
Faculty of Science and Technology
Department of Computer Science

Improving automated underwater ship hull inspection through
incremental learning & uncertainty quantification
in deep learning models

Elias Estefano Gutierrez Riise
Master Thesis in Computer Science - INF-3981

Submitted on June 1st, 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“I think we’re on a new sigmoid curve, and I have no idea how far along that
curve we are right now.”

–Thomas Scott

“Sometimes lose, always win.”
–Old Estonian proverb

Abstract
Rapid technological progress has recently eliminated the necessity of physically
deploying humans for manual underwater ship inspections. Instead, Remotely
Operated Vehicles (ROVs) can now capture and record videos, which humans
can subsequently review. By leveraging annotated data, it becomes possible
to train deep learning models to assist in data exploration. Nevertheless, the
process of manually inspecting recorded videos remains labor-intensive and
time-consuming.

This thesis investigates the potential of training a model on specific types of
images to enhance learning efficiency, so the user has to annotate fewer images.
Specifically, we investigate the two hypotheses. The first one is that a model’s
confidence value can be evaluated to give the user indications on which images
should be annotated to yield the best performance. The second hypothesis is
that a model doesn’t have to be trained from scratch every time new training
data is added, but only for a fraction of the original epochs.

To enhance accuracy, I plan to utilize a pre-trained deep learning model to
identify uncertain images. These images will be reviewed by a human, and
the model will be updated using incremental learning. I propose two distinct
approaches for determining uncertainty. Separate deep learning models will
use each approach to determine the images that will be used for training. I will
compare these models to each other and to models trained on images that are
classified as not uncertain.

By training on both the new and the old training data, I get results that sup-
port my second hypothesis. The findings from the experiments for the second
hypothesis were inconclusive.

This page was intentionally left blank.

Acknowledgements
I would like to express my gratitude to my supervisor, Einar J. Holsbø, for
providing guidance and engaging in productive discussions during the course
of this thesis.

Finally, I would like to thank the collaborators within the LIACi project, funded
by the Research Council of Norway under project No 317854, for giving me this
opportunity to work on the project.

Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xv

1 Introduction 1
1.1 Underwater ship inspections 1
1.2 Background and related work 2

1.2.1 MobileNet . 2
1.2.2 Multi-label classification 2
1.2.3 The LIACi data set 2
1.2.4 Monte Carlo Dropout 3

1.3 Problem statement . 4
1.4 Hypothesis . 5

1.4.1 Phase one . 5
1.4.2 Phase Two . 6
1.4.3 Phase Three . 6

2 Method 7
2.1 The LIACi data set . 7
2.2 Measuring performance with F1 score 8
2.3 The MobileNet architecture adapted to multi-label classification 11
2.4 Picking uncertain images 13

2.4.1 Strategy One: Trusting the neuron outputs 14
2.4.2 Strategy Two: Using Monte Carlo Dropout [2] 15

3 Experiments 17
3.1 Exploring incremental learning for the LIACi data set 17

3.1.1 Train to test data set ratio 18
3.1.2 Experimenting with incremental training 18

3.2 Exploring Monte Carlo dropout to find a viable sample amount 20

vii

viii contents

3.3 Exploring incremental learning on uncertain or non-uncertain
images for the LIACi data set 21
3.3.1 Experiment basis . 21
3.3.2 Experimenting with incremental learning and uncer-

tainty . 22
3.3.3 Experiment dependencies 25

4 Discussion & Results 27
4.1 Experiment results . 27

4.1.1 Exploring incremental learning for the LIACI data set 27
4.1.2 Exploring Monte Carlo dropout to find a viable sample

amount . 40
4.1.3 Exploring incremental learning that also accounts for

uncertainty . 50
4.2 General discussion . 77

4.2.1 Pros and cons by showing the user the model annota-
tions before the user self annotates 77

4.2.2 Using uncertainty for other purposes than training . . 78
4.2.3 No time measurement 78
4.2.4 Future work/further improvements 79

5 Concluding remarks 83
5.1 Conclusion . 84

A UI changes and additions 87
A.1 Storing the image on the server 88
A.2 Live incremental learning 89

A.2.1 Web application interface 89
A.2.2 Changes done to the web application 90

B Incremental training with uncertainty 91

C A closer look at F1 results 97

List of Figures
2.1 The LIACi data set split into a train and test data set and their

label distribution. A blue bar represents the total number of
that label in the data set. An orange bar represents the num-
ber of the corresponding label in the train data set. A Green
bar represents the number of the corresponding label in the
test data set. 8

2.2 This figure shows the same as 2.1, but here the bars are nor-
malized, so each set of colors sums up to one (100%). 9

2.3 An illustration to show how precision and recall are affected
by the model’s predictions. 9

2.4 The model’s architecture illustrated on a high level. It con-
sists of an input layer, a feature extraction part, and a fully
connected part, before the outputs are run through a sigmoid
activation function. The step function is later applied manu-
ally to classify images with labels. This model is reproduced
from Riise [9]. 11

2.5 The left subplot shows the F1 score for different thresholds.
The 𝑥 -axis denotes the threshold value, and the 𝑦-axis de-
notes the F1 score. The right subplot has a 𝑦-axis that denotes
the precision and an 𝑥 -axis that denotes the recall. The graph
shows the precision for different recall values. 12

2.6 Shows the precision and recall for each class. The left subplot
measures the training data set, and the right subplot mea-
sures the test data set. 13

2.7 2D map of the model’s annotations throughout the example
video. 13

2.8 Shows how uncertain images are chosen. The red horizontal
line is the classification threshold at 0.35. The two dashed
lines represent the other interval of the point of uncertainty.
The points are output values from a neuron. Point A and E
is beyond the point of uncertainty, while point B, C, and D is
inside. 14

ix

x l ist of figures

3.1 An illustration of the different expected scenarios from using
training variation one (figure 3.1b) and variation two (figure
3.1c) . 20

4.1 Test training summary for models trained with different frac-
tions of the original epochs. New and old training data was
used to train the models. 28

4.2 Train training summary for models trained with different frac-
tions of the original epochs. New and old training data was
used to train the models. 30

4.3 Train & test training summary for models trained with dif-
ferent fractions of the original epochs. New and old training
data was used to train the models. Legend was not included
as it was too big for the figure. Solid graphs represent train-
ing, and dashed lines represent test. 32

4.4 Test training summary for models trained with different frac-
tions of the original epochs. Only new training data was used
to train the models. 34

4.5 Train training summary for models trained with different frac-
tions of the original epochs. Only new training data was used
to train the models. 36

4.6 Train & test training summary for models trained with differ-
ent fractions of the original epochs. Only new training data
was used to train the models. Legend was not included as it
was too big for the figure. Solid graphs represent training,
and dashed lines represent test. 38

4.7 The four random images used to visualize uncertainty, all
from the LIACi test data set. 41

4.8 Probability density function(s) computed by the mean and
standard deviation from the results achieved with Monte Carlo
dropout applied to figure 4.7a. The `−2𝜎 ≈ 95% is visualized
as a cross. The two latter subplots show the change in 𝜎 & `

as I increase the number of samples of Monte Carlo dropout.
The true labels for the image are "sea_chest_grating" and "an-
ode." . 42

4.9 Probability density function(s) computed by the mean and
standard deviation from the results achieved with Monte Carlo
dropout applied to figure 4.7b. The `−2𝜎 ≈ 95% is visualized
as a cross. The two latter subplots show the change in 𝜎 & ` as
I increase the number of samples of Monte Carlo dropout. The
true labels for the image are "propeller" and "marine_growth." 44

l ist of figures xi

4.10 Probability density function(s) computed by the mean and
standard deviation from the results achieved with Monte Carlo
dropout applied to figure 4.7c. The `−2𝜎 ≈ 95% is visualized
as a cross. The two latter subplots show the change in 𝜎 & `

as I increase the number of samples of Monte Carlo dropout.
The true labels for the image are "anode" and "bilge_keel." . 46

4.11 Probability density function(s) computed by the mean and
standard deviation from the results achieved with Monte Carlo
dropout applied to figure 4.7d. The `−2𝜎 ≈ 95% is visualized
as a cross. The two latter subplots show the change in 𝜎 & `

as I increase the number of samples of Monte Carlo dropout.
The true labels for the image are "defect" and "propeller." . . 48

4.12 Test loss and binary accuracy graphs for the four different
combinations of models trained, together with a regular trained
model’s graph, normalized to the same training length as the
four other models for easier comparisons. 51

4.13 Train loss and binary accuracy graphs for the four different
combinations of models trained, together with a regular trained
model’s graph, normalized to the same training length as the
four other models for easier comparisons. 53

4.14 Train & test, loss and binary accuracy graphs for the four dif-
ferent combinations of models trained, together with a reg-
ular trained model’s graph, normalized to the same training
length as the four other models for easier comparisons. . . . 55

4.15 Test, mean loss and binary accuracy graphs of ten runs, for
the four different combinations of models trained, together
with a regular trained model’s graph, normalized to the same
training length as the four other models for easier comparisons. 57

4.16 Train, mean loss and binary accuracy graphs of ten runs, for
the four different combinations of models trained, together
with a regular trained model’s graph, normalized to the same
training length as the four other models for easier comparisons. 59

4.17 Train & test, mean loss and binary accuracy graphs of ten
runs, for the four different combinations of models trained,
together with a regular trained model’s graph, normalized to
the same training length as the four other models for easier
comparisons. 61

4.18 Test loss and binary accuracy graphs for the four different
combinations of models trained, together with a regular trained
model’s graph, normalized to the same training length as the
four other models for easier comparisons. 63

xii l ist of figures

4.19 Train loss and binary accuracy graphs for the four different
combinations of models trained, together with a regular trained
model’s graph, normalized to the same training length as the
four other models for easier comparisons. 65

4.20 Train & test loss and binary accuracy graphs for the four dif-
ferent combinations of models trained, together with a reg-
ular trained model’s graph, normalized to the same training
length as the four other models for easier comparisons. . . . 67

4.21 Test, mean loss and binary accuracy graphs of ten runs, for
the four different combinations of models trained, together
with a regular trained model’s graph, normalized to the same
training length as the four other models for easier compar-
isons. The models have a budget of maximum thirty-five im-
ages to add to the training data per new image batch. 69

4.22 Train, mean loss and binary accuracy graphs of ten runs, for
the four different combinations of models trained, together
with a regular trained model’s graph, normalized to the same
training length as the four other models for easier compar-
isons. The models have a budget of maximum thirty-five im-
ages to add to the training data per new image batch. 71

4.23 Train & test, mean loss and binary accuracy graphs of ten
runs, for the four different combinations of models trained,
together with a regular trained model’s graph, normalized to
the same training length as the four other models for easier
comparisons. The models have a budget of maximum thirty-
five images to add to the training data per new image batch. 73

4.24 The F1 score evaluation for the four models. The left sub-
plot shows the F1 score for different thresholds. The 𝑥 -axis
denotes the threshold value, and the 𝑦-axis denotes the F1
score. The right subplot has a 𝑦-axis that denotes the preci-
sion and an 𝑥 -axis that denotes the recall. The graph shows
the precision for different recall values. 75

4.25 Shows the same as 4.24, but for the models trained with a
budget. 76

4.26 Illustrates how each image batch would have their image loss
weighed. 79

A.1 2D map showing labels on the y-axis and frame numbers on
the x-axis. A yellow tag means the model is uncertain 87

A.2 Switches added to the web application UI so the user can
annotate images. 88

A.3 Shows how images submitted to the server are stored to-
gether with their annotated labels 89

l ist of figures xiii

B.1 Training summary for loss and binary accuracy for the mod-
els. For each red vertical dashed line, 100 images are eval-
uated using Monte Carlo dropout to find the uncertain/non-
uncertain ones, respectively. The images classified as uncertain/non-
uncertain is then added to the training data set. The model
then trains on the whole training data set for 30% of the orig-
inal 35 training epochs. 92

B.2 Training summary for loss and binary accuracy for the mod-
els. For each red vertical dashed line, 100 images are eval-
uated using "Threshold interval" to find the uncertain/non-
uncertain ones, respectively. The images classified as uncertain/non-
uncertain is then added to the training data set. The model
then trains on the whole training data set for 30% of the orig-
inal 35 training epochs. 93

B.3 Training summary for loss and binary accuracy for the mod-
els. For each red vertical dashed line, 100 images are eval-
uated using Monte Carlo dropout to find the uncertain/non-
uncertain ones, respectively. The images classified as uncertain/non-
uncertain is then added to the training data set. The model
then trains on the whole training data set for 30% of the orig-
inal 35 training epochs. 94

B.4 Training summary for loss and binary accuracy for the mod-
els. For each red vertical dashed line, 100 images are eval-
uated using "Threshold interval" to find the uncertain/non-
uncertain ones, respectively. The images classified as uncertain/non-
uncertain is then added to the training data set. The model
then trains on the whole training data set for 30% of the orig-
inal 35 training epochs. 95

C.1 A closer, more detailed look at figure 4.24, from chapter 4 . 97
C.2 A closer, more detailed look at figure 4.25, from chapter 4 . 98

List of Tables
2.1 The distribution of classes annotated in images compared to

classes not annotated in images in the train and test data set. 8

3.1 The four variations of models trained. 24

B.1 The four variations of models trained. 91

xv

1
Introduction
In this section, I will discuss what has been previously done in underwater
ship inspections (including my previous project), some of the challenges still
faced, and how I plan to contribute to machine-automated underwater ship
inspections.

1.1 Underwater ship inspections

A ship’s hull, propeller, bilge keel, and all other underwater components require
regular inspections to ensure proper functioning. There are various inspection
methods available. However, visual observation and human perception are still
predominantly used. These inspections can be carried out underwater or in
dry docks on land.

Research in the underwater ship inspection domain is an ongoing topic. Imple-
menting computer vision technology, pre-processing images and videos, and
multi-label classification can be highly beneficial to streamline the reporting
process and interpret data efficiently obtained during underwater ship inspec-
tions. Such tools can assist inspectors in efficiently browsing data and generat-
ing comprehensive reports.

1

2 chapter 1 introduction

1.2 Background and related work

1.2.1 MobileNet

This subsection is paraphrased from my capstone project Riise [9].

Howard et al. [4] present a deep neural network called MobileNet. The model
focuses on being lightweight while maintaining high performance. It does this
mainly by using depthwise separable convolutions. When conducting bench-
marks, different numbers are compared, including parameters on the Ima-
geNet dataset for MobileNet against VGG-16 Simonyan and Zisserman [10]
and GoogLeNet Szegedy et al. [11]. They find that GoogLeNet has 50% more
parameters, and VGG-16 has almost 33 times more parameters. They both
only perform about 1% better than MobileNet. Howard et al. [4] also com-
pare their model to lightweight models, Squeezenet Iandola et al. [5] and
AlexNet Krizhevsky, Sutskever, and Hinton [7], and find that MobileNet per-
forms around 3% better.

1.2.2 Multi-label classification

This subsection is paraphrased from my capstone project Riise [9].

Wang, Raju, and Huang [12] use multi-label classification on videos of laparo-
scopic surgeries to recognize in which surgical phase they were by looking
at the tools present. They use VGGNet and GoogLeNet for classification and
ensemble learning to counteract overfitting in their relatively small data set.
Sigmoid cross-entropy is used to calculate the loss, as it allows for multi-label
classification. To split their data set, they use a validation split of 10%.

1.2.3 The LIACi data set

Computer vision and supervised training of models rely on labeled data, both
the model’s classification and feature extraction part. Today, one of the most
popular datasets comes from the ImageNet database [1].

ImageNet contains 1000 classes of nouns and over a million images, spanning
everything from animals to vehicles to various fruits and much more. Because
of this, a network can learn many different features by training on such a broad
dataset.

However, few underwater image data sets exist, and even fewer underwater
ship data sets. Some of the underwater data sets that exist depict sea creatures

1.2 background and related work 3

with unrealistic low amounts of noise compared to the data we have to work
with. Because there is a lack of other data sets, I am using the LIACi data
set from Waszak et al. [13], created and annotated by SINTEF. The data set
consists of 1893 images of ships underwater, taken from videos filmed by an ROV.
Each image in the dataset is labeled with up to ten labels and corresponding
binary segmentation masks. SINTEF’s underwater domain data set is disclosed
publicly.

1.2.4 Monte Carlo Dropout

Monte Carlo methods, such as Monte Carlo integration, use random sampling
and estimations instead of more common analytical methods to solve various
problems. In this project, I will use Monte Carlo dropout to estimate uncer-
tainty.

