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Abstract 
A prominent problem in analysing genetic information has been a lack of mathematical frameworks for doing 
so. This article offers some new statistical methods to model and analyse information content in proteins, 
protein families, and their sequences. We discuss how to understand the qualitative aspects of genetic 
information, how to estimate the quantitative aspects of it, and implement a statistical model where the 
qualitative genetic function is represented jointly with its probabilistic metric of self-information. The 
functional information of protein families in the Cath and Pfam databases are estimated using a method 
inspired by rejection sampling. Scientific work may place these components of information as one of the 
fundamental aspects of molecular biology. 
Keywords: functional information, mutual information, rejection sampling, self-information 

1 Introduction 
All known life on our planet is based on genetic sequences stored in DNA, and today a flood of 
sequence data is available in the nucleotide and amino acid databases. Scientific progress depends 
crucially on statistical methods and computer algorithms that allow extracting useful information 
from the sequence data. Mathematics that fits these requirements was created by Claude Shannon 
with the introduction of information theory (Shannon, 1948), and his theory has been successfully 
applied to quantify and analyse nucleotide and amino acid sequences (Schneider, 2006; Schneider 
& Stephens, 1990). As an interdisciplinary domain of study, bioinformatics has unlocked the field 
of molecular biology through the use of computer science and statistics. 

In this way, information has become a central idea of contemporary biology, and there is a com-
mon understanding that the informational aspect of life is a key property—maybe the master key 
property (Godfrey-Smith & Sterelny, 2016; Walker & Davies, 2013). Griffiths (2017) has argued 
that it is common sense to consider the characteristics of genes and chromosomes as the expression 
and transmission of information, and he emphasises the current challenge of capitalising on this in 
strict, scientific terms. 

Information theory is founded on probability theory, to the extent that the axiomatics of both 
theories are formally equivalent (Jizba & Korbel, 2020). This understanding leads to a useful in-
terpretation of the information-theoretic quantities. Even though Shannon’s theory was framed 
plainly to address the problem of communication, modern approaches interpret information 
quantities as measures of belief-updating in statistical inference, and hence as proper tools to study 
many complex systems (Mediano et al., 2022). 
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Biology has approved the concept of information but has, to a certain extent, avoided the concept 
of meaning. In qualitative terms, genetic function is possibly the best depiction of the ‘meaning’ of a 
sequence. This biochemical function is determined by direct empirical experimentation and links 
information content to functionality (Adami & Nitash, 2022). De Mul (2021) distinguishes be-
tween the syntactic aspect of biological sequences and structures, and their semantic aspect. 
Shannon information is only about syntax, whereas it is life itself that gives meaning to sequences. 
Functional information is based on the probability that an arbitrary configuration of a system 
(letter sequence or protein) will obtain a specific function to a specified degree (Hazen et al., 
2007). It can be considered as a bridge between Shannon information, which only includes prob-
abilities but not function, and the concept of semantic information, which is very wide and there-
fore is difficult to quantify in terms of probabilities, although it includes function as a possibility. 

It is not easy to capture the general notion of information in a simple definition. We may define 
information in the broad sense as ‘all that which is communicated’, and hence, the information 
within a living cell is much greater than its genetic sequences. There are many heritable structures 
other than DNA that carry information, such as post-translational protein modifications (phos-
phorylation, glycosylation, and lipidation) and epigenetic processes (chromatin modifications). 
All parts of the cell, including the DNA, RNA, and protein molecules, are in steady communica-
tion with each other, and thousands of different types of interactions take place. We must acknow-
ledge here that there exist more levels of biological organisation than we address in the present 
article, and we will only study the presumably most fundamental one. However, extracting the in-
formation stored in genetic sequences is a crucial step towards a more comprehensive investigation 
to detect and decode more facets of biological information. 

The study of information in linear genetic sequences is an ongoing topic of research (Koonin, 
2016; Popa, Oldenburg & Ebenhöh, 2020). Recently, Adami & Nitash (2022) published a paper 
based on multivariate correlations. They present a simulation study based on short symbolic se-
quences, but they intend to extend it to biological data sets with considerably longer sequences. 

Despite many years of research, the study of information has suffered from a lack of good frame-
work that could be used to advance theories and guide discussions. There is still a great deal of 
open conceptual space and much room for new accounts of genetic information. Analysing life’s 
informational properties holds the potential for turning biology into a more quantitative science 
(Davies & Walker, 2016). Our starting point for such analyses is a gene family, that is, a group of 
closely related genes that encode similar products, usually proteins, but also RNA. In this article, 
we present, extend, and elaborate on the statistical estimation of the information content in pro-
tein sequences, which is quantifiable and amenable to computational assessment. In particular, we 
develop a method inspired by rejection sampling (Wells et al., 2004) in order to estimate the func-
tional information of a gene family. We will provide an accessible introduction to the framework, 
examining the merits of the approach in various sequence data of interest. We also discuss some 
interpretation concerns, while highlighting the benefits of the formalism. The core ideas of the art-
icle are briefly explained in Figure 1. 

