temperature at station 56 was missing and was replaced by the measured sea 

temperature at 5m. As in 2006, diurnal samplings were performed in Henningsværstraumen 

and in Austnesfjord. At both diurnal stations six samplings were made. Maximum and 

minimum 0m temperatures in Henningsværstraumen were 4.81
o
C and 4.69

o
C and in 

Austnesfjord 4.65
o
C and 4.39

o
C respectively. There were no great temperature differences 

between 0m and 10m in the area. However, exceptions were stations 72, 73 and 74 located in 

Tysfjord where temperatures were slightly lower at 10m than at 0m, i.e. the mean difference 

for all the three stations were 0.17
o
C (Appendix A, Fig. 6A). Station 53 had the highest 

difference in temperature between surface and 50m, i.e. 0.49
o
C (Appendix A, Fig. 6A).  

In April 2009 the 0m sea temperature range was from 3.35
o
C to 5.30

o
C at the sampled 

stations. The highest temperature was at station 165, the innermost station in Tysfjord, and the 

lowest temperature was at station 161 located in Austnesfjord (Fig. 8c). The three stations in 

Henningsværstraumen and the two stations in Austnesfjord had mean temperatures of 3.51
o
C 

and 3.63
o
C respectively. The temperatures at 0m and 10m were comparable. Exceptions were 

stations 161 and 162 located in Austnesfjord where the 0m temperatures were 3.35
o
C and 

3.90
o
C, while the 10m temperatures were 4.22

o
C and 4.18

o
C respectively (Appendix A, Fig. 

7A). Another exception was station 149 located in the middle of the Vestfjorden transect, 

where the temperature at 0m (4.18
o
C) was higher than the temperature at 10m (3.89

o
C). In 

contrast to the other years, the 50m temperatures were higher than the surface temperatures at 

all stations where the 50m temperature was measured i.e. at stations 147, 148, 149, 151 and 

153 constituting the Vestfjorden transect (Appendix A, Fig. 7A). The greatest difference 

between 0m (3.47
o
C) and 50m temperature (5.10

o
C) was at station 148, located in the inner 

part of the Vestfjorden transect. An overview of temperature characteristics for the years 

2006, 2007 and 2009 is in Table 5. 
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Figure 8: Sea surface temperatures (0m) in the Vestfjord archipelago in April in 2006 (a), 2007 (b) and 2009 

(c). Note missing 0m sea temperature data at stations 58 and 87 in 2006 and at station 170 in 2009 (station 

location is though shown). Sea temperature at 0m is missing for station 56 in 2007, and was replaced by the 5m 

temperature. Sampling stations are marked with red circles. Bold black numbers are station numbers. 

Temperature scale color-bar is shown in a. 
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Table 5: Overview of temperature characteristics in the Vestfjord archipelago in April in 2006, 2007 and 2009. 

Maximum (Max. T
o
C) and minimum (Min. T

o
C) temperatures are shown as well as percent of stations (stations 

at specific year and depth) with higher and lower temperatures than the mean for all stations and depths (3.68
o
C). 

Note that stations with missing data are not included. Main areas with high and low temperatures are also shown. 

Year  Depth 

(m) 

Max. 

T (
o
C) 

Stations 

>3.68
o
C 

(%)  

Main areas with high 

temperatures 

Min. 

T (
o
C) 

Stations 

<3.68
o
C 

(%)  

Main areas with low 

temperatures 

2006 0 4.47 17 The innermost part of 

Tysfjord and the second 

outermost station in 

Vestfjorden 

2.88 83 Austnesfjord and 

Henningsværstraumen  

2006 10 4.20 19 Same trend as at 0m 3.04 81 Same trend as at 0m 

2006 50 0.26 0  0.06 100 Tysfjord (only area 

sampled) 

2007 0 4.95 100 Austnesfjord and 

outermost part of 

Vestfjorden  

4.03 0  

2007 10 4.95 100 Same trend as at 0m 3.99 0  

2007 50 4.94 100 Same trend as at 0m, 

except the innermost part 

of Vestfjorden was the 

second warmest area 

4.16 0  

2009 0 5.30 55 Tysfjord, Vestfjorden 

transect (except the second 

innermost station) 

3.35 45 Henningsværstraumen and 

Austnesfjord 

2009 10 5.30 67 Same trend as at 0m, in 

addition to one station in 

Austnesfjord  

3.45 33 Same trend as at 0m 

2009 50 5.10 100 Vestfjorden (only area 

sampled) 

4.32 0  

The surface stabilities (density difference between 0m and 10m depth) in the Vestfjord 

archipelago were relatively low in the Vestfjorden transect and in Henningsværstraumen 

compared to the two sampled fjords (Austnesfjord and Tysfjord) (Fig. 9a, b and c). In 2006 

the highest stability was at station 83 located in Tysfjord (2.35) (Fig. 9a). The second highest 

stability was 0.08 at station 76 in Austnesfjord. The lowest stability was -0.001 outside 

Henningsværstraumen at station 66.  

In 2007 the highest stabilities were in Tysfjord at stations 73, 72 and 74 (3.93, 3.07 and 1.90 

respectively). High stability (1.92) was also observed at station 62 in Austnesfjord (Fig. 9b). 
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The lowest stability was at station 71 which was part of the diurnal sampling programme in 

Henningsværstraumen (-0.01).  

In 2009 the highest stabilities were in Austnesfjord and Tysfjord (Fig. 9c). Stations 161 and 

162 in Austnesfjord had stabilities 0.54 and 0.18 respectively, while station 165 in Tysfjord 

had 0.33. The lowest stability was just outside Henningsværstraumen at station 157 (-0.03). 

An overview of stability characteristics for the years 2006, 2007 and 2009 is in Table 6. 
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Figure 9: Stability (ȹůt difference, the degree of stability was computed as the density difference from 0m to 

10m depth) in the Vestfjord archipelago in April in 2006 (a), 2007 (b) and 2009 (c). Note missing stability data 

at stations 58, 87 89, 93 and 94 in 2006, station 68 in 2007 and station 170 in 2009 (station location is though 

shown). Sampling stations are marked with red circles. Bold black numbers are station numbers. Stability color-

bar is shown in a. 

Table 6: Overview of stability (density difference from 0m to 10m depth) characteristics in the Vestfjord 

archipelago in April in 2006, 2007 and 2009. Maximum (Max. stab.) and minimum (Min. stab.) stabilities are 

shown as well as percent of stations (stations at specific year and depth) with higher and lower stabilities than the 

average for all the years (0.01). Note that stations with missing data are not included. Main areas with high and 

low stabilities are also shown. 

Year  Max. 

stab. 

Stations 

>0.36 

(%)  

Main areas with high 

stabilities 

Min. 

stab. 

Stations 

<0.36 

(%)  

Main areas with low 

stabilities 

2006 2.350 7 Tysfjord  -0.001 93 Generally low in the rest of 

the area 

2007 3.930 29 Tysfjord and 

Austnesfjord 

-0.010 71 Generally low in the rest of 

the area 

2009 0.540 9 Austnesfjord -0.030 91 Generally low in the rest of 

the area 

3.4 Identification of Phaeocystis spp., molecular approach 

The Blast search performed in GenBank showed that the four sequences i.e. the F and R 

sequence from Phaeocystis samples 76.2 (AMB culture collection) and 89 (environmental 

sample), were significantly similar to the sequences in GenBank which is shown in Table 7. 
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My sequences showed maximum identity to Haptophyceae sp., Phaeocystis sp., Phaeocystis 

pouchetii , Phaeocystis cordata and Phaeocystis antarctica. 

Table 7: Sequences uploaded from NCBI GenBank producing significant alignments to own Phaecystis spp. 

sequences (sample ID 76.2 and 89) showing GenBank accession number, ñtypeò description and maximum score 

and identity.  

Accession Description Max. score Max. ident. 

EF432545.1 

 

Haptophyceae sp. W5-1 18S ribosomal RNA gene, 

partial sequence 235 100 

EF432535.1 

 

Haptophyceae sp. W6-4 clone A1 18S ribosomal 

RNA gene, partial sequence 235 100 

EF432520.1 

 

Haptophyceae sp. 8 clone B1 18S ribosomal RNA 

gene, partial sequence 235 100 

EF432517.1 

 

Haptophyceae sp. 8 clone A1 18S ribosomal RNA 

gene, partial sequence 235 100 

AM491023.1 

 

Phaeocystis sp. PLY559 partial 18S rRNA gene, 

strain PLY 559 235 100 

AF182114.1 

 

Phaeocystis pouchetii isolate P360 small subunit 

ribosomal RNA, complete sequence 235 100 

AF180940.1 

 

Phaeocystis sp. PLY559 small subunit ribosomal 

RNA gene, complete sequence 235 100 

AJ278036.1 Phaeocystis pouchetii 18S rRNA gene, strain P361 235 100 

AF163147.1 

 

Phaeocystis cordata small subunit ribosomal RNA 

gene, complete sequence 235 100 

X77475.1 P.pouchetii (Hariot) Lagerheim 18S rRNA gene 235 100 

X77481.1 P.antarctica Karsten SK23 18S rRNA gene 235 100 

X77479.1 P.antarctica Karsten SK21 18S rRNA gene 235 100 

X77478.1 P.antarctica Karsten SK20 18S rRNA gene 235 100 

X77480.1 P.antarctica Karsten SK22 18S rRNA gene 235 100 

3.5 P. pouchetii vs. diatom dominance in the Barents Sea 2006 

From the depth profile, three depths (0m, 10m and 50m) were chosen to illustrate the 

horizontal variation in dominance between P. pouchetii and diatoms (ñPhaeocystis 

dominanceò, see Material and Methods) (Fig. 10). At 0m, a majority (i.e. at 16 out of 24 

stations) of the stations were dominated by diatoms (Fig. 10a). The highest diatom dominance 

value (-3.24) was detected northeast of Svalbard at station 184. This station, situated at the ice 

edge, was one of six stations in a diurnal sampling programme. Due to ice drift the stations 
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were not sampled at the exact same location during the diurnal sampling programme. All the 

other stations in the diurnal sampling programme had diatom dominance as well, where 

average was -3.05 for the six stations. The second highest value of diatom dominance (-3.08) 

was at the southernmost station, i.e. station 202 (Fig. 10a). P. pouchetii dominated at five 

stations and all stations were located northwest in the sampling area, north of Svalbard (Fig. 

10a). A peak in P. pouchetii dominance (2.35) was observed at station 165 (Fig. 10a). The 

four other stations with P. pouchetii dominance were 159, 161, 167 and 173 where the two 

last stations were part of the diurnal sampling programme north of Svalbard (Fig. 10a). Three 

stations were neither dominated by P. pouchetii  or diatoms, i.e. they were ñneutralò (having ~ 

equal abundance or not precent at all). Two of these stations, stations 169 and 175 were 

included in the diurnal sampling programme north of Svalbard. The third station (166) was 

located in the transition between P. pouchetii dominance and diatom dominance (Fig. 10a).  

Much of the same trend in ñPhaeocystis dominanceò distribution was present at 10m (Fig. 10a 

and b). At 10m 17 stations were dominated by diatoms, six by P. pouchetii and one station 

was ñneutralò. The diatom dominance at 0m and 10m was geographically quite similar (Fig. 

10a and b). Peak in diatom dominance (-3.29) was observed at station 184 and the second 

highest value (-3.22) was at station 202. The P. pouchetii dominance distribution was also 

quite similar at 0m and 10m (Fig. 10a and b). Peak in P. pouchetii dominance (2.71) was 

observed at station 159. Different from 0m, P. pouchetii dominance was observed at station 

200, east of Kong Karls Land (Fig. 10b). This station had the eight highest value of diatom 

dominance at 0m.  

At 50m the diurnal sampling programme north of Svalbard was not sampled, except station 

171 which was dominated by diatoms. The diurnal sampling programme northeast of 

Svalbard and station 179 located north of Svalbard was also not sampled at 50m. From the 12 

stations sampled, P. pouchetii and diatoms dominated at six stations each and the 

ñPhaeocystis dominanceò distribution was quite similar to 10m (Fig. 10b and c). The only 

great difference between 10m and 50m was the shift in dominance from diatoms to P. 

pouchetii at station 202. Recall though, at both 0m and 10m station 202 had the second 

highest value of diatom dominance. An overview of ñPhaeocystis dominanceò for the year 

2006 is in Table 8. 
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Figure 10: Phaeocystis dominance (negative value denotes diatom dominance) in the Barents Sea in May 2006 

at 0m (a), 10m, (b) and 50m (c). Note, 50m is not sampled at station 179 (station location is though shown). 

Sampling stations are marked with red circles. Bold black numbers are station numbers. Phaeocystis dominance 

color-bar is shown (P. pouchetii > 0 < diatoms) in a. 

3.6 P. pouchetii vs. diatom dominance in the Barents Sea 2007 

At 0m P. pouchetii and diatoms dominated at eight stations each, leaving one station (station 

45), situated in the ice east of Svalbard, where only flagellates were present. Peak dominance 
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of P. pouchetii (2.02) was observed at station 5 located south of Edgeøya (Fig. 11a). The five 

stations 9, 12, 19, 23 and 28 located on the east side in the sampling area, between station 5 

and the ice edge, were also dominated by P. pouchetii (Fig. 11a). P. pouchetii dominance was 

also observed at the two northernmost stations, station 115 and 109, on the west side of 

Svalbard. However, the two other stations, station 103 and 98, in this area were dominated by 

diatoms (Fig. 11a). The highest diatom dominance was observed at stations 57 (-2.56) and 2 (-

1.80), located just southwest of the P.pouchetii peak dominance station (station 5) (Fig. 11a). 

