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Summary

Character values are not the easiest to calculate, so it is important to find good algorithms

that can help ease these calculations. In the 20th century, the two mathematicians Mur-

naghan and Nakayama developed a rule that calculates character values for partitions on

some computations. This rule has later been given the name The Murnaghan-Nakayama

rule, after Murnaghan and Nakayama.

The Murnaghan-Nakayama rule is a combinatorial method for computing character val-

ues of irreducible representations of symmetric groups. This makes this rule an important

part of representation theory. One of the versions of this rule is stated in Theorem 15;

Theorem 15. Let λ ⊢ n, and suppose that α = (α1, . . . , αm) is a composition of n. Then

the character value χλ is given by

χλ
α = χλ(α) =

∑
ν

(−1)ht(ν)χλ\ν(α\α) (33)

where we sum over all border strips ν of size α1.

We can therefore use border strips and diagrams to calculate character values of repre-

sentations on a given composition. This algorithm is quite fast in these calculations. The

Murnaghan-Nakayama rule is therefore very favourable in these calculations.

The Murnaghan-Nakayama rule can also be considered a central algorithm in represen-

tation theory over symmetric groups. It is a fascinating and powerful algorithm that has a

strong connection to both combinatorics and representation theory.
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1 Introduction

1.1 Motivation

In representation theory, characters have a central role in the study of representations of

groups (and algebras). A character is a function that associates each element of a group

with a complex number. Characters are considered to be a way of measuring how an element

in a group act on a vector space. The character then encodes how the element transforms

vectors in a vector space.

Characters are important since they give us the ability to distinguish different represen-

tations of a group, where we will consider two representations to be equivalent if they have

the same character. Characters play an important role in subjects like algebraic geometry,

quantum mechanics, and molecular chemistry, to name a few. For example in molecular

chemistry, one uses characters to understand and predict the properties of molecules and

their electronic states.

Finding these character values can be quite difficult. Just finding out if a representation

has a character value equal to zero has been proved to be hard and complicated by Pak and

Panova (2015), see Section 4.3 for further explanation. However, in some special cases, one

can compute the character values using combinatorial methods. One of these methods is

the Murnaghan-Nakayama rule (Theorem 15), which computes the characters of irreducible

representations of symmetric groups.

The Murnaghan-Nakayama rule is a fascinating algorithm that has extensive applications

in several different fields. It is an evolving algorithm and there are still studies made to

further refine and develop the rule. The rule may then be a crucial area of research in the

future, with more potential for discoveries and applications in various fields.
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1.2 P and NP complexity classes

To understand the complexity around characters and how to find their values in represen-

tation theory, we should understand what complexity means.

When talking about complexity, we often refer to the time an algorithm takes to solve a

problem. If there is a problem we want to solve, we can either 1) try to find the solutions,

or 2) see if a set of solutions can be efficiently verified.

Complexity classes are defined to be a collection of Decision Problems. These are prob-

lems where you take an input x, and want an answer, yes or no, as an output. Or, these

problems could be collections of Search Problems. Search Problems are problems where we

have an input x, and we want a correct answer y to the problem as an output. When look-

ing at Decision Problems that can be solved in Polynomial Time by a Deterministic Turing

Machine (or simply just a computer). We are then looking at a P complexity class. The

P is short for ”Polynomial Time”. Polynomial Time implies there exists some polynomial

function f , such that if there is the input x, with the length l when written in binary, then

the machine should take at most f(l) time to give out the correct answer (maycontainmaths,

2014).

When looking at Search Problems, the P complexity is more or less the same. The only

catch is that the length of the answer y, when written in binary, must always be less than

g(l) for some polynomial g. If there were no bounds, then the machine would take too long

to solve the problem.

If we have Decision Problems that could be solved in Polynomial time, but not by a

Deterministic Turing Machine, we are then looking at the NP complexity class. The NP

is short for ”Non-deterministic Polynomial Time”. A Non-deterministic Turing Machine

doesn’t match up with a computer we know. Meaning NP is not good at looking at Decision

Problems. Therefore, NP is defined in terms of Search Problems instead.

Search Problem has Efficiently Checkable Solutions when, given a problem instance and

an answer (x, y), checking if y is a correct solution to x is in P . I.e., it is possible to verify

the solutions in polynomial time. Here we still need the length of y to be less than g(l) for

some polynomial g, such that the computer can be able to compute this in a reasonable

time. NP is the collection of Search Problems with Efficient Checkable Solutions. From

this, we can refer to P as a collection of problems that are solvable in polynomial time,

while NP is the collection of problems for which the solutions can be verified in polynomial

time (Mehlhorn and Sun, 2013).
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A problem Y is NP-hard if the problem X ∈ NP can be reduced in a polynomial time

to Y . Formally speaking; a problem X is polynomial time reducible to Y if there exists

a polynomial time function f that sends elements in X to some elements in Y , such that

f(x) = y (Mehlhorn and Sun, 2013).

From intuition, one can imagine that a NP-hard problem is at least as hard as a NP

problem, though we don’t have to look over NP problems. Meaning that the Y does not

have to be a NP problem, even though the X is. When looking at NP-hard problems where

Y ∈ NP, then we are looking at NP-complete problems.

By using the Euler diagram, we can get a better visualisation of how to compareNP-hard

and NP-complete problems.

Figure 1: An Euler diagram for P, NP, NP-complete, and NP hard sets of problems

Wikipedia contributors (2023a).

In NP-problems we ask whether there exists a solution to a given problem. However, one

might also be interested in how many solutions in addition to if the solutions exist. We then

let #P be the set of counting problems associated with decision problems in the set of NP

problems. While NP problems ask ”are there any valid solutions”, the #P problems ask

for ”how many solutions” Valiant (1979). Since we can associate #P with NP-problems,

then #P are as hard as NP. The same can be said for #P-hard problems.
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1.3 History behind the rule

The representation theory of symmetric groups was first studied by G. Frobenius in the

late 19th century. Later authors like I. Schur, A. Young, and H. Weyl made important

contributions to this field. Though, it was mostly R. Brauer with his collaborators that

influenced the theory of modular representation in the 1930s (Lewis, 2003). This field of

mathematics is crucial in nuclear physics, which is why F.D. Murnaghan wanted to simplify

the theory of the representations of symmetric groups in a way that was more accessible

for physicists in his paper ”On the Representations of the Symmetric Group”. One of the

motivations for this paper was the following quote;

The original papers of Frobenius, and particularly those of Schur, arouse in a

persevering reader an emotion akin to that inspired by one of the great sym-

phonies; but they are by no means easy reading and we hope that a somewhat

elementary orchestration may acquaint a larger audience with the word of the

masters.

(Murnaghan 1937)

As Stanley and Fomin (1999) wrote in their notes on symmetric functions (Stanley and

Fomin, 1999, p 401), the Murnaghan-Nakayama rule was originally proved by Littlewood and

Richardson (1934, §11). In their proof, they derive it as a corollary of the older Frobenius

formula for characters of symmetric groups. (See (Stanley and Fomin, 1999, 7.77) for a

modern statement of Frobenius’s formula.) Later F.D. Murnaghan (1937, p. 452, (13))

gave an independent derivation of the rule. T. Nakayama continued the study in 1940 and

investigated some modular properties of irreducible representations of symmetric groups,

where he was the first to introduce the concept of hooks (James, 1978). In the paper ”On

some modular properties of irreducible representations of a symmetric group” Nakayama

(1940) gave a more precise formulation of Murnaghan’s formula, by using hooks in Young

diagrams that correspond to an irreducible representation (Lewis, 2003). With this, he also

gave more concise proof of Murnaghan’s formula.

Nakayama’s contribution to Murnaghan’s formula consequently gave the formula the

name ”Murnaghan-Nakayama rule”, in honour to both mathematicians.
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1.4 Structure of the Master Thesis

In this Master thesis, we start by introducing the notions and definitions that are needed

to understand the Murnaghan Nakayama rule and the proofs around this rule.

First, we look at representation theory on general groups in Section 2. Here we define

some of the important notations from representation theory. Where we later specify the

definitions from Section 2 to those of symmetric groups in Section 3. In this section, we

will look at some special properties of symmetric groups, which are useful for representation

theory. Both of these sections have definitions that are based on those in the book by Sagan

(2001) and the book by Stanley and Fomin (1999). We refer the reader to these for more

details and further explanations.

After that, we will state the Murnaghan Nakayama rule in Section 4. This section

also introduces some of the different variants of this rule and looks into some articles that

reformulate the Murnaghan-Nakayama rule for different purposes.

Lastly, in Section 5, we will use the algorithm of the Murnaghan-Nakayama rule to solve

examples with SageMath. This section will include a code, written in SageMath, which

will run the algorithm of the Murnaghan-Nakayama rule. Here we will also compare the

algorithm for the Murnaghan-Nakayama rule to some already defined functions in SageMath,

to see if the algorithm is efficient or not.
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2 Representation Theory on General Groups

A group G is an ordered pair of a set and a binary operation on the set (i.e., addition or

multiplication), such that (Grillet, 2007)

• the operation on the set is associative

• there exists an identity element ϵ ∈ G

• every element x ∈ G has an inverse (or opposite when looking over addition), meaning

there is an element y ∈ G such that

– in multiplicative notation; xy = yx = ϵ = 1G, or

– in additive notation; x+ y = y + x = ϵ = 0G.

The set G is called the underlying set of the group. Note that one usually denotes a

group and its underlying group by the same letter.

2.1 Conjugate Classes of Groups

Let us look at a group G acting on itself by left multiplication. Then the group has following

action

g ∗ x = gx ∀g, x ∈ G.

We can also define another action of G action on itself by defining the action

g • x = xg−1 ∀g, x ∈ G.

Here G is action on itself by inverse right multiplication.

Then, for any given y ∈ G the following action can be found, by combining both the

right inverse multiplication and left multiplication;

x • y ∗ x = (x • y) ∗ x = (yx−1)x = y.

We say that G acts on itself by conjugation when the group have both left multiplication

and inverse right multiplication actions on the group (Loehr, 2011).

A set of all the elements that conjugate with some element g ∈ G, is called the conjugacy

class of g. This set is defined as

Cg =
{
xgx−1 : x ∈ G

}
. (1)

To understand this concept better, let’s look at an example.
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▶ Example 1. Let G be the cyclic group of order 4, meaning the group is generated

by one element, g ∈ G. Because the group is cyclic, we can write G as

G =
{
g, g2, g3, g4 = g0 = ϵ

}
=
{
g, g2, g3, ϵ

}
=
{
ϵ, g, g2, g3

}
.

From Equation (1), all the conjugacy classes of the elements in G are

Cϵ = {ϵ} , Cg = {g} , Cg2 =
{
g2
}
, Cg3 =

{
g3
}
.

◀

We can also make a set of the elements that are conjugate with some element g ∈ G.

Definition 1. Let G be any group. The centraliser of g ∈ G is defined to be the set of all

elements that commute with g;

Zg =
{
h ∈ G : hgh−1 = g

}
.

There is a bijection between the cosets of the centraliser Zg and the elements of the

conjugacy class Cg, such that

|Cg| =
|G|
|Zg|

. (2)

To easier see what centraliser corresponds to which conjugacy class, we can denote the

centraliser as

Zg = ZCg
.

▶ Example 2. Let us again look at the same G as in Example 1, namely the group

G =
{
ϵ, g, g2, g3

}
. The centralisers of the different elements in G are then

Zϵ =
{
ϵ, g, g2, g3

}
= Zg = Zg2 = Zg3 = G

From Equation (2), one can easily find the sizes of each ZCj
, when you know the size of

the corresponding conjugacy class Cj . Since all the conjugacy classes of this group are one

dimensional, that is to say, that |Cϵ| = |Cg| =
∣∣Cg2

∣∣ = ∣∣Cg3

∣∣ = 1, then the size of each

centraliser of elements in G must be the same as the size of the whole group G. Then we

know that Zg = G for all g ∈ G.

◀
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2.2 Representations of Groups

2.2.1 Matrix Representation

Instead of looking at groups with an underlying set, we can think of them as a group with

underlying matrices. In other words, let us look at a group represented as matrices.

First, let us define the general linear group.

Definition 2. Let Matd be the set of all d×d matrices with entries in C (also called a fully

complex matrix algebra of degree d). The complex general linear group of degree d, GLd, is

the group of all X = (xi,j)d×d ∈ Matd that are invertible with respect to multiplication.

From this definition, we define a matrix representation of a group as follows;

Definition 3. A matrix representation of a group G is a group homomorphism

X : G→ GLd.

Equivalently, to each g ∈ G there is an assigned X(g) ∈ Matd, such that

1. X(ϵ) = I, the identity matrix for the identity ϵ ∈ G,

2. X(gh) = X(g)X(h), for all g, h ∈ G.

The parameter d is called the degree, or dimension, of the representation, and is denoted as

degX = d.

From the conditions in Definition 3, X(g−1) = X(g)−1. These matrices are therefore in

some group, namely the general linear group GLd. We now have a valid way to represent

the groups as matrices.

The simplest representations of a group are those that are of degree 1, where the group

is represented as a 1× 1 matrix. One of these representations is the trivial representation.

Definition 4. The trivial representation of a group G is the representation that sends all

elements g ∈ G to 1.

Every group has a trivial representation. Therefore, we know at least one representation

for any group.

▶ Example 3. Let G be the cyclic group of order 4.

G =
{
ϵ, g, g2, g3

}
,

8



where g is the (cyclic) generator of the group.

A matrix representation of four dimensions could then be

g0 7→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , g1 7→


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 ,

g2 7→


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , g3 7→


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 .

As we can see with these matrices, they express what happens when each element acts on

different elements in the group. ◀

2.2.2 Modules

Groups can also be looked at with more general representations. Since matrices correspond

to linear transformations, we can also think of matrix representations the same way. This

is the idea behind G-modules.

When looking at a (finite) vector space V over the complex numbers, define the general

linear group of V , GL(V ). This is the set of all invertible linear transformations of V to

itself. If dimV = d, then GL(V ) and GLd are isomorphic as groups.

Definition 5. Let V be a vector space and G be a group. We say that V is a G-module if

there is a group homomorphism

φ : G→ GL(V ).

Equivalently, if V is a G-module then V has the properties:

1. gv ∈ V ,

2. g(cv + dw) = c(gv) + d(gw),

3. (gh)v = g(hv),

4. ϵv = v, for the identity ϵ ∈ G

for all g, h ∈ G, v,w ∈ V and c, d ∈ C.

When the group G is given, we refer to the G-module V as a module.

9



2.2.3 Decomposition of Representations

When studying large objects, one would like these large structures to be broken into smaller

pieces. There must be a method to ”decompose” a representation into smaller ones.

Definition 6. Let V be a G-module. A submodule of V is a subspace W , where this

subspace is closed under actions of G, such that

gw ∈W, w ∈W, ∀g ∈ G.

Here W is said to be a G-invariant subspace. If W is a submodule of V , it is denoted by

W ≤ V .

Any module V has both W = V and W = {0} as submodules, these two submodules

are called trivial submodules. Any other submodule is then called nontrivial submodule.

Definition 7. A G-module V is reducible if it contains a nontrivial submodule W . Other-

wise, we say that the module V is irreducible.

From this definition, it is clear that any representation of degree 1 is irreducible. Looking

at every subspace to find out which are submodules is time-consuming, so we would like to

avoid this. Instead, one can look at matrices.

When looking at matrices, we could bring the matrices that are reducible G-modules to

the block diagonal form

X(g) =

(
A(g) 0

0 B(g)

)

for all g ∈ G. This can be done by the notation of direct sums.

Definition 8. If X is a matrix, then X is said to be the direct sum of matrices A and B,

denoted as X = A⊕B, if X has the block diagonal form

X =

(
A 0

0 B

)

Let’s redefine this definition to indicate how direct sums affect G-modules.

Definition 9. Let V be a vector space with U and W as subspaces. We say that V is the

(internal) direct sum of U and W , written V = U ⊕W , every v ∈ V can be written as a

unique sum

v = u+w, u ∈ U,w ∈W.

10



If V is a G-module, where U and W are G-submodules, then we say that U and W are

complements of each other.

Note that, for a vector space with a subspace W , the orthogonal complement of W can

be found using the formula

W⊥ = {v ∈ V : ⟨v,w⟩ = 0,∀w ∈W} . (3)

From these two subspaces of V , the whole space can be defined as the direct sum V =

W ⊕W⊥. WhenW ≤ V and the inner product is G-invariant then the following proposition

is also valid;

Proposition 1. Let V be a G-module, W be its submodule, and ⟨·, ·⟩ be an inner product

that is invariant under the actions of G. Then W⊥ is also a G-submodule.

With this, we obtain a key theorem in group representation theory that holds for any

finite group. Specifically, Maschke’s theorem.

Theorem 1 (Maschke’s Theorem). Let G be a finite group, and let V be a nonzero module.

Then V can be written as

V =W (1) ⊕W (2) ⊕ · · · ⊕W (k) =

k⊕
i=1

W (i)

where each W (i) is an irreducible G-submodule of V .

The matrix version of Theorem 1, is given as the corollary;

Corollary 1. LetG be a finite group, andX be a matrix representation ofG with dimension

d > 0. Then, there is a fixed matrix T , such that every matrix X(g), for g ∈ G, is of the

form

TX(g)T−1 =


X(1)(g) 0 · · · 0

0 X(2)(g) · · · 0
...

...
. . .

...

0 0 · · · X(k)(g)

 =

k⊕
i=1

X(i)(g).

Each X(i) is an irreducible matrix representation of G.

Theorem 1 is true for vector spaces over any type of field, as long as the field has

characteristics equal to either zero or prime to |G|. The finiteness of a group is central to

the theorem, and can therefore not be removed from consideration.
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2.3 Characters of Groups

Most of the information that is contained in a representation can be found by simply taking

the trace of the corresponding matrices.

Definition 10. Let X(g) be a matrix representation of the group G, where g ∈ G. Then

the character of this representation, X, is the map

G
tr(X)−−−→ C

defined by

χ(g) = tr(X(g)) (4)

If V is a G-module, then the character of V is the character of a matrix representation X

corresponding to the module V .