2 Defining and estimating genetic information 
In this section, we discuss how to define and estimate genetic information with some of the most 
important notation, as summarised in Table 1. Genetic information cannot easily be quantified 
and estimated in a direct and general manner, and the same is true for genetic meaning. 
However, genetics (as well as many other sciences) makes use of data, based on which various 
measures of information can be defined and estimated. Such measures are central to how we learn 
about the properties of subjects and operationalise our theories. 

Measures of information involve presumptions or specifications regarding signs, observers, and 
reference states that require careful consideration of the basic aspects of the system. According to 
long-term practices, natural entities are divided into qualities and quantities. These are among the 
fundamental categories of philosophy: Quantities can be measured and are objective, whereas 
qualities are typically subjective and cannot be measured. However, in the case of genetic informa-
tion, the type of qualities that appear in this context are typically not subjective but objective fea-
tures of the world because they are the same for all observers (Barbieri, 2016). In addition to 
quantities (objective and measurable) and qualities (subjective and nonmeasurable), we must  
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therefore recognise the existence of a third type of nominable entity (objective but not directly 
measurable), presented as Function in Table 2. It is sometimes possible though to measure function 
indirectly, declaring an entity as functional if it satisfies certain measurable properties (such as the 
outcome of a test for function). When this is the case function serves as a bridge between the con-
cepts of quantities and qualities. On top of such function, sequences have additional (and not eas-
ily measurable) properties (meaning) to the linear order of their units, as shown in the table. 

The most common representation of information is a linear sequence of symbols. A protein se-
quence of length L is studied as a discrete and vector-valued random variable X = (X1, . . . , XL), 
where Xj, j = 1, . . . , L is the amino acid of site j. Information in proteins has been measured in 
different ways. As mentioned previously, Shannon’s information theory is based on probability 
theory. In a sequence of characters, the classical Shannon measure of information is a function 
of the probabilities of the character string. Yockey (1977) initiated the application of information 
theory to protein sequences by estimating the variability of amino acids at each position in the pri-
mary sequence of the cytochrome c protein family. He determined the information per amino acid 
to be 2.953 bits. 

2.1 Self-information 
What is commonly referred to as self-information can be applied to protein sequences. This is a 
measure of information content or ‘surprisal’ of what we usually call a letter xj, 

I(xj) =
def log2

1
pxj

= − log2 (pxj ), 

where pxj is the probability of each character, xj. The use of logs to measure information dates 
back to Nyquist (1924) and Hartley (1928). By definition, the measure of self-information for 
an entire sequence of letters is positive and additive if the components of X are independent. 
This definition states that the surprisal of a symbol corresponds to the amount of self-information 
carried by that symbol, and the latter has been recognised as an important quantity for the study of 
information (Dretske, 1981). According to Dretske, self-information reflects the fundamental in-
tuition behind information (Dretske, 1981, p. 529). This measure of heterogeneity, or the intrinsic 
complexity of data, is denoted in the theory as its self-information. Similar to Shannon entropy, the 
self-information model only considers the statistical properties of the symbols that form messages. 
The unit of the self-information is ‘bit’ because the base of the logarithm in the formula is two. 

This probabilistic measure of information does not consider the meaning or function of the mes-
sage. The meaning-free concept of information theory is insufficient to explain the important 

Figure 1. Overview of the core ideas of the article. Data: Imagine a conic stack of protein molecules of all possible 
finite sequences sorted by a specific activity with the most active at the top (Hazen et al., 2007; Szostak, 2003). A 
horizontal plane across the stack signifies a given level of activity and defines data—the set of functional sequences. 
Such aligned sequences may be downloaded from the databases. Methods: In Section 2, we describe various 
methods for how such sequence alignments may be analysed in different ways, with site specific (vertical) 
sequences having a crucial role. Results: Section 3 provides an information profile (functional information in bits per 
site) of aligned amino acid sequences, which highlights sites of particular functional importance in terms of the 
statistical information that they convey.   
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aspects of biology (Jablonka, 2002). It only focuses on some highly relevant statistical character-
istics, whereas notions of functional information (defined in Section 2.4) try to include the dimen-
sion of functionality. 

A protein sequence may be considered as a linear string of symbols produced, consistent with a 
set of probabilities governing their rate of occurrence. With a Bayesian statistical perspective 
(Berger, 1993), these are prior probabilities that can be deduced directly from the genetic code, 
as shown in Table 3. This amino acid distribution assigns the same probability to all codons, which 
is a natural starting point from ‘first principles’ thinking (cf. Aristotle). It is an instance of the prin-
ciple of insufficient reason, also referred to as the principle of indifference, applied to the set of 61 
nonstop codons. 

