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1 Introduction

The theory of error-correcting codes over finite fields Fq has been developed grad-
ually over the last 7-8 decades. The idea is to represent information in such a
way that if it is sent over a noisy channel and only slightly corrupted, it shall
nevertheless be possible to retrieve the correct information (with high probabil-
ity). An important subclass of codes is linear codes; concretely one represents the
information in question as a Fq-linear subspace C of a large ambient space Fnq . It
turns out that many of the most important properties of linear codes, like their
tolerance for errors under transmission, are only dependent on a certain underlying
combinatorial structure. This structure is the matroid, MC .

The theory of matroids has been developed in parallel, introduced in the 1930’s
by H. Whitney, and has been applied in many areas outside coding theory, includ-
ing topics as different as greedy algorithms and tropical geometry. There are also
many matroids which do not come from codes. The connection between linear
codes and matroids has been investigated more recently, and in particular dur-
ing the two most recent decades. The dominant part of this activity has been
to use matroid invariants to describe and analyze error-correcting codes, but to
some extent one has also used concepts from coding (and graph) theory to describe
properties of matroids.

In Sections 2 and 3 of this thesis we describe basic theory and important prop-
erties of error-correcting codes and matroids, and the most important elements in
the connection between them. Some of the definitions are included because of their
usefulness in later sections. A partial goal is to demonstrate how some invariants
originally defined for linear codes, can also be defined for matroids associated to
these codes, and in addition to matroids in general (including those which are
represented by no linear codes at all). This sets the stage for the remaining part
of the thesis, where a main point is to define derived matroids of given matroids,
regardless of which codes they represent, or if they represent any code at all.

Section 4 is the heart of this thesis. There we treat the issue of derived ma-
troids. In a (usual) matroid the study of dependent sets, or dependencies, is a
central question. With derived matroids one studies “dependencies of dependen-
cies.” Derived matroids have quite recently turned out to be a useful tool within
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computer science, in particular within private information retrieval [FK21]. We
have therefore chosen to study this topic more closely.

Derived matroids were first defined by Longyear [Lon80] in 1979, but only for
binary matroids M , that is matroids associated to binary codes/matrices. The def-
inition of the matroid derived from M was such that the derived matroid δM was
independent of the associated codes in case there were many such codes associated
to M .

In 2019 Oxley and Wang [OW19] defined derived matroids δM [A] derived from
the pair (M,A), where M is a matroid associated to a matrix A, that defines a
linear code CA over any given finite field Fq. The difference from Longyear is that
the matroid M does not have to be binary, and that the result depends not only on
the matroid, but also on the representation. Independently of this work, Jurrius
and Pellikaan [JP15] defined a derived code, which is dual to the construction by
Oxley and Wang.

In 2022, however, Freij-Hollanti, Jurrius, and Kuznetsova [FJK23] were able
to define a derived matroid δM for any matroid, regardless of whether it comes
from a code/matrix or not, and independent of what code it may come from if it
comes from several ones. Their definition, although quite different from Oxley and
Wang’s definition, quite often, but far from always, gives the same result δM . One
of the current issues of derived matroids ala FJK has been to determine the ranks
of the derived matroid. In Subsections 4.3-4.6 we first present the construction
and results by FJK, and then, as a piece of independent research, we prove general
properties of δM , and in addition we define a large class of matroids M , which
we denote by fast matroids. For these fast matroids we find that the rank of δM
is the corank of M . In Example 4.11 we give an example of a non-fast matroid,
where r(δM) is different from the corank of M . This settles a difficult problem of
whether the rank of δM always is equal to the corank of M . Also the rest of the
thesis (Sections 4.7-5) is new and original research.

In Section 4, we also define derived matroids of finite graded lattices and of
q-matroids. In addition we extend Longyear’s definition of derived matroids of
binary matroids, to a definition valid for all matroids. We show that the outcome
of this is not always equal to the δM obtained from FJK.

In Appendix B we list free resolutions of Stanley-Reisner rings of derived ma-
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troids δM for M various uniform matroids. These resolutions determine properties
of these derived matroids, inspired by properties of linear codes, that is: their gen-
eralized weights.

In Section 5 we explain how we were able to perform these and other cal-
culations for determining (properties of) derived matroids. This was done using
a software library that was developed alongside this thesis, and is available at
https://github.com/teo8192/matroid-rs. The fast matroids defined in Sec-
tion 4 have been given their name because there are particularly fast algorithms to
determine their properties. The main result that illustrates this, is Theorem 4.47,
which shows that dependent sets for a derived matroid of a fast matroid, has a
particularly simple form.

The initial interest for the main contributions of this thesis was sparked by the
question of whether it was possible to simplify the construction of the combinatorial
derived matroid, and the computation of them.
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2 Codes

Information needs to be transmitted through both space and time; both noisy
mediums. Deep space transmissions may be corrupted by radiation, electric signals
may be disturbed by noise and a movie on a disc may suffer scratches. We still
want to be able to get the information that is transmitted, even if it is corrupted.
The goal of coding theory is precisely this. Information is encoded in such a way
that even if parts of the encoded message are corrupted, it is still possible with
a high probability to decode it back to the original information. But what is
information?

We then need to start with the small building blocks of information, the sym-
bols it consists of.

Definition 2.1. An alphabet A of cardinality q is a finite set of symbols.

Every message in our code will be sequences of symbols from the alphabet A,
and the code is called a q-ary code. One type of codes are block codes, where all
sequences of symbols in the code have the same length n. More formally, a block
code C is a subset of An. For notation, for a sequence of symbols x ∈ An, let xi
denote the i-th symbol in the sequence.

Some specific alphabets are more interesting than others, and we will focus on
codes that use a finite field Fq as the alphabet. In this case Fnq is a vector space,
and we may have the code as a subspace of Fnq . Such codes are called linear codes.

Definition 2.2. Let C ≤ Fnq be a linear code.

• The word-length n of the code is the dimension of the space that the code is
embedded in.

• The dimension k of the code is k = dimFq(C).

• The cardinality m of the code is m = qk.

Example 2.3. Consider the subspace C = ⟨1110000, 0011001, 10000011, 0100101⟩ ⊆
F7
2 (let the bitstrings be vectors in F7

2, and not two-bit numbers). These four vectors
are linearly independent, and we get that the dimension of C is k = 4. From this,
we can calculate that the cardinality of C is m = 24 = 16.
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2.1 Generator matrices and parity-check matrices

For any vector space, there is a basis for this vector space. If we let this basis be
the rows of a matrix G, then the row-space of this matrix is the vector space itself.
A matrix G such that its row-space is a linear code C is called a generator matrix
of C. This generator matrix is not unique, since we may choose any matrix such
that its row-space is C.

Associated to every linear code there is also a parity check matrix H. The
row-space of the parity check matrix is the orthogonal space of the code, so in the
same way that the generator matrix is not unique, the parity check matrix is not
unique. We can use this parity check matrix to define the code,

C = {x|x ∈ Fnq , Hx = 0}.

If the generator matrix is of the form G = [I|A], then a parity check matrix
can be found as H = [−A⊤|I], see [Hil86, Theorem 7.6].

2.2 Hamming codes

Hamming codes are a family of linear codes, originally invented to correct errors
caused by punch card readers. One example where a hamming code is traditionally
used today is in ECC memory, where a binary Ham(7, 4) is commonly used. There
are q-ary hamming codes, but throughout this thesis binary Hamming codes will
be used in examples, so these are the ones that will be defined.

To construct a binary Hamming code, choose a positive integer r ≥ 2. Now
construct a parity-check matrix by letting the columns be all non-zero elements of
Fr2. This is the parity check matrix for a code with n = 2r − 1 and k = 2r − r− 1,
and denote this code as Ham(n, k).

2.3 Distances and weights

When a code-word is corrupted, some symbols are changed. We then want a way
to measure how different two sequences of symbols are. For this we may use the
Hamming distance.
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Definition 2.4. The Hamming distance between two sequences of symbols x and
y is

dH(x,y) = |{i|xi ̸= yi}|.

This distance has some immediate properties:

d(x,y) = 0⇔ x = y

d(x,y) = d(y,x)

d(x, z) ≤ d(x,y) + d(y, z)

This makes this a metric, and with this we have a metric space.

Example 2.5. Let x = e2czRzQzZw and y = F2cZRqQOZw. Their Hamming
distance is dH(x,y) = |{1, 4, 6, 8}| = 4.

Now consider the code C from Example 2.3. Let a = 1101001, b = 0110011 and
c = 0010110. Observe that a,b, c ∈ C. The distances between these vectors are:
d(a,b) = 4, d(a, c) = 7, d(b, c) = 4. This also illustrates the triangle inequality,
since d(a, c) = 7 ≤ d(a,b) + d(b, c) = 8.

Equipped with the Hamming distance, we may define the minimum distance of
a code. The minimum distance of a code is the smallest number of symbols that
can be changed in some code-word to get another code-word.

Definition 2.6. The minimum distance of a code C is

d(C) = min
x,y∈C

dH(x,y).

For any element in Fnq , it is interesting to look at the symbols that are non-zero.
This is called the support of the element.

Definition 2.7. The support of an element w ∈ Fnq is

supp(w) = {i|wi ̸= 0}.
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Example 2.8. Let a,b, c be as in example Example 2.5. The supports for these
are:

supp(a) = {1, 2, 4, 7}

supp(b) = {2, 3, 6, 7}

supp(c) = {3, 5, 6}

Using the support of an element, we may then define the weight of an element,
which is the number of non-zero symbols in the element.

Definition 2.9. The weight of an element w ∈ Fnq is

w(w) = |supp(w)|.

Example 2.10 (Continuation of Example 2.8). To illustrate this, consider the
vectors a,b, c. We get that w(a) = 4, w(b) = 4 and w(c) = 3.

The support function can be extended to be a function on subsets of Fnq .

Definition 2.11. Let L ⊆ Fnq be a subset. Then the support of L is

supp(L) =
⋃
w∈L

supp(w),

and the weight of L is
w(L) = |supp(L)|.

The weight function and the minimum distance of a code are closely related.
In fact, the former may be used to calculate the latter.

Proposition 2.12. Let C ≤ Fnq be a linear code. Then

d(C) = min
w∈C,w ̸=0

w(w).

Proof. We have that
d(C) = min

x,y∈C,x ̸=y
d(x,y).
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By the properties of the distance metric, we have that d(x,y) = d(0,x− y). But
the distance of a code-word to zero is the number of symbols in the code-word
that is different from zero, which is the weight of the code-word. Since any code-
word may be written as the difference of two code-words, and that the difference
of two unique code-words are always a non-zero code-word, we have that the sets
{x− y|x,y ∈ C,x ̸= y} and {w|w ∈ C,w ̸= 0} are equal. We thus get that

d(C) = min
w∈C,w ̸=0

w(w).

Example 2.13. Let us calculate the minimum distance of the Hamming code C =

Ham(7, 4) over F2 with the generator matrix

G =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

 .

The elements of this code are all linear combinations of the rows, and the code-
words and their weights are:

w w(w)

(0, 0, 0, 0, 0, 0, 0) 0

(1, 0, 0, 0, 0, 1, 1) 3

(0, 1, 0, 0, 1, 0, 1) 3

(1, 1, 0, 0, 1, 1, 0) 4

(0, 0, 1, 0, 1, 1, 0) 3

(1, 0, 1, 0, 1, 0, 1) 4

(0, 1, 1, 0, 0, 1, 1) 4

(1, 1, 1, 0, 0, 0, 0) 3

(0, 0, 0, 1, 1, 1, 1) 4

(1, 0, 0, 1, 1, 0, 0) 3

(0, 1, 0, 1, 0, 1, 0) 3
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(1, 1, 0, 1, 0, 0, 1) 4

(0, 0, 1, 1, 0, 0, 1) 3

(1, 0, 1, 1, 0, 1, 0) 4

(0, 1, 1, 1, 1, 0, 0) 4

(1, 1, 1, 1, 1, 1, 1) 7

We can see that the smallest weight a non-zero codeword can have is 3, and thus
we have the minimum distance d(C) = 3. In fact, the minimum distance for all
Hamming codes are 3.

Observe that for any x ∈ C, we have that supp(x) = supp(⟨x⟩). This means
that the weight of any code-word is the same as the weight of the span of this
code-word. We can also, for any one-dimensional subspace of C, find a codeword
such that its span is this subspace. From this we may generalize the minimum
distance of a code, by saying that it is the minimum weight of any one-dimensional
subspace of the code. But then we can generalize this even further.

Definition 2.14. Let C be a k-dimensional linear code. Then the i-th generalized
hamming weight di is

di = min
L⊆C,dimL=i

w(L).

As we see, d1 is the minimum weight of a one-dimensional subspace of the code,
so this is the same as the minimum distance of the code.

Example 2.15 (Continuation of Example 2.13). As mentioned, d(C) = d1 is the
minimum distance of the code, and this is 3. Of the 35 two-dimensional subspaces
of the code, the smallest weight of any of them is 5, so d2 = 5. To find d3, we
need to look at the 15 subspaces of dimension 3, and there the smallest weight is
6. Finally, the entire code is a subspace of dimension 4, and its weight is 7, and
we get that d4 = 7.

If we look at this example, we can see that these generalized hamming distances
are strictly increasing;

1 ≤ 3 < 5 < 6 < 7 ≤ 7.

It turns out that this is true in general.
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Theorem 2.16. Let C be a k-dimensional linear code, and d1, . . . , dk be its gen-
eralized hamming weights. Then

1 ≤ d1 < d2 < . . . < dk ≤ n.

Proof. See [Wei91, p. 1412].

2.4 Dual codes

We now want to look at the dual code, but to do this we first need an inner
product. So let ⟨·, ·⟩ be the standard dot product on Fnq . We can the define the
orthogonal space of a subspace in this vector space.

Definition 2.17. Let L ⊆ Fnq be a subspace. Then the orthogonal space of L is

L⊥ = {w ∈ Fnq |⟨w,v⟩ = 0 for all v ∈ L}.

The dual code C∗ of a linear code C is defined as the orthogonal complement
of the code, C∗ = C⊥. Since C∗ is still a subspace of Fnq , it is a linear code
with word-length n, and since it is the orthogonal complement of C, we have that
dimC∗ = n − k. The parity-check matrix of C is a generator matrix of C∗, and
for the dual code the generator matrix of C acts as a parity check matrix, so their
roles reverse.

But the minimum distance d∗ of the dual code is not trivially found from
n, k, d nor q for C. The dual code still has hamming weights, and also generalized
hamming weights d∗i since it is a linear code. With this we can formulate the
Wei-duality theorem.

Theorem 2.18 (Wei-duality theorem). Let C be a k-dimensional linear code in
Fnq , and C∗ its dual code. Then

{di|1 ≤ i ≤ k} = {1, 2, . . . , n}\{n+ 1− d∗i |1 ≤ i ≤ n− k}

Proof. See [Wei91, p. 1413].
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One consequence of this theorem is that if we know all the generalized hamming
weights of a code, we easily find the generalized hamming weights of its dual code.