We need to make sure that this character is well-defined as there are many matrix

representations corresponding to a single G-module V .

Assume both X and Y are representations that correspond to the same module. Then,

for some fixed matrix T , Y can be rewritten to be Y = TXT−1. Then, for all g ∈ G, the

character value of Y can be found to be

tr(Y (g)) = tr(TX(g)T−1) = tr(T )tr(X(g))tr(T−1) = tr(X(g)) = χ(g),

due to trance being invariant under conjugation. From this calculation, the two representa-

tions have the same characters. This implies that characters are indeed well-defined.

The terminology for representations can be adapted to their corresponding characters,

without much change. If X is a representation with character χ, then the character χ is

irreducible when X is irreducible, etc.

When looking at a one-dimensional representation, X(g), the character χ(g) is the sole

entry of X(g), for g ∈ G. Characters like this are referred to as linear characters. The

characters of the trivial representation X(g) = (1) is just χ(ϵ) = 1, where this character is

called the trivial character.

▶ Example 4. Going back to Example 3, where the fourth-dimensional representation
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of the cyclic group of order 4 was

g0 7→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , g1 7→


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 ,

g2 7→


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , g3 7→


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 .

The characters of this representation are then

χ(g0) = tr(X(g0)) = 4, χ(g1) = tr(X(g1)) = 0,

χ(g2) = tr(X(g2)) = 0, χ(g3) = tr(X(g3)) = 0

◀

The characters from the example is a quite special kinds of characters;

Definition 11. Let G = {g1, g2, · · · , gn}. The regular representation is defined to be

Xreg(ϵ) = In, such that the regular character is

χreg =

{
|G| if g = ϵ,

0 otherwise.
(5)

One can further use the regular representation to find all the irreducible representations

of a finite group G. From the book by Fulton and Harris (2004), the following corollary was

introduced;

Corollary 2. Any irreducible representation V of a group G appears in the regular repre-

sentation dimV times. The regular character can be written as the following sum;

χrep =
∑
V

dim(V ) · χ
V

(6)

The character of some group representation has the following properties.

Proposition 2. Let X ∈ Matd be a matrix representation of a group G on a K-vector

space, with character χ. We then have the following properties of χ.

1. χ(ϵ) = d = dimX, where ϵ ∈ G is the identity.

13



2. If C is a conjugacy class of G, then

g, h,∈ C =⇒ χ(g) = χ(h).

3. If Y is another representation of G with character ψ, then

X ∼= Y =⇒ χ(g) = ψ(g)

for all g ∈ G.

4. If X ∼= m1X
(1) ⊕m2X

(2) ⊕ · · · ⊕mkX
(k), where X(i) are pairwise inequivalent irre-

ducibles with characters χ(i), then we can write the character χ of X as

χ = m1χ
(1) +m2χ

(2) + · · ·+mkχ
(k).

5. If Z is a representation for the group H with character ϕ, and X⊗Z is a representation

of G×H with the character χ⊗ ϕ. Then

(χ⊗ ϕ)(g, h) = χ(g)ϕ(h)

for all (g, h) ∈ G×H.

Proof.

1. The representation on the identity element of the group sends all elements back to

itself, such that X(ϵ) = Id. From Definition 10, the character of this representation is

then

χ(ϵ) = tr(Id) =

d∑
i=1

1 = d = dimX.

2. From the definition of conjugacy classes g = khk−1 for g, h ∈ C and some k ∈ G. The

character of g is then

χ(g) = tr (X(g)) =tr
(
X
(
khk−1

))
= tr

(
X(k)X(h)X(k)−1

)
= tr (X(k)) tr (X(h)) tr

(
X(k)−1

)
= tr (X(h)) = χ(h).

So χ(g) = χ(h) for any g, h ∈ C.

3. This assertion just says that equivalent representations have the same character. This

has already been proven. But, for the sake of this proof, it can be repeated;

If X and Y correspond to the same G-Module, then Y = TXT−1, for some fixed T .

Then, for all g ∈ G,

tr(Y (g)) = tr(TX(g)T−1) = tr(X(g)) = χ(g),

as seen before.
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4. The trace of a direct sum is the sum of traces, tr (A⊕B) = tr(A) + tr(B). From this,

the character is

χ = tr(X) = tr

(
k⊕

i=1

miX
(i)

)
=

k∑
i=1

mi tr
(
X(i)

)
=

k∑
i=1

mi χ
(i).

5. Let A ∈ Matd and B ∈ Mate. The direct product A⊗B is the matrix of degree (d×e),
such that each element (aij) in A is multiplied with the matrix B. The trace of this

direct product is then

tr (A⊗B) = tr(ai,jB) =
∑
i

ai,i tr(B) = tr(A) tr(B).

Now, we must find the tensor product representation.

Definition 12. Let X and Y be the matrix representations of G and H, respectively.

Then the tensor product representation, X ⊗ Y , assigns the following matrix to each

(g, h) ∈ G×H

(X ⊗ Y )(g, h) = X(g)⊗ Y (h).

By using the rule of traces on direct products and the definition of tensor product

representation, the character χ⊗ ϕ can be expressed as

(χ⊗ ψ)(g, h) = tr(X(g)⊗ Y (h)) = trX(g) trY (h) = χ(g)ψ(h).

Note that the converse of the third property is also true, but only if we are looking over

the complex vector space, i.e. if and only if χ : G → C. So, if two representations have

the same character, then they must be equivalent to each other when looking over complex

numbers. This property alone is very important and is used as the main motivation when

it comes to group characters. The proof of this statement can be found in the book written

by Sagan, p. 38

The second property of Proposition 2, says that characters are constant on conjugacy

classes. Functions with this property are given the name ”class functions”.

Definition 13. A class function on a groupG is a mapping f : G→ C such that f(g) = f(h)

whenever g and h are in the same conjugacy class. The set of all class functions on G is

denoted by R(G).
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Since R(G) has a natural basis that consists of the functions that have value 1 on a given

conjugacy class and 0 elsewhere, therefore

dim (R(G)) = # {Cg : g ∈ G} .

Because of the property of character on conjugacy classes from Proposition 2, χ
C
can be

defined as the corresponding character value of the conjugacy class C. The characters can

therefore be denoted with

χ
C
= χ(g), ∀ g ∈ C.

2.3.1 Character Table

To easier recognise what characters correspond to which conjugacy class in a group G, we

can place them in a table. This kind of table is called the ”character table” of G.

Definition 14. Let G be a group, where its character table is an array. The rows of the

array are indexed by the inequivalent irreducible characters of G, while the columns are

indexed by their conjugacy classes. From this array, we can read that the table entry in row

χ and column C is the character value χ
C

· · · C · · ·
...

...

χ · · · χ
C

...

Usually, the first row in this array is the trivial character, and the first column corre-

sponds to the class of identity, C = {ϵ}. From the first property in Proposition 2, the first

column notes the degree of the representations corresponding to the different characters.

However, this is not always the case.

Another way to present the character table is as follows;

Definition 15. Let Ci be the conjugacy class of gi ∈ G. Assuming that there are k

conjugacy classes, then the character table has the following setup:

C1 · · · Ck

χ1 χ1(g1) · · · χ1(gk)
...

...
. . .

...

χn χn(g1) · · · χn(gk)

# |C1| · · · |Ck|
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Where, in the last row, we denote the size of each conjugacy class.

When writing the sizes of the conjugacy classes, the inner product of the characters is

easier to compute. We will come back to the inner product after the following example.

▶ Example 5. Let us look at the cyclic group G =
{
g0 = ϵ, g, g2, g3

}
of order 4. Here

the following conjugacy classes are,

C1 = {ϵ} , C2 = {g} , C3 =
{
g2
}
, C4 =

{
g3
}
.

We can see that there are dim (R(G)) = 4 conjugacy classes, meaning that we need to find

four characters.

We already know that the group must include the trivial character χ1 = (1, 1, 1, 1). From

Corollary 2, the last three characters can be found by using the regular representation from

Definition 11. The regular character is defined to be

χreg =

dim(R(G))∑
i=1

χi(g1)χi,

where g1 = ϵ in this group.

From this sum, we get the following equations;

1 · 1 + χ2(ϵ) · χ2(ϵ) + χ3(ϵ) · χ3(ϵ) + χ4(ϵ) · χ4(ϵ) = 4

1 · 1 + χ2(ϵ) · χ2(g) + χ3(ϵ) · χ3(g) + χ4(ϵ) · χ4(g) = 0

1 · 1 + χ2(ϵ) · χ2(g
2) + χ3(ϵ) · χ3(g

2) + χ4(ϵ) · χ4(g
2) = 0

1 · 1 + χ2(ϵ) · χ2(g
3) + χ3(ϵ) · χ3(g

3) + χ4(ϵ) · χ4(g
3) = 0

From the first equation, the only valid solution is χ2(ϵ) = χ3(ϵ) = χ4(ϵ) = 1. This is because

the degree of an irreducible representation must be a positive integer, and not equal to zero.

Since all the representations are of dimension one, we can assume that each representa-

tion is Xi(g) = (c), for c ∈ C and i = 1, 2, 3, 4. Then the matrix for every element of G is

determined, since X(gk) = (ck) from the second property of Definition 3. By the definition’s

first property;

(c4) = X(g4) = X(ϵ) = (1)

such that c must be the 4th root of unity. The four fourth roots of unity are 1, i,−1,−i.
We let the four corresponding representations be written as X1, X2, X3, X4, respectively.

Indexing the characters with the same number as the representation that they correspond

to. Therefore, χ1 = (1, 1, 1, 1) corresponds to the representation X1, χ2 = (1, i,−1,−i)
corresponds to X2, and so on.
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We now have all the information needed to write out the character table. Using the

same notations as in Definition 15, the character table is then

C1 C2 C3 C4

χ1 1 1 1 1

χ2 1 i −1 −i
χ3 1 −1 1 −1

χ4 1 −i −i i

# 1 1 1 1

◀

Every character has a special relation to other characters. When we are looking at the

characters χ, ϕ over the same group, G, then the inner product between them is defined as

⟨χ, ϕ⟩ = 1

|G|
∑
g∈G

χ(g)ϕ(g−1). (7)

Since characters are constant on conjugacy classes, the inner product between two char-

acters can be rewritten as

⟨χ, ϕ⟩ = 1

|G|
∑
g∈G

|Cg|χ(g)ϕ(g−1), (8)

where Cg is the conjugacy class corresponding to g ∈ G.

When looking over the complex vector space, the character ϕ(g−1) is equal to the complex

conjugacy of ϕ(g), ϕ(g).

For irreducible characters, the inner product is quite easy to find.

Theorem 2. Let χ and ϕ be irreducible characters of a group G. Then

⟨χ, ϕ⟩ = δχ,ϕ =

{
1, χ = ϕ

0, χ ̸= ϕ
.

From this inner product, unknown characters can be found if we already know some of

them. Let’s use inner products to find unknown characters in the following example.

▶ Example 6. This example is taken from a question asked by user Ben (2022) on

Mathematics Stack Exchange.
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Here, the group has the order |G| = 168. This group has dim (R(G)) = 6 conjugacy

classes of order 1, 21, 42, 56, 24, and 24. We assume that we are looking over the complex

vector space.

We are given three characters for this group, A = (14, 2, 0,−1, 0, 0), B = (15,−1,−1, 0, 1, 1),

and C = (16, 0, 0,−2, 2, 2). However, any group always has a trivial representation, such

that the trivial character is included in the list of known characters. We can thus list the

known characters in a temporary character table:

C1 C2 C3 C4 C5 C6

χ1 1 1 1 1 1 1

A 14 2 0 −1 0 0

B 15 −1 −1 0 1 1

C 16 0 0 −2 2 2

# 1 21 42 56 24 24

The conjugacy class of order 1 is the conjugacy class that corresponds to the set includ-

ing only ϵ. We thus know which column we need to look at to see the dimension of the

representations, i.e., the first column.

By taking their inner product, we can see how the different characters relate to each

other.

⟨A,A⟩ = 2 ⟨B,B⟩ = 2 ⟨C,C⟩ = 4

⟨χ1, A⟩ = 15 ⟨χ1, B⟩ = 15 ⟨χ1, C⟩ = 18

⟨A,B⟩ = 1 ⟨B,C⟩ = 2 ⟨A,C⟩ = 2

Since ⟨A,A⟩ ̸= ⟨B,B⟩ ̸= ⟨C,C⟩ ̸= 1, none of them is irreducible, so they must be sums of

irreducible characters.

Since ⟨C,C⟩ = 4, C must either be a sum of four irreducible characters or include two

of the same irreducible characters. If C was a sum of four characters then C −A must be a

character of degree 1. This means that C − A would be an irreducible character. It would

also have to be a sum of two irreducible characters from the inner product ⟨A,C⟩ = 2. An

irreducible character cannot be a sum of two different irreducible characters, such that C

must include two of the same character;

C = 2 · χ2 = 2 · (8, 0, 0,−1, 1, 1).

Since ⟨B,C⟩ = ⟨A,C⟩ = 2, we know that χ2 must be one of the two irreducible characters
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in both A and B. Let A = χ2 + χ3 and B = χ2 + χ4, the irreducible characters are the

following.

C1 C2 C3 C4 C5 C6

χ1 1 1 1 1 1 1

χ2 8 0 0 −1 1 1

χ3 6 6 0 0 −1 −1

χ4 7 −1 −1 1 0 0

# 1 21 42 56 24 24

Keep in mind that there exists the same amount of irreducible characters as conjugacy

classes, so we are still missing two irreducible characters, χ5 and χ6.

To find the character values of the last two characters, use the regular character of the

group. From Corollary 2, the character associated with the regular character is

χreg(G) =

dim(R(G))∑
i=1

χi(1) · χi = (|G| , 0, 0, 0, 0, 0) .

From this sum, we get the following equation

6∑
i=1

χi(1) · χi = (168, 0, 0, 0, 0, 0)

χ1(1) · χ1 + χ2(1) · χ2 + χ3(1) · χ3

+χ4(1) · χ4 + χ5(1) · χ5 + χ6(1) · χ6 = (168, 0, 0, 0, 0, 0)

χ5(1) · χ5 + χ6(1) · χ6 = (18,−6, 6, 0,−3,−3).

However, the only valid dimension for both χ5 and χ6 is 3, since the dimension must be

a positive integer. This means that the sum of the two characters is

χ5 + χ6 = (6,−2, 2, 0,−1,−1).

Note that the last two conjugacy classes have centralisers of order |G|
|C5| = |G|

|C6| = 7.

Now, all subgroups of prime order are conjugate (Constantine, 1998, Theorem (Sylow)), the

elements in these conjugacy classes must be x and x−1. Therefore, the last two values are

complex conjugates of each other. Since all other classes are real, it implies that χ5(g) =

χ6(g) for all other g.
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The characters are therefore

χ5 = (3,−1, 1, 0, a, a−1) = (3,−1, 1, 0, a, a),

χ6 = (3,−1, 1, 0, b, b−1) = (3,−1, 1, 0, b, b).

Since we are looking over C, then the character ϕ(g−1) = ϕ(g).

From the equation; χ5 + χ6 = (6,−2, 2, 0,−1,−1), we have to solve for

a+ b = −1

a+ b = −1.

By solving this linear system, the character value of these conjugacy classes is a =

−1− i
√
2 and b = i

√
2. The final character table looks as follows

C1 C2 C3 C4 C5 C6

χ1 1 1 1 1 1 1

χ2 8 0 0 −1 1 1

χ3 6 6 0 0 −1 −1

χ4 7 −1 −1 1 0 0

χ5 3 −1 1 0 −1− i
√
2 1 + i

√
2

χ6 3 −1 1 0 i
√
2 −i

√
2

# 1 21 42 56 24 24

◀

This example mostly used the inner product and the knowledge of regular characters

from Corollary 2 to find the unknown characters. This emphasises the importance of these

properties in character theory.
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3 Representation Theory on Symmetric Groups

When studying representations, a particularly nice theory arises when focusing on the sym-

metric group. Indeed in this case the beautiful connection between combinatorics and group

theory makes this situation easier to understand.

Let Sn be the symmetric group over n elements. The elements π ∈ Sn are called

permutations, and they indicate the bijection of the set [n] = {1, 2, · · · , n}.

Definition 16. For a permutation π ∈ Sn three different notations can be used to describe

this element;

• the Two-line notation; which is the array

π =

(
1 2 · · · n

π(1) π(2) · · · π(n)

)
noting where each element of [n] is mapped to.

• the One-line notation; it is similar to the two-line notation, but the top line is excluded

π =
(
π(1) π(2) · · · π(n)

)
• The cyclic notation; given i ∈ [n], after using the same permutation π on the same

integer i, we will eventually end right back up at i after p permutations, πp(i). We

denote this as
(
i, π(i), π2(i), · · · , πp−1(i)

)
. Now, when there are multiple cycles of [n],

we note it as
(
i, π(i), · · ·

)(
j, π(j), · · ·

)(
k, π(k), · · ·

)
· · · .

Usually, the permutation is written in the cyclic notation, since it is the shorter of the

notations. In this notation, one can choose to not include those cycles that map the elements

back to themselves, i.e., the trivial cycles (also called the fixed points). This makes the cyclic

notation shorter than the others. The order of the cycles in the cyclic notation is not very

important. Usually, we write them from the largest cycle to the smallest or order them after

the smallest numbers in their cycles.

▶ Example 7. Let’s look at the map

π : 1 7→ 2

2 7→ 4

3 7→ 5

4 7→ 1

5 7→ 3

6 7→ 6.
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This permutation can then be written as

π =

(
1 2 3 4 5 6

2 4 5 1 3 6

)
=

(
2 4 5 1 3 6

)
= (124)(35)(6) = (124)(35)

◀

When multiplying permutations we do so by going from right to left. If we are looking

at the multiplication σπ, then the bijection is obtained by first applying π and later σ.