2.2 Gene sequences 
When applying self-information to estimate the information contained in a gene, the possible el-
ements (amino acids) are finite and known, and their probabilities can be computed. This also al-
lows the definition of a standard reference state (baseline, null state) for the estimation of 
information in genetic systems. As mentioned above, the discrete probability distribution, outlined 
in the third column of Table 3, is referred to as the baseline prior distribution of amino acids based 
on the assumption that all nonstop codons are equally likely. These probabilities can be put into a 
probability vector 

p = (p1, . . . , p20) 

that represents a discrete probability distribution, with the 20 entries adding up to 1. Similarly, we 
define the self-information vector of the prior distribution p as 

I(p) = (I(p)
1 , . . . , I(p)

20 ) = (−log2( p1), . . . , −log2( p20)), 

and it is shown in the fourth column of Table 3. A vector h(p) of Shannon uncertainty values for all 
amino acids, under the a priori distribution p, may likewise be computed as follows: 

h(p) = (−p1log2( p1), . . . , −p20log2( p20)), 

Table 1. Summary of notation for genetic data and information. Scalars are denoted as light characters, vectors as 
bold characters, and matrices as underscored bold characters 

Quantity Description  

x Amino acid (∈ {1, . . . , 20}) 

L Length of amino acid sequence 

j Site of amino acid sequence (∈ {1, . . . , L}) 

X Amino acid sequence (= (X1, . . . , XL)) 

p Vector of amino acid probabilities (= ( p1, . . . , p20)), corr. to prior distribution of amino acids 

XR Reservoir of MR amino acid sequences of length L (= (Xmj; m = 1, . . . , MR, j = 1, . . . , L)) 

M Number of amino acid sequences of a protein family (M ≪ MR) 

X f Protein family of amino acid sequences of length L (= (Xmj; m = 1, . . . , M, j = 1, . . . , L)) 

XF Family X f of amino acids corresponding to functioning proteins 

Xm Amino acid sequence, corresponding to protein m of a protein family (= (Xmj; j = 1, . . . , L)) 

qj Distribution of amino acids at site j of a protein family (= (q1,j, . . . , q20,j)) 

I(p) Information content of an amino acid sequence (= I(p)(X)) or protein family (= I(p)(X f )) 

I(p) Information content per site of an aa sequence (= I(p)(X)) or protein family (= I(p)(X f )) 

I(p)(X f ) Vector of information contents of the amino acids of X f (= (I(p)(Xm); m = 1, . . . , M))   
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cf. the rightmost column of Table 3 (by continuity, we define 0 · log2(0) = 0). In particular, the 
Shannon entropy H(p) is the sum of the elements of h(p), or equivalently, the scalar product · of 
the a priori distribution and self-information vectors: 

H(p) = p · I(p) = −
􏽘20

x=1

pxlog2px = 4.139 bits, 

somewhat lower than the theoretical maximal entropy of −log2(1/20) = 4.322 bits, obtained 
from a uniform prior distribution with probability 1/20 for all amino acids. 

Now, consider a second vector v = (v1, . . . , v20) of amino acid probabilities, whose entries cor-
respond to the frequencies by which the amino acids occur along the amino acid sequences. We 
regard p as a prior distribution of the null state of a baseline generation and v as the distribution 
of amino acid frequencies of the generation at which the amino acid sequence is sampled. 
Motivated by problems of random search algorithms, Dembski & Marks (2009a, b) introduced 
the concept of active information which was later applied to population genetics by  
Díaz-Pachón & Marks (2020). In our context, a change in the frequency of an amino acid x 
from px to vx corresponds to active information 

I+
x = log2

vx

px
= I(p)

x − I(v)
x .

Assume that some exogenous information changed the amino acid frequencies from p to v. Then, 
this information was either helpful or detrimental for amino acid x depending on whether I+

x > 0 
or I+

x < 0, respectively. The expected active information per amino acid site for a sequence 
X = (X1, . . . , XL), whose components are independent of distribution v, is determined by 

E(I+
Xj

) =
􏽘20

x=1

vxI+
x =

􏽘20

x=1

vxI(p)
x −

􏽘20

x=1

vxI(v)
x = E(p)

v − E(v)
v .

In the last step of the above equation, we introduced the expected self-information (or the cross- 
entropy of p relative to v) 

E(p)
v = v · I(p) = −

􏽘20

x=1

vxlog2px 

along a randomly chosen amino acid sequence with amino acid frequencies v, assuming that these 
frequencies were obtained from p. For instance, E(p)

p = H(p) = 4.139 bits if amino acids occur along 

Table 2. Five distinct characteristics of protein sequences X (Barbieri, 2016) and their scale of statistical 
measurement 

Property of genes Scientific framework Statistical measure level  

Probability Self-information: I(X) Metric scale (bits) 

Complexity Algorithmic complexity: length Metric scale (bits) 

Distance Relative distance: D Metric scale (bits) 

Organic 
information 

Function F in the context of a cell: joint variable  
[XR, F], functional information 

Joint [scale (bits), nominal] 

Organic meaning Cellular and intracellular networks, logistics in a living system Joint nominals (categories) 

Note. A reservoir of such sequence is gathered into a matrix XR. Information and meaning are considered non-numerical 
entities but are objective observables in genetics (due to the concept of function) and hence fundamental nominal data 
types. The self-information is defined in Section 2.1. Algorithmic complexity was introduced by Kolmogorov (1965).   
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the sequence according to the prior probabilities (v = p) of Table 3, whereas E(p)
v = 4.514 bits and 