Gal and Ghahramani [2] state that using machine learning models for regres-
sion and classification has become quite popular. However, the model in it-
self has no way of measuring its uncertainty. Bayesian models provide ways
to estimate prediction uncertainties in machine learning models. Bayesian
methods provide uncertainty measures of predictions utilizing a prior proba-
bility distribution on prediction values. However, specifying priors is tricky, but
we can approximate Bayesian uncertainty estimates by running models with
dropout.

The uncertainties can be calculated with the existing model and weights with-
out further training ormanipulating weights as long as they consist of a dropout
layer. This is beneficial as many popular networks already use dropout layers,
and networks don’t have to be redesigned at the expense of their complexity
or accuracy. If the network has a dropout layer, Monte Carlo dropout can be
performed at any time, stochastically through forward passes of the same data.
This also allows for concurrent sampling (horizontal scaling).

Many models use datasets such as MNIST to evaluate their performance. Gal
andGhahramani [2] show improvements in RMSE and predictive log-likelihood
and how to apply Monte Carlo dropout to deep reinforcement learning.

Later, Gal and Ghahramani [3], the appendix to Gal and Ghahramani [2], dis-
cusses the insights and applications for Monte Carlo dropout. They suggest it
can show that a model isn’t calibrated correctly if it contains a dropout layer.
Larger datasets tend to have increased uncertainty. To fight this, the uncertainty
can be scaled linearly to compensate for the large dataset.

Gal and Ghahramani [3] evaluate uncertainty by looking at the top and bottom

4 chapter 1 introduction

percentile to determine if it is an uncertainty of significance. To illustrate, if a
model has a standard deviation ranging from 0.1 to 1 and a new data sample has
a standard deviation from the mean of 3, then it’s considered to be uncertain.
However, if the model had a standard deviation ranging from 5 to 10, a data
sample with a standard deviation of three would be regarded as non-uncertain,
as it is in the lower percentile of uncertainties. There will (almost) always be
some uncertainty. It’s more of a matter of how significant the uncertainty is
and how it compares to the other uncertainties.

They also propose Monte Carlo dropout as an application where the model
predicts on an image with "high" uncertainty. It may be necessary for a human
to look at the image and manually annotate it.

1.3 Problem statement

As I state in Riise [9], ROVs already record footage, and humans annotate them.
In my last project, I created and trained a lightweight deep neural network
that could multi-label classify images in a video and present it to the user.
Although the model’s performance was acceptable, the data set it was trained
on can’t be classified as "large." Therefore it would be interesting to see if
making the dataset bigger, broader, and more balanced (as some classes are
underrepresented compared to others) will positively affect the model. But
retraining a model from scratch is time-consuming and tedious, especially on
weaker hardware, and may also be costly if external cloud services are used
instead of internal hardware. Getting a hold of annotated data for supervised
learning is one of the more difficult tasks, as it is manual labor no machine can
do. For every image annotated, a human has checked the labels as present. But
among many possible images to annotate, are there images from which the
model will benefit more than others? Can we use the already-trained model to
help us classify these images?

In this project, I will explore these questions by retraining an already trained
model on new data (from the model’s point of view) and exploring different
types of training data. To do this, I will first find images themodel is uncertain of
using various techniques. I will then use active learning to let humans annotate
these images, and lastly, use incremental learning to retrain the model further.
Since time is of the essence, I will not use actual new data, as that would require
a human to annotate new images. I will instead split up the training data set I
have to simulate newly annotated data.

1.4 hypothesis 5

1.4 Hypothesis

In this project, I investigate two hypotheses: The first is that the model’s con-
fidence value can be evaluated somehow, not by a human but by a machine,
to give the user indications on which images should be annotated to yield the
best learning per image ratio. The second hypothesis is that there is no need
to train a model from scratch every time, as it can be trained for just a fraction
of the original training epochs. To sum up, the nature of this project has three
phases.

1.4.1 Phase one

Firstly, use the pre-trained model to classify which images it thinks would be
valuable to be trained on. Since the model can’t know which labels are true but
only annotate images with labels it thinks to be true, I have to use the model in
another way to help the user pick out new images to annotate. The hypothesis
is based on the fact that the model doesn’t simply spit out true or false for
each label but gives a confidence value between zero and one (because of the
sigmoid function). A step function then evaluates the output values to decide
if an image is annotated with the respective labels. But since the step function
is non-continuous and provides no helpful derivative, multiple sigmoid output
values map to the same step function value. However, the model may not have
the same confidence for one annotated label as for another.

Uncertainty in deep neural network models is a well-known concept. Uncer-
tainty is measured per image and may also be higher for specific classes in
general. And since uncertainty says something about the robustness of a model,
it’s natural that we want our model to be as robust as possible. If our model
is uncertain of an image, it probably will be so for a similar image in the fu-
ture. So if we could train the model on that image, our model will be more fit
to handle similar images in the future, making it more robust as it fills in its
knowledge gaps.

This is compared to doing the opposite, annotating images that the model is
already certain of, which should make the model more sure of what it already
knows, removing the focus of trying to improve robustness. Even thoughmodels
have a specific set of classes they are trained to recognize, they don’t want to
learn how to identify every class in a particular way. They want to learn to
identify each class in many ways. Not relying on a single feature type for a class
makes a model robust to change in images. Training a model on non-uncertain
images should only fit the model tighter to the features it already knows well.
Training a model on uncertain images should make the model fit more loosely
to the features it knows but fit better to a broader array of features, making it

6 chapter 1 introduction

more robust.

Images annotated as false negatives should stem from the model not picking
up the class’ feature. In contrast, false positives should stem from the model
picking up features related to classes other than where they belong. False
negatives should therefore be fixed by broadening the model’s fit, and this will
hopefully be achieved by only training on images the model finds uncertain.
There should also be less overfitting in a model trained on uncertain images,
as the model tries to learn from images with new features. A model trained on
non-uncertain images indicates training on images in which the model already
recognized features. This should lead to overfitting on these images/features
and worsening in real-life cases where features vary.

1.4.2 Phase Two

The second phase involves the user annotating images manually. Optimally, the
model guides the user to annotate images more beneficial to the model than
others.

1.4.3 Phase Three

Lastly, the user wants to use the newly annotated images to improve the model.
Of course, the model has to be trained, but how? The second hypothesis is
that the model must not be trained from scratch. Acceptably equal test loss
and accuracy results should be achieved as if the model was trained on the
same images from scratch. Training the model on only the newly annotated
images may lead to overfitting too much on the new data. However, simply
adding them to the old training data should also preserve the old features.
Adding new data to the old data also means the model is trained on old data
many more times. This may probably lead to overfitting of the older training
data.

2
Method
In this section, I will describe the various parts of the implementation and
methods done in this master’s thesis.

2.1 The LIACi data set

In this project, I will use the LIACi data set, but I will not use the binary seg-
mentation masks provided in the data set, as segmentation is not what I am
trying to achieve in this work. I will instead use the multi-labeled images in
the data set, as in my previous project Riise [9].

The data set is split into a test and train data set. The validation split is done
at 10%, leaving 190 images in the test data set and 1703 images in the training
data set. As seen in table 2.1, the data set is unbalanced annotation-wise. It is
skewed heavily toward "false" annotations, with 11883 (77.6%) being false of
the possible 15327 annotations.

The label distribution used to train the model can be seen in figure 2.1, and the
labels’ ratio compared to each other can be seen in figure 2.2. The label "ship
hull" has been removed as it’s irrelevant to this model. It isn’t interesting to
know if the ship hull is in the frame, as it will be present for most frames.

7

8 chapter 2 method

Train Test Train
& Test Train (%) Test (%) Train &

Test (%)
False 11883 1335 13218 77,5% 78,1% 77,6%
True 3444 375 3819 22,5% 21,9% 22,4%
Sum 15327 1710 17037 100% 100% 100%

Table 2.1: The distribution of classes annotated in images compared to classes not
annotated in images in the train and test data set.

seachestgrating

paintpeel
overboardvalve

defect
corrosion

propeller
anode

bilgekeel
marinegrowth

Labels

0

200

400

600

800

Nu
m

be
r o

f i
m

ag
es

 in
 e

ac
h

cla
ss

417

888

232

76

211

487 516

181

811

370

797

214

65

197

434 464

166

737

47
91

18 11 14
53 52

15
74

All images
Train images
Test images

Number of images for each class in the whole LIACi dataset

Figure 2.1: The LIACi data set split into a train and test data set and their label distri-
bution. A blue bar represents the total number of that label in the data set.
An orange bar represents the number of the corresponding label in the
train data set. A Green bar represents the number of the corresponding
label in the test data set.

2.2 Measuring performance with F1 score

The F1 score [8] is a performance measurement that measures a model’s ac-
curacy using precision and recall, illustrated in 2.3. Precision is measured by
taking the ratio between the correctly predicted positives and the total posi-
tives predicted, as in eq. 2.1. Recall is measured by taking the ratio between the
correctly predicted positives and the total true positives, eq. 2.2. Higher preci-
sion may indicate that the model has been very picky, only making a positive

2.2 measuring performance with f1 score 9

seachestgrating

paintpeel
overboardvalve

defect
corrosion

propeller
anode

bilgekeel
marinegrowth

Labels

0.00

0.05

0.10

0.15

0.20

0.25

Pa
rti

tio
ni

ng
 o

f i
m

ag
es

 in
 e

ac
h

cla
ss

All images
Train images
Test images

Partitioning of images for each class in the LIACi dataset

Figure 2.2: This figure shows the same as 2.1, but here the bars are normalized, so
each set of colors sums up to one (100%).

(a) Model predictions illustrated. (b) Precision and recall’s math illustrated.

Figure 2.3: An illustration to show how precision and recall are affected by the model’s
predictions.

prediction when the output neuron confidence is high, while recall is the oppo-
site. A model’s recall score isn’t penalized for making false positive predictions,

10 chapter 2 method

only when missing out on making positive predictions. Having 100% precision
and 100% recall means that you have a perfect model, always predicting posi-
tive when positives are presented and never when they’re not. However, this
is rarely the case, as with most machine learning models and measurements.
The F1 score is the harmonic mean between these two measurements, and a
higher F1 score is preferable (the score may be a maximum of one).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
(2.1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(2.2)

𝐹1 =
2

𝑅𝑒𝑐𝑎𝑙𝑙−1 + 𝑅𝑒𝑐𝑎𝑙𝑙−1
= 2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑡𝑝
2𝑡𝑝 + 𝑓 𝑝 + 𝑓 𝑛

(2.3)

The predictions the model makes do not have to be on images. It can be used for
measuring a model’s accuracy when placing bounding boxes. Higher precision
for every pixel inside the bounding box that is the object and higher recall for
every pixel of the object that is inside the bounding box. In the context of this
project, it is used to evaluate a multi-label classification model. Since the model
may predict anywhere from 0 to 𝑛 𝑙𝑎𝑏𝑒𝑙𝑠 positives per image, the precision,
recall, and F1 score may be measured for one ormore images the model predicts
on. The model uses a step function with a classification threshold 𝑡 at 0 < 𝑡 < 1
to classify a label as positive or negative. Setting 𝑡 closer to 1 effectively raises
precision, and setting 𝑡 closer to 0 raises recall. To find the optimal F1 score,
the classification threshold may be moved between 0 < 𝑡 < 1 to compute the
different F1 scores. The classification threshold yielding the highest F1 score is
then used to classify images further.

Measuring the F1 score may give deeper insight than simply measuring straight-
up accuracy because the F1 score doesn’t reward predicting positive falses.
For example, if a model predicts everything as false on the LIACi data set, its
accuracy will be 77,6%. But calculating precision and recall would compute
the value zero, implying an F1 score of zero. A model predicting everything as
true would yield an accuracy of 22,4%, a precision of 0,224, a recall of 1, and
an F1 score of 0,366.

2.3 the mobilenet architecture adapted to multi-label
classification 11

Figure 2.4: The model’s architecture illustrated on a high level. It consists of an input
layer, a feature extraction part, and a fully connected part, before the
outputs are run through a sigmoid activation function. The step function
is later applied manually to classify images with labels. This model is
reproduced from Riise [9].

2.3 The MobileNet architecture adapted to
multi-label classification

For this project, I needed a lightweight convolutional neural network model. I
chose MobileNet as a base for this task, as it is fast and has fewer parameters
than largermodels, such as VGG16. MobileNet, right off the shelf, is a multi-class
classification model, optionally pre-trained on the ImageNet data set. However,
for my project, I need a multi-label classification model, as I need to be able to
classify more than one label per image.

The solution was to switch out everything after the feature extraction part of
the network with my implementation. My implementation, seen in figure 2.4,
is designed much like the original MobileNet, with the main differences being
in the output part of the network. MobileNet uses a softmax activation layer
which is common among multi-class classification models. However, this will
not work for a multi-label classification model as softmax creates a probability
distribution among the possible outputs, not allowing multiple labels to have
predictions close to one (100%).

Instead, I chose the sigmoid activation function as the output, allowing multiple
neurons to have close to one as their output. Using sigmoid also allows every
class to be (close to) zero, while softmax will always yield the same value if
the output neuron values are almost equal. For example if a model predicts no
labels in the image, the softmax value can easily be computed with eq. 2.4. My
model has nine outputs, so softmax would give each output neuron a value of

12 chapter 2 method

1/9.

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑛𝑒𝑢𝑟𝑜𝑛𝑠) =

1
𝑛_𝑜𝑢𝑡𝑝𝑢𝑡𝑠 , if 𝑣𝑎𝑟 (𝑛𝑒𝑢𝑟𝑜𝑛𝑠) ≈ 0

𝑒𝑧𝑖∑𝑛_𝑜𝑢𝑝𝑢𝑡𝑠
𝑗=1 𝑒

𝑧𝑗
, otherwise (2.4)

As I’ve mentioned, MobileNet can opt-in for the pre-trained ImageNet weights.
ImageNet is a very different data set (not the same classes and only a single
class per image), but using its weights from the feature extraction part of the
model is still beneficial, as it’s highly trained to extract features. I could have
also used the ImageNet weights from the fully connected part, but since I use
a different data set, I want to learn how to classify these features from scratch.
I also freeze the weights in the feature extraction part to avoid the overfitting
the much smaller LIACi data set will eventually cause. Binary cross-entropy is
used to compute the loss.

0.0 0.2 0.4 0.6 0.8 1.0
Activation threshold

0.0
0.2
0.4
0.6
0.8
1.0

F1
 sc

or
e

F1 score graph

F1 scores
F1 score maxima

0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision Recall Curve

Precision Recall Curve
Best F1 score

F1 score evaluation, Best F1 score at threshold = 0.35,
F1 score = 0.7601, precision = 72.18%, recall = 80.27%

Figure 2.5: The left subplot shows the F1 score for different thresholds. The 𝑥 -axis
denotes the threshold value, and the𝑦-axis denotes the F1 score. The right
subplot has a 𝑦-axis that denotes the precision and an 𝑥 -axis that denotes
the recall. The graph shows the precision for different recall values.

After training the model, I compute the F1 score from the test data set to deter-
mine an optimal classification threshold. I,Riise [9],find that using 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
4× 104 and 𝑒𝑝𝑜𝑐ℎ𝑠 = 35 yield the best results. As shown in figure 2.5, the best
F1 score on the test data set was achieved with a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.35. The recall
and precision per class with that threshold can be seen in figure 2.6.

2.4 picking uncertain images 13

seachestgrating

paintpeel
overboardvalve

defect
corrosion

propeller
anode

bilgekeel
marinegrowth

0.00
0.25
0.50
0.75
1.00

Precision & Recall for each
category of the train images in the LIACi dataset

Precision
Recall

seachestgrating

paintpeel
overboardvalve

defect
corrosion

propeller
anode

bilgekeel
marinegrowth

0.00
0.25
0.50
0.75
1.00

Precision & Recall for each
category of the test images in the LIACi dataset

Precision
Recall

Precision and recall on the LIACI data set using threshold = 0.35

Figure 2.6: Shows the precision and recall for each class. The left subplot measures
the training data set, and the right subplot measures the test data set.

2.4 Picking uncertain images

In my previous work Riise [9], the model proposed can already annotate images
with multiple labels. The classification threshold was calculated using the F1
score and ended at 0.35.

The previous work includes a web server where the user can upload their under-
water ship video to the web application, which the model then classifies. A 2D
map of the model annotations throughout the video is created and displayed to
the user, as shown in figure 2.7. However, this map only shows the annotations’
boolean values, not the predictions’ degree of uncertainty. The model does not
give the user information about how uncertain it is. If the output neurons of
an image are above or below the classification threshold ultimately determines
if the image is annotated with the various labels.

Figure 2.7: 2D map of the model’s annotations throughout the example video.

The web application’s back end uses the trained model to predict all the frames
from the video. However, these images aren’t kept in memory but discarded
for new ones, and in the end, only the predictions are left. After this process is
done, the task of finding uncertainties is issued.