To make the notation of the multiplication more visually understanding, we can write the

multiplication as follows; First, write all integers in the permutations. In the row just below,

write where the integers are mapped to by π (the rightmost permutation). Then, in the last

row, write their corresponding numbers, after permuting with respect to σ. It will look like

this;

σπ =

 1 2 3 · · · n

π(1) π(2) π(3) · · · π(n)

σ(π(1)) σ(π(2)) σ(π(3)) · · · σ(π(n))


Now, delete the middle row. The remainder is the permutation σπ in the two-line notation;

σπ =

(
1 2 3 · · · n

σ(π(1)) σ(π(2)) σ(π(3)) · · · σ(π(n))

)
(9)

From cycles we can define the k-cycle, or more precisely the cycle of length k, which is

a cycle that contains k elements. The cycle type, or simply the type, of π is an expression

type(π) = (1m1 , 2m2 , · · · , nmn) ,

where mk is the number of cycles of length k in π. Then, the type of π expresses the amount

of k-cycles there are in π, where a 1-cycle of π is a fixed point

Another way to express the cyclic types is by writing them as partitions.

Definition 17. A partition is a sequence of positive integers λ = (λ1, λ2, · · · , λk) where its

parts, λi, are weakly decreasing

λ1 ≥ λ2 ≥ · · · ≥ λk.

All of its parts sums up to an integer

|λ| =
∑

1≤i≤k

λi = n.

We denote the relation between the integer n and the partition λ as λ ⊢ n. The number of

parts of λ is denoted as ℓ(λ).
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The set of all partitions of n is denoted as Par(n), where the number of partitions of n

is |Par(n)| = p(n).

The cycle type

type(π) = (1m1 , 2m2 , · · · , nmn)

can be noted as the partition λ = (nmn , · · · , 2m2 , 1m1). Remember that the parts of the

partition need to be in a weakly decreasing order. The partition can also be written without

the exponents, where we list the number i mi times in the partition.

A composition is similar to a partition, except the sequence is not necessarily weakly

decreasing. This means that (4, 3) is both a partition and a composition, while (3, 2, 4) is a

composition and not a partition.

3.1 Conjugacy Classes of Symmetric Groups

Something special with the symmetric group Sn is their conjugacy classes;

▶ Example 8. Let G be the symmetric group of 3 elements, S3. The conjugacy classes

for the elements of this group are then

G ∗ id = {id}

G ∗ (12) = G ∗ (13) = G ∗ (23) = {(12), (13), (23)}

G ∗ (123) = G ∗ (132) = {(123), (132)}

◀

From this example, we get an idea that the conjugacy classes in S3 may consist of all

the permutations that are of the same cycle type. We want to see if this is true for any

symmetric group Sn. Let’s first look at the conjugacy of symmetric groups.

Theorem 3 ((Loehr, 2011)). For π, ρ ∈ Sn, the permutation ρπρ−1 can be found by applying

ρ to each entry in all of the disjoint cycle decomposition of π If

π = (i1, i2, · · · )(j1, j2, · · · )(k1, k2, · · · ) · · · ,

then we get the following permutation

ρπρ−1 =
(
ρ(i1), ρ(i2), · · ·

)
,
(
ρ(j1), ρ(j2), · · ·

)
,
(
ρ(k1), ρ(k2), · · ·

)
· · · .

The cycle type is therefore preserved, type(ρπρ−1) = type(π).
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Let’s prove this theorem as an example.

▶ Example 9. Let us find ρπρ−1 for the permutations

ρ =(123)(45)(6)(7)(8)

π =(1234)(56)(78)

To see if the theorem is valid, let us first look at the permutation πρ−1.

We use the same notation as earlier for the multiplication of permutations. The multi-

plication can therefore be written as

πρ−1 =

1 2 3 4 5 6 7 8

3 1 2 5 4 6 7 8

4 2 3 6 1 5 8 7

 = (1465)(2)(3)(78) = (1465)(78).

Further, the permutation of ρ
(
πρ−1

)
is then

ρ
(
πρ−1

)
=

1 2 3 4 5 6 7 8

4 2 3 6 1 5 8 7

5 3 1 6 2 4 8 7

 = (1523)(46)(78).

Where the result is ρπρ−1 = (1523)(46)(78).

Using Theorem 3, we get

ρπρ−1 =
(
ρ(1), ρ(2), ρ(3), ρ(4)

)(
ρ(5), ρ(6)

)(
ρ(7), ρ(8)

)
= (2315)(46)(78) = (1523)(46)(78).

Both methods give the same result. However, with the theorem, there are fewer calcu-

lations to worry about. ◀

Using Theorem 3, we derive the following theorem for the conjugacy classes of symmetric

groups.

Theorem 4 ((Loehr, 2011)). The conjugacy class of π ∈ Sn consists of all σ ∈ Sn of the

same type as π, such that type(σ) = type(π). The number of conjugacy classes is equal to

the number of integer partitions of n.

Proof. For a fixed π ∈ Sn, let Cπ =
{
ρπρ−1 : ρ ∈ Sn

}
be the conjugacy class of π, and let H

be the set of all σ ∈ Sn that has the same cycle type as π, H = {σ ∈ Sn : type(σ) = type(π)}.
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Using the theorem of conjugacy in Sn (Theorem 3), we can observe that Cπ ⊆ H. Now we

just need to prove the opposite inclusion.

Let σ ∈ Sn be of the same cycle type as π. We can then use the following algorithm to

find a ρ ∈ Sn such that σ = ρπρ−1; Start by writing down any complete cycle decomposition

of π (also including the 1-cycles), and write the longer cycles before the shorter ones. Below

this, write down a complete cycle decomposition of σ, in the same way as we did with π.

Now, erase all parenthesises and regard the resulting array as the permutation of ρ, written

in the two-line form. This constructed ρ gives the correct relation, ρπρ−1 = σ.

However, this ρ is not unique. Other ρ’s could have been obtained, which also satisfy

the same relation by starting with a different complete cycle decomposition of either π or

σ, or both.

The last statement of the theorem follows from the fact that the possible cycle types of

permutations of n objects are exactly the integer partition of n.

From Theorem 4, two permutations are in the same conjugacy class if and only if they

are of the same cycle type, or if their partitions are equal. There is therefore a one-to-one

correspondence between conjugacy classes of Sn and partitions of n.

To find the size of the conjugacy classes of symmetric groups of n elements, we have the

following theorem;

Theorem 5 ((Loehr, 2011)). For each µ ∈ Par(n), the number of permutations π ∈ Sn

with type(π) = µ is

|Cπ| =
n!

zµ
, (10)

if µ consists of m1 ones, m2 twos, etc. Then, zµ is defined as

zµ =

n∏
i=1

imi ·mi! (11)

Proof. Fix π ∈ Sn, where type(π) = λ. One can count the number of conjugates of any

group elements and subgroups as follows

[Sn : Stab(π)] = [Sn : CSn
(π)] =

|Sn|
|CSn

(π)|

where Stab(π) := {ρ ∈ Sn : ρ ∗ π = π} is the stabiliser of π in Sn. From the fact that

|Sn| = n!, it is enough to show that |CSn(π)| = zλ.
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To understand the arguments it is better to look at a specific example;

▶ Example 10. Let λ = (3, 3, 2, 2, 2, 1, 1, 1, 1) ⊢ 16, where we could then look at

π = (1, 2, 3)(4, 5, 6)(7, 8)(9, 10)(11, 12)(13)(14)(15)(16).

A permutation ρ ∈ Sn lies in CSn
(π) if and only if ρπρ−1 = π. This again is true if and

only if, after applying ρ to each symbol in the cycle decomposition above, produces another

cycle decomposition of π.

We are therefore reduced to counting the number of ways we can write down a complete

cycle decomposition of π such that longer cycles come before shorter cycles. Note that we

can rearrange the order of all the cycles of a given length as much as we want, and we can

also cyclically permute the entries in any given cycle of π.

We could, for example, permute the four 1-cycles in any 4! ways. We could also replace

(4, 5, 6) by one of its three cyclic shifts (4, 5, 6), (5, 6, 4) or (6, 4, 5). For this particular π,

the product rule gives us that we have (2!32)(3!23)(4!14) = zλ different possible complete

cycle decompositions. ◀

For the general case, the argument is pretty similar;

Looking at zλ =
∏n

i=1 i
mi ·mi! we can see that the term mi! accounts for permuting the

mi cycles of length i, while the term imi accounts for all of the i possible cyclic shifts of

each mi cycles of length i. Multiplying these contributions we get |Cπ| = zλ, as desired.

3.2 Representations of Symmetric Groups

As for general groups, we want to find a (matrix) representation for Sn. We can then use

the same definitions as in Section 2.2.

▶ Example 11. Let us consider the defining representation of S3 with its character
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χdef. The elements of S3 have the following matrix representation

(1)(2)(3) 7→

1 0 0

0 1 0

0 0 1

 (1, 2)(3) 7→

0 1 0

1 0 0

0 0 1

 (1, 3)(2) 7→

0 0 1

0 1 0

1 0 0



(1)(2, 3) 7→

1 0 0

0 0 1

0 1 0

 (1, 2, 3) 7→

0 1 0

0 0 1

1 0 0

 (1, 3, 2) 7→

0 0 1

1 0 0

0 1 0


The character values can then be computed by taking the traces of these matrices. Which

means that the results are

χdef( (1)(2)(3) ) = 3, χdef( (1, 2)(3) ) = 1, χdef( (1, 3)(2) ) = 1,

χdef( (1)(2, 3) ) = 1, χdef( (1, 2, 3) ) = 0, χdef( (1, 3, 2) ) = 0.

From this its easy to see that if π ∈ Sn, then

χdef = the number of ones in the diagonal of X(π)

= the number of fixed points of π.

◀

For any Sn where n ≥ 2, two simple representations are always given; the sign represen-

tation and the trivial representation.

Definition 18. The sign representation takes a permutation and represents this in a matrix

with entries ±1, based on the sign of the permutation.

The sign of a permutation π ∈ Sn is +1 if π is even, and −1 if π his odd.

An even permutation can be composed of an even number of 2-cycles (also called trans-

positions), while an odd permutation can be obtained by an odd number of transpositions.

Let’s consider the permutation π = (1234)(5)(67)(8)(9) = (1234)(67). To compose this

permutation, write each mapping into 2-cycles: π = (1234)(67) = (12)(23)(34)(41)(67). For

this permutation, there are 5 transpositions. Therefore, the permutation is odd.

With the sign representation and the trivial representation, it is convenient to know

which partitions they are associated with.

Proposition 3. The trivial representation corresponds to the partition (n), while the sign

representation corresponds to (1n).
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▶ Example 12. Let us again look at G = S3, where the group is of order |G| = 3! = 6

Here we have the conjugacy classes

C1 = {ϵ} , C2 = {(12), (13), (23)} , C3 = {(123), (132)} .

We know that there are three irreducible representations of S3 because there has to be the

same number of representations as there are conjugacy classes.

We have already looked at two different representations for this group; the trivial and

sign representation. From these representations, we have the characters;

χ
1
= (1, 1, 1) trivial character

χ
2
= (1,−1, 1) sign character

We can use the Corollary 2 to find the last character. The character of the regular

representation is defined to be

χreg =

3∑
i=1

χ
i
(g1)χi

= (6, 0, 0)

From this sum, we get the following equations:

1 · 1 + 1 · 1 + χ
3
(1) · χ

3
(1) = 6

1 · 1 + 1 · (−1) + χ3(1) · χ3(2) = 0

1 · 1 + 1 · 1 + χ3(1) · χ3(3) = 0.

Solving these, the last irreducible character is

χ
3
= (2, 0,−1).

We can then fill in the known values in the character table

C1 C2 C3

χ1 1 1 1

χ2 1 −1 1

χ3 2 0 −1

# 1 3 2

◀

The character table of any symmetric group has entries that are all integers. If we were

to look at any other groups, their character tables would have some entries which are not

integers. For instance, the character table of abelian groups is determined by the root of

unity(Tubbenhauer, 2022).
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3.3 Diagrams

Partitions can be visualised in the following way:

Definition 19. Let λ = (λ1, ..., λm) ⊢ n. The Young diagram, also referred to as the Ferrers

diagram, of shape λ is an array of n boxes with m left-justified rows. In this array, the row i

contains λi boxes, for 1 ≤ i ≤ m. The boxes, often referred to as cells, in row i and column

j have the coordinates (i, j).

▶ Example 13. The partition corresponding to the cycle (1, 2, 4)(3, 5) is λ = (3, 2) ⊢ 5.

This partition has the Young diagram:

λ =

As we can see, there are n = 5 cells in this diagram, which corresponds to the 3 + 2 = 5

cycle lengths we had in the cycle. ◀

In this master’s thesis, the partition and the associated diagram will be denoted the

same. This is to clarify which diagram belongs to which partition, and since diagrams are

just a visual version of the partitions this notation does not have a great significance. The

diagram visualises the length of each cycle of the permutation in its rows. From this, we

also can note how many cycles there are of the same cycle type.

A Young diagram can also be said to be a diagram with the ”English” notation, where

we build east- and southward from the start position (0, 0). If we were to use, for instance,

the ”French” notation we would draw the diagram as we were looking at the Cartesian

coordinate system. That is to say, for λ = (3, 2) it would look like the following diagram:

Here we go east- and upward from the start position (0, 0), and we have our largest row at

the bottom as a ”building block” for the rest of the diagram.

We will be using the English notation in this thesis, if not stated otherwise.

The conjugate λ′ of λ is defined to be the sequence of column lengths of λ. If we visualise

λ by its diagram, we can find its conjugate λ′ by flipping the diagram of λ by its (principal)

diagonal. The diagram of λ = (3, 2), has the conjugate

λ = ; λ′ = = (2, 2, 1)
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The coloured boxes are those on the (principal) diagonal.

When looking at partitions, we would often like to know if they are equal to each other,

or if one ”dominates” the other.

Definition 20. Let λ, µ ⊢ n. We say that λ dominates µ, denotes as λ� µ, if

k∑
i=1

µi ≤
k∑

i=1

λ, ∀k = 1, 2, · · ·

If k > ℓ(λ), then we let λk to be zero, similarly for µk if k > ℓ(µ).

This dominance order is a partial order. For partitions of n, the sign partition (1n) =

(1, · · · , 1) is the smallest, while the trivial partition (n) is the largest amongst these parti-

tions.

▶ Example 14. Looking at the two partitions

λ = (4, 2, 1)

µ = (4, 1, 1, 1)
⊢ 7

Using the same notations as in the definition 20, we look at the sums up to k = 4.

k = 1 : µ1 = 4 = λ1

k = 2 : µ1 + µ2 = 5 < λ1 + λ2 = 6

k = 3 :
∑3

i=1 µi = 6 <
∑3

i=1 λi = 7

k = 4 :
∑4

i=1 µi = 7 =
∑4

i=1 λi

We can already see from k = 2 that λ� µ.

We could also look at the partitions visually;

λ = µ =

Observe that λ and µ have the same amount of cells in the first row, but λ has more cells

in the second row than µ. This results in that λ� µ. ◀

We could also list all the partitions of an integer n in the dominance order. By doing

this we can easier see how the partitions relate to each other.
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▶ Example 15. Let’s again look at partitions of n = 7. The complete dominance order

would then be;

(7)� (6, 1)� (5, 2)� (5, 12)� (4, 3)� (4, 2, 1)� (4, 13)� (32, 1)� (3, 22)

�(3, 2, 12)� (3, 14)� (23, 1)� (22, 13)� (2, 15)� (17)

From this list of relations, we see that λ = (4, 2, 1) appears before µ = (4, 13). Therefore,

λ dominates µ. ◀

Instead of looking at a complete diagram, we can remove one diagram from another to

create a ”skew diagram”.

Definition 21. Let λ ⊢ n and µ ⊢ m be partitions, where λ � µ and n ≥ m. The

corresponding skew diagram, also referred to as skew shape, is the set of boxes

λ\µ = {c : c ∈ λ ∩ c ̸∈ µ} . (12)

The skew diagram is just a normal diagram if µ = ∅.

In this Master Thesis, we will denote the skew diagram as follows

λ\µ =
(
µ1 + (λ1 − µ1), µ2 + (λ2 − µ2), · · · , µk + (λk − µk),

)
These diagrams do not look like the diagrams we have seen up until now. A skew

diagram lacks a core, which the other diagrams we have seen before have. If λ = (4, 4, 3, 2),

and µ = (3, 3, 1). By removing µ from λ, we get the following skew diagram;

λ\µ = = (3 + 1, 3 + 1, 1 + 2, 2)

A skew diagram is said to be connected if all the boxes in the diagram are next to or

below each other. This means that each box in the connected skew diagram touches another

box by one of its sides.

▶ Example 16. Let λ = (4, 4, 3, 2), µ = (3, 3, 1, 1) and ν = (2, 2). We can visualise

them as their diagrams, where we colour in ν and µ inside λ to easier see what boxes we
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are removing when looking at their skew diagrams;

λ = , ν = , µ = .

The skew diagrams are then

λ\µ = , λ\ν = .

We see that the skew diagram λ\ν is connected, whereas the skew diagram λ\µ is not

connected. ◀

Instead of removing one partition from another partition, we can discard a skew diagram

from a partition. This notation is very similar to the skew diagram, but now we write λ/ν

for removing a skew diagram ν from λ.

Let λ = (4, 4, 3, 2). We now want to remove the skew diagram ν = (3+1, 3+1, 2+1, 2).

The diagrams then look as follows

λ = , ν = ,

where the coloured boxes are those that we want to remove.

The remaining diagram after removing ν from λ would then be

λ/ν =

A special kind of skew diagram is the so-called ”border strip”. This skew diagram

consists only of boxes at the border of a diagram.

Definition 22 ((Chow and Paulhus, 2020)). A skew diagram λ\µ that is connected, where

each row and column consists of a maximum of two boxes, is called a border strip of λ. If
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B is a border strip, then its height ht(B) is the number of rows that B span, minus 1;

ht(B) = #rows of B − 1. (13)

▶ Example 17. Let’s look at λ = (4, 4, 3, 2). If we only want to keep the border of the

diagram, where the border must be connected, we can remove the diagram µ = (3, 2, 1). To

see it clearer, we colour in the boxes that we are interested in keeping;

λ = , µ =

The border strip B is then

B = λ\µ =

where the height is

ht(B) = 4− 1 = 3.