E(v)
v = H(v) = 4.322 bits if all 20 amino acids are equally likely to occur (vx = 1/20). Note also that 

the expected active information equals the Kullback–Leibler divergence 

DKL(v ∥ p) =
􏽘20

x=1

vx log2
vx

px
= E(p)

v − H(v) 

from v to p (Kullback & Leibler, 1951). 
Based on the basic considerations above, we can now study any observed sequence X = 

(X1, . . . , XL) of amino acids with length L, where Xj is the amino acid of site j. It is convenient 
to introduce the composition vector N, according to the occurrences of each of the amino acids 
in X: 

N = (n1, . . . , n20), 

where nx is the total number of occurrences of amino acid x in X, that is, the number of sites j for 
which Xj = x. This is used to derive a measure of the information content based on the self- 
information of the amino acid in a sequence of length L: 

I(p)(X) =def log2

􏽙L

j=1

1
pXj

=
􏽘L

j=1

log2
1

pXj

= −
􏽘L

j=1

log2 pXj
= −

􏽘20

x=1

nx log2 px = N · I(p).

We may also compute the mean self-information per amino acid of the protein sequence as 

I(p)(X) =
1
L

(N · I(p)).

Let us assume that the components of X are independent and identically distributed with marginal 
distribution v. The mean self-information can be viewed as a consistent estimator of E(p)

v as L tends 
to infinity. Indeed, by the law of large numbers, the relative frequencies of the amino acids along X 
converge to the probabilities in v as L increases (nx/L ≈ vx for x = 1, . . . , 20), and this implies 
that the self-information and mean self-information satisfy I(p)(X) ≈ LE(p)

v and I(p)(X) ≈ E(p)
v , re-

spectively for large L. When v = p, the expected self-information E(p)
p = H(p) equals the entropy; 

the average amount of information per letter generated by the source, and moreover, the mean self- 
information I(p)(X) is a consistent estimator of H(p), since nx/L ≈ px for x = 1, . . . , 20 when L is 

Table 3. The prior probabilities and self-information of each amino acid deduced from the codon statistics of the 
genetic code 

Amino acid x No. of 
codons 

coding for x 

Probability 
px 

Self-information  
I(x) = −log2( px) 

(bits) 

Expected surprisal (Shannon 
uncertainty) h(x) = −pxlog2( px)  

(bits/amino acid)  

M W  1  1/61  5.93  0.097 

N D C Q E H K F Y  2  2/61  4.93  0.162 

I  3  3/61  4.35  0.214 

A G P T V  4  4/61  3.93  0.258 

–  5 – – – 

R L S  6  6/61  3.35  0.329 

Note. A DNA triplet may code for 64 different codons, and 3 of these code for STOP; hence, we divide by 61 to determine 
the prior probabilities px for all amino acids, x = 1, . . . , 20, assuming that all nonstop codons are equally likely a priori. 
The table makes it possible to attribute an operational measure to the self-information and Shannon uncertainty 
(entropy) of an individual source letter.   
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large. In this way, Shannon’s theory can deal with the information associated with amino acid se-
quences, consistent with traditional formalism. 

By analogy with Shannon’s model of communication, assuming that p represents the initial con-
ditions of codon probabilities in the prior generation, E(p)

p = H(p) can be considered as potential 
information of the baseline. Then, changes in ‘transmitted’ forms that occur due to differential rep-
lication and elimination processes express information about mutations, natural selection, and 
random genetic drift. Assuming that amino acid sequence frequencies change from p to v during 
a certain period of time, there is an associated increase or decrease in the information of variant 
forms from H(p) to H(v). In theory, one should be able to quantify this change of information 
for a given population of organisms for a given number of generations and estimate the amount 
of self-information and genetic variation gained or lost during the evolution of that lineage (cf.  
Díaz-Pachón & Marks, 2020). 

When X is a string that represents the amino acid sequence of the protein that a gene translates to, 
I(p)(X) is the self-information of that gene. For protein families, the self-information can be computed 
for each sequence of the family. If we let Xf = {Xm} be the set f of all (horizontal) amino acid sequences 
Xm for the proteins m of a given organism, we obtain the self-information of the proteome. 

However, we may also let the vector Xf represent the amino acids at a single site (i.e. vertical) 
along a multiple sequence alignment of a protein family. In the next subsection, we will consider 
matrices Xf that not only are interpreted as a set of (horizontal) amino acid sequences but also as 
collection (vertical) alignments at several sites. 

2.3 Multiple sequence alignments 
An orthologue protein family f is commonly represented by the alignment of its sequences. There 
are several methods to model and study such alignments. Let L be the length of the alignment of M 
sequences. This can be represented as a matrix Xf = (Xmj) with M rows and L columns, where Xmj 

refers to a gap or the amino acid of protein m at site j. Whereas only amino acids are used to define 
basic statistics of Xf , later on in the text when single summarising measures of information for Xf 
are presented, gaps will also be addressed. 