In this work, I investigate two strategies to determine which images the model
is uncertain of. Both strategies will have varying outputs dependent on where

14 chapter 2 method

the classification threshold is set.

2.4.1 Strategy One: Trusting the neuron outputs

Images are classified as uncertain if they contain one or more output neurons
with their value within an interactively chosen interval, as demonstrated in
figure 2.8. The pros of this method are that every image can be evaluated
as uncertain (or not) with a simple arithmetic statement performed on every
output neuron, shown in eq. 2.5. However, the neuron’s output confidence
value doesn’t necessarily translate to how certain the model is.

Figure 2.8: Shows how uncertain images are chosen. The red horizontal line is the
classification threshold at 0.35. The two dashed lines represent the other
interval of the point of uncertainty. The points are output values from a
neuron. Point A and E is beyond the point of uncertainty, while point B,
C, and D is inside.

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑠𝑖𝑧𝑒

2
> |𝑛𝑒𝑢𝑟𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 | (2.5)

2.4 picking uncertain images 15

2.4.2 Strategy Two: Using Monte Carlo Dropout [2]

Monte Carlo dropout is a way of measuring uncertainty that also provides the
degree of uncertainty and doesn’t solely look at the output value of the last
neurons.

OpenCV is again used to fetch frames from the video one by one. But in com-
parison to earlier, when the model annotates the video, now only one frame is
kept in memory at a time. This is because the model has two different methods
(as the model is a Python object) for making predictions. The one used in the
video annotation part is optimized for GPU and larger batches of images, while
the one used in this task is less scalable but easily allows for using "training
mode."

Making predictions with the model’s "training mode" turned on effectively ac-
tivates the dropout layers even though the network isn’t training (performing
backward propagation). As discussed earlier, using dropout layers can be seen
as using subnetworks of the entire network to make predictions. Predicting an
image just went from deterministic to non-deterministic.

The different subnetwork predictions are sampled 𝑛 amount of times from an
image. The predictions can then compute each class’s mean, variance, and
standard deviation for the classes annotated as present by the original predic-
tion. The mean is sometimes lower (but rarely also higher) than the original
prediction as the network can’t use its "full compute power" to compute the
output. However, it’s important to note that this isn’t always true.

Only classes annotated as true are classified for uncertainty measurements as
neurons rather annotate a class as false than true. If the model annotates a
class as true, it shows that weights in the model have picked up on something
in the image, and I want to measure how uncertain it is in that prediction.
Therefore, the original image prediction is required to know if an image is
viable to be computed uncertainty for. The uncertainty cannot be computed
when the image is fetched the first time, as predictions aren’t computed before
a whole batch of images is retrieved. And also the fact that another prediction
method is used.

The mean and standard deviation can now estimate a probability density func-
tion (gaussian curve) for labels annotated in the original prediction. A similar
approach to strategy one is currently utilized. If the threshold is below ≈ 95%
of the Gaussian distribution, the prediction is classified as "uncertain," and so
is the whole frame, also shown in eq 2.6. Computing the probability density
function isn’t necessary, but it’s an excellent way to visualize the mean and
variance (standard deviation) among the samples.

16 chapter 2 method

` − 2 × 𝜎 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (2.6)

Uncertainty may refer to either strategy unless otherwise stated.

3
Experiments
For all experiments, 10% (190 of 1893 images) of the LIACi data set was used as
test data, while the remaining 90% (1073 of 1893 images) was used as training
data.

3.1 Exploring incremental learning for the LIACi
data set

I performed experiments to check whether incremental learning works for the
LIACi data set and to test my hypothesis that a model doesn’t have to be trained
from scratch. The model is trained initially on a data set. Still, as users annotate
images from the video uploaded to the website, we want to use these images
to enhance our model’s accuracy further.

The naive solution to this problem is to add the newly annotated images to our
data set and train a new model. However, training a "fresh" network presents
multiple pain points. Both the code and the (LIACi) data set are needed to
train a model from scratch. In the case of this project, where the user might
have to host the web server locally, it means the user is running on inferior
hardware, leaving for an even longer training time than if the service was
hosted on an external server. The user’s computer will most likely also be
out of commission for the duration of the training as training a network is

17

18 chapter 3 experiments

resource-heavy, hardware-wise. Today many opt for cloud services for heavier
computational duties, renting external hardware instead of buying their own
internally. However, the price often scales with the number of arithmetics to be
computed.

The solution I propose to solve these problems partially is to apply incremental
training. I write partially because even though the model doesn’t have to be
trained from scratch, with my proposed solution, it still has to be trained for
a couple of epochs. But it will certainly relieve some of the training if my
hypothesis is true.

To simulate the scenario where a user annotates images, I use the LIACi data set
and partition it into different image batches. The first image batch is the largest
(800 images) and is initially used to train the model. The rest of the batches
are smaller and of equal size (100 images) and fed to the program/model
individually to simulate the user annotating new batches of images.

3.1.1 Train to test data set ratio

Instead of creating and training a new model from scratch, I add the newly
annotated images to the old training data set to form an even larger one.
However, I still keep the testing data set intact to have more comparable results.
Changing the test data set as new images are added to the training data set may
be a good idea when the model is set in a more production-like environment,
where the model follows an exact method. However, in this project, the goal
is to find out if there is a definitive better way to keep improving a model. If
the already trained model can learn new knowledge without training it from
scratch, that is also a plus.

3.1.2 Experimenting with incremental training

This experiment is done to see if incremental training is feasible on the LIACi
data set, and if it is, is there an optimal way to do it? The test was done with
two different methods. The first method only trains on the newly added data,
while the second method trains on all the training data every time.

Since the experiment is supposed to simulate a trained model, a reasonably
large portion (800 images) of the training data set is used to train the initial
model. 800 images were used as it is enough to roughly train the model to
an acceptable accuracy, while still having 900 images left to experiment with.
Adding too many images to the first image chunk leaves little room for improve-
ment and fewer images to improve from. Adding too few images to the first

3.1 exploring incremental learning for the liaci data set 19

image chunk will leave the model with little data to train on, leaving us again
with a model that doesn’t know anything before further training starts. As I
only have a given set of images to work with, finding a good balance of initial
and additional data added to the model’s knowledge is essential.

The model is trained for the same number of epochs as the original model. The
amount is based on the number of epochs for the model to converge in Riise
[9]. This is done to simulate having an already trained model fitted to the
training data set before adding new knowledge to the model. The remaining
original training data set is split into (close to) equal chunks so the model can
incrementally train on them. The two methods decide how the model trains on
these chunks. Since the model is already trained, it is only trained for a fraction
of the original epochs. Training the model on all the data for the same amount
of epochs gives no incentive to train on it incrementally, and we might as well
have just trained a new model.

It’s crucial to find the perfect balance when deciding the fraction of the initial
epochs to train the model incrementally on. If too many epochs are used to
train on the new data, more time will have elapsed, and overfitting may occur.
If too few epochs are used, less time and processing power are necessary, but
there is a risk of the model being unable to fit the new data properly, also known
as underfitting.

Method one

The model trains on significantly fewer images in method one than in method
two. As time complexity is an aspect, it is valuable to find out if it is feasible to
only train on the newly added images. Since it has fewer images to train on, it
also suggests that it can be trained for a larger fraction of the original epochs
while still keeping the time complexity low compared to regular training.

If method one is feasible, it would also mean that a model can be firstly trained
by more powerful hardware and then shipped out to the user. The user would
then only need the model itself and not all the training data it previously has
been trained on. The LIACi dataset isn’t the largest as of now, but it is still
significantly larger than just the model. And if the data set grows, it is even
more incentivized and convenient only to ship the model to the users. However,
fitting a model to data is complicated, and tuning hyperparameters to get it
right is just as tricky. Figure 3.1 shows a scenario where an already-fitted model
(figure 3.1a) is overfitted on the new data (figure 3.1b) because it completely
ignores the old training data. The best scenario (figure 3.1c) is if the new and
the old training data model fittings are preserved throughout the training. This
is why I also include method two.

20 chapter 3 experiments

(a) A separating plane fitted
by a support vector ma-
chine.

(b) Worst case: an already
trained support vector ma-
chine only trained on new
data (colored data) to the
point of overfitting.

(c) Best case: the same
support vector machine
trained properly on train-
ing data and achieves a
good fit.

Figure 3.1: An illustration of the different expected scenarios from using training
variation one (figure 3.1b) and variation two (figure 3.1c)

Method two

Method two will train on a lot more images than method one. Every time new
images are annotated, the data set grows, and the model has more images it
must train on. The advantage of this method is that every image is trained
on, and the situation illustrated in figure 3.1b is less likely to happen because
not only the new training data is trained on, but also the old. The model will,
therefore, not potentially be skewed all the way towards the new data points
but instead try to fit every data point. The ideal case is if the model can adapt to
both the new and the old data, as illustrated in figure 3.1c. However, the fit may
be more difficult or even impossible. Sometimes data points aren’t separable,
at least not in the given dimension. Since all the old training data are trained
on when adding new data, there may be more overfitting in the model towards
the training data. And every time a new batch of data is added, the model
trains on the old data again, causing more overfitting.

3.2 Exploring Monte Carlo dropout to find a
viable sample amount

I did a small experiment on four random images from the LIACi data set to
see how many samples were required to achieve a stable ` and 𝜎 . I sampled
the four images 350 times each, with a dropout rate of 10%. The samples were
done 350 times, as it’s more than enough to ensure convergence.

3.3 exploring incremental learning on uncertain or non-uncertain
images for the liaci data set 21

3.3 Exploring incremental learning on uncertain
or non-uncertain images for the LIACi data
set

I did experiments to check if the model could help the user annotate more
efficiently and to see whether my hypothesis that using the model’s confidence
value to help the user annotate images is valid. By efficiently, I mean having
the model classify images the user may annotate to dividend the most in terms
of performance per image annotated.

In a real-life scenario, the model is initially trained on a data set before it is set
to use for classification. The model already has the purpose of helping the user
browse the video by annotating the whole video and visualizing it to the user, as
shown earlier in figure 2.7. But now, the functionality for the user to annotate
frames from the video has also been added to open up the availability for some
form of active learning. Having the user annotate new images is necessary
because even though the model can classify and annotate videos, there is no
reason to believe the model is 100% correct in its predictions. Like the human
brain, the model can almost always be trained further on new data to achieve
new knowledge. It’s hard to say exactly when a model is sufficiently trained
as it will likely never be perfect, but aiming for satisfactory performance on
the test data set is a start. Since the model used in this project is a multi-
label classification model, another measurement can be done by measuring its
precision and recall to calculate its F1 score. Even though the F1 score cannot
be directly used to train the model (as it has no direct gradient), it still provides
valuable insight into its performance.

Annotating images requires humans and takes time, and time is always money.
For every image in the data set, a human has inspected it and checked the
correct boxes for the labels present in the image. In the LIACi data set, even
segmentations are included making it an even more time-consuming task. Find-
ing images worth labeling using these methods is only possible if a trained
model or a data set exists to initially train the model. Since the LIACi data set
exists, I can train a model that can be used to find new images to annotate.
The challenge is finding images the model will benefit from the most.

3.3.1 Experiment basis

This experiment uses knowledge acquired from the earlier experiment, where I
test different ways of utilizing incremental learning. In short, I tested incremen-
tal learning with training on the new training data and all the training data. In
the later chapters, I will show the results from the testing and more thoroughly

22 chapter 3 experiments

discuss and elaborate on the results. For now, the reader needs to know that
I will use the method where the model trains on all the data for 30% of the
original epochs. This also goes for the experiment where I try to find a viable
number of samples for Monte Carlo dropout. In later chapters, I explain the
results, but for now, the reader needs to know it is a hundred samples.

Similar to the earlier experiment, a model is trained from scratch, with all the
new data only being added to the training set. Again, in an environment where
this is put into production, it is expected that more images will be added all
the time. Adding some images to the test data set out of the annotated ones is
probably a better idea to broaden the test data set. Still, in this experiment, the
goal is to find out if there is a good way to use model inference to find images
more beneficial for further model improvements.

3.3.2 Experimenting with incremental learning and
uncertainty

This experiment is done to see if uncertainty and incremental learning can be
tied to more effective learning on the LIACi data set. The experiment was done
with two different strategies for measuring uncertainty. The strategies were
also tested by only training on uncertain or non-uncertain images. Lastly, the
same experiments were done with an image budget.

This experiment should also simulate that I start with an already trained model.
Since I only have the LIACi data set, it is again split into different chunks, a
larger one (800 images) and the rest equally small (100 images). The model
is initially trained on the large chunk for the same number of epochs as it
took the model to converge on the whole LIACi data set in [9]. This is to
have a model somewhat fitted to the training data before classifying images
as uncertain/non-uncertain and adding new data to the model’s dataset. The
remaining smaller chunks of data are now fed to the model to run inferences
on them. They are fed to the model individually so that it may evaluate them.
The two strategies for measuring uncertainty now dictate which images are
classified as uncertain and non-uncertain.

Strategy one: Trusting the neuron outputs

I have already described the two ways of measuring uncertainty in earlier
sections. However, I will reiterate them and describe how I’ve implemented
them in this experiment. The first one measure uncertainty by defining an
interval with the classification threshold in the middle. A single inference is
run on the image to compute if an image is uncertain. If the absolute difference

3.3 exploring incremental learning on uncertain or non-uncertain
images for the liaci data set 23

between the model’s output value and the classification threshold is lower than
the interval value, as shown in eq. 2.5, the image is classified as uncertain.
Note that this method does not say anything about the degree of uncertainty.
It simply gives a binary yes or no if a class is uncertain in an image. However,
it is possible to quantify uncertainties in an image as multiple classes may
be within the threshold. Therefore uncertainties in an image may be 0 ≤
𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑖𝑒𝑠 ≤ 𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠.

Strategy Two: Using Monte Carlo dropout

The second strategy computes uncertainty by using Monte Carlo dropout,
which has also been described earlier. Monte Carlo dropout is a way of mea-
suring uncertainty that also provides the degree of uncertainty. It activates
the model’s dropout layer while running inference, effectively sampling differ-
ent sub-networks of the model. Different sub-networks yield different output
values, giving each class its own Bayesian distribution. The variance in the
distribution represents the uncertainty. Compared to the threshold interval
method, this method says something about the degree of uncertainty.

As described earlier, a distribution is classified as uncertain if eq. 2.6 is true.
The reason for not looking at only the variance is because the thought is that
even if a class has a high variance, the statement eq. 2.6 is false, which means
that in most cases (≈ 95%), the model would still predict that class to be true.
And if the class was to be annotated as present by the model in almost all
cases, its uncertainty wasn’t significant enough to be classified as uncertain.
We don’t want the user to annotate the image if the model is certain about
the information in the image. If the variance is relatively small but eq. 2.6
is true, the class is too close to the threshold and, therefore, still classified as
uncertain. This method may also provide several uncertainties in an image,
0 ≤ 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑖𝑒𝑠 ≤ 𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠.

This method is relatively slower than the first one, requiring 𝑛 = 100 samples
to provide a stable Gaussian curve, while strategy one only requires a single
inference. The output for each sample isn’t deterministic, but only a single
part of the model causes this non-deterministic behavior, the dropout layer.
As talked about before, this application aims to run on weaker hardware, but
passing images through convolutional layers without a powerful GPU is often
slow, especially when having to do multiple samples on many images. As I
established, only a single part of the model yields different outcomes, and it
is located at almost the very end of the model, at least computationally-wise.
Therefore the image can be passed through the whole convolutional part of the
model to extract all the features from it. These features will always be the same,
so we can pass them through the remaining network for the 𝑛 samples, saving

24 chapter 3 experiments

Threshold interval Monte Carlo dropout
Uncertain Model 1 Model 2

Non-uncertain Model 3 Model 4

Table 3.1: The four variations of models trained.

precious CPU power and time. Adding this optimization made computing the
mean and variance of each class in an image almost 30 times faster.

Using uncertainties for further manual annotations

Whether we used strategy one or two, we should have an array where each
index holds the number of uncertainties for its corresponding image. The im-
plementation does not consider the degree of uncertainty because only one
of the strategies has that measurement. Still, both of them have a number of
uncertainties, which we will use later. For now, I will only use the fact that
there is any value (besides zero) in the array, providing me with a binary mask.
Inverting the mask now gives us true for all the images we want to remove (non-
uncertain images) from the batch of images. After removing the non-uncertain
images, the remaining images are added to the training data set. The model
can now fit for a fraction of the original epochs on the new and old training
data (with the test data set still the same). This process is repeated for every
remaining batch of data from the LIACi data set. In a real-life scenario, the
uncertain images would have to be annotated by a human. For testing, using
the already annotated data in the LIACi data set is much easier and lets me
simulate the active learning part.

