
Faculty of Science and Technology
Department of Computer Science

Exploring the inner mechanisms of 5G networks for orchestrating
container-based applications in edge data centers

Fredrik Hagen Fasteraune
Master thesis in Computer Science June 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

I would like to dedicate this thesis to my supervisors Anders and Arne.

“Simplicity is prerequisite for reliability”
–Edsger Dijkstra

“Premature optimization is the root of all evil”
–Donald Knuth

“I apologize for such a long letter — I didn’t have time to write a short one.”
–Mark Twain

Abstract
One of the novel new features of mobile 5G networks is what is commonly
known as "Ultra Reliable Low Latency" communication. To achieve the "Low
Latency" part, it is necessary to introduce processing and storage capabilities
closer to the radio access network, thus introducing Edge data centers. An
Edge data center will be capable of hosting third-party applications and a user
of these applications can access them using the cellular mobile network. This
makes the network path between the user equipment (UE) and the application
short in terms of physical distance and network hops, thus reducing the latency
dramatically.

This thesis looks into these new features of the 5th-generation mobile networks
to establish if, and how they can be used to orchestrate container-based appli-
cations deployed at edge data centers. The orchestration mechanism suggested
will be described in more detail in the thesis body but as an overview, it involves
using the user’s positions and the knowledge about which applications the users
are accessing and information about where these applications reside to move
applications between edge data centers.

One of the 5G exploration findings was that the location of users in a 5G
network can be determined using the Network Exposure Function (NEF) API.
The NEF is one of the new 5G network functions and enables trusted third-party
actors to interact with the 5G core through a publisher-subscriber-oriented API.
The proposed orchestration strategy involves calculating the “weighted average
location” of 5G users who have accessed the specific application residing in the
Edge within a specified time frame.

A live 5G network with a stand-alone (SA) core was not available at the time
of writing and part of the thesis work has therefore been to identify if there
exist network emulators with the functionality needed to reach the goal of
this thesis, i.e. design and implement the orchestrator based on interaction
with the network. More specifically: can we find a NEF emulator that can
be configured to give us network data related to user equipment location?
Unfortunately, the three alternatives considered: Open5Gs, NEF_emulator, and
Nokia’s Open5Glab do not fully meet our requirements for generating user

iv abstract

events. Open5Gs an open source 5G network implementation lacks the whole
NEF north-bridge implementation, NEF_emulator has limited implementation
and integration complexities, and Nokia’s Open5Glab’s simulated users are
inactive and thus do not generate sufficient data.

Given the absence of suitable emulators to generate the needed data, the thesis
pivoted to also include the design and implementation of a mobile network
emulatorwith the following key components: a mobile network abstraction that
encompasses crucial elements from 5G, such as users and radio access nodes,
allowing users to connect to the mobile network; a network abstraction that
hosts emulated edge data centers and the corresponding applications accessible
to connected users; and mobile network exposure that exposes mobile network
core events through a simplified NEF north-bound API implementation.

Finally, the thesis concludes by implementing the proposed orchestration strat-
egy using the mobile network emulator, demonstrating that orchestrating can
effectively reduce the end-to-end latency from users to applications, as evi-
denced by the obtained results.

Acknowledgements
I would like to give a special thanks to both of my supervisors Anders and
Arne, as well as thanks to my family and peers who have helped me through
this difficult period. And a special thanks to my girlfriend Ida Marie who is the
most awesome of all.

Contents
Abstract iii

Acknowledgements v

List of Figures ix

1 Introduction 1

2 Literature review, related work and projects 7
2.1 5th generation mobile networks 8

2.1.1 User plane . 12
2.1.2 Control plane . 13

2.2 Previous Work . 18
2.3 Related Work and Projects 19

2.3.1 Consolidate IoT Edge Computing with Lightweight Vir-
tualization . 19

2.3.2 Edge-computing-driven Internet of Things: A survey . 19
2.3.3 Service-Oriented MEC Application Placement in a Fed-

erated Edge Cloud Architecture 20
2.3.4 End-to-end simulation environment for mobile edge

computing . 20
2.3.5 Open5GS . 20
2.3.6 srsRAN . 21
2.3.7 medianetlab: NEF_emulator 22
2.3.8 Nokia: Open5Glab 22
2.3.9 Camara project . 23
2.3.10 CDN: Content Distribution Networks 23

2.4 Investigation of orchestration strategy using 5G 23
2.4.1 Location and traffic pattern monitoring 24
2.4.2 Investigating exsisting solutions 26

3 Methodology 31

4 Results 37

vii

viii contents

4.1 Design and Implementation 38
4.1.1 Mobile Network Emulator 39
4.1.2 Orchestrator . 46

4.2 Experiment . 47
4.2.1 Results . 47

4.3 Discussion . 51
4.3.1 Results . 51
4.3.2 Privacy concerns . 51
4.3.3 Alternative practical work 52
4.3.4 Limitations of the emulator 52
4.3.5 Limitations of the orchestrator 54
4.3.6 Alternative orchestration strategies 54
4.3.7 The 5G API and its definitions are terrible! 55

5 Conclusion 57
5.1 Future work . 58
5.2 Conclusion . 58

A Source code for Mobile Network Emulator 63

B Additional plots 65

List of Figures
1.1 Illustration of an initial situation where developer deploys ap-

plications . 3
1.2 Illustration of a worst-case scenario where users choose where

to place applications . 3
1.3 Illustration of a best-case scenario where the orchestrator help

choose where to place applications 4

2.1 Simplified 5G standalone core architecture with emphasis on
N reference points . 9

2.2 Simplified 5G standalone core architecture with emphasis on
Network function services . 11

2.3 Open5GS architecture overview 21
2.4 NEF emulator WebUI . 27
2.5 NEF emulator WebUI showing the map 28

3.1 This is a screenshot of the Kanban board during the thesis . . 33
3.2 Screenshot of project overview showing items with all cate-

gories . 34
3.3 Screenshot of commit frequency on GitHub for the master-thesis 35
3.4 Screenshot of commit frequency on GitHub for the emulator 35

4.1 Figure that shows the design of the mobile network emulator 39
4.2 Figure that shows the detailed implementation of the mobile

network emulator . 41
4.3 Snapshot of the WebUI during the experiments 48
4.4 Plot showing the average end-to-end latency for appliaction 0 49
4.5 Plot showing the average end-to-end latency for appliaction 1 49
4.6 Plot showing where every application is located 50

B.1 Plot showing the average end-to-end latency for appliaction 2 66
B.2 Plot showing the average end-to-end latency for appliaction 3 66
B.3 Plot showing the average end-to-end latency for appliaction 4 67
B.4 Plot showing the average end-to-end latency for appliaction 5 67
B.5 Plot showing the average end-to-end latency for appliaction 6 68

ix

x l ist of figures

B.6 Plot showing the average end-to-end latency for appliaction 7 68

1
Introduction

1

2 chapter 1 introduction

Traditionally, the evolution of telecom networks has occurred at a relatively slow
pace. However, a significant transformation is underway with the introduction
of 5G networks. These networks are in an excellent position to revolutionize
the structure and functionality of network systems, representing a remarkable
leap forward. 5G networks are expected to incorporate edge computing on a
large scale to achieve extremely low latency. Papers such as [1] and [2] help
build up and explore some possibilities related to edge computing and 5G
networks.

This shift in telecom networks signifies a departure from traditional approaches
and opens up new possibilities for enhanced connectivity, real-time applications,
and improved user experiences. As 5G continues to unfold, it is anticipated that
these advancements will shape the future of telecommunications and enable a
wide range of innovative services and applications.

Consider an infrastructure provider that has data centers in various locations.
Since these data centers are very close to the potential users we refer to them
as edge data centers, as they are relatively close to the edge of computational
resources. At least when considering the infrastructure provider’s point of view.
Suppose the infrastructure provider wants to offer Infrastructure as a Service
(IaaS), Containers as a Service (CaaS), and Functions as a Service (FaaS) using
these edge data centers,much similar to other cloud providers. This implies that
edge data centers can host applications, which can be everything from micro-
services to fully blown web-services. This is valid as long as the application
can be containerized and managed by tools like Docker or Kubernetes. An
illustration of this can be seen in Figure 1.1

We refer to the clients of these applications as users, and they can connect
either via the Internet or 5G networks. This thesis will focus on the users
connecting via 5G networks. We envision that all these applications can be
placed on any edge data center and thus be used by users. We strike a problem
when we let users freely choose which edge data center to place applications.
In the worst-case scenario, all applications will be placed in the same edge
data center. This will fatally throttle the performance, considering parameters
like latency, bandwidth and available resources on the said edge data center.
This is illustrated in Figure 1.2.

To handle this we want to optimize the placement of these applications to the
edge data centers in such a way that we minimize the aforementioned param-
eters. This is in other words an optimization problem where we have many
users that want to use applications that are placed in edge data centers.

We want to find an optimal distribution of applications in these edge data cen-
ters, so that we minimize the latency to the users, have the most computational

3

Edge Data center 1

Edge Data center M

Edge Data center 2

Application 1 Application 2

Application 3Application

Application O

Application 1

 Infrastructure as a ServiceDeveloper

Figure 1.1: Illustration of an initial situation where developer deploys applications

User 1

User 2

Edge Data center 1

Edge Data center M

Edge Data center 2

Application 1 Application 2 Application OApplication 1

User N

Figure 1.2: Illustration of a worst-case scenario where users choose where to place
applications

resources available at the edge data centers, and overall save bandwidth in
the network by minimizing the network routes between users and edge data
centers. However, there are some concerns with finding an optimal distribution.
Firstly an optimal distribution at one point in time is not optimal at a later time.
This is due to the user traffic pattern to the application changing over time.

4 chapter 1 introduction

Another concern is that the set of applications also constantly changes.

To solve this problem this thesis proposes an application orchestrator, which
has the goal of continually finding the optimal configuration of applications on
edge data centers. The application orchestrator will solve this by looking at the
application usage patterns of the users, and the locations of edge data centers
relative to the users who are using applications. Based on this information
the application orchestrator should be able to continually find an optimal
configuration of applications such that it minimizes latency between users and
applications, saves bandwidth by leveraging shorter routes and finally improve
resource availability. An Illustration can be seen in Figure 1.3

User 1

User 2

Edge Data center 1

Edge Data center M

Edge Data center 2

Application 1 Application 2

Application 3 Application 4

Application O

Application 1

User N

Orchestrator

Figure 1.3: Illustration of a best-case scenario where the orchestrator help choose
where to place applications

A previous capstone project has shown that introducing a mechanism to do
this precisely would be beneficial. The project’s results showed that it reduced
all users’ average latency and standard deviation. One of the significant disad-
vantages of the previous work is that it did not address how to properly use
and leverage 5G networks to achieve this task.

The main contribution of this thesis will be: Investigate 5G networks and their
capabilities to offer application migration. This includes providing an overview
of the architecture, services, and select functionality of a 5G standalone core
cellular network. Then if possible, we will leverage this insight to propose
an application orchestration mechanism. With the application orchestration
mechanism in place, we will investigate if there is possible to use some exist-

5

ing projects to generate realistic user data and traffic for implementing the
proposed strategy. Based on the results, some experiments will be conducted
to provide proof of concept.

The thesis will include a chapter consisting of a literature review, related work
and projects, which will cover the necessary technical background and related
work. It will then cover and suggest an application orchestration strategy using
user locations and traffic patterns to applications. Finally, the chapter will look
into existing projects where we will try to conduct some practical work to see
if there is possible to create a proof of concept. However, due to the projects
lacking features, we will design and implement a custom mobile network
emulator which will be described in the result chapter.

The literature review, related work and projects will be followed by a method
chapter outlining the problem of the thesis, the hypothesis of how to solve the
problem and, how the work process has been during the thesis.