High diatom dominance (-2.12) was also observed at station 32 situated in the ice. In the ice a 

diurnal sampling programme was set up with five samplings at approximately the same 

location. Concerning time, the first two stations were dominated by P. pouchetii, the second 

two by diatoms and the last one was the station where both were absent.  

At 10m as much as 13 stations were dominated by diatoms and four stations were dominated 

by P. pouchetii. The four stations dominated by P. pouchetii (stations 9, 12, 19 and 67) were 

all located on the east side in the sampled area (Fig. 11b). The highest P. pouchetii dominance 

(0.55) was observed at station 19 and the second highest (0.34) at station 12, both located 

northeast in the sampled area. The highest diatom dominance (-2.55) was observed at the 

northernmost station, station 115, and the second highest diatom dominance (-2.34) was 

observed at station 57 located northeast of Bjørnøya (Fig. 11b).  

As for 10m, at 50m diatoms dominated at more stations than P. pouchetii. Of the 17 stations, 

nine stations were dominated by diatoms and five by P. pouchetii, the two stations (32 and 

45) situated in the ice were ñneutralò, and no abundance data was sampled from station 5 (Fig. 

11c). At station 32 it was an equal abundance of P. pouchetii and diatoms, while they were 

not present at all at station 45. As for 10m, at 50m P. pouchetii was dominating on the east 

side in the sampled area. In addition P. pouchetii dominated at the northernmost station (115) 

on the western side of Svalbard at 50m (Fig. 11c). Recall, at 10m this station (115) had the 

highest peak dominance of diatoms. The highest P. pouchetii dominance (1.80) was observed 

at station 41 and the second highest (0.52) at station 23, both included in the diurnal sampling 

programme situated in the ice east of Svalbard. The highest peak dominance of diatoms (-

2.73) at 50m was observed at the ice edge at station 19 and the second highest (-2.26) at 

station 2 north of Bjørnøya (Fig. 11c). An overview of ñPhaeocystis dominanceò for the year 

2007 is in Table 8. 
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Figure 11: Phaeocystis dominance (negative value denotes diatom dominance) in the Barents Sea in May 2007 

at 0m (a), 10m, (b) and 50m (c). Sampling stations are marked with red circles. Bold black numbers are station 

numbers. Phaeocystis dominance color-bar is shown (P. pouchetii > 0 < diatoms) in a. 

3.7 P. pouchetii vs. diatom dominance in the Barents Sea 2009 

Of the 24 stations sampled at 0m, 12 were dominated by diatoms and 11 by P, pouchetii. 

Station 245 located east of Bjørnøya was not sampled (Fig. 12a). The highest diatom 

dominance values were observed at stations 236 (-3.09) on the eastern side of Bjørnøya and 
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241 (-2.04) located southwest of Bjørnøya. The highest P. pouchetii dominance values were 

observed east of Bjørnøya at stations 257 (0.74) and 258 (0.56).  

At 10m all 24 station were sampled, whereas 10 of these were dominated by diatoms and 14 

by P. pouchetii (Fig. 12b). The area with the highest diatom dominance had shifted slightly to 

the east compared with the stations with the highest diatom dominance at 0m. The highest 

diatom dominances were now observed at stations 237 (-1.92) and 242 (-1.88). The area with 

the highest P. pouchetii dominance was also comparable from 0m to 10m. The highest P. 

pouchetii dominances at 10m were observed at stations 246 (3.41) and 245 (3.16), which were 

the nearby stations to the 0m stations 257 and 258, having the highest P. pouchetii dominance 

at 0m. High P. pochetii dominance (2.49) was also observed at station 234 located southwest 

of Sørkapp Land.  

At 50m all stations, except station 237 south of Bjørnøya, were sampled (Fig. 12c). From the 

23 sampled stations diatoms and P. pouchetii dominated on 10 stations each while stations 

232 and 233 located west of Sßrkapp Land and 239 southwest of Bjßrnßya were ñneutralò. 

The area north of Bjørnøya had quite similar distribution in ñPhaeocystis dominanceò at 10m 

as at 50m (Fig. 12b and c). However, the second highest dominance of P. pouchetii (2.59) was 

now observed at station 234 west of Sørkapp Land. Recall, at 10m station 234 had the third 

highest dominance of P. pouchetii. The highest P. pouchetii dominance (2.92) was observed 

at station 245 which had the second highest P. pouchetii dominance at 10m. The highest 

diatom dominance (-2.27) was observed east of Bjørnøya at station 244, close to station 245 

having the highest P. pouchetii dominance, while the second highest diatom dominance (-

2.04) was east of Bjørnøya at station 238. An overview of ñPhaeocystis dominanceò for the 

year 2009 is in Table 8. 
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Figure 12: Phaeocystis dominance (negative value denotes diatom dominance) in the Barents Sea in May 2009 

at 0m (a), 10m, (b) and 50m (c). Note missing data at station 245 at 0m and station 237 at 50m (station location 

is though shown). Sampling stations are marked with red circles. Bold black numbers are station numbers. 

Phaeocystis dominance color-bar is shown (P. pouchetii > 0 < diatoms) in a. 

3.8 P. pouchetii vs. diatom dominance in East Finnmark 2009 

A total of 12 stations were sampled in East Finnmark. At 0m two stations were dominated by 

diatoms and 10 stations by P. pouchetii (Fig. 13a). The two stations dominated by diatoms 
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were 261 (-2.77) located just outside Porsangerfjord and the offshore station 260 (-0.14). The 

highest P. pouchetii dominances were observed in Jarfjord at stations 265 (2.73) and 267 

(0.92). Station 263 just outside Vardø had the third highest P. pouchetii dominance (0.76).  

At 10m it was station 263 that had the highest P. pouchetii dominance (2.81) while station 

267 still (according to 0m) had the second highest P. pouchetii dominance (0.73) (Fig. 13b). 

Only one station was dominated by diatoms, station 261 just outside Porsangerfjord with a 

diatom dominance of -0.24.  

At 50m three stations were dominated by diatoms and 9 by P. pouchetii (Fig. 13c). The 

highest diatom dominance (-2.49) was now observed at the offshore station 260. The second 

highest diatom dominance (-0.47) was observed outside Porsangerfjord at station 261, which 

was the station with the highest diatom dominances at 0m and 10m. Station 262 outside 

Vardø was also dominated by diatoms (-0.24). The highest P. pouchetii dominance (2.74) was 

observed in the innermost station (275) in Porsangerfjord while the second highest (1.01) was 

observed at station 263 which had the highest P. pouchetii dominance at 10m (Fig. 13b and 

c). An overview of ñPhaeocystis dominanceò for the year 2009 is in Table 8. 

  20oE   22oE   24oE   26oE   28oE   30oE   32oE 

 30' 

  70oN 

 30' 

  71oN 

 30' 
260

261
262

263

264
267

268
270

271

272
275

 

 
East Finnmark, 15.-30. May 2009, 0m

P
D

 d
o
m

in
a
n

c
e

-3

-2

-1

0

1

2

3

 

  
  
  
    

P
h

a
e

o
cy

st
is d

o
m

in
a

n
ce

 a 

265 

East Finnmark, 26.-30. May 2009, 0m 



 

43 

 

  20oE   22oE   24oE   26oE   28oE   30oE   32oE 

 30' 

  70oN 

 30' 

  71oN 

 30' 

East Finnmark, 15.-30. May 2009, 10m

 

  20oE   22oE   24oE   26oE   28oE   30oE   32oE 

 30' 

  70oN 

 30' 

  71oN 

 30' 

East Finnmark, 15.-30. May 2009, 50m

 

Figure 13: Phaeocystis dominance (negative value denotes diatom dominance) in East Finnmark in May 2009 at 

0m (a), 10m, (b) and 50m (c). Sampling stations are marked with red circles. Bold black numbers are station 

numbers. Phaeocystis dominance color-bar is shown (P. pouchetii > 0 < diatoms) in a. 
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Table 8: Overview of Phaeocystis dominance characteristics in the Barents Sea in May in 2006, 2007 and 2009 

and East Finnmark in May 2009 (*). Maximum P. pouchetii dominance (Max. Pp) and diatom dominance (Max. 

ñTot. Dò) are shown as well as percent of stations (stations at specific year and depth) dominated by P. pouchetii 

(Pp) and diatoms (ñTot. Dò). Note stations with missing data are not included. Main areas dominated by P. 

pouchetii and diatoms are also shown. 

Year  Depth 

(m) 

Max

. Pp 

Stations 

P. po 

(%)  

Main areas dominated 

by P. pouchetii 

Max. 

ñTot. 

Dò 

Stations 

ñTot. 

Dò  (%) 

Main areas dominated by 

diatoms  

2006 0 2.35 24 North of Svalbard -3.24 76 Rest of the area  

2006 10 2.71 26 Same trend as at 0m -3.29 74 Same trend as at 0m 

2006 50 2.63 50 Rest of the area -3.30 50 Northeast of Svenskeøya 

2007 0 2.02 50 Between Bjørnøya and the 

ice edge east of Svalbard 

-2.56 50 Just northeast of Bjørnøya 

2007 10 0.55 24 At the ice edge east of 

Svalbard 

-2.55 76 Just northeast of Bjørnøya 

and the northernmost 

stations west of Svalbard 

2007 50 1.80 36 Same trend as at 10m -2.73 64 Same trend as at 10m 

2009 0 0.74 48 West of Svalbard and east 

in the sampling area 

-3.09 52 East of Bjørnøya and 

southeast in the sampling 

area 

2009 10 3.41 58 Same trend as at 0m -1.92 42 South of Bjørnøya 

2009 50 2.92 50 Same trend as at 0m -2.27 50 West and southeast of 

Bjørnøya  

2009* 0 2.73 83 Jarfjord and outside Vardø -2.77 17 Outside Porsangerfjord 

2009* 10 2.81 92 Outside Vardø -0.24 8 Same trend as at 0m 

2009* 50 2.74 75 Same trend as at 0m -2.49 25 Same trend as at 0m 

*East Finnmark 

3.9 P. pouchetii vs. diatom dominance in the Vestfjord archipelago 2006 

In the Vestfjord archipelago, 20 stations were sampled. However, at stations 58 in the 

Vestfjorden transect and 87 in the Tysfjord transect species abundance data from 0m was 

missing. Of the 18 stations sampled, only two stations (72 and 77, located in Austnesfjord) 

were dominated by P. pouchetii, with quotient values (see Material and Methods) of 0.52 and 

0.24 respectively (Fig. 14a). These two stations were part of the diurnal sampling programme. 

Of the remaining 16 stations, station 82 located in Tysfjord was ñneutralò (similar amounts of 

diatoms and P. pouchetii) while the rest of the stations were dominated by diatoms (Fig. 14a). 

As mentioned earlier, each individual sampling in the diurnal sampling programme does not 
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show in the surface color map since only the mean of the stations values are expressed in the 

plot. However, all stations in Henningsværstraumen were dominated by diatoms and the mean 

value for these four stations was -2.93. In Austnesfjord the mean value for the four stations in 

the diurnal sampling programme was -0.91. The three highest values of diatom dominance 

were at stations 62, 68 and 61 in the diurnal sampling programme in Henningsværstraumen, 

with values -3.03, -2.99 and -2.98 respectively (Fig. 14a).  

At 10m diatoms were still dominating at most stations. Stations dominated by P. pouchetii 

had increased from two at 0m to five at 10m. As at 0m, station 82 was ñneutralò. The stations 

87, 89, 93 and 94, all located in Tysfjord, were not sampled at 10m. The highest diatom 

dominance (-3.12) was observed at station 58 located in the middle of the Vestfjorden transect 

(Fig. 14b). The second highest value (-3.01) was observed at the innermost station in 

Vestfjorden. The next four highest diatom dominance values were all observed in the diurnal 

sampling programme in Henningsværstraumen, which had a mean value of -2.90. The diurnal 

sampling programme in Austnesfjord was also, according to the mean value -0.25, dominated 

by diatoms. However, four of the five stations, stations 77, 74, 72 and 76, were dominated by 

P.pouchetii, with values 0.54, 0.41, 0.35 and 0.17 respectively. The fifth station (75) was 

dominated by diatoms (-2.78). The last station dominated by P.pouchetii (0.22) at 10m was 

station 59.  

The only stations sampled at 50m were stations 82, 87, 93 and 94 located in Tysfjord. All 

stations were dominated by diatoms. The diatom dominance value increased from the 

innermost part of the fjord and outwards. Stations 87 and 82 had values of -0.21 and -1.94 

respectively. The two outermost stations 93 and 94 were sampled at the same geographical 

area only differing in time of sampling and had peak values of -2.59 and -2.20 respectively. 

An overview of Phaeocystis dominance for the year 2006 is in Table 9. 
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Figure 14: Phaeocystis dominance (negative value denotes diatom dominance) in the Vestfjord archipelago in 

April 2006 at 0m (a), 10m, (b). Note missing data at stations 58 and 87 at 0m and stations 87, 89, 93 and 94 at 

10m (station location is though shown). Sampling stations are marked with red circles. Bold black numbers are 

station numbers. Phaeocystis dominance color-bar is shown (P. pouchetii > 0 < diatoms) in a. 