Example 2.19 (Continuation of Example 2.15). We want to calculate the gener-
alized hamming weights of a Ham(7, 4)∗ code. We already have the weights of a
Ham(7, 4) code, the set {3, 5, 6, 7}. Using the Wei-duality theorem, we get that

{1, 2, 3, 4, 5, 6, 7}\{n+ 1− d∗i |1 ≤ i ≤ 3} = {3, 5, 6, 7}

⇓

{n+ 1− d∗i |1 ≤ i ≤ 3} = {1, 2, 4}

⇓

{d∗i |1 ≤ i ≤ 3} = {4, 6, 7},

so the generalized hamming weights are d∗1 = 4, d∗2 = 6 and d∗3 = 7.

2.5 Shortening and puncturing

Another construction to get codes from other codes is shortening and puncturing.
Shortening a code can be useful if we want a code with a specific length and mini-
mum distance, and already know a code of greater length and the same minimum
distance.

Let C be a linear code of dimension k in Fnq , and fix a coordinate position
1 ≤ j ≤ n. We now select all codewords in C where the j-th coordinate is 0, and
remove the j-th coordinate from all codewords. Let this new code be C ′, called a
shortened code of C. We see that C ′ has a shorter length, namely n − 1, and at
most as many codewords as C, but the minimum distance is greater than or equal
to the minimum distance of C. If C has a parity-check matrix H, then we see
that we get a parity-check matrix for C ′ by deleting the j’th column of H. More
generally, we can shorten to a subset X (where X is a subset of the column-labels
of the generator matrix for the code),

C(X) = {x ∈ C| supp(x) ⊆ X}.

If we remove one column of the generator matrix for a linear code C, we
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are puncturing the code. The code that is generated by this matrix is called a
punctured code of C. This punctured code has length n − 1, dimension either k
or k − 1, and minimum distance at most the minimum distance of C. If E is the
set of column labels of G, and X ⊆ E, let C|E\X be a punctured code of C that is
generated by G′, where G′ is obtained from G by removing the columns that are
labeled by X.

By the construction, we can see that C(X) = ((C∗)|E\X)
∗. Note that we have

the exact sequence
0→ C(X)→ C → C|E\X → 0. (2.20)
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3 Matroids

Matroids are an abstraction of the concept of independence in finite sets. One
concrete example of where they show up is with finite sets of vectors. If the
dimension of the span of these vectors is equal to the number of vectors, then the
vectors are independent, and otherwise they are dependent. We may thus think of
an independent set as a set of vectors where they all “point in different directions”.

Another place where they show up is in graph theory. We may look at a set of
edges in a graph, and ask if they form a spanning tree/forest. If they do, then the
edges are independent, and otherwise they are dependent. So dependence in this
sense means that the edges contains a cycle in the graph.

For notation, a subset A = 1234 ⊆ {1, . . . , n} will be an abbreviation for
A = {1, 2, 3, 4} when n ≤ 9.

3.1 Axioms of matroids

There are several cryptomorphic sets of axioms that are used to define matroids.
By being cryptomorphic, we mean that each set of axioms implies the other sets
of axioms.

One set of axioms are based on the independent sets of a matroid.

Definition 3.1. A matroid M = (E, I) is a pair of a set E and a family I of
subsets of E where I is the independent sets and satisfies the following axioms;

(I1) ∅ ∈ I.

(I2) If I ′ ⊆ I and I ∈ I, then I ′ ∈ I.

(I3) If I, I ′ ∈ I and |I ′| < |I|, then there exists an x ∈ I\I ′ such that I ′∪{x} ∈ I.

Another way of defining matroids is based on the rank function of the matroid.

Definition 3.2. A set E with a rank function r : E → N satisfying the following
axioms is a matroid.

(R1) If X ⊆ E, then 0 ≤ r(X) ≤ |X|.

(R2) If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ).
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(R3) If X and Y are subsets of E, then

r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

One way to recover the rank function from the independent sets is to define
the rank function as

r(X) = max{|I| : I ⊆ X, I ∈ I}

A third way of defining matroids is based on the circuits of the matroid.

Definition 3.3. A set E with a family C of subsets of E satisfying the following
axioms is the circuits of a matroid.

(C1) ∅ ̸∈ C.

(C2) If C,C ′ ∈ C and C ′ ⊆ C, then C ′ = C.

(C3) If C1, C2 ∈ C and C1 ∩ C2 ̸= ∅, then for x ∈ C1 ∩ C2, there exists an
C3 ⊆ C1 ∪ C2\{x} such that C3 ∈ C

One way to get the circuits of a matroid from the rank function is to define the
circuits as

C = min{C ⊆ E : r(C) = r(C\{x}),∀x ∈ C}

We may also define a matroid by looking at its bases.

Definition 3.4. A set E with a family B of subsets of E satisfying the following
axioms is the bases of a matroid.

(B1) B ̸= ∅.

(B2) If B1, B2 ∈ B and x ∈ B1\B2, there exists an element y ∈ B2\B1 such that
(B1\{x}) ∪ {y} ∈ B.

We may recover the bases from the circuits by defining the bases as

B = max{X ⊆ E|C ̸⊆ X, ∀C ∈ C}.
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We may also get the independent sets from the bases by defining the indepen-
dent sets as

I = {I ⊆ B : B ∈ B}.

From how the rank function is derived from the independent sets, and how the
independent sets are derived from the bases, we can see that

r(X) = max{|X ∩B||B ∈ B}.

For more details on the proofs of the cryptomorphism of these axioms, see
[Oxl92].

Related to the rank function is the nullity function, defined on a subset X ⊆ E

as
n(X) = |X| − r(X).

3.2 Vector matroids

Given any matrix A, there is a matroid that is associated to this matrix.

Proposition 3.5. Let E be a set of column labels of an n ×m matrix A over a
field F. Let I be the set of subsets X of E such that the multiset of columns labeled
by X is linearly independent in the vector space Fm. Then (E, I) is a matroid.

Proof. See [Oxl92, Prop 1.1.1].

Definition 3.6. Given a matrix A, the vector matroid M [A] is the matroid (E, I)
from the previous proposition.

Example 3.7. Let us calculate the bases of the vector matroid M [A] given the
matrix

A =

(
1 1 0 0 1 1

0 0 1 1 1 1

)
over F2. Let the label i refer to the i’th column of A, so we get the ground set
E = {1, 2, 3, 4, 5, 6}. Observe that this matrix has rank 2, so the bases are subsets
of E of cardinality 2. There are 15 such subsets, but some of them are linearly
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1 2 3 4 5 6

a 1 0 −1 0 0 0
b −1 1 0 0 0 0
c 0 −1 1 1 0 0
d 0 0 0 −1 1 0
e 0 0 0 0 −1 0
f 0 0 0 0 0 0


(a)

a

b c

1 3
5

2 4

6


1 2 3 4 5 6

a 1 1 1 −1 0 0
b −1 −1 0 0 −1 1
c 0 0 −1 1 1 −1



(b)

Figure 1: Two graphs and their incidence matrices. The directions of their edges
have been chosen arbitrarily.

dependent. We can see that the three sets {1, 2}, {3, 4} and {5, 6} are dependent,
but the rest are independent. We therefore get the bases

B = {{1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4},

{2, 5}, {2, 6}, {3, 5}, {3, 6}, {4, 5}, {4, 6}}.

3.3 Graphical matroids

If we have a multigraph G = (V,E), this induces a matroid. This matroid is on the
set of edges of G, and a subset of edges is dependent if they contain a cycle. If we
choose some arbitrary direction to the edges, we can create a vector matroid from
this graph. In fact, every graphic matroid is representable over every field, see
[Oxl92, Proposition 5.1.2]. If D(G) is our directed graph, then let AD(G) = [ai,j]

be the incidence matrix of D(G). This is the matrix whose rows are indexed by
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(a) The two circuits 134 and 245 in U2,5. (b) The circuits 1234, 5678 and 1256 in U3,8.

Figure 2: Illustration of two uniform matroids. The elements will generally be
labelled starting with 1 in the top left and increasing along the row, until the last
element in the bottom right is labelled n.

vertices and columns are indexed by edges,

ai,j =


1, if vertex i is the tail of a non-loop edge j,

−1, if vertex i is the head of a non-loop edge j,

0, otherwise.

Some graphs an their incidence matrices are shown in Figure 1.

3.4 Uniform matroids

Uniform matroids are particularly simple in their construction1. The uniform
matroid Uk,n is a matroid of rank k on a ground set of n elements. The bases of
this matroid are all subsets of the ground set of size k. This immediately gives an
explicit rank function for this matroid:

r(X) = min{|X|, k}.

Figure 2 shows two uniform matroids.

3.5 Dual matroids

One interesting thing about matroids is that they have duals. These duals are an
abstraction of both the orthogonality of vector spaces and planar duals of plane
graphs. The following theorem is useful for the definition of the dual of a matroid.

1But this does not mean that they necessarily are simple!
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Theorem 3.8. Let M be a matroid and B∗(M) be {E(M)\B|B ∈ B(M)}. Then
B∗(M) is the set of bases of a matroid on E(M).

Proof. See [Oxl92, Theorem 2.1.1].

This matroid with bases B∗(M) on the ground set E(M) is called the dual
of the matroid M and is denoted by M∗. In general, the asterisk ∗ is used for
denoting association to the dual. Thus r∗ would be the rank function of the dual
matroid, also called the corank of the matroid. From how the dual matroid is
defined, it is clear that

r(M) + r∗(M) = |E(M)|.

Example 3.9 (Continuation of Example 3.7). We want to calculate the bases
of the dual matroid M [A]∗. Immediately we can see that this dual matroid is a
matroid of rank 4. Since we already have the set of bases for M [A], it is quite easy
to calculate B∗.

B∗ = {{2, 4, 5, 6}, {2, 3, 5, 6}, {2, 3, 4, 6}, {2, 3, 4, 5}, {1, 4, 5, 6}, {1, 3, 5, 6},

{1, 3, 4, 6}, {1, 3, 4, 5}, {1, 2, 4, 6}, {1, 2, 4, 5}, {1, 2, 3, 6}{1, 2, 3, 5}}.

We can have an even more explicit formulation of the corank function.

Proposition 3.10. For all subsets X ⊆ E(M),

r∗(X) = |X| − r(E(M)) + r(E(M)\X).

Proof. See [Oxl92, Proposition 2.1.9].

3.6 Connectedness and sums of matroids

Definition 3.11. A matroid M is connected if and only if for all distinct pairs
e, f ∈ E(M), there is at least one circuit C ∈ C(M) such that e, f ∈ C.

If we have a graphical matroid, the notion of connectedness in a graph and in
the matroid is not the same. This is illustrated in Figure 3.
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(a) Here we have the matroid M =
U3,3 = U1,1 ⊕ U1,1 ⊕ U1,1.

(b) Here we have the matroid M =
U2,3 ⊕ U2,3.

Figure 3: Two connected graphs where the associated matroid is not connected.

Definition 3.12. The sum of two matroids M = M1 ⊕M2 has the ground set as
the disjoint union of the ground sets of the two matroids, E = E(M1) ⊔ E(M2),
and independent sets I = {I1 ⊔ I2|I1 ∈ I(M1), I2 ∈ I(M2)}.

Proposition 3.13. Let M = M1 ⊕M2 be the sum of two matroids. Then (E, I)
from the previous definition is a matroid.

Proof. See [Oxl92, Proposition 4.2.12].

3.7 Minors

Definition 3.14. The deletion M\X of a matroid M by a set X ⊆ E(M) is the
matroid on the ground set E(M)\X having independent sets I(M\X) = {I ⊆
E(M)\X : I ∈ I(M)}.

The deletion of a set X is also called the restriction to the set E(M)\X. It is
easy to see that M\X = (E(M)\X, I(M\X)) is a matroid, and that the circuits
of this matroid are

C(M\X) = {C ⊆ E(M)\X : C ∈ C(M)}.

Definition 3.15. The contraction of X from M is the matroid

M/X = (M∗\X)∗

We can immediately see that M/X is a matroid, since both deletion and taking
the dual yields matroids. Now we can find the circuits of a contracted matroid.
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Proposition 3.16. The circuits of M/X are

C(M/X) = min{C\X : C ∈ C(M), C\X ̸= ∅}.

Proof. See [Oxl92, Proposition 3.1.11].

Proposition 3.17. Doing contractions and deletions commute. Therefore we may
write M\X/Y for a matroid contracted by elements of a set Y and deleted by
elements of the set X in some order, where X and Y are disjoint subsets of E(M).

Proof. See [Oxl92, Proposition 3.1.26(iii)].

Definition 3.18. A minor M ′ of a matroid M is a matroid such that there exists
X, Y ⊆ E(M) such that M ′ =M\X/Y .

3.8 Connection to codes

For any code C we naturally get a matroid associated with its generator matrix,
the vector matroid earlier mentioned. Denote by MC the matroid associated with
the generator matrix G. This matroid is independent of the choice of the generator
matrix. A result from linear algebra gives that if two matrices A and B are row
equivalent, then a set of column vectors of A is linearly independent if and only if
the set of corresponding columns of B are linearly independent. We also have that
for two matrices G and G′ that have the same row-space, they are row equivalent.
Hence we can see that the choice of a generator matrix is independent of the
matroid associated with a linear code.

There is a class of matroids called representable matroids. These are matroids
M such that there exists a matrix A where M ≃M [A]. We can see that the class
of representable matroids over Fq are the matroids that comes from linear codes
over Fq. There are also matroids that are not representable, such as the Vámos
matroid in Figure 4, and they have no natural connection to linear codes.

Another connection between codes and matroid is the notion of duality.

Proposition 3.19. Let C be a linear code over Fq, and MC the matroid associated
to this code. Then the dual of MC is the matroid associated to the dual code C∗,

MC∗ =M∗
C .
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Figure 4: The Vámos matroid is a matroid of rank 4 on 8 elements. All sets
of cardinality smaller than 4 are independent, and the only dependent sets of
cardinality 4 are the ones that share a face in this figure, where the elements are
represented as vertices.

Proof. See [Oxl92, Theorem 2.2.8].

There are also a connection between the minors of a matroid MC , and short-
ened/punctured codes of C. If X ⊆ E, we have that MC|E\X = M\X, where
deletion corresponds to puncturing. We can now also see that the shortening cor-
responds to contraction, MC(X) = M/(E\X). Observe from Equation (2.20) that
we can find the dimensions of the codes. In particular, we find that

dimC(X) = dimC − dimC|E\X = rMC
(E)− rMC

(E\X) = n∗
MC

(X). (3.20)

3.9 Hamming distance for matroids

For a linear code C we know that a vector w = (w1, . . . , wn) is a code-word if
it is in the null space of the parity-check matrix H. This is equivalent to saying
that

∑
Ciwi = 0 where Ci are the columns of H. Now assume that w is a non-

zero code-word of the smallest weight. By Proposition 2.12, this means that the
weight of this code-word is the minimum distance of the code, and we have that
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d1 columns of H are linearly dependent. If we assume that we have a set of fewer
than d(C) columns of H that are linearly dependent, then we would have another
code-word of smaller weight than w, so we get

d(C) = d1 = min{s|s columns of H are linearly dependent}.

This can immediately be formulated in terms of the dual matroid, and at the same
time generalized to higher weights

dh = min{|X||X ⊆ E, r∗(X) ≤ |X| − h}.