The next chapter will be the result chapter which will go through the design and
implementation of the mobile network emulator and orchestrator. In addition
to experiments and discussions around the mobile network emulator and
orchestrator. The experiments section will cover a simple experiment using the
emulator and orchestrator as proof of concept. Finally, in this chapter, there will
be a discussion, which covers some issues and limitations of this thesis.

Finally, this thesis will include a conclusion, which recaps this thesis and
proposes some future work from the previous chapter.

2
Literature review, related
work and projects

7

8 chapter 2 literature review, related work and projects

To realize application orchestration using 5G it is appropriate to look into the
technical side of 5G. This chapter will look at selected technical details within
5G networks that we believe are useful to achieve application orchestration. To
be more specific we need to know how a third-party application can interact
with 5G networks to retrieve information about users and how that effect the
network and its users.

This section will be followed by previous work conducted and its results and
limitations. And as mentioned in the previous chapter there have been per-
formed some previous work that showed that application orchestration is
beneficial.

This will be followed by a section that will look into related work and projects
that are either, useful to establish the need for 5G networks and edge com-
puting, orchestration mechanisms to solve this problem, papers that propose
technologies that can be used to optimize edge data centers, and projects that
we find useful for this thesis.

Finally, we have a section that looks into and proposes an orchestration strat-
egy based on the literature review, related work and projects. This includes
proposing an orchestration strategy, in addition to practical work where we
investigate existing 5G-related solutions to see if any of them are viable for
performing practical experiments validating the orchestration strategy.

2.1 5th generation mobile networks

5th generation mobile cellular network, or 5G, is the fifth iteration of mobile
cellular networks. There are many advantages when using 5G networks com-
pared to the older generations. These are some of the advantages listed in
Qualcomm’s[3] marketing pitch:

One argument for adapting 5G compared to the older generations is that 5G
offers higher data rates. For instance, based on Qualcomm’s marked pitch, they
claim that 5G can offer up to 20 gigabits per second in peak data rate and an
average of over 100 megabits per second, compared to 4G, which only offers
up to 35 megabits per second in peak data rate and an average of 15 megabits
per second. Another point of using 5G compared to the older generations is
that 5G offers much more capacity. According to Qualcomm, 5G is designed
to handle 100 times more traffic concerning capacity and network efficiency.
5G networks offer lower latency; based on Qualcomm, it provides a ten times
decrease down to 1 ms. 5G utilizes the radio spectrummuch better than 4G. The
last point is that the 5G platform and core are based on one unified platform

2.1 5th generation mobile networks 9

NSSF

PCF

UDM

NSSAAF

AUSF

AMF SMF AF

NSACF

(R)ANUE UPF DN

N2N1

N6N3

N4
User Plane

Control Plane

N9

N22
N12

N58

N8

N11 N7 N5

N10

N81

N15

N14

N59

N13

N80

Figure 2.1: Simplified 5G standalone core architecture with emphasis on N reference
points

with more capabilities and features than 4G. It is this core that this thesis will
be in focus.

In the telecommunications domain, most components in 5G are referred to
as functions, this is because 5G is based on a MiMo (Multiple input Multiple
output) model. Where each component is capable to be replicated so the core
network is capable of massive horizontal scaling.

The 5G system logically divides into two parts: the user and control plane. The
user plane consists of users with 5G-capable equipment who can connect to
the 5G network and have their traffic sent to the public internet or other data
networks. The other part is the control plane, based on a service architecture
where the components are split into parts with different responsibilities. In
5G these components are called functions. For instance, the component which
is responsible for handling user policies within the control plane is called the
Policy Control Function. A simplified figure of the 5G architecture can be seen
in Figure 2.1

The user plane consists of four components: The clients with 5G capable user
equipment or for short UE, gNodeBs, which is the Radio Access Node (RAN)
and is responsible for forwarding data to the user plane function and handling
the communication between the control plane and UE. The next component
is the UPF (User Plane Function), which is a service-based component that is
responsible for handling the user data so that it reaches the data network. The
last component is the Data Network, which can be everything from the Internet
service provider’s private network, services, and, public internet.

10 chapter 2 literature review, related work and projects

The control plane consists of many service components, and each component
has its responsibilities; many components are strictly required for the network
to function, and some are not required but can provide useful functionality.
There are many components in the control plane, many can be seen in Fig-
ure 2.1.

Most of the components in the control plane are interconnected, and most parts
offer a Network Function Service, which they use to communicate internally.
The Network Function Service behaves like an interface to the other network
functions. The interface functions like a publisher-subscriber mechanism, so if
a network function wants to interact with another network function, it does this
through the Network Function Service. It is also possible to send “commands”
through certain network function services. For instance, in the NEF (Network
Exposure Function), which is a network function that lets external application
functions communicate with the control plane, it is possible to fetch the current
location of a UE. The most crucial notion here is that most network function
services behave like publisher-subscriber interfaces. The network function
services are defined over an HTTP (Hypertext transfer protocol). Figure 2.2
shows a simplified 5G core with an emphasis on how the network functions
expose network function services and how they communicate.

The other way components communicate in the 5G network is over other
protocols and interfaces. In the 3GPP specification[4], they refer to these as
reference points. These are more formally defined protocols for communicating
between network functions and other components. In 3GPP they call these
reference points N and a number. For instance, the N2 reference point describes
strictly how the (R)AN communicates with the AMF. In the 3GPP 5G system
architecture, they defined up to 95 reference points. Note that most reference
points between network functions are realized through the network function
service they provide. The exceptions are the refrence points N1 to N4, N6,
and N9. Figure 2.11 shows a simplified 5G core with an emphasis on how the
reference points are used. All the reference points can be found in the 3GPP
specification.

This thesis does not require to have in-depth knowledge of all components
in the control plane. Therefore will this literature review will focus on the
user plane and select components from the control plane. The components
which are selected from the control plane are chosen because they provide the
relevant functionality for achieving the application orchestration.

1. Note that Figure 2.2 and 2.1 are recreations of simplified figures from the 3GPP 5G system
architecture specification[4, Section 4]. They aim to show a simplified 5G network with a
minimum of network functions.

2.1 5th generation mobile networks 11

NSSF NEF NRF PCF UDM

NSSAAF AUSF AMF SMF SCP

AF EASDF

NSACF

(R)ANUE UPF DN

N2N1

N6N3

N4

Nnssf

Nnssaaf

Nnef

Nausf

Nnrf Npcf

Namf Nsmf
Nudm Naf

Nnacf

Neasdf

User Plane

Control Plane

N9

Figure 2.2: Simplified 5G standalone core architecture with emphasis on Network
function services

The components we will look into are the following:

• Access and Mobility Management Function (AMF).

• Policy Control Function (PCF).

• Session Management Function (SMF).

• Unified Data Management (UDM).

• Unified Data Repository (UDR).

• Network Data Analytics Function (NWDAF).

• Analytics Data Repository Function (ADRF).

• Service Communication Proxy (SCP).

• Network Exposure Function (NEF).

The following sections will go through the user plane and select functions from
the control plane. The intention is to show some understanding of how 5G
functions internally. The technical details in the following sections are based
on the technical specification published by ETSI and 3GPP[4].

12 chapter 2 literature review, related work and projects

2.1.1 User plane

User Equipment

User equipment (UE) refers to a device capable of connecting to 5G. UEs
encompass all devices that can connect to the 5G network using New Radio
(NR), the protocol that replaces the older communication protocol EUTRA used
for 4G.

In broad terms when a user equipment wants to connect to a data network it
contacts a Radio Access Node through a protocol called Non-Stratum Signaling
(NAS) which contacts the control plane and establishes a PDU-Session which,
finally enables the UE to access the internet.

Radio Access Nodes or gNodeBs

Radio Access Node (RAN) or in the 5G domain gNodeBs are the first point
of entry into the 5G network for UEs. In 5G gNodeBs base stations act as the
access points which the UEs can communicate with. They serve as interfaces to
communicate with the control plane and user plane. The gNodeB base stations
are physical devices placed in a locationwhere the telecommunications provider
wants to offer 5G.

User Plane Function

The User Plane function (UPF) is a component in the 5G core network and is
responsible for managing user sessions and directing traffic to the intended
destination. Although technically part of the control plane, it makes more sense
to classify the UPF as part of the user plane since it handles user traffic from
user devices into the data network.

The most interesting features the UPF offers are: Allocating UE IP address/pre-
fix, acting as an external PDU session point of interconnect when connecting
to the data network, routing and forwarding packets in connection with PDU
sessions, enforcing policy rules concerning gating, redirection, and traffic steer-
ing, performing lawful interception, handling Quality of Service for the user
plane, performing traffic verification, transport level packet marking, and fi-
nally, packet buffering. In addition, the UPF can respond to Address Resolution
Protocol (ARP) and IPv6 Neighbor solicitation requests, and provide MAC ad-
dresses corresponding to IP addresses. It can also expose network information,
such as QoS monitoring data. However, the UPF does not provide a network
function service interface, and the control plane interacts with it through other

2.1 5th generation mobile networks 13

interfaces, particularly the N4 interface.

Data Network

The data network in 5G can either be the public internet, private closed
networks and everything in between. The data network, which will be in focus
in this thesis is the public internet.

2.1.2 Control plane

Access and Mobility Management Function

The Access and Mobility Management Function or AMF is one of the most
central and critical components of a 5G standalone core network. It is the first
component that the UE will communicate within the control plane and the
AMF relays most of the UE requests to other components.

The AMF is responsible for signaling and mobility of user equipment (N1),
it also relays communication from RAN into the network (N2). It serves as
the endpoint for communication interfaces in the Radio Access Network and
handles signaling Non-Stratum Signaling NAS termination (N1) and cipher-
ing/integrity protection in the Non-Stratum context.

One of the primary roles of the AMF is to manage registration, connection,
reachability, and mobility for user equipment seeking to utilize the network.
This entails keeping track of the gNodeBs to which a UE is connected and
determining its reachability. The AMF is responsible for handling access au-
thentication, authorization, and slice-specific (which part of the radio frequency
the UE is using) networks for UEs. Additionally, the AMF facilitates lawful inter-
cept capabilities. The AMF enables transport from the UE to the core network,
facilitating the transmission of session management messages to the session
management function and SMS messages to the SMS function. The AMF acts
as a conduit for transporting messages between the core network components
and the UE. It provides notable transport and proxy services, including the
transport of session management messages from the UE to the session manage-
ment function and SMS messages from the UE to other users. The AMF also
facilitates location message transport between the UE and the LMF (Location
Management Function) as well as between the RAN and LMF.

The AMF supports cloud IoT optimizations in both the control and user planes.
It also includes features for restricting enhanced coverage provisioning based
on external parameters, which define the expected behavior of UEs or network

14 chapter 2 literature review, related work and projects

configuration parameters. The AMF also offers various features to support
non-3GPP access networks and roaming capabilities. To interact with the AMF
from the other services, the AMF provides a network function service and it
can be found in[4].

The AMF is important in our case because it provides many of the critical
features of how the UE is managed related to location and connectivity, and
it provides communication from the UE to the other control plane compo-
nents.

Policy Control Function (PCF)

The Policy control function (PCF) is responsible for providing Quality of Expe-
rience (QoE) and Quality of Service (QoS) profiles to the session management
function. The PCF does this by supporting a unified policy framework that
makes it possible to govern network behavior. This includes the PCF providing
policy rules to the other control plane functions so that they can enforce them.
Lastly, it uses the subscription information of users found in the Unified Data
Repository to make policy decisions.

The PCF provides a network function service that the other network functions
use to interact with the PCF. The network function services can be found in
the 3gpp specifications[4].

Session Management Function (SMF)

The session management function (SMF) is responsible for setting up the UDM
sessions in the core network. It is also managing the data path for a PDU
session.