◀

Though they are called ”border strips”, these skew diagram does not be the whole border

of the diagram. Let’s look at another valid border strip in the following example;

▶ Example 18. Let λ = (4, 4, 3, 2), but now we want to remove µ = (3, 2, 2, 2). The

visualisation of the diagram λ, where we have coloured the border strip we want to keep, is

then;

λ = , µ =

Such that the border strip B is

B =
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This border strip has the height

ht(B) = 3− 1 = 2.

◀

Another diagram, which is similar to skew diagrams, is hooks. These are diagrams with

one arm and one leg, where only one row may consist of more than 1 cell, and only one

column may have more than 1 cell. We can assign a corresponding hook for each cell in a

diagram.

Definition 23. Let D be a diagram of shape λ. For each cell (i, j), one can find the hook

that corresponds to this cell. To do so we extend an arm to the rightmost cell in the same

row, and a leg down to the lowest cell of the same column. The length of a hook in position

(i, j), also called the hook length, is the number of cells in the hook and denoted hi,j .

If we look at λ = (5, 3, 2, 1), the hook for the cell (3, 1) ∈ λ is then

⋆

⋆

•

where • indicates the position (3, 1), and ⋆ is the extended arm and leg of the hook. This

hook has the hook length h3,1 = 3

The hook length of any cell in the diagram of shape λ can be found by using the formula

(Nakayama, 1940)

hi,j = λi + λ′j − i− j + 1. (14)

In this formula, we look at the ith part of λ, and the jth part of its conjugate λ′. From

their sum, we subtract the row- and column-number, and add one (1).

In our λ, the hook length in the position (3, 1) is

h3,1 = λ3 + λ′1 − 3− 1 + 1 = 2 + 4− 3− 1 + 1 = 3.

This particular formula can be helpful, especially when looking over large partitions.

The set of hooks in the principal diagonal is the principal hook, which is defined as (Chow

and Paulhus, 2020)

Hi := {(i, j) ∈ λ : j ≥ i} ∪ {(j, i) ∈ λ : j ≥ i} .
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The hook lengths of the principal hooks are denoted as hi, for the corresponding principal

hook Hi.

▶ Example 19. Let λ = (7, 7, 5, 4, 2) ⊢ 25. The principal hooks (visualised with

different colours) are the following:

•
•

•
•

Here the principal hook lengths are

h1 = 11 (red principal hook)

h2 = 9 (orange principal hook)

h3 = 4 (yellow principal hook)

h4 = 1 (green principal hook)

◀

3.3.1 Tableaux

Diagrams are quite general, so let us specify them more. Instead of just looking at diagrams

with empty boxes, each box can be assigned an entry.

Definition 24. A Young tableau is similar to a Young diagram, but in a Young tableau,

every box is filled with exactly one number of [n]. There are n! different Young tableaux for

each Young diagram.

This creates a bijective map between each box and elements in [n].

▶ Example 20. The diagram corresponding to the partition λ = (2, 1) ⊢ 3 has 3! = 6

different tableaux. These tableaux are

1 2

3

1 3

2

2 1

3

2 3

1

3 1

2

3 2

1

◀
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The content, or type, in the tableau is defined to be a composition α = (α1, . . . , αm),

where the parts, αi, equals the number of i’s in the tableau.

One can specify these tableaux by adding a restriction on the elements in the boxes;

Definition 25. If we let the rows be weakly increasing while the columns are strictly in-

creasing, then we get a semi standard tableau. The content α is allowed to be a composition,

whereas the elements in α could be repeating. The set of all semi-standard Young tableaux

of shape λ is SSY Tλ. The number of different semi-standard tableaux of shape λ and

content α is |SSY Tλ(α)| = Kλα, and is called the Kostka numbers.

Going back to the tableau of shape (2, 1), a valid semi-standard young tableau could

then be

1 2

2
,

1 2

3
,

1 3

3
,

2 3

3
, · · ·

The tableaux can be specified even further:

Definition 26 ((Jackson and Sloss, 2011)). A standard Young tableau is a Young tableau

where the labels in the boxes increase to the right along the rows, and down along the

columns. The set of all standard Young tableaux of shape λ is denoted by SY Tλ.

These restrictions give us fewer tableaux to look over.

▶ Example 20. continued Looking back at the partition λ = (2, 1), out of the given

tableaux from the example only the following are standard;

SY T(2,1) =

 1 2

3
, 1 3

2

 .

◀

In the next example, let’s look at two other tableaux that can also be used in represen-

tations theory.

▶ Example 21. Let λ = (5, 3, 1, 1), with the diagram

λ =
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To each cell, we can assign the content c = i − j of the position (i, j). From this, the

corresponding tableau is

0 1 2 3 4

−1 0 1

−2

−3

Another way to give each cell an entry is to assign them to their associated hook length,

hi,j in position (i, j). The corresponding tableau is, therefore,

8 6 4 2 1

5 2 1

2

1

◀

Every tableau can also be noted by its rows.

Definition 27. The row word of a tableau T is the permutation

πT = RlR−1 · · ·R1,

where R1, . . . , Rl are the rows of T

Let the tableau be given as

T = 1 3 4 8

2 5 6

7

,

then the row word for this tableau is

πT =
(
7 2 5 6 1 3 4 8

)
.

When looking at tableaux, we want to know if they are equivalent to each other or not.

One way of doing so is by looking at their row equivalence.

Definition 28. Two λ-tableaux T1 and T2 are said to be row equivalent, T1 ∼ T2 if the

corresponding rows of the two tableaux contain the same elements. A tabloid of shape λ, or

λ-tabloid, is defined to be a set

{t} = {T1 : T1 ∼ T}

where T is of shape λ.
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To visualise a tabloid, we think of a normal Young tableau but deleting the individual

boxes in the rows. The tabloid for

t = 1 4 4

4 3

would then be

{t} =



1 4 4

3 4
, 4 1 4

3 4
, 4 4 1

3 4
,

1 4 4

4 3
, 4 1 4

4 3
, 4 4 1

4 3
.


= 1 4 4

3 4
.

If λ = (λ1, · · · , λℓ) ⊢ n, then the number of tableaux of shape λ, corresponding to any

given equivalence class, would be

λ1! · · ·λℓ! = λ!.

The number of λ-tabloids is then n!/λ!.

Definition 29. Suppose λ ⊢ n. Let

Mλ = C {{t1} , . . . , {tk}} ,

where {t1} , . . . , {tk} is a complete list of λ-tabloids. Then Mλ is called the permutation

module corresponding to λ.

Since we are considering only row equivalence classes, the rows of Mλ can be listed in

any order and produce an isomorphic module. Then, Mα is defined for any composition

(ordered partition) α.

▶ Example 22. Let λ = (n). Then

M (n) = C
{

1 2 . . . n
}

with the trivial action. ◀

▶ Example 23. If λ = (1n), then each equivalence class {t} consists of a single tableau.

This tableau can be identified with a permutation in one-line notation. Since the action of

Sn is preserved,

M (1n) ∼= CSn
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and the regular representation emerges. ◀

▶ Example 24. Consider λ = (n − 1, 1), where each λ-tabloid is determined by the

element in its second row. This gives the module isomorphism

M (n−1,1) ∼= C {1,2, . . . ,n} ,

which is the defining representation. ◀

Now, looking back at border strips. A new type of tableaux can be defined from these

border strips.

Definition 30 ((Chow and Paulhus, 2020)). Let λ be a partition of n and α a composition

of n. Then a border strip tableau of shape λ and content α, denoted as BST (λ, α), is a tiling

of the diagram of λ with border strips, such that:

• The area of the ith border strip is αi, and

• Writing the number i in each box of the ith border strip, then the numbers weakly

increase across every row and down every column. The border strip tableau is therefore

a semi-standard tableau.

In this paper, we will refer to the border strip with the number i written in it as Bi, i.e.,

the border strip that only contains 1 is B1, the border strip that contains 2 is B2, and so

on.

▶ Example 25. If we have λ = (5, 5, 4, 1) and α = (4, 5, 2, 1, 3), then the border strip

tableau of shape λ and type α could be;

BST (λ, α) ∋ 1 2 2 2 2

1 2 3 3 4

1 5 5 5

1

40



There are in fact |BST (λ, α)| = 7 elements in the set, namely

1 2 2 2 2

1 2 3 3 4

1 5 5 5

1

1 2 2 2 4

1 2 3 5 5

1 2 3 5

1

1 1 2 2 2

1 2 2 3 3

1 5 5 5

4

1 1 2 2 2

1 2 2 5 5

1 3 3 5

4

1 1 1 2 2

1 2 2 2 4

3 5 5 5

3

1 1 1 1 3

2 2 2 2 3

2 5 5 5

4

1 1 1 1 4

2 2 2 5 5

2 3 3 5

2

The colours are used to easily visually distinguish between each border strip Bi.

We can see that the area of the border strips is the same in each BST (λ, α). The border

strip Bi has always an area of αi in the BST (λ, α), as was defined.

The height of each border strip varies, depending on how it is placed in the tableau; so

ht(B
(a)
i ) in T(a) ∈ BST (λ, α) might not be the same as ht(B

(b)
i ) in T(b) ∈ BST (λ, α) for

T(a) ̸= T(b). This, however, is not always the case.

There are only 7 elements in BST (λ, α) from the condition that the numbers have to be

weakly increasing across every row and down every column. ◀

Note that it is still a valid border strip tableau, even after removing the border strip Bi

which corresponds to the largest number i.

3.4 Specht Modules

From defining standard young tableaux, they can be used to make another type of G-

modules. When looking at groups, we are usually concentrating on their elements. Instead,

let’s fixate on the corresponding standard tableaux.

Before we define the module, we need to look at its basis.
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Definition 31. Let λ ⊢ n and t be a λ-tableau. Set

κt :=
∑
σ∈Ct

sign(σ)σ.

Then the polytabloid associated with t is

et := κ {t} .

From these elements, we get the following theorem for a new type of G-module.

Theorem 6 ((Chow and Paulhus, 2020)). Given any λ ⊢ n, one can construct an irreducible

representation corresponding to λ, namely the Specht module denoted Sλ. The Specht mod-

ules are pairwise non-isomorphic, where every irreducible representation of Sn is isomorphic

to some Sλ. This Sλ is spanned by the polytabloids et, where t is a tableau of shape λ.

For λ ⊢ n, the corresponding Specht module forms a complete list of all the irreducible

Sn modules over the complex field.

Corollary 3. The permutation modules, Mµ, can be decomposed as

Mµ =
⊕
λ�µ

mλµS
λ

with the diagonal multiplicity mµµ = 1.

Specht modules are spanned by the polytabloid et, thus having the following theorem.

Theorem 7. The set

{et : t ∈ SY T (λ)}

is a basis of Specht modules corresponding to the same partition λ. This means that the set

spans Sλ.

Let’s find the dimension of Sλ. All the basis of the Specht module is given, so the

dimension depends only on how many elements there are in this set of basis.

Theorem 8 ((Tubbenhauer, 2022)). The dimension of the irreducible representations of

Sn over C are given by the number of standard Young tableaux;

dimSλ = fλ, (15)

where fλ is the number of standard λ-tableaux.
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Proof. To prove this, we only need to look at the Specht modules. From Corollary 3, the

Specht modules give all the irreducible representations of Sn. Theorem 7 states that that

Sλ = Span
({
eλ : t ∈ SY T (λ)

})
. This means that the dimension of Specht modules of shape

λ is only depending on the number of standard tableaux of shape λ, where the number of

λ-tableaux is defined as fλ.

To find the number of standard young tableau we could use the hook formula.

Theorem 9 (Hook Formula (Griffiths and Lord, 2011)). Let λ ⊢ n, then the number of

standard λ-tableaux are given by

fλ =
n!∏

(i,j)∈λ hi,j
. (16)

This formula is very simple to use because we only need to draw the diagram associated

with λ to find fλ.

From the Kostka numbers Kλµ = |SSY Tλ(µ)|, the theorem for Specht modules is as

follows

Theorem 10 (Young’s Rule). The multiplicity of the Specht module Sλ in Mµ is equal to

the number of semistandard tableaux of shape λ and content µ. The permutation module

can then be decomposed into

Mµ ∼=
⊕
λ

KλµS
λ.

We can also restrict this direct sum to λ� µ, such that

Mµ ∼=
⊕
λ�µ

KλµS
λ.

▶ Example 26. Let µ = (3, 2, 1). Then the possible λ� µ are;

λ1 = (3, 2, 1) = • • •
• •
•

, λ1 = (3, 3) = • • •
• • •

,

λ3 = (4, 1, 1) =
• • • •
•
•

, λ4 = (4, 2) =
• • • •
• •

,

λ5 = (5, 1) = • • • • •
•

, λ6 = (6) = • • • • • • .
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where we get the associated λ-tableaux of content µ:

T :



1 1 1

2 2

3

, 1 1 1

2 2 3
, 1 1 1 2

2

3

,

1 1 1 2

2 3
, 1 1 1 3

2 2
, 1 1 1 2 2

3
,

1 1 1 2 3

2
, 1 1 1 2 2 3


From this set of tableaux, we get

M (3,2,1) ∼= S(3,2,1) ⊕ S(3,3) ⊕ S(4,1,1) ⊕ 2S(4,2) ⊕ 2S(5,1) ⊕ S(6).

◀

3.5 Branching Rule

What would happen if we would restrict or induce an irreducible representation Sλ of Sn

to Sn−1 or Sn+1, respectively? Intuitively, these two operations should correspond to either

removing or adding a cell to the diagram corresponding with λ.

Definition 32. If λ is a diagram, then an inner corner of λ is a cell (i, j) ∈ λ whose

removal leaves the Young diagram of a partition. Any partition obtain this way is denoted

λ−. While, an outer corner of λ is a cell (i, j) ̸∈ λ whose addition creates the Young diagram

of a partition. Every partition obtained like this is denoted λ+.

The inner corners of λ are the cells at the end of a row and column of λ, whereas the

outer corner is outside of the tableau. If λ = (5, 4, 3, 1), then we can visualise these corners

by colouring the inner corners and marking the outer corners with an open circle;

◦
◦

◦
◦

◦
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After removing the inner corners, the diagrams that are remaining are the following;

λ− ∈



, ,

,



.

Whereas, the addition of the outer corners gives the following diagrams;

λ+ ∈



, , ,

,



.

The partitions that we have listed here are the partitions that occur in the restriction

and induction from S13

S(5,4,3,1) ↓S12
∼= S(4,4,3,1) ⊕ S(5,3,3,1) ⊕ S(5,4,2,1) ⊕ S(5,4,3),

and

S(5,4,3,1) ↑S14∼= S(6,4,3,1) ⊕ S(5,5,3,1) ⊕ S(5,4,4,1) ⊕ S(5,4,3,2) ⊕ S(5,4,3,1,1),

respectively.

From this, we get the following theorem.

Theorem 11. If λ ⊢ n, then

1. the restriction: Sλ ↓Sn−1
∼=
⊕

λ− Sλ−
, and

2. the induction: Sλ ↑Sn+1∼=
⊕

λ+ Sλ+
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3.6 Symmetric Functions

Let us look at a infinite set of variables, x = {x1, x2, · · · }, and consider the formal power

series ring C[[x]]. The monomial xλ1
i1
xλ2
i2

· · ·xλℓ
iℓ

is said to have degree n if
∑

i λi = n. We

also say that f(x) ∈ C[[x]] is homogeneous of degree n if every monomial in f(x) has degree

n.

Now for every n, there is a natural action of π ∈ Sn on the function f(x) ∈ C[[x]],

πf(x1, x2, · · · ) = f(xπ1, xπ2, xπ3, · · · ),

where πi = i for i > n.

Definition 33. Let λ = (λ1, · · · , λℓ) ⊢ n. The corresponding monomial symmetric function

is then

mλ = mλ(x) =
∑

xλ1
i1

· · ·xλℓ
iℓ

(17)

where the sum is over all distinct monomials having the parts of λ as exponents.

From these functions, we can create a ring which has the monomial symmetric functions

as a basis;

Definition 34. The ring of symmetric functions is

Λ = Λ(x) = Cmλ,

i.e., the vector space spanned by all the Monomial Symmetric Function, mλ.

Since Λ is closed under multiplication, it is a ring. Though, there are certain elements

of C[[x]] which are invariant under the πf(x) action, that is not in Λ, since it cannot be

written as a finite linear combination of mλ. The decomposition of the ring of symmetric

functions is then

Λ =
⊕
n≥0

Λn,

where Λn is the space that is spanned by all mλ of degree n.

Proposition 4. The space Λn has the basis

{mλ : λ ⊢ n}

and therefore the dimension is equal to the number of partitions of n, p(n).

There are also other families of symmetric functions. Some of them are;
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Definition 35.

• The nth Power Sum Symmetric Function:

pn = m(n) =
∑
i≥1

xni . (18)

• The nth Elementary Symmetric Function:

en = m(1n) =
∑

i1<···<in

xi1 · · ·xin . (19)

• The nth Complete Homogeneous Symmetric Function:

hn =
∑
λ⊢n

mλ =
∑

i1≤···≤in

xi1 · · ·xin . (20)

As the name indicates, the nth power sum function pn is a sum of all variables with

power n. The elementary function en is the sum of all square-free monomials of degree n.

It can therefore be considered a weight-generating function for partitions with n distinct

parts. Similarly, hn is the sum of all monomials of degree n, and it is the weight-generating

function for all partitions with n parts.

We can also extend Definition 35 to λ = (λ1, λ2, · · · , λℓ), by letting

fλ = fλ1fλ2 · · · fλℓ
, (21)

where the function f is one of the symmetric functions defined in Definition 35.

For example, if λ = (3, 2), then the different symmetric function for λ = (2, 1) are

p(2,1) = p2p1 = (x21 + x22 + · · · )(x11 + x12 + · · · )

e(2,1) = e2e1 = (x1x2 + x2x3 + · · · )(x1 + x2 + · · · )

h(2,1) = h2h1 = (x21 + x22 + · · ·+ x1x2 + x2x3 + · · · )(x1 + x2 + · · · )

3.6.1 Schur Function

One more important basis of Λn is the Schur function. These functions are intimately

connected with irreducible representations of Sn and tableaux. The Schur functions are so

adaptable that one can define them in many different ways.