2.3.1 Sample statistics 
First, we consider the basic statistics of a multiple sequence alignment. Let Lm, m = 1, . . . , M, be the 
length of the amino acids in each sequence in the alignment. It is assumed that these sequences exclude 
gaps so that Lm ≤ L. The self-information for each sequence in alignment Xf may be computed in a 
straightforward manner, as described in Section 2.2, to obtain the mathematical range, mean, and 
standard deviation of the information content of the sequences in the alignment (gaps are ignored). 
To this end, it is convenient to introduce a composition vector Nm for each protein m = 1, . . . , M, 
and I(p)(Xf ), a vector of length M, whose component m contains the mean self-information content 

I(p)(Xm1, . . . , XmLm ) = I(p)(Xm) = Nm · I(p)/Lm of all amino acid sequences, that is, of all rows of 
Xf . This yields the following statistics computed from the components of I(p)(Xf ): 

range (Xf ) = [min (I(p)(Xf )), max(I(p)(Xf ))],  

I(p)(Xf ) =
1
M

􏽘M

m=1

1
Lm

(Nm · I(p)) ,  

SDI(p)(Xf ) =

��������������������������������������������

1
M − 1

􏽘M

m=1

1
Lm

(Nm · I(p)) − I(p)(Xf )
􏼒 􏼓2

􏽶
􏽵
􏽵
􏽴 .

2.3.2 The site-tolerant model 
Whereas I(p)(Xf ) consists of the mean self-information contents of all M amino acid sequences of 
the protein family, it is also of interest to find a single information content measure I(p)(Xf ) of this  
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family that takes alignment and dependencies between the sequences into account. To this end, we 
introduce a binary matrix b = (bxj), where x = 1, 2, . . . , 20, j = 1, 2, . . . , L, and bxj equals 1 
or 0 depending on whether amino acid x is present or not at site j, among the sequences with no gap 
at this site. As mentioned above, the alignment of M sequences can be represented as matrix Xf = 
(Xmj) with M rows and L columns, where Xmj refers to a gap or the amino acid of protein m at site 
j. Thus, bxj = 1 if at least one of the amino acids of Column j in Xf equals x. The additive 
laws of probabilities are applied to calculate the combined information for all sites in the align-
ment Xf : 

I(p)(Xf ) = −
􏽘L

j=1

log2(p · bj) = −log2

􏽙L

j=1

p · bj, 

where bj = (b1j, . . . , b20,j) is a row vector of length 20, whose transpose bT
j corresponds to Column 

j of matrix b. The gapped sites are considered to carry no information because amino acids are 
observed to be redundant at these sites in one or more of the sequences in the alignment. To incorp-
orate gapped sites into the definition of I(p)(Xf ), we set bj = 1 for these sites. Note in particular that 
􏽑L

j=1 p · bj is the probability that a randomly chosen amino acid sequence of length L (under the 
assumed independence between sites and amino acid distribution p per site) at each site agrees with 
at least some members of the protein family at that site. Sites where all amino acids are represented 
(as well as gapped sites) carry no information because bxj = 1 for all x and hence p · bj = p · 1 = 1, 
where 1 is a row vector of length 20 with 1 at all positions. Entirely conserved sites (bxj = 1 for 
some x = Xj and bxj = 0 for all x ≠ Xj) contain the self-information −log2pXj of the conserved ami-
no acid, inferring that the proteins have a common construct and that all of them maintain the ami-
no acid Xj = Xmj of this construct. 

One assumption of this site-tolerant model is that all mutations that are tolerated individually at 
a site are also simultaneously acceptable. This is truly not the case, and the consequence is that 􏽑L

j=1 p · bj is considerably larger than the fraction of acceptable amino acid sequences. 
Equivalently, the above-computed information I(p)(Xf ) is considerably lower than the real amount 
of information. Studies of prokaryotic genomes in GenBank have shown that 98% of sites cannot 
accept an amino acid substitution at any given moment, but a large majority of all sites may be 
permitted to alter when other compensatory changes occur (Povolotskaya & Kondrashov, 
2010). A single amino acid substitution is often deleterious owing to its one-sided effect on protein 
structure, expression, or function, as native protein structures are only marginally stable with 
small values of Gibbs free energy of unfolding. The same study also showed that at least 90% 
of the sites in any prokaryotic protein can accept a substitution given the correct combination 
of amino acids at other sites. This illustrates a dependency between a protein family’s amino acids 
at different loci, and it calls for a more restrictive model to define the information content I(p)(Xf ) 
of a protein family. 

2.3.3 Site-distribution model 
With the goal of defining a more restrictive model, with a larger I(p)(Xf ), we will extend the site- 
tolerant model of the previous section. In the extension, we will not only register which amino 
acids are present at various sites of the protein family Xf but also take the amino acid frequencies 
into account. We define a probability matrix q = (qxj), where x = 1, 2, . . . , 20, j = 
1, 2, . . . , L, and the entries of qxj correspond to the frequencies at which each amino acid x 
occurs at each site j along the alignment, among those of the M sequences of Xf that have no 
gap at site j. Let r = (rxj) be another matrix whose component at row x and Column j is 

rxj =

1, at a site j with gaps for all M proteins,

qxj/px

max (q1j/p1, . . . , q20, j/p20)
, at a site j with no gaps.