Here r denotes the rank function of MC and r∗ the rank function of M∗
C . Moreover

a subset L ⊆ C is supported on X if and only if there are are least h relations
between the columns of H supported on X. Now using Proposition 3.10, we get

dh = min{|X||X ⊆ E, r∗(X) ≤ |X| − h}

= min{|X||X ⊆ E, |X|+ r(E\X)− r(E) ≤ |X| − h}

= min{|X||X ⊆ E, r(E\X) ≤ r(E)− h}

= min{|E\X||X ⊆ E, r(X) ≤ r(E)− h}

= n−max{|X||X ⊆ E, r(X) ≤ r(E)− h}

The previous paragraph was relating the minimum distance of a code to the
matroid of the code. We now got a way of formulating this purely in matroid
terms, so we can define the generalized hamming weights for a matroid (both
representable and non-representable) as

Definition 3.21. Given any matroid with rank function r and ground set E, the
generalized hamming weights are

dh = n−max{|X||X ⊆ E, r(X) ≤ r(E)− h},

where h ≤ r(E).
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Note that again using Proposition 3.10 with this definition, we get that

dh = min{|X||X ⊆ E, r∗(X) ≤ |X| − h} = min{|X||X ⊆ E, n∗(X) ≥ h}

for all matroids.

Example 3.22. We can now calculate the generalized hamming weights for the
non-representable Vámos matroid, see Figure 4. The largest possible set of rank
3 in this matroid has cardinality 4, so we get that d1 = 8 − 4 = 4. Since all
sets of cardinality 3 or less are independent, every set X where |X| ≥ 3 has that
r(X) ≥ 3. Therefore, the largest sets of rank at most 2, 1 and 0 are respectively
sets of cardinality 2, 1 and 0. We therefore get that d2 = 8− 2 = 6, d3 = 8− 1 = 7

and d4 = 8− 0 = 8.

With these generalized weights for matroids, we can get results analogous to
Theorem 2.16 and Theorem 2.18 for matroids.

Theorem 3.23. Let M be a matroid. Then the generalized hamming weights are
strictly increasing,

1 ≤ d1 < d2 < · · · < dr(M) ≤ |E(M)|.

Proof. Let 1 < h ≤ r(M), and let X ∈ {X ⊆ E|n∗(X) ≥ h} such that dh = |X|.
If we remove any single element from X, then the conullity will decrease by at
most one, so therefore n∗(X) = h. This also implies that for X ′ = X\{x}, x ∈ X
we have that n∗(X ′) ≥ h − 1, and thus dh−1 ≤ |X ′| = |X| − 1 < dh, yielding the
result.

Theorem 3.24. Let M be a matroid with generalized hamming weights di and let
d∗i be the generalized hamming weights of M∗. Then

{1, · · · , |E(M)|}\{di|1 ≤ i ≤ r(M)} = {|E(M)|+ 1− d∗i |1 ≤ i ≤ r∗(M)}.

Proof. See [Lar05, Proposisjon 5.18].
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4 Derived matroids

This section will introduce several ways of creating a “derived matroid” from a
given matroid. These are used for investigating “dependencies among dependen-
cies”, but have more potential applications such as in private information retrieval
[FK21], and also checking the planarity of graphs [Lon80]. The derived matroid
generally uses the circuits of the original matroid as a ground set, so the following
terminology will be used when it might be ambiguous what matroid a circuit is a
member of. 0-circuit will refer to a circuit in the original matroid M , 1-circuit will
refer to a circuit in the derived matroid δM , and in general a k-circuit will be a
circuit in the matroid δkM = δ(δk−1M).

Fundamental circuits are also utilized. Given a basis B of a matroid M , the
fundamental circuit Ce,B for an element e ∈ E(M)\B is the unique circuit C ⊆
B ∪ {e}.

4.1 Binary matroids

The first to introduce the concept of derived matroids was Longyear [Lon80] for
binary matroids. These were created to begin answering questions posed by Gian-
Carlo Rota to investigate “dependencies among dependencies”. One way of looking
at the relation between the dependent sets is to look at the symmetric difference
of them. The symmetric difference can be iterated, known as the Kirkhoff sum.

Definition 4.1. The Kirkhoff sum of a set of sets is

K(A) = {e ∈ supp(A)|#{C|e ∈ C,C ∈ A} is odd}

Definition 4.2. A circuit basis for a binary matroid M is a minimal set of circuits
A ⊆ C(M) such that for all C ∈ C(M) there exists S ⊆ A such that C = K(S).

Using these circuit bases, we can create a derived matroid.

Definition 4.3. Let M be a binary matroid. The Longyear derived matroid δLM
is a matroid on the ground set C(M) with the bases being the circuit bases of M .

Longyear further proved that δLM is a binary matroid.
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We can see that any dependent set A ⊆ E(δLM) is a set such that there exists
a non-empty set S ⊆ A such that K(S) = ∅. If we were to use this property to
define dependencies, we can extend the definition to all matroids. This idea is
further explored in Section 4.9.

Longyear also noted that another extension of this to representable matroids
over a field of characteristic p is to let the 1-circuits be the minimal sets of 0-
circuits where each edge occurs in a multiple of p of the 0-circuits in the set. The
problem is that there is not always a canonical choice of p, since some matroids
can be represented over fields of different characteristics.

4.2 Representable matroids

Oxley and Wang [OW19] extended and generalized the concept of derived matroids
to representable matroids. The idea is; for a given representation of a matroid, use
the minimal elements of the null space of this matrix as columns in a new derived
code, and have the derived matroid be the vector matroid of this new matrix.

Let M be a representable matroid, and G ∈ Fk×nq be some representation of
this matroid. We have with this an associated code that is generated by the matrix
G, and a parity-check matrix H. Associated with each circuit C ∈ C(M), we have
a vector qC = (q1, . . . , qn) ∈ Fnq such that HqC = 0 and qi ̸= 0 ⇔ i ∈ C. We can
then create a matrix A = [qC1 , . . . ,qC|C(M)| ], and let δOWM [G] =M [A].

Definition 4.4. Given a representable matroid M with representation G, the
Oxley-Wang derived matroid is the matroid δOWM [G]. If the representation is
clear from context, we will simply write δOWM .

By the construction, the Oxley-Wang derived matroid for a given representation
is also a representable matroid. Also since taking linear combinations over F2

coincides with the Kirkhoff sum, we can see that the Oxley-Wang derived matroid
is a generalization of the Longyear derived matroid.

Proposition 4.5. Let M be a representable matroid with representation G. Then
δOWM is a simple matroid of rank |E(M)|−r(M). In particular, if B is a basis of
M , then the set of fundamental circuits {Ce,B|e ∈ E(M)\B} is a basis of δOWM .

Proof. See [OW19, Lemma 3].
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Definition 4.6. The simplification simplify(M) of a matroid M is obtained by
deleting all loops and then deleting one element from each 2-element circuit until
no parallel edges remain. The cosimplification arises from the dual of the simplified
dual, cosimplify(M) = simplify(M∗)∗.

Oxley and Wang proved further results such as that U2,4 is the only matroid
where δOWM = M , cosimplification of a matroid does not change the derived
matroid and that the only matroids that are not dependent on the representation
are when they are representable over F2 or F3. We also have that the derived
matroid of a sum of matroids is the sum of the derived matroids.

Example 4.7. As an example, let us calculate the derived matroid of the matroid
MC associated with the generator matrix G of the linear code Ham(7, 4) over F2.
With the following generator matrix

G =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1


we have the circuits C = {2345, 1346, 1256, 1247, 1357, 2367, 4567}. Using the cor-
responding circuit vectors as columns of a matrix, we get

A =



0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 0 1 1 0

1 1 0 1 0 0 1

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1


We now have that δOWMC =M [A]. If we look at the row-echelon form of A (and
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remove zero-rows), we get

B =

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1


Observe that this is the parity-check matrix of a Ham(7, 4) code, so we have that
δOWMC ≃M∗

C.

4.3 Combinatorial derived matroids

We now have a way of looking at dependencies among dependencies of binary
matroids and representable matroids. However, for the representable matroids the
derived matroid may be dependent on its representation, and what about non-
representable matroids? Freij-Hollanti, Jurrius, and Kuznetsova [FJK23] propose
the combinatorial derived matroid, which will solve these problems.

Let M = (E, C) be a matroid. Define the following functions:

ϵ : 22
C → 22

C

A 7→ A ∪ {A1 ∪ A2\{C} : A1, A2 ∈ A, A1 ∩ A2 ̸∈ A, C ∈ A1 ∩ A2}

↑ : 22C → 22
C

A 7→ {A ⊆ C : ∃A′ ∈ A : A′ ⊆ A}

and let minA denote the inclusion minimal sets of A. For notation, let

supp : 22
E(M) → 2E(M)

A 7→ ∪C∈AC

The ϵ and ↑operations will be used iteratively on some seed set to generate the
dependent sets of the matroid. Let the initial seeding set be defined as

A0 = {A ⊆ C(M)||A| > n(supp(A))}.

Iteratively we let Ai+1 = ↑ϵ(Ai), and the final dependent sets are A = ∪i≥0Ai.
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Cardinality of circuits of δFJKM
Matroid 3 4 5 6
δFJKU2,6 60 510 3432
δFJKU2,7 140 1785 24024 222600
δFJKU3,5 10
δFJKU3,6 60 735
δFJKU3,7 210 5145 127232

Table 1: Number of circuits of a given size in δFJKM for the given matroid. We can
see that these sizes are the same for the Oxley-Wang derived equivalents in [FJK23,
Table 1]. These numbers were calculated using the software library available at
https://github.com/teo8192/matroid-rs [Knu23]

.

Note that the sequence Ai is increasing and a subset of the finite set 2C, so A = An
for some n ≥ 0. To avoid edge cases in some proofs and/or definitions, also let
Ai = ∅ for any i < 0. We say that a set A ∈ Ai\Ai−1 has depth i in A.

Definition 4.8. Let M be a matroid with circuits C. The combinatorial derived
matroid δFJKM is the matroid with ground set C and dependent sets A.

Proposition 4.9. For any matroid M = (E, C), the collection A is the collection
of dependent sets of some matroid with ground set C.

Proof. See [FJK23, Proposition 17].

We can easily set an upper boundary for the rank of the combinatorial derived
matroid. One way to look at this is to see that for a matroid M , any set of more
than |E(M)| − r(M) circuits will have its nullity at most |E(M)| − r(M), so this
set will be in A0, and is therefore dependent.

Proposition 4.10. Let M be a matroid. The rank of δFJKM is at most |E(M)|−
r(M).

Proof. See [FJK23, Lemma 37].

Section 4.6 deals more with a certain class of matroids where the rank of the
combinatorial derived matroid is equal to the corank of the matroid. But this is
not generally the case, as the next example illuminates.
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Example 4.11. Let M be the Vámos matroid. Using the software that is developed
as a part of this thesis, we can calculate δFJKM . δFJKM is a matroid of rank 3

on 41 elements, and has 91026 circuits. This is therefore an example of a matroid
where the rank of the combinatorial derived matroid is strictly smaller than the
corank of the matroid.

We now give a new and useful result:

Proposition 4.12. Let M be a matroid, and M ′ be a minor of M . Then there
exists an injection ψ : C(M ′) ↪→ C(M) that extends to an injection ϕ : 2C(M

′) ↪→
2C(M) such that nM ′(supp(A)) ≥ nM(supp(ϕ(A))) for all A ⊆ C(M ′). Moreover, if
M ′ =M\Y for some Y ⊆ E(M), then nM ′(supp(A)) = nM(supp(ϕ(A))).

Proof. First, lets construct the first injection, call it ψ. Let Y = {e1, . . . , el}.

C(M ′) = C(M\Y/{e′1, . . . , e′k})
ψe′1−−→ C(M\Y/{e′2, . . . , e′k})

ψe′2−−→ · · ·
ψe′

k−−→ C(M\Y )

C(M\Y ) = C(M\{e1, . . . el})
ψe1−−→ C(M\{e2, . . . el})

ψe2−−→ · · ·
ψel−−→ C(M)

Let ψ = ψel◦· · ·◦ψe1◦ψe′k◦· · ·◦ψe′1 . For each deleted ei, we see that by the definition
of the circuits in the deletion of the matroid, C(M1\{ei}) ⊆ C(M1), and let ψei = id.
Now lets construct ψe′i : C(M1/{e′i}) → C(M1). For each C ∈ C(M1/{e′i}), we
may find an C ′ ∈ C(M1) such that C = C ′\{e′i} by Proposition 3.16, and let
ψe′i(C) = C ′. If ψe′i(C1) = ψe′i(C2), then C1 = C ′\{e′i} = C2, so it is injective.
Since each ψe is injective, their composition ψ is injective.

Now define

ϕ : 2C(M
′) → 2C(M) (4.13)

A 7→ {ψ(C) : C ∈ A}.

Since ψ is injective, ϕ is injective. Also let ϕe(A) = {ψe(C) : C ∈ A}. We see that
ϕ = ϕel ◦ · · · ◦ ϕe1 ◦ ϕe′k ◦ · · · ◦ ϕe′1 . Now consider e such that we have an ϕe. If this
corresponds to a deletion, we have that nM1\{e}(supp(X)) = nM1(supp(ϕe(X))) =

nM1(supp(X)) for all X ⊆ C(M1\{e}), by [Oxl92, (3.1.5)] and the fact that ψe =
id. Now consider the case when ϕe corresponds to a contraction. From [Oxl92,
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Proposition 3.1.6] and some manipulation, we get for X ⊆ E(M1)\{e}

nM1/{e}(X) = nM1(X ∪ {e})− nM1(e).

Let A ⊆ C(M1/{e}). If e is a loop in M1, then e ̸∈ supp(ϕe(A)), and we get

nM1/{e}(supp(A)) = nM1(supp(ϕe(A))).

Otherwise, nM1(e) = 0, and we get

nM1/{e}(supp(A)) = nM1(supp(A) ∪ {e}) (4.14)

≥ nM1(supp(ϕe(A)))

Since nM ′
1
(supp(A)) ≥ nM1(supp(ϕe(A))) for all ϕe where either M ′

1 =M1\{e}
or M ′

1 =M1/{e}, so we have

nM ′(supp(A)) ≥ nM(supp(ϕ(A)))

for all A ⊆ C(M ′).
Further, we can see that since nM ′

1
(supp(A)) = nM1(supp(ϕe(A))) when M ′

1 =

M1\{e} , we have when M ′ =M\Y

nM ′(supp(A)) = nM(supp(ϕ(A)))

for all A ⊆ C(M ′).

For an example where the nullity will decrease consider the graphical matroids
M ′ = M(Sh(4)) and M = M(G1) from Figure 5. If we have A = {12, 34, 56} ⊆
C(M ′), then nM ′(supp(A)) = 4, but ϕ(A) = {12, 34, 45} and nM(supp(ϕ(A))) = 3.

By the construction of ϕ defined in Equation (4.13), we have some immediate
properties of this function.

Corollary 4.14.1. ϕ(X ∩ Y ) = ϕ(X) ∩ ϕ(Y ), ϕ(X ∪ Y ) = ϕ(X) ∪ ϕ(Y ) and
ϕ(X\Y ) = ϕ(X)\ϕ(Y ). If Y ⊆ X, then ϕ(Y ) ⊆ ϕ(X).

A series class is a set S ⊆ E(M) such that for all e, f ∈ S, {e, f} is a cocircuit.
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Figure 5: The graph on the left is the Shannon multigraph Sh(4), and name the
graph on the right G1. Observe that M(Sh(4)) =M(G1)/{7}.