47



Given any composition α = (α1, α2, · · · , αl), there exists a monomial weight in C[[x]]
that corresponds to this composition

xα := xα1
1 xα2

2 · · ·xαℓ

ℓ .

A generalised tableau T , of shape λ and content α, also has a weight that is defined

similarity to the monomial weight:

xT :=
∏

(i,j)∈λ

x
Ti,j

= xα

As an example, let us look at the following monomial weight.

▶ Example 27. Let us look at a tableau T of shape λ = (4, 2) and with the content

α = (3, 0, 0, 1, 2). This tableau could for instance look like this

T = 1 5 1 4

5 1
.

Then, the monomial weight of this tableau is

xT = x31x
0
2x

0
3x

1
4x

2
5 = x31x4x

2
5.

◀

From the weight monomial, the Schur function can be defined. These kinds of functions

are similar to the monomial weight, but instead are summing over the semi-symmetric

tableaux of form λ.

Definition 36. Given a partition λ, the associated Schur function is

sλ(x) =
∑

T∈SSY Tλ

xT =
∑

T∈SSY Tλ

∏
(i,j)∈λ

xTi,j
.

This function is symmetric.

The Schur function can also be defined to be a sum over compositions µ of n with Kostka

numbers:

sλ =
∑
µ

Kλµx
µ. (22)

This is because the Kostka numbers Kλµ is the number of semi-standard tableaux of shape

λ and content µ, and xT = xα for T of shape λ and type α.
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▶ Example 28. Let us look at the partition λ = (2, 1). Some of the valid semi-standard

tableaux of shape λ are then;

1 1

2

1 2

2

1 1

3

1 3

3
· · ·

1 2

3

1 3

2

1 2

4

1 4

2
· · ·

The Schur function for λ would be

s(2,1) =
∑

T∈SSY T(2,1)

xT =
∑
α

Kλαx
α

= x21x2 + x1x
2
2 + x21x3x1x

2
3 + · · ·+ 2x1x2x3 + 2x1x2x4 + · · ·

◀

Note that the Schur function for sign representations (1n) is

s(1n) = en(x), (23)

while the Schur function for trivial representations (n) is

s(n) = hn(x). (24)

One could also express the Schur function in terms of power sums;

sλ =
1

n!

∑
π∈Sn

χλ(π)pπ =
∑
µ

z−1
µ χλ

µpµ (25)

The last equation comes from the fact that χλ
µ is the value of the character χλ on Kµ, and

zµ = |Zg| = n!
|Kµ| .

The Schur function can also be expressed associated with a skew partition. This function

is a determinant, whose entries are the complete homogeneous symmetric function hi, for

0 ≤ i ≤ ℓ(λ). This expansion is called the Jacobi-Trudi identity (Stanley and Fomin, 1999,

p. 342–344).

Theorem 12 ((Stanley and Fomin, 1999)). Let λ and µ be two partitions with the same

amount of parts, ℓ(λ) = ℓ(µ), where µ� λ. Then

sλ/µ = det
(
hλi−µj−i+j

)ℓ(λ)
i,j=1

,

where h0 = 1 and hm = 0 for m < 0.
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3.6.2 Characteristic Map

Let Rn = R(Sn) be the space that contains all class functions on Sn. We want to find a

map that sends Rn to Λn.

The first thing to note is that dimRn = dimΛn = p(n), for p(n) the number of partitions

of n. This means that these two spaces are isomorphic as vector spaces. We then have

an inner product on Rn, where irreducible characters on Sn form an orthonormal basis

(Theorem 2). From this, we can define an inner product on Λn by

⟨sλ, sµ⟩ = δλµ.

From the Equation (25), we define a map to preserve the inner product which was just

defined.

Definition 37. The characteristic map is chn : Rn 7→ Λn, defined by

chn(χ) =
∑
µ⊢n

z−1
µ χµpµ,

where χµ is the character value of the character χ on µ.

If we apply chn to irreducible characters, then the character map is

chn(χλ) = sλ

from Equation (25). Since chn takes one orthonormal basis to another orthonormal basis,

the following proposition comes as a consequence;

Proposition 5. The map chn is an isometry between Rn and Λn.

3.6.3 Littlewood-Richard Rule

The Littlewood-Richardson rule is a combinatorial formula of the coefficients when multi-

plying two Schur functions sµsν , expanded in the terms of Schur basis.

From Theorem 10,

Mµ ∼=
⊕
λ

KλµS
λ. (26)

Recall that the Kostka number, Kλµ, is the number of semistandard tableaux of shape λ

and content µ. This formula can be looked at from two other perspectives, in terms of

characters and symmetric functions.
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If µ ⊢ n, then Mµ is a module for the induced character 1Sµ ↑Sn . This can be rewritten,

for µ = (µ1, . . . , µm), to be

1Sµ
= 1Sµ1

⊗ · · · ⊗ 1Sµm
.

The Equation (26) can also be rewritten as

1Sµ1
· · · 1Sµm

=
∑
λ

Kλµχ
λ. (27)

To apply Theorem 10 for symmetric functions, we apply the characteristic map to the

above equation:

s(µ1) · · · s(µm) =
∑
λ

Kλµs
λ. (28)

Such that, if µ = (3, 2), then the permutation module can be decomposed as

M (3,2) = S(3,2) + S(4,1) + S(5)

The relevant tableaux are then

T : 1 1 1

2 2
, 1 1 1 2

2
, 1 1 1 2 2 .

The permutation module can then be expressed as

1S3 · 1S2 = χ(3,1) + χ(4,1) + χ(5),

or

s3s2 = s(3,1) + s(4,1) + s(5).

We want to find out what would happen when looking at the multiplication between two

Schur functions of arbitrary partitions, or generally the expansion

sλsµ =
∑
ν

cνλµsν . (29)

Equivalently, we want the multiplicities of the irreducibles in

χλ · χµ =
∑
ν

cνλµχ
ν
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or (
Sλ ⊗ Sµ

)
↑Sn=

⊕
ν

cνλµS
ν

for |λ|+ |µ| = n. The cνλµ is called the Littlewood-Richardson coefficients. The Littlewood-

Richardson rule gives a way to interpret these coefficients combinatorially.

Before defining the Littlewood-Richardson rule, we need to see how these coefficients act

in the expansion of skew Schur functions. The definitions in Section 3.6.1 still apply even if

λ is replaced with a skew diagram, where the resulting function sλ/µ(x) is still a symmetric

formula.

Proposition 6. Define sλ(x,y) = sλ(x1, x2, . . . , y1, y2, . . . ). Then

sλ(x,y) =
∑
µ⊆λ

sµ(x)sλ/µ(y). (30)

Since sλ/µ(x) is symmetric, this can be expressed as a linear combination of ordinary

Schur functions.

Theorem 13. If the cλµν are Littlewood-Richardson coefficients, and |µ|+ |ν| = |λ|, then

sλ/µ =
∑
ν

cλµνsν .

Now, we need to explain what the coefficient cλµν counts.

Definition 38. A lattice permutation is a sequence of positive integers π = i1i2 . . . in such

that, for any prefix πk = i1i2 . . . ik and any positive integer l, the number of l’s in the πk is

at least as large as the number of (l+1)’s in the same prefix. A reverse lattice permutation

is a sequence π such that its reverse, πr, is a lattice sequence.

Looking at the three permutations

π =
(
1 2 1 1 3 2

)
σ =

(
2 1 3 2 1 1

)
ρ =

(
1 2 2 1 1 3

)
The permutation π is a lattice permutation, σ is a reverse lattice permutation, while ρ is

neither a lattice permutation nor a reverse lattice permutation. The reason for ρ not being

a lattice permutation is that the prefix 1 2 2 has more twos than ones.

Lattice permutations are another way of encoding standard tableaux. Given a standard

tableau P with n elements, then the sequence π =
(
i1i2 . . . in

)
can be formed, where ik = j
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if the integer k appears in row j of P . The inverse correspondence can then be constructed.

From this, we know that the permutation π =
(
1 2 1 1 3 2

)
codes the tableau

P =
1 3 4

2 6

5

.

Theorem 14 (Littlewood-Richardson Rule). The value of the coefficient cλµν is equal to the

number of semistandard tableaux T , KT , such that the following are satisfied:

1. T has shape λ/µ and content ν,

2. the row word of T , πT , is a reverse lattice permutation.

As an example, let us calculate the product of s(2,1)s(3,1). We start by listing all tableaux

subject to the lattice sequence condition with content (3, 1) and skew shape λ/(2, 1), for

some λ. From this, we get the list

• • 1 1 1

•
2

• • 1 1 1

• 2

• • 1 1

• 1

2

• • 1 1

• 1 2

• • 1 1

•
1

2

• • 1 1

• 2

1

• • 1

• 1

1

2

• • 1

• 1

1 2

• • 1

• 1 2

1

• • 1

•
1

1

2

• • 1

• 2

1

1

The product is written in order of their dominance:

s(2,1)s(3,1) = s(5,2) + s(5,1,1) + s(4,3) + 2s(4,2,1) + s(4,1,1,1)

+ s(3,3,1) + s(3,2,2) + 2s(3,2,1,1) + s(3,1,1,1,1)
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4 Murnaghan–Nakayama rule

From the article by Murnaghan (1937), we find that the expansion of Schur functions in

the power sum basis gives the irreducible characters of the symmetric group as coefficients.

Nakayama (1940) gave later an ”elegant” restatement of the same expansion. This expres-

sion being

sλ(x) =
∑
α

χλ
α

zµ
pα(x) =

∑
α

pα
zα

∑
T∈BST(λ,α)

(−1)ht(T ) (31)

where χλ
µ are the irreducible characters of representations in Sn of shape λ and with content

α.

One can also phrase the Murnaghan-Nakayama rule as

pr(x)sλ(x) =
∑
µ

(−1)ht(µ\λ)sµ(x), (32)

where the sum goes over all partitions µ such that µ\λ forms a border strip with r cells.

Lately, the Murnaghan-Nakayama rule is defined as follows

Theorem 15 (Murnaghan-Nakayama rule). Let λ ⊢ n, and suppose that α = (α1, . . . , αm)

is a composition of n. Then

χλ
α =

∑
ν

(−1)ht(ν)χ
λ\ν
α\α (33)

where the sum is over all border strips ν of size α1.

The branching rule, Theorem 11, is a special case of the Murnaghan-Nakayama rule.

Take, for instance α = (1, α2, . . . , αk), and let π ∈ Sn have the content α. Since π has a

fixed point, the character χλ
α is then

χλ
α = χλ(π) = χλ ↓Sn−1

(π),

which corresponds to the left-hand side of the first equation in Theorem 11. For the right

hand side of the Murnaghan-Nakayama rule; |ν| = 1 forces λ\ν to be of the form λ− with

all signs (−1)0 = +1.

Proof. Let m = α1, and let us consider πσ ∈ Sn−m × Sm ⊆ Sn, where π has the content

(α2, . . . , αk) and σ is an m-cycle. The characters χµ⊗χξ, where µ ⊢ n−m and ξ ⊢ m, form

a basis of the class functions on Sn−m ⊗ Sm. Then,

χλ
α = χλ(πσ) = χλ ↓Sn−m×Sm

(πσ) =
∑

µ⊢n−m
ξ⊢m

mλ
µξχ

µ(π)χξ(σ). (34)
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To find the multiplicities mλ
µξ, we can use Frobenius reciprocity (Sagan, 2001, Theo-

rem 1.12.6) and the characteristic map:

mλ
µξ =

〈
χλ ↓Sn−m×Sm , χ

µ ⊗ χξ
〉

=
〈
χλ, (χµ ⊗ χξ) ↑Sn

〉
=
〈
χλ, χµ · χξ

〉
= ⟨sλ, sµsξ⟩

= cλµξ,

where cλµξ is the Littlewood-Richardson coefficient.

Therefore, we can write Equation (34) as

χλ(πσ) =
∑

µ⊢n−m

χµ(π)
∑
ξ⊢m

cλµξχ
ξ(σ). (35)

We must now evaluate the character value χξ(σ), where σ is an m-cycle.

Lemma 1. If ξ ⊢ m, then

χξ
(m) =

{
(−1)m−r if ξ is a hook

0 otherwise
.

This is a special case of the theorem, and if α = (m) then χξ
α ̸= 0 if and only if we can

remove all the cells of ξ in one single sweep. This happens when ξ is a hook diagram, and

the Murnaghan-Nakayama sum has only one single term in this case.

Proof. By the extension of the Schur function, Equation (31), χξ
(m) is z(m) times the coeffi-

cient of pm in

sξ =
∑
µ

1

zµ
χξ
µpµ.

By using the complete homogeneous Jacobi-Trudi determinant (Theorem 12), we get that

sξ = det (hξi−i+j)
l
i,j=1 =

∑
γ

±hγ ,

where the sum is over all compositions γ = (γ1, . . . , γl) that occurs as a term in the deter-

minant. Each hγi
in hγ can also be written as a linear combination of power sums. Since

the p’s are a multiplicative basis, the resulting linear combination for hγ will not contain

pm unless γ contains exactly one nonzero part. This part must then be m. Thus, χξ
(m) ̸= 0

only when hm appears in the preceding determinant.
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The largest index to appear in the determinant must be at the end of the first row. The

first part of ξ is ξ1 − 1 + l = h(1,1), for h(1,1) the hook length of the cell (1, 1). Further, we

always have that m = |ξ| ≥ h(1,1). Therefore, χξ
(m) is nonzero only when h(1,1) = m, i.e.,

when ξ is a hook (r, 1m−r). We then have

sξ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

hr · · · hm

h0 h1 · · ·
0 h0 h1 · · ·
0 0 h0 h1 · · ·
...

...
...

...
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)m−rhm + other terms that does not involve pm.

Since hm = s(m) corresponds to the trivial character, comparing coefficients of pm/m in this

last set of equalities yields χξ
(m) = (−1)m−r, as desired.

From this lemma and from Equation (35), we need to find cλµξ for when ξ is a hook.

Lemma 2. Let λ ⊢ n, µ ⊢ n −m, and ξ = (r, 1m−r) be partitions. Then the Littlewood-

Richardson coefficient cλµξ = 0, unless each edgewise-connected component of λ/µ is a rim

hook. In that case, if there are k component hooks spanning a total of c columns, then

cλµξ =

(
k − 1

c− r

)
.

Proof. By the Littlewood-Richardson rule (Theorem 14), cλµξ is the number of semi-standard

tableaux T of shape λ/µ containing r ones, and a single copy of each 2, 3, . . . ,m − r + 1,

such that πT is a reverse lattice permutation. Thus, the number greater than one in πr
T

must occur in increasing order. This condition, together with the semi-standardness, gives

the following constraints on the tableaux T :

T1. Any cell of T having a cell to its right must contain a one

T2. Any cell of T having a cell above must contain an element bigger than one.

Now, if T contains a 2× 2 block, then there is no way to fill the lower left cell in a way

that satisfies both conditions above. Therefore, cλµξ = 0 if the components of the shape of

T are not rim hooks.

Now, suppose λ/µ =
⊎k

i=1 ν
(i), where each ν(i) is a component skew hook. The above

conditions, and the fact that 2 through m− r+1 increase in πr
T , show that every rim hook
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must be of the form

ν(i) =
1 1 1 b

d

1 1 d+1

d+2

d+3

where d > 1 is the smallest number that has not yet appeared in πr
T , and b is either 1 or

d−1. Thus, all of the entries in ν(i) are determined once we choose the value of b. Whereas,

in ν(1), we must have that b = 1.

By the second condition, T2, there are c − (k − 1) ones fixed for T . Hence, there are

r− c+ k− 1 ones left to be distributed among the k− 1 cells marked with a b. The number

of ways this can be done is

cλµξ =

(
k − 1

r − c+ k − 1

)
=

(
k − 1

c− r

)
.

By putting the values from the two lemmas into Equation (35) we get

χλ(πσ) =
∑
µ

χµ(π)

m∑
r=1

(
k − 1

c− r

)
(−1)m−r. (36)

Now since the three quantities k ≤ c ≤ m represent the number of skew hooks ν(i), the

number of columns in ν(i), and the number of cells in ν(i), respectively. We then get

m∑
r=1

(
k − 1

c− r

)
(−1)m−r =(−1)m−1

(
k − 1

c− 1

)
+ (−1)m−2

(
k − 1

c− 2

)
+ . . .

+ (−1)m−c

(
k − 1

0

)
+ (−1)m−c+1

(
k − 1

−1

)
+ . . .

+ (−1)0
(
k − 1

c−m

) (37)

A binomial coefficient
(
a
b

)
is rewritten to be

(
a

b

)
=


(−1)b

(−a+b−1
b

)
if b ≥ 0;

(−1)a−b
(−b−1

a−b

)
if a ≥ b;

0 otherwise.
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The terms in Equation (37) will be equal to 0 if r > c and if c− r > k − 1. Meaning that

m∑
r=1

(
k − 1

c− r

)
(−1)m−r =(−1)m−1

(
k − 1

c− 1

)
+ (−1)m−2

(
k − 1

c− 2

)
+ . . .

+ (−1)m−c

(
k − 1

0

)
+ (−1)m−c+1

(
k − 1

−1

)
+ . . .

+ (−1)0
(
k − 1

c−m

)
=(−1)m−c

(
k − 1

c

)
+ (−1)m−c−1

(
k − 1

1

)
+ . . .

+ (−1)m−c−k+1

(
k − 1

k − 1

)
=(−1)m−c

k−1∑
i=1

(−1)i
(
k − 1

i

)

=

{
(−1)m−c if k − 1 = 0;

0 otherwise.

If k = 1, then λ/µ is just a single skew hook ν with m cells and c columns. Hence

m− c = ht(ν), so Equation (36) becomes

χλ(πσ) =
∑

|ν|=m

(−1)ht(ν)χλ\ν(π),

which ends the proof of the Murnaghan-Nakayama rule.

As we have already seen in the proof of the Murnaghan-Nakayama rule, there are some

special cases that we can calculate for. We have already looked for α = (n), where

χλ
(m) =

{
(−1)m−r if λ is a hook

0 otherwise

Another special composition is for α = (1n).

Lemma 3. Let λ ⊢ n. Then the character associated with λ at (1n) is defined to be

χλ
(1n) = fλ,

where fλ is the number of standard Young tableaux of shape λ.