3.10 P. pouchetii vs. diatom dominance in the Vestfjord archipelago 2007  

Of the 19 stations sampled, the majority, i.e. 13 stations, were dominated by diatoms while 

two were dominated by P. pouchetii. Stations 72 and 74 located in Tysfjord were ñneutralò. 

Stations 54 and 56 in the Vestfjorden transect were not sampled at 0m. The highest value of 

diatom dominance (-2.71) was observed at station 59 in Austnesfjord, station 73 in Tysfjord 
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had the second highest (-2.28) and station 68 in Henningsværstraumen the third highest (-

1.06) (Fig. 15a). In Austnesfjord all six stations in the diurnal sampling programme were 

dominated by diatoms, and the mean value was -0.91. In Henningsværstraumen only one of 

the six stations in the diurnal sampling, station 66, was dominated by P. pouchetii (0.04). The 

mean value for the diurnal sampling in Henningsværstraumen was -0.32. The last station 

dominated by P. pouchetii (0.45) was the innermost station (53) in the Vestfjorden transect 

(Fig. 15a).  

Diatoms still dominated at 10m for most of the stations. Of the 19 stations, at 10m, 12 stations 

were dominated by diatoms and five by P. pouchetii. Station 74 located in Tysfjord was 

ñneutralò and station 68 in HenningsvÞrstraumen was not sampled at 10m. The area with the 

highest diatom dominance at 10m was in Tysfjord at stations 72 and 73, -2.32 and -2.21 

respectively (Fig. 15b). In the Vestfjorden transect all stations were also dominated by 

diatoms at 10m (Fig. 15b). It was only on the western side of Vestfjorden P. pouchetii 

dominance were observed. The highest P. pouchetii dominance (0.76) was observed at station 

62 in Austnesfjord. Three of the six stations in the diurnal sampling programme in 

Austnesfjord were dominated by P. pouchetii and the average value for the six stations was 

0.07. The second highest P. pouchetii dominance value (0.43) was observed at station 66 in 

Henningsværstraumen. In Henningsværstraumen two of the five stations in the diurnal 

sampling were dominated by P. pouchetii and the average dominance value for the five 

stations was -0.13.  

The diurnal sampling programme in Austnesfjord and Henningsværstraumen were not 

sampled at 50m (Fig. 15c). From the seven stations sampled, five were dominated by diatoms 

and two by P. pouchetii at 50m. At stations dominated by diatoms the specific dominance 

values were even higher at 50m than at 0m and 10m (Fig. 15a, b and c). Station 55 located in 

Vestfjorden had the highest diatom dominance value (-2.36) in the sampled area at 50m. The 

three stations 73, 74 and 72 in Tysfjord were also dominated by diatoms, having the three 

highest values next to station 55, -2.25, -2.17 and -2.11 respectively. The two stations 

dominated by P. pouchetii were observed at the innermost (53) and outermost (56) stations in 

the Vestfjorden transect with a dominance value of 0.26 and 0.07 respectively (Fig. 15b). An 

overview of Phaeocystis dominance for the year 2007 is in Table 9. 
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Figure 15: Phaeocystis dominance (negative value denotes diatom dominance) in the Vestfjord archipelago in 

April 2007 at 0m (a), 10m, (b) and 50m (c). Note missing data at stations 54 and 56 at 0m, station 68 at 10m and 

at all stations on the west side of Vestfjord archipelago at 50m (station location is though shown). Sampling 

stations are marked with red circles. Bold black numbers are station numbers. Phaeocystis dominance color-bar 

is shown (P. pouchetii  > 0 < diatoms) in a. 

3.11 P. pouchetii vs. diatom dominance in the Vestfjord archipelago 2009 

At 0m diatoms dominated at 7 stations, P. pouchetii at four (station 170 in Tysfjord was not 

sampled). The area with the highest diatom dominance at 0m was observed on the western 

side of Vestfjorden, where the highest value (-2.05) was at station 157 in 

Henningsværstraumen (Fig. 16a). All three stations (156, 157 and 159) sampled in 

Henningsværstraumen were dominated by diatoms with an average value of -1.86. The 

second highest diatom dominance (-2.0) was observed at station 162 in Austnesfjord. As in 

Henningsværstraumen, the two stations (161 and 162) in Austnesfjord were dominated by 

diatoms with an average value of -1.90. The highest P. pouchetii dominance (0.58), though 

relatively low, was observed at station 149 in the middle of the Vestfjorden transect and the 

second highest value (0.17) was at the innermost station in Tysfjord, station 165 (Fig. 16a).  

At 10m P. pouchetii and diatoms dominated at six stations each. However, much of the same 

trend in Phaeocystis dominance distribution was observed at 10m as at 0m (Fig. 16a and b). 

The stations on the west side of Vestfjorden were dominated by diatoms while the east side 

was dominated by P. pouchetii at 10m. The greatest difference was that station 159 in 

c 



 

50 

 

Henningsværstraumen had shifted in dominance from diatoms at 0m to P. pouchetii at 10m. 

In addition there was a shift in dominance at the two outermost stations of the Vestfjorden 

transect, where diatoms dominated at station 151 and P. pouchetii at station 153 at 0m while 

the opposite was observed at 10m (Fig. 16a and b). The highest diatom dominance values 

were still observed in Henningsværstraumen at stations 156 and 157, both with value -1.92, 

and in Austnesfjord at station 162 (-1.91). The two highest P. pouchetii dominance values 

(0.40 and 0.38) were observed in Tysfjord at the two stations 165 and 170 respectively.  

At 50m the only stations sampled were the five stations in the Vestfjorden transect. The four 

outermost stations 148, 149, 151 and 153 were dominated by diatoms, -0.50, -0.06, -2.34 and 

-0.33 respectively and the innermost station 147 was dominated by P. pouchetii (0.17). An 

overview of Phaeocystis dominance for the year 2009 is in Table 9. 
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Figure 16: Phaeocystis dominance (variation in dominance between P. pouchetii and diatoms) in the Vestfjord 

archipelago in April 2009 at 0m (a), 10m, (b). Note missing data at station 170 at 0m (station location is 

however still shown). Sampling stations are marked with red circles. Bold black numbers are station numbers. 

Phaeocystis dominance color-bar is shown (P. pouchetii > 0 < diatoms) in a. 

b 
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Table 9: Overview of Phaeocystis dominance in the Vestfjord archipelagio in April in 2006, 2007 and 2009. 

Maximum P. pouchetii dominance (Max. Pp) and diatom dominance (Max. ñTot. Dò) are shown as well as 

percent of stations (stations at specific year and depth) dominated by P. pouchetii (Pp) and diatoms (ñTot. Dò). 

Note stations with missing data are not included. Main areas dominated by P. pouchetii and diatoms are also 

shown. 

Year  Depth 

(m) 

Max. 

Pp 

Stations 

P. po 

(%)  

Main areas dominated 

by P. pouchetii 

Max. 

ñTot. 

Dò 

Stations 

ñTot. 

Dò (%) 

Main areas dominated by 

diatoms  

2006 0 0.55 12 Austnesfjord -3.03 88 Rest of the area, especially 

Henningsværstraumen 

2006 10 0.54 33 Same trend as at 0m -3.12 67 Same trend as at 0m 

2006 50  0  -2.59 100 Tysfjord (only area 

sampled) 

2007 0 0.45 13 Henningsværstraumen and 

innermost station in 

Vestfjorden 

-2.71 87 Rest of the area, especially 

Austnesfjord 

2007 10 0.76 29 Henningsværstraumen and 

especially Austnesfjord 

-2.32 71 Rest of the area, especially 

Tysfjord 

2007 50 0.26 29 Innermost and outermost 

station in Vestfjorden 

-2.36 71 Rest of the area, especially 

Tysfjord and the second 

outermost station in 

Vestfjorden 

2009 0 0.58 36 Tysfjord and the middle 

and the outermost area in 

Vestfjorden  

-2.05 64 Austnesfjord and 

especially 

Henningsværstraumen 

2009 10 0.40 50 Same trend as at 0m -1.92 50 Same trend as at 0m 

2009 50 0.17 20 Innermost station in 

Vestfjorden (Vestfjorden 

transect only area 

sampled) 

-2.34 80 The rest of the stations in 

Vestfjorden (Vestfjorden 

transect only area sampled) 

3.12 Principal component analysis, Barents Sea and East Finnmark  

The PCA analysis for the Barents Sea and East Finnmark is based on all three sampled years 

in May in the Barents Sea (2006, 2007 and 2009) and May 2009 in East Finnmark, and all 

depths are included. Species represented in the PCA are the eight most dominating diatoms in 

addition to P. pouchetii and variable ñTot. Dò (total diatoms registered at each sampling 

station). Number of diatom species registered in 2006 (n=79); 2007 (n=60); 2009 (n=52). For 

species included in the PCA analysis see Table 10. As Austin and Greig-Smith (1968) points 

at, the less abundant species contribute with very little information, and an efficient ordination 

can often be obtained from less than 25% of the total population. Nine principal components, 

Vestfjord archipelago 15-19.04.2009, 0 m 

 

Vestfjord archipelago 15-19.04.2009, 10 m 
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corresponding to the nine active species variables were generated. A listing of species, with 

the two highest loading of each species on the nine components, is given in Table 10. These 

loadings represent the correlation of the species with the component, indicating the degree to 

which changes in that species will affect individual scores for that component. Six of the 

species had their highest factor loadings contained in the two first principal components, 

which also were the only two principal components with an eigenvalue greater than 1 (Table 

10). However, the three other species, Chaetoceros socialis, Thalassiosira nordenskioeldii 

and Chaetoceros debilis, had their second highest factor loading contained in the two first 

principal components constituting 49% of the variation within the species data, whereas PC1 

explains 31.4% and PC2 explains 17.5% of the variance (Fig. 17, Table 10). The PCA 

analysis for the Barents Sea and East Finnmark is based on PC1 and PC2. PC1 separates P. 

pouchetii and C. debilis from all the other diatoms included in the analysis. PC2 separates 

Navicula pelagica and Thalassiosira hyalina from Fragilariopsis oceanica, Thalassiosira 

antarctica, T. nordenskioeldii, C. socialis and Chaetoceros compressus (Fig. 17). The 

supplementary variable ñTot. Dò is contained in the last species grouping. In addition to the 

variable ñTot. Dò, all 11 environmental variables which were projected onto the factor space 

computed from the active variables, had their highest factor loadings contained in the two first 

principal components.  
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Figure 17: PCA scaling (ordination) plot of the Barents Sea (May 2006, 2007 and 2009) and East Finnmark 

(May 2009) data based on a correlation matrix of association between nine dominating phytoplankton species 

and variable ñTot. Dò consisting of the sum of all diatoms (number of diatoms in 2006 n=79, 2007 n=60 and 

2009 n=52, natural Log (Logὑ)-transformed species abundance, cell l
-1
). Species acronyms: Pp Phaeocystis 

pouchetii, Fo Fragilariopsis oceanica, Cs Chaetoceros socialis, Np Navicula pelagica, Tn Thalassiosira 

nordenskioeldii, Th Thalassiosira hyalina, Cd Chaetoceros debilis, Ta Thalassiosira antarctica, Cc 

Chaetoceros compressus. Environmental acronyms: Std stations depth (m), N latitude (
o
), E longitude (

o
), T sea 

temperature (
o
C), Dno day number in year, k diffuse attenuation coefficient, I s diurnal PAR incident on surface, 

Qs short-wave radiation at surface, Qt total surface heat flux, S salinity ă and ȹůt stability (density difference 

from 0m to 10m depth). See Materials and Methods for further details on variables. All environmental variables 

are normalized except for stability which is standardized. Total number of cases in dataset (stations and 

corresponding stations depths sampled) n=377. Both environmental data and ñTot. Dò are ordinated as 

supplementary variables (marked with *). Active variables are used in the derivation of the principal components 

and the supplementary variables are projected onto the factor space computed from the active variables.  

P. pouchetii had its strongest positive correlation to diurnal PAR followed by day number in 

year, temperature, the diffuse attenuation coefficient, short-wave radiation incident on sea 

surface, stability, station depth and salinity (ranked from strongest to weakest correlation, Fig. 

17). All the diatoms were also positively correlated to the diffuse attenuation coefficient. The 

three variables that P. pouchetii were negatively correlated to were latitude, total surface heat 

flux and longitude. The most significant correlation for diatoms, except C. debilis, were a 
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positive correlation to latitude (Fig. 17). This was also the case for longitude, except for that 

C. compressus was negatively correlated to this variable together with C. debilis. All diatoms 

except C. socialis were positively correlated to total surface heat flux. The only diatoms 

positively correlated to day number in year and salinity were the three Chaetoceros species. In 

addition C. debilis and C. compressus were positively correlated to temperature and short-

wave radiation incident on sea surface. C. debilis and C. socialis were positively correlated to 

diurnal PAR. In the PCA plot (Fig. 17) the three Chaetoceros ordinated similarly. F. oceanica, 

T. nordenskioeldii and T. antarctica also had positive correlations to and ordinated similarly 

to the environmental variables latitude, longitude, diffuse attenuation coefficient and total 

surface heat flux. All species in the PCA analysis had strong positive correlation to the 

supplementary variable ñTot. Dò. The species with the highest similarity to P. pouchetii was 

C. debilis, C. compressus and C. socialis. C. debilis had the highest similarity to P. pouchetii 

i.e. they had six positive correlations to environmental variables in common while C. 

compressus and C. socialis had five and four environmental variables in common 

respectively. All the other diatoms had only one positive correlation to environmental 

variables in common with P. pouchetii which was the diffuse attenuation coefficient. In total 

P. pouchetii was positively correlated to eight environmental variables. 
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Table 10: Factor coordinates of the Barents Sea (May 2006, 2007 and 2009) and East Finnmark (May 2009) 

species data (active variables) and environmental data (supplementary variables). The two highest values are 

shown, highest absolute value is underlined, eigenvalues of correlation matrix and cumulative proportion of total 

variance explained by each vector of the principal components analysis of the active variables.  