The SMF has several key responsibilities as defined by the 3GPP specification[4].
It is responsible for establishing, modifying, and releasing tunnels between
the UPF and AN nodes. Furthermore, the SMF handles the allocation and
management of UE IP addresses, which may involve optional authorization.
The UE IP address can be obtained from either a UPF or an external data
network. In addition, the SMF provides DHCP (Dynamic Host Configuration
Protocol) services for both IP versions 4 and 6. When it comes to Address
Resolution Protocol (ARP) requests and IPv6 neighbor Solicitation requests, the
SMF promptly responds based on locally stored cache information for Ethernet
PDUs. It fulfills these requests by providing MAC addresses corresponding to
the IP addresses included in the requests.

2.1 5th generation mobile networks 15

Another crucial responsibility of the SMF is the selection and control of the
user plane function. This includes managing the UPF to perform proxy ARP or
IPv6 neighbor discovery. Additionally, the SMF can handle forwarding all the
aforementioned traffic to the SMF, specifically for Ethernet PDU sessions.

It is important to note that the SMF is the network service in 5G that config-
ures the traffic steering to the UPF, ensuring the traffic reaches the correct
destination.

The SMF like most other functions provides a network function service to
the other network services. The network function service specification can be
found in the 3gpp specification[4].

Unified Data Management (UDM)

Unified Data Management (UDM) is a 5G core system component responsible
for handling structured data in the 5G core network. In short, the UDM gen-
erates 3GPP AKA authentication credentials. This means that the UDM most
interestingly handles user identifications, which includes storage and manage-
ment of SUPI (Subscription permanent identifier) for each subscriber in the
5G system, de-concealment of privacy-protected subscription identifier (SUCI),
access authorization based on subscription data, UE’s Service network function
registration management, support service/session continuity, MT-SMS delivery
support, lawful intercept, Subscription management, SMS management. Fi-
nally, support for external parameter provisioning and disaster roaming.

The UDM provides a network function service that enables other services to
communicate with the component, and its definitions can be found in the 3gpp
specification[4].

Unified Data Repository (UDR)

The unified data repository(UDR) is a component in the 5G system responsible
for storing and retrieving data. More specifically, subscription data to the
UDM, policy data to the PCF, and structured data for exposure. It also handles
application data, which includes Packet flow descriptions, Application function
request information for multiple UEs. To make these mechanisms accessible
for other network functions, the UDR has a network function service, which
can be found in the 3gpp specification[4].

This component is relevant for application orchestration because it handles
much of the data that we need.

16 chapter 2 literature review, related work and projects

Network Data Analytics Function (NWDAF) and Analytics Data
Repository Function (ADRF)

Network Data Analytics Function (NWDAF) can support these features: Data
collection from other network functions, application functions, and OAM. The
NWDAF can handle service registration and meta-data exposure to other net-
work and application functions. The NWDAF can support analytics information
provisioning to other network and application functions. Finally, it can support
machine learning model training and provisioning to other NWDAFs, given
that they contain the analytics logical function. The NWDAF is accessible to
other network functions through its network function service, which can be
found in the 3gpp specification[4]:

The NWDAF retrieves and stores its data in another component called the
Analytics Data Repository Function ADRF. The ADRF provides a network
function service to achieve this.

Service Communication Proxy (SCP)

The Service communication proxy(SCP) is a service that provides indirect
communication, delegated discovery,message forwarding, and routing between
network functions and other SCPs. It also provides communication security,
load-balancing monitoring, and overload control. In addition, it can optionally
interact with the UDR to resolve identities.

The SCP does not provide a network function service interface, so other network
functions can not communicate with it.

Network Exposure Function (NEF)

The network exposure function (NEF) is a service component that exposes
internal network function services to external services outside the 5G networks,
such as a potential application orchestrator mechanism.

Based on the 3GPP specification[4] the NEF provides the following functionality:
The NEF exposes capabilities and events in the 5G core network to 3rd party
applications, external application functions (AFs), and edge computing. It
stores and retrieves information as structured data using the UDR(Unified Data
Repository).

The NEF is capable of secure provisioning of information from an external
application function to the network described by 3GPP[4]. This means that

2.1 5th generation mobile networks 17

Application functions (Applications in general) have a secure way of providing
information and data to the 5G core network, including but not limited to
expected UE behavior, time synchronization service information, and service-
specific information. Note that the NEF can authenticate and assist in throttling
the application function providing the information.

The NEF can provide translation of internal-external information, meaning it
can translate information exchanged with external application functions and
information exchanged with the internal network function. An example of this
is provided in the 3GPP specification[4], which states that the NEF is capable
of translating information between an Application Function Service Identifier
and internal 5G core information such as S-NSSAI. Meaning the NEF is capable
of masking network information and user-sensitive information to external
applications according to the core network provider’s network policy, which is
relevant for Section 4.3.2.

The NEF can redirect application functions to more suitable NEF/L-NEFs when
for instance serving an Application Function request for local information
exposure and detecting there is a more appropriate NEF instance to serve the
Application Function request.

The NEF collects information from other network functions based on the
exposed capabilities of other network functions. It stores this information as
structured data using a standardized interface to UnifiedData Repository. When
this is done, the information can be accessed through a re-exposed interface
to other network functions, application functions and, external applications.
This is a feature highly relevant for retrieving location information about
users.

The 5G core provider may have a single NEF to support the functionalities
described above or a subset of the functionalities. So it is assumed that it
provides most of the features that are listed.

The NEF has quite many network function services, and they are defined in
3GPP specifications[4]:

Finally, for third-party developers who want to develop third-party applications
to using the NEF, 3GPP has provided a north-bound API that is intended for
third-party developers to interact with. The north-bound API will be used for
this thesis.

18 chapter 2 literature review, related work and projects

2.2 Previous Work

This thesis builds upon prior research conducted in a capstone project. The
capstone project assessed the feasibility of implementing an application mi-
gration mechanism to automatically move third-party applications between
edge data centers, where the goal was to minimize latency accessing the
applications.

The capstone project accomplished this by designing and running a simulation
of a 5G-like network environment with multiple edge data centers. The simu-
lation featured an application orchestrator that monitored usage patterns and
network delays to determine the optimal location for an application.

The simulation consisted of 5 components:

Client simulator that represents users that wanted to use an application.

Base station simulator which was intended to represent a gNodeB(RANs).

UPF simulator which is a simplified abstraction for the 5G network where its
main responsibilities were to find and forward user traffic to the right
edge data centers.

Edge data center which acts as a simplified data center that contained sim-
plified applications.

Orchstrator which was a component that checked the traffic patterns of the
users accessing the applications, andmoved the applications to as optimal
locations on the edge data centers as possible.

The simulation results showed that, on average, an application orchestration
mechanism led to lower latency for most users and reduced standard deviation.
This thesis expands upon these findings to further explore the potential benefits
of the application migration mechanism.

The limitations of the previous work were that the UPF simulator was that
it was poorly designed and needed to be constantly updated to know where
each application was located in each instance. Additionally, the simulation only
focused on the orchestration of one container-based application at a time.

2.3 related work and projects 19

2.3 Related Work and Projects

2.3.1 Consolidate IoT Edge Computing with Lightweight
Virtualization

[1] focuses on presenting an in-depth analysis of the current requirements
of edge computing and light virtualization, where it focuses on harnessing
the power of the Internet of Things. In this context edge computing is a
compliment to the powerful centralized data centers with a large number of
nodes that provides virtualization close to the data source and end users. It
discusses and compares the applicabilities of containers and uni-kernels as
light virtualization technologies, where the focus is on enabling scalability,
security and manageability. Finally, the article tries to inspire further research
by identifying open problems and highlighting future direction to serve as a
road map for industry and academia.

This article is included to build a basis on why we are researching the topic that
we are. The article argues that mobile operators and containers are a solution
for moving applications and data closer to the users. This implies a greater
need for faster deployment and better infrastructure.

2.3.2 Edge-computing-driven Internet of Things: A survey

In [2] presents a survey that looks at the impact of edge computing on the
development of the Internet of Things and it points out why edge computing
is more suitable for IoT than other computing paradigms. In this context, the
paper presents edge computing as placing data processing in near-edge devices
instead of in remote cloud servers. They claim it is promising to build a more
scalable, low-latency IoT system. The main idea of edge computing is placing
data processing in near-edge devices instead of remote cloud servers. It is
promising to build more scalable, low-latency IoT systems. Many studies have
been proposed on edge computing and IoT, but a comprehensive survey of this
crossover area is still lacking. The paper categorizes recent advances in the field
from top to bottom covering six aspects of edge computing-driven IoT, where
it concludes with the lessons learned and proposes some challenges.

[2] is included because it helps to establish a basis for why we would want
application migration and edge-driven computing for areas such as IoT.

20 chapter 2 literature review, related work and projects

2.3.3 Service-Oriented MEC Application Placement in a
Federated Edge Cloud Architecture

[5] addresses the challenging question of where to deploy a set of Multi-
access Edge Computing(MEC) applications on a federated edge infrastructure
accessible by 5G networks. Especially when they need to meet the requirements
of the applications, considering both computational resources and latency while
maintaining availability. The paper formulates the service placement as an
integer linear problem, intending to balance the computational load between
the available Mobile Edge Platforms (MEP) while respecting the application
latency requirements and MEP service availability. They conclude that this
is an NP-hard problem, and to solve this problem efficiently, they propose an
algorithm based on Tabu-Search (TS) meta-heuristics.

This paper is included because it suggests a MEC application placement strategy
and is highly relevant to our use case. Unfortunately, the paper is quite heavy
and does not quite go into the specific implementations of how to do their sug-
gested algorithm. Due to time constraints, it is unfortunately only included as
an alternative orchestration mechanism and mentioned in Section 4.3.6.

2.3.4 End-to-end simulation environment for mobile edge
computing

[6] looks into and analyses end-to-end latency in simulated 5G network ar-
chitectures. It looks at proven simulators such as SUMO, OMNeT++ and
CloudSim, where the goal is to provide large-scale urban mobile simulation
environments. The paper discusses the benefits and challenges of such an
approach and provides example results that showcase some aspects of the po-
tential end-to-end delay analysis by collecting and process gathered simulation
output.

[6] is included because it provides alternatives to the previous work and some
useful lessons for this thesis as well.

2.3.5 Open5GS

Open5GS is an actively developed open-source implementation of a 5G stan-
dalone core and EPC + 5GSC combination An overview of its architecture can
be seen in Figure 2.3.

It implements most of the features specified in 3GPP release 17[4]. The imple-
mentation itself is written in C. This project is included in this thesis because it

2.3 related work and projects 21

Open5GS 4G/5G Control Plane Server

Open5GS 4G/5G User Plane Server

S6a

N7

S1-MME
SCTP: 36412

N11

N2
SCTP: 38412

N15

N12
N10

S5u

N6
(SGi)S1-U

UDP: 2152
N3

UDP: 2152

N4 (Sxb)

Sxa

S5cS11

S1-U

N3

Gx

SGW-c

SGW-u

AUSF
N13

N8N36

N35

NRF
SBI Connections

UDR

UDM

PCRF

Subscriber Database
(in MongoDB)

BB
U/

 v
BB

U

The Open5GS CUPS user plane server can be co-located with the
control plane server, or deployed independently to enable MEC

X2-AP
SCTP: 36422

PDCP

RR
H

Front Haul

DFE

4G/ 5G NSA
Air Interface

RLC

MAC

PHY

PCF

BB
U/

 v
BB

U/
 D

U+
CU

RR
U

Front Haul

DFE

5G SA
Air Interface

RRC

WAN, Internet

4G eNBs and 5G NSA gNBs
connect to the 4G MME

5G SA gNBs connect
to the 5G AMF

NSSF

Cx

HSS

The Open5GS control plane contains
components of a 4G/ 5G NSA Evolved

Packet Core, and also network
functions to implement a 5G SA Core

IMS Servers can be
connected here

 to enable VoLTE

(IMS)

Cx

Sxa N4 (Sxb)

MME(MSC)

An MSC can be
connected here to
enable SMSoSGS

SGs
SMF (PGW-c) AMF

UPF
(PGW-u)

N4u (Sxu)N4u (Sxu)

PDCP

RLC

MAC

PHY

RRC

Figure 2.3: Open5GS architecture overview

is a 5G core implementation and it is investigated more in Section 2.4.2

2.3.6 srsRAN

srsRAN [7] is a 4G and 5G software radio suite developed by Software Radio
Systems.