⎧
⎪⎪⎨

⎪⎪⎩

(1)  
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A more general formula, which also come to sites j for which some but not all of the M amino acid 
sequences have gaps, is provided in Appendix D. We interpret (1) as an instance of rejection sam-
pling (Wells et al., 2004), with proposal distribution p and a target distribution qj = (q1j, . . . , q20,j) 

whose transpose qT
j corresponds to column number j of q. This sampling procedure is repeated 

independently for all sites j = 1, . . . , L. More specifically, we will hypothetically assume that 
the M sequences of the protein family have been obtained through a sampling procedure with cen-
soring (or rejection). Amino acid sequences are generated independently between sequences and 
sites from a large reservoir XR of amino acids with distribution p, and an amino acid x at site j 
is retained (not censored) with probability rxj, independently between sites and sequences. A non-
censored amino acid at site j is either visible (no gap) or not visible (a gap). This sampling proced-
ure is continued until eventually a protein family Xf with M sequences of L noncensored sites is 
obtained. When M is large, due to the definition of rxj in (1), the noncensored amino acids at 
site j with no gaps occur in proportions qj, and at a site j with gaps only they occur in proportions 
p (although in the latter case these M sampled amino acids are only seen as M gaps). At a site j with 
some gaps the M noncensored amino acids at this site occur in proportions between qj and p (see 

Appendix D). The probability of retaining a randomly picked amino acid at site j is p · rj, where rT
j 

refers to column number j of r, whereas the probability of retaining all amino acids of a whole se-
quence of length L is 

􏽑L
j=1 p · rj. Consequently, only a fraction 

􏽑L
j=1 p · rj of the sampled sequences 

from XR are retained after censoring. The smaller this number is, the more similar the sequences of 
the protein family are since censoring tends to eliminate differences between amino acids x at each 
site j and retain those x for which rxj is large. The censoring mechanism also gives rise to a self- 
information 

I(p)(Xf ) = −
􏽘L

j=1

log2(p · rj) = −log2

􏽙L

j=1

p · rj, (2) 

defined as the number of bits of information obtained from the noncensoring probability of a se-
quence from the protein family. We will interpret I(p)(Xf ) as the amount information infused when 
sampling from the reservoir, or the amount of information that the observed family of M noncen-
sored amino acid sequences represent. In addition, it will be seen in Section 2.4 that (2) corre-
sponds to functional information if the noncensored sequences are defined as functional, 
whereas the censored sequences are nonfunctional. Note also that rj equals bj in the special case 
when all amino acids at site j with nonzero frequencies (qxj > 0) are retained with certainty 
(rxj = 1). The gapped sites, or those with gaps above a threshold, are considered to carry no infor-
mation (p · rj = p · 1 = 1), and the same is true for sites where the amino acid distribution is the 
same as the prior distribution (q = p). Entirely conserved sites (qxj = rxj = 1 for some x and ryj = 
0 for all other amino acids y) contain the self-information −log2pXj of the conserved amino 
acid of this site between 3.346 and 5.931 bits (Table 3). 

For both the site-tolerant and site-distribution models, the mean value of self-information per 
site of sequence alignment is determined by 

I(p)(Xf ) =
1
L

I(p)(Xf ), 

where L is the total number of sites of the alignment. In particular, when the protein family con-
sists of a single sequence of length L such that M = 1 and Xf = X, then I(p)(Xf ) and I(p)(Xf ) reduce 

to I(p)(X) and I(p)(X), respectively. 
In the appendices, we will derive a number of mathematical properties of I(p)(Xf ). In Appendix  

A, we verify that I(p)(Xf ) is a measure of information that satisfies the triangle inequality. This is 
based on the observation that I(p)(Xf ) can be viewed as a distance between the prior amino acid 
distribution p = (pT, . . . , pT) = ( pxj = px), and the observed amino acid distribution q = 
(qT

1 , . . . , qT
L) = (qxj) of Xf . Although this distance is not a metric (it is not symmetric), it still 

satisfies the triangle inequality. In the mathematical literature such spaces are often named a  
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quasi-metric space (Khamsi, 2015), or a ‘mountainous’ space, since the effort of climbing up to the 
top of a mountain is not the same as descending back to the starting point. 

In Appendix B, we notice that the above interpretation of 
􏽑L

j=1 p · rj as a noncensoring probabil-
ity is only exact in the limit when the number M of aligned sequences is large. For this reason, 
I(p)(Xf ) will not be zero but positive (of the order 1/

���
M
√

), for a family of M sequences that are ran-
domly generated from the prior distribution. It is however possible to derive a correction term of 
I(p)(Xf ), so that randomly generated protein families will have an expected self-information of 0 
per site if this correction term is subtracted from I(p)(Xf ). 