Species 

Active var. 

Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 

Factor 

6 

Factor 

7 

Factor 

8 

Factor 

9 

P. pouchetii -0.44 

 

-0.57 

 

       

F. oceanica 0.61 

 

    0.52 

 

   

C. socialis  -0.49 

 

0.50 

 

      

N. pelagica 0.81 

 

      0.37 

 

 

T. nordenskioeldii 0.60 

 

     0.64 

 

  

T. hyalina 0.83 

 

      0.27 

 

 

C. debilis  -0.62 

 

 0.70 

 

     

T. antarctica 0.65 

 

   -0.63 

 

    

C. compressus  -0.59 

 

-0.58 

 

      

Eigenvalue 2.82 1.58 0.97 0.83 0.70 0.65 0.63 0.51 0.31 

Cumulative (%) 31.38 48.89 59.65 68.89 76.68 83.94 90.98 96.60 100 

Station dept -0.13 

 

     -0.12 

 

  

Latitude 0.39 

 

0.23 

 

       

Longitude 0.34 

 

 0.22 

 

      

Sea temp. -0.46 

 

-0.23 

 

       

k*   -0.38 

 

0.22 

 

      

Is*  -0.54 

 

-0.31 

 

       

Qt*  0.27 

 

 -0.22 

 

      

Qs*  -0.37 

 

-0.20 

 

       

Day no. in year -0.28 

 

-0.34 

 

       

Salinity -0.13 

 

-0.18 

 

       

ȹůt*  -0.15       0.12  

Tot. Diatoms 0.49 

 

-0.33 

 

       

*Explanation to environmental variable acronyms; k diffuse attenuation coefficient, I s diurnal PAR incident on 

surface, Qt total heat flux, Qs short-wave radiation at surface and ȹůt stability (density difference from 0m to 

10m depth). See Materials and Methods for further details on environmental variables. 

3.13 Principal component analysis, Vestfjord archipelago 

The Vestfjord archipelago data compromises all three years (2006, 2007 and 2009) in April 

and all depths were included. The eight most dominating diatoms and P. pouchetii were 

included in the PCA analysis as active variables. Species included in the PCA analysis can be 

seen in Table 11. The variable ñTot. Dò compromises all diatoms registered at each sampling 

station and were included in the analysis as a supplementary variable, number of diatoms in 

2006 (n=63); 2007 (n=26); 2009 (n=29). The first four, out of a total of nine principal 

components corresponding to the nine active species variables, had an eigenvalue greater than 

1 (Table 11). Six of the species had their highest factor loadings contained in the two first 

principal components, P. pouchetii, C. socialis, T. nordenskioeldii, Pseudo-nitzschia seriata, 

Bacterosira bathyomphala and Chaetoceros furcellatus. F. oceanica had its highest factor 
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loadings contained in the fourth principal component and Skeletonema costatum and 

Chaetoceros decipiens in the fifth principal component (Table 11). However, S. costatum and 

C. decipiens had, unlike F. oceanica, their second highest factor loading contained in the two 

first principal components. The two first principal components constituted 43.30% of the 

variation within the species data (Table 11). PC1 explains 25.76% and PC2 explains 17.54% 

of the variance (Fig. 18). PC1 separates P. pouchetii, P. seriata, T. nordenskioeldii and C. 

furcellatus from the rest of the species included in the analysis (Fig. 18). F. oceanica was 

separated from S. costatum, C. decipiens, B. bathyomphala, C. socialis and the supplementary 

variable ñTot. Dò by PC2 (Fig. 18). The environmental variables in Figure 18 (supplementary 

variables) were the same as used in the PCA analysis for the Barents Sea and East Finnmark. 

Nine of the eleven environmental variables had their highest factor loadings contained in the 

two first principal components: station depth, latitude, longitude, sea temperature, diurnal 

PAR, total surface heat flux, short-wave radiation incident on sea surface, day number in year 

and stability (Table 11). The diffuse attenuation coefficient and salinity had their highest 

factor loadings contained in the fourth principal component (Table 11). However, the diffuse 

attenuation coefficient had its second highest factor loading contained in the two first 

principal components.  
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Figure 18: PCA scaling (ordination) plot of the Vestfjord archipelago (April 2006, 2007 and 2009) data based 

on a correlation matrix of association between nine dominating phytoplankton species and variable ñTot. Dò 

consisting of the sum of all diatoms (number of diatoms in 2006 n=63, 2007 n=26 and 2009 n=29, natural Log 

(Logὑ)-transformed specie abundance, cell l
-1
). Species acronyms: Pp Phaeocystis pouchetii, Sc Skeletonema 

costatum, Cs Chaetoceros socialis, Tn Thalassiosira nordenskioeldii, Ps Pseudo-nitzschia seriata, Fo 

Fragilariopsis oceanica, Bb Bacterosira bathyomphala, Cd Chaetoceros decipiens, Cf Chaetoceros furcellatus. 

Environmental acronyms: Std stations depth (m), N latitude (
o
), E longitude (

o
), T sea temperature (

o
C), Dno day 

number in year, k diffuse attenuation coefficient, I s diurnal PAR incident on surface, Qs short-wave radiation at 

surface, Qt total surface heat flux, S salinity ă, ȹůt stability (density difference from 0m to 10m depth). See 

Materials and Methods for further details on variables. All environmental variables are normalized except for 

stability which is standardized. Total number of cases in dataset (stations and corresponding stations depths 

sampled) n=269. Both environmental data and ñTot. Dò are ordinated as supplementary variables (marked with 

*) . Active variables are used in the derivation of the principal components and the supplementary variables are 

projected onto the factor space computed from the active variables.  

The species group according to PCA analysis figure 18 consisting of P. pouchetii, P. seriata, 

T. nordenskioeldii and C. furcellatus was positively correlated to day number in year, latitude, 

sea temperature and diffuse attenuation coefficient (environmental variables is ranked from 

strongest to weakest correlation according to P. pouchetii), except C. furcellatus that was not 

positively correlated to temperature. In addition, P. seriata was positively correlated to 

longitude, salinity and stability while C. furcellatus correlated positively to diurnal PAR, 
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short-wave radiation incident on sea surface and salinity. The haptophycean P. pouchetii had 

its strongest negative correlation to total surface heat flux, short-wave radiation incident on 

sea surface and diurnal PAR. All other species, i.e. S. costatum, C. socialis, F. oceanica, B. 

bathyomphala and C. decipiens were positively correlated to total surface heat flux. F. 

oceanica alone was positively correlated to the diffuse attenuation coefficient, day number in 

year, salinity and stability (Fig. 18). S. costatum, C. socialis and C. decipiens were positively 

correlated to latitude, and the latter two species were also positively correlated to short-wave 

radiation incident on sea surface along with B. bathyomphala. These species were grouped 

together in the PCA analysis along with ñTot. Dò (Figure 18). S. costatum and B. 

bathyomphala were also positively correlated to salinity and B. bathyomphala was the only 

species positively correlated to station depth. The only species in this latter group (S. 

costatum, C. socialis, C. decipiens and B. bathyomphala) that correlated to diffuse attenuation 

coefficient and diurnal PAR was C. decipiens. All species in the PCA analysis were positively 

correlated to the supplementary variable ñTot. Dò. The species with highest similarity to P. 

pouchetii according to the number of positive correlations to the same environmental 

variables were T. nordenskioeldii and P. seriata. They had four positive correlations to 

environmental variables in common with P. pouchetii. In total P. pouchetii was positively 

correlated to four environmental variables. 
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Table 11: Factor coordinates of the Vestfjord archipelago (April 2006, 2007 and 2009) species data (active 

variables) and environmental data (supplementary variables). The two highest values are shown, highest absolute 

value is underlined, eigenvalues of correlation matrix and cumulative proportion of total variance explained by 

each vector of the principal components analysis of the active variables. 

Species 

Active var. 

Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 

Factor 

6 

Factor 

7 

Factor 

8 

Factor 

9 

P. pouchetii  -0.62 

 

     0.55 

 

 

S. costatum  -0.52 

 

  -0.43 

 

    

C. socialis -0.80 

 

       -0.45 

 
T. nordenskioeldii  -0.75 

 

   0.51 

 

   

P. seriata 0.63 

 

-0.35 

 

       

F. oceanica   0.61 

 

-0.64 

 

     

B. bathyomphala -0.68 

 

     0.60 

 

  

C. decipiens -0.55 

 

   0.60 

 

    

C. furcellatus  -0.65 

 

-0.61 

 

      

Eigenvalue 2.31 1.58 1.12 1 0.74 0.64 0.63 0.56 0.42 

Cumulative % 25.76 43.30 55.70 66.76 75 82.13 89.18 95.37 100 

Station dept  0.21 

 

   -0.17 

 

   

Latitude  -0.39 

 

   0.16 

 

   

Longitude 0.16 

 

0.26 

 

       

Sea temp. 0.53 

 

      -0.09 

 

 

k*  0.23 

 

  -0.27 

 

     

Is*   0.33 

 

-0.26 

 

      

Qt*  -0.50 

 

0.19 

 

       

Qs*  -0.30 

 

0.40 

 

       

Day no. in year 0.68 

 

  -0.25 

 

5454     

Salinity   0.09 

 

-0.14 

 

     

ȹůt*  0.17 

 

0.29 

 

       

Tot. Diatoms -0.23 

 

-0.58 

 

       

* Explanation to environmental variable acronyms; k diffuse attenuation coefficient, I s diurnal PAR incident on 

surface, Qt total heat flux, Qs short-wave radiation at surface and ȹůt stability (density difference from 0m to 

10m depth). See Materials and Methods for further details on environmental variables. 

An overview of positive correlations between species and environmental variables in the PCA 

analysis for the Barents Sea and East Finnmark and Vestfjord archipelago is given in Table 

12, where the three strongest positive correlations to environmental variables are shown for 

each species. 
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Table 12: PCA correlations for the Barents Sea and East Finnmark and the Vestfjord archipelago showing 

species correlation to environmental variables, the three strongest positive correlation to environmental variables 

in each PCA are shown for each species (B Barents Sea and East Finnmark, V Vestfjord archipelago and 

***denotes  the strongest correlation, **second strongest and *third strongest). Species acronyms: Pp 

Phaeocystis pouchetii, Dia total diatoms, Fo Fragilariopsis oceanica, Tn Thalassiosira nordenskioeldii 

(common for the Barents Sea, East Finnmark and Vestfjord archipelago), Cs Chaetoceros socialis, Np Navicula 

pelagica, Th Thalassiosira hyalina, Cdeb Chaetoceros debilis, Ta Thalassiosira antarctica, Cc Chaetoceros 

compressus (Barents Sea and East Finnmark), Sc Skeletonema costatum, Ps Pseudo-nitzschia seriata, Bb 

Bacterosira bathyomphala, Cdec Chaetoceros decipiens, Cf Chaetoceros furcellatus (Vestfjord archipelago). 

Environmental acronyms: Std stations depth (m), N latitude (
o
), E longitude (

o
), T sea temperature (

o
C), k 

diffuse attenuation coefficient, I s diurnal PAR incident on surface, Qt total surface heat flux, Qs short-wave 

radiation at surface, Dno day number in year, S salinity ă, ȹůt stability (density difference from 0m to 10m 

depth). See Materials and Methods for further details on variables.  

Var. Pp Dia Fo Cs Np Tn Th Cdeb Ta Cc Sc Ps Bb Cdec Cf 

Std             V**    

N  V**  V***  B**   B**  B***  

V***  

B***   B*   V**    V*   

E  B**  B***  B**  B***   B**   B***        

T 

 

B*  

V*  

      B*     V**     

k 

 

 B***  V*  B***   B**   

V*  

 B***  B**    V*    V***  

I s               V**  

Qt 

 

 V**  B*  

V***  

 B*  B*  B*    B**  V***   V***  V***   

Qs 
         B*    V*  V**   

Dno B**  

V***  

B*  

 

 B*   V**       V***    V*  

S   V**      B**   B***  V*      

ȹůt*                
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4. Discussion  

The main findings in the present study are as follows: The highest Phaeocystis pouchetii 

dominance (see Materials and Methods, Phaeocystis dominance ratio) observed during the 

sampling periods (2006, 2007 and 2009) in the Barents Sea in May and Vestfjord archipelago 

in April , was in 2009. High P. pouchetii dominance was also observed in East Finnmark 

which was only sampled in May 2009. In all three areas the highest P. pouchetii dominance 

was generally observed at 10m depth (the three depths investigated each year were 0m, 10m 

and 50m) during the sampling periods. In 2009 at 10m depth, 58% of the stations were 

dominated by P. pouchetii in the Barents Sea, 50% in Vestfjorden archipelago and 92% in 

East Finnmark. The year with the highest diatom dominance was in 2006 both in the Barents 

Sea and Vestfjord archipelago. In both areas diatoms were generally observed to dominate at 

0m depth during the sampling periods. In 2006 at 0m depth, 76% of the stations were 

dominated by diatoms in the Barents Sea and 88% in Vestfjord archipelago. In East Finnmark 

the diatom dominance was low, 17% at 0m in 2009.  