From the documentation, they deliver a complete RAN solution that is compli-
ant with 3GPP and O-RAN Alliance specifications. This means that the project
delivers a full L1/2/3 stack with minimal external dependencies. This makes it
possible to set up UEs, gNodeBs, and eNodeB in software and connect them to
4G and 5G cores networks.

This project is included in the thesis because Open5GS references this project
as a proof of concept in its documentation. It is also elaborated more in
Section 2.4.2

22 chapter 2 literature review, related work and projects

2.3.7 medianetlab: NEF_emulator

NEF_emulator[8] is a emulator that simulates UEs andgNodeBs. TheNEF_emulator
exposes a small subset of the 3GPP Northbridge OpenAPI specification, which
makes it possible to fetch information about the location and connectivity of
the simulated UEs.

This project is included because it looks promising to achieve application
orchestration due to having a minimal NEF API implementation. This project
is explored in Section 2.4.2

2.3.8 Nokia: Open5Glab

Nokia’s Open5Glab is a 5G network test suite that enables users to develop
applications that interact with a simulated 5G network through their NEF API
implementation. Their NEF implementation offers support for the following
functionalities:

• Obtaining monitoring events from users.

• Changing and interacting with the chargeable party.

• Allowing application developers to establish an AS session with QoS
parameters.

• Setting up NIDD sessions with UEs.

• Configuring network parameter settings for UEs.

• Managing PFDs (Packet Filter Data).

• Configuring resource management for background data transfer in UEs.

• Performing traffic influence on UEs.

• Obtaining analytics exposure of UEs and 5G networks in general.

• Configuring enhanced converged restriction control.

• Exposing an API for group message delivery via xMB for MBMS (Multi-
media Broadcast Multicast Service).

• Exposing an API for notifications of UE-updated location information.

2.4 investigation of orchestration strategy using 5g 23

• Exposing a telephony API that facilitates interaction with call notifica-
tions, third-party call control, user interaction, and SMS.

In short their offer parts of the NEF API with some additional services. This
project is included because it looks promising to achieve application orchestra-
tion due to having seemingly complete NEF API implementation. This project
is explored in Section 2.4.2

2.3.9 Camara project

CAMARA[9] is an open-source project that aims to define, develop and test
telco network capabilities. Meaning they intend to define usable APIs which
are easy and ergonomic to use. The CAMARA project is part of the Linux
Foundation and works closely with the GSMA Operator platform group to
define these APIs.

The CAMARA project is included in this thesis because it tries to address the
complex API definitions in 3GPP. This project ismentioned in Section 4.3.7

2.3.10 CDN: Content Distribution Networks

This paper[10] shows and presents Content Distribution Networks which is an
effective approach to improving Internet service quality. CDNs in general are
about replicating content and resources so that they are as close to the users
as possible. The paper gives an overview of CDNs, including the critical issues
which are involved in designing and implementing effective CDNs, and some
approaches to handle these issues. Finally, the paper presents a fast service
location for peertopeer systems.

CDNs are included in this thesis because of the similarity of application orches-
tration in terms of replication and most importantly resource management. It
will be used in Section 4.3.6

2.4 Investigation of orchestration strategy using
5G

In the real world, humans or machines connected to a 5G mobile network
are capable of moving around, i.e. changing their geographical location. In
a (future) 5G network, there may be many edge data centers spread around

24 chapter 2 literature review, related work and projects

at different geographical locations. All these edge data centers are capable of
hosting web-based services with APIs that can be used by humans or machines
while they potentially over time change their location.

If we assume that it is possible to deploy different applications to specific edge
data centers and assume that it is possible to change the edge data center
where specific applications are hosted, then we have a constantly changing
optimization problem when it comes to the distribution of network traffic and
edge data center load. We can also envision that it could be possible to distribute
(duplicate) services to more than one edge data center on demand, but this
part of the optimization problem has not been the focus of this thesis and will
be left for future work. The entity that resolves and handles this optimization
problem will in this thesis be called the orchestrator. The orchestrator needs
information to be able to solve the optimization problem. For the orchestrator
created in this thesis, the available information is assumed to be:

1. Information from the network about the geographical location of the
User Equipment (used by humans or Iot(Internet of Things) devices).

2. Information from the edge data centers about which UEs are at any given
point in time have accessed an application hosted in a specific edge data
center.

Using this information, the goal of this thesis is to design and develop an
orchestrator that solves the optimization problem that arises.

2.4.1 Location and traffic pattern monitoring

The goal is that we want to design an orchestration mechanism that picks up
the locations of the UEs and their traffic patterns. And with traffic patterns,
we refer to the number of times users are accessing available applications on
the open internet. This section aims to describe a possible solution on how to
achieve this, with some selected technical details.

Firstly we will look into how to retrieve the information we need from the 5G
network and how to process it. From Section 2, we can conclude that there
is possible to access a 5G standalone core network for an external application
function, which is through the NEF. In 3GPP the API defined to interact with
the NEF for third-party applications is called the north-bound API From here
on we will refer to this as the NEF API.

With this in mind, this is the architectural proposition for the orchestration
mechanism: We assume that the orchestrator knows about all the applications

2.4 investigation of orchestration strategy using 5g 25

that the cloud provider wants to orchestrate. Next, we also require that we
have access to the telecom providers’ 5G network and can interact with the
network through the NEF API.

In the data network, we have edge data centers at various locations, where
the orchestrator can deploy and remove the user-submitted applications. We
assume that the applications are accessible to all users. We also assume that
the network route is updated when we move an application from one site to
another. This is so we can assure that the application is available for the users
most of the time.

For the orchestrator service to orchestrate an application so it is closest to the
users, this thesis proposes to do it in the following way:

Keep track of all the relevant users that uses the application, and move the
application so that they are closest to most of the users. To do this we need the
locations of the users that use the applications, including their associated IP
address. To collect this information the orchestrator needs a service that sub-
scribes to the 5G network 3gpp-monitoring-event, which is a functionality
provided by the NEF API. The aforementioned service logs the events down to
a database.

The 3gpp-monitoring-event is a service exposed by the NEF API, and it lets
consumers of the API subscribe to events happening in the 5G network. The
monitoring event has many different events defined. However, for achieving
application orchestration the most interesting events for orchestrating are
the LOCATION_REPORTING and PDN_CONNECTIVITY_STATUS events. The
former gives us updates on where a specific UE is located. The latter gives
notifications when a UE establishes a PDU session and when the PDU session
is released. In the PDN_CONNECTIVITY_STATUS event, it states if the UE
establishes an IP-based PDU-session. It can also establish Mac-based and NIDD-
based sessions as well. We are interested in the IP-based PDU-session as they
are the ones we can use to correlate with the traffic at the application. And
thus find an approximation of the location of a user.

Next, we need to log who is accessing the applications on the data network side.
This can be as simple as the edge data center logging the IP and timestamp of
the user accessing the application.

The orchestrator can then group the information logged from the edge data
center and the 5G network to suggest an optimal placement for all applications.
In this thesis, we base this on the weighted average location of all the active
users of each application, where we minimize the distance between the edge
data center and the mean location of the users. We want to do it in this way

26 chapter 2 literature review, related work and projects

because the distance is closely related to the time used to traverse the distance.
By minimizing the distance, we are also minimizing end-to-end latency for the
users. The end-to-end latency is the duration from when a user sends a request
until it is processed and returned by the application. The weighted average
location is calculated by taking the location of an IP multiplying it with the
times it has been accessed, and finally dividing the result by the sum of the
weights.

2.4.2 Investigating exsisting solutions

To provide somethingmore valuable to the previous Section 2.4. It is appropriate
for some practical work to verify the orchestrator strategy proposed. The goal
of this practical work is to investigate if there are some already existing 5G
solutions that implement the NEF API and can produce data so that it is possible
to implement an orchestrator.

The existing solutions investigated and tested during this thesis were:

1. The open source projects Open5Gs[11] in combination with srsRAN[7]

2. Medianetlab’s NEF_emulator[8]

3. Nokias 5G NEF simulator: Open5Glab[12]

These three projects were chosen on the basis that they looked promising and
had seemingly many of the features we are interested in.

Firstly the Open5Gs and srsRAN were interesting because Open5Gs offer a
mostly complete 5G core. This means most of the components we can see in
Figure 2.3. Based on the documentation of Open5Gs it would be possible to use
it together with srsRAN,which is a project that lets us create and set up UE’s and
gNodeBs both with and without hardware that provides trancievers2.

The idea of practical work here was to use a 5G core running Open5Gs and
with multiple gNodeBs and UEs, this would give us full control over the envi-
ronment and we could easily interact with our 5G core. With this, we could
then implement an orchestrator that uses the information available from the
5G core to orchestrate and move applications between edge data centers with
the strategy proposed above.

Unfortunately, this is not possible due to Open5Gs not implementing the NEF

2. Examples can be found in the Open5Gs and srsRAN documentation

2.4 investigation of orchestration strategy using 5g 27

API3. Another limitation is that time, resources and funds are limited to explore
this variant of an experiment.

The next consideration was Medianetlab’s NEF_emulator. As mentioned in
Section 2.3, NEF_emulator is a 5G emulation suite that offers a limited set of
the NEF API.

The simulation is unique because it is possible to define and, dynamically add
UEs and gNodeBs (RAN) to the simulation. One of the most promising features
is to add tracks to the users so that they can move in and out of the range of
the RANs. This would create monitoring event notifications that are retrievable
using the NEF API. Finally, the emulator provides a great web user interface
for us to interact with, which can be seen in Figure 2.4 and 2.5

Figure 2.4: NEF emulator WebUI

The idea here for practical work is to create many RANs and users. Then, have
the users move between the RANs to create monitoring event notifications.
With this in place, design and implement a data network abstraction that
has edge data centers that contain applications. This is to let the users who
are connected to the 5G network connect and generate traffic on the applica-
tions contained within this data network. Finally with this in place, provide
application orchestration by implementing an orchestrator.

The NEF_emulator falls short of what we want because it only offers a limited
set of the defined NEF north bridge functionality. In addition to that fact that
we would have to implement much functionality around the NEF_emulator to
have applications and edge data centers, that can host the applications. Another

3. However, as of writing this thesis these features are planned, not implemented

28 chapter 2 literature review, related work and projects

Figure 2.5: NEF emulator WebUI showing the map

complication was to facilitate the users using the data network to access and
use the simulated applications located at the edge data centers. The overhead
of integrating with the NEF_emulator would be too time-consuming and we
would create a dependency on this project and it could suddenly change and
break our practical work as it is being actively developed.

The third and final project considered as a baseline for the practical work
was the Open5Glab from Nokia. The Open5Glab from Nokia exposes a mostly
complete NEF API implementation with some additions. They offer the 4G
compatible part of the NEF API, which means that the 5G network they use is
in a combination with 4G. During this thesis, we applied to get access to this
project to test and develop the orchestrator.

While Nokia’s NEF API was the one which was most feature complete, the users
we were granted access to within this system did not move so they never estab-
lished any PDU-sessions,whichwould trigger the PDN_CONNECTIVITY_STATUS
monitoring event or any meaningful updates for the LOCATION_REPORTING
event. This results in that we would only get a feel of how the orchestrator
would work in a static environment, which is not ideal. As it becomes difficult
to validate that the orchestrator working properly.