Recall the hook formula (Theorem 9), such that the character value can be rewritten as

χλ
(1n) =

n!∏
(i,j)∈λ hi,j

(38)
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This formula only depends on the hook lengths of the different boxes in the diagram asso-

ciated with λ.

To calculate χλ
α the rule must be used iteratively. First, remove a border strip from λ

with α1 cells in all possible ways such that what is left is a Young diagram. Then strip away

border strips with α2 squares from the resulting diagrams, and so on. At some stage, it will

either be impossible to remove a border strip of the right size or all cells will be deleted.

If it is impossible to remove a border strip, then the corresponding character value is 0.

Whereas, if all cells can be removed, then the character value is

±χ(0)
(0) = ±1. (39)

▶ Example 29. Suppose we want to find the character value associated with λ =

(5, 4, 3, 1) on α = (4, 3, 3, 2, 1). Let us display the Theorem 15 as a table over each step. At

each step, we remove a skew hook of length equal to one of the parts of α. More precisely;

at the first step, we look at α1 = 4. Then we look at the next part, α2 = 3, and so on.

Now let us illustrate the Theorem 15. We colour in the corresponding skew hook ν that

is to be removed, to easier see the removal. We will also note the sign of the height of the
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border strip which is removed under the corresponding border strip.

Step i α λ\ν

0

1 4

(−) (−)

2 3

(−) (+) (+)

3 3 (N/A)

(−) (+) (+)

4 2 (N/A) (N/A)

(+)

4 2

(+)

The colours that are related are to illustrate which tableau they are related to. So the

purple split into red and blue, and the red split into orange and yellow.

In step 3, when looking at the (2, 2, 1, 1)-diagram, there are no valid ways to remove

α4 = 3 boxes. We are then left with an invalid diagram (noted as N/A in the above array).

The character value is then 0. In step 4, we can note that the same happens for the (2, 1)-

diagrams (when we want to remove α4 = 2 boxes). Meaning that we are only left with one

diagram that can be totally removed, with character value 1.

We then get the following sequence;
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χ
(5,4,3,1)
(4,3,3,2,1) = −χ(5,4)

(3,3,2,1) −χ(5,2,1,1)
(3,3,2,1)

= −
(
−χ(3,3)

(3,2,1)

)
−χ(5,1)

(3,2,1) −χ(2,2,1,1)
(3,2,1)

= −χ(2,1)
(2,1) +χ

(3)
(2,1) −χ(2,1)

(2,1) −0

= −0 +χ
(1)
(1) −0 +0

= 0 +χ
()
() +0 +0

= 0 +1 +0 +0

= 1

◀

In Theorem 15, we need to do the same algorithm many times before finding the value for

the character of the representation. This might be quite time-consuming, especially when

looking at bigger tableaux. Instead, we could define the Murnaghan-Nakayama rule to only

look at border strips of tableaux of a given shape, and with a given content.

Theorem 16 ((Chow and Paulhus, 2020)). Let λ ⊢ n, and χλ be the irreducible character

of Sn associated with λ. If π ∈ Sn and (αi) is the sequence of cycle lengths of π, then we

get the following:

χλ(π) =
∑

T∈BST (λ,α)

∏
B∈T

(−1)ht(B), (40)

where the sum goes over all the BST s T , of shape λ and type α. The product is over all the

border strips B that tile T .

With this version of the Murnaghan-Nakayama rule, we do not need to use the same

rule iteratively. We only need to find all the border strip tableaux, and from there find the

character value.

Let’s use the rule, as defined in Theorem 16, in some examples.

▶ Example 30. Let us go back the example with λ = (5, 4, 3, 1) and α = (4, 3, 3, 2, 1).
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We here have the following border strip tableaux;

54

4

3

3

3

2

2

2

1

1

1

1

5

4 43

3

3

2

2

2

1

1

1

1

5

4 4

3 3 32

2

2

1

1

1

1

54

4

3 3 32

2

2

1

1

1

1

5

4 4

3

3 3

2 2

2

1

1

1

1

54

43

3 3

2 2

2

1

1

1

1

5

4 4

3

3 3

2 2

2

1

1

1

1

5

4 4

3 3 3

2 2 21

1

1

1

5

4 4

3 3 3

2 2 21 1

1

1

5

4 4

3 3

3

2

2 2

1 1

1

1

5

4 4

3 3 32

2

2

1 1 1 1

Calculating the formula from Theorem 16 we get;

χλ
α = χλ(π) =

∑
T

∏
B∈T

(−1)ht(B)

=
∑

T∈BST (λ,α)

(
(−1)ht(B1) + (−1)ht(B2) + (−1)ht(B3) + (−1)ht(B4) + (−1)ht(B5)

)
=
(
(−1)3(−1)2(−1)2(−1)1(−1)0)

)
+
(
(−1)3(−1)2(−1)2(−1)0(−1)0)

)
+ · · ·

= 1− 1− 1 + 1− 1 + 1− 1− 1 + 1 + 1 + 1

= 1

◀

There might be many different border strip tableaux for a pair of one partition and one

composition. Though we still come to the same answer for the character value. Thus one

might argue that this version, though you might have to keep a sharp eye for possible border

strip tableaux, is shorter than the other. This, of course, depends on the composition for

how easy it is to find all the border strip tableaux.

Now on to a much easier example.
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▶ Example 31. Let λ = (5, 4, 2) and α = (6, 3, 2). We then have the two BSTs;

1 1 1 1 1

1 2 3 3

2 2

1 1 1 1 1

1 2 2 2

3 3

So, by using the rule, we find that the character of Sn indexed with λ is

χλ
α = χλ(π) =

∑
T∈BST (λ,α)

∏
B∈T

(−1)ht(B)

=
∑

T∈BST (λ,α)

(
(−1)ht(B1) + (−1)ht(B2) + (−1)ht(B3)

)
=1 + (−1) = 0

◀

From Theorem 16, since we are looking at a composition α, we might wonder if the

ordering is important or not. However, compositions have no criteria for ordering their

parts. To see if the rule is affected by the ordering of these compositions, let’s look at the

following example.

▶ Example 32. Let λ = (5, 4, 2), and β = (6, 2, 3). With this composition, we cannot

compute any valid BST (λ, β). So with the Murnaghan-Nakayama rule, we have an empty

sum. The character value is therefore

χλ
β = 0

If we were to rather look at γ = (2, 3, 6), we would have to conclude with the same result;

there exists no BST (λ, γ). Therefore,

χλ
γ = 0

If θ = (3, 2, 6), then there exists BST (λ, θ). The border strip tableaux are

1 1 1 3 3

3 3 3 3

2 3

1 1 2 3 3

1 3 3 3

1 3

The corresponding character value is

χλ
θ = (−1) + 1 = 0
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◀

From the example, the character χλ(π) is the same regardless of the order of the com-

position α. Therefore, we can look at compositions α that act like a partition, that is to

say, it is weakly decreasing.

4.1 Alternative Versions

The Murnaghan-Nakayama rule can be found in different function families (Alexandersson,

2022). We already know that the Murnaghan-Nakayama rule is defined by the expansion

of the Schur functions. From this expansion, several mathematicians have formulated the

Murnaghan-Nakayama for other variants of the Schur functions. These are the k-Schur

functions, the K-k-Schur functions, and the Cyclic Schur functions.

The Murnaghan-Nakayama rule is also defined in other families. We will look at three

families in the remainder of Section 4.1

4.1.1 Quantum Murnaghan-Nakayama rule

In the article ”Skew Quantum Murnaghan-Nakayama Rule” (2011), Konvalinka gives an

expansion of the product of a skew Schur function with a quantum power sum function in

terms of skew Schur functions. Here, the author makes several speculations of generalisations

of the Murnaghan-Nakayama rules for Hall-Littlewood P -functions.

The motivation for this article came from an open problem posed by Assaf and McNa-

mara in their talk ”A Pieri Rule for Skew Shapes” at FPSAC in 2010. The problem was to

find combinatorial proof of the skew Murnaghan-Nakayama rule. Though ”Skew Quantum

Murnaghan-Nakayama Rule” provides a bijective proof of the skew quantum Murnaghan-

Nakayama rule, the particular problem remains open.

4.1.2 Plethystic Murnaghan-Nakayama rule

The article ”A Combinatorial Proof of a Plethystic Murnaghan-Nakayama Rule” by Wildon

(2015), gives a combinatorial proof of a plethystic Murnaghan-Nakayama rule. The plethys-

tic Murnaghan-Nakayama rule is a formula for computing the plethysm of a Schur function

with a power sum symmetric function. The plethysm is an operation in algebraic combina-

torics that describes the composition of symmetric functions, which was introduced by D.E.
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Littlewood in 1950 (Wikipedia contributors, 2023b).

This version of the Murnaghan-Nakayama rule can be used to compute the coefficients

in the expansion

sµ · (pr[hm]) = sµ(pr ◦ hm) =
∑

λ⊢rm+|µ|

(−1)htr(λ/µ)sλ.

This expansion was first stated in the article by Désarménien et al., where later Wildon

gave a combinatorial proof of the plethystic generalisation of the Murnaghan-Nakayama rule.

Wildon states in his that this extension already had been proved using the character theory

of the symmetric group, but implies that the expansion implies a combinatorial formula for

sµ(pr1 · · · prc ◦ hm), or more generally for sµ(pr1 · · · prc ◦ hm1 · · ·hmd
).
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4.2 Usage of the Murnaghan-Nakayama rule

There are different ways one could use the Murnaghan-Nakayama rule, other than just to

find the character value of a representation with respect to another representation.

The article written by Chow and Paulhus (2020) and the article written by Hamaker

and Rhoades are two examples of how we can adjust the Murnaghan-Nakayama rule for

different concerns.

4.2.1 Finding unknown partitions

One can use the Murnaghan-Nakayama rule explicitly to find an unknown partition. In the

article written by Chow and Paulhus (2020), they use the Murnaghan-Nakayama rule to do

exactly this. Here they want to answer the following question

Suppose that we are given two distinct irreducible characters χλ and χµ of the

symmetric group Sn. How hard is it to find a permutation π ∈ Sn such that

χλ(π) ̸= χµ(π)?

(Chow and Paulhus (2020))

To answer this question, they defined an algorithm which exploits the Murnaghan-

Nakayama rule (Theorem 16) to find a composition α that satisfies the in-equation.

The outline of the algorithm is given in two phases;

1. Forward Pass; The principal hook lengths are determined one at a time

2. Backward Pass; The principal hook shapes are determined one at a time in reverse

order, starting with the innermost principal hook and working backwards. Here, at

each step, we need to determine the amount of which the principal hook overhangs

the arm and the leg of the principal hook just inside of it.

Starting with finding the hook lengths hi in the forward pass, where we are looking at

them in the order h1, h2, · · · . Next, we use the backward pass to find the shapes of the

principal hooks, where we start at the last hook length and work backwards.

For the forward pass, there is an important observation.
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Lemma 4. A border strip tableau of shape λ and content α cannot exist if α1 > h1 =

h(1,1)∈λ.

This is because the first border strip would then be too large to fit in the diagram, and

therefore there cannot be any border strip tableau of content α.

To determine the principal hook length h1 of λ, we can then consider the compositions

α
(i)
j =

{
n− i, if j = 1

1, if 2 ≤ j ≤ i+ 1.
(41)

for i ∈ {0, 1, . . . , n− 1}. We look at the queries α(0), α(1), · · · successively, and stop as soon

as we encounter a nonzero value. We let χλ
α(i) = 0 if α

(i)
1 > h1. Now, if α

(i)
1 = h1, then there

will be a border strip tableau whose first border strip is the first principal hook, while all

other cells are covered by singletons.

Let us look at this passage as an example;

▶ Example 33. Let us consider λ = (5, 4, 3, 1) ⊢ 13.

We see that the principal hook length is h1 = 8. Meaning that, if α1 > 8 then χλ
α = 0. We,

therefore, let α1 = 8.

We then get that the composition is α = (8, 1, 1, 1, 1, 1). From this, we have the following

border strip tableaux;

1 1 1 1 1

1 2 3 4

1 5 6

1

1 1 1 1 1

1 2 3 5

1 4 6

1

1 1 1 1 1

1 2 3 6

1 4 5

1

1 1 1 1 1

1 2 4 5

1 3 6

1

1 1 1 1 1

1 2 4 6

1 3 5

1
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We can then use Theorem 16 to find that the character value corresponding to λ on α is

χ(5,4,3,1)(8, 1, 1, 1, 1, 1) = (−1)3 · 5 = −5

◀

To recover h2 we ”freeze” the largest part of α to be h1, and then try decreasing values

for the next largest part of α.

Consider the new composition

β
(i)
j =


h1, if j = 1;

min(h1 − 2, n− h1)− i, if j = 2;

1, if 3 ≤ j ≤ n− β
(i)
1 − β

(i)
2 + 2.

(42)

Where we, again, look at the queries β(0), β(1), · · · successively, and stop as soon as we

encounter a nonzero value. Since β
(i)
1 = h1, then we know that the first border strip of any

border strip tableau of shape λ and content β(i) must cover the entire first principal hook.

If β
(i)
2 > h2, then there cannot be any border strip tableaux of shape λ and content β(i),

because the second border strip is too large to fit inside the second principal hook.

▶ Example 34. Let’s continue on Example 33, with λ = (5, 4, 3, 1) ⊢ 13. Here β1 = 8,

and we now want to find β2.

Using the formula from Equation (41), we find that

β
(i)
2 = min(h1 − 2, n− h1)− i = min(8− 2, 13− 8)− i = min(6, 5)− i

β
(i)
2 = 5− i.

Looking at the diagram for λ. The smallest i, such that β
(i)
2 ≤ h2, is i = 1. This gives

us that β2 = 4. ◀

Now for the backward pass; where we want to recover the shape of the principal hooks

one at a time. We can reduce the case where we know the entire shape, except for the first

principal hook.

Some useful lemmas that can be used in this passage;

Lemma 5. A border strip of a border strip tableau cannot contain more than one box of the

principal diagonal.
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Lemma 6. The first k border strips in a border strip tableau must be entirely contained in

the first k principal hooks.

The proof of these can be found in the article.

Assuming that we know all k of the principal hook lengths hi, we want to determine the

arm and leg overhand of the first principal hook. To determine this we apply the following

sequence of queries until we encounter a nonzero character value of χλ(γ(i));

γ
(i)
j =


h1 − i if j = 1

h2 + i if j = 2

hj if 3 ≤ j ≤ k

From Lemma 6, for the second border strip to contain more than h2 boxes, it must

contain some of the boxes from the first principal hook. This cannot happen if the first

border strip is too large, it would then restrict the second border strip from reaching the

required boxes in the first principal hook.

The smallest i that allows border strips with parts γ
(i)
1 = h1 − i and γ

(i)
2 = h2 + i, gives

us the desired information on the shortest overhand of the first principal hook. And we can

therefore deduce the length of the longer overhang.

However, if we did know the overhang of a tableau we do not know where these overhands

are supposed to go. We have two possible shapes, depending on which overhang is chosen

to be the arm and which is selected to be the leg. The two shapes we are left with are

then λ and λ̂, where one denotes λ̂ to be the dopplegänger of λ. How to distinguish these

dopplegängers is written more in-depth in the article.
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4.2.2 Expansions of Irreducible Symmetric Group-characters

In the article by Hamaker and Rhoades (2022), they alter the Murnaghan-Nakayama rule

to instead sum over the monotonic tiling τ of λ-ribbons of size µ. They give an explicit rule

for calculating the expansion of a k-local function on the basis of irreducible Sn characters

when the k-local function is a class function.

Hamaker and Rhoades (2022) look at power sums and path power sums to calculate the

expansion using the classical Murnaghan-Nakayama rule (Theorem 15) and their altered

Murnaghan-Nakayama rule, respectively. Their altered Murnaghan-Nakayama rule is called

the Path Murnaghan-Nakayama Rule.

They take the base of the Murnaghan-Nakayama rule in the form of Equation (32).

Hamaker and Rhoades start from the Murnaghan-Nakayama rule of power sums;

pν =
∑
λ⊢n

χλ
νsλ,

for

χλ
ν =

∏
T

(−1)ht(T ).

The product multiplies over any ν-ribbon tableaux T of shape λ.

To understand the path power sums, we first need to define Monotonic ribbon tilings.

Definition 39. In a monotonic ribbon tiling we have the following conditions;

• The tails lie in distinct columns;

• The tail depth decreases weakly from left to right;

• Each initial union of ribbons forms a partition.

Let us look at different tilings of the same diagram λ = (10, 9, 4, 2, 2). In Figure 2, we

draw the start of each tail as a white circle, which also visualises the depth of each tail. The

end of the tails is drawn as black circles. We connect the tails with a line, to indicate which

start position is related to which end position.

From the Definition 39 there is only one valid Monotonic ribbon tiling, Figure 2a. To

better understand why, let us look at why the other two tilings are not valid monotonic

ribbon tilings; First, Figure 2b has multiple tails that lie on the same columns, meaning

that this tiling does not satisfy the first criteria of Definition 39. It is therefore not a

monotonic ribbon tiling.
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(a) Monotonic Ribbon

(b) Not Monotonic Ribbon (c) Not Monotonic Ribbon

Figure 2: Tilings of Diagram (10, 9, 4, 2, 2)

If we look at Figure 2c, we see that this tiling satisfies the first two criteria from Defini-

tion 39. Let us look at a union of two ribbons of this tiling, and see if it satisfies the last

condition; If we only consider these two ribbons which start at the bottom of the diagram,

we see that the union of these does not form a valid partition. This is because we get fewer

cells in the first row than in the second row. Since we do not get a young diagram from

the union, the last criterion of Definition 39 is not satisfied. This tiling is then not a valid

Monotonic ribbon tiling.

Not that we have these monotonic ribbon tilings, we can define the Path Murnaghan-

Nakayama rule;

Theorem 17. For µ ⊢ n, we have

−→pµ =
∑
µ⊢n

−→
χλ
µsλ.