Further, if C ∈ C(M) is a circuit and e ∈ C, then f ∈ C. This can be seen by
considering H = E(M)\C, and assume that e ∈ C but f ̸∈ C. H is a cohyperplane
[Oxl92, Proposition 2.1.6 (iii)], so adding any element to it will increase the corank.
But since {e, f} is a cocircuit and f ∈ H, r∗(H) = r∗(H ∪ {e}) contradicting that
H is a cohyperplane. Note that if C is a cycle in M and e ∈ C, then f ∈ C.

Proposition 4.15. Let M be a matroid, and M ′ = cosimplify(M). Then ϕ is a
bijection, and nM ′(supp(A)) = nM(supp(ϕ(A))) for all A ⊆ C(M ′).

Proof. Let e be a coloop in M . Then e is not contained in any circuit nor any
cycle of M , so we can see that C(M) = C(M\{e}). Thus if Y ⊆ E(M) is the set
of coloops of M , then C(M) = C(M\Y ).

If X ⊆ E(M) is such that every series class of M has all but one element in
X, then we can clearly see that |C(M)| = |C(M/X)|.

Since cosimplification is the deletions of all coloops and contraction of all but
one element of each series class, cosimplify(M) = M\Y/X. We can thus see that
since ϕ is an injection and |C(M)| = |C(M ′)|, it is a bijection.

To show that the nullity is preserved by ϕ, we need to show that it is preserved
under the specific contractions. Consider e ∈ S for a series class S with at least
two elements, M1 = M , M ′

1 = M/{e} and A ⊆ C(M ′
1). We had the inequality

(4.14)
nM ′

1
(supp(A)) = nM1(supp(A) ∪ {e}) ≥ nM1(supp(ϕe(A))).

If e ∈ supp(ϕ(A)), then there is equality. Otherwise, we have that ϕe(A) = A.
Since supp(A) is a cycle in M1, but supp(A) ∪ {e} is not a cycle since, by the
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construction of X, it does not contain all elements in the series class containing e,

nM1(supp(ϕe(A))) = nM1(supp(A)) = nM1(supp(A) ∪ {e}).

Thus since the nullity is preserved for each ϕe, their composition preserves the
nullity as well,

nM ′(supp(A)) = nM(supp(ϕ(A))),

for all A ⊆ C(M ′).

Corollary 4.15.1. δFJKM = δFJK cosimplify(M).

Proposition 4.16. Let M be a matroid, M ′ a minor of M and ϕ the injection
from Proposition 4.12. If X is a dependent set in δFJKM ′, then ϕ(X) is dependent
in δFJKM .

Proof. LetX ∈ A0(δFJKM
′). Since ϕ is injective, that n(supp(X)) ≥ n(supp(ϕ(X))),

and that n(supp(X)) < |X| = |ϕ(X)|, we get that n(supp(ϕ(X))) < |ϕ(X)|.
Now by induction, assume that this is true for all X ∈ Ai(δFJKM ′) of depth

i. Let A ∈ Ai+1(δFJKM
′) have depth i + 1. We have that A = A1 ∪ A2\{C} for

some C ∈ A1∩A2. Then ϕ(A) = ϕ(A1∪A2\{C}) = ϕ(A1)∪ϕ(A2)\{ψ(C)} where
ψ(C) ∈ ϕ(A1) ∩ ϕ(A2). Thus ϕ(A) ∈ Ai+1(δFJKM).

Proposition 4.17. The only uniform matroids where δFJKUk,n = U∗
k,n is U0,n and

Un−2,n, n ≥ 3.

Proof. We need that the number of elements in the matroid is the same as the
number of elements in the derived matroid. This means that the number of ele-
ments in the matroid has to be the same as the number circuits in the matroid.
For uniform matroids, this restriction means that n =

(
n
k+1

)
. Thus we get that

either k = 0 or k = n− 2.
Assume k = 0. We see that U0,n has n circuits that are loops, and since they

are loops we have that for all A ⊆ C, |A| = n(∪C∈AC). Therefore we get that
A0 = ∅. Observe that ↑ϵ(∅) = ∅, so δFJKU0,n has no dependent sets. Therefore
δFJKU0,n = Un,n = U∗

0,n.
Otherwise, let k = n − 2, and we may assume that n ≥ 3. From [FJK23],

we know that for this matroid, any dependent set A in δFJKUn−2,n has |A| ≥ 3.
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Also since r(δFJKUn−2,n) = 2, all sets of cardinality greater than 2 are dependent.
Therefore δFJKUn−2,n = U2,n = U∗

n−2,n.

For a comparison of the definitions, the combinatorial derived matroid is not
necessarily the same matroid as the Oxley-Wang derived matroid. Proposition 4.51
will show that for a certain class of matroids it is generic, and the next example
shows one possibility of how they differ.

Example 4.18. Consider the matroid M that is the graphical matroid of Sh(4),
see Figure 5. The following matrix is a representation of this matroid over F2.

A =

(
1 1 0 0 1 1

0 0 1 1 1 1

)
.

This matroid has the circuits {12, 34, 135, 235, 145, 245, 136, 236, 146, 246, 56}, and
we can create an Oxley-Wang derived matroid that is represented by the matrix

1 0 1 0 1 0 1 0 1 0 0

1 0 0 1 0 1 0 1 0 1 0

0 1 1 1 0 0 1 1 0 0 0

0 1 0 0 1 1 0 0 1 1 0

0 0 1 1 1 1 0 0 0 0 1

0 0 0 0 0 0 1 1 1 1 1


.

We have that both δOWM [A] and δFJKM are matroids of rank 4 on 11 elements, but
they are not the same matroids. There are precisely two sets that are independent
in δFJKM , but dependent in δOWM [A]: {3, 6, 8, 9} and {4, 5, 7, 10}. Some more
differences between these two matroids: δFJKM has 78 1-circuits, but δOWM [A]

has 66 1-circuits. The circuits of δFJKM is listed in Appendix C.

4.4 Redundancy

This subsection will discuss redundancy of sets of circuits of a matroid.

Definition 4.19. A set of circuits A ⊆ C is

(i) non-redundant if C ̸⊆ supp(A\{C}) for all C ∈ A,
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(ii) redundant if there exists some C ∈ A such that C ⊆ supp(A\{C}),

(iii) completely redundant if C ⊆ supp(A\{C}) for all C ∈ A.

Example 4.20. Consider the matroid U2,5 on the ground set {1, 2, 3, 4, 5}. The
circuits of this matroid are all subsets of size 3. An example of a non-redundant
set of circuits is {123, 124, 135}. We can see that every circuit in this set has a
unique element not in any of the other circuits, so this set is non-redundant.

Now look at the set {123, 234, 345}. We have that 234 ⊆ supp({123, 345}),
so this set is redundant, but since 123 ̸⊆ supp({234, 345}) it is not completely
redundant.

The set A = {123, 124, 234} is a completely redundant set of circuits. This can
be seen by observing that every element in supp(A) is in at least two circuits in A.

Definition 4.21. A set A ⊆ C is a maximal non-redundant set if A is non-
redundant, and for all other non-redundant sets A′ ⊆ C where supp(A) = supp(A′)

we have |A′| ≤ |A|.

Proposition 4.22. If A ⊆ C is non-redundant, then S ⊆ A is non-redundant.

Proof. Assume we have an S ⊆ A that is redundant. Then we have an C ∈
S such that C ⊆ supp(S\{C}), but since supp(S\{C}) ⊆ supp(A\{C}), C ⊆
supp(A\{C}), a contradiction.

Proposition 4.23. If A ⊆ C is a maximal non-redundant set, then S ⊆ A is a
maximal non-redundant set.

Proof. Let A = {C1, . . . , Cn} be in any order. Consider n(∪i<lCi) for some l ≤ n.
We have that n(∪i≤lCi)+n(Cl∩∪i<lCi) ≥ n(∪i<lCi)+n(Cl). But since Cl ̸⊆ ∪i<lCi,
we have n(Cl ∩ ∪i<lCi) = 0. Therefore n(∪i≤lCi) ≥ n(∪i<lCi) + 1.

Assume that at some step the nullity increases by more than one. But then
n(supp(A)) > |A| contradicting [JV13, Proposition 1]. Therefore the nullity in-
creases by exactly one at each step. Thus for any S ⊆ A, n(supp(S)) = |S|, and
S has to be a maximal non-redundant set.

Proposition 4.24. If A ⊆ C is redundant, then there exists some C ∈ A such
that n(supp(A)) = n(supp(A\{C})).
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Proof. Since A is redundant, there exists a circuit C ∈ A such that supp(A) =

supp(A\{C}). Therefore n(supp(A)) = n(supp(A\{C})).

Proposition 4.25. If A ⊆ C is non-redundant, then for all C ∈ A we have that
n(supp(A)) > n(supp(A\{C})).

Proof. Let C ∈ A be any element and let A′ = A\{C}. Since A is non-redundant,
there exists some element e ∈ C that are not in any of the other circuits of A.
Therefore e ̸∈ C∩supp(A′), and C∩supp(A′) ⊊ C. Since the intersection is strictly
contained in C, and since C does not contain any other circuit, the intersection
has nullity 0. Now, by the supermodularity of the nullity function we get

n(supp(A)) + n(C ∩ supp(A′)) ≥ n(supp(A′)) + n(C)

n(supp(A)) ≥ n(supp(A′)) + 1

n(supp(A)) > n(supp(A′))

Proposition 4.26. Let A ⊆ C such that n(supp(A)) < |A|. Then A is redundant.

Proof. Let A ⊆ C where n(supp(A)) < |A|. Now for a contradiction, assume that
A is non-redundant. By [JV13, Lemma 1] n(supp(A)) ≥ |A|, a contradiction.
Therefore there must exist a circuit C ∈ A such that C ⊆ supp(A\{C}), and A is
redundant.

Definition 4.27. A cycle is a set A ⊆ E that is minimal in the set {supp(S)|S ⊆
C, n(supp(S)) = n(A)}.

Proposition 4.28. Let A′ ⊆ A ⊆ E be cycles. Then there exists a maximal set
of non-redundant circuits {C1, . . . , Ch} such that A = C1 ∪ · · · ∪ Ch and A′ =

C1 ∪ · · · ∪ Cl, l ≤ h, where n(A) = h and n(A′) = l.

Proof. Let I ′ ⊆ A′ and I ⊆ A be independent sets of the largest possible cardinality
contained in the respective sets. By (I3) we may add items from I\I ′ to I ′ to
create an independent set B such that |I| = |B|. Let {e1, . . . , el} = A′\I ′ and
{el+1, . . . , eh} = A\{B ∪ A′}. Then let {Ci ∈ C : Ci ⊆ B ∪ {ei}, 1 ≤ i ≤ h}.
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Since every Ci contains an ei that is not contained in any other Cj, this set is
non-redundant. This set has cardinality h, so it is maximal.

Now we need to show that Ci ⊆ A′ for i ≤ l. Let i ≤ l. Observe that
n(I ′ ∪ {ei}) = 1 so it contains a single circuit. Since I ′ ∪ {ei} ⊆ B ∪ {ei}, we must
have that Ci ⊆ I ′ ∪ {ei} and thus Ci ⊆ A′.

4.5 Fast matroids

In this section, a new class of matroids is introduced. These have a specific property
that is used in a proof later. The name comes from the fact that their combinatorial
derived matroids are faster to compute since their computation do not need certain
operations of quite high complexity.

Definition 4.29. Let M be a connected matroid. M as a fast matroid if and only
if it satisfies the following property:

• For all non-empty S ⊆ C(M) and C ∈ C(M), then if there exists a non-
empty A ⊆ S such that A ∪ {C} is a maximal non-redundant set, then
n(supp(S) ∪ C) ≤ n(supp(S)) + 1.

In general we define recursively:

Definition 4.30. A matroid M = M1 ⊕M2 is a fast matroid if M1 and M2 are
fast matroids.

There is a necessity to specifically define the property to only be on connected
matroids, and have sums of fast matroids be fast matroid as well. Example 4.33
may illuminate why the single property of Definition 4.29 alone might break down
when dealing with non-connected matroids.

Proposition 4.31. Any matroid M where n(M) ≤ 3 is a fast matroid.

Proof. If the matroid has nullity 0, then there are are no non-empty subsets of
C(M), so the property holds for all of them.

If n(M) = 1, then C = {C ′}. Let S = A = {C ′}, C = C ′. We have that
A ̸= ∅, A∪{C} = {C ′} is a maximal non-redundant set, and the property is clear.
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Since the matroid has nullity 1, it contains only one circuit, and the only possible
situation is the one outlined above, since neither S nor A may be empty.

Otherwise 2 ≤ n(M) ≤ 3, let S ⊆ C(M) be any non-empty set, and let C
be any circuit. Assume that ∅ ⊊ A ⊆ S is such that A ∪ {C} is a maximal
non-redundant set. If n(M) − 1 ≤ n(supp(S)) ≤ n(M), then the addition of
another circuit can only increase the nullity by at most 1. Otherwise we have that
n(supp(S)) = n(M)−2. But then |S| = |A| = 1, so therefore S∪{C} is a maximal
non-redundant set, and n(supp(S) ∪ C) ≤ n(supp(S)) + 1.

Proposition 4.32. Uk,n is a fast matroid.

Proof. If k ≥ n− 3, use the previous proposition.
Let S ⊆ C be any non-empty set of circuits, C ∈ C and assume that there

exists a non-empty A ⊆ S such that A ∪ {C} is a maximal non-redundant set.
Then by Proposition 4.23 we have that A is a maximal non-redundant set. Since
the matroid is uniform, and since the two sets are maximal non-redundant sets,
C\ supp(A) = {e}. Therefore C\ supp(S) ⊆ {e}, and since the addition of C to S
adds at most one element to the support, the nullity increases by at most one.

Example 4.33. Let M = U2,3⊕U2,6. We have the elements E = {1, 2, 3, 4, 5, 6, 7, 8, 9},
and let {1, 2, 3} be the elements from the U2,3 component of the matroid. Now con-
sider A = {123}, S = {123, 456} and C = 789. We can see that these sets and
circuits satisfies the conditions to the property in Definition 4.29, but observe that
n(supp(S) ∪ C) = 5, while n(supp(S)) = 2, so this matroid does not have the
property in Definition 4.29.

Example 4.34. An example of a fast matroid is the following graphical matroid.

1

5 3

4 2

We have the circuits {C1, C2, C3} = {123, 145, 2345}. Any subset of cardinality at
most 2 of these circuits is a maximal non-redundant set. It is clear that if we add
any circuit to a maximal non-redundant set in this matroid, the nullity increases
by at most one, since the nullity of the matroid is 2.
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Example 4.35. An example of a matroid that is not a fast matroid is the following
graphical matroid.

12
3 4

5

6 7

Let S = {345, 236}, C = 147 and A = {345}. We have that A∪{C} is a maximal
non-redundant set, but n(supp(S) ∪ C) = 4 > n(supp(S)) + 1 = 2 + 1 = 3

This example may be expanded to a simple matroid, by adding vertices on 1

and 7, and an edge between these two vertices. Observe also that if we contract by
5, then we get Sh(4) from Figure 5.

Proposition 4.36. Let M be a fast matroid. Then for all X ⊆ E(M), M ′ =M\X
is a fast matroid.