The Phaeocystis sequences (18s rRNA) analyzed from the Barents Sea indicated that it could 

belong to both P. cordata and P. antarctica. (Table 7). Examined from a morphological point 

of view this is not likely. P. cordata is not observed to have any colonial stage, neither in 

natural samples nor in culture (Zingone et al. 1999). In case of the colony forming P. 

antarctica it is only reported to be present in Antarctic waters (Schoemann et al. 2005). In 

addition it is possible to distinguish P. pouchetii  from P. antarctica when they are in their 

colonial stage. P. pouchetii forms lobed cloud-like colonies with cells in packets of four while 

P. antarctica forms globular colonies with cells randomly distributed (Medlin & Zingone 

2007). This suggests that the species observed was P. pouchetii, but it is clear that more 

extensive gentical analysis (more genes) can give other suggestions. 

The spring bloom in the central Barents Sea has been reported to peak in April and sometimes 

into May by Evensen (1994) and in May by Ellertsen (1982), Rey and Loeng (1985). 

However, Sakshaug and Slagstad (1991) and Rey and Loeng (1985) concludes that the spring 

bloom in the central Barents Sea starts at varying times depending on the vertical stability of 

the water column and irradiance. According to Sakshaug and Slagstad (1991) the spring 

bloom can start in early April if the vertical mixing is shallower than 20m. Ice edge blooms 

takes place at the same time as in the central Barents Sea, in April or May (Hegseth 1992). 

Data from East Finnmark is scarce, and spring bloom timing may vary. Eilertsen and Frantzen 
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(2007) and Hegseth et al. (1995) reported the spring bloom in Porsangerfjord to peak during 

April /May and continue into the summer. Despite great latitudinal differences, the spring 

bloom in Vestfjord archipelago proper peaks approximately at the same time as in the Barents 

Sea and East Finnmark, though it may some years peak earlier in shallow areas. Huseby 

(2002) thus reports spring bloom peaks in late March for Austnesfjord and during April in 

Henningsværstaumen and Vestfjorden. Spring bloom peaks in late March or early April in 

this area has also been reported by others e.g. Braarud and Nygaard (1978, 1980). A 

compilation based on a literature study as well as their own data of the most abundant 

phytoplankton species in March, April and May (showing maximum cell numbers) from the 

coast of northern Norway and the Barents Sea is given by Degerlund and Eilertsen (2009). 

This extensive work summarizes the phytoplankton literature covering a great geographical 

area over a long time period (1922-2007) giving an overview of the spring bloom peaks and 

species associated with it, and the conclusions herein are that the most variable timings of the 

spring blooms are south in the area (Vestfjord archipelago) and in the north (ice edge). 

My sampling in the Barents Sea and East Finnmark took place in May, one month later than 

in the Vestfjord archipelago which was sampled in April. Due to limited availability of 

resources and vessel-time, the areas and periods sampled in the Barents Sea as mentioned 

varied somewhat between years. In the Barents Sea the sampling in 2006 and 2007 started 

five days earlier than in 2009. In addition, the sampling area in 2006 was further north than 

the other years, contributing to the relative low temperatures observed in 2006. The sampling 

in 2009 was conducted both in the Barents Sea and East Finnmark. Since I only had data from 

eastern Finnmark from one year these data were pooled with the Barents Sea data in the PCA 

analyses. In addition one resoning for this was that eastern Finnmark generally has colder 

water than exsists further south in northern Norway. In the Vestfjord archipelago the same 

geographical area was sampled each year. However, the sampling period in 2006 was almost 

two week earlier than in 2007 and 2009. 

The present study is therefore within the time period where the spring bloom event is 

observed in the Barents Sea, East Finnmark and Vestfjord archipelago. However, the spring 

bloom event is as mentioned reported to vary between years depending on environmental 

variables like e.g. stability of the water column and irradiance. It is important to have in mind 

that the present investigation is a ñsingle point samplingò and that the species present are a 

result of both the biological and physical condition that has already taken place. However, the 
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species present vs. abundances and the environmental variables may give us a clue of which 

stage the spring bloom is in and what environmental regime it takes place in. Degerlund and 

Eilertsen (2009) used this approach for the Barents Sea and north Norwegian coast. Where 

species associations i.e. several species ñthrivingò in the same environment (Tansley 1935, 

Krebs & Richard 1985) interpreted as positive correlations between species and the 

correlation of these species to environmental variables can discern what we interpret as an 

association of early or late spring bloom species (Degerlund & Eilertsen 2009).  

As mentioned in the aim of the present study, P. pouchetii is known to be an important 

species in all three areas investigated, and the relative abundance between P. pouchetii and 

diatoms is also known to vary greatly between years. In the following discussion I will focus 

upon the vertical and horizontal dominance variation between P. pouchetii and diatoms in the 

study area and their correlation to species and environmental variables.  

There was a trend for P. pouchetii to dominate at 10m and diatoms at 0m in this present study. 

For simplicity ñstation dominanceò will be used in the following to denote the relative i.e. 

high or low percent of stations dominated by either P. pouchetii or diatoms. In five of the 

seven cruises the highest P. pouchetii station dominance was observed at 10m station depth. 

The same accounted for diatoms concerning 0m if the situation observed at 50m in Vestfjord 

archipelago in 2009 is not taken in to account. The situation in Vestfjord archipelago was not 

representative for the entire area since abundance data only was taken from the Vestfjorden 

transect at 50m in 2009. A similar vertical distribution, where P. pouchetii was more abundant 

in the deeper part of the water column, was observed by Wassmann et al. (1999). They 

observed P. pouchetii to be most abundant between 25m and 50m in the meandering Polar 

Front and in the frontal zones whereas in the upper layer P. pouchetii abundance deceased. 

They reported the situation observed to be in a well developed bloom phase (though no peak 

bloom phase) based on increasing stratification, moderate to high chlorophyll concentrations 

and increasingly depleted nutrient concentrations towards the north. They also observed 

silicate concentration to often be <2ɛM. Similar vertical distribution patterns (but however 

much lower abundance) was observed in their remaining transect, including both Atlantic 

water (pre-bloom stage) and Arctic water (peak bloom) in the central Barents Sea (Wassmann 

et al. 1999). In the Atlantic water the stratification was weak which is typical for this area 

(Wassmann et al. 1999). Strong stratification was observed in the Arctic waters and the bloom 

appeared to be limited by silicate and nitrate (Wassmann et al. 1999). In situations where 
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nutrients and silicate is depleted in the upper stratified layers, P. pouchetii has an advantage 

over diatoms. P. pouchetii does not need silicate and experiments indicate that diatoms 

dominate over P. pouchetii only when silicate concentrations are above 2µM (Egge & Aksnes 

1992), giving P. pouchetii a competitive advantage later in the spring bloom. In addition a 

positive buoyancy has been reported for P. pouchetii colonies (Skreslet 1988, Schoemann et 

al. 2005). The ability to adjust their specific weight might play an important role in the 

competition with diatoms. In stratified waters where nutrients are accessible only below a 

deep pycnocline, P. pouchetii may possibly acquire neutral buoyancy below the pycnocline. 

West of Svalbard, Eilertsen et al. (1989) found it evident that the critical depth during the day 

was below 1% light depth (which in their study varied between 15m and 35m) allowing the 

phytoplankton to take advantage of the enhanced nutrient concentrations under the 

pycnocline. The low light intensities associated with greater depths might also act as an 

advantage for P. pouchetii. Eilertsen (1989) reported P. pouchetii to show great ability to 

maintain and increase its photosynthetic efficiency at low light intensities. The same tendency 

has been reported for Phaeocystis from Antarctica (Palmisano et al. 1986), where it was 

shown to be better adapted than diatoms to low light intensities (Arrigo et al. 1999). In 

addition, Hegarty (1998) reports on Phaeocystis cf. pouchetii growing faster relative to 

diatoms when nutrients were non-limiting and irradiance was low. This might be the main 

reasons for the observed dominance of P. pouchetii at a greater depth than diatoms.  

The highest percent of stations dominated by Phaeocystis pouchetii was observed in 2009 in 

both main areas, the Barents Sea and Vestfjord archipelago. High P. pouchetii dominance was 

also observed in East Finnmark in 2009. However, it was only in the Barents Sea and East 

Finnmark situations were observed where the percent of stations dominated by P. pouchetii 

exceeded the percent of stations dominated by diatoms. This points to the greater presence of 

P. pouchetii concerning distribution in the Barents Sea and East Finnmark than in Vestfjord 

archipelago in the periods investigated. The high P. pouchetii dominance in East Finnmark in 

May 2009 is supported by the negative correlation between P. pouchetii and latitude (
o
N) in 

the PCA analysis for the Barents Sea and East Finnmark. This indicates an increasing 

abundance of P. pouchetii in the southern Barents Sea and East Finnmark. In the PCA 

analysis for Vestfjord archipelago P. pouchetii was positively correlated to latitude (
o
N) 

which indicates a greater abundance of P. pouchetii in the two northernmost locations 

sampled, Austnesfjord and Henningsværstraumen. This is especially the case in 
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Austnesfjorden, supported by that the maximum P. pouchetii dominance value was observed 

in Austnesfjord in 2006 and 2007 at 10m (the depth with the generally highest P. pouchetii 

dominance). In 2009 the maximum P. pouchetii dominance value was however observed in 

Tysfjord at 10m. The explanations to the distribution pattern observed for P. pouchetii has to 

be sought in the physical and biological variables connected to its environment. 

 P. pouchetii was positively correlated to sea temperatures both in the Barents Sea, East 

Finnmark and in Vestfjord archipelago. However, this might not be a direct effect of P. 

pouchetii thriving only at high temperatures since some of the stations with high P. pouchetii 

dominance in the other years (2006 and 2007) rather had some of the lowest temperatures. 

The positive correlation to sea temperatures may as well be an effect of the life history 

strategy of P. pouchetii, indicating a later appearance of P. pouchetii in the succession. After 

all the sea temperature is tightly coupled to the development of the spring bloom, where 

relatively higher temperatures indicate a later stage in the spring bloom. If so, the high sea 

temperatures observed in 2009 in both the Barents Sea and Vestfjord archipelago indicates 

that the spring bloom is in a late phase. P. pouchetii has been reported to occur later in the 

spring bloom, where the traditional view is that spring blooms in regions were P. pouchetii 

blooms occur is usually characterized by a diatom bloom followed by a peak in P. pouchetii 

colony cells (Riebesell et al. 1995, Wassmann et al. 1999, Rousseaua et al. 2000, Smith et al. 

2003). In addition, previous investigations has observed that the spring bloom peaks earlier in 

coastal water than offshore (Føyn 1929, Huseby 2002) which might explain the high P. 

pocuhetii dominance observed in East Finnmark. The spring bloom in the sheltered fjord 

Austnesfjord is as earlier mentionded reported to start ealier than in Henningsværstraumen 

and Vestfjorden which might be the reason for the observed high P. pouchetii dominance in 

this fjord in 2006 and 2007. This might also be the case in Tysfjord in 2009 where high P. 

pouchetii dominance was observed along with the highest temperatures observed in the 

Vestfjord archipelago indicating a later bloom stage.   

A late appearance of P. pouchetii in the spring bloom in the Barents Sea and East 

Finnmark was also supported by the positive correlation between P. pouchetii and 

Chaetoceros debilis, Chaetoceros socialis and Chaetoceros compressus in the PCA analysis 

for the area in question. Typically the species succession follows a characteristic pattern in the 

spring bloom and it is to some degree possible to estimate the stage of a bloom due to 

successional patterns (Margalef 1958). Chaetoceros species and especially C. socialis have 

been reported to have high concentrations late in the spring bloom season in the Barents Sea 
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(von Quillfeldt 2000). In Vestfjord archipelago P. pouchetii was positively correlated to 

Pseudo-nitzschia seriata, Thalassiosira nordenskioeldii, Chaetoceros furcellatus and 

Skeletonema costatum. S. costatum often appears early in the spring bloom in Vestfjord 

archipelago (March) and along the north Norwegian coast (Huseby 2002, Degerlund & 

Eilertsen 2009) while T. nordenskioeldii and C. furcellatus have a somewhat later appearance 

(Schei 1974, Huseby 2002). T. nordenskioeldii might have a more sporadic appearance since 

it also has been reported as an early spring bloom species along the north Norwegian coast by 

Degerlund and Eilertsen (2009). P. seriata is distributed in temperate to northern cold water 

regions and Heimdal (1974) observed it, however in small amounts, in early April in Ullsfjord 

in a spring bloom situation dominated by diatoms and P. pouchetii. The two species T. 

nordenskioeldii and P. seriata were in addition to P. pouchetii positively correlated to sea 

temperature where P. seriata had the strongest correlation to sea temperatures in Vestfjord 

archipelago.  

It seems as if P. pouchetii do not appear as late in the spring bloom succession in 

Vestfjord archipelagio as in the Barents Sea supported by its correlation to both early and late 

spring bloom species in Vestfjord archipelago. It may rather be more abundante throughout 

the spring bloom season in Vestfjord archipelago. In addition, P. pouchetii was only 

positively correlated to diurnal PAR incident on sea surface and short-wave radiation incident 

on sea surface in the PCA analysis for the Barents Sea and East Finnmark, indicating a later 

appearance in the Barents Sea and East Finnmark than in Vestfjord archipelago.  