We define
−→
χλ
µ to be

−→
χλ
µ = m(µ)! ·

∏
τ

(−1)ht(τ)

where we sum over all the monotonic tilings τ of λ ribbons of size λ, and mi(µ) is the

multiplicity of i ≥ 1 as a part of µ and m(µ)! := m1(µ)! · · ·mn(µ)!. The ribbons are to be

added in all possible orders.

▶ Example 35. Let us look at the path power sum of µ = (3, 2, 1). Using Theorem 17
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we have the formula

−→pµ =
∑
µ⊢n

−→χµ
λsλ =

∑
µ⊢n

(
m(µ)! ·

∏
τ

(−1)ht(τ)

)
sλ

By looking over all possible partitions λ of n = 6, we try to find all the possible monotonic

ribbon tilings.

By trial and failure, we find that there are monotonic ribbon tilings for the partitions

(6), (5, 1), (4, 1, 1), (3, 3), and (3, 2, 1). The path power sum is then

−→pµ = 6 · (1)s(6) + 4 · (−1)s(5,1) + 2 · (1)s(4,1,1) + 2 · (−1)s(3,3) + 1 · (−1)s(3,2,1)

= 6s(6) − 4s(5,1) + 2s(4,1,1) − 2s(3,3) − s(3,2,1)

◀

4.3 Results from Pak and Panova

In the article written by Pak and Panova (2015), they found that it is NP-hard to figure

out if a character χλ(µ) is zero. They called the problem ”Is the character χλ(µ) = 0” for

CharP.

Even when looking at characters of partitions of only two parts on another partition with

only even parts, the problem CharP is still NP-hard. With this observation, it implies that

the problem CharP is at least as hard as the Knapsack problem, which is defined to be:

Knapsack: Given the input (k, a1, ..., al), determine whether there are ϵi ∈ {0, 1} for

i = 1, ..., l, such that

k =

l∑
i=1

ϵiai.

For any multiset R = {r1, . . . , rq} and integer s, we denote the number of ways to write

s as a sum of entries from R as PR. Such that

PR(s) = # {(i1, i2, . . . ) : 1 ≤ i1 < i2 < · · · ≤ q, ri1 + ri2 + · · · = s} .

Let M be the set of all parts of µ, M = {µ1, ..., µl}. Then, to reduce the CharP

problem to Knapsack, by first using Jacobi-Trudi identity (Theorem 12), and later the

Murnaghan-Nakayama rule to rewrite the character χλ(µ), for λ = (n − 2k, 2k) and µ =

(2a1, 2a2, . . . , 2al), to be

χλ(µ) = PM (2k)− PM (2k − 1).
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Due to all the elements in M being even, we have that PM (2k − 1) = 0, so we know

that the character χλ(µ) = 0 if and only if PM (2k) = 0. To determine if PM (2k) = 0, is the

same as the Knapsack problem, since we are looking at a set of ϵi multiplied with some

elements in M . Because of this, we know that we have a problem that is at least as hard as

a NP-complete problem, making it a NP-hard problem. Note that this also implies that to

compute characters is itself #P-hard.
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5 Computation

We can now compute the Murnaghan-Nakayama rule as a function in SageMath. The

functions that are defined in this Master Thesis are inspired by predefined functions by The

Sage Developers (2022).

5.1 Predefined Functions

Coding in a mathematics software system like SageMath comes with a lot of favours. One

main factor is that there are already defined functions we can use to find the character table

of any group. We can also specific characters of representations from predefined functions

in this system.

5.1.1 Characters of Representations

There are different ways of finding the characters of a representation in SageMath. One way

is to directly find the characters from the representations.

If we were to look at the partition λ = (4, 3, 2), the code would then be;

1 lm = [4,3,2]

2

3 rho = SymmetricGroupRepresentation(lm)

4 chi = rho.to_character ()

5

6 chi.values ()

Let’s start by defining the partition we are interested in, lm. After this, generate the

representation that is associated with the partition lm. Then generate the list of character

values of the representation rho by using the function to_character(). To get the list of

character values of this partition we then ask for the values() of the characters, chi.

The output is then

1 [168, 14, 4, 2, 0, -15, -1, 1, -1, 0, 2, -3, -4, -2, 0, -1, 1, 0, 3, -1,

-1, 0, 1, 2, 0, -1, 0, 0, 0, 0]

The function gives a list of all the character values that are associated with the specific

partition lm with the representation rho.
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The function to_character() is directly based on the definition of characters, Definition 10.

The function takes the trace of the matrix representation of the group associated with each

element in the group. The function then lists all the traces in a list and returns this.

SageMath also use functions from GAP (2021). The GAP (2021) system provides com-

prehensive information on group theory, combinatorics, etc.

To find the character value in GAP, we first find all the irreducible representations of a

given group G.

1 lm = [4,3,2]

2 n = sum(lm)

3

4 G = SymmetricGroup(n);

5 gap.Irr(G)

When running this code, we would get a list of all the irreducible characters of the

Symmetric group of n elements, where n = 9 in this case. To get the list of character values

associated with the partition lm, the following code is needed;

6 S = Partitions(n);

7 N = len(G)

8

9 for i in range(len(S)):

10 if S[-i] == lm:

11 m = N-i

12 Chi = Char[i]

13 Chi

This code goes through each partition of n, finding the corresponding entry in gap.Irr(G).

The ordering in gap.Irr(G) is the reverse of Partitions(n), meaning that we need to look at

the last partition in Partitions(n) when we want to find a certain partition in gap.Irr(G).

The output would then be

1 Character( CharacterTable( SymmetricGroup( [ 1 .. 9 ] ) ),

2 [ 168, 14, 4, 2, 0, -15, -1, 1, -1, 0, 2, -3, -4, -2, 0, -1, 1, 0, 3, -1,

-1, 0, 1, 2, 0, -1, 0, 0, 0, 0 ] )

This result is the same as the previous one, even when we had to run through more code to

get there.
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5.1.2 Character Tables

SageMath can also compute the character table of a group. Let us look at two ways to

generate the character table.

The first method is by using functions which are already defined in SageMath. The code

is then:

▶ Example 36.

The code to call for the character table for the symmetric group of n = 6 elements is

the following;

1 G = SymmetricGroup (6)

2 CT = G.character_table () ; CT

Giving the following output;

1 [ 1 -1 1 -1 1 -1 1 -1 1 1 -1]

2 [ 5 -3 1 1 2 0 -1 -1 -1 0 1]

3 [ 9 -3 1 -3 0 0 0 1 1 -1 0]

4 [ 5 -1 1 3 -1 -1 2 1 -1 0 0]

5 [10 -2 -2 2 1 1 1 0 0 0 -1]

6 [16 0 0 0 -2 0 -2 0 0 1 0]

7 [ 5 1 1 -3 -1 1 2 -1 -1 0 0]

8 [10 2 -2 -2 1 -1 1 0 0 0 1]

9 [ 9 3 1 3 0 0 0 -1 1 -1 0]

10 [ 5 3 1 -1 2 0 -1 1 -1 0 -1]

11 [ 1 1 1 1 1 1 1 1 1 1 1]

◀

This is a simple visualisation of the character table. The rows have the character values

of representations as lists with the index that corresponds to conjugacy classes of the group

G. We can easily note which row is associated with the sign representation, and which is

associated with the trivial representation (it is the first and last rows, respectively). From

the notation of the character table, we can then easily print out the list of character values

for a specific partition. I.e., the sign representation can be printed out by writing CT[0],

where the list corresponding to the sign representation is printed out.

Though, knowing which character value is associated with which conjugacy class can be

challenging. There is no clear indication of which column correlate to which conjugacy class

of G.

76



Let’s instead look at one of the functions in the GAP system. Particularly the function

gap(group).CharacterTable(). This function is, as the code indicates, the function that prints

out the character table to a group. The function has a lot of information in its table.

Therefore, the next example will explain the output of the function gap(group).CharacterTable

(), and how one can use the information that is provided. More explanation about this

particular function can be found in the forum page provided by Zhao (2022).

▶ Example 37. To get the character table of the symmetric group of 6 elements, the

code is

1 G = SymmetricGroup (6)

2 CT = gap(G).CharacterTable ()

3 print(gap.eval("Display (%s)"%CT.name()))

We first ask for the symmetric group of 6 elements, and call this group G. After this, call

for the character table of the group G by using the function gap(G).CharacterTable(). This

character table is given the name CT. Lastly, evaluate the character table CT and print the

display of this character table.

A shorter version, of the code is

1 G = SymmetricGroup (6)

2 gap.Display(gap.CharacterTable(G))

Here we display the character table of the group G directly, without naming the character

table. Both Display and CharacterTable() are functions of GAP, this must be indicated in the

code by writing gap. in front of them.
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Both of these versions give out the same result. The output from the codes is the

following set of tables;

1 CT1

2

3 2 4 4 4 4 1 1 1 3 3 . 1

4 3 2 1 . 1 2 1 2 . . . 1

5 5 1 . . . . . . . . 1 .

6

7 1a 2a 2b 2c 3a 6a 3b 4a 4b 5a 6b

8 2P 1a 1a 1a 1a 3a 3a 3b 2b 2b 5a 3b

9 3P 1a 2a 2b 2c 1a 2a 1a 4a 4b 5a 2c

10 5P 1a 2a 2b 2c 3a 6a 3b 4a 4b 1a 6b

11

12 X.1 1 -1 1 -1 1 -1 1 -1 1 1 -1

13 X.2 5 -3 1 1 2 . -1 -1 -1 . 1

14 X.3 9 -3 1 -3 . . . 1 1 -1 .

15 X.4 5 -1 1 3 -1 -1 2 1 -1 . .

16 X.5 10 -2 -2 2 1 1 1 . . . -1

17 X.6 16 . . . -2 . -2 . . 1 .

18 X.7 5 1 1 -3 -1 1 2 -1 -1 . .

19 X.8 10 2 -2 -2 1 -1 1 . . . 1

20 X.9 9 3 1 3 . . . -1 1 -1 .

21 X.10 5 3 1 -1 2 . -1 1 -1 . -1

22 X.11 1 1 1 1 1 1 1 1 1 1 1

Let us look further into this output, and try to understand the different tables that are

displayed. Note that the table writes ”.” when the character value is equal to 0, and CT1 is

just the name of the character table.

To best explain the output of the function, let us view the result in reverse order and

start with the last table.

The last table displayed from the function gap(G).CharacterTable(), is the following table;

12 X.1 1 -1 1 -1 1 -1 1 -1 1 1 -1

13 X.2 5 -3 1 1 2 . -1 -1 -1 . 1

14 X.3 9 -3 1 -3 . . . 1 1 -1 .

15 X.4 5 -1 1 3 -1 -1 2 1 -1 . .

16 X.5 10 -2 -2 2 1 1 1 . . . -1

17 X.6 16 . . . -2 . -2 . . 1 .

18 X.7 5 1 1 -3 -1 1 2 -1 -1 . .

19 X.8 10 2 -2 -2 1 -1 1 . . . 1

20 X.9 9 3 1 3 . . . -1 1 -1 .

21 X.10 5 3 1 -1 2 . -1 1 -1 . -1

22 X.11 1 1 1 1 1 1 1 1 1 1 1

This table is the character table for the group G. This table is the same as the character
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table obtained from G.character_table() in Example 36. Now it also lists the character names

on the side of the table.

The table above the character table is;

7 1a 2a 2b 2c 3a 6a 3b 4a 4b 5a 6b

8 2P 1a 1a 1a 1a 3a 3a 3b 2b 2b 5a 3b

9 3P 1a 2a 2b 2c 1a 2a 1a 4a 4b 5a 2c

10 5P 1a 2a 2b 2c 3a 6a 3b 4a 4b 1a 6b

By looking at the first row of the table we find the conjugacy classes of G. Meaning that

the row;

7 1a 2a 2b 2c 3a 6a 3b 4a 4b 5a 6b

lists up all the conjugacy classes of G with their corresponding names. The row gives all the

conjugacy classes a name, such that we can refer to them again. We will therefore refer to

the conjugacy classes from these notations.

There are 11 conjugacy classes written in this row, which matches the amounts of charac-

ters listed. We have all the irreducible characters for this group, and therefore this character

table is indeed valid.

The rest of the same table explains the correlations between elements of each conjugacy

class. The elements c in the first column tell us what power we are looking at. Such that,

each cell in this table explains where the c-th power of elements in the conjugacy class is

located.

Let’s look at the columns corresponding to the conjugacy class 3a and 4b. For a ∈ 3a

and b ∈6b, the following information is given;

c ac bc

2 a2 ∈ 3a b2 ∈ 3b

3 a3 ∈ 1a b3 ∈ 2c

5 a5 ∈ 3a b5 ∈ 6b

The first table in the output from gap(G).CharacterTable(), is the following table;

3 2 4 4 4 4 1 1 1 3 3 . 1

4 3 2 1 . 1 2 1 2 . . . 1

5 5 1 . . . . . . . . 1 .

This table can be used to find the sizes of the different conjugacy classes of G.
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The first column explains the prime divisors of |G|. The numbers in the other columns

are corresponding to the exponents of the prime divisors in the product of the centraliser of

the elements of each conjugacy class.

We can then find the order of the centraliser of each conjugacy class by raising the

numbers in the first column by the numbers in the row corresponding to that of the conjugacy

class and taking the product of them. Meaning that ZC = 2a · 3b · 5c, for some conjugacy

class C with column entries a, b, c.

To find the size of a conjugacy class Ci, use Equation (2). For the conjugacy class 3a,

we can find the order of the centraliser Z3a of its element

|Z3a| = 21 · 32 · 50 = 18.

The size of the conjugacy class 3a is then

|G|
|Z3a|

=
6!

18
= 40.

The order of the conjugacy class 6a is

|G|
|Z6a|

=
6!

21 · 31 · 50
= 120

◀

5.2 Murnaghan-Nakayama Recursive Algorithm

Before we present the algorithm for the Murnaghan-Nakayama rule, we need to define some

functions that will be used in the algorithm.

Starting by defining a function for connected skew diagrams.
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1 def skew_connected(partition ,m):

2 # input: partition : the partition we are removing the border from

3 # m : the number of cells at the border strip

4 # output: list of connected skew -partitions

5 N = sum(partition)

6 M = N-m

7 if type(partition) == list:

8 partition = Partitions(N)(partition)

9 Par = Partitions(M)

10 Rim = partition.rim()

11 L = []

12 for p in Par:

13 if partition.contains(p):

14 test = 0

15 P = SkewPartition ([partition ,p])

16 if all(item in Rim for item in P.cells()):

17 place = [Rim.index(c) for c in P.cells() if c in Rim]

18 place.sort()

19 for i in range(len(place) -1):

20 if place[i+1]-place[i] == 1:

21 test = test + 1

22 else:

23 test = 0

24 if test == len(place) -1:

25 L.append(P)

26 return(L)

The function skew_connected(partition,m) creates a list of all the connected skew diagrams,

where the input is the following: The partition we want to create a skew diagram from, and

the number of boxes m the desired skew diagram contains.

First, we find the total number of boxes N which the partition is associated with. We

then check if the partition is of type(partition) = list. If we have written the partition as

a list, then we redefine this partition to be a partition type in SageMath. This is done by

redefining the partition to be Partitions(N)(partition).

After this, define a list of all the partitions Par of M = N-m boxes (the number of boxes

that we need to remove to create the desired skew diagram). The Skew is defined as the list

of coordinates of the border strip of the partition. Lastly, we define an empty list where all

the connected skew diagrams will be listed at the end of this function.

Then, for all the partitions p in Par, we check if the partition contains each p, i.e. the

partition p can be completely covered by partition if we were to place the diagram of partition

on top of the diagram of p. If the partition does contain p, then we do the following test:

First, create a skew partition, P, by removing p from partition. Then, check if all the
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coordinates of the boxes in P is in Skew, the list of coordinates on the border of the diagram.

If this is true, then we look at where the boxes are located in the border strip of the partition.

If the boxes are next to each other, then we know that the skew diagram P is connected,

and we add this skew diagram to the list L.

We keep doing the same test till we have looked over all possible partitions p of M boxes.

We then have a complete list of all the connected skew diagrams of m boxes, that do not

contain a 2× 2 box.
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The next function needed to define is a function which finds the height of a skew diagram.

1 def skew_height(skew_partition):

2 # input : skew_partition : a skew diagram of the form "partition \ core"

3 # or "[partition , core]"

4 # output: the height of the skew_partition as an integer

5 diff = []

6 for i in range(len(skew_partition [0])):

7 if i > len(skew_partition [1]) -1:

8 if skew_partition [0][i] != 0:

9 diff.append(skew_partition [0][i])

10 else:

11 if skew_partition [0][i]-skew_partition [1][i] != 0:

12 diff.append(skew_partition [0][i]-skew_partition [1][i])

13 height = len(diff) -1

14 if height <0:

15 print("There are no skew diagram")

16 else:

17 return(height)

This function looks at a skew diagram skew_partition, and calculates the height of this

diagram.

We start by creating an empty list, diff. This list will keep track of the number of boxes

in each row there are in the skew diagram. If the core has a row that is of the same size as

a row in the partition, then we know that the skew diagram does not have any boxes in this

particular row. In this case, we do not include the row in the list diff.

After looking over all rows of the partition, we use the Equation (13) to calculate the

height of the skew diagram. If there are no skew diagrams, and the height comes out as

negative, then we return "There are no skew diagram". Now, if the height is non-negative,

then we give out the height as an output.
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From these two functions, the algorithm of the Murnaghan-Nakayama rule can be de-

rived. Or, more precisely, for the algorithm in Theorem 15.

Since we are looking at a recursive algorithm, we need to run the same function until the

algorithm can no longer execute its calculations. The algorithm stops as soon as either; 1)

there is no valid way to remove αi boxes from λ(i), or 2) we are left with an empty partition

and an empty composition, λ(k) = (0) and α(k) = (0). For the first case, the associated

character value is equal to zero. While, for the second case, the associated character value

is ±1, depending on the sign.