The site-distribution model may be generalised to account for dependencies between the amino 
acids at different loci. In Appendix C, we generalise I(p)(Xf ) to protein families that allow for de-
pendencies between sites, so that the amino acids of each protein are draw from a Markov chain. 

2.4 Functional information 
It is beneficial to characterise semantic information that is represented in biology as functional in-
formation, as it comes closer to expressing the intuitive sense of the word information than mere 
Shannon’s reduced uncertainty or combinatorial uncertainty. There is no general agreement on the 
measurement of functional information, and this is an ongoing discussion. A measure of function-
al information is required to account for all possible sequences that could carry out an equivalent 
biochemical function, such as a protein’s ability to react or bind with a specific molecule. For any 
observed phenotypic function F, we denote the set of amino acid sequences with this phenotype as 
XF. To simplify, we focus on discrete phenotypes (e.g. reaction or not, function or not) rather than 
on quantitative phenotypes (e.g. the catalytic constant), thus assuming that all amino acid sequen-
ces with a specific phenotype F correspond to functioning proteins. 

In 2003, Jack Szostak published a short paper in Nature, pointing out that the meaning or func-
tionality of a message is vital in molecular biology (Szostak, 2003). Because classical information 
theory does not distinguish between functionality and nonfunctionality, Szostak introduced the 
need for a new measure of information, which he called functional information. Some years later, 
he and three other colleagues defined functional information in terms of a gene string as −log2 of 
the fraction of functional sequences that have fitness values (activity of a biopolymer) greater than 
a specified value (Hazen et al., 2007). This is the probability that a random sequence will encode a 
molecule ‘with greater fitness than any given degree of function’; in other words, 

IF(XF) = −log2
#(XF)
#(XR)

, (3) 

where XF is a matrix whose rows are different sequences of length L that meet or exceed the re-
quired level of function within a cell, and #(XF) is the number of such sequences, that is, the num-
ber of rows of this matrix. Similarly, XR is a matrix whose rows consist of a reservoir of all possible 
sequences, both functional and nonfunctional, of the same length L, whereas #(XR) is the number 
of such sequences. Consequently, XF includes only a small fraction of the rows of XR, and the ratio 
#(XF)/#(XR) represents the probability of a functional sequence within the larger set of all possible 
sequences. In the present setting, this type of idea enables us to distinguish between functionally 
significant and random information to isolate the former in terms of functional measures. The jus-
tification for this is that the information that makes no difference contributes nothing of operative 
value. Therefore, we seek to isolate and quantify only the effective information content of the 
system. 

Many genotype sequences usually form the same family of phenotypes and #(XF) is an unknown 
number for most proteins. Then, unfortunately, we are unable to use the definition by itself to cal-
culate the probability or the functional information required to code for a functional protein. 
Some restrictions must be introduced. 

An orthologue protein family carrying a specific function is commonly represented by the align-
ment Xf of its sequences. Regarding XF = Xf as our protein family, we may approximate the frac-
tion #(XF)/#(XR) of functional genomic sequences with the noncensoring probability 

􏽑L
j=1 p · rj 

that was introduced in Section 2.3. The rationale for this approximation is our previous assump-
tion that the sequences of the protein family are randomly generated (with amino acids chosen  
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independently between sites with distribution p) and censored (with rj containing the fraction of 
noncensored sequences for all amino acids at site j). In the present context, we may interpret non-
censored as functional, so that 

􏽑L
j=1 p · rj is the fraction of the randomly generated amino acid se-

quences that are functional. By taking the −log2 of both terms, we thus approximate the functional 
information by I(p)(Xf ) in (2). 

2.5 Mutual information 
The common measure of mutual information from the information theory may also be applied to 
aligned sequences. Mutual information is calculated between two variables, and measures the ex-
pected reduction in Shannon uncertainty, H, for one variable X given a randomly chosen value of 
the other variable Xf . Here, we will use a conditional version of mutual information which corre-
sponds to the observed change in H for X given an observed value of Xf . Let Xf be an aligned fam-
ily of proteins of length L, XR is the ground state, a reservoir of all possible amino acid sequences of 
the same length, whereas X has the same dimensionality M × L as Xf , with a distribution that cor-
responds to randomly sampling M out of all MR rows of XR with no censoring. The mutual infor-
mation quantifies the average information in Xf about X, when Xf is randomly sampled from the 
reservoir (with censoring, and with noncensoring probabilities r as in (1)), whereas the conditional 
version of mutual information refers to the information that the observed Xf (also obtained with 
censoring) provides about X. The conditional mutual information between these two variables can 
be stated more formally as: 

I(Xf ) = ΔH(X; Xf ) = H(X) − H(X|Xf ), 

where H(X) is the total entropy of the L columns of X, each one with components distributed ac-
cording to the prior p, whereas H(X|Xf ) is the total entropy of the L columns of X, given that each 
one of them conforms with the corresponding column of Xf , or equivalently, a sequence that is 
chosen from a posterior distribution of X given data from Xf . 