Comparing the models trained on uncertain images

We now have two models trained on uncertain images, but this experiment is
trying to prove that training on uncertain images should improve the perfor-
mance of a model. The natural thing to compare it to is training it on images
classified as non-uncertain. To do this, we do not flip the bit mask, leaving
us with a mask removing all the uncertain images. This is done for strategies
one and two. We now have four models, two trained with uncertain images,
one using Monte Carlo dropout, and one using the threshold interval, and two
trained with non-uncertain images, again one using Monte Carlo dropout and
one using the threshold interval. The combinations are in table 3.1.

3.3 exploring incremental learning on uncertain or non-uncertain
images for the liaci data set 25

Balancing the experiment

The experiment above’s flaw is that it may become rather unfair for either of
the models if fewer images are classified as uncertain or vise-versa. If there are
always more images classified as uncertain, the models training on uncertain
images will have more images in their data set. This may yield falsely high
performance from the models, not necessarily because training on the specific
types of images works, but because the models have more data to fit on. To
counteract this, a budget can be defined to set the maximum number of images
a model can add to the data set to train on. The budget is set to an amount that
is almost always entirely spent. Again, there is no degree of uncertainty, but
the number of uncertainties is kept track of. An array of indices is sorted based
on the number of uncertainties, and slicing is used to only keep 𝑏 = 35 images,
where 𝑏 is the budget size. The mask used to remove images will always remove
every image not within the budget. The four models are otherwise trained as
before. This was also done as a human won’t annotate every uncertain/non-
uncertain image, but only a subset.

Minimizing luck from the equation of the experiment

As explored in [9], the LIACi is an unbalanced data set regarding class distri-
bution. It might be the case that many of the images in the original test data
set are already classified or resemble what the model views as non-uncertain.
Training on only non-uncertain images will perhaps only tighten the already
known fit, which also may happen to fit the test data. Training on uncertain
images may therefore worsen the test data performance. To exclude this option
from the equation of the experiment, the experiment is also performedmultiple
times. Every time the experiment is run, the whole LIACi data set is randomly
shuffled around before splitting it into a train and test data set. In order to
obtain average training curves, the experiments were conducted ten times. A
regular model was also run ten times to measure its change on the ten different
test and train data set distributions, the identical data set distributions as the
other models.

3.3.3 Experiment dependencies

This experiment relies on the results from the experiment described in the
earlier section 3.1, where I experiment with incremental learning to see if and
what works best with the LIACi data set. I wanted to see if training on only
new images added to the training data set was better than training on all the
images in the data set. If incremental learning on the LIACi data set did not
work, this experiment could still be done, but with some restructuring. Instead

26 chapter 3 experiments

of finding the wanted images and applying incremental learning, the model
could be repeatedly retrained from scratch.

4
Discussion & Results
4.1 Experiment results

In this section, I will discuss the results achieved from the experiments in the
previous section.

4.1.1 Exploring incremental learning for the LIACI data set

These results come from the experiment described in section 3.1. In figures 4.2,
4.1, 4.3, 4.5, 4.4 and 4.6, the models are initially trained on 800 images and
then 100 images are added for every new batch. A fraction of epochs is run
for every new batch to fit the data. So, for example, f0.3 is 3

10 of the original
batches. Figures 4.2 and 4.1 contain the same graphs as figure 4.3, but split
into each their graph to make it more clear. The same goes for figures 4.5, 4.4,
4.6. Since the total training epochs differ, the graphs are all normalized along
the 𝑥 -axis. The training curve of a regular trained model is also included for
comparison. It is important to note that when graphs have been normalized,
models with fewer epochs may seem to converge later than models with more
training epochs. In reality, they might have faster convergence but just stopped
training sooner as they converged.

27

28 chapter 4 discussion & results

0.0 0.2 0.4 0.6 0.8 1.0
Training period (normalized)

0.240

0.245

0.250

0.255

0.260

0.265

0.270

0.275

0.280
Loss function

f0.1 test
f0.2 test
f0.3 test
f0.4 test
f0.5 test
f0.6 test
f0.7 test
f0.8 test
regular test

0.0 0.2 0.4 0.6 0.8 1.0
Training period (normalized)

0.880

0.885

0.890

0.895

0.900

0.905

0.910
Binary accuracy

f0.1 test
f0.2 test
f0.3 test
f0.4 test
f0.5 test
f0.6 test
f0.7 test
f0.8 test
regular test

Test loss and accuracy graph for model trained incrementally on old and
new training data

Figure 4.1: Test training summary for models trained with different fractions of the
original epochs. New and old training data was used to train the models.

Test graph figure for model trained on all training data (figure 4.1)

The test summary loss function graph for incremental training on all the train-
ing data shows that lower fractions of epochs yield slower convergence. We
also see that higher fractions yield faster convergence but tend to cause over-
fitting. The worst case may be 𝑓 0.8, where it’s down to a loss of almost 0.25,
around 60% through the training before rising to a peak of almost 0.27 but
falling slightly in the end. 𝑓 0.4 to 𝑓 0.7 also start overfitting around 0.7-0.8.
One might argue that 𝑓 0.5 performs the best. It reaches the lowest point of

4.1 experiment results 29

0.245 but starts rising again. Ultimately, it ends up as one of the better curves
but has a lot of spiking. However, 𝑓 0.3 converges relatively fast but doesn’t show
the same signs of overfitting as the other curves that also converge. It reaches
a low of around 0.247 and ends at around that value. It is worth mentioning
that 𝑓 0.2 performs well but converges later. As this experiment was meant to
simulate a real-life scenario where image batches are added incrementally, the
training could have stopped at any time (if no more image batches were anno-
tated by the user). If training were to stop earlier, the model should preferably
perform as well as possible. 𝑓 0.3 achieves this better than 𝑓 0.2. The regular
trained model spikes much towards the end and may have been unlucky with
its training data distribution.

Looking at the binary accuracy graph, we can easily see that 𝑓 0.1 peaks lowest
and has overfitting tendencies towards the end. It is slower to fit with a fraction
of 0.2, but in the end (after about 70% of the total training period) the loss is
about the same as training with larger fractions. Again 𝑓 0.3 performs well. It
fits early and also has the highest peak at almost 91%.

30 chapter 4 discussion & results

0.0 0.2 0.4 0.6 0.8 1.0
Training period (normalized)

0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25

Loss function

f0.1 train
f0.2 train
f0.3 train
f0.4 train
f0.5 train
f0.6 train
f0.7 train
f0.8 train
regular train

0.0 0.2 0.4 0.6 0.8 1.0
Training period (normalized)

0.89

0.90

0.91

0.92

0.93

Binary accuracy
f0.1 train
f0.2 train
f0.3 train
f0.4 train
f0.5 train
f0.6 train
f0.7 train
f0.8 train
regular train

Train loss and accuracy graph for model trained incrementally on old and
new training data

Figure 4.2: Train training summary for models trained with different fractions of the
original epochs. New and old training data was used to train the models.

Train graph figure for model trained on all training data (figure
4.2)

The train summary loss function graph clearly shows that the larger the frac-
tion, the more overfitting occurs. 𝑓 0.1 performs almost as well as the regular
model.

The binary accuracy graphs also show that 𝑓 0.1 performs the best in terms

4.1 experiment results 31

of overfitting, with the lowest accuracy. But one could argue 𝑓 0.2 is closer to
𝑓 0.3 in this subplot. Again, the size of the fraction corresponds well with the
degree of overfitting but 𝑓 0.4 to 𝑓 0.8 all end up with almost the same binary
accuracy.

32 chapter 4 discussion & results

0.0 0.2 0.4 0.6 0.8 1.0
Training period (normalized)

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
Loss function

0.0 0.2 0.4 0.6 0.8 1.0
Training period (normalized)

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94
Binary accuracy

Train & test loss and accuracy graph for models trained incrementally on
old and new training data

Figure 4.3: Train & test training summary for models trained with different fractions
of the original epochs. New and old training data was used to train the
models. Legend was not included as it was too big for the figure. Solid
graphs represent training, and dashed lines represent test.

Reviewing the training summary graphs for the model trained on
all training data as a whole (figure 4.3)

Looking back at the whole training summary, we see that the more significant
fraction is used, the more overfitting will inevitably occur. Training on a fraction
too small leads to underfitting of the model. After evaluating the pros versus

4.1 experiment results 33

the cons, I conclude that using 𝑓 0.3 is the better option. It provides some
overfitting on the train curves but not as much on the test curves, which is
the most important. The overfitting is not as bad as some of the other more
significant fractions. The advantage of 𝑓 0.3 is that it converges well early if
the model doesn’t receive additional image batches, which the lesser fractions
do not.

34 chapter 4 discussion & results

0.0 0.2 0.4 0.6 0.8 1.0
Training period (normalized)

0.24

0.25

0.26

0.27

0.28

0.29

0.30
Loss function

f0.1 test
f0.2 test
f0.3 test
f0.4 test
f0.5 test
f0.6 test
f0.7 test
f0.8 test
f0.9 test
f1.0 test
regular test

0.0 0.2 0.4 0.6 0.8 1.0
Training period (normalized)

0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.905
Binary accuracy

f0.1 test
f0.2 test
f0.3 test
f0.4 test
f0.5 test
f0.6 test
f0.7 test
f0.8 test
f0.9 test
f1.0 test
regular test

Test loss and accuracy graph for model trained incrementally on only new
training data

Figure 4.4: Test training summary for models trained with different fractions of the
original epochs. Only new training data was used to train the models.

Test graph figure for the model trained on only new training data
(figure 4.4)

The loss function test graphs for the model trained on only the new data are
much more volatile than the ones trained on all the training data. 𝑓 1.0 is
perhaps the clearest example of how much the loss changes for each new batch
of images. It drops quickly and spikes shortly after, multiple times, but it is far
from the only one. Almost none of the graphs stay anywhere near consistent and

4.1 experiment results 35

predictable. 𝑓 0.1 is closest to staying consistent, but that is probably because
it affects the model’s weights the least. At around 60% through the training, a
batch of images is fitted on that directly contradicts the already trained weights
in the model, losing accuracy for every epoch until the fitting is done.

The binary accuracy graphs are very much also unstable. Many of the graphs
reach a high value quickly but continue to fall gradually, and eventually, they
all end up with a worse accuracy than the regular model.

36 chapter 4 discussion & results

0.0 0.2 0.4 0.6 0.8 1.0
Training period (normalized)

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Loss function

f0.1 train
f0.2 train
f0.3 train
f0.4 train
f0.5 train
f0.6 train
f0.7 train
f0.8 train
f0.9 train
f1.0 train
regular train

0.0 0.2 0.4 0.6 0.8 1.0
Training period (normalized)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93
Binary accuracy

f0.1 train
f0.2 train
f0.3 train
f0.4 train
f0.5 train
f0.6 train
f0.7 train
f0.8 train
f0.9 train
f1.0 train
regular train

Train loss and accuracy graph for model trained incrementally on only new
training data

Figure 4.5: Train training summary for models trained with different fractions of the
original epochs. Only new training data was used to train the models.

Train graph figure for the model trained on only new training
data (figure 4.5)

The loss function training graphs are also highly very volatile. Each new image
batch can be seen by the loss value spiking through the roof and quickly falling
again, in most cases, quickly overfitting. The loss value always spikes at new
epochs because it will most likely be completely new images the model is
introduced to, ignoring its previous "fit goal" in chase of the new one.

4.1 experiment results 37

The binary accuracy graphs tell a similar story. The graphs all start well from
their initial training, but as soon as they’re introduced to new data, their accu-
racy spikes as they overfit the new data. Almost every single one of the graphs
has a higher binary accuracy than the regular model.

38 chapter 4 discussion & results

0.0 0.2 0.4 0.6 0.8 1.0
Training period (normalized)

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32
Loss function

0.0 0.2 0.4 0.6 0.8 1.0
Training period (normalized)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93
Binary accuracy

Train & test loss and accuracy graph for models trained incrementally on
only new training data

Figure 4.6: Train & test training summary formodels trainedwith different fractions of
the original epochs. Only new training data was used to train the models.
Legend was not included as it was too big for the figure. Solid graphs
represent training, and dashed lines represent test.

Reviewing the training summary graphs for the model trained on
only new training data as a whole (figure 4.6)

It is hard to draw any conclusions from evaluating the models’ summaries.
However, since none of the graphs give a satisfactory result, I would not rec-
ommend any of them. They all seem too unstable to use for other purposes

4.1 experiment results 39

confidently.

Afterthoughts

After reviewing both variations of incremental learning, some conclusions can
be drawn. Using only the new data to train the model causes less overfitting
and yields a wildly unstable train and test graph. Using the variation that trains
on the old and the new training data causes more overfitting but achieves more
stable and better test results. From the different fractions, 𝑓 0.3 performed
the best. It converged early but did not overfit as much as the larger fractions.
Therefore, training on all the training data with 𝑓 0.3 seems best for further
experiments. The downside of using this variation of incremental training is
that since all of the training data is trained on, it also requires all the training
data to be present when the user wants to train their model incrementally. If
only the new data were needed, the stand-alone model could be shipped to
the user, but now they also need the (potentially) large data set if they want
to train the model further.

My second hypothesis was that a model does not have to be trained from
scratch to achieve acceptable test loss and accuracy results. Even though the
model 𝑓 0.3 overfits more than the regular model, it achieves slightly better
test loss and binary accuracy. I, therefore, conclude that the results support my
hypothesis.

40 chapter 4 discussion & results

4.1.2 Exploring Monte Carlo dropout to find a viable
sample amount

These results come from the experiment described in section 3.2.

Visualizing Monte Carlo dropout uncertainty

As explained earlier, Monte Carlo dropout was used as an uncertainty measure-
ment. While it’s difficult to visualize Monte Carlo dropout for multiple images,
I can still visualize it for a single image, as shown in figure 4.8. However, out-
put neurons with mean values close to zero or one often have a low standard
deviation, as no value can go beneath zero or above one (because the output
neuron has a sigmoid activation function), skewing the standard deviation to
lower values. The plot becomes more focused on these outlying low standard
deviation distributions, while I want to focus more on the ones in the middle,
as they have the potential to be classified as uncertain.

Removing the neurons with output closer to 0 and only including those with
their original predictions above the classification threshold leaves the plot with
more relevant curves, giving more insight into how the uncertainty classifica-
tion works, as shown in figure 4.9. Even though, theoretically, output neurons
with mean values closer to 1 also may have a low standard deviation. Their
standard deviation is rarely low enough to take the focus away from the middle
ones. They may instead provide some contrast to the other curves.

4.1 experiment results 41

(a) The true labels for the image are
"sea_chest_grating" and "anode." PDF
and statistics can be found in figure 4.8

(b) The true labels for the image are "pro-
peller" and "marine_growth." PDF and
statistics can be found in figure 4.9

(c) The true labels for the image are "an-
ode" and "bilge_keel." PDF and statistics
can be found in figure 4.10

(d) The true labels for the image are "de-
fect" and "propeller." PDF and statistics
can be found in figure 4.11

Figure 4.7: The four random images used to visualize uncertainty, all from the LIACi
test data set.

Figure 4.7 shows four different subfigures 4.7a, 4.7b, 4.7c and 4.7d. The four
images are random images from the LIACi data set. Figure 4.7a shows a sea
chest grating, the large grill in the center of the image, and an anode, the white
vertical line in the upper left of the image. Figure 4.7b shows a propeller and
marine growth on the propeller. Figure 4.7c shows the bilge keel with an anode
on it, the white vertical line. Figure 4.7d shows a propeller with a defect. The
defect is the notch at the bottom middle of the propeller. The images have
been resized to the target size (224x224) but have not been pre-processed
further.

42 chapter 4 discussion & results

0.0 0.2 0.4 0.6 0.8 1.0
Output neuron value after sigmoid activation

0

500

1000

1500

2000
Activation threshold
Class anode, = 0.1178
Original class output value
Class paint_peel, = 0.1031
Original class output value
Class sea_chest_grating, = 0.0002
Original class output value

0 50 100 150 200 250 300 350
N samples used to calculate

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

-v
al

ue anode
paint_peel
sea_chest_grating

0 50 100 150 200 250 300 350
N samples used to calculate

0.5

0.6

0.7

0.8

0.9

1.0

-v
al

ue anode
paint_peel
sea_chest_grating

Probability density function, and & progression throughout
all samples, for the annotated labels

Figure 4.8: Probability density function(s) computed by the mean and standard devi-
ation from the results achieved withMonte Carlo dropout applied to figure
4.7a. The ` − 2𝜎 ≈ 95% is visualized as a cross. The two latter subplots
show the change in 𝜎 & ` as I increase the number of samples of Monte
Carlo dropout. The true labels for the image are "sea_chest_grating" and
"anode."