Other environmental variables which might also indicate a later appearance of P. 

pouchetii in the spring bloom in the Barents Sea, East Finnmark and Vestfjord archipelago 

was the positive correlation between P. pouchetii, day number in year and the diffuse 

attenuation coefficient. However, it is more likely that the positive correlation between P. 

pouchetii and day number in year is a result of the sampling track which varied greatly 

between years in the Barents Sea but not so much in Vestfjord archipelago. In Vestfjord 

archipelago the sampling track was as following: the Vestfjorden transect, 

Henningsværstraumen, Austnesfjord and Tysfjord, except in 2007 when Austnesfjord was 

sampled before Henningsværstraumen. In the case of Vestfjord archipelago the positive 

correlation between P. pouchetii and day number in year indicates a low P. pouchetii 

abundance in the Vestfjorden transect and an increasing P. pouchetii abundance in 

Henningsværstrumen, Austnesfjord and Tysfjord. This is supported by the maximum P. 

pouchetii dominance values observed in Austnesfjord and Tysfjorden as earlier mentioned. 
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The diffuse attenuation coefficient is known to increase during the spring bloom due to 

increased abundance of phytoplankton which in turn results in increased release of 

extracellular organic carbon (Smith 1977, Larsson & Hagström 1979, Iturriaga 1981, Larsson 

& Hagström 1982, Riemann et al. 1982). As earlier mentioned, P. pouchetii is known for its 

rapid growth and gelatinous colonies consisting of a variety of polysaccharides which 

probably increases the diffuse attenuation coefficient. The species P. pouchetii was positively 

correlated to in both main areas were also positively correlated to the diffuse attenuation 

coefficient except from S. costatum in Vestfjord archipelago. This again shows the earlier 

appearance of S. costatum in the spring bloom succession and the positive correlation between 

P. pouchetii and both early and later spring bloom species in the Vestfjord archipelago.  

The year with the highest percent of stations dominated by diatoms was in 2006 in both the 

Barents Sea and Vestfjord archipelago. The diatom dominance in East Finnmark in 2009 was 

low compared to the Barents Sea and especially Vestfjord archipelago. The percent of stations 

dominated by diatoms was generally higher in Vestfjord archipelago than in the Barents Sea 

and especially East Finnmark. This points to the greater importance of diatoms in Vestfjord 

archipelago than in the Barents Sea and especially East Finnmark in the three years 

investigated. In the PCA analysis for the Barents Sea and East Finnmark ñTot. Dò (total 

diatoms) was positively correlated to longitude (
o
E). This was also the case for the three 

species, Navicula pelagica, T. nordenskioeldii and Thalassiosira hyalina, which ñTot. Dò had 

its strongest positive correlation to in the PCA analysis for the Barents Sea and East Finnmark 

i.e. these species followed the same abundance trend as total diatoms. These three species 

were in addition to having a positive correlation to longitude (
o
E) also positively correlated to 

latitude (
o
N) along with Fragilariopsis oceanica, C. socialis and Thalassiosira antarctica. 

This indicates that the most abundant diatom species connected to ñTot. Dò in the Barents Sea 

and East Finnmark in the three years sampled had a higher abundance in northeast, probably 

at the ice edge which was sampled each year in northeast. All stations situated into the ice 

drift in the years sampled were dominated by diatoms except for one station in 2006 and 2007 

where P. pouchetii dominated. This is supported by that the species from the genera 

Chaetoceros, Thalassiosira, Fragilariopsis and Navicula are all reported to be predominant in 

the outermost and thinnest part of the sea ice (Sakshaug et al. 2009). In Vestfjord archipelago 

ñTot. Dò and the three species it had its strongest positive correlation to were positively 

correlated to latitude (
o
N) which indicates a greater abundance of diatoms north in the 
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sampling area (Henningsværstraumen and Austnesfjord). In the three years sampled in 

Vestfjord archipelago the maximum diatom dominance values observed at 0m (the depth with 

the generally highest diatom dominance) were in Henningsværstraumen in 2006 and 2009 and 

in Austnesfjord in 2007. Examination of the environmental variables and species connected to 

ñTot. Dò might contribute to explain the proposed distribution pattern in time and space for 

the main species constituting ñTot. Dò.  

ñTot. Dò was negatively correlated to sea temperatures according to the PCA analysis 

for the Barents Sea and East Finnmark and Vestfjord archipelago. This is supported by that 

the lowest sea temperatures in both main areas were observed in 2006 i.e. the year with the 

highest diatome dominance. The negative correlation to sea temperature might indicate that 

the main species in the ñTot. Dò variable had an early appearance in the spring bloom 

succession. However, in case of the PCA analysis for the Barents Sea and East Finnmark it 

strengthens the proposed higher abundance of diatoms connected to the low temperatures at 

the ice edge which was sampled each year. The three species ñTot. Dò had its strongest 

positive correlation to in the PCA analysis for the Barents Sea and East Finnmark (N. 

pelagica, T. nordenskioeldii and T. hyalina) were also negatively correlated to sea 

temperatures. This is in agreement with T. hyalina being characterized as a spring species 

often in the presence of ice and N. pelagica being a true ice algae species (Gran 1902, 

Eilertsen et al. 1989, Kuznetsov 1992, Quillfeldt et al. 2003). It is therefore reasonable to 

suggest that the main species in ñTot. Dò in the investigated period is abundant in the 

presence of ice. This is also supported by total diatoms to be dominating at temperatures of -

1.46
o
C in 2006. Temperatures below the ice in Arctic water in ice covered regions of the 

Barents Sea is reported to be between -1.75
o
C to -1.9

o
C in May, values represent range in the 

sampling area for surface waters (0-1m) (Hegseth 1992). The negative correlation to sea 

temperature might therefore not solely be associated to early appearance in the spring bloom 

since T. nordenskioeldii is proposed to be a late spring bloom species along with T. hyalina 

(compared to the pennate chain-forming Fossula arctica and Fragilariopsis spp.) in an Arctic 

spring bloom (von Quillfeldt 2000), but rather to the ice bloom situation where low 

temperatures are connected to the ice edge. Though T. nordenskioeldii and T. hyalina are 

proposed as being later spring bloom species, they often appear before Chaetoceros spp. 

(Quillfeldt 2000). This suggests that the main species constituting ñTot. Dò blooms ahead of 

P. pouchetii which was positively correlated to the only three Chaetoceros species in the PCA 

analysis for the Barents Sea and East Finnmark. However, Phytoplankton connected to an ice 
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edge spring bloom will generally experience low temperatures when following the northward 

retreat of the ice edge. In addition was ñTot. Dò positively correlated to the diffuse attenuation 

coefficient in the PCA analysis for the Barents Sea and East Finnmark. Hegseth (1992) 

observed high dominance of silt, clay and nonliving organic matter under ice in samples 

collected over the Hopen Bank in February/March. When the ice starts to melt in April/May 

(Hegseth 1992) the silt, clay and nonliving organic matter under ice is released which 

probably rapidly increases the diffuse attenuation coefficient in the initial stage of the ice edge 

bloom. It is difficult to say if the positive correlation to the diffuse attenuation coefficient is 

due to a later appearance of the main diatoms in the spring bloom i.e. high concentration of 

phytoplankton and release of extracellular organic carbon, or that the main diatoms observed 

are more abundant in the initial stage of the ice edge bloom. However, the main species 

constituting ñTot. Dò probably appears ahead of the peak of P. pouchetii in the spring bloom 

in the Barents Sea in the investigated period. 

The three species ñTot. Dò had its strongest positive correlation to in the PCA analysis 

for the Vestfjord archipelago (S. costatum, C. socialis and T. nordenskioeldii) were also 

negatively correlated to sea temperatures, except from T. nordenskioeldii. These species are 

often some of the main species in the spring bloom in Vestfjord archipelago (Braarud & 

Nygaard 1980, Degerlund & Eilertsen 2009). As earlier mentioned S. costatum is an early 

species and T. nordenskioeldii is a somewhat later species in the spring bloom succession in 

Vestfjord archipelago. In the Vestfjord archipelago C. socialis has been reported to belong to 

the species in early succession, small diatoms (Huseby 2002, Degerlund & Eilertsen 2009). 

The main species constituting the ñTot. Dò belong both to early and late spring bloom species, 

indicating total diatoms to be more abundant throughout the spring bloom in Vestfjord 

archipelago than in the Barents Sea. Recall, this was also observed for P. pouchetii in 

Vestfjord archipelago. This agrees well with the observations made by Føyn (1929), reporting 

the spring bloom in Vestfjord archipelago to be initiated with Chaetoceros spp. and P. 

pouchetii. One reason for this might be that the spring bloom is more ñshort-livedò in 

Vestfjord archipelago than in the Barents Sea. This is however true for the fjords located on 

the west side of Svalbard, Kongsfjord and Hornsund according to Eilertsen et al. (1989) who 

state that the spring bloom lasts longer in this area (from mid March to early June) than at the 

north Norwegian coast, where they usually last for about one month (Matthews & Heimdal 

1980, Eilertsen 1983). This is probably not connected to the initial nutrient concentration 

since they are observed comparable in the Spitzbergen fjords and Balsfjord outside Tromsø 
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(Eilertsen & Taasen 1984). Eilertsen et al. (1989) suggest heavy grazing to slow down the 

progress of the spring bloom and recycled ammonia to prolong the progress. This agrees well 

with Sakshaugôs statement ñthe late and protracted phytoplankton blooms in the permanently 

ice-free Atlantic waters may represent good example of ñmatchò whereas the early blooms 

that arise where sea ice overlies Atlantic water may be textbook examples of mismatch, as are 

the early spring blooms in Norwegian fjords (Wassmann et al. 1990)ò. This suggested that 

phytoplankton generally have a more narrow ñpeak windowò in Vestfjord archipelago 

compared to the Barents Sea which might be the reason for the observed overlap in peak 

abundance in Vestfjord archipelago between P. pouchetii and diatoms. 

The latest species associations suggested for the present study area are P. pouchetii 

associations for the Barents Sea region and C. socialis associations along the north Norwegian 

coast (Degerlund & Eilertsen 2009). Species association names are assigned according to 

Cleveôs (1897) idea of naming the species association after the most predominant species in 

the area. This is supported by several others (Rey & Loeng 1985, Skjoldal & Rey 1989, Rey 

1993, Evensen 1994, Quillfeldt 1996, Ratôkova & Wassmann 2002) suggesting the great 

importance of P. pouchetii in the Barents Sea and diatoms, especially C. socialis, along the 

north Norwegian coast. Degerlund and Eilertsen (2009) observed a tendency for P. pouchetii 

to increase in importance towards the north in their study area which was from Vestfjord 

archipelago to the Barents Sea. They observed P. pouchetii to be most predominant in the 

northernmost coastal fjords and in the Barents Sea which is in agreement with the present 

three years study. P. pouchetii was not only abundant in the Barents Sea and especially East 

Finnmark, it was occasionally also the most dominating species in relation to total diatoms in 

the entire area sampled in the Barents Sea and East Finnmark in 2009.  

As earlier mentioned, Sakshaug and Slagstad (1991) and Rey and Loeng (1985) conclude that 

the spring bloom in the central Barents Sea starts at varying times depending on the vertical 

stability of the water column and irradiance. However, in the Barents Sea the surface 

stabilities (0-10m) were generally low in May all years, the only exception was the 

northernmost station west of Svalbard in 2009. Low stability can result in increased mixed 

depth. One definition is that the mixed depth related to vertical density distribution is the 

depth at which a change from the surface ůt of 1.25 has occurred (Levitus 1982). However, 

due to the often weakly stratified nature of the water columns in the Barents Sea and East 

Finnmark (Eilertsen & Skarðhamar 2006) a ůt change of 0.1 is here used as criterion. The 
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situation in East Finnmark was rather different, which due to river runoff had high stabilities 

compared to the Barents Sea.  

 According to the PCA analysis for the Barents Sea and East Finnmark P. pouchetii 

was positively correlated to stability and total diatoms were negatively correlated to stability. 

This is supported by that the only station in the Barents Sea and the stations in East Finnmark 

with surface stabiliy above 0.1 were dominated by P. pouchetii. Especially was East 

Finnmark the main area attributing to the positive correlation between P. pouchetii and 

stability.  

 P. pouchetii seems to have some competitive advantages over diatoms at low 

turbulence since it can have positive buoyancy (Skreslet 1988, Schoemann et al. 2005), while 

diatoms would dominate in relatively turbulent conditions according to Margalef (1978). It is 

not possible to observe any trend of either P. pouchetii or diatoms being dominant in stratified 

areas in the Barents Sea since only one station was stratified. However, diatoms were more 

dominating in 2006 and 2007 than in 2009 and there were no stratification in the two earliest 

years sampled. In East Finnmark on the other hand the situation observed was probably a well 

developed spring bloom since a marked stratification of the water column was observed, 

probably due to river runoff. Hegseth et al. (1995) state that freshwater runoff does not cause 

any marked stability in the water masses until May/June, when the spring bloom is over in the 

area proper. In support of this was the observation of Chaetoceros spp. spores being common 

among diatoms present at 50m in East Finnmark which indicates that the peak in diatoms 

probably had culminated. According to this the spring bloom observed in the near coastal area 

of East Finnmark in the present study might be in a late bloom phase dominated by P. 

pouchetii. In addition, previous investigations has observed that the spring bloom peaks 

earlier in coastal water than offshore as earlier mentioned. This might be the reason for the 

observed diatom dominance at the offshore stations with low stability and P. pouchetii 

dominance at the coastal stations with high stability in East Finnmark. 