The Murnaghan-Nakayama rule then has the following code in SageMath;

1 def MN_Rule(partition ,composition ,SUM = None):

2 # input : partition : a partition we wish to find the

3 # character value of

4 # composition: the composition we are finding the

5 # character on (i.e. it indicates how many

6 # cells we remove each step)

7 # SUM = None : the sum of all the character values;

8 # if left empty it means we start from

9 # the beginning of the algorithm

10 # output: The sum of all the character values

11 N = sum(partition)

12 M = sum(composition)

13 if M!= N:

14 raise IndexError ("The total number of boxes {} in the

composition {} does not correspond to the number of boxes {} in the

partition {}".format(M,composition ,N,partition))

15 if type(partition) == list:

16 partition = Partitions(N)(partition)

17 if SUM is None:

18 SUM = 0

19 if len(composition) >= 1:

20 if skew_connected(partition ,composition [0]) == []:

21 Character = 0

22 SUM = SUM + Character

23 else:

24 for Skew in skew_connected(partition ,composition [0]):

25 if Skew [1] == []:

26 Character = (-1)**( skew_height(Skew))

27 else:

28 Character = (-1)**( skew_height(Skew)) * MN_Rule(Skew

[1], composition [1:])

29 SUM = SUM + Character

30 return SUM

This function starts by looking at the sizes of both the partition and the composition.
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The sizes need to be the same, or else the algorithm cannot be completed. The function

will therefore print out an error code IndexError if these sizes are not the same. Now, if they

are the same, the function will continue.

Let’s look back at earlier examples and run the code over some of them, to see if the

program gives out the same result as we calculated.

▶ Example 38. Let’s look at the same example as in Example 29. Here we had

λ = (5, 4, 3, 1), and α = (4, 3, 3, 2, 1). We then have to run the following code;

1 lm = [5,4,3,1]

2 a = [4,3,3,2,1]

3

4 MN_Rule(lm,a)

By running the partition lm and composition a through MN_Rule(lm,a), the corresponding

character value is then

1 1

Going back to the result of Example 29, the character value was

χ
(5,4,3,1)
(4,3,3,2,1) = 1,

which agrees with the code MN_Rule(lm,a)

◀

Let us look at the other example in Section 4;

▶ Example 39. Going back to the same values as in Example 31, where λ = (5, 4, 2)

and α = (6, 3, 2). Here we write the code;

1 lm = [5,4,2]

2 a = [6,3,2]

3

4 MN_Rule(lm,a)

Now by running these lines of code, we get that the character value is

1 0

which again agrees with what we got as a result in the example, χ
(5,4,2)
(6,3,2) = 0.

◀
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The code, MN_rule(), can also be used to calculate the character value when looking over

the special cases.

▶ Example 40. Let’s look at the special cases on the partition λ = (5, 4, 3, 1).

Starting by looking at the case when we are looking at the trivial representation, α = (n).

Define a to be [sum(lm)], i.e. equal to the list with one entry equal to the integer that the

partition lm is associated to.

1 lm = [5,4,3,1]

2 a = [sum(lm)]

3

4 MN_Rule(lm,a)

By running this code, the associated character value is then;

5 0

Recall from Lemma 1, the character value of χλ
(n) is (−1)n−λ1 if λ is a hook, and 0

otherwise. Since lm is not a hook, then χλ
(n) = 0.

The next case is when we are looking at the sign representation, α = (1n). Here a is

generated to be of length sum(lm), where the entries are all 1. We then have both the partition

lm and composition a ready for the algorithm of the recursive Murnaghan-Nakayama rule;

1 lm = [5,4,3,1]

2 a = []

3 # adding sum(lm) 1’s as entries for the composition a

4 while len(a) < sum(lm):

5 a.append (1)

6

7 f_lm = (factorial (13))/(8*6*6*5*4*4*3*3*2)

8 print("There are",f_lm ,"SYT of shape",lm)

9

10 MN = MN_Rule(lm,a);MN

11 f_lm == MN

From the special case in Lemma 3, the character value χλ
(1n) = fλ. We then generate f_lm,

which is the number of standard young tableaux of shape lm, i.e. fλ. We then run the

algorithm and check if the number of standard Young tableaux is equal to the character

value, f_lm == MN.

The result is the following;
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1 There are 15015 SYT of shape [5, 4, 3, 1]

2 15015

3 True

The number of standard young tableaux of shape lm, is the same as the character value

associated to lm at a.

◀
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5.3 Comparison Of Functions

Now that we have different ways to calculate the character value, we should question our-

selves on which method is the most convenient. The function should be quick to compute,

and easy to understand.

In this section we will look at the functions MN_Rule(), character_table(), and gap.Irr(),

where we compare the time it takes each function to calculate the character value. Due to

the function to_character() using a lot of the memory of SageMath when running over big

symmetry groups, we choose to not include this function in the comparison.

To figure out the time each function took to compute the results, the following code can

be used:

import time

start_time = time.time()

[...]

end_time = time.time()

elapsed_time = end_time - start_time

print("Elapsed time: ", elapsed_time)

Here, the normal calculation on the line is done in the line noted with [...]. The time

is noted before and after the function has worked through the necessary calculations. With

the function time.time(), we can figure out the exact time that the program started and

at what time it ended. From these times, the total time it took to do all the necessary

calculations for the different functions can also be found.

Before we start comparing the functions, we need to note that the two predefined func-

tions, character_table() and gap.Irr(), gives us an output with all the irreducible characters

of a given group G. To make it fairer, let us first try to find how long it takes to find just a

single value. After this, we can figure out how long it would take to find all the character

values of a representation. Lastly, we figure out how long each function takes to calculate

all of the character values for a whole group.
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5.3.1 Single Character value

To find the character value of a representation on a partition, two partitions need to be

computed. So, before any of the calculations, we run the following code.

1 import time

2 import random

3

4 n = 12

5 lm = random.choice(Partitions(n));lm

6 a = random.choice(Partitions(n));a

Here, the program chooses two random partitions of n = 12, such that the comparison is not

in favour of any particular function.

We will here look at the following partitions

[5, 3, 1, 1, 1, 1]

[7, 4, 1]

Such that the same partition lm = [5,3,1,1,1,1] and composition a = [7, 4, 1] will be

used for all the different functions. Note that we call a a composition even though we got it

from the set of partitions of n. We do this so that we can easier compare the functions, and

since the order of a composition does not matter.

Let us start by looking at the algorithm for the Murnaghan-Nakayama rule, which was

defined in Section 5.2:

9 start_time = time.time()

10

11 chi_MN = MN_Rule(lm ,a)

12

13 end_time = time.time()

14 elapsed_time_MN = end_time - start_time

15

16 print("Character from MN: ",chi_MN)

17 print("Elapsed time: ", elapsed_time_MN)

"Character from MN: " 1

"Elapsed time: " 0.004169940948486328

From this algorithm, the character value of lm = [5,3,1,1,1,1] on the composition a =

[7, 4, 1] is then

χ
(5,3,1,1,1,1)
(7,4,1) = 1
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Next, let us find the character value from the character table of the group.

9 start_time = time.time()

10

11 G = SymmetricGroup(n)

12 CT = G.character_table ()

13 S = Partitions(n)

14

15 for i in range(len(S)):

16 if S[-i] == lm:

17 Chi = CT[i-1]

18

19 for i in range(len(S)):

20 if S[-i] == a:

21 chi_CT = Chi[i-1]

22

23 end_time = time.time()

24 elapsed_time_CT = end_time - start_time

25

26 print("Character from CT: ",chi_CT)

27 print("Elapsed time: ", elapsed_time_CT)

"Character from CT: " 1

"Elapsed time: " 0.9328291416168213

Note that we here need to first find the correct row that is equal to lm in the character

table CT, and then find the correct entry in this row which is associated with a. Thus, we

have to go through more steps to find the correct value.
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Lastly, to find the character value from the function defined in GAP (2021), we use the

following code:

9 start_time = time.time()

10

11 G = SymmetricGroup(n);

12 S = Partitions(n);

13 Char = gap.Irr(G);

14

15 for i in range(len(S)):

16 if S[-i] == lm:

17 if i == 0:

18 Chi = Char[i+1]

19 else:

20 Chi = Char[i]

21

22 for i in range(len(S)):

23 if S[-i] == a:

24 if i == 0:

25 chi_gap = Chi[i+1]

26 else:

27 chi_gap = Chi[i]

28

29 end_time = time.time()

30 elapsed_time_gap = end_time - start_time

31

32 print("Character from GAP: ",chi_gap)

33 print("Elapsed time: ", elapsed_time_gap)

"Character from GAP: " 1

"Elapsed time: " 1.7654774188995361

Note again that we need to find the correct row and entry that are associated with lm

and a, respectively. Which again results in a longer process of finding the correct character

value.

From these results, we can see that the Murnaghan-Nakayama algorithm MN_Rule() is

faster than the two other functions when it comes to finding the character value of a partition

on a specific composition. Though, the other functions are not taking too much time to

compute the character values themselves.
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5.3.2 List of Character Values

Now let us instead try to find all the character values of a partition of a specific number n.

We start by running the following code as before, but here we only need one partition.

1 import time

2 import random

3

4 n = 12

5 lm = random.choice(Partitions(n)); lm

[5, 4, 3, 1]

We have quite a lot of conjugacy classes for the symmetric group of n = 12 elements,

such that the list of character values is quite long. We will therefore shorten the outputs

that we get, for convenience’s sake.

For the algorithm of the Murnaghan-Nakayama rule, we need to make a list of all the

results where we run over all the possible partitions of n:

7 start_time = time.time()

8

9 Chi_MN = []

10 for a in Partitions(n):

11 Chi_MN.append(MN_Rule(lm,a))

12 Chi_MN.reverse ()

13

14 end_time = time.time()

15 elapsed_time_MN = end_time - start_time

16

17 print("Character from MN: ",Chi_MN)

18 print("Elapsed time: ", elapsed_time_MN)

We then get the following output;

"Character from MN: " [15015 , 1155, 147, 7, -17, -5, -5, -735, ... , 0,

0, 0, 0, 0]

"Elapsed time: " 17.21722388267517

Note that this algorithm takes quite a long time to find all the character values since

it has to run through n! = 12! elements to find all the characters. We can already here

hypothesise that this algorithm is not going to be the best function for finding the list of

character values.

To confirm this we need to check how much time the other two function takes.
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The function character_table() with the following syntax

7 start_time = time.time()

8

9 G = SymmetricGroup(n)

10 CT = G.character_table ()

11

12 G = SymmetricGroup(n)

13 S = Partitions(n)

14 for i in range(len(S)):

15 if S[-i] == lm:

16 Chi_CT = CT[i-1]

17

18 end_time = time.time()

19 elapsed_time_CT = end_time - start_time

20

21 print("Character from CT: ",Chi_CT)

22 print("Elapsed time: ", elapsed_time_CT)

This gives the output

"Character from CT: " (15015 , 1155, 147, 7, -17, -5, -5, -735, ... , 0,

0, 0, 0, 0)

"Elapsed time: " 1.9321322441101074

Lastly, the function gap.Irr()

7 start_time = time.time()

8

9 G = SymmetricGroup(n);

10 S = Partitions(n);

11 Char = gap.Irr(G);

12

13 for i in range(len(S)):

14 if S[-i] == lm:

15 Chi_gap = Char[i+1]

16

17 end_time = time.time()

18 elapsed_time_gap = end_time - start_time

19

20 print("Character from GAP: ",Chi_gap)

21 print("Elapsed time: ", elapsed_time_gap)

"Character from GAP: " Character( CharacterTable( SymmetricGroup( [ 1 ..

13 ] ) ),

[15015 , 1155, 147, 7, -17, -5, -5, -735, ... , 0, 0, 0, 0, 0] )

"Elapsed time: " 1.9053983688354492
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The preferred function to use in this certain problem would be the function on GAP

(2021), gap.Irr(), with the character table close after. While the function MN_Rule(), which

took 17 seconds to compute the list of character values, is not very efficient in this case.

5.3.3 Character table

The last thing to consider is the computation of character tables. Since the function

character_table() is specifically made to compute this, we need to consider also this sce-

nario.

When we look at the character tables, let us consider a smaller number of elements. We

do this so that we don’t use up all the memory in the online software of SageMath.

The code is then

1 import time

2 import random

3

4 n = 8

The function MN_Rule(), needs to run over all the partitions of n = 8, two times. Both to

find the partition that we want to find the character value of and to find the composition

that we want to look over. The code is therefore:

5 start_time = time.time()

6

7 CT_MN = []

8 for a in Partitions(n):

9 Chi_MN = []

10 for b in Partitions(n):

11 Chi_MN.append(MN_Rule(a,b))

12 CT_MN.append(Chi_MN)

13

14 end_time = time.time()

15 elapsed_time_MN = end_time - start_time

16

17 #print(" character from MN: ",CT_MN)

18 print("Elapsed time: ", elapsed_time_MN)

Note that we will not print out the character table, and instead only ask for the time it

takes to compute the function. The possibility of printing out the character table is in the

code but is commented out, for the sake of saving space in the Master’s thesis.

We get the following output
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"Elapsed time: " 2.0910394191741943

The time it takes to generate the character table when using the function character_table

(), is the following:

5 start_time = time.time()

6

7 G = SymmetricGroup(n)

8 CT = G.character_table ()

9

10 end_time = time.time()

11 elapsed_time_CT = end_time - start_time

12

13 #print(" character from CT: ",CT)

14 print("Elapsed time: ", elapsed_time_CT)

"Elapsed time: " 0.021608829498291016

This function is fast in finding the character table.

Finally, let’s look at the time it takes for the function gap.Irr() to generate the character

table:

5 start_time = time.time()

6

7 G = SymmetricGroup(n);

8 Char = gap.Irr(G);

9

10 CT_gap = []

11 for c in Char:

12 Chi_gap = []

13 for a in c:

14 Chi_gap.append(a)

15 CT_gap.append(Chi_gap)

16

17 end_time = time.time()

18 elapsed_time_gap = end_time - start_time

"Elapsed time: " 0.8707418441772461

From these results, we see that character_table() is the quickest, followed by gap.Irr().
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5.3.4 Result

To easier see which function is the fastest, let us run the above comparisons for different

numbers of elements in the symmetric group. We can then insert the time it took for each

function to compute the character values in a table, and highlight which function worked

the best.

We then get the following table, where the last row states which function was the fastest

overall. The columns are different ways we compared functions; finding the character value

of a partition associated with another partition, finding the list of characters of a specific
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partition, and finding the character table.

Character Value List of Characters Character Table

n=1

MN 0.0019 MN 0.0007 MN 0.0009

CT 0.6152 CT 0.0067 CT 0.0052

GAP 2.1340 GAP 0.0039 GAP 0.0068

n=2

MN 0.0014 MN 0.0011 MN 0.0018

CT 0.0094 CT 0.0062 CT 0.0041

GAP 0.0049 GAP 0.0037 GAP 0.0102

n=3

MN 0.0011 MN 0.0014 MN 0.0038

CT 0.0080 CT 0.0059 CT 0.0073

GAP 0.0071 GAP 0.0041 GAP 0.0199

n=4

MN 0.0009 MN 0.0058 MN 0.0091

CT 0.0068 CT 0.8716 CT 0.0057

GAP 0.0049 GAP 0.0040 GAP 0.0202

n=5

MN 0.0013 MN 0.0058 MN 0.0248

CT 0.0458 CT 0.8716 CT 0.0051

GAP 0.0049 GAP 2.6637 GAP 0.0672

n=6

MN 0.0011 MN 0.0083 MN 0.1199

CT 0.0107 CT 0.0180 CT 0.0073

GAP 0.0045 GAP 0.0079 GAP 0.2561

n=7

MN 0.0163 MN 0.0416 MN 0.4472

CT 0.0153 CT 0.0295 CT 0.0142

GAP 0.0198 GAP 0.0106 GAP 0.3694

n=8

MN 0.0008 MN 0.0580 MN 1.6456

CT 0.0292 CT 0.0747 CT 0.0829

GAP 0.0059 GAP 0.0061 GAP 0.6801

n=9

MN 0.0009 MN 0.1276 MN 5.3617

CT 0.0761 CT 0.2784 CT 0.0865

GAP 0.0064 GAP 0.8568 GAP 1.0204

n=10

MN 0.0023 MN 0.3902 MN 19.3558

CT 0.1310 CT 0.1884 CT 0.1175

GAP 0.0079 GAP 0.0077 GAP 2.3749

Oft quick MN GAP and MN CT

Least average MN MN CT

(43)

The last two rows give a summary of which function was the quickest, most often and on

average.

Each of the functions seems to work in its own defined areas, with some variability. The
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algorithm for the Murnaghan-Nakayama rule, MN_Rule(), is often the fastest when it comes to

finding character values of a partition associated with another partition. The function from

the system GAP (2021), gap.Irr(), is fast to find the list of character values of a partition

as often as MN_Rule(). While the function character_table() is the most often fastest to find

the character table of a group.

On average, the MN_Rule() seems to be the fastest in finding single character values and a

list of character values. While CT is the favourite when it comes to finding character tables.

One of the reasons for this might be that we calculated MN_Rule() first every time, meaning

that we had less memory available when calculating the other functions.

By looking at the array in Equation (43), we can observe that the time in which MN_Rule()

needs to calculate the character value increases drastically when the value of n grows. We

can therefore hypothesise that MN_Rule() will aggravate with big n.
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6 Conclusion

The Murnaghan-Nakayama rule is a combinatorial algorithm to calculate the character value

of a partition of a specific composition. The recursive version of the Murnaghan-Nakayama

rule is;

Theorem 15. Let λ ⊢ n, and suppose that α = (α1, . . . , αm) is a composition of n. Then

χλ
α = χλ(α) =

∑
ν

(−1)ht(ν)χλ\ν(α\α) (33)

where the sum goes over all border strips ν of size α1.

With this algorithm, the character values of the partition can be found by reducing

the diagrams associated with the partition. This is done by looking at each part of the

composition and removing this amount from the original partition. See Example 29 for a

more detailed explanation.

This algorithmic rule has been further processed for different function families and sce-

narios. The Murnaghan-Nakayama rule is therefore an adaptable rule, which further ampli-

fies the importance of the rule.

The code for the algorithm of the Murnaghan-Nakayama rule runs its calculations quickly

when comes to finding character values of partitions associated with a composition. When

n ≤ 5, it can also find the list of character values of a partition, and character table of Sn

quickly. When n is greater in size, the time it takes to find all the character values of the

character table increases, and the algorithm is no longer very efficient.
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