From the existing projects, all of them offer features we are interested in.
Open5Gs and srsRAN offer a mostly complete 5G core, however, they lack the
NEF API functionality, which is crucial to do the orchestration. NEF_emulator
offers most of the features we are looking for. However, they lack the edge data
center and application abstractions, which is cumbersome and time-consuming
to implement and integrate with this system. The same applies to Nokia’s

2.4 investigation of orchestration strategy using 5g 29

Open5Glab, They offer a mostly complete NEF API interface. However the UE’s
we have access to never move, which is a critical part we need to implement
orchestration. To address these issues in this section, this thesis will shift to
design and implement a simplified mobile network emulator that addresses
the lacking features of the aforementioned projects, and try to complete a
feature set that we need for application orchestration. And if the first draft
is satisfactory we will also implement the application orchestration strategy
proposed in this chapter.

3
Methodology

31

32 chapter 3 methodology

This chapter will explain the problem, the hypothesis and, the work process in
detail.

This thesis is based on the following problem. If an edge data center at one
given location has too many applications this will result in the edge data center
throttling and the performance and latency of the applications suffer. Ultimately
the endusers suffer. To solve this problemwe propose this hypothesis: If the users
are connected to 5G and use the applications, is it possible to use information
about the user’s locations and their usage pattern at each application to suggest
a more optimal distribution of all applications such that the overall end-to-end
latency gets lowered and we get more capacity at each edge data center?

This thesis is solved by using an agile-based[13] work method. Do note that not
everything stated here has been followed, for instance, there have been no teams
due to this being an individual master’s thesis. Agile software development is
an approach to building software that focuses on collaboration, adaptability,
and delivering value to the end customer. It is a great alternative to traditional,
sequential development methods like Waterfall.

Agile projects are divided into short time frames called iterations or sprints.
Each iteration typically lasts from one to four weeks and involves planning, de-
velopment, testing, and review. For this thesis use case, the time frame for each
iteration is about 1 week which includes planning, development and testing.
With a meeting with supervisors every two weeks to act as reviews.

Popular Agile methodologies include Scrum, Kanban, Extreme Programming
(XP), and Lean Software Development. Each methodology has its specific prac-
tices and guidelines, but they all share the core principles of Agile software
development. Overall, Agile software development is characterized by its flexi-
bility, collaboration, and customer-centric approach, allowing teams to deliver
high-quality software iteratively and adaptively.

The most applicable agile method used in this thesis is Kanban[14]. In short,
Kanban is an Agile methodology that focuses on visualizing and managing
work in progress. It originated from Toyota’s manufacturing practices and has
gained popularity in software development.

In Kanban, work items are represented by cards or sticky notes on a visual
board. The board is divided into columns representing different stages of the
workflow. It helps visualize the flow of work and maintains transparency within
the team.

At the beginning of the thesis, the board was replaced with notes and to-do
lists. Later in the thesis, a board is in place and an excerpt can be seen in

33

Figure 3.1. The board itself has six columns which contain:

todo which are items in the backlog.

in progress which are the items currently being done.

parked which are items started but not actively being worked on.

blockers which are items that halt progress.

done which are finished items

ask A&A which are items that I need to ask supervisors about.

Figure 3.1: This is a screenshot of the Kanban board during the thesis

Kanban introduces work-in-progress (WIP) limits to prevent overloading. Each
column has a limit, encouraging the team to focus on completing tasks before
starting new ones. This reduces multitasking and improves flow. This has been
done in a somewhat capacity, as it helps prioritize however it could have been
done better.

Kanban operates on a pull-based system, where team members pull work from
the previous column when they have capacity. This ensures a continuous flow
of work and promotes collaboration to resolve constraints.

Continuous improvement is a key aspect of Kanban. By monitoring metrics like
cycle times and lead times, the team can identify areas for improvement and
implement changes gradually. For this thesis, this has not been a priority.

Kanban is customer-focused, prioritizing work based on customer needs. This

34 chapter 3 methodology

ensures that the most important tasks are addressed first. This has been im-
portant in our case as we want to design and implement orchestration strate-
gies.

Kanban allows for evolutionary change, making it flexible for teams to intro-
duce and adjust based on their needs. It offers transparency, efficiency, and
continuous improvement by visualizing workflow, limiting work in progress,
and focusing on customer value. For this thesis, this Kanban has been used
loosely.

Other metrics that have been used in the thesis are difficulty from easy to
difficult, priority from low to high, finally, each task has been categorized into
text, thought, implementation and action. An excerpt of this can be seen in
figure 3.2

Figure 3.2: Screenshot of project overview showing items with all categories

The thesis can broadly be explained in several phases; The first phase included
researching and writing about 5G networks, the second phase included investi-
gating orchestration possibilities and testing 5G environments if they provide
what we need, and the third phase included designing, developing, testing and
writing about the findings from the previous phase, the final phase was about
writing and closing out this thesis.

It must be disclosed that ChatGPT[15] has been used in this thesis. ChatGPT
is a generative AI tool that has been used to restructure and rephrase some
sections in this thesis. ChatGPT in short functions as a chatbot service where
it generates output based on the input passed in. It has been used to rephrase
some sections by passing them in asking it to rephrase and improve working
in those sections. If the wording was better than the initial section it would
replace the section, while correcting the technical content.

Finally, the thesis and Mobile Network Emulator implementation has been

35

version-tracked using Git and GitHub.

Here are some relevant statistics for the thesis and emulator: Figure 3.3 and
3.4 show the frequencies of commits for each project. Notice that when there
are few commits in the master-thesis project there are quite many commits
in the Mobile Network Repository repository. In the master thesis repository,
there are about 232 commits, and for the Mobile Network Emulator repository,
there are 91 commits and counting. For the Mobile Network Emulator, there
are about 2700 lines of code in the implementation.

Figure 3.3: Screenshot of commit frequency on GitHub for the master-thesis

Figure 3.4: Screenshot of commit frequency on GitHub for the emulator

4
Results

37

38 chapter 4 results

4.1 Design and Implementation

The design and implementation of an emulator play a crucial role in the
development and evaluation of the proposed orchestration strategy. In the
context of this thesis, an emulator is required to address the limitations and
gaps found in existing 5G solutions, specifically in terms of implementing the
NEF API, generating suitable data and achieving application orchestration. This
section presents the design and implementation of Mobile Network Emulator,
which will be developed as part of the practical work in this thesis.

The primary objective of the emulator is to create a flexible and extensible
platform that emulates select functionalities of a 5G network. This includes key
elements such as UEs, RANs, a publisher-subscriber interface that resembles
the NEF API and finally, a data network abstraction containing edge data
centers that can host simplified applications. The emulator should provide the
necessary infrastructure to facilitate the movement of UEs within the network,
generating monitoring event notifications and enabling seamless interaction
with the emulated applications hosted by the edge data centers.

One of the main considerations in the emulator is to ensure compatibility
with the NEF API. This allows for the effective management and orchestration
of applications and resources within the emulated network environment. By
adhering to the 3GPP standards[4], the emulator can serve as a reliable testbed
for evaluating the proposed orchestrator and its effectiveness in emulated 5G
network scenarios.

Additionally, the emulator aims to address some of the limitations identified in
the existing projects, namely in NEF_emulator and Nokia’s Open5Glab. While
these projects offer various features of interest, they lack critical functionality
required for comprehensive application orchestration, such as complete inter-
action with emulated applications and edge data centers and, in Open5Glab’s
case movement of UEs

To overcome these limitations, the emulator design will incorporate a simplified
emulation suite. This suite will encompass the necessary NEF API functionality,
enable dynamic movement of users within the network, emulate monitoring
event notifications triggered by user mobility, and provide an interface for
enabling interaction with applications hosted in the edge data centers. By
combining these features, the emulator will offer a powerful tool for evaluating
and refining a potential application orchestrator.

The following sections will cover the design and technical implementation
of the Mobile Network Emulator, its components, and an orchestrator. The
first section will try to give an overview of functionality within the Mobile

4.1 design and implementation 39

Network Emulator. The next subsections will go into more detail about how its
components are designed and implemented. Finally, the next section will cover
the design and implementation of an application orchestrator that will use this
emulator. The subsections are built up this way due to the implementation
being close to the logical design.

4.1.1 Mobile Network Emulator

Users

Radio Access Node 1 Edge Data Center 2Edge Data Center 1

Data Network

Application 1 Application 2Application 3

Radio Access Node 2

Mobile Network Core

Shared Database

Orchestrator

Figure 4.1: Figure that shows the design of the mobile network emulator

Firstly is the mobile network emulator. An illustration of the design can be
seen in Figure 4.1. The intention behind the illustration is to show how the
logical design of the emulator on a high level.

The big picture is to have the emulator organized mainly into three parts: The
first component is the Mobile Network Core, which is intended to emulate the
most important parts of the control and user plane of a 5G network. This implies
the most critical functionality of the AMF, SMF and UDM. It also emulates user
equipment(UEs) that are capable connect to radio access nodes(RANs). When
the UEs are connected to RANs they can use the data network that contains
edge data centers and applications.

The next component is the Network. The Network component is intended to
emulate a data network containing edge data centers and applications. One of
the main responsibilities of the network is to handle the application traffic from
the users and forward them to the applications hosted on the edge data centers.

40 chapter 4 results

This functionality is very similar to the UPF in terms of forwarding traffic to
the Data Network which is intended to be the Internet. So when a user wants
to access an application it accesses the network which routes the user request
to the appropriate edge data center containing the application.

The third component in the emulation is the Mobile Network Exposure. It is
intended to emulate the publisher-subscriber pattern which the NEF API uses.
The Mobile Network Exposure lets clients subscribe to well-defined Mobile
Network Core events and will notify all subscribers of new events. In Figure 4.1
Mobile Network Core and Mobile Network Exposure are merged as the mobile
network.

Mobile Network emulator also has frontend visualization, which shows live the
current locations of edge data centers, RANs and, users. A screenshot can be
seen in Figure 4.3.

The Mobile Network Emulator is implemented using the Rust programming
language[16]. The main reason for this is that Rust is a systems programming
language that is intended to be fast and memory-efficient. In addition, it
has a strong type system and a good package manager called Cargo. For an
emulation like this where we want to have a lot of control over the memory
and performance, Rust is an excellent choice.

A detailed illustration of the architectural implementation can be seen in
Figure 4.2. The figure represents all the data structures and API endpoints
defined for Mobile Network Emulator and their relationship with each other.
The figure itself is based on a UML diagram however, there has taken some
liberties. This is to best represent the implementation as it is not written in an
object-oriented language which UML works great to represent.

This figure intends to show how the three main different components interact
with each other, where the three different components are marked by different
colors. Clients can interact with the components through the defined API
endpoints, which act as the point of entry in this figure. This means that
there are three points of entry to interact with the emulation, namely Mobile
Network Core API Endpoints for internal mobile network features, Mobile
Network Exposure API endpoints for NEF API functionality, and Network API
endpoints for interacting with the data network. The figure itself will also be
handed in as an extra appendix outside this thesis due to its size.