Proof. Let S ⊆ C(M ′), C ∈ C(M ′) and A ⊆ S such that A ∪ {C} is a maximal
non-redundant set. Let ϕ be the injection from Proposition 4.12. Since M ′ is a
deletion, ϕ preserves the nullity. We have that ϕ(A) ⊆ ϕ(S), and since A∪ {C} is
a maximal non-redundant set,

|A ∪ {C}| = nM ′(supp(A∪{C})) = nM(supp(ϕ(A)∪ϕ({C}))) = |ϕ(A) ∪ ϕ({C})|,

so ϕ(A) ∪ ϕ({C}) is a maximal non-redundant set in M . Therefore since M is a
fast matroid,

nM ′(supp(S ∪ {C})) = nM(supp(ϕ(S) ∪ ϕ({C})))

≤ nM(supp(ϕ(S))) + 1

= nM ′(supp(S)) + 1

so M ′ is a fast matroid.

The class of fast matroids is not closed under contractions or duals however.
See in Figure 5, where the matroid on the left, M(Sh(4)), is not a fast ma-
troid and contracted from the one on the right, which is a fast matroid. If we
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look at M(Sh(4))∗, this matroid has nullity 2 so it is a fast matroid, but again
(M(Sh(4))∗)∗ =M(Sh(4)) is not a fast matroid.

Proposition 4.37. Let M be a matroid, and |E(M)| < 6. Then M is a fast
matroid. Further, M(Sh(4)) is a non-fast matroid where |E(M(Sh(4)))| = 6.

Proof. First to show that M(Sh(4)) is not a fast matroid. Let S = {12, 34},
A = {12}, and C = 56. We have that A ∪ {C} is a maximal non-redundant set,
but n(supp(S)) = 2 and n(supp(S∪{C})) = 4, so M(Sh(4)) is not a fast matroid.

If we want to try to find a smaller non-fast matroid M , we need a matroid of
nullity at least 4. If this matroid is on 4 elements, it has rank 0, and has to be
U0,4, which is a fast matroid.

If it is on 5 elements, it has rank 1. If this matroid is not connected, one of
its components has fewer than 5 elements, so the matroid has to be connected.
We therefore need that for every pair e, f ∈ E(M), there is a circuit C such that
e, f ∈ C. But since M is of rank 1, this means that {e, f} is a circuit in M for all
distinct e, f ∈ E(M). Therefore M = U1,5, a fast matroid.

Thus the smallest possible non-fast matroid is on 6 elements and has nullity 4,
which M(Sh(4)) is.

4.6 Combinatorial derived matroids of fast matroids

The class of fast matroids are constructed such that they do not need a certain step
in the computation of the combinatorial derived matroid, the repeated iterations
of ϵ to get the dependent sets. Without this step, they are both easier to compute,
and it is easier to prove their rank. The key result concerning their construction will
be Theorem 4.47 below. Freij-Hollanti, Jurrius, and Kuznetsova [FJK23] showed
that the upper boundary of the rank of a combinatorial derived matroid δFJKM

of a matroid M is |E(M)|−r(M). For fast matroids, Theorem 4.46 will show that
the rank of the derived matroid is exactly the corank. We first give the helpful
results 4.38-4.43 regarding some properties of A0, valid for all matroids M .

Proposition 4.38. If A ∈ minA0, then n(supp(A)) = |A| − 1.

Proof. Let A ∈ minA0. We know that |A| > n(supp(A)). Assume |A| >
n(supp(A)) + 1. By Proposition 4.26 and Proposition 4.24 we may find an C ′ ∈
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A such that for A′ = A\{C ′} we have n(supp(A′)) = n(supp(A)). But then
|A′| = |A| − 1 > n(supp(A)) + 1− 1 = n(supp(A′)), so A′ ∈ A0, contradicting the
minimality of A. Therefore we must have |A| = n(supp(A)) + 1

Note. The converse is not true, consider the circuits {12, 23, 13, 34} in U1,4.

The union of this set has nullity 3, so the set satisfies the above constants. But it
contains the subset {12, 23, 13} which is also in A0, so the first set is not minimal.

Proposition 4.39. If M =M1 ⊕M2 and A ∈ minA0, then either A ⊆ C(M1) or
A ⊆ C(M2).

Proof. Let A ∈ minA0, and assume that A∩C(Mi) ̸= ∅ for both i = 1, 2. Since A
is minimal in A0, we know that |S| ≤ n(supp(S)) for all proper subsets S of A. We
can also split A into two sets A1, A2 such that Ai ⊆ C(Mi) such that A = A1 ∪A2.
From Proposition 4.38 we know that n(supp(A)) = |A| − 1, so we therefore have
that |A1|+ |A2| − 1 = n(supp(A1)) + n(supp(A2)). But since all proper subsets of
A have nullity at least the cardinality of the subset, we get the inequality

|A1|+ |A2| ≤ n(supp(A1)) + n(supp(A2)) = |A1|+ |A2| − 1

which is absurd. Therefore the assumption is wrong, and we must have that
A ∩ C(Mi) = ∅ for some i. Since A is not empty, we must have that A ⊆ C(Mi)

for either i = 1 or i = 2.

Corollary 4.39.1. If A ∈ minA0, then A ⊆ C(M ′) where M ′ is a connected
component of M .

Proposition 4.40. If A ∈ minA0, then n(supp(A\{C})) = n(supp(A)) for all
C ∈ A.

Proof. Assume the statement is false, so we have C ∈ A such that n(supp(A\{C})) <
n(supp(A)) = |A| − 1 = |A\{C}|, so A\{C} ∈ A0, contradicting the minimality
of A.
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Proposition 4.41. If A ∈ minA0, then A is completely redundant.

Proof. Let C ∈ A. By Proposition 4.40 we have that n(supp(A)) = n(supp(A\{C})).
By the supermodularity of the nullity function, we have that

n(supp(A)) + n(C ∩ supp(A\{C})) ≥ n(supp(A\{C})) + n(C)

n(supp(A)) + n(C ∩ supp(A\{C})) ≥ n(supp(A)) + n(C)

n(C ∩ supp(A\{C})) ≥ 1

which means that C ∩ supp(A\{C}) contains a 0-circuit, and the only possibility
for this is C. Since C in a subset of the intersection, C ⊆ supp(A\{C}).

Example 4.42. The converse is not true, look at the circuits {1234, 5678, 1256, 3478}
in U3,8.

We see that this set is completely redundant, i.e. each of the circuits are contained
in the union of the other, but the nullity of their union is 5, so the set is not in
A0.

Proposition 4.43. If A ∈ A and |A| = 3, then A ∈ minA0.

Proof. We have that there are no elements of cardinality less than 3 in A. This
means that any possible element ofA of cardinality 3 that are not inA0 must be the
result of the ϵ operation. But consider two elements A1 and A2 of A0 of cardinality
3. If these were to combine to an element of cardinality 3, then their intersection
must have cardinality 2. Let A1 = {C,C1, C2} and A2 = {C ′, C1, C2}. We can
see that C ⊆ supp(C1 ∪ C2) and C ′ ⊆ supp(C1 ∪ C2) by Proposition 4.41, and
that n(supp(C1 ∪ C2))) = 2 by Proposition 4.38. Therefore supp({C,C ′, C1}) ⊆
supp(C1, C2) and supp({C,C ′, C2}) ⊆ supp(C1, C2), so both possible combinations
of these two sets are elements of A0. It is therefore not possible to combine
3-element sets of A0 to form a 3-element set that is not in A0, and all sets of
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cardinality 3 in A must be elements in A0. They must also be minimal since A0

does not contain any elements of cardinality less than 3.

Proposition 4.44. If M is a fast matroid and A ∈ minA1, then A ∈ minA0.

Proof. Let A ∈ minA1. Either A ∈ minA0 and we are done, or we have A1, A2 ∈
minA0 such that A = A1∪A2\{C} for some C ∈ A1∩A2 by [FJK23, Lemma 18].

Note that from Corollary 4.39.1 we know that A1 and A2 are contained in one
component of the matroid each. Since we also have that A1∩A2 ̸= ∅, we also must
have that they both are in the same component.

Let S = supp(A), Si = supp(Ai) and S3 = supp(A1∩A2). Let C1 be a maximal
set of non-redundant 0-circuits constructed as in Proposition 4.28 with respect to
S3 ⊆ S1, and likewise for C2 with respect to S3 ⊆ S2. Let C3 = C1 ∩C2. In the
proof of Proposition 4.28, observe that it is possible to choose I ′ ⊆ S3 such that
C1 and C2 overlap in the first n(S3) circuits.

Take C1 and add 0-circuits from C2\C3 one by one. If we have added j

circuits from C2\C3 we have the following situation (j may be 0). We have the set
C1 ∪ {C1, . . . , Cj} where Ci ∈ C2\C3, and wish to add Cj+1 ∈ C2\C3 to it. But
C3 ∪ {C1, . . . , Cj+1} ⊆ C2, so by Proposition 4.23 it is a maximal non-redundant
set. This, in addition to the sets being contained in one connected component of
the matroid and the recursiveness of the definition of fast matroids, we may use the
property of the fast matroid that n(supp(C1)∪C1∪· · ·∪Cj+1) ≤ n(supp(C1)∪C1∪
· · ·∪Cj)+1. Since the nullity increases by at most one for each new circuit, we get
that n(S) ≤ |C1|+ |C2|− |C3|. We know that |C1| = |A1|−1 and |C2| = |A2|−1.
In addition, since A1 ∩ A2 ̸∈ A0, then |A1 ∩ A2| ≤ n(supp(A1 ∩ A2)) = |C3| ⇔
−|C3| ≤ −|A1 ∩ A2|. Therefore

n(S) ≤ |C1|+ |C2| − |C3|

≤ |A1| − 1 + |A2| − 1− |A1 ∩ A2|

< |A1\{C}|+ |A2\{C}| − |A1 ∩ A2|+ 1

= |A1\{C}|+ |A2\{C}| − |A1 ∩ A2\{C}|

= |A|

Thus n(S) = n(supp(A)) < |A|, so A ∈ A0. Since A0 ⊆ A1, we must have that the
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inclusion minimal elements in A1 that are in A0 must also be inclusion minimal in
A0. Therefore A ∈ minA0.

Note. An easier version of this proof for only uniform matroids are in Proposi-
tion A.1.

Corollary 4.44.1. If M is a fast matroid and A ∈ C(δFJKM), then A ∈ minA0.

Proof. Consider [FJK23, Proposition 20]. Here they construct the 1-circuits of
δFJKM . Proposition 4.44 shows that the sequence terminates at the first step,
and hence the result follows.

Corollary 4.44.2. If M is a fast matroid and A ⊆ E(δFJKM) is non-redundant,
then A ∈ I(δFJKM).

Proof. For a contradiction, assume that we have C ⊆ A such that C is a 1-circuit.
Then we have that C ∈ minA0(δFJKM). By 4.41, we have that C is completely
redundant. But then C ⊆ A, so A is redundant, a contradiction.

Note. The converse is not true, consider the set of 0-circuits A = {12, 24, 34} in
U1,4.

This is redundant, since 24 ⊆ 12 ∪ 34, but this has that n(supp(S)) ≥ |S| for all
subsets S ⊆ A, so it is independent.

Corollary 4.44.3. If M is a fast matroid and A ∈ C(δFJKM), then n(supp(A)) =
|A| − 1.

Proof. Follows from Corollary 4.44.1 and Proposition 4.38.

Example 4.45. There are non-fast matroids where Proposition 4.44 does not hold,
such as M(Sh(4)), see Figure 5. Consider the 1-circuits A1 = {34, 135, 145},
A2 = {34, 246, 236} and A = A1 ∪ A2\{34} = {135, 145, 246, 236}. Observe that
A1, A2 ∈ minA0, and A ∈ A1. We can see that the support of A is all the elements,
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so their nullity is 4, and therefore A ̸∈ A0. Moreover, since A is completely
redundant, all three element subsets of A also have a support of nullity 4, and are
thus not elements in minA0. Also by Proposition 4.43, none of these three element
subsets of A are in minA1\minA0. This means that A ∈ minA1, but A ̸∈ A0.

We now give a main result of this thesis:

Theorem 4.46. If M is a fast matroid, then δFJKM is a matroid of rank |E(M)|−
r(M).

Proof. Let B be a basis of M . Now let C = {Ce ⊆ B ∪{e}|e ∈ E(M)\B} be a set
of fundamental circuits. We see that each Ce contains a unique element e, so C
is non-redundant. By Corollary 4.44.2, we have that C is independent in δFJKM .
Since |C| = |E(M)\B| = |E(M)| − |B| = |E(M)| − r(M), the rank of δ(M) is at
least E(M)− r(M). By [FJK23, Lemma 37] we have that the rank of δ(M) is at
most E(M)− r(M), and the result follows.

Theorem 4.47. If M is a fast matroid, then δFJKM has dependent sets ↑A0.

Proof. We know that all 1-circuits are the elements of minA0, and every dependent
set in δFJKM contains a 1-circuit. Therefore, ↑A0 is the set of dependent sets in
δFJKM .

Example 4.48. Consider the matroid δFJKM as described in Appendix C. Here,
M is not a fast matroid. Six of it’s 1-circuits are not in A0. These are:

{efgh, dfgi, dehi, cfgj, cehj, cdij},

where all of them have nullity 4.

From these results we get complete descriptions of independent sets and bases
of δFJKM if M is a fast matroid.

I = {I ⊆ C : ∀S ⊆ I, n(supp(S)) ≥ |S|}, (4.49)

B = {B ⊆ C : |B| = r∗(M),∀S ⊆ B, n(supp(S)) ≥ |S|} (4.50)

We can also prove a small generalization of [FJK23, Lemma 40].
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Proposition 4.51. If M is a fast matroid, then all 1-circuits of δFJKM are de-
pendent in δOWMQ for every representation Q of M .

Proof. This proof is an adapted version of [FJK23, Lemma 40]. Let A be a 1-
circuit of δFJKM . For a representation Q of M and C ∈ A, denote by qC the
circuit vector supported on C. Since A is a 1-circuit and from Equation (3.20), we
have that

|A| > n(suppA) = dim(Q⊥(suppA)) ≥ dim span{qC |C ∈ A}.

Thus the vectors {qC |C ∈ A} are linearly dependent, so A is dependent in δOWQ.

Proposition 4.52. δFJKM has a dependent set of cardinality 3 if and only if U1,3

is a minor of M .

Proof. Assume M has U1,3 as a minor. Then the result follows from Proposi-
tion 4.16, since δFJKU1,3 contains a dependent set of cardinality 3.

Assume δFJKM has a dependent set A = {C1, C2, C3}. Let Ei,j = Ci ∩ Cj.
Note that Ei,j ̸= ∅. For each Ei,j, i < j, choose an ei,j ∈ Ei,j. Now let

M ′ =M\(E(M)\ supp(A))/(supp(A)\{e1,2, e1,3, e2,3}).

To get M ′, all elements not in supp(A) are deleted, and contracted to only contain
the necessary elements of the 0-circuits ofA. We have thatE(M ′) = {e1,2, e1,3, e2,3},
where every 2 element subset is dependent, but all single element subsets are in-
dependent. Thus M ′ = U1,3.

Proposition 4.53. δFJKUk,n has
(
n
k+2

)(
k+2
3

)
triangles when 1 ≤ k ≤ n− 2.