4.1 experiment results 43

Figure 4.8 shows three subplots. The first subplot shows the uncertain classes
viable to be classified as uncertain. Their original confidence value (denoted by
a dotted dashed vertical line), probability density function (solid curve), and
95%mark (an x on the left side of each curve) are plotted for each class. The red
dashed vertical line represents the classification threshold. The 𝑥 -axis denotes
the output neuron value. Each probability density function has an area under-
neath the curve equal to one. The variance (width) of the curve(s) represents
the uncertainty. A broader curve means more uncertainty in the prediction for
that class. The probability density function(s) consist(s) of hundred samples.
The classes "anode" and "paint_peel" is the most uncertain ones in this subplot
because they have the largest 𝑠𝑖𝑔𝑚𝑎-value.

Subplot two shows each class’s progressive 𝜎 (standard deviation) change as I
increase the number of Monte Carlo dropout samples. The 𝑦-axis denotes the
𝜎-value, and the 𝑥 -axis denotes the 𝑁 samples used to compute 𝜎 . In total, 350
samples were collected. "sea_chest_grating" has 𝜎 ≈ 0 from the first sample,
but the two other classes stabilize at around sixty samples.

Subplot three shows each class’s progressive ` (mean) change as I increase the
number of Monte Carlo dropout samples. The 𝑦-axis denotes the `-value, and
the 𝑥 -axis denotes the 𝑁 samples used to compute `. In total, 350 samples
were collected. "sea_chest_grating" has ` ≈ 1 from the first sample, but the
two other classes stabilize around forty samples.

44 chapter 4 discussion & results

0.0 0.2 0.4 0.6 0.8 1.0
Output neuron value after sigmoid activation

0

5

10

15

20

25

30
Activation threshold
Class marine_growth, = 0.0471
Original class output value
Class propeller, = 0.0121
Original class output value

0 50 100 150 200 250 300 350
N samples used to calculate

0.00

0.01

0.02

0.03

0.04

0.05

0.06

-v
al

ue

marine_growth
propeller

0 50 100 150 200 250 300 350
N samples used to calculate

0.92

0.94

0.96

0.98

-v
al

ue marine_growth
propeller

Probability density function, and & progression throughout
all samples, for the annotated labels

Figure 4.9: Probability density function(s) computed by the mean and standard de-
viation from the results achieved with Monte Carlo dropout applied to
figure 4.7b. The ` − 2𝜎 ≈ 95% is visualized as a cross. The two latter
subplots show the change in 𝜎 & ` as I increase the number of samples
of Monte Carlo dropout. The true labels for the image are "propeller" and
"marine_growth."

4.1 experiment results 45

Figure 4.9 shows three subplots. The first subplot shows the uncertain classes
viable to be classified as uncertain. Their original confidence value (denoted by
a dotted dashed vertical line), probability density function (solid curve), and
95%mark (an x on the left side of each curve) are plotted for each class. The red
dashed vertical line represents the classification threshold. The 𝑥 -axis denotes
the output neuron value. Each probability density function has an area under-
neath the curve equal to one. The variance (width) of the curve(s) represents
the uncertainty. A broader curve means more uncertainty in the prediction for
that class. The probability density function(s) consist(s) of hundred samples.
The class "marine_growth" is the most uncertain one in this subplot because it
has the broadest curve.

Subplot two shows each class’s progressive 𝜎 (standard deviation) change as
I increase the number of Monte Carlo dropout samples. The 𝑦-axis denotes
the 𝜎-value, and the 𝑥 -axis denotes the 𝑁 samples used to compute 𝜎 . In
total, 350 samples were collected. Both classes seem to stabilize around fifty
samples.

Subplot three shows each class’s progressive ` (mean) change as I increase the
number of Monte Carlo dropout samples. The 𝑦-axis denotes the `-value, and
the 𝑥 -axis denotes the 𝑁 samples used to compute `. In total, 350 samples
were collected. Class "propeller" stabilizes around twenty-five samples, and
class "marine_growth" stabilizes around a hundred.

46 chapter 4 discussion & results

0.0 0.2 0.4 0.6 0.8 1.0
Output neuron value after sigmoid activation

0

1

2

3

4
Activation threshold
Class anode, = 0.0909
Original class output value
Class paint_peel, = 0.091
Original class output value

0 50 100 150 200 250 300 350
N samples used to calculate

0.00

0.02

0.04

0.06

0.08

0.10

0.12

-v
al

ue

anode
paint_peel

0 50 100 150 200 250 300 350
N samples used to calculate

0.50

0.55

0.60

0.65

0.70

-v
al

ue

anode
paint_peel

Probability density function, and & progression throughout
all samples, for the annotated labels

Figure 4.10: Probability density function(s) computed by the mean and standard
deviation from the results achieved with Monte Carlo dropout applied
to figure 4.7c. The ` − 2𝜎 ≈ 95% is visualized as a cross. The two latter
subplots show the change in 𝜎 & ` as I increase the number of samples
of Monte Carlo dropout. The true labels for the image are "anode" and
"bilge_keel."

4.1 experiment results 47

Figure 4.10 shows three subplots. The first subplot shows the uncertain classes
viable to be classified as uncertain. Their original confidence value (denoted
by a dotted dashed vertical line), probability density function (solid curve),
and 95% mark (an x on the left side of each curve) are plotted for each class.
The red dashed vertical line represents the classification threshold. The 𝑥 -axis
denotes the output neuron value. Each probability density function has an
area underneath the curve equal to one. The variance (width) of the curve(s)
represents the uncertainty. A broader curve means more uncertainty in the pre-
diction for that class. The probability density function(s) consist(s) of hundred
samples. The class "anode" is almost as uncertain as "paint_peel," but only the
latter is classified as uncertain as its 95% threshold is below the classification
threshold.

Subplot two shows each class’s progressive 𝜎 (standard deviation) change as I
increase the number of Monte Carlo dropout samples. The 𝑦-axis denotes the
𝜎-value, and the 𝑥 -axis denotes the 𝑁 samples used to compute 𝜎 . In total,
350 samples were collected. Both classes seem to stabilize closer to a hundred
samples.

Subplot three shows each class’s progressive ` (mean) change as I increase the
number of Monte Carlo dropout samples. The 𝑦-axis denotes the `-value, and
the 𝑥 -axis denotes the 𝑁 samples used to compute `. In total, 350 samples
were collected. Both classes stabilize closer to seventy-five samples.

48 chapter 4 discussion & results

0.0 0.2 0.4 0.6 0.8 1.0
Output neuron value after sigmoid activation

0

1

2

3

4

5

6
Activation threshold
Class propeller, = 0.1031
Original class output value
Class defect, = 0.0689
Original class output value

0 50 100 150 200 250 300 350
N samples used to calculate

0.00

0.02

0.04

0.06

0.08

0.10

-v
al

ue

propeller
defect

0 50 100 150 200 250 300 350
N samples used to calculate

0.675

0.700

0.725

0.750

0.775

0.800

0.825

-v
al

ue propeller
defect

Probability density function, and & progression throughout
all samples, for the annotated labels

Figure 4.11: Probability density function(s) computed by the mean and standard de-
viation from the results achieved with Monte Carlo dropout applied to
figure 4.7d. The ` − 2𝜎 ≈ 95% is visualized as a cross. The two latter
subplots show the change in 𝜎 & ` as I increase the number of samples
of Monte Carlo dropout. The true labels for the image are "defect" and
"propeller."

4.1 experiment results 49

Figure 4.11 shows three subplots. The first subplot shows the uncertain classes
viable to be classified as uncertain. Their original confidence value (denoted by
a dotted dashed vertical line), probability density function (solid curve), and
95%mark (an x on the left side of each curve) are plotted for each class. The red
dashed vertical line represents the classification threshold. The 𝑥 -axis denotes
the output neuron value. Each probability density function has an area under-
neath the curve equal to one. The variance (width) of the curve(s) represents
the uncertainty. A broader curve means more uncertainty in the prediction for
that class. The probability density function(s) consist(s) of hundred samples.
The class "propeller" is the most uncertain one as it has the broadest curve but
doesn’t breach the classification threshold.

Subplot two shows each class’s progressive 𝜎 (standard deviation) change as
I increase the number of Monte Carlo dropout samples. The 𝑦-axis denotes
the 𝜎-value, and the 𝑥 -axis denotes the 𝑁 samples used to compute 𝜎 . In
total, 350 samples were collected. Both classes seem to stabilize around 120
samples.

Subplot three shows each class’s progressive ` (mean) change as I increase the
number of Monte Carlo dropout samples. The 𝑦-axis denotes the `-value, and
the 𝑥 -axis denotes the 𝑁 samples used to compute `. In total, 350 samples
were collected. Both classes stabilize closer to eighty samples.

Afterthoughts

After looking at four different images and watching their change in ` and 𝜎

as I increase the number of Monte Carlo samples, we’ve observed a few things.
Figure 4.8 gives a great example that for some annotations, there is little to
no doubt from the model’s side. While figure 4.10 shows us that even though
the class "anode" has a higher degree of uncertainty, because I use eq. 2.6
to compute if a distribution is classified as uncertain, only the "paint_peel"
distribution makes the image qualified to be classified as uncertain. It is also
these cases that the equation where supposed to cover. Even if an image has
a certain degree of uncertainty in it, it doesn’t qualify it to be classified as
uncertain. Since ` and 𝜎 dictate if an image is classified as uncertain, the
images must be sampled enough times to stabilize the change in ` and 𝜎 .
Looking roughly at the graphs from the four images, I conclude that a hundred
samples should suffice. It may be more than necessary, but as it can’t overfit
(like a model), it’s better to ensure the distribution is stable. Having fewer
samples shortens the computation time, but optimizing Monte Carlo dropout
is not the goal of this thesis.

50 chapter 4 discussion & results

4.1.3 Exploring incremental learning that also accounts for
uncertainty

These results come from the experiment described in section 3.2. Figures 4.14,
4.13, and 4.12 show all the model variations compared to each other. All three
figures show the same models but test and train split into each of their figures
for clarity. The same goes for 4.20, 4.19, and 4.18, but they show the graphs for
the models trained with a budget of 35 images per batch.

4.1 experiment results 51

0 20 40 60 80 100 120
Epoch

0.24

0.25

0.26

0.27

0.28
Loss function

MC Unc test
MC Crt test
TI Unc test
TI Crt test
Norm. reg. test

0 20 40 60 80 100 120
Epoch

0.885

0.890

0.895

0.900

0.905

0.910

Binary Accuracy
MC Unc test
MC Crt test
TI Unc test
TI Crt test
Norm. reg. test

Test summary for training models with MC=Monte Carlo, TI=Threshold
interval, Unc=Uncertain and Crt=Non-Uncertain images

Figure 4.12: Test loss and binary accuracy graphs for the four different combinations
of models trained, together with a regular trained model’s graph, nor-
malized to the same training length as the four other models for easier
comparisons.

52 chapter 4 discussion & results

Test graphs for models that account for uncertainty (figure 4.12)

Looking at the loss function for each test graph shows that they all perform
slightly better than the regular model in terms of performance. Even though the
regular model spikes towards the end, it returns to one of its lower values, close
to the global minimum. At its lowest, it’s just below 0.26. The other graphs are
not too far apart, but we see that towards the end, the two graphs (MC unc and
TI Crt) slightly diverge from the other two (MC Crt and TI Unc). However, they
encounter some overfitting and end up close to each other. Overall, MC Unc
reaches the lowest loss out of the four. TI Unc and MC Crt perform the worst,
but MC Crt fluctuates more than TI Unc, going both above and below TI Unc
until around epoch 95. TI Crt follows MC Unc closely but performs better for
the middle part of the training. The only real problem it seems to have is that
it overfits harder than MC Unc from around epoch 110. While the overfitting
for TI Crt doesn’t stop, the MC Unc seems to have more potential to fluctuate
up and down.

The test binary accuracy graph for the different models all end up close to each
other, within a 1% accuracy difference. All the models follow each other closely
until TI Unc falls off early at around epoch 75, but it picks up again later and
peaks at almost the same height as MC Unc and TI Crt. MC Unc and TI Crt peak
at the same height of around 90.6%, but MC Unc is twice up at the same peak
value and performs arguably better than TI Crt until epoch 80. However, MC
Unc loses a lot of performance during the last image batch.

4.1 experiment results 53

0 20 40 60 80 100 120
Epoch

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24
Loss function

MC Unc train
MC Crt train
TI Unc train
TI Crt train
Norm. reg. train

0 20 40 60 80 100 120
Epoch

0.89

0.90

0.91

0.92

0.93

0.94

Binary Accuracy
MC Unc train
MC Crt train
TI Unc train
TI Crt train
Norm. reg. train

Training summary for training models with MC=Monte Carlo, TI=Threshold
interval, Unc=Uncertain and Crt=Non-Uncertain images

Figure 4.13: Train loss and binary accuracy graphs for the four different combinations
of models trained, together with a regular trained model’s graph, nor-
malized to the same training length as the four other models for easier
comparisons.

54 chapter 4 discussion & results

Train graphs for models trained with regards to uncertainty
(figure 4.13)

It appears that the loss function for all the models has not yet converged. This
is good as it suggests the training stopped before they had overfitted to their
full potential. However, they all perform a lot worse than the regular training
graph. This is because the model has trained for many more epochs on the
same images than the regular model, a side effect of my incremental learning
method. At around epoch 55, we also observe that two graphs (MC Unc and
TI Unc) diverge from the other two (TI Crt and MC Crt). TI Crt also diverges
from MC Crt at around epoch 80. MC Unc and TI Unc perform better than MC
Crt and TI Crt.

The train binary accuracy graphs also show that they all perform worse than the
regular model with almost 3%. Looking at how the other graphs compare, they
are about the same. However, also here, MC Unc performs the best, followed
by TI Unc, TI Crt, and then lastly, MC Crt. The exact order as the loss functions.
The differences here are not as apparent as their loss functions, but the models
trained on uncertain images perform better. MC Unc performs almost 1% better
than MC Crt.

4.1 experiment results 55

0 20 40 60 80 100 120
Epoch

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
Loss function

MC Unc train
MC Unc test
MC Crt train
MC Crt test
TI Unc train
TI Unc test
TI Crt train
TI Crt test
Norm. reg. train
Norm. reg. test

0 20 40 60 80 100 120
Epoch

0.88

0.89

0.90

0.91

0.92

0.93
Binary Accuracy

MC Unc train
MC Unc test
MC Crt train
MC Crt test
TI Unc train
TI Unc test
TI Crt train
TI Crt test
Norm. reg. train
Norm. reg. test

summary for training models with MC=Monte Carlo, TI=Threshold interval,
Unc=Uncertain and Crt=Non-Uncertain images

Figure 4.14: Train & test, loss and binary accuracy graphs for the four different combi-
nations of models trained, together with a regular trained model’s graph,
normalized to the same training length as the four othermodels for easier
comparisons.

56 chapter 4 discussion & results

Reviewing the training summary graphs for the models that
account for uncertainty (figure 4.14)

We have learned a few things after looking at the test and train graphs indi-
vidually. Both models trained on uncertain images have less overfitting on the
training data than those trained on non-uncertain images. This is true in terms
of both loss and binary accuracy. However, they still overfit quite a bit on the
training data compared to the regular model. It’s worth noting that most of the
training after the initial 35 epochs will only cause the models to overfit more
than the regular one (as it’s only trained for 35 epochs in total).

I think the models trained on uncertain images perform the best on the training
data overfit-wise (high loss and low binary accuracy) because the images later
added to the training set are all images the model doesn’t know. If the model
does not recognize the images, it is forced to change so it can recognize them.
This also means it probably has to sacrifice some of its weights trained on the
old images to recognize the new ones better.

It is important to remember that the training loss and binary accuracy are not
the primary objectives of the experiment but the test loss and binary accuracy.
However, the test data performance of TI Crt and MC Unc is too similar to
declare a definitive winner. A possible reason that these two perform the best
on the test data may also be because, for this experiment, there is no cap for
how large a portion of the image batch can be classified as uncertain/non-
uncertain. So it is possible for a model to either get zero images or all hundred.
The test data set is also "independent" because there is no guarantee that the
images in the training data set also are a good representation of the features
in the test data set. Therefore which images the test data set consists of plays
a significant role in the test performance of the model.

Mean model curves

The figures 4.17, 4.16 and 4.15 show the mean graph of ten different runs with
randomized data ordering before the splitting of test and train data set. The
models are still initially trained on 800 images before batches of 100 images are
added for processing. The dashed vertical red lines separate the image batches.
The training graph for a regular trained model is also included. It has been
normalized to fit the 𝑥 -axis. The same goes for 4.23, 4.22, and 4.21, which I will
later discuss, but they show the graphs for the models trained with a budget
of 35 images per batch.