The main function of the Mobile Network Emulator uses all the components
found in Figure 4.2. Currently specifying the number of users, RANs, edge
data centers and a starting number of applications is done here. When the
program itself is started it runs as a state machine where the RESTful APIs are

4.1 design and implementation 41

Publishes MobileNetworkCoreEventsMobileNetworkCore

orphans: Vec<User>

rans: Vec<Ran>

ip_addresses: Vec<IpAddr>

try_connect_orphans()

update_user_positions()

generate_location_events()

use_applications()

get_connected_users()

get_connected_users_mut()

get_rans()

get_all_users()

Ran

id: u32

position: Point

radius: f64

connected_users: Vec<PduSession>

get_current_connected_users()

get_connected_users()

update_connected_users()

get_id()

contains()

get_position()

connect_user()

connect_users()

get_current_connected_users_mut()

PduSession

user: User

ip_address: IpAddr

ran: Arc<Ran>

release()

user()

user_mut()

update_user_position()

ip()

get_ran()

User

id: u32

position: Point

velocity: f64

bounds: Range<f64>

current_direction: (f64,
f64)

last_application: usize

get_id()

next_pos()

choose_application()

1..n

Publishes data about application access

Network

edge_data_centers:
Vec<EdgeDataCenter>

get_edge_data_centers()

get_edge_data_center()

get_edge_data_center_mut()

get_total_application_usage()

get_applications()

use_application()

1..1

EdgeDataCenter

application_runtime:
ApplicationRuntime
id: u32

name: String

position: Point

get_id()

add_application()

remove_application()

use_application()

get_total_uses_of_application()

get_position()

get_applications()

contains_application()

1..n

ApplicationRuntime

applications:
Vec<Application>

add_appliaction()

remove_application()

contains_application()

use_application()

num_applications()

get_application()

Application

id: u32

accesses: HashMap<IpAddr, Vec<Duration>

id()

add_access()

get_access_by_ip()

get_total_accesses()

Fetches MobileNetworkCoreEvents

MongoDB

1..n

MobileNetworkExposure

event_subscribers:
Vec<Subscriber>
http_client: Client

add_subscriber()

get_subscribers()

publish_events()

Subscriber

subscriber: EventSubscriber

recieved_events:
HashSet<MobileNetworkCoreEvent>

get_subscriber()

EventSubscriber

notify_endpoint: String

kind: EventKind

user_ids: Vec<u32>

MobileNetworkCoreWrapper

MobileNetworkCore:
RwLock<MobileNetworkCore>

1..1

MobileNetworkExposureWrapper

MobileNetworkExposure:
RwLock<MobileNetworkExposure>

1..1

NetworkWrapper

Network: RwLock<Network>

1..1

Owns orphan users

1..n

1..n

1..1

Interacts with

1..1

Accesses

Network API Endpoints

GET: /network/edge_data_centers

GET: /network/edge_data_centers/{id}/appliactions

GET: /network/edge_data_centers/{id}/applications/{id}/total_usages

POST: /network/edge_data_center/{id}/applications/{id}

DELETE: /network/edge_data_center/{id}/applications/{id}

Accesses

MobileNetworkCore API Endpoints

GET: /mobile_network/users

GET: /mobile_network/connected_users

GET: /mobie_network/rans

POST: /mobile_network/update_user_positions

Accesses

MobileNetworkExposure API Endpoints

GET: /mobile_network_exposure/events

GET: /mobile_network_exposure/subscribers

POST: /mobile_network_exposure/subscribers

DELETE: /mobile_network_exposure/subscribers

POST: /mobile_network_exposure/publish

Accesses

Figure 4.2: Figure that shows the detailed implementation of the mobile network
emulator

used to fetch information about the emulator as well as to progress (step) the
emulation forward.

The emulator has an associated MongoDB as the shared database as seen in
both Figure 4.1 and 4.2. The mobile network core and network store data in the
database, and mobile network exposure fetches data from the database.

The following subsections will cover how the MobileNetworkCore, Network
and, MobileNetworkExposure are implemented.

MobileNetworkCore

The MobileNetworkCore is divided into four main components; MobileNet-
workCore, User, RAN, and PduSession. In Figure 4.2 the components marked
in red are all the components related to MobileNetworkCore.

42 chapter 4 results

We will begin looking into the implementation and features of the user(s). A
user is composed of an id, position, velocity, current direction, bounds to make
sure that they are within bounds, and finally a reference to the last application
it has used. The main features of the users are that they can move around on
a map using continuously generated paths. This will bring them within and
outside the range of RANs.

The RAN is a data structure that contains an id, position, radius, and a list of
users that are currently connected to it. RAN provides many utility functions
for managing the users and itself. The RAN is capable of updating the positions
of the connected users, and if they go out of its RANge it will release the
user.

This means that a user can be either connected to or disconnected from the
mobile network. If the user is connected or disconnected is managed by the
MobileNetworkCore and will be explained later in this section.

When a user is connected to the mobile network it has an established PDU
session, much similar to how UEs have PDU sessions when connected to 5G
networks. A PduSession is a data structure that encapsulates a user, an IP
address and a reference back to the RAN that the PDU session is associated
with. It is a utility structure the MobileNetworkCore uses to associate the users
that are connected to its RANs. It is mainly a mechanism to associate an IP
address with a User.

During each update in the emulator, a connected user will pick an application
and send a “use request” via the Network. This means that a user connected
to the mobile network can access all applications hosted in different edge data
centers. The user also remembers the last application it has used so it can be
configured to have a tenancy to reuse the current application it has stored in
memory.

Finally, we have the MobileNetworkCore, which is the data structure that
manages all users, RANs and, PduSessions. The data structure itself contains
a list of all users that are not connected to any RANs, namely orphans, a
list of all RANs, and a list of all preallocated IP addresses it has available.
The MobileNetworkCore has a couple of features. The first feature is that
MobileNetworkCore has a mechanism for connecting users to RANs. This is
done by checking which orphans are within the range of a RAN. If this is the
case the MobileNetworkCore creates a PDUSession with one of its preallocated
ip and places the PDU session encapsulation the user and the ip into the RAN.
This is the functionality that is similar to the session management function
(SMF) with creating and releasing PDU sessions.

4.1 design and implementation 43

The other feature of the MobileNetworkCore is that it has a mechanism for
updating all positions for all users. If any user goes out of range of a RAN the
mobile network will check if it belongs to any other RANs, and if this is not
the case the MobileNetworkCore will release the PDU session and keep track
of where the user is located. This functionality is related to the Access and
mobility function (AMF).

For our orchestrator to manage applications, we need some data from the mo-
bile network. To facilitate for this the MobileNetworkCore generates events the
users connect and disconnect from the mobile network. As well as when users
move in, out and, within range of RANs. These events are defined as MobileNet-
workCoreEvent(s) and are currently implemented as two variants:

PdnConnectivityStatus for when PDU sessions are established and released.

LocationInformation for users when they enter, leave or move within RANs.

These events are designed to be as close as possible to the real NEF API
definitions found in the 3GPP OpenAPI specification[4]. These also correlate
to the events described when proposing an application orchestration strat-
egy earlier in this thesis. The MobileNetworkCoreEvent(s) are stored by the
MobileNetworkCore in the shared database.

To interact with the mobile network core, it provides a REST API that can be
used to get information about the users, RANs, and PDU sessions. It also exposes
an endpoint that updates and generates events. The intention is that the API is
only available for internal tools like the frontend and other smaller tools used
in the experiments. The specific API endpoints can be seen in Figure 4.2

Network

The network component plays a crucial role in the mobile network emulator as
it represents the data network infrastructure. It encompasses the management
of edge data centers that host application runtimes containing various appli-
cations. This is the component that the users within the MobileNetworkCore
use to access the edge data centers and their applications. In Figure 4.2 the
components related to the network are marked blue.

The Applications within the emulator are intended to emulate container-based
applications. The Application is a data structure that is composed of an id and
a HashMap where the key is an IP and the values are a list of timestamps that
indicates when an IP has accessed the application. This is to log the accesses
from users within the MobileNetworkCore. When a user access an application,

44 chapter 4 results

it logs the IP address and timestamp when the application was accessed by the
IP.

All applications are managed by an application runtime, which is a data struc-
ture managed by the EdgeDataCenter. The application runtime is intended to
be container orchestrators like Docker or Kubernetes. It is implemented as a
data structure containing a list of applications and has functions for adding,
removing and using applications.

The application runtime is contained within an EdgeDataCenter. The EdgeDat-
aCenter contains an id, the aforementioned ApplicationRuntime, a name and,
a position. The EdgeDataCenter has functions for getting, using, adding, and
removing applications from its ApplicationRuntime, and each EdgeDataCenter
has a different ApplicationRuntime hosting different applications.

All EdgeDataCenters are connected to a network. The Network manages and
exposes an interface to interact with the EdgeDataCenters both internally for
mobile network users and externally. The Network has the functionality to let
users use applications, as well as add and remove the applications. When a user
accesses an application it is the network that is responsible for measuring “the
access time” between the user and the application. This is done by measuring
the Euclidian distance between the RAN the user is connected to and the edge
data center that is hosting the application. This distance value will be used as
an emulated latency measure for the experiment in Section 4.2.

To interact with the network, it provides a RESTful API that can be used
to get information about the edge data centers and the applications. These
endpoints are intended to be used by the orchestrator to get information about
the applications and edge data centers. The specific endpoints can be seen in
Figure 4.2.

Mobile Network Exposure

Mobile Network Exposure is a component intended to emulate the NEF API
functionality found in the 5G networks. It does this by offering a publisher-
subscriber service where it enables clients to subscribe to well-defined Mo-
bileNetworkCoreEvents. The current events supported are the PdnConnec-
tivityStatus and LocationInformation events, which are corresponding to the
events presented in the previous section.

This component fetches the events from the same database where the Mo-
bileNetworkCore stores its events. In Figure 4.2 the components marked in
green is related to the MobileNetworkExposure functionality. The goal of im-

4.1 design and implementation 45

plementing this component is to have the application orchestrator subscribe to
events happening in the emulator.

The MobileNetworkExposure is organized in the following way: TheMobileNet-
workExposure is the data structure that organizes and keeps track of all sub-
scriptions. A subscription is logically a client who has requested to subscribe
to events that we have defined. The MobileNetworkExposure keeps track of all
the subscribers by storing them in a list. It also has an HTTP client which it
uses to publish new events to the subscribers

A subscriber in this context is a data structure that contains the details of the
subscription, namely an EventSubscriber. The subscriber also contains a set of
all received events that match the details within EventSubscriber.

An EventSubscriber is a data structure that specifies which kind of events the
client subscribes to. Internally the data structure contains the URL the Mo-
bileNetworkExposure is going to send new events. It also contains which event
type the client is interested in (which currently is either PdnConnectivityStatus
or LocationInformation events), and finally, a list of all user ids the client wants
events for.

The MobileNetworkExposure has functionality for publishing events. This is
done by fetching all events from the database, then iterating through the
subscriptions and sending new events that they have not received.

MobileNetworkExposure exposes a RESTful API that lets clients use this service.
The users can subscribe to an event by sending a POST request with a JSON
formatted body specifying the event type, which UEs, and the URL to which
the Mobile Network Exposure should post the events in the body of the request,
this data is expressed as the EventSubscriber. This is in principle done the
same way as in the NEF API. The MobileNetworkExposure also exposes some
utility endpoints where it is possible to fetch all subscribers, and events and
finally publish all new events. The specific API endpoints can be seen in
Figure 4.2

Frontend

In the mobile network emulator, there is also provided a frontend visualization
that shows the edge data centers, RANs and users. In the visualization, the
users are defined as blue points, which change colors when they are connected
to the data network. The RANs are defined as yellow points with green circles
around them to indicate the radius of connectivity. Finally, we have the red
squares which are used to indicate where the edge data centers are located.

46 chapter 4 results

Figure 4.3 shows a screenshot of this.

The frontend uses the MobileNetworkCore API to fetch information about the
RANs and users and the Network API to fetch information about the edge data
centers.

The frontend is implemented using Svelte[17] and svelte-p5[18]. It functions
by first fetching the RANs from the MobileNetworkCore, and the edge data
centers from the Network. It then fetches both the users and connected users
from the MobileNetworkCore and draws them on the map, and then repeats
this process.