Proof. To find 1-circuits of cardinality 3, by Corollary 4.44.3 we only need to look
at sets S ⊆ E where n(S) = 2. There are

(
n
k+2

)
such sets. Let S be such a set. If

we remove any element from S it becomes a 0-circuit, so there are k+2 0-circuits
that are a subset of S. If we pick any three of them, we get a 1-circuit. There are(
k+2
3

)
ways of choosing these three 0-circuits. Thus there are

(
n
k+2

)(
k+2
3

)
1-circuits

of cardinality 3 in δFJKUk,n.
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4.7 Extending the definition to a finite graded lattice

A lattice is a poset where every pair of elements x, y have a least upper bound
called the join x ∨ y and a greatest lower bound called the meet x ∧ y. For a
lattice, we say that an element x covers another element y if x > y and there are
no element z ̸∈ {x, y} such that x > z > y. The cover of a minimal element in
the lattice is called an atom, and a lattice is atomistic if every element is the join
of some set of atoms. The lattice is graded if there is a rank function r such that
r(x) > r(y) whenever x > y and r(x) = r(y) + 1 if x covers y. We may assume
that the rank of the bottom element (the meet of the atoms) is zero. If this rank
function is submodular, meaning that the identity r(x∨y)+r(x∧y) ≤ r(x)+r(y)

holds, in addition to being atomic and finite, then the lattice is a geometric lattice.
A geometric lattice can also be defined by having it to be semimodular instead of
submodular, but for finite lattices this is the same [Grä78, p. 173, Theorem 2].

The reason geometric lattices are interesting, is that there is a one-to-one cor-
respondence between geometric lattices and simple matroids. We may have the
geometric lattice be the lattice of flats of a matroid (having the atoms as the
ground set), yielding a simple matroid. For the other way, given a matroid the
lattice of flats for that matroid is a geometric lattice. The lattice of cycles of a
matroid is the opposite of the lattice of flats of the dual matroid, it is turned upside
down. This lattice is not geometric, since the rank function for this lattice (the
nullity function of the matroid) is supermodular, not submodular.

We want to construct a matroid from this lattice of cycles in a way that yields
the same matroid as the combinatorial derived matroid. It turns out that the rank
function of the lattice does not need to be either supermodular, nor submodular,
but simply graded. The lattice does not have to be atomistic either, but the
matroid we will construct will use the atoms of the lattice as a ground set and
some properties of their join, so any element in the lattice that is not the join of
atoms are ignored.

Let L be a finite graded lattice where the rank of the bottom element is zero,
and A(L) be the atoms of this lattice. We want to define two functions from the
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set of subsets of atoms of the lattice (where P(L) denotes the powerset of L):

ϵ : P(P(L))→ P(P(L))

D 7→ D ∪ {D1 ∪D2\{A} : D1, D2 ∈ D, D1 ∩D2 ̸∈ D, A ∈ D1 ∩D2}

↑ : P(P(L))→ P(P(L))

D 7→ {X ⊆ A(L) : ∃D ∈ D, D ⊆ X}

Define D0 to be the set {D ⊆ P(A(L)) : r(∨A∈DA) < |D|}. Now define Di

iteratively as
Di+1 = ↑ϵ(Di).

Note that for all i, we have that Di ⊆ Di+1. Since the lattice is finite, this process
must terminate and let D = Dn be the final iteration.

Lemma 4.54. Let D ∈ Di+1. Then there is a D′ ∈ Di such that |D′| ≤ |D|.

Proof. Proof from [FJK23, Lemma 16]. This is clear if D ∈ Di, so assume it is not.
Since the inclusion minimal sets in Di+1 are contained in ϵ(Di), we may assume
that D ∈ ϵ(Di)\Di. Thus, there exists D1, D2 ∈ Di such that D = D1 ∪D2\{A}
for some A ∈ D1 ∩ D2 where D1 ∩ D2 ̸∈ Di. Since D1 ∈ Di and D1 ∩ D2 ̸∈ Di,
then D1 ̸⊆ D2. We therefore have that |D1| ≤ |D1 ∪D2|−1 = |D|, and the lemma
holds with D′ = D1.

Proposition 4.55. For any finite graded lattice L, the collection D is the collection
of dependent sets of some matroid on the ground set A(L).

Proof. 1. Since |∅| = 0 and that the rank function is non-negative, ∅ ̸∈ D0. By
Lemma 4.54, we inductively have that ∅ ̸∈ Di for all i ≥ 0, so in particular
∅ ̸∈ Dn = D.

2. If D1 ∈ D then there exists some minimal i such that D1 ∈ Di+1\Di. Then
for all D2 ⊆ A(L) such that D1 ⊆ D2, D2 ∈ Di+2 and Di+2 ⊆ D, so D2 ∈ D.

3. Let D1 and D2 be two distinct sets in D. If for some i, D1 ∩ D2 ∈ Di,
then D1 ∩D2 ∈ D and there is nothing to check. Otherwise, D1 ∩D2 ̸∈ D
and there exists some minimal i such that D1, D2 ∈ Di. Therefore for all
A ∈ D1 ∩D2, (D1 ∪D2)\{A} ∈ Di+1 ⊆ D.
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Now, we may define the derived matroid of a matroid to be the derived matroid
of the lattice of the cycles of the matroid, where the rank function of the lattice is
the nullity function of the matroid. We can note this matroid as δL(C(M)) for a
matroid M .

Proposition 4.56. For a given matroid M , the matroids δFJKM and δL(C(M))

are isomorphic.

Proof. We have that the ground sets of the two matroids are the same, since the
circuits M is precisely the atoms of the cycle lattice of the matroid. Since the
join of the atoms is the same as the union of the circuits, and that the rank
function of the lattice is the nullity function of the matroid, the first iterations of
the dependent sets in either cases are the same sets. Further, ϵ and ↑ are purely
set-theoretic functions that does not use any specific information of the underlying
objects. Therefore the final iterations of the dependent sets are the same. To find
an isomorphism, it is just to take the bijection between the circuits and the atoms
of the cycle lattice. A bijection between the dependent sets of the two matroid
can be found by using the previous bijection pointwise on the dependent sets.

The matroid of any such lattice still has properties that the combinatorial
derived matroid has, such as being simple. To show this, we need the following
lemma.

Lemma 4.57. For any set of sets D,

min{|D||D ∈ D} = min{|D||D ∈ ϵ(D)}

Proof. Let D be of minimal cardinality in ϵ(D). If D ∈ D, we are done. Otherwise
we have D1, D2 ∈ D such that D = D1 ∪ D2\A for some A ∈ D1 ∩ D2 and
D1 ∩D2 ̸∈ D. We also have that neither D1 nor D2 are empty, since if they were
their intersection would also be empty and an element of D. Thus

|D| = |D1|+ |D2| − |D1 ∩D2| − 1
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Assume WLOG |D| < |D1|. Then

|D1| > |D| = |D1|+ |D2| − |D1 ∩D2| − 1

⇓

|D1 ∩D2|+ 1 > |D2|

The only possibility for this is if D1 ∩ D2 = D2, but this is impossible, since the
intersection cannot be an element of D. Therefore |D| ≥ |D1| and |D| ≥ |D2|.
Therefore min{|D||D ∈ D} ≤ min{|D||D ∈ ϵ(D)}.

We also have that D ⊆ ϵ(D), so min{|D||D ∈ D} ≥ min{|D||D ∈ ϵ(D)}, and
they have to be equal.

Proposition 4.58. Let L be a finite graded lattice. Then the matroid δL is a
simple matroid.

Proof. The empty set is not in D0, since the rank would not be strictly less than
the cardinality. If D ∈ D0 is a set of cardinality 1, then it would contain one atom
and the rank would be 1, again not possible.

Let D ⊆ A(L) be a set with cardinality 2. The join of the two atoms is not an
atom, and since the rank function is graded the join has rank at least one more
than the atoms. Thus r(∨A∈DA) ≥ 2 = |D|, so D ̸∈ D0.

Therefore D0 has no sets of cardinality less than 3, and by Lemma 4.57 the
minimal dependent sets of δL are of cardinality at least 3.

We can also for this matroid set an upper boundary on the rank.

Proposition 4.59. Let L be a finite graded lattice. Then the rank of δL is at most
the rank of L.

Proof. Let D ⊆ A(L) be any set of atoms such that |D| is greater than the rank
of the lattice. We then have that |D| > r(L) ≥ r(∨A∈DA), so D ∈ D0, and is
dependent in δL.

4.8 Derived matroid of q-matroids

E denotes an n-dimensional vector space over a field F. Furthermore L(E) denotes
the lattice of subspaces of E , where the meet of two subspaces is their sum, and
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the join is the intersection. For any A,B ∈ L(E) with A ⊆ B, let [A,B] be
the interval between the two subspaces, in particular that is the sublattice of all
subspaces X ⊆ E such that A ⊆ X ⊆ B. For A ⊆ E , let the lattice L(A) be the
interval [{0}, A].

First we need definitions of the q-matroids, the following is from Byrne, Ceria,
and Jurrius [BCJ22].

Definition 4.60. A q-matroid M is a pair (E , ρ) where ρ is an integer-valued
function defined on the subspaces of E with the following properties:

(R1) For every subspace A ∈ L(E), 0 ≤ ρ(A) ≤ dimA.

(R2) For all subspaces A ⊆ B ∈ L(E), ρ(A) ≤ ρ(B).

(R3) For all A,B, ρ(A+B) + ρ(A ∩B) ≤ ρ(A) + ρ(B).

Now we can define a flat for a q-matroid using the rank.

Definition 4.61. Let M = (E , ρ) be a q-matroid. A subspace F of E is a flat if
for all one-dimensional subspaces x such that x ̸⊆ F we have that

ρ(F + x) > ρ(F ).

We write Fρ to denote the set of flats for the q-matroid (E , ρ).
In [BCJ17, Theorem 1] it is shown that the collection Fρ of flats form a geo-

metric lattice. [Byr+23, Theorem 3.10] shows that the meet of two flats in this
lattice is the intersection of the flats. We now need to define cycles for a q-matroid.
First, the nullity of a subspace A is is given by η(A) = dimA−ρ(A). We can then
define cycles.

Definition 4.62. Let M = (E , ρ) be a q-matroid, and let η its nullity function.
For all 0 ≤ i ≤ η(E), a subspace X ⊆ E of nullity i is called a cycle of M if X is
minimal in Ni w.r.t inclusion, where

Ni = {X ∈ L(E)|η(X) = i}.
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A cycle of a q-matroid has a special relation to the flats of the dual of the
q-matroid. As shown in [JPV22, Lemma 13], a subspace X ⊆ E is a cycle ofM if
and only if its orthogonal compliment X⊥ is a flat in the q-matroidM∗.

Definition 4.63. Let (E,R) be a poset. The opposite of a poset (E,R) is the
poset E,S where xSy ⇔ yRx.

Lemma 4.64. let M = (E , ρ) be a q-matroid. Then the collection of cycles of M
is isomorphic to the opposite lattice of the lattice of flats for the dual q-matroid
M∗.

Proof. Let ϕ be a bijection ϕ(X) = X⊥. We can see that this is a map between the
cycles ofM and the flats ofM∗. Let O1 and O2 be two cycles ofM. If O1 ⊆ O2

then ϕ(O1) ⊇ ϕ(O2). Also, if ϕ(O1) ⊇ ϕ(O2) then O1 ⊆ O2. Therefore the lattice
of cycles ofM is the opposite lattice of the lattice of flats ofM∗.

Since the cycles of a q-matroid from a finite lattice where the rank in the lattice
is given by η, we may use this lattice to define the derived matroid of a q-matroid.

Definition 4.65. LetM be a q-matroid, and let LC be the lattice of cycles ofM.
Then the derived matroid δM is δLC.

Given a q-matroid (E , ρ), Johnsen, Pratihar, and Verdure [JPV22] showed that
this induces a classical matriod P(M) called the projectivization matroid on the
ground set E = {x ⊆ E| dimx = 1}. They also showed that the posets of cycles
of P(M∗)∗ andM are isomorphic. Since these two posets are the isomorphic, we
get the following proposition.

Proposition 4.66. Let M be a q-matroid. Then the derived matroid δM is
isomorphic to the derived matroid δFJKP(M∗)∗.

In particular, this means that the derived matroid of q-matroids are a special
case of derived matroids.

4.9 Extended Longyear derived matroid

The Longyear derived matroid was defined using the circuit bases of a matroid,
but had the property that a set is dependent if and only if a subset has an empty
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Kirkhoff sum. This can be used to extend the definition to any matroid, not just
binary matroids.

Proposition 4.67. Let M be any matroid and let D be the set

D = min{D ⊆ C(M)|K(D) = ∅, D ̸= ∅}

Then there is a binary matroid whose ground set is C(M) and with the circuits D.

Proof. D clearly satisfies the first two axioms for the circuits of a matroid. Now
consider the third axiom. Let C1,C2 ∈ D such that C1∩C2 ̸= ∅. WLOG consider
e ∈ K(C1\C2). We have that e occurs in an odd number of circuits of C1\C2, and
therefore e occurs in an odd number of circuits of C1 ∩C2. Thus e ∈ K(C2\C1).
Therefore K(C1∆C2) = ∅, so there is some C3 ∈ D such that C3 ⊆ C1∆C2, and
the third axiom is satisfied. Furthermore, by [Oxl92, Theorem 9.1.2], this matroid
is binary.

Note. The fact that Ci was a set of circuits was not used in this proof, so C(M)

may be substituted with any set of sets and the result will still be a matroid.

Definition 4.68. Let M be a matroid. The extended Longyear derived matroid
δELM is the matroid from the previous proposition.

Proposition 4.69. If M is a binary matroid, then δLM = δELM .

Proposition 4.70. Let M be a matroid. Then δELM is a simple matroid.

Proof. LetD be a 1-circuit in δELM . ThenD is non-empty with an empty Kirkhoff
sum. If |D| = 1, then K(D) = supp(D), so this is not possible. If D = {C1, C2}
and K(D) = ∅, then this implies that C1∆C2 = ∅, so C1 = C2, and not possible.

Proposition 4.71. Let M be a matroid, and let B be a basis of M . Then the set
I = {CeB|e ∈ E(M)\B} is independent in δELM .

Proof. Let A ⊆ I. Then A = {Ce1B, . . . , CeiB}, and {e1, . . . , ei} ⊆ K(A), so A is
not a 1-circuit in δELM . Thus I contains no 1-circuits and is not a 1-circuit itself,
so it is independent in δELM .
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Even though this extended Longyear derived matroid coincides with the Longyear
derived matroid for binary matroids, they do not necessarily coincide with Oxley-
Wang derived matroids and combinatorial derived matroids. The following two
examples illuminates this.

Example 4.72. Let M = U2,4, which has the circuits C(M) = {123, 124, 134, 234}.
We have that δOWM = U2,4, and further that δFJKM = U2,4. However the Kirkhoff
sum of all non-empty subsets of C(M) are non-empty, so we have that δEL(M [A]) ≃
U4,4. We thus have that every dependent set in δELM are dependent in δOWM and
δFJKM in this case.