ñTot. Dò and the three species it had its strongest positive correlations to in the Barents Sea 

and East Finnmark were negatively correlated to stability. This is surprising since the main 

species constituting ñTot. Dò were indicated to be most abundant in the ice edge bloom. Ice 

edge blooms are characterized by a stratified upper water lay due to the low saline melt water. 

However, the surface stability calculated in the present study was from 0m to 10m while 

Hegseth (1992) observed a pronounced pycnocline at 20m to 30m during April/May (1986-
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1988) as a result of melting of sea ice. It is therefore possible that any stabilization was 

overlooked when only investigating the stability in the upper 10 meters if this also was the 

case in the present study.  

However, ñTot. Dò and the three species it had its strongest positive correlations to 

were positively correlated to total heat flux in the Barents Sea and East Finnmark. A positive 

total heat flux value denotes heat loss from air and is referred to as negative heat flux. The 

thermal regime of the Barents Sea is mainly influenced by two factors, the total heat flux and 

the water exchange with the adjacent basins (Kuznetsov 1992). The negative heat flux 

increases the temperature of the sea surface which eventually stabilizes the upper layers of the 

water column. At the ice edge the melting of ice will also contribute to the stabilization of the 

upper water column which in turn might trigger the ice edge bloom reported to start in April 

or May as earlier mentioned. However, ñTot. Dò and the three species it had its strongest 

positive correlation to in the Barents Sea, East Finnmark and Vestfjord archipelago were 

negatively correlated to stability. Nevertheless, thermal stratification resulting from radiation 

absorbed by the phytoplankton cells may be weak and difficult to detect (Stramska & Dickey 

1993). 

 In Vestfjord archipelago both P. pouchetii and ñTot. Dò were negatively correlated to 

stability. High stabilities, (>1.25 in Vestfjord archipelago) were observed in Tysfjord in 2006 

and 2007 and in Austnesfjord in 2007. Surface stabilities most likely developes earlier in 

these two sheltered fjords than in Henningsværstraumen and Vestfjorden. Thus, the spring 

bloom might have started earlier in these two fjords and further culminated, leaving low 

abundance of both P. pouchetii and diatoms in the stratified waters of the two fjords in the 

years in question. Recall, high P. pouchetii dominance was observed in these two fjords. 

However, the maximum P. pouchetii dominance values were observed in the years when 

relatively low stability was observed in the two fjords. i.e. Austnesfjord in 2006 and Tysfjord 

in 2009. Only exception was the maximum P. pouchetii dominance value observed in 

Austnesfjord in 2007. The lowest stabilities in Vestfjord archipelago were not surprisingly 

observed in Henningsværstraumen in all three years, and in all three years the stations in 

Henningsværstraumen had a predominance of diatoms. This is supported by that diatoms 

would dominate in relatively turbulent conditions according to Margalef (1978). 

As in the PCA analysis for the Barents Sea and East Finnmark, ñTot. Dò and the three 

species it had its strongest positive correlations to in the PCA analysis for Vestfjord 

archipelago were positively correlated to total heat flux, except from T. nordenskioeldii. 
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Stratification is not necessary for the initiation of a spring bloom. In all localities north of 

Skjomen the spring bloom is reported to take place in unstratified water masses (Schei 1974, 

Eilertsen et al. 1981b, Eilertsen 1983, Rey & Loeng 1985), in fjords with depths of 

approximately 200m (Eilertsen & Taasen 1984). Therefore the diatom species observed in an 

early spring bloom succession will not be positively correlated to stability. In addition, 

stratification in an early spring bloom succession might be weak and difficult to detect. 

There seems to exist little consistency regarding the relative abundance variation between P. 

pouchetii and diatoms. In all years, P. pouchetii was present in the periods the areas were 

investigated and in addition found dominant in some areas, some periods more dominating 

than others. However, interesting is the ability of this single species, P. pouchetii, to dominate 

over a bulk of different diatom species. The relative abundance variation between P. pouchetii 

and diatoms has great impact on the ecology and economy connected to the areas in question 

as mentioned in the introduction i.e. P. pouchetii has been shown to deter grazers and to be 

toxic to marine organisms, altering the vertical carbon transport as well as having different 

nutritional value compared to diatoms. What makes P. pouhetii so successful in the 

competition with the bulk of different diatom species? 

Several factors are believed to strengthen the dominance of P. pouchetii during a 

spring bloom. Phaeocystis appears to be capable of adaptation to a wide range of growth 

irradiances (Eilertsen 1989). When the concentration of diatoms and P. pouchetii increase, the 

shelf shading increases. This results in lower irradiance, which can favour P. pouchetii. 

Phaeocystis single cells have low sinking rate due to their nanosize (Becquevort & Smith 

2001, Peperzak et al. 2003). Colonies of Phaeocystis have negative sinking rate which 

demonstrates their capacity to regulate their buoyancy (Skreslet 1988, Schoemann et al. 

2005). Another factor probably making P. pouchetii more competitive is their resistance to 

grazing both due to their large size range and to the toxic life stage associated with P. 

pouchetii (Estep et al. 1990, Schoemann et al. 2005, Veldhuis et al. 2005, Wassmann et al. 

2005, Nejstgaard et al. 2007, Rousseau et al. 2007).  

 As diatom species often can be characterized as early or late spring bloom species, the 

spring bloom peak in P. pouchetii is reported to occur both before and after a peak in diatoms. 

However, the traditional view is that a peak in diatoms is followed by a peak in P. pouchetii 

as earlier mentioned. An explanation can be that one triggering factor for colony formation in 

P. pouchetii is that solitary cells require a solid substrate for attachment. P. pouchetii has 
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often been observed attached to Chaetoceros spp. setae both in experiment cultures and in 

natural environments (Kayser 1970, Rousseau et al. 1994 and own observations). A possible 

explanation to the observed decrease in diatom cell number followed by an increase in P. 

pouchetii could also be the production and release of the cytotoxic Ŭ, ɓ, ɔ, ŭ-unsaturated 

aldehyde 2-trans-4-trans-decadienal (DD) (Hansen & Eilertsen 2007), identified as the most 

toxic component released by P. pouchetii (Hansen et al. 2004). Laboratory work conducted by 

Hansen and Eilertsen (2007) shows that division rates for S. costatum, C. sosialis and T. 

antarctica decreased as concentration of DD increased. However, no conclusions could be 

drawn considering if DD is present in sufficient amounts to influence diatom growth (Hansen 

& Eilertsen 2007) since the methods for quantifying polyunsaturated aldehydes (PUAs) are 

not sensitive enough in field (Casotti et al. 2005). Experiments indicate that diatoms dominate 

over P. pouchetii only when silicate concentrations are above 2 µM (Egge & Aksnes 1992), 

giving P. pouchetii a competetive advantage later in spring bloom.  This can explain the peak 

in diatoms followed by the peak in P. pouchetii, but it can not explain the vice versa 

dominance which also has been observed in early spring in northern Norway (Gaarder 1938, 

Heimdal 1974, Eilertsen et al. 1981b).  

5. Conclusions 

The vertical distribution of phytoplankton showed a trend for Phaeocystis pouchetii to 

dominate at 10m and diatoms at 0m in the three main areas sampled. The highest P. pouchetii 

dominance was observed in 2009 in the Barents Sea, East Finnmark and Vestfjord 

archipelago. Especially high P. pouchetii dominance was observed in East Finnmark. Further, 

P. pouchetii appears more important in East Finnmark and in the southern Barents Sea than in 

the northern Barents Sea and Vestfjord archipelago during present study. In Vestfjord 

archipelago P. pouchetii seemed to be more abundant in northwest, being 

Henningsværstraumen. However, P. pouchetii seemed generally to be more dominating in 

Austnesfjord during the sampling periods. The highest diatom dominance was observed in 

2006 in the Barents Sea and Vestfjord archipelago. Diatoms appeared to be more dominating 

in the Vestfjord archipelago than in the Barents Sea during the sampling periods. However, 

diatoms generally seemed to be more abundant than P. pouchetii in the northern Barents Sea, 

especially in northeast at the ice edge in the years sampled. In the Vestfjord archipelago the 

highest abundance of diatoms seemed to be in northwest (Henningsværstraumen) which also 

was the area with the generally highest diatom dominance in the sampling periods. P. 
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pouchetii was positively correlated to species known for their later appearance in the spring 

bloom in the Barents Sea and East Finnmark, indicating a later appearance of P. pocuhetii. 

Total diatoms (ñTot. Dò) had its three strongest positive correlations to species reported to 

have peak abundance earlier than the species P. pouchetii was positively correlated to, 

indicating that the main species constituting ñTot. Dò blooms earlier than P. pouchetii. In the 

Vestfjord archipelago P. pouchetii was positively correlated to both early and late spring 

bloom species, indicating P. pouchetii to stay abundant throughout the bloom season. As P. 

pouchetii ñTot. Dò had its three strongest positive correlations to both early and late spring 

bloom species in Vestfjord archipelago, indicating the main species constituting ñTot. Dò to 

stay abundant throughout the bloom season. However, according to the physical parameters 

the main species constituting  ñTot. Dò seemed to be more abundant in the early spring bloom 

compared to P. pouchetii in both the Barents Sea, East Finnmark and Vestfjord archipelago. 

Concerning the identity of P. pouchetii, the genetic analyses performed indicated that it could 

also belong to both Phaeocystis cordata and Phaeocystis antarctica. Nevertheless, examined 

from a morphological point of view, the Phaeocystis cell-material collected from the Barents 

Sea in 2007 and 2009 were identified as Phaeocystis pouchetii. 

6. Further research  

It is rather evident that life-history strategies play an important role in the ecosystem as a 

whole. Marcus and Boero (1998) stated that the benthic-pelagic coupling is important in an 

ecological context in enhancing the understanding of ecological patterns of global importance. 

As Eppley (1986) suggested, dormant life-cycle stages may provide the key to understanding 

fluctuations in the abundance of planktonic species. This puts larger focus on biological 

interactions as regulators in addition to the common ñphysics regulates biologyò concepts. For 

more than 100 years scientists have searched for a ñpostulatedò Phaeocystis resting stage, 

unfortunately with no conclusive success (Scherffel 1899, Scherffel 1900). In one attempt to 

find the ñpostulatedò resting stage of Phaeocystis pouchetii, a monoculture was cultivated and 

structures looking like tetraspores were found on the surface of the cultivating-column (pers. 

comment HC. Eilertsen). This bottom stage, possible resting stage, is also mentioned by a 

Russian author more than 40 years ago (Kashkin 1964). However, the nature of an 

overwintering form and the colony-forming cell of Phaeocystis is still unresolved along with 

the factors triggering colony formation (Rousseau et al. 2007). It is well known that a 

significant proportion of marine planktonic diatoms in neritic environments form resting 
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spores (Garrison 1981). When conditions are preferable and deep mixing is present the spores 

reach the euphotic zone and germinate. Experiments have shown that spores may have a 

distinct photoperiodic response, thus day-length may trigger germination of spores and/or the 

onset of growth (Hollibaugh et al. 1981, Eilertsen 1993, Eilertsen et al. 1995, Hansen & 

Eilertsen 1995). How evolution has placed Phaeocystis ñspores germinationò in time and 

space locally will influence competition with diatoms. For the first time a proposed zygote in 

the form of a nonmotile cell was reported for Phaeocystis in this case P. antarctica (Gaebler-

Schwarz et al. 2010). Zygotes are known to form the overwintering life stages as cysts in 

Dinophyceae and akinetes in Pithophoraceae and it might have the same ecological function 

in P. antarctica (Gaebler-Schwarz et al. 2010). These proposed zygotes have been observed 

attached to diatom frustules which may serve as protection against predators (Gaebler-

Schwarz et al. 2010). This I have also observed, both during the cruise to the Barents Sea 

(during present study), in natural samples from Tromsøysundet and in laboratory cultures 

maintained at the Planktonlab. (AMB). This suggests that the proposed zygote might be 

involved in the life cycle of P. pouchetii as well. Eilertsen et al. (1981b) experienced that 

during early spring large amounts of solitary cells (the precursor of the colonial stage) may 

occur ñout of nothingò. This was also observed in Tromsßysundet during my Bachelor theses 

study. At the 15
th
 of March there were no registered P. pouchetii in Tromsøysundet while at 

the 19
th
 of March there were 1.9 x 10

4
 cells l

-1
. P. pouchetii might have been overlooked if 

attached to diatom frustules and when released i.e. at favourable conditions, showed rapid 

growth characteristic for this species. An understanding of ñwhat is favourable conditionsò 

triggering spore germination, colony formation and massive growth in phytoplankton, will 

probably be a big step forward in resolving the questions connected to the variation in relative 

abundance between P. pouchetii and diatoms. 
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Figure 1A: Sea temperatures plotted against station number at 0m, 10m and 50m in the Barents Sea in May 

2006. 
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Figure 2A: Sea temperatures plotted against station number at 0m, 10m and 50m in the Barents Sea in May 

2007. 
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Figure 3A: Sea temperatures plotted against station number at 0m, 10m and 50m in the Barents Sea in May 

2009. 
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Figure 4A: Sea temperatures plotted against station number at 0m, 10m and 50m in East Finnmark in May 2009. 