4.1.2 Orchestrator

This section will cover the design and implementation of an orchestrator that
orchestrates applications to reduce the end-to-end latency for the users in
the Mobile Network Emulator. The main intention behind the orchestrator
mechanism is to collect useful data from the 5G network and the edge data
centers and use this information to orchestrate the applications.

The orchestrator fetches the IP address access log from the edge data centers
and their applications. So for one application, the orchestrator fetches all IP
addresses that have accessed it together with the timestamp when the IP was
accessed. To find the approximate location of the IP address the orchestrator
fetches MobileNetworkCoreEvent(s), which are made available through the
MobileNetworkExposure component. The orchestrator has currently two types
of events it uses, which are the PdnConnectivityStatus for relating IP address
to user id, and LocationInformation for relating user id to location. Both of
these events are defined in Mobile Network Emulator and also defined in the
5G NEF API.

When the orchestrator has found the approximate location of an IP address it
tries to find the appropriate edge data center for the application. Currently, the
orchestrator uses the weighted average location of users to find an edge data
center to place the application in. The weighted average location is calculated
by taking the average location of all IPs that have accessed the application,
where the number of times an IP has accessed the application acts as the weight
for each location.

The orchestrator is implemented using the Rust programming language[16]
and is designed to run continuously and check for the optimal placement at
given intervals, which can be specified.

4.2 experiment 47

4.2 Experiment

To verify that the orchestrator reduces the emulated time when users are
accessing applications in the emulator. It is therefore appropriate for an exper-
iment. The experiment in this case is to run the emulator with a set amount of
users, RANs, edge data centers and applications and see if the orchestrator can
reduce the emulated time when users are accessing the applications.

In the experiment, we are measuring the emulated time the takes for a user to
access the application. This emulated time is the end-to-end latency from the
user sending an “application use request” until it is completed. This is done in
the emulation by measuring the Euclidian distance between the RAN the user
is connected to, and the edge data center. To penalize users who are connecting
to applications hosted far away the network multiplies a factor to each latency.
The Network logs these end-to-end latencies down to the shared database. We
are also monitoring the application locations in the edge data centers. This is
done by using the Network API. We are measuring the application locations
because we want to verify that the orchestrator is behaving properly.

The emulation is run with 128 simultaneous users that have a 98% chance to
reuse the application it is currently using. The emulation has 8 applications
for the orchestrator to manage. The edge data centers and RANs are placed
using the Poisson disk sampling[19], where the RANs have on average 150 units
of space in between each other and the edge data centers have on average
200 units of space in between. A snapshot of this experiment can be seen in
Figure 4.3.

The experiment ran for 5 minutes where in the first half the orchestrator is
inactive. Initially, every application is placed in the edge data center with the id
0. This is to create a baseline latency so we can compare when the orchestrator
is activated. The orchestrator tries to orchestrate every 10 seconds after it is
activated.

Since there are many applications and quite many users accessing the same
applications we will calculate the average end-to-end for the last 15 seconds at
each data collection. This is to reduce the amount of data points and plots we
have to use in this experiment.

4.2.1 Results

48 chapter 4 results

Figure 4.3: Snapshot of the WebUI during the experiments

Plot 4.4 and 4.5 show the average end-to-end latency of the last 15 seconds for
applications with id 0 and 1. The x-axis shows the time in seconds when the
data was collected, and the y-axis shows the mean end-to-end latency for the
last 15 seconds. The bars in the plot are the standard deviation during the last
15 seconds. Notice when the orchestrator is activated the end-to-end latency
decreases, which is the goal, and an indication that the orchestrator with the
weighted average location works as intended.

Plot 4.6 shows which edge data center hosts which application at a given
time. The x-axis shows the time when the data was collected, the y-axis shows
which application we are following and the z-axis shows the edge data center
the application is hosted on. Notice when the orchestrator is activated the
applications get moved from their initial configuration, which is the goal.

4.2 experiment 49

Figure 4.4: Plot showing the average end-to-end latency for appliaction 0

Figure 4.5: Plot showing the average end-to-end latency for appliaction 1

50 chapter 4 results

Figure 4.6: Plot showing where every application is located

4.3 discussion 51

4.3 Discussion

The following sections will be used to discuss and highlight relevant topics in
this thesis. This includes discussing the results and highlighting the limitations
of both the emulator and orchestrator.

4.3.1 Results

Firstly the experiments are a success as they achieve the goal of reducing the
end-to-end latency from user to application by moving the application between
sites. This is evident because we see in plots 4.4 and 4.5 that the latency drops
when the orchestrator is activated.

However, a glaring result from the experiments is that the average end-to-end
latencies and their trends for all applications are very similar. This is likely
due to how the users move and choose applications. In the current state of the
emulator, users are evenly distributed over the space that they are moving in,
and this affects results quite greatly, This is evident in both plots 4.4, 4.5 and,
4.6.

This can be fixed by changing the movement patterns of the users, and mech-
anisms of how the users choose which application to use. If the movements
and application patterns are more skewed the more effective the orchestrator
should be.

4.3.2 Privacy concerns

The proposed solution and approach described in Section 2.4.1 raise privacy con-
cerns. Specifically, the strategy suggested resembles a form of mass surveillance,
despite the existence of data aggregation and anonymization mechanisms in
5G. Although the possibilities to make efforts to protect privacy, the substantial
amount of data collected still poses notable privacy risks, particularly if the
data were to fall into the wrong hands.

Another perspective to consider is that of the edge data center. The orchestrator
necessitates access to the IP access logs of these centers. When the data from
both the edge data centers and 5G is combined, the user’s location and traffic
patterns become vulnerable. To address this issue, the orchestrator must either
only operate on anonymized data or be operated by a trusted entity, and users
must provide explicit consent for their data to be utilized in this manner.

It is essential to acknowledge that these privacy concerns are substantial and

52 chapter 4 results

require extensive efforts to develop a viable solution. However, addressing
these issues falls beyond the scope of this thesis. Nevertheless, it is imperative
to resolve these concerns before implementing this solution in real-world
scenarios.

4.3.3 Alternative practical work

While Section 2.4.2 presents several ideas for alternative practical work, it is
important to discuss additional options.

One obvious alternative for practical work would be to solely focus on utilizing
data provided by the NEF API and design and implement an orchestrator based
exclusively on the form of this data. However, there are certain drawbacks to
this approach. As mentioned in Section 2.4.2, there is a scarcity of platforms that
generate relevant based on the NEF API data. This poses challenges in terms of
validating the proper behavior of the orchestrator. Additionally, implementing
an edge data center abstraction with users and defining patterns for accessing
applications would still be necessary, regardless of relying solely on the NEF
API data.

Therefore, exploring additional alternatives and considering a more compre-
hensive approach is crucial to address these limitations and ensure the effective
implementation of the orchestrator.

Another alternative would be to look closer at the emulators discussed in [6]. It
could be an idea to see if it is possible to implement application orchestration
using these emulations, or take aspects from those emulations and integrate
them with our emulation. However, this will be left for future work.

4.3.4 Limitations of the emulator

The emulator possesses certain limitations and weaknesses that need to be
addressed. This section will outline these limitations, explain their causes, and
propose potential solutions.

Firstly, the movement patterns of users within the emulator are not realistic.
Currently, users follow a random walk pattern, which does not accurately
reflect real-life movement, where users group to several clusters of locations
and move in between them. To rectify this, an alternative approach would
involve incorporating user patterns from experiments or similar studies where
individuals are tracked using technologies like GPS. Or use emulation strategies
like the boid flocking algorithm[20] to get clustering behavior.

4.3 discussion 53

Another issue pertains to the users’ access to applications, which could be
improved. Currently, users randomly access applications during each update of
the emulator, which deviates from realistic behavior. In reality, users tend to re-
peatedly use the same set of applications. Although measures have been taken
to address this problem by having users behave like infinite-state machines
when selecting applications, where the users repeatedly reuse the same appli-
cation and occasionally change the application to use, further improvements
can be explored.

These two points heavily affect the effectiveness of the orchestrator, as high-
lighted in Section 4.3.1.

The placement of RANs and Edge data centers is another area that could
be enhanced. Currently, the Edge data centers and RANs are placed using
Poisson disk sampling[19]. However, a more realistic approach would involve
comparing the placement with actual 5G coverage maps to achieve better
results.

There is currently no strong correlation between IP addresses and User IDs in
the emulation. The allocation of IPs in the emulator follows a First In First Out
list, leading to a high probability of immediate reuse when a user disconnects.
This limits the association between IPs and users. To address this, alternative
IP allocation schemes or utilizing a First In Last Out list could be explored to
increase IP circulation. This would also enhance the orchestrator’s ability to
determine user location based on IP.

The emulator’s optimization is inadequate, particularly regarding the I/O
operations involved in writing mobile network core events and user statistics
to the database during each update loop. Initially, these events are stored
in memory, which consumes space and made retrieving the data challenging.
Improving the optimization of these operations is necessary if we want to scale
up the number of users, rans, and edge data centers. Running the emulator
over time hurts the performance.

Additionally, there is a lack of diverse orchestration strategies implemented
in the emulator. Currently, only one strategy the weighted average position
of users is utilized. Expanding the range of orchestration strategies should be
considered and further discussed in Section 4.3.6.

Lastly, the implementation of NEF functionality is limited. Although the cur-
rent implementation suffices for the present use case, there is room for im-
provement. Section 4.3.7 provides a further discussion on enhancing NEF
functionality.

54 chapter 4 results

4.3.5 Limitations of the orchestrator

The current implementation of the orchestrator has some limitations, this
section aims to give some insights into the limitations and propose some
solutions to fix them.

The IP to location scheme can be inaccurate The root cause of this is be-
cause of the IP allocation issue described in Section 4.3.4. The orches-
trator tries to address this by finding the user id which is the closest
associated timestamp when the application was accessed.

No predictions of application usage patterns A fix for this is suggested in
Section 4.3.6, where it is suggested that the orchestrator uses time series-
based forecasting for the weighted average position of the users.

Currently fetches directly from the MongoDB Due to limited time, the or-
chestrator currently fetches the MobileNetworkCoreEvents directly
from the database, the intention was for the orchestrator to use the
MobileNetworkExposure functionality. However, to save time we fetch
directly from the database instead. Note that the mobile network expo-
sure and the events from the database would be the same. So this is a
fix for future work.

Available resources at each edge data center is not considered Currently the
orchestrator does not consider the resources available at each edge data
center. This is only due to insufficient time. The other schemes were pri-
oritized as fetching data from the 5G network and usage patterns from
the edge data centers are more critical for the orchestrator to function
properly in the first place. Works like [10] could be considered to be used
as an inspiration for developing replication mechanisms.

4.3.6 Alternative orchestration strategies

The objective of this section is to propose alternative orchestration strategies
that can be employed in the orchestrator.

Firstly we could and probably should implement the tabu search metaheuristics
algorithm proposed in [5], however due to time constraints and the fact that
the current orchestration strategy is much simpler we prioritized the current
strategy

One potential improvement is to utilize time-series-based prediction of user
patterns. Given the availability of present and up-to-date user data, an alter-

4.3 discussion 55

native approach could involve employing techniques such as weighted moving
average forecasting to predict the average location of users. This enhancement
could reduce the frequency of application analysis by the orchestrator, leading
to improved resource utilization.

Another alternative orchestration tactic is machine learning-based prediction
of optimal location. For instance, a neural network trained on existing orches-
tration strategies could be utilized. The neural network could take into account
the number of times each application has been used from each RAN as input
and provide suggestions for the optimal edge data center placement based on
this information, incorporating hidden layers and an output layer, where the
output layer is an indication on where the application should be placed.