Example 4.73 (Continuation of Example 4.42). We are looking at the matroid
U3,8, and we have the set A = {1234, 5678, 1256, 3478}. The Kirkhoff sum of this
set is K(A) = ∅, so this is dependent in δELU3,8, but we have that A ̸∈ ↑A0

in the sense of the combinatorial derived matroid, so A is not dependent in the
combinatorial derived matroid.
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5 Implemented software

Parts of the theory on matroids are implemented in a software library, as a crate
in Rust, available at https://github.com/teo8192/matroid-rs [Knu23]. This
software has been used to calculate several of the examples in this thesis. The cor-
rectness of the code is verified with several unit tests. Several of the algorithms also
utilizes parallelization, which is done using the Rayon library [MS+] guaranteeing
data-race free execution.

It is quite simple to implement matroids, one only needs to find an algorithm
to get the rank function of the desired matroid. This is quite simple for uniform
matroids, by letting the rank of a subset be the minimum of the cardinality of
the subset and the rank of the uniform matroid. Vector matroids are letting the
subset select the column vectors in the specified matrix, and using Gauss-Jordan
to calculate the rank. If we have a list of bases for a matroid, the rank of a subset
is simply the largest cardinality of the intersection of the subset with any of the
bases.

When we already have a matroid, this can be used to create new ones. The
rank of a subset for the dual matroid can be calculated using the rank function of
the original matroid, see Section 3.5. The rank function of the l-th elongation of
a matroid can be formulated using the rank function of the original matroid, and
is given by

rM(l)(S) =

rM(S) + l if |S| − rM(S) > l

|S| otherwise

For combinatorial derived matroids, there are two ways this is implemented, de-
pending on if the matroid is a fast matroid or not. If it is a fast matroid, then the
bases of the matroid is computed using Equation (4.50). For non-fast matroids,
a modified version of [FJK23, Proposition 20] is used to find the bases. Since the
bases are the sets of maximal cardinality that are not circuits, or do not contain
a circuit as a subset, we can ignore some of the elements in the construction of
the circuits of the derived matroid. Algorithm 1 shows a simplified version of the
algorithm that is used.

The software has some limitations; since the internal representation of a set is
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Algorithm 1 Computation of bases of combinatorial derived matroid
procedure Bases of derived matroid(Matroid M with rank function r and
nullity function n)

rmax ← |E(M)| − r(M)
D0 ← min{D ⊆ C(M)|3 ≤ |D| ≤ rmax, |D| > n(D)}
i← 0
repeat

i← i+ 1
Di+1 ← min ϵ′(Di) ▷ Where ϵ′(D) = {D ∈ ϵ(D)||D| ≤ rmax}

until |Di+1| = |Di|
repeat
B ← {B ⊆ C(M)||B| = rmax, ∀S ⊆ B, S ̸∈ Di}
rmax ← rmax − 1

until B ̸= ∅
return B

end procedure

represented by a 32-bit or 64-bit integer depending on the architecture, the largest
possible sets that can be used are on 32 or 64 elements respectively. This sets
a limitation to the size of matroids where we can find the combinatorial derived
matroid, for example U3,8 has 70 circuits so the combinatorial derived matroid
cannot be calculated in this case. The upper limit could be extended by using
larger fixed representations, but for arbitrary sizes heap allocation would most
likely be necessary, causing performance loss based on the high frequency of the
creation and destruction of the set-type.

The software is also capable of calculating the Betti-numbers of free resolutions
of Stanley-Reisner rings from matroids. The next subsection gives an overview of
what this is, and how it is calculated. Appendix B has some calculated resolutions
of combinatorial derived matroids from uniform matroids and their elongations.

It is important to note that the determination of all Betti numbers of a repre-
sentable matroid associated to a linear code C over Fq, in addition to the determi-
nation of all Betti numbers of its elongations, also determines 2 other properties
of the code:
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1. Its higher weight spectra, i.e.

A(r)
w = |{C ′ ⊆ C| dimC ′ = r, w(C ′) = w}|

for all w, r.

2. Its generalized weight polynomials, Pw(z), for w = 0, . . . , n, where Pw(qm)
is the number of codewords of weight w for the code Cm = C ⊗

Fq

Fqm for all

m ∈ N.

There are certain formulas for passing from one such set of data to another, see
[Jur12] and [JRV16].

5.1 Calculation of Betti-numbers for matroids

Let E = {1, . . . , n} be a set. A simplicial complex ∆ ⊆ 2E is a collection of
subsets of E such that if S ⊆ T ∈ ∆ then S ∈ ∆. We can see that this is quite
reminiscent of the independent sets of a matroid, and the set of independent sets
is a simplicial complex. An element σ ∈ ∆ is called a face, and if it is inclusion
maximal it is called a facet. Let fk denote the number of faces of cardinality k.
The reduced Euler characteristic of ∆ is χ(∆) = −1 + f1 − f2 + · · · ± fk [Bjö92].
Define N (∆) = min{σ|σ ̸∈ ∆} as the inclusion minimal elements that are not in
the simplicial complex.

Let S = k[x1, . . . , xn] be the polynomial ring over some field k. The Stanley-
Reisner ideal of a simplicial complex ∆ is the ideal I∆ = ⟨xσ|σ ⊆ N (∆)⟩ and the
Stanley-Reisner ring R∆ is S/I∆, where xσ =

∏
i∈σ xi.

A ring R is Z-graded if R =
⊕

i∈ZRi and RiRj ⊆ Ri+j for all i, j ∈ Z.

Example 5.1 (Z-graded ring). Let R = S = k[x1, . . . , xn]. Define Ri = {0} for
i ≤ 0, R0 = k and Ri = {homogeneous polynomials of degree i}. We can see that
R =

⊕
i∈ZRi.

Let M be a finitely generated S-module. Similarly M is Z-graded if M =⊕
i∈ZMi and SiMj ⊆Mi+j for all i, j ∈ Z.
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We can also have Zn-gradings. These have a quite similar construction, and a
finitely generated S-module M is Zn-graded if M =

⊕
a∈Zn Ma and SaMb ⊆Ma+b

for all a,b ∈ Zn.

Example 5.2. We have that S =
⊕

a∈Zn Sa where

Sa =

⟨xa⟩ if a ∈ Zn≥0

0 otherwise

where xa = xa11 · · ·xann if a = (a1, . . . , an). Observe that Si =
⊕∑

aj=i
Sa.

Note the following observation: Let I ⊆ S be an ideal. Then I is a Z-graded
module if I is generated by homogeneous polynomials, and it is a Zn-graded module
if I is generated by monomials.

Given S, we have that S(d) is the same ring but with a different grading;

S(d)r = Sd+r.

This is called a shift.
Let M and N be Z-graded S-modules. Then φ : M → N is Z-graded if

φ(Mi) ⊆ Ni for all i.
A sequence of R-modules

Mi+1
φ→Mi

ψ→Mi−1

is exact if kerψ = imφ.

Definition 5.3. A long exact sequence

· · · → F2
φ1→ F1

φ0→ F0 →M → 0

of Z-graded S-modules with each

Fi =
⊕
j∈Z

S(−j)βi,j

is called a free Z-resolution.
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A Z-graded free resolution is called minimal if im(ϕi) ⊆ mFi, where m =

⟨x1, . . . , xn⟩. The Hilbert series of M can be recovered from the Betti numbers,
which yields s independent equations formulated as Boij and Söderberg [BS12]

l∑
i=0

∑
j∈Z

(−1)iβi,jjm, m = 0, 1, . . . , s− 1, (5.4)

where s is the codimension of M and l is the length of the resolution.

Theorem 5.5. The Betti-numbers βi,j are the same for all minimal free resolutions
of a S-module M for a fixed k. Further, if the module is the Stanley-Reisner ring
of a matroid, the Betti-numbers are independent of the choice of field k.

Proof. See [JV13].

A minimal free resolution with the property that

Fi =
⊕

a∈Z,
∑

r ar=j

S(−a)βi,a

is called a minimal Zn-graded free resolution.
We will now restrict our attention to the case of minimal free resolutions of a

Stanley-Reisner ring, and where the simplicial complex comes from a matroid. For
notation, let βi,σ = βi,a, where σ ⊆ {1, . . . , n} and ai = 1 if i ∈ σ and 0 otherwise.

Proposition 5.6. Let M be a matroid, and σ ⊆ E(M). Then βi,σ ̸= 0 if and only
if σ is a cycle of nullity i. Further,

βi,σ = (−1)r(σ)−1χ(Mσ),

where Mσ =M\(E\σ) is the restriction of the matroid to σ and χ(M) is the Euler
characteristic of the simplicial complex induced by the matroid M .

Proof. See [JV13, Theorem 1]

Note that we have
βi,j =

∑
σ⊆E,|σ|=j

βi,σ.
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The software uses Proposition 5.6 and Equation (5.4) to calculate the Betti-
numbers for a matroid.

The Betti-numbers of a matroid are connected to their generalized hamming
weights. From Proposition 5.6 we obtain

Proposition 5.7. For all 1 ≤ i ≤ n(M) = r∗(M), we have

di(M
∗) = min{j|βi,j(M) ̸= 0}.

Proof. See [JV13, Theorem 2].

The di(M) will be given by Theorem 3.24. The free resolutions listen in Ap-
pendix B will then in particular determine all the generalized weights di for all the
combinatorial derived matroids listed.
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6 Final overview

In this thesis we have described some foundational theory on codes and matroids,
and shown some aspects and properties of these objects. Because of their similar
nature, some connections between these topics have also been explained, such as
the fact that the generalized hamming weights of a code can be determined only
by its associated matroid.

Some of the history and different definitions of derived matroids has been men-
tioned. Further, the rank of the combinatorial derived matroid for a certain class
of matroids, fast matroids, has been proven to be equal to the corank of the ma-
troid, and an example of the combinatorial derived matroid of the Vámos matroid
shows that this is not true in general. A generalization of the concept of com-
binatorial derived matroids for lattices has been introduced, and some properties
of this matroid have been proven. This generalization is further used to define a
combinatorial derived matroid for q-matroids. The last subsection discussed a pos-
sibility of generalizing a construction by Longyear for obtaining derived matroids
from binary matroids only, to a construction than can be applied to all matroids.
We demonstrated that the resulting derived matroids may be different from the
derived matroids obtained by other authors.

Features of the software were discussed, and some details around specific op-
timizations to the calculation of the combinatorial derived matroid were given.
Further, Stanley-Reisner rings were introduced, in addition to free resolutions,
Betti-numbers and how these could be calculated.

During the research, writing and development, some questions came up that
could give rise to further investigations.

• The class of fast matroids seems to have some properties that are similar
to the class of transversal matroids. Uniform matroids are in both classes,
both are closed under deletion and direct sums, but neither are closed under
duality nor contraction. The matroid M(Sh(4)) is in neither class, but the
matroid on the right in Figure 5 is in both. Are there any relations between
these two classes?

• With the construction of the derived matroid from a lattice, we could try
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to look at the matroid formed by the lattice of flats of a matroid. If the
matroid is simple, then the derived matroid of the lattice of flats and the
original matroid works on the same ground set. Is this derived matroid of
any interest?

• One way to try to determine the upper limit for the rank of δELM could
be to create an independent set as in Proposition 4.71, and add one more
circuit. What would happen in this case?

The answer to whether it is possible to simplify the construction of the com-
binatorial derived matroid is that it is possible in some cases, namely for fast
matroids, but not in cases such as for the Vámos matroid and M(Sh(4)).
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A Alternative proof of Proposition 4.44 for uni-

form matroids

Proposition A.1. If M = Uk,n and A ∈ minA1, then A ∈ minA0.

Proof. Let A ∈ minA1. Either A ∈ minA0 and we are done, or we may find
A1, A2 ∈ minA0 such that A = A1 ∪A2\{C} for some C ∈ A1 ∩A2 (from [FJK23,
Lemma 18], i = 0). Let Si = supp(Ai) denote the union of the circuits. We want
to show that n(supp(A)) < |A|. First, observe that

|Ai| = n(supp(Ai)) + 1 = |Si| − k + 1. (A.2)

Since A1 ∩ A2 ̸∈ A0, we know that n(supp(A1 ∩ A2)) ≥ |A1 ∩ A2|. Also, note
that supp(A1 ∩ A2) ⊆ S1 ∩ S2 so n(S1 ∩ S2) ≥ n(supp(A1 ∩ A2)). From this, we
may see that

|S1 ∩ S2| − k ≥ n(supp(A1 ∩ A2)) ≥ |A1 ∩ A2| ⇒ −|S1 ∩ S2| ≤ −|A1 ∩ A2| − k
(A.3)

n(supp(A)) = n(S1 ∪ S2)

= |S1 ∪ S2| − k

= |S1|+ |S2| − |S1 ∩ S2| − k

≤ |S1|+ |S2| − |A1 ∩ A2| − 2k (from (A.3))

= |A1|+ k − 1 + |A2|+ k − 1− |A1 ∩ A2| − 2k (from (A.2))

= |A1| − 1 + |A2| − 1− |A1 ∩ A2|

< |A1| − 1 + |A2| − 1− |A1 ∩ A2|+ 1

= |A1\{C}|+ |A2\{C}| − |A1 ∩ A2\{C}|

= |A|

Thus n(supp(A)) < |A|, so A ∈ A0. Since A0 ⊆ A1, we must have that the
inclusion minimal elements in A1 that are in A0 must also be inclusion minimal in
A0. Therefore A ∈ minA0.
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B The resolutions of elongations of combinatorial

derived matroids of several uniform matroids

By δFJKU
(l)
k,n, we mean the l’th elongation of δFJKUu,k.