4.1 experiment results 57

0 20 40 60 80 100 120
Epoch

0.255

0.260

0.265

0.270

0.275

0.280
Loss function

MC Unc test
MC Crt test
TI Unc test
TI Crt test
Norm. reg. test

0 20 40 60 80 100 120
Epoch

0.880

0.882

0.884

0.886

0.888

0.890

0.892

0.894

0.896

Binary Accuracy
MC Unc test
MC Crt test
TI Unc test
TI Crt test
Norm. reg. test

Mean test summary of 10 runs, with randomly shuffled train and test data

Figure 4.15: Test, mean loss and binary accuracy graphs of ten runs, for the four
different combinations of models trained, together with a regular trained
model’s graph, normalized to the same training length as the four other
models for easier comparisons.

58 chapter 4 discussion & results

Mean test graphs for models that account for uncertainty (figure
4.15)

The mean test curves of the ten runs with randomized train and test data sets
also provide insight. The test loss functions all perform worse than the regular
model mean test loss function. However, we observe that both models training
on uncertain data (MC Unc and TI Unc) perform better than those performing
on non-uncertain data (MC Crt and TI Crt). Once again, MC Unc performs the
best of the four, and MC Crt the worst. The regular model has almost the same
test loss when looking at a single run versus the mean of ten runs (around 0.26
loss). While the models trained on uncertainty images have increased their test
loss (from all under 0.26 to above 0.26). This indicates that the test data set
distribution has more to say for these models. The regular model, however, is
not affected to the same extent.

The binary accuracy graphs for the figure are very tight, and MC Crt is the
only model that certainly is not performing the best. In figure 4.14, it can be
observed that the performance of MC Crt was the lowest also when a single run
was graphed. The other three models (MC Unc, TI Unc, and TI Crt) perform
slightly worse here than in the single runs.

4.1 experiment results 59

0 20 40 60 80 100 120
Epoch

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24
Loss function

MC Unc train
MC Crt train
TI Unc train
TI Crt train
Norm. reg. train

0 20 40 60 80 100 120
Epoch

0.900

0.905

0.910

0.915

0.920

0.925

0.930

0.935
Binary Accuracy

MC Unc train
MC Crt train
TI Unc train
TI Crt train
Norm. reg. train

Mean train summary of 10 runs, with randomly shuffled train and test data

Figure 4.16: Train, mean loss and binary accuracy graphs of ten runs, for the four
different combinations of models trained, together with a regular trained
model’s graph, normalized to the same training length as the four other
models for easier comparisons.

60 chapter 4 discussion & results

Mean train graphs for models that account for uncertainty (figure
4.16)

We observe from the loss function graphs that no matter the variation used
to train the models, they take a hit to their training loss when a new image
batch is introduced. This becomes very apparent when looking at the mean
graphs compared to the single runs. Their end values are very similar to those
when doing a single run, as seen in figure 4.13. This suggests that differing
the training data set does not impact the training learning curve as much. It is
clear that MC Unc performs the best and MC Crt performs the worst.

The binary accuracy graphs also mostly lose performance as new image batches
are introduced. This is, however, not always true, especially for the two models
trained on non-uncertain images. As new images are introduced, they will lose
very little or even perform better. This seems to correlate to when the models
trained on uncertain images (MC Unc and TI Unc) lose the most performance
(see the transition to the fifth image batch around epoch 75). The trend is that
the models trained on uncertain images still overfit the least, with MC Unc
being the best.

4.1 experiment results 61

0 20 40 60 80 100 120
Epoch

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
Loss function

MC Unc train
MC Unc test
MC Crt train
MC Crt test
TI Unc train
TI Unc test
TI Crt train
TI Crt test
Norm. reg. train
Norm. reg. test

0 20 40 60 80 100 120
Epoch

0.88

0.89

0.90

0.91

0.92

0.93
Binary Accuracy

MC Unc train
MC Unc test
MC Crt train
MC Crt test
TI Unc train
TI Unc test
TI Crt train
TI Crt test
Norm. reg. train
Norm. reg. test

Mean train and test summary of 10 runs, with randomly shuffled train and
test data

Figure 4.17: Train & test, mean loss and binary accuracy graphs of ten runs, for the
four different combinations of models trained, together with a regular
trained model’s graph, normalized to the same training length as the four
other models for easier comparisons.

62 chapter 4 discussion & results

Reviewing the mean training summary graphs for the models
that account for uncertainty (figure 4.17)

After running the various models ten times with different train and test data
sets, some new information has been revealed. Training models on uncertain
data yields a more significant rise/drop in training loss/binary accuracy, re-
spectively, than training on non-uncertain data. This may also have something
to do with the number of images each model trained on for each image batch.
Although it is hard to say if MC Unc or TI Crt yields the best test results, it’s
clear that MC Unc yields the least overfitting on the training data.

4.1 experiment results 63

0 20 40 60 80 100 120
Epoch

0.240

0.245

0.250

0.255

0.260

0.265

0.270

0.275

0.280
Loss function

MC Unc test
MC Crt test
TI Unc test
TI Crt test
Norm. reg. test

0 20 40 60 80 100 120
Epoch

0.885

0.890

0.895

0.900

0.905

0.910
Binary Accuracy

MC Unc test
MC Crt test
TI Unc test
TI Crt test
Norm. reg. test

Test summary for training models with MC=Monte Carlo, TI=Threshold
interval, Unc=Uncertain and Crt=Non-Uncertain images, budget=35

Figure 4.18: Test loss and binary accuracy graphs for the four different combinations
of models trained, together with a regular trained model’s graph, nor-
malized to the same training length as the four other models for easier
comparisons.

64 chapter 4 discussion & results

Test graphs for models trained that account for uncertainty, with
a budget of thirty-five images 4.18

Looking at the test loss graph, we observe that MC Crt performs the worst of
them all, diverging from the other three at epoch 60. Other than that, the three
graphs (MC Unc, TI Unc, and TI Crt) are nearly dead even.

The binary accuracy subfigure neither has a clear, better-performing model. TI
Crt peaks the highest but quickly falls in accuracy again. TI Unc is the only
model that’s almost consistently beneath the other models, it being the one
with the lowest peak.

4.1 experiment results 65

0 20 40 60 80 100 120
Epoch

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24
Loss function

MC Unc train
MC Crt train
TI Unc train
TI Crt train
Norm. reg. train

0 20 40 60 80 100 120
Epoch

0.89

0.90

0.91

0.92

0.93

0.94
Binary Accuracy

MC Unc train
MC Crt train
TI Unc train
TI Crt train
Norm. reg. train

Training summary for training models with MC=Monte Carlo, TI=Threshold
interval, Unc=Uncertain and Crt=Non-Uncertain images, budget=35

Figure 4.19: Train loss and binary accuracy graphs for the four different combinations
of models trained, together with a regular trained model’s graph, nor-
malized to the same training length as the four other models for easier
comparisons.

66 chapter 4 discussion & results

Train graphs for models that account for uncertainty, with a
budget of thirty-five images (figure 4.19)

The train loss functions with a budget show that the models trained on uncer-
tain images overfit the least. It is, however, not clear whether TI Unc or MC
Unc performs better. But it is clear that MC Crt performs the worst.

The train binary accuracy graphs also now show that the models trained on
uncertain images perform the best, as they have the least amount of overfitting.
MC Crt is the model that performs the worst. The difference is not as clear
anymore as in figure 4.13 because fewer images are trained on in general
because of the budget cap, allowing for less room to diverge.

4.1 experiment results 67

0 20 40 60 80 100 120
Epoch

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
Loss function

MC Unc train
MC Unc test
MC Crt train
MC Crt test
TI Unc train
TI Unc test
TI Crt train
TI Crt test
Norm. reg. train
Norm. reg. test

0 20 40 60 80 100 120
Epoch

0.88

0.89

0.90

0.91

0.92

0.93
Binary Accuracy

MC Unc train
MC Unc test
MC Crt train
MC Crt test
TI Unc train
TI Unc test
TI Crt train
TI Crt test
Norm. reg. train
Norm. reg. test

summary for training models with MC=Monte Carlo, TI=Threshold interval,
Unc=Uncertain and Crt=Non-Uncertain images, budget=35

Figure 4.20: Train & test loss and binary accuracy graphs for the four different combi-
nations of models trained, together with a regular trained model’s graph,
normalized to the same training length as the four other models for eas-
ier comparisons.

68 chapter 4 discussion & results

Reviewing the training summary graphs for the models that
account for uncertainty, with a budget (figure 4.20)

The results from this experiment show us that models trained on uncertain
images have less overfitting than models trained on non-uncertain images.
Using a budget of thirty-five images affects the performance of the models by
giving them fewer images to work with and therefore making them diverge
less. Interestingly, MC Unc and TI Unc overfit less (in figure 4.14) when trained
on more images (as it has no budget restrictions). This might suggest that the
new training data actually contains knowledge the models don’t have. When
training on more data, it has more data to fit and therefore has to have a wider
fit, sacrificing some knowledge. Compared to the budget model that receives
less new data and therefore doesn’t have to change its weights as much to fit
the new data.

All of this is, of course, the opposite for the models trained on non-uncertain
data. They already have knowledge about the data they train on and therefore
overfit on the data. When they aren’t on a budget and receive more images,
they train more on the images they already know and overfit even more.

4.1 experiment results 69

0 20 40 60 80 100 120
Epoch

0.255

0.260

0.265

0.270

0.275

0.280
Loss function

MC Unc test
MC Crt test
TI Unc test
TI Crt test
Norm. reg. test

0 20 40 60 80 100 120
Epoch

0.886

0.888

0.890

0.892

0.894

0.896

0.898

Binary Accuracy
MC Unc test
MC Crt test
TI Unc test
TI Crt test
Norm. reg. test

Mean test summary of 10 runs, with randomly shuffled train and test data,
budget=35

Figure 4.21: Test, mean loss and binary accuracy graphs of ten runs, for the four
different combinations of models trained, together with a regular trained
model’s graph, normalized to the same training length as the four other
models for easier comparisons. The models have a budget of maximum
thirty-five images to add to the training data per new image batch.

70 chapter 4 discussion & results

Mean test graphs for models that account for uncertainty, with a
budget (figure 4.21)

The test loss function mean graphs do not show the same as the single runs 4.18.
For once, both models trained on uncertain images perform the worst. MC Unc
and TI Unc perform equally bad until the last few epochs, and TI Unc spikes
high (which is worse). The mean of each models’ training summary shows that
they all have worsened in terms of loss compared to their singular runs. MC
Crt is perhaps the model that performs the best. TI Crt performs almost as well
but fluctuates more towards the end.

Looking at the binary accuracy mean graphs, we see that also here, the worst
model is a model utilizing uncertain images. MC Unc performs better and is
almost at par with TI Crt, also towards the end. But TI Crt peaks taller than
MC Unc, and the tallest of them all is MC Crt. It should be noted that the most
significant difference between them is around 0.2%.

4.1 experiment results 71

0 20 40 60 80 100 120
Epoch

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24
Loss function

MC Unc train
MC Crt train
TI Unc train
TI Crt train
Norm. reg. train

0 20 40 60 80 100 120
Epoch

0.900

0.905

0.910

0.915

0.920

0.925

0.930
Binary Accuracy

MC Unc train
MC Crt train
TI Unc train
TI Crt train
Norm. reg. train

Mean train summary of 10 runs, with randomly shuffled train and test data,
budget=35

Figure 4.22: Train, mean loss and binary accuracy graphs of ten runs, for the four
different combinations of models trained, together with a regular trained
model’s graph, normalized to the same training length as the four other
models for easier comparisons. The models have a budget of maximum
thirty-five images to add to the training data per new image batch.

72 chapter 4 discussion & results

Mean train graphs for models that account for uncertainty, with
a budget (figure 4.21)

The training mean loss function, however, still shows that both the models
trained on uncertain images perform better than those trained on non-uncertain
images. MC Unc is performing slightly better than TI Unc, and TI Crt is perform-
ing slightly better than MC Crt. All the models’ loss value rise as new image
batches is introduced to the models. They all perform worse than the regular
model’s mean graph. The difference in loss value from the best to worst is about
0.01.

The binary accuracy mean graphs also show that the models trained on un-
certain data perform better than those trained on non-uncertain data. MC Crt
performs worse than TI Crt, but it’s difficult to decide if TI Unc or MC Unc
performs the best. All models lose some accuracy as new image batches are
added.

4.1 experiment results 73

0 20 40 60 80 100 120
Epoch

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
Loss function

MC Unc train
MC Unc test
MC Crt train
MC Crt test
TI Unc train
TI Unc test
TI Crt train
TI Crt test
Norm. reg. train
Norm. reg. test

0 20 40 60 80 100 120
Epoch

0.88

0.89

0.90

0.91

0.92

0.93
Binary Accuracy

MC Unc train
MC Unc test
MC Crt train
MC Crt test
TI Unc train
TI Unc test
TI Crt train
TI Crt test
Norm. reg. train
Norm. reg. test

Mean train and test summary of 10 runs, with randomly shuffled train and
test data, budget=35

Figure 4.23: Train & test, mean loss and binary accuracy graphs of ten runs, for the
four different combinations of models trained, together with a regular
trained model’s graph, normalized to the same training length as the
four other models for easier comparisons. The models have a budget of
maximum thirty-five images to add to the training data per new image
batch.

74 chapter 4 discussion & results

Reviewing the mean training summary graphs for the models
that account for uncertainty, with a budget (figure 4.23)

The results from this experiment show that the models also overfit when having
a budget, compared to the regular model. The models that consider uncertainty
perform worse than the regular model on the training data. This is expected as
they train for many more epochs on the data than the regular model. However,
it was also expected that the four models would perform worse on the test
data as they have only trained on a fraction of the entire data set. The number
of images in the data set may be calculated by eq. 4.1. This gives the four
models (a maximum of) 800 + 9× 35 = 1115 images to train on, compared to
the regular model that trains on 1703 images. We observe that all the models
perform almost as almost well as the regular model when it comes to loss, and
even better than the regular model in terms of binary accuracy.

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒𝑠 = 𝑠𝑡𝑎𝑟𝑡 𝑏𝑎𝑡𝑐ℎ+𝑛 𝑏𝑎𝑡𝑐ℎ𝑒𝑠×𝑚𝑎𝑥 (𝑖𝑚𝑎𝑔𝑒 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒, 𝑏𝑢𝑑𝑔𝑒𝑡 𝑠𝑖𝑧𝑒)
(4.1)

4.1 experiment results 75

0.0 0.2 0.4 0.6 0.8 1.0
Classification threshold

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

F1 score graphs

MC Unc
Best F1 0.8079
MC Crt
Best F1 0.8011
TI Unc
Best F1 0.8164
TI Crt
Best F1 0.8005

0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Precision Recall Curve

MC Unc
Best F1
MC Crt
Best F1
TI Unc
Best F1
TI Crt
Best F1

F1 score evaluation,
MC Unc=Monte Carlo uncertain, MC Crt=Monte Carlo non-uncertain, TI

Unc=Threshold interval uncertain, TI Crt=Threshold interval non-uncertain

Figure 4.24: The F1 score evaluation for the four models. The left subplot shows the
F1 score for different thresholds. The 𝑥 -axis denotes the threshold value,
and the 𝑦-axis denotes the F1 score. The right subplot has a 𝑦-axis that
denotes the precision and an 𝑥 -axis that denotes the recall. The graph
shows the precision for different recall values.

Evaluating the F1 scores for models that account for uncertainty

In figure 4.24, we observe that the model with the highest score is TI Unc, MC
Unc, MC Crt, TI Crt, in that order. The noticeable difference between the four
models is that MC Unc has its best F1 score at a threshold of around 0.5, while
the other models have their best threshold just below 0.4 (which is close to
the regular model). However, the F1 score is around 0.80 for all the models,
with a threshold from around 0.3 to 0.5. There is only a 1,6 score difference
in performance between the model that performs the worst and the one that
performs the best.

76 chapter 4 discussion & results

0.0 0.2 0.4 0.6 0.8 1.0
Classification threshold

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

F1 score graphs

MC Unc
Best F1 0.807
MC Crt
Best F1 0.8112
TI Unc
Best F1 0.8131
TI Crt
Best F1 0.8029

0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Precision Recall Curve

MC Unc
Best F1
MC Crt
Best F1
TI Unc
Best F1
TI Crt
Best F1

F1 score evaluation for models with a budget,
MC Unc=Monte Carlo uncertain, MC Crt=Monte Carlo non-uncertain, TI

Unc=Threshold interval uncertain, TI Crt=Threshold interval non-uncertain

Figure 4.25: Shows the same as 4.24, but for the models trained with a budget.