Employing a machine learning-based solution is desirable, especially when
handling large amounts of data, as it becomes computationally expensive to
calculate the precise edge data center for application placement. However, this
approach has drawbacks. The edge data centers must remain static since any
changes would require retraining the model to account for the new configu-
ration. Furthermore, the machine learning model may struggle when encoun-
tering user patterns it has not seen before, potentially leading to suboptimal
decisions regarding application placement.

Other machine learning models could be explored, such as naive multinomial
Bayesian classifiers, logistic multinomial classifiers, and multinomial decision
trees. The fundamental concept would remain similar to the neural network ap-
proach, where a feature vector consisting of the frequency of application usage
from each RAN is associated with the optimal edge data center. Determining
the most suitable model would require implementation and testing, as different
supervised models possess unique characteristics and quirks. However, these
options will be left for future work due to time constraints.

4.3.7 The 5G API and its definitions are terrible!

While this section is related to this thesis and is subjective, it is related to the
solution and the 5G API and is important to discuss for future work.

In general, a publish-subscribe model is fine to use, however how the data
structures are defined and used in the 3GPP specification. It results in an over
complicated interface which hard to use, especially if you use strongly typed
programming languages such as Rust[16].

In general, the 3GPP OpenAPI specification uses a lot of polymorphic data
structures in their APIs. For instance, the “MonitoringEventReport” data struc-

56 chapter 4 results

ture, is highly used in this thesis. It has only one required field, which is the
“MonitoringType”. Every other field in the data structure is optional and this
implies that you may get a different answer from the API between each request.
This makes it very hard to work with the API.

There are projects like the Camara project[9] mentioned in Section 2.3 that
try to simplify and standardize the 3GPP specification to be easier to use.
The emulator tries to address this by representing the data structures as
strongly typed sum types for the different monitoring types. A more elegant
solution would be to split the data structure up into smaller and more well-
defined data structures and define the domain more clearly using methods
like domain-driven design. This would make it more approachable to develop
applications functions and services using 5G directly, and not through another
standard.

5
Conclusion

57

58 chapter 5 conclusion

5.1 Future work

Several areas of future work can be explored. This section will identify some
of these areas.

Improve emulator as most of the current issues have been discussed in section
4.3.4.

Implement more orchestrataion strategies . As discussed in section 4.3.6,
several alternative orchestration strategies can be explored and tested.

Continue to improve the NEF data types . As a continuation of section 4.3.7,
the NEF data types can be improved to be more approachable and easier
to use.

Investgate privacy issues . As discussed in section 4.3.2 there must be done
some form off evaluation if this project should be used. This thesis
suggests a risk analysis.

5.2 Conclusion

In this thesis, we have presented a new approach to the problem of designing
and implementing application orchestration leveraging 5G networks and its
NEF API. While the goal was to only look into the application orchestration
using 5G networks, and due to lackluster data generation this thesis shifted
towards solving the problem of data generation. The data generation problem
was solved by designing and implementing a combination of a 5G network
emulator and a data network emulation containing edge data centers and
applications. With the help of this emulation, we were able to generate data for
the application orchestration problem and suggest an orchestration algorithm
that can be used to orchestrate applications in 5G networks, and based on the
experiments conducted in this thesis we have achieved the goal of minimizing
end-to-end latency for users.

The thesis consists of a literature review, related work and projects chapter that
looks into how 5G networks are designedwith some related projects and papers.
Some of the papers are used to establish the need for more development in this
field, some are projects considered for future work, and some are investigated
closer in this thesis. The reviewed literature, related work and projects chapter
ends with research and provides suggestions to do application orchestration
and route optimization using 5G networks. It is then followed by practical
work where the thesis looks into how to generate data for the orchestration

5.2 conclusion 59

problem. This is done by looking at three already existing projects Open5Gs +
srsRAN, NEF_emulator and Nokias Open5Glab. We found that none of these
projects could be used to generate data for the orchestration problem fully,
and therefore we decided to create our emulation.

The methodology chapter states the problem, hypothesis and, how work has
been conducted during this thesis by using an adaption of Agile and Kan-
ban.

The result chapter looks into the design and implementation of the emulator
with some experiments, results and discussion. The results show that deploying
the orchestrator in this limited emulator lowers the end-to-end latency on aver-
age for most users. The discussion section looks into the results, privacy issues,
alternative practical work and, limitations of the emulation and orchestrator,
and discusses the 5G NEF API.

The thesis ends with a conclusion chapter that suggests future work and
summarizes this thesis.

Bibliography
[1] RobertoMorabito et al. “Consolidate IoT Edge Computingwith Lightweight

Virtualization.” In: IEEE Network 32.1 (2018), pp. 102–111. doi: 10.1109/
MNET.2018.1700175.

[2] Linghe Kong et al. “Edge-Computing-Driven Internet of Things: A Sur-
vey.” In: ACM Comput. Surv. 55.8 (Dec. 2022). issn: 0360-0300. doi:
10.1145/3555308. url: https://doi.org/10.1145/3555308.

[3] Qualcomm. What is 5G? 2023. url: https://www.qualcomm.com/5g/
what-is-5g.

[4] 5G; System architecture for the 5G System. 3GPP TS 23.501 version 17.7.0
Release 17. ETSI and 3GPP. Jan. 2023.

[5] Bouziane Brik, Pantelis A. Frangoudis, and Adlen Ksentini. “Service-
Oriented MEC Applications Placement in a Federated Edge Cloud Archi-
tecture.” In: ICC 2020 - 2020 IEEE International Conference on Communi-
cations (ICC). 2020, pp. 1–6. doi: 10.1109/ICC40277.2020.9148814.

[6] Katja Gilly et al. “End-to-end simulation environment for mobile edge
computing.” In: Simulation Modelling Practice and Theory 121 (2022),
p. 102657. issn: 1569-190X. doi: https : / / doi . org / 10 . 1016 / j .
simpat.2022.102657. url: https://www.sciencedirect.com/science/
article/pii/S1569190X22001277.

[7] Open Source Software. SrsRan. 2023. url: https://www.srsran.com/.
[8] Open Source Community. NEF_emulator. 2023. url: https://github.

com/medianetlab/NEF_emulator.
[9] Linux fundation projects. CAMARA. 2023. url: https://camaraproject.

org/.
[10] Gang Peng. “CDN: ContentDistribution Network.” In: CoRR cs.NI/0411069

(2004). url: http://arxiv.org/abs/cs.NI/0411069.
[11] Open Source Software. Open5Gs. 2023. url: https://open5gs.org/

open5gs/.
[12] Nokia. Nokia Open5GLab. 2023. url: https://www.nokia.com/developer/

open5glab.
[13] Kent Beck et al. Agile Manifesto. 2023. url: https://agilemanifesto.

org/.
[14] Jira. What is Kanban? 2023. url: https://www.atlassian.com/agile/

kanban.

61

https://doi.org/10.1109/MNET.2018.1700175
https://doi.org/10.1109/MNET.2018.1700175
https://doi.org/10.1145/3555308
https://doi.org/10.1145/3555308
https://www.qualcomm.com/5g/what-is-5g
https://www.qualcomm.com/5g/what-is-5g
https://doi.org/10.1109/ICC40277.2020.9148814
https://doi.org/https://doi.org/10.1016/j.simpat.2022.102657
https://doi.org/https://doi.org/10.1016/j.simpat.2022.102657
https://www.sciencedirect.com/science/article/pii/S1569190X22001277
https://www.sciencedirect.com/science/article/pii/S1569190X22001277
https://www.srsran.com/
https://github.com/medianetlab/NEF_emulator
https://github.com/medianetlab/NEF_emulator
https://camaraproject.org/
https://camaraproject.org/
http://arxiv.org/abs/cs.NI/0411069
https://open5gs.org/open5gs/
https://open5gs.org/open5gs/
https://www.nokia.com/developer/open5glab
https://www.nokia.com/developer/open5glab
https://agilemanifesto.org/
https://agilemanifesto.org/
https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban

62 BIBLIOGRAPHY

[15] OpenAI. ChatGPT. 2023. url: https://chat.openai.com/chat.
[16] Steve Klabnik, Carol Nichols, and Rust Community. The Rust Program-

ming Language. url: https://doc.rust-lang.org/book/index.html.
[17] Open Source Software. Svelte. 2023. url: https://svelte.dev/.
[18] tonyketcham and Open Source Software. svelte-p5. 2023. url: https:

//github.com/tonyketcham/p5-svelte.
[19] Robert Bridson. “Fast Poisson Disk Sampling in Arbitrary Dimensions.” In:

ACM SIGGRAPH 2007 Sketches. SIGGRAPH ’07. San Diego, California: As-
sociation for Computing Machinery, 2007, 22–es. isbn: 9781450347266.
doi: 10.1145/1278780.1278807. url: https://doi.org/10.1145/
1278780.1278807.

[20] Craig W. Reynolds. “Flocks, Herds and Schools: A Distributed Behavioral
Model.” In: SIGGRAPH Comput. Graph. 21.4 (Aug. 1987), pp. 25–34. issn:
0097-8930. doi: 10.1145/37402.37406. url: https://doi.org/10.
1145/37402.37406.

https://chat.openai.com/chat
https://doc.rust-lang.org/book/index.html
https://svelte.dev/
https://github.com/tonyketcham/p5-svelte
https://github.com/tonyketcham/p5-svelte
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1145/37402.37406
https://doi.org/10.1145/37402.37406
https://doi.org/10.1145/37402.37406

A
Source code for Mobile
Network Emulator

While a code listing would be natural for showing the source code of this thesis.
The number of lines in the source code exceeds 2700, so instead a link to
the GitHub repository is included here: https://github.com/Frixxie/mobile_
network_emulator

63

https://github.com/Frixxie/mobile_network_emulator
https://github.com/Frixxie/mobile_network_emulator

B
Additional plots
This appendix will show the additional plots for all other applications during
the experiment.

65

66 appendix b addit ional plots

Figure B.1: Plot showing the average end-to-end latency for appliaction 2

Figure B.2: Plot showing the average end-to-end latency for appliaction 3

67

Figure B.3: Plot showing the average end-to-end latency for appliaction 4

Figure B.4: Plot showing the average end-to-end latency for appliaction 5

68 appendix b addit ional plots

Figure B.5: Plot showing the average end-to-end latency for appliaction 6

Figure B.6: Plot showing the average end-to-end latency for appliaction 7

	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	2 Literature review, related work and projects
	2.1 5th generation mobile networks
	2.1.1 User plane
	2.1.2 Control plane

	2.2 Previous Work
	2.3 Related Work and Projects
	2.3.1 Consolidate IoT Edge Computing with Lightweight Virtualization
	2.3.2 Edge-computing-driven Internet of Things: A survey
	2.3.3 Service-Oriented MEC Application Placement in a Federated Edge Cloud Architecture
	2.3.4 End-to-end simulation environment for mobile edge computing
	2.3.5 Open5GS
	2.3.6 srsRAN
	2.3.7 medianetlab: NEF_emulator
	2.3.8 Nokia: Open5Glab
	2.3.9 Camara project
	2.3.10 CDN: Content Distribution Networks

	2.4 Investigation of orchestration strategy using 5G
	2.4.1 Location and traffic pattern monitoring
	2.4.2 Investigating exsisting solutions

	3 Methodology
	4 Results
	4.1 Design and Implementation
	4.1.1 Mobile Network Emulator
	4.1.2 Orchestrator

	4.2 Experiment
	4.2.1 Results

	4.3 Discussion
	4.3.1 Results
	4.3.2 Privacy concerns
	4.3.3 Alternative practical work
	4.3.4 Limitations of the emulator
	4.3.5 Limitations of the orchestrator
	4.3.6 Alternative orchestration strategies
	4.3.7 The 5G API and its definitions are terrible!

	5 Conclusion
	5.1 Future work
	5.2 Conclusion

	A Source code for Mobile Network Emulator
	B Additional plots