 



 

88 

 

 T_0
 T_10
 T_5050 55 60 65 70 75 80 85 90 95 100

Station number

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

T
e
m

p
e
ra

tu
re

 (
o
C

)

 

Figure 5A: Sea temperatures plotted against station number at 0m, 10m and 50m in the Vestfjord archipelago in 

April 2006. 
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Figure 6A: Sea temperatures plotted against station number at 0m, 10m and 50m in the Vestfjord archipelago in 

April 2007. Note missing 0m temperature for station 56, values from 5m was used instead. 
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Figure 7A: Sea temperatures plotted against station number at 0m, 10m and 50m in the Vestfjord archipelago in 

April 2009. 
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Appendix B 

Table 1B: An overview showing sampling stations in the Barents Sea in May 2006, 2007 and 2009. 

Year Station Latitude (
o
) Longitude (

o
) Date Time (UTC) 

2006 159 80.13 9.58 10.05.06 07:14 

2006 161 80.84 9.34 10.05.06 14:45 

2006 163 81.55 9.36 10.05.06 20:24 

2006 165 81.31 13.76 11.05.06 03:05 

2006 166 81.48 15.83 11.05.06 06:05 

2006 167 81.73 15.79 11.05.06 12:00 

2006 169 81.77 15.84 11.05.06 19:10 

2006 171 81.73 15.80 11.05.06 23:16 

2006 173 81.73 15.80 12.05.06 03:02 

2006 175 81.73 15.80 12.05.06 06:57 

2006 177 81.66 15.60 12.05.06 11:05 

2006 179 81.15 18.80 12.05.06 19:00 

2006 181 80.69 29.22 13.05.06 06:19 

2006 182 80.92 30.51 13.05.06 13:00 

2006 184 80.88 30.30 13.05.06 16:56 

2006 186 80.90 29.91 13.05.06 21:04 

2006 188 80.90 29.38 14.05.06 00:59 

2006 190 80.85 29.74 14.05.06 05:53 

2006 193 80.02 28.95 14.05.06 14:02 

2006 195 79.60 31.09 14.05.06 20:09 

2006 196 79.07 33.34 15.05.06 02:02 

2006 198 78.30 31.91 15.05.06 07:02 

2006 200 78.30 31.91 15.05.06 13:00 

2006 202 76.56 27.40 15.05.06 19:34 

2007 2 75.51 20.02 10.05.07 18:00 

2007 5 75.54 22.38 10.05.07 22:01 

2007 9 75.51 24.50 11.05.07 02:05 

2007 12 76.46 28.92 11.05.07 11:21 

2007 19 77.94 31.76 12.05.07 06:20 

2007 23 78.02 32.98 12.05.07 12:56 

2007 28 78.08 33.90 12.05.07 21:01 

2007 32 78.07 33.94 13.05.07 01:03 

2007 41 77.98 33.70 13.05.07 10:05 

2007 45 77.98 33.73 13.05.07 13:57 

2007 57 74.93 21.51 15.05.07 05:07 

2007 60 74.24 18.98 15.05.07 11:03 

2007 67 73.87 18.63 15.05.07 17:47 

2007 98 77.19 13.73 18.05.07 07:00 

2007 103 77.78 12.29 18.05.07 12:07 

2007 109 78.21 11.17 18.05.07 17:14 

2007 115 78.69 10.26 18.05.07 23:03 

2009 229 77.99 9.03 15.05.09 02:23 

2009 230 77.72 9.68 15.05.09 09:34 
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2009 231 77.47 10.97 15.05.09 15:58 

2009 232 77.03 11.25 15.05.09 23:00 

2009 233 76.64 13.06 16.05.09 07:08 

2009 234 76.40 14.33 16.05.09 13:05 

2009 236 74.38 19.96 17.05.09 21:38 

2009 237 74.32 19.14 18.05.09 17:26 

2009 238 74.31 15.80 19.05.09 14:18 

2009 239 74.07 15.46 19.05.09 21:56 

2009 241 73.23 16.37 20.05.09 14:25 

2009 242 73.30 19.26 20.05.09 23:49 

2009 243 73.40 22.05 21.05.09 06:38 

2009 244 73.80 24.59 21.05.09 13:30 

2009 245 74.25 26.98 21.05.09 20:09 

2009 246 74.92 28.88 22.05.09 02:55 

2009 247 75.64 29.92 22.05.09 09:26 

2009 248 76.40 30.61 22.05.09 17:05 

2009 249 77.14 31.27 22.05.09 22:59 

2009 250 77.34 30.96 23.05.09 03:35 

2009 251 77.72 30.92 23.05.09 12:38 

2009 257 74.87 27.49 25.05.09 08:34 

2009 258 74.00 27.17 25.05.09 14:17 

2009 259 72.85 26.68 25.05.09 20:57 

 

Table 2B: An overview showing sampling stations in East Finnmark in May 2009. 

Year Station Latitude (
o
) Longitude (

o
) Date Time (UTC) 

2009 260 71.69 26.47 26.05.09 03:57 

2009 261 71.05 26.67 26.05.09 18:32 

2009 262 70.96 29.07 27.05.09 01:33 

2009 263 70.46 31.00 27.05.09 01:45 

2009 264 69.78 30.71 27.05.09 13:38 

2009 265 69.81 30.41 28.05.09 07:03 

2009 267 69.68 30.41 28.05.09 11:03 

2009 268 70.03 29.97 28.05.09 15:37 

2009 270 70.11 28.94 28.05.09 20:43 

2009 271 70.87 26.27 29.05.09 14:58 

2009 272 70.20 25.27 29.05.09 22:32 

2009 275 70.12 25.18 30.05.09 09:08 
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Table 3B: An overview showing sampling stations in the Vestfjord archipelago in April 2006, 2007 and 2009. 

Year Station Latitude (
o
) Longitude (

o
) Date Time (UTC) 

2006 56 68.35 15.99 01.04.06 18:28 

2006 57 68.17 15.28 02.04.06 21:35 

2006 58 68.00 14.52 02.04.06 00:40 

2006 59 67.80 13.78 02.04.06 03:35 

2006 60 67.56 13.27 02.04.06 20:10 

2006 61 68.15 14.20 02.04.06 23:10 

2006 62 68.15 14.20 02.04.06 23:10 

2006 66 68.15 14.20 03.04.06 07:02 

2006 68 68.15 14.20 03.04.06 16:01 

2006 72 68.33 14.73 03.04.06 20:30 

2006 74 68.33 14.73 03.04.06 00:03 

2006 75 68.33 14.73 04.04.06 04:30 

2006 76 68.33 14.73 04.04.06 08:00 

2006 77 68.33 14.73 04.04.06 06:07 

2006 82 67.90 16.26 05.04.06 07:31 

2006 83 67.86 16.39 05.04.06 15:37 

2006 87 67.82 16.48 05.04.06 23:26 

2006 89 67.82 16.48 06.04.06 08:20 

2006 93 68.06 16.13 07.04.06 06:01 

2006 94 68.06 16.13 07.04.06 10:00 

2007 53 68.35 16.00 12.04.07 18:53 

2007 54 68.20 15.19 12.04.07 21:31 

2007 55 68.06 14.39 13.04.07 01:33 

2007 56 67.86 13.65 13.04.07 05:05 

2007 58 68.34 14.73 13.04.07 13:13 

2007 59 68.34 14.73 13.04.07 17:02 

2007 60 68.34 14.73 13.04.07 21:06 

2007 61 68.34 14.73 14.04.07 01:01 

2007 62 68.34 14.73 14.04.07 05:05 

2007 63 68.34 14.73 14.04.07 09:10 

2007 66 68.24 14.20 14.04.07 19:06 

2007 67 68.24 14.21 14.04.07 23:02 

2007 68 68.24 14.21 15.04.07 02:57 

2007 69 68.24 14.21 15.04.07 07:05 

2007 70 68.24 14.21 15.04.07 11:00 

2007 71 68.24 14.21 15.04.07 14:58 

2007 72 67.82 16.48 18.04.07 07:06 

2007 73 67.86 16.39 18.04.07 10:43 

2007 74 67.90 16.26 18.04.07 18:15 

2009 147 68.35 15.99 15.04.09 06:18 

2009 148 68.20 15.29 15.04.09 09:00 

2009 149 68.00 14.51 15.04.09 13:20 

2009 151 67.81 13.78 15.04.09 16:18 

2009 153 67.56 13.28 15.04.09 18:51 

2009 156 68.16 14.14 16.04.09 23:40 
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2009 157 68.17 14.14 17.04.09 03:28 

2009 159 68.16 14.13 17.04.09 07:42 

2009 161 68.33 14.73 17.04.09 23:31 

2009 162 68.33 14.73 18.04.09 03:26 

2009 165 67.82 16.47 19.04.09 06:22 

2009 170 67.87 16.34 19.04.09 15:05 
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Appendix C 

Table 1C: ñcentralò P. pouchetii literature. The list is incomplete and compiled from various sources. 

Aanesen,R.T., Eilertsen,H.C. and Stabell,O.B. (1998) Light-induced toxic properties of the marine alga 
Phaeocystis pouchetii towards cod larvae. Aquat.Toxicol. 40: 109-121.  

Admiraal,W. and Venekamp,L.A.H. (1986) Significance of tintinnid grazing during blooms of Phaeocystis 
pouchetii (Haptophyceae) in Dutch coastal waters. Neth.J.Sea Res. 20: 61-66.  

Aksnes,D.L. and Egge,J.K. (1991) A theoretical model for nutrient uptake in phytoplankton. Mar. Ecol. 
Prog. Ser. 70: 65-72.  

Al-Hasan,R.H., Ali,A.M., Radwan,S.S. (1990) Lipids, and their constituent fatty acids, of Phaeocystis sp. 
from the Arabian Gulf. Mar. Biol. 105: 9-14.  

Anderson,L.J.W. and Sweeney,B.M. (1977) Diel changes in sedimentation characteristics of Ditylum 
brightwelli: changes in cellular lipid and effects of respiratory inhibitors and ion-transport modifiers. 
Limnol. Oceanogr. 22: 539-552.  

Anderson, L.J.W. and Sweeney,B.M. (1978) Role of inorganic ions in controlling sedimentation rate of a 
marine centric diatom Ditylum brightwellii. J. Phycol. 14: 204-214.  

Anderson,P. (1996) Design and Implementation of some Harmful Algal Monitoring Systems. UNESCO, 
Paris.  

Apstein,C. (1904) Die Schatzungsmethode in der Planktonforschung. Wissenschaftlige Meeresunters. 
Abteilung Kiel. Neue Folge, Band VIII: 105 123. 

Armonies,W. (1989) Occurrence of meiofauna in Phaeocystis seafoam. Mar. EcolProg. Ser. 53: 305-309.  
Arrigo,K.R., Robinson,D.H., Worthen,D.L., Dunbar,R.B., DiTullio,G.R., van Woert,M. and Lizotte,M.P. 

(1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern 
Ocean. Science 283: 365-367. 

Atkins,P.W. (1999) Physical Chemistry, Oxford University Press, Oxford.  
Atkinson,L.P., Paffenhöfer,G.-A. and Dunstan,W.M. (1978) The chemical and biological effect of a Gulf 

Stream intrusion off St. Augustine, Florida. Bull. Mar. Science 28: 667-679.  
Bakker,C., Herman,P.M.J. and Vink,M. (1990) Changes in seasonal succession of phytoplankton induced 

by the storm-surge barrier in the Oosterschelde (SW Netherlands). J. Plankton Res. 12: 947-972.  
Bakker,C., Herman,P.M.J. and Vink,M. (1994) A new trend in the development of the phytoplankton in 

the Oosterschelde (SW Netherlands) after the construction of a storm-surge barrier. Hydrobiologia 
282/283: 79 100.  

Bannister, T.T. (1990) Comparison of Kiefer-Mitchell and Bannister-Laws algal models. Limnol. Oceanogr. 
35: 972-979. 

Barnard,W.R., Andreae,M.O. and Iverson,R.L. (1984) Dimethylsulfide and   Phaeocystis poucheti in the 
southeastern Bering Sea. Cont. Shelf Res. 3: 103-113  

Bätje,M. and Michaelis,H. (1986) Phaeocystis pouchetii blooms in the East Frisian coastal waters 
(German Bight, North Sea). Mar. Biol. 93: 21-27.  

Baumann,M.E.M., Lancelot,C., Brandini,F.P., Sakshaug,E. and John,D.M. (1994) The taxonomic identity of 
the cosmopolitan prymnesiophyte Phaeocystis: a morphological and ecophysiological approach. J. 
Mar. Syst. 5: 5-22.  

Bautista,B.R.P. Harris,P., Tranter,R.G. and Harbour,D. (1992) In situ copepod feeding and grazing rates 
during a spring bloom dominated by Phaeocystis sp. in the English Channel. J. Plankton Res. 14: 691-
703.  

Beardall,J., Johnston,A. and Raven,J. (1998) Environmental regulation of CO2-concentrating mechanisms 
in microalgae. Can. J. Bot. 76: 1010-1017.  

Becquevort,S., Rousseau,V. and Lancelot,C. (1998) Major and comparable roles for free-living and 
attached bacteria in the degradation of Phaeocystisderived organic matter in Belgian coastal waters 
of the North Sea. Aquat. Microb. Ecol. 14: 39-48.  

Berges,J.A. and Falkowski,P.G. (1998) Physiological stress and cell death in marine phytoplankton: 
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