Evaluating the F1 scores for models that account for uncertainty,
with a budget

In figure 4.25, we observe that the model with the highest score is TI Unc, MC
Crt, MC Unc, and TI Crt, in that order. Compared to figure 4.24, the thresholds
are more spread out, ranging from under 0.40 to about 0.55. After introducing
a budget, both models trained on uncertain images’ F1 scores fell. While both
the models trained on non-uncertain images have boosted their F1 score to a
degree. MC Unc is the model that stays the most consistent after introducing
the budget, compared to the other three models.

4.2 general discussion 77

Afterthoughts

After looking at all the different model results, it’s not easy to draw a solid
conclusion. The main differences between the budget and non-budget experi-
ments would be that the differences are larger between the four models when
they get to choose all the images from the image batch. However, this may be
because of an imbalance in the number of images they each get to train on. The
consistencies are that MC Unc and TI Unc overfit the models the least, while
MC Crt and TI Crt overfit the most. This is true for loss and binary accuracy,
with and without a budget.

Based on the F1 score graphs, we may adjust the classification threshold 𝑡

between 0.3 < 𝑡 < 0.5 to achieve slightly higher precision or recall without
significant loss of performance. This allows for some flexibility in our approach
if needed.

4.2 General discussion

4.2.1 Pros and cons by showing the user the model
annotations before the user self annotates

Even though humans don’t have to annotate images in these experiments, this
work is meant to be applied in the web application I’ve also created, which is
described in Riise [9], and in sections 2, A. As a video is uploaded, not only the
uncertain images are shown but also which labels the model predicted in the
image. As discussed in Riise [9], many images in the LIACI data set are noisy,
which is most probably true for user-uploaded videos. The model annotating
an image helps the user understand what’s in the image, but it may also give
the user a bias and make them see things that aren’t in it. This is a common
problem with users acquiring new knowledge from chatbot services. The AI
model will give the user information, but naively the user may choose to blindly
believe this information as a base truth, even if a closer look at it would prove
faulty logic. This is why it is essential to be critical of the information provided
by AI. However, using AI as a tool can save valuable time. As in this project, the
model annotates the video, but certified personnel would still have to evaluate
the images to make any actual conclusions about what is in the images. AI
helps the user browse the images and gives the user baseline information to
work with.

78 chapter 4 discussion & results

4.2.2 Using uncertainty for other purposes than training

Even if Monte Carlo dropout can’t be concluded as the definitive best method
to decide which images should be annotated by the user, it can still be used
to inform the user that an image should be more carefully evaluated by the
user. From the results of experimenting with uncertainty, we observed that the
only image wrongly annotated was the image with an uncertainty in it. The
class the model was uncertain of was also the class that was not present in the
image.

4.2.3 No time measurement

No time measurements were made or included in this report, as this is not
the project’s goal. The model created in this project is meant to run on weak
hardware commonly found in laptops. However, there has been a focus on
the models used in this project should be lightweight to run on inferior hard-
ware. I’m measuring the different methods’ accuracy performance, not their
time complexity. The time complexity will be more significant for the Monte
Carlo dropout method, but if that method achieves the best performance, it’s
a valuable trade-off. The model’s output will always be the same, independent
of hardware.

Choosing the budget to be thirty-five

To balance the number of images each model gets, another experiment was
run with a budget of thirty-five images, meaning a model could only use a
maximum of thirty-five out of the hundred images in the batch. The number
thirty-five was used because the models usually get at least thirty-five images
after observing the regular experiment.

Insufficient data and hyperparameters

The reason the models performed too similarly to each other has maybe some-
thing to do with how the data was distributed in terms of image batches. There
are many possibilities for how they could have been structured, both the initial
batch and the "new" batches could have been larger and smaller. The budget
size could also potentially have proved to play a more significant role with other
image batch sizes. To tune the uncertainty classification threshold, the inter-
val could have been made bigger/smaller for the "threshold interval" strategy,
and for Monte Carlo dropout, the threshold could also have been manipulated
either up or down.

4.2 general discussion 79

4.2.4 Future work/further improvements

Improving the results of incremental learning

The variation of incremental learning I concluded with seems fine enough
for this project. However, it could still use improvements. The main problem
with the variation I landed on was that the method caused more overfitting
than regular training. This is most likely because each existing image in the
old training data set has already been trained on by the model before, and
for every new image batch, the model trains on the old images even more
times. To combat overfitting, better regularization methods could have been
tested.

Vanishing gradients

Vanishing gradients are a common problem in very deep neural networks and
recurrent neural networks. It is an unwanted effect that causes earlier layers
(or gates in the case of recurrent neural networks), i.e., layers further away
from where the backpropagation started, to learn less because the gradients
start to vanish. I don’t wish for my model to suffer from this, but an idea to fight
overfitting would be to weigh older image batches less, halving their effect for
each new image batch added, as illustrated in figure 4.26. This incremental
learning method would be somewhere between the two implemented in this
project. Instead of focusing as much on the older images as the newly added
ones, the older ones would not have as big of an impact as the newly added
images. A downside of this method is that it has to compute the loss for every
image in each epoch but only gets a fraction of the total loss.

Figure 4.26: Illustrates how each image batch would have their image loss weighed.

A potential solution to this problem would be a more stochastic approach.
Instead of using every image in the data set, only a random portion of the
older data set is evaluated for each epoch. The model can therefore train on
fewer images and use all the loss it computes. Figure 4.26 is still relevant as
it would now represent the portion of images from each "generation" included
in the epoch. The downside to both these methods is that extra values have
to be stored in the image metadata and taken into account every time the

80 chapter 4 discussion & results

images are to be trained on. However, these methods could solve the problems
that the methods in this project have. As seen from the experiments, method
one diverges too far from the original data and has fluctuating results from
the original data. Method two doesn’t have the same fluctuating results but
overfits the training data much more than the original model.

PCA of images classified as uncertain vs. those classified as
non-certain

An interesting experiment would be to conduct some form of feature analy-
sis like PCA. Comparing the images that are classified as uncertain vs. those
classified as non-uncertain. PCA could provide insight into why some images
are classified as uncertain. It could also prove that humans can’t observe any
meaningful discrepancies. But it could prove that images with outlying features
are classified as uncertain. If this was the case, the PCA distribution could be
further evaluated with the model’s original output to determine if an image is
uncertain.

Class-wise evaluation

As shown in earlier figures 2.6, every class has its own precision and recall score.
An idea could be to implement a custom classification threshold for every class
optimized by an F1 score most fit for the class. This would also yield different
uncertainty classifications for each class (compared to now), potentially leading
to better results for bothmethods of calculating uncertainty. Another idea could
be continuously moving the classification thresholds relative to the latest F1
score. In this project, I simplify it by using the F1 score computed in Riise [9].
Bear in mind that moving the F1 score will not affect the training as the sigmoid
output value is used to compute the loss.

Using the degree of uncertainty

What I’ve done in this experiment is find if there is an uncertainty in the image,
but I don’t necessarily take into account the degree of uncertainty. What could
have been interesting to experiment with would be only to evaluate the degree
of uncertainty to classify an image as uncertain, independent of where it is
in relation to the threshold. However, only the second strategy, Monte Carlo
dropout, has the ability to measure the degree of uncertainty. But it could still
be compared to the performance of the models in these experiments.

4.2 general discussion 81

Training the models from scratch every time

Lastly, it could also be interesting to see if themodels would converge differently
if they were trained from scratch every time. The training period in total would,
of course, be much more extended, but the models would probably not overfit
as much as they currently do.

5
Concluding remarks
This thesis presents an exploration of incremental learning and uncertainty
in deep learning, where the results are applied to a model utilized by a web
application that SINTEF may deploy as part of the LIACi project as it is or may
be further developed.

Chapter 1 presents the two hypotheses created to set more specific topics to
explore.

1. A machine can evaluate a model’s confidence value through uncertainty
to indicate which images the user should annotate to yield the best learn-
ing per image ratio.

2. There is no need to train the model from scratch every time, as it only
needs to be trained for a fraction of the original epochs.

Chapter 2 describes the different methods used to perform the experiments and
the necessary website changes that were needed to show the user uncertainty.
The experiments use data, models, and accuracy measurements used in Riise
[9], but also new methods, mainly the two strategies to classify uncertainty in
images. The first strategy for classifying uncertain images is threshold interval
which only evaluates the sigmoid output (also known as the confidence) value
of the model and uses it to classify an image as uncertain. The second strategy
is Monte Carlo dropout which samples subnetworks of the fully connected layer
in the model to compute a ` & 𝜎 , where 𝜎 is the degree of uncertainty.

83

84 chapter 5 concluding remarks

Chapter 3 demonstrates how the three experiments were performed. The first
experiment is tied to hypothesis two and tried to determine if satisfactory
performance could be achieved with incremental learning by training on only
the new data training data or by training on all the training data for each
increment of new training data. The second experiment was performed to
determine how many times Monte Carlo dropout had to be sampled to achieve
a stable ` & 𝜎 . The third experiment was tied to the first hypothesis and tried
to determine if different uncertainty strategies could be used to choose images
that would more effectively train the model.

Chapter 4 shows and discusses the results from the conducted experiments.
Additionally, I suggest various future work that can be conducted in the form
of experiments to improve the results possibly.

5.1 Conclusion

Based on the work and experiment results presented in this thesis, I can con-
clude the following:

The results from the first experiment support the second hypothesis that using
the LIACi data set to train the model incrementally works and most optimally if
the model is trained on all the training data for each increment. The trade-off
for achieving the same test results (loss and binary accuracy) as the original
model is more overfitting for both loss and binary accuracy. If solely the new
data were trained on, the results were too unstable and fluctuating.

The second experiment tried to determine how many samples of Monte Carlo
dropout would need to stabilize its ` & 𝜎 . The results showed that with a
hundred samples, ` & 𝜎 stabilized. Optimizations and more thorough testing
could have been done, but it wasn’t the focus of the thesis.

The last and most extensive experiment tried to prove the first hypothesis, but
it proved overall inconclusive. However, some conclusions still came from the
experiments. Although still more than the originalmodel, the models trained on
uncertain data always overfitted the least, both with and without a budget. The
model trained with uncertainty classified byMonte Carlo dropout overfitted the
least. However, I still believe that with the right hyperparameters and strategies,
one can arrive at a conclusion to this hypothesis.

The future work section 4.2.4 suggests ways to conduct and improve the exper-
iments.

5.1 conclusion 85

The code package for this project can be found here https://github.com/
SINTEF/activeLearningForLIACI

https://github.com/SINTEF/activeLearningForLIACI
https://github.com/SINTEF/activeLearningForLIACI

A
UI changes and additions
A new 2D map, shown in figure A.1, was created to show the user which labels
and in which images the model is uncertain of in the uploaded video. As with
the old 2D map, the user can click around in the figure to browse the video.

Figure A.1: 2D map showing labels on the y-axis and frame numbers on the x-axis. A
yellow tag means the model is uncertain

Toggle switches have been added to the web application for each label, as seen
in figure A.2. When the user clicks on a specific frame on the 2D map, the web
application will jump to that frame and fetch the annotations the model has
made on the specific image. The model annotations are used to set a starting
point for the user. Hopefully, they won’t have to toggle too many switches to
correct the annotations. Users can hit the submit button when they are satisfied
with the annotations.

The submit button takes the current frame number, turns the toggle switches

87

88 appendix a ui changes and addit ions

Figure A.2: Switches added to the web application UI so the user can annotate images.

into a list of boolean values, and sends the two to the server. The frame number
is used to fetch the actual frame of the video, and it’s stored as an image on
the server.

A.1 Storing the image on the server

When an image is submitted and stored on the server, the image is given a
unique name and stored in a folder with other annotated images. The anno-
tations are stored in a separate file using the common and easy-to-implement
JSON format. Each (unique) image name is used as a key in a dictionary to
access the multi-hot vector (annotations) that belong to the image. Figure A.3
shows roughly how the file system is designed.

a.2 live incremental learning 89

Figure A.3: Shows how images submitted to the server are stored together with their
annotated labels

A.2 Live incremental learning

A feature was also added to the app that lets the user incrementally train by
using the strategy that was found most fitting in 4, training on the new and
the old training data. The old training data is the LIACi data set, and the new
training data is the images the user annotates. The test set is still the original
test data from the LIACi data set. No feature allows for saving the updated
model as of now.

A.2.1 Web application interface

The web application is a further extension of the web application created in
the capstone project Riise [9].

A couple of features have been added to accommodate the problem statement
of the master thesis. However, as with the previous project (which this project
is an offspring of), the design has not been a priority at all. I could have made

90 appendix a ui changes and addit ions

the website pretty and pleasing to use, but too much time would have been put
into that when the website’s purpose is solely to let the user use and interact
with the "scientific" work I’ve done related to this project. So while the website
is not aesthetically pleasing, it is very functional (which is the aim).

A.2.2 Changes done to the web application

In the previous project Riise [9], the web application had some limitations,
mainly related to too much data loaded into memory simultaneously.

The first case occurred after the video was uploaded to the server. OpenCV
would extract every frame from the video and gather them in a sequential
multi-dimensional array, scaling linearly in size with the video length. This
was done to take advantage of TensorFlow scalable large-batch processing,
although I didn’t have a GPU to utilize this feature entirely.

Naively, a straightforward approach to solving this memory problem would
be to predict every single individual frame, but as Keras’s documentation [6]
states, it’s much more scalable to predict on batches.

The solution was to add a user-configurable constant to let the user choose
a value that suits their hardware. The constant dictates how large each pre-
diction batch will be, i.e., how many frames will be kept in memory at a time.
A compromise between predicting every image simultaneously and keeping
memory usage low.

𝑚𝑒𝑚 𝑠𝑖𝑧𝑒 = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ × 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 × 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 (A.1)

The optimal batch size value wasn’t found as it’s not the focus of this master’s
thesis, and it’s hardware dependent and won’t be relevant for whichever hard-
ware this will later be run on. Since frames are extracted independently, all
video compression between frames is lost. The memory usage of a batch can,
therefore, easily be calculated with eq. A.1, where each pixel is 1 byte.

No other features have been directly removed, so the site allows video brows-
ing.

B
Incremental training with
uncertainty

The four figures B.1a, B.1b, B.2a B.2b show the individual training summary
for the four different models created in the previous chapter, as seen in table
3.1. Figures B.3a, B.3b, B.4a B.4b show the same, but for models trained with
a budget of 35 images per batch. The dashed vertical red lines separate each
image batch. The fraction of original epochs used is 3

10 .

Threshold interval Monte Carlo dropout
Uncertain Model 1 Model 2

Non-uncertain Model 3 Model 4

Table B.1: The four variations of models trained.

91

92 appendix b incremental training with uncertainty

0 25 50 75 100 125
Epoch

0.20

0.25

0.30

0.35

0.40
Loss function

train
test

0 25 50 75 100 125
Epoch

0.82

0.84

0.86

0.88

0.90

0.92

Binary Accuracy
train
test

Loss and accuracy graph for model trained incrementally with Monte Carlo
dropout uncertain images

(a) Training summary for loss and binary accuracy for the model. For each red vertical dashed
line, 100 images are evaluated using Monte Carlo dropout to find the ucertain ones.

0 25 50 75 100 125
Epoch

0.20

0.25

0.30

0.35

0.40
Loss function

train
test

0 25 50 75 100 125
Epoch

0.82

0.84

0.86

0.88

0.90

0.92

0.94
Binary Accuracy

train
test

Loss and accuracy graph for model trained incrementally with Monte Carlo
dropout non-uncertain images

(b) Training summary for loss and binary accuracy for the model. For each red vertical dashed
line, 100 images are evaluated using Monte Carlo dropout to find the non-uncertain ones.

Figure B.1: Training summary for loss and binary accuracy for themodels. For each red
vertical dashed line, 100 images are evaluated using Monte Carlo dropout
to find the uncertain/non-uncertain ones, respectively. The images classi-
fied as uncertain/non-uncertain is then added to the training data set. The
model then trains on the whole training data set for 30% of the original
35 training epochs.

93

0 25 50 75 100 125
Epoch

0.20

0.25

0.30

0.35

0.40
Loss function

train
test

0 25 50 75 100 125
Epoch

0.82

0.84

0.86

0.88

0.90

0.92

Binary Accuracy
train
test

Loss and accuracy graph for model trained incrementally with threshold
interval uncertain images

(a) Training summary for loss and binary accuracy for the model. For each red vertical dashed
line, 100 images are evaluated using "Threshold interval" to find the ucertain ones.

0 25 50 75 100 125
Epoch

0.20

0.25

0.30

0.35

0.40
Loss function

train
test

0 25 50 75 100 125
Epoch

0.82

0.84

0.86

0.88

0.90

0.92

Binary Accuracy
train
test

Loss and accuracy graph for model trained incrementally with threshold
interval non-uncertain images

(b) Training summary for loss and binary accuracy for the model. For each red vertical dashed
line, 100 images are evaluated using "Threshold interval" to find the non-uncertain ones.