δFJKU1,2: 0← S/I ← S ← 0

δFJKU1,3: 0← S/I ← S ← S(−3)← 0

δFJKU
(1)
1,3 : 0← S/I ← S ← 0

δFJKU2,3: 0← S/I ← S ← 0

δFJKU1,4: 0← S/I ← S ← S(−3)4 ⊕ S(−4)3 ← S(−5)12 ← S(−6)6 ← 0

δFJKU
(1)
1,4 : 0← S/I ← S ← S(−5)6 ← S(−6)5 ← 0

δFJKU
(2)
1,4 : 0← S/I ← S ← S(−6)← 0

δFJKU
(3)
1,4 : 0← S/I ← S ← 0

δFJKU2,4: 0← S/I ← S ← S(−3)4 ← S(−4)3 ← 0

δFJKU
(1)
2,4 : 0← S/I ← S ← S(−4)← 0

δFJKU
(2)
2,4 : 0← S/I ← S ← 0

δFJKU3,4: 0← S/I ← S ← 0

δFJKU1,5: 0← S/I ← S ← S(−3)10 ⊕ S(−4)15 ⊕ S(−5)12 ← S(−5)60 ⊕ S(−6)155 ←
S(−6)30 ⊕ S(−7)450 ← S(−8)510 ← S(−9)260 ← S(−10)51 ← 0

δFJKU
(1)
1,5 : 0← S/I ← S ← S(−5)30⊕S(−6)85 ← S(−6)25⊕S(−7)420 ← S(−8)645 ←

S(−9)410 ← S(−10)96 ← 0

δFJKU
(2)
1,5 : 0 ← S/I ← S ← S(−6)5 ⊕ S(−7)100 ← S(−8)285 ← S(−9)260 ←

S(−10)79 ← 0

δFJKU
(3)
1,5 : 0← S/I ← S ← S(−8)45 ← S(−9)80 ← S(−10)36 ← 0

δFJKU
(4)
1,5 : 0← S/I ← S ← S(−9)10 ← S(−10)9 ← 0

δFJKU
(5)
1,5 : 0← S/I ← S ← S(−10)← 0

δFJKU
(6)
1,5 : 0← S/I ← S ← 0

δFJKU2,5: 0 ← S/I ← S ← S(−3)20 ⊕ S(−4)85 ← S(−4)15 ⊕ S(−5)588 ←
S(−6)1400 ← S(−7)1700 ← S(−8)1155 ← S(−9)420 ← S(−10)64 ← 0

δFJKU
(1)
2,5 : 0 ← S/I ← S ← S(−4)5 ⊕ S(−5)222 ← S(−6)975 ← S(−7)1700 ←

S(−8)1500 ← S(−9)670 ← S(−10)121 ← 0

δFJKU
(2)
2,5 : 0 ← S/I ← S ← S(−6)210 ← S(−7)720 ← S(−8)945 ← S(−9)560 ←

S(−10)126 ← 0

V



δFJKU
(3)
2,5 : 0← S/I ← S ← S(−7)120 ← S(−8)315 ← S(−9)280 ← S(−10)84 ← 0

δFJKU
(4)
2,5 : 0← S/I ← S ← S(−8)45 ← S(−9)80 ← S(−10)36 ← 0

δFJKU
(5)
2,5 : 0← S/I ← S ← S(−9)10 ← S(−10)9 ← 0

δFJKU
(6)
2,5 : 0← S/I ← S ← S(−10)← 0

δFJKU
(7)
2,5 : 0← S/I ← S ← 0

δFJKU3,5: 0← S/I ← S ← S(−3)10 ← S(−4)15 ← S(−5)6 ← 0

δFJKU
(1)
3,5 : 0← S/I ← S ← S(−4)5 ← S(−5)4 ← 0

δFJKU
(2)
3,5 : 0← S/I ← S ← S(−5)← 0

δFJKU
(3)
3,5 : 0← S/I ← S ← 0

δFJKU4,5: 0← S/I ← S ← 0

δFJKU1,6: 0← S/I ← S ← S(−3)20 ⊕ S(−4)45 ⊕ S(−5)72 ⊕ S(−6)60 ← S(−5)180 ⊕
S(−6)940⊕S(−7)1620 ← S(−6)90⊕S(−7)2700⊕S(−8)11565 ← S(−8)3060⊕
S(−9)36560 ← S(−9)1560 ⊕ S(−10)64350 ← S(−10)306 ⊕ S(−11)69660 ←
S(−12)47995 ← S(−13)20700 ← S(−14)5130 ← S(−15)560 ← 0

δFJKU
(1)
1,6 : 0 ← S/I ← S ← S(−5)90 ⊕ S(−6)520 ⊕ S(−7)900 ← S(−6)75 ⊕

S(−7)2520 ⊕ S(−8)11295 ← S(−8)3870 ⊕ S(−9)48520 ← S(−9)2460 ⊕
S(−10)106038 ← S(−10)576 ⊕ S(−11)136080 ← S(−12)108030 ←
S(−13)52650 ← S(−14)14535 ← S(−15)1748 ← 0

δFJKU
(2)
1,6 : 0 ← S/I ← S ← S(−6)15 ⊕ S(−7)600 ⊕ S(−8)2805 ← S(−8)1710 ⊕

S(−9)22280 ← S(−9)1560 ⊕ S(−10)69312 ← S(−10)474 ⊕ S(−11)114240 ←
S(−12)110250 ← S(−13)63120 ← S(−14)19995 ← S(−15)2712 ← 0

δFJKU
(3)
1,6 : 0 ← S/I ← S ← S(−8)270 ⊕ S(−9)3595 ← S(−9)480 ⊕ S(−10)21573 ←

S(−10)216 ⊕ S(−11)51975 ← S(−12)65625 ← S(−13)46305 ← S(−14)17415 ←
S(−15)2733 ← 0

δFJKU
(4)
1,6 : 0 ← S/I ← S ← S(−9)60 ⊕ S(−10)2697 ← S(−10)54 ⊕ S(−11)12750 ←

S(−12)23825 ← S(−13)22200 ← S(−14)10365 ← S(−15)1942 ← 0

δFJKU
(5)
1,6 : 0 ← S/I ← S ← S(−10)6 ⊕ S(−11)1335 ← S(−12)4945 ← S(−13)6870 ←

S(−14)4260 ← S(−15)995 ← 0

δFJKU
(6)
1,6 : 0← S/I ← S ← S(−12)455 ← S(−13)1260 ← S(−14)1170 ← S(−15)364 ←

0

δFJKU
(7)
1,6 : 0← S/I ← S ← S(−13)105 ← S(−14)195 ← S(−15)91 ← 0

δFJKU
(8)
1,6 : 0← S/I ← S ← S(−14)15 ← S(−15)14 ← 0

δFJKU
(9)
1,6 : 0← S/I ← S ← S(−15)← 0

VI



δFJKU
(10)
1,6 :0← S/I ← S ← 0

δFJKU2,6: 0← S/I ← S ← S(−3)60⊕S(−4)510⊕S(−5)3432 ← S(−4)45⊕S(−5)3528⊕
S(−6)64800 ← S(−6)8400 ⊕ S(−7)484200 ← S(−7)10200 ⊕ S(−8)2084460 ←
S(−8)6930 ⊕ S(−9)6015800 ← S(−9)2520 ⊕ S(−10)12554640 ← S(−10)384 ⊕
S(−11)19741800 ← S(−12)23916750 ← S(−13)22550880 ← S(−14)16564080 ←
S(−15)9404304 ← S(−16)4053525 ← S(−17)1284000 ← S(−18)282160 ←
S(−19)38460 ← S(−20)2451 ← 0

δFJKU
(1)
2,6 : 0 ← S/I ← S ← S(−4)15 ⊕ S(−5)1332 ⊕ S(−6)22830 ← S(−6)5850 ⊕

S(−7)318660 ← S(−7)10200 ⊕ S(−8)1966410 ← S(−8)9000 ⊕ S(−9)7329520 ←
S(−9)4020 ⊕ S(−10)18679386 ← S(−10)726 ⊕ S(−11)34629660 ←
S(−12)48275370 ← S(−13)51451620 ← S(−14)42136380 ← S(−15)26383812 ←
S(−16)12431055 ← S(−17)4272660 ← S(−18)1012460 ← S(−19)148020 ←
S(−20)10071 ← 0

δFJKU
(2)
2,6 : 0 ← S/I ← S ← S(−6)1260 ⊕ S(−7)64200 ← S(−7)4320 ⊕ S(−8)772800 ←

S(−8)5670 ⊕ S(−9)4247600 ← S(−9)3360 ⊕ S(−10)14259000 ← S(−10)756 ⊕
S(−11)32749080 ← S(−12)54414360 ← S(−13)67304160 ← S(−14)62728380 ←
S(−15)44035992 ← S(−16)22987965 ← S(−17)8670480 ← S(−18)2236780 ←
S(−19)353640 ← S(−20)25872 ← 0

δFJKU
(3)
2,6 : 0 ← S/I ← S ← S(−7)720 ⊕ S(−8)118500 ← S(−8)1890 ⊕

S(−9)1289200 ← S(−9)1680⊕S(−10)6445800 ← S(−10)504⊕S(−11)19640400 ←
S(−12)40643460 ← S(−13)60160320 ← S(−14)65276640 ← S(−15)52283088 ←
S(−16)30662775 ← S(−17)12835680 ← S(−18)3638960 ← S(−19)627120 ←
S(−20)49668 ← 0

δFJKU
(4)
2,6 : 0 ← S/I ← S ← S(−8)270 ⊕ S(−9)165200 ← S(−9)480 ⊕ S(−10)1645200 ←

S(−10)216 ⊕ S(−11)7498800 ← S(−12)20651400 ← S(−13)38158560 ←
S(−14)49634640 ← S(−15)46344672 ← S(−16)31043925 ← S(−17)14612400 ←
S(−18)4601080 ← S(−19)871920 ← S(−20)75312 ← 0

δFJKU
(5)
2,6 : 0 ← S/I ← S ← S(−9)60 ⊕ S(−10)184150 ← S(−10)54 ⊕ S(−11)1676300 ←

S(−12)6918450 ← S(−13)17034600 ← S(−14)27685680 ← S(−15)31011288 ←
S(−16)24229425 ← S(−17)13031700 ← S(−18)4615600 ← S(−19)971740 ←
S(−20)92318 ← 0

VII



δFJKU
(6)
2,6 : 0 ← S/I ← S ← S(−10)6 ⊕ S(−11)167900 ← S(−12)1385400 ←

S(−13)5115600 ← S(−14)11084100 ← S(−15)15517992 ← S(−16)14548275 ←
S(−17)9128400 ← S(−18)3694850 ← S(−19)875100 ← S(−20)92372 ← 0

δFJKU
(7)
2,6 : 0 ← S/I ← S ← S(−12)125970 ← S(−13)930240 ← S(−14)3023280 ←

S(−15)5643456 ← S(−16)6613425 ← S(−17)4979520 ← S(−18)2351440 ←
S(−19)636480 ← S(−20)75582 ← 0

δFJKU
(8)
2,6 : 0 ← S/I ← S ← S(−13)77520 ← S(−14)503880 ← S(−15)1410864 ←

S(−16)2204475 ← S(−17)2074800 ← S(−18)1175720 ← S(−19)371280 ←
S(−20)50388 ← 0

δFJKU
(9)
2,6 : 0 ← S/I ← S ← S(−14)38760 ← S(−15)217056 ← S(−16)508725 ←

S(−17)638400 ← S(−18)452200 ← S(−19)171360 ← S(−20)27132 ← 0

δFJKU
(10)
2,6 :0 ← S/I ← S ← S(−15)15504 ← S(−16)72675 ← S(−17)136800 ←

S(−18)129200 ← S(−19)61200 ← S(−20)11628 ← 0

δFJKU
(11)
2,6 :0 ← S/I ← S ← S(−16)4845 ← S(−17)18240 ← S(−18)25840 ←

S(−19)16320 ← S(−20)3876 ← 0

δFJKU
(12)
2,6 :0 ← S/I ← S ← S(−17)1140 ← S(−18)3230 ← S(−19)3060 ←

S(−20)969 ← 0

δFJKU
(13)
2,6 :0← S/I ← S ← S(−18)190 ← S(−19)360 ← S(−20)171 ← 0

δFJKU
(14)
2,6 :0← S/I ← S ← S(−19)20 ← S(−20)19 ← 0

δFJKU
(15)
2,6 :0← S/I ← S ← S(−20)← 0

δFJKU
(16)
2,6 :0← S/I ← S ← 0

δFJKU3,6: 0 ← S/I ← S ← S(−3)60 ⊕ S(−4)735 ← S(−4)90 ⊕ S(−5)8088 ←
S(−5)36 ⊕ S(−6)36850 ← S(−7)99000 ← S(−8)177705 ← S(−9)224840 ←
S(−10)204732 ← S(−11)134100 ← S(−12)61875 ← S(−13)19140 ←
S(−14)3570 ← S(−15)304 ← 0

δFJKU
(1)
3,6 : 0 ← S/I ← S ← S(−4)30 ⊕ S(−5)2697 ← S(−5)24 ⊕ S(−6)23375 ←

S(−7)91575 ← S(−8)215325 ← S(−9)336490 ← S(−10)364518 ←
S(−11)276750 ← S(−12)145200 ← S(−13)50325 ← S(−14)10395 ←
S(−15)971 ← 0

δFJKU
(2)
3,6 : 0 ← S/I ← S ← S(−5)6 ⊕ S(−6)4945 ← S(−7)38340 ← S(−8)134415 ←

S(−9)279020 ← S(−10)376866 ← S(−11)342720 ← S(−12)209490 ←
S(−13)82890 ← S(−14)19245 ← S(−15)1996 ← 0

VIII



δFJKU
(3)
3,6 : 0 ← S/I ← S ← S(−7)6435 ← S(−8)45045 ← S(−9)140140 ←

S(−10)252252 ← S(−11)286650 ← S(−12)210210 ← S(−13)97020 ←
S(−14)25740 ← S(−15)3003 ← 0

δFJKU
(4)
3,6 : 0 ← S/I ← S ← S(−8)6435 ← S(−9)40040 ← S(−10)108108 ←

S(−11)163800 ← S(−12)150150 ← S(−13)83160 ← S(−14)25740 ←
S(−15)3432 ← 0

δFJKU
(5)
3,6 : 0 ← S/I ← S ← S(−9)5005 ← S(−10)27027 ← S(−11)61425 ←

S(−12)75075 ← S(−13)51975 ← S(−14)19305 ← S(−15)3003 ← 0

δFJKU
(6)
3,6 : 0 ← S/I ← S ← S(−10)3003 ← S(−11)13650 ← S(−12)25025 ←

S(−13)23100 ← S(−14)10725 ← S(−15)2002 ← 0

δFJKU
(7)
3,6 : 0 ← S/I ← S ← S(−11)1365 ← S(−12)5005 ← S(−13)6930 ←

S(−14)4290 ← S(−15)1001 ← 0

δFJKU
(8)
3,6 : 0← S/I ← S ← S(−12)455 ← S(−13)1260 ← S(−14)1170 ← S(−15)364 ←

0

δFJKU
(9)
3,6 : 0← S/I ← S ← S(−13)105 ← S(−14)195 ← S(−15)91 ← 0

δFJKU
(10)
3,6 :0← S/I ← S ← S(−14)15 ← S(−15)14 ← 0

δFJKU
(11)
3,6 :0← S/I ← S ← S(−15)← 0

δFJKU
(12)
3,6 :0← S/I ← S ← 0

δFJKU4,6: 0← S/I ← S ← S(−3)20 ← S(−4)45 ← S(−5)36 ← S(−6)10 ← 0

δFJKU
(1)
4,6 : 0← S/I ← S ← S(−4)15 ← S(−5)24 ← S(−6)10 ← 0

δFJKU
(2)
4,6 : 0← S/I ← S ← S(−5)6 ← S(−6)5 ← 0

δFJKU
(3)
4,6 : 0← S/I ← S ← S(−6)← 0

δFJKU
(4)
4,6 : 0← S/I ← S ← 0

δFJKU5,6: 0← S/I ← S ← 0

IX



C Circuits of a derived non-fast matroid

Let M be the matroid of the following graph.

1 3

5

2 4

6

Label the circuits of this matroid in the following way:

a: 12
b: 34
c: 135
d: 235
e: 145
f: 245
g: 136
h: 236
i: 146
j: 246
k: 56

The matroid δFJKM has the following 1-circuits: {acd, bce, abde, abcf, bdf, aef,
cdef, agh, cdgh, bdegh, bcfgh, efgh, bgi, cegi, adegi, acfgi, dfgi, abhi, bcdhi, acehi,
dehi, acfhi, bcfhi, adfhi, cdfhi, befhi, cefhi, cfghi, abgj, bcdgj, acegj, adegj, bdegj,
cdegj, cfgj, adfgj, befgj, defgj, bhj, cehj, adehj, acfhj, dfhj, deghj, aij, cdij, bdeij,
bcfij, efij, degij, cfhij, ghij, cgk, adgk, begk, abfgk, defgk, achk, dhk, abehk, bfhk,
cefhk, bcik, abdik, eik, afik, cdfik, cfhik, fghik, abcjk, bdjk, aejk, cdejk, fjk, degjk,
eghjk, dgijk, chijk}
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