Figure B.2: Training summary for loss and binary accuracy for themodels. For each red
vertical dashed line, 100 images are evaluated using "Threshold interval" to
find the uncertain/non-uncertain ones, respectively. The images classified
as uncertain/non-uncertain is then added to the training data set. The
model then trains on the whole training data set for 30% of the original
35 training epochs.

94 appendix b incremental training with uncertainty

0 25 50 75 100 125
Epoch

0.20

0.25

0.30

0.35

0.40
Loss function

train
test

0 25 50 75 100 125
Epoch

0.82

0.84

0.86

0.88

0.90

0.92

Binary Accuracy
train
test

Loss and accuracy graph for model trained incrementally with Monte Carlo
dropout uncertain images, budget=35

(a) Training summary for loss and binary accuracy for the model. For each red vertical dashed
line, 100 images are evaluated using Monte Carlo dropout to find the ucertain ones.

0 25 50 75 100 125
Epoch

0.20

0.25

0.30

0.35

0.40
Loss function

train
test

0 25 50 75 100 125
Epoch

0.82

0.84

0.86

0.88

0.90

0.92

0.94
Binary Accuracy

train
test

Loss and accuracy graph for model trained incrementally with Monte Carlo
dropout non-uncertain images, budget=35

(b) Training summary for loss and binary accuracy for the model. For each red vertical dashed
line, 100 images are evaluated using Monte Carlo dropout to find the non-uncertain ones.

Figure B.3: Training summary for loss and binary accuracy for themodels. For each red
vertical dashed line, 100 images are evaluated using Monte Carlo dropout
to find the uncertain/non-uncertain ones, respectively. The images classi-
fied as uncertain/non-uncertain is then added to the training data set. The
model then trains on the whole training data set for 30% of the original
35 training epochs.

95

0 25 50 75 100 125
Epoch

0.20

0.25

0.30

0.35

0.40
Loss function

train
test

0 25 50 75 100 125
Epoch

0.82

0.84

0.86

0.88

0.90

0.92

Binary Accuracy
train
test

Loss and accuracy graph for model trained incrementally with threshold
interval uncertain images, budget=35

(a) Training summary for loss and binary accuracy for the model. For each red vertical dashed
line, 100 images are evaluated using "Threshold interval" to find the ucertain ones.

0 25 50 75 100 125
Epoch

0.20

0.25

0.30

0.35

0.40
Loss function

train
test

0 25 50 75 100 125
Epoch

0.82

0.84

0.86

0.88

0.90

0.92

Binary Accuracy
train
test

Loss and accuracy graph for model trained incrementally with threshold
interval non-uncertain images, budget=35

(b) Training summary for loss and binary accuracy for the model. For each red vertical dashed
line, 100 images are evaluated using "Threshold interval" to find the non-uncertain ones.

Figure B.4: Training summary for loss and binary accuracy for themodels. For each red
vertical dashed line, 100 images are evaluated using "Threshold interval" to
find the uncertain/non-uncertain ones, respectively. The images classified
as uncertain/non-uncertain is then added to the training data set. The
model then trains on the whole training data set for 30% of the original
35 training epochs.

C
A closer look at F1 results

0.2 0.3 0.4 0.5 0.6
Classification threshold

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

F1
 sc

or
e

F1 score graphs
MC Unc
Best F1 0.8079
MC Crt
Best F1 0.8011
TI Unc
Best F1 0.8164
TI Crt
Best F1 0.8005

0.65 0.70 0.75 0.80
Recall

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Pr
ec

isi
on

Precision Recall Curve

MC Unc
Best F1
MC Crt
Best F1
TI Unc
Best F1
TI Crt
Best F1

F1 score evaluation,
MC Unc=Monte Carlo uncertain, MC Crt=Monte Carlo non-uncertain, TI

Unc=Threshold interval uncertain, TI Crt=Threshold interval non-uncertain

Figure C.1: A closer, more detailed look at figure 4.24, from chapter 4

97

98 appendix c a closer look at f1 results

0.2 0.3 0.4 0.5 0.6
Classification threshold

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

F1
 sc

or
e

F1 score graphs
MC Unc
Best F1 0.807
MC Crt
Best F1 0.8112
TI Unc
Best F1 0.8131
TI Crt
Best F1 0.8029

0.65 0.70 0.75 0.80
Recall

0.78

0.80

0.82

0.84

0.86

0.88

0.90
Pr

ec
isi

on
Precision Recall Curve

MC Unc
Best F1
MC Crt
Best F1
TI Unc
Best F1
TI Crt
Best F1

F1 score evaluation for models with a budget,
MC Unc=Monte Carlo uncertain, MC Crt=Monte Carlo non-uncertain, TI

Unc=Threshold interval uncertain, TI Crt=Threshold interval non-uncertain

Figure C.2: A closer, more detailed look at figure 4.25, from chapter 4

Bibliography
[1] Jia Deng et al. “ImageNet: A large-scale hierarchical image database.” In:

2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009
IEEE Conference on Computer Vision and Pattern Recognition. ISSN:
1063-6919. June 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[2] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. arXiv:1506.02142 [cs,
stat]. Oct. 2016. url: http://arxiv.org/abs/1506.02142 (visited on
03/30/2023).

[3] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. arXiv:1506.02142 [cs,
stat]. Oct. 2016. url: http://arxiv.org/abs/1506.02142 (visited on
03/30/2023).

[4] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications. arXiv:1704.04861 [cs]. Apr. 2017.
doi: 10.48550/arXiv.1704.04861. url: http://arxiv.org/abs/1704.
04861 (visited on 10/13/2022).

[5] Forrest N. Iandola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and<0.5MBmodel size. Nov. 4, 2016. arXiv: 1602.07360 [cs].
url: http://arxiv.org/abs/1602.07360 (visited on 11/25/2022).

[6] Keras FAQ. https : / / keras . io / getting _ started / faq / #whats - the -
difference-between-model-methods-predict-and-call. (Accessed on
03/21/2023).

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks.” In: Advances in
Neural Information Processing Systems. Vol. 25. Curran Associates, Inc.,
2012. url: https : / / proceedings . neurips . cc / paper / 2012 / hash /
c399862d3b9d6b76c8436e924a68c45b-Abstract.html (visited on 11/25/2022).

[8] Zachary Chase Lipton, Charles Elkan, and Balakrishnan Narayanaswamy.
Thresholding Classifiers to Maximize F1 Score. May 13, 2014. arXiv: 1402.
1892 [cs, stat]. url: http://arxiv.org/abs/1402.1892 (visited on
12/12/2022).

[9] Elias Estefano Gutierrez Riise. “Underwater Ship Inspection Using Multi-
label Image Classification.” Capstone project, University of Tromsø. 2022.

99

https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1506.02142
http://arxiv.org/abs/1506.02142
https://doi.org/10.48550/arXiv.1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1602.07360 [cs]
http://arxiv.org/abs/1602.07360
https://keras.io/getting_started/faq/##whats-the-difference-between-model-methods-predict-and-call
https://keras.io/getting_started/faq/##whats-the-difference-between-model-methods-predict-and-call
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://arxiv.org/abs/1402.1892 [cs, stat]
https://arxiv.org/abs/1402.1892 [cs, stat]
http://arxiv.org/abs/1402.1892

100 BIBLIOGRAPHY

[10] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. Apr. 10, 2015. doi: 10.48550/
arXiv.1409.1556. arXiv: 1409.1556 [cs]. url: http://arxiv.org/abs/
1409.1556 (visited on 11/24/2022).

[11] Christian Szegedy et al. “Going deeper with convolutions.” In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Boston, MA, USA: IEEE, June 2015, pp. 1–9. isbn: 978-1-4673-6964-0.
doi: 10.1109/CVPR.2015.7298594. url: http://ieeexplore.ieee.org/
document/7298594/ (visited on 11/25/2022).

[12] Sheng Wang, Ashwin Raju, and Junzhou Huang. “Deep learning based
multi-label classification for surgical tool presence detection in laparo-
scopic videos.” In: 2017 IEEE 14th International Symposium on Biomedi-
cal Imaging (ISBI 2017). ISSN: 1945-8452. Apr. 2017, pp. 620–623. doi:
10.1109/ISBI.2017.7950597.

[13] Maryna Waszak et al. “Semantic Segmentation in Underwater Ship In-
spections: Benchmark and Dataset.” In: IEEE Journal of Oceanic Engi-
neering (in press). doi: 10.1109/JOE.2022.3219129.

https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://arxiv.org/abs/1409.1556 [cs]
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2015.7298594
http://ieeexplore.ieee.org/document/7298594/
http://ieeexplore.ieee.org/document/7298594/
https://doi.org/10.1109/ISBI.2017.7950597
https://doi.org/10.1109/JOE.2022.3219129

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Underwater ship inspections
	1.2 Background and related work
	1.2.1 MobileNet
	1.2.2 Multi-label classification
	1.2.3 The LIACi data set
	1.2.4 Monte Carlo Dropout

	1.3 Problem statement
	1.4 Hypothesis
	1.4.1 Phase one
	1.4.2 Phase Two
	1.4.3 Phase Three

	2 Method
	2.1 The LIACi data set
	2.2 Measuring performance with F1 score
	2.3 The MobileNet architecture adapted to multi-label classification
	2.4 Picking uncertain images
	2.4.1 Strategy One: Trusting the neuron outputs
	2.4.2 Strategy Two: Using Monte Carlo Dropout galdropout2016

	3 Experiments
	3.1 Exploring incremental learning for the LIACi data set
	3.1.1 Train to test data set ratio
	3.1.2 Experimenting with incremental training

	3.2 Exploring Monte Carlo dropout to find a viable sample amount
	3.3 Exploring incremental learning on uncertain or non-uncertain images for the LIACi data set
	3.3.1 Experiment basis
	3.3.2 Experimenting with incremental learning and uncertainty
	3.3.3 Experiment dependencies

	4 Discussion & Results
	4.1 Experiment results
	4.1.1 Exploring incremental learning for the LIACI data set
	4.1.2 Exploring Monte Carlo dropout to find a viable sample amount
	4.1.3 Exploring incremental learning that also accounts for uncertainty

	4.2 General discussion
	4.2.1 Pros and cons by showing the user the model annotations before the user self annotates
	4.2.2 Using uncertainty for other purposes than training
	4.2.3 No time measurement
	4.2.4 Future work/further improvements

	5 Concluding remarks
	5.1 Conclusion

	A UI changes and additions
	A.1 Storing the image on the server
	A.2 Live incremental learning
	A.2.1 Web application interface
	A.2.2 Changes done to the web application

	B Incremental training with uncertainty
	C A closer look at F1 results
	df92eefb-36e1-41a3-9c78-665de349e5ad.pdf
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Underwater ship inspections
	1.2 Background and related work
	1.2.1 MobileNet
	1.2.2 Multi-label classification
	1.2.3 The LIACi data set
	1.2.4 Monte Carlo Dropout

	1.3 Problem statement
	1.4 Hypothesis
	1.4.1 Phase one
	1.4.2 Phase Two
	1.4.3 Phase Three

	2 Method
	2.1 The LIACi data set
	2.2 Measuring performance with F1 score
	2.3 The MobileNet architecture adapted to multi-label classification
	2.4 Picking uncertain images
	2.4.1 Strategy One: Trusting the neuron outputs
	2.4.2 Strategy Two: Using Monte Carlo Dropout galdropout2016

	3 Experiments
	3.1 Exploring incremental learning for the LIACi data set
	3.1.1 Train to test data set ratio
	3.1.2 Experimenting with incremental training

	3.2 Exploring Monte Carlo dropout to find a viable sample amount
	3.3 Exploring incremental learning on uncertain or non-uncertain images for the LIACi data set
	3.3.1 Experiment basis
	3.3.2 Experimenting with incremental learning and uncertainty
	3.3.3 Experiment dependencies

	4 Discussion & Results
	4.1 Experiment results
	4.1.1 Exploring incremental learning for the LIACI data set
	4.1.2 Exploring Monte Carlo dropout to find a viable sample amount
	4.1.3 Exploring incremental learning that also accounts for uncertainty

	4.2 General discussion
	4.2.1 Pros and cons by showing the user the model annotations before the user self annotates
	4.2.2 Using uncertainty for other purposes than training
	4.2.3 No time measurement
	4.2.4 Future work/further improvements

	5 Concluding remarks
	5.1 Conclusion

	A UI changes and additions
	A.1 Storing the image on the server
	A.2 Live incremental learning
	A.2.1 Web application interface
	A.2.2 Changes done to the web application

	B Incremental training with uncertainty
	C A closer look at F1 results

	df92eefb-36e1-41a3-9c78-665de349e5ad.pdf
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Underwater ship inspections
	1.2 Background and related work
	1.2.1 MobileNet
	1.2.2 Multi-label classification
	1.2.3 The LIACi data set
	1.2.4 Monte Carlo Dropout

	1.3 Problem statement
	1.4 Hypothesis
	1.4.1 Phase one
	1.4.2 Phase Two
	1.4.3 Phase Three

	2 Method
	2.1 The LIACi data set
	2.2 Measuring performance with F1 score
	2.3 The MobileNet architecture adapted to multi-label classification
	2.4 Picking uncertain images
	2.4.1 Strategy One: Trusting the neuron outputs
	2.4.2 Strategy Two: Using Monte Carlo Dropout galdropout2016

	3 Experiments
	3.1 Exploring incremental learning for the LIACi data set
	3.1.1 Train to test data set ratio
	3.1.2 Experimenting with incremental training

	3.2 Exploring Monte Carlo dropout to find a viable sample amount
	3.3 Exploring incremental learning on uncertain or non-uncertain images for the LIACi data set
	3.3.1 Experiment basis
	3.3.2 Experimenting with incremental learning and uncertainty
	3.3.3 Experiment dependencies

	4 Discussion & Results
	4.1 Experiment results
	4.1.1 Exploring incremental learning for the LIACI data set
	4.1.2 Exploring Monte Carlo dropout to find a viable sample amount
	4.1.3 Exploring incremental learning that also accounts for uncertainty

	4.2 General discussion
	4.2.1 Pros and cons by showing the user the model annotations before the user self annotates
	4.2.2 Using uncertainty for other purposes than training
	4.2.3 No time measurement
	4.2.4 Future work/further improvements

	5 Concluding remarks
	5.1 Conclusion

	A UI changes and additions
	A.1 Storing the image on the server
	A.2 Live incremental learning
	A.2.1 Web application interface
	A.2.2 Changes done to the web application

	B Incremental training with uncertainty
	C A closer look at F1 results

	df92eefb-36e1-41a3-9c78-665de349e5ad.pdf
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Underwater ship inspections
	1.2 Background and related work
	1.2.1 MobileNet
	1.2.2 Multi-label classification
	1.2.3 The LIACi data set
	1.2.4 Monte Carlo Dropout

	1.3 Problem statement
	1.4 Hypothesis
	1.4.1 Phase one
	1.4.2 Phase Two
	1.4.3 Phase Three

	2 Method
	2.1 The LIACi data set
	2.2 Measuring performance with F1 score
	2.3 The MobileNet architecture adapted to multi-label classification
	2.4 Picking uncertain images
	2.4.1 Strategy One: Trusting the neuron outputs
	2.4.2 Strategy Two: Using Monte Carlo Dropout galdropout2016

	3 Experiments
	3.1 Exploring incremental learning for the LIACi data set
	3.1.1 Train to test data set ratio
	3.1.2 Experimenting with incremental training

	3.2 Exploring Monte Carlo dropout to find a viable sample amount
	3.3 Exploring incremental learning on uncertain or non-uncertain images for the LIACi data set
	3.3.1 Experiment basis
	3.3.2 Experimenting with incremental learning and uncertainty
	3.3.3 Experiment dependencies

	4 Discussion & Results
	4.1 Experiment results
	4.1.1 Exploring incremental learning for the LIACI data set
	4.1.2 Exploring Monte Carlo dropout to find a viable sample amount
	4.1.3 Exploring incremental learning that also accounts for uncertainty

	4.2 General discussion
	4.2.1 Pros and cons by showing the user the model annotations before the user self annotates
	4.2.2 Using uncertainty for other purposes than training
	4.2.3 No time measurement
	4.2.4 Future work/further improvements

	5 Concluding remarks
	5.1 Conclusion

	A UI changes and additions
	A.1 Storing the image on the server
	A.2 Live incremental learning
	A.2.1 Web application interface
	A.2.2 Changes done to the web application

	B Incremental training with uncertainty
	C A closer look at F1 results