The difference at each site j, between the entropy of Column j of X and the conditional entropy 
of Column j of X, given Column j of Xf , along the L alignments is of major importance. Durston 
et al. (2007) computed these two uncertainties using amino acid frequencies calculated at each 
aligned site. The sum of the contributions to the difference between the entropy and conditional 
entropy at each position of the alignment leads to ΔH(X; Xf ). To calculate the site uncertainties,  
Durston et al. (2007) determined the proportion of each amino acid at each site in the dataset using 
dxj/M, where dxj is the total number of occurrences of a specific amino acid x = 1, . . . , 20 at site j 
and M denotes the number of sequences in the alignment. Using p̃x = 1/20 as prior for amino acid 
x at site j (rather than the prior probabilities px of Table 3), the corresponding posterior probabil-
ity based on data from the protein family is dxj/M. Thus, p̃x = 1/20 and dxj/M, x = 1, . . . , 20, 
are the probabilities used to calculate the contribution of site j to H(X) and H(X|Xf ), respectively. 
Summing over all sites, we obtain the conditional mutual information 

I(Xf ) = ΔH(X; Xf ) = H(X) − H(X|Xf ) = −
􏽘L

j=1

􏽘20

x=1

1
20

log2
1
20

+
􏽘L

j=1

􏽘20

x=1

dxj

M
log2

dxj

M

= L · log220 +
􏽘L

j=1

􏽘20

x=1

qxj log2qxj = L · log220 +
􏽘L

j=1

qj · log2qj

(4) 

of the aligned family, where in the fourth step, we used qxj = dxj/M. Because the authors assumed a 
uniform prior distribution of the 20 amino acids, they obtained H(X) = L · 4.322 bits. The ex-
treme contributions to I(Xf ) at a site j occur when either one amino acid is completely conserved 
(dxj = M for some x, with a per-site contribution 4.322 to I(Xf )) or when all 20 amino acids occur 
with the same frequency (dxj = M/20 for all x, with a per-site contribution 0 to I(Xf )). 

Durston et al. (2007) applied this method to determine the lower bound of bits to 35 protein 
families from the Pfam database to estimate the information of some important biological  
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functions. Pfam (https://pfam.xfam.org/browse) is a widely used repository of protein family 
HMMs. Twelve examples with more than 500 bits were found. The highest value reported was 
for the protein family Flu PB2, with 2,416 bits. 

It is possible to generalise conditional mutual information to arbitrary prior distributions. Using 
a similar argument as in (4), we obtain 

I(Xf ) = H(X) − H(X|Xf ) = −L · p · log2p +
􏽘L

j=1

qj · log2qj, (5) 

where in our setting the prior distribution p will be chosen from Table 3 and the posterior prob-
abilities of the second term are obtained from Bayes’ rule as 

pxrxj
􏽐20

y=1 pyryj
= qxj 

at a site with no gaps, making use of the fact that the observed protein family was obtained through 
sampling with censoring, so that the noncensoring probabilities rxj (cf. (1)) appear in the likeli-
hood. By applying the distribution p from Table 3, we obtain H(X) = L · 4.139 bits, which is some-
what less than Durston assessed from his model with a uniform prior. 

Another possibility is to apply the expected active information to the protein family as 

I+(Xf ) =
􏽘L

j=1

E(I+
Xj

) = E(p)
q (Xf ) − E(q)

q (Xf ) = −
􏽘L

j=1

qj · log2p +
􏽘L

j=1

qj · log2qj, (6) 

where Xj is a randomly chosen amino acid from Column j of Xf . It follows from Section 2.2 that 

(6) equals the total Kullback–Leibler divergence 
􏽐L

j=1 DKL(qj||p) between the prior and posterior 
distributions p and qj, summed over all loci. 

2.6 Methodological overview 
In Table 4, we summarise some of the properties of the various methods for measuring informa-
tion at sites of amino acid alignments. Methods (2) and (6) have the advantage of being non- 
negative and (2) additionally approximates the functional information in Equation (3). 
Equation (6) does not qualify as a distance measure, because it is asymmetric and path-dependent, 
and in contrast to (2) it does not satisfy the triangle inequality (Cover & Thomas, 2006). On the 
other hand, Method (5) has the conditional mutual information interpretation. It needs no correc-
tion in order for random sequences to have approximately zero information, whereas the deriva-
tions of Appendix A reveal that such a correction is needed for (2) (and by a similar type of 
argument, a correction term of (6) is obtained as well). 

3 Results 
It is difficult to experimentally determine the connection between functional information and ac-
tivity because of the extreme scarcity of functional sequences in populations of random sequences. 
Since there are multiple sequences with a given expression, the corresponding functional informa-
tion will always be lower than the measure of the information needed to specify any particular se-
quence. It is important to notice that functional information is not a property of any one molecule, 
but of the collection of all optional sequences classified by activity. 

Proteins generally have one or more functional regions termed domains. A protein domain is a 
region of the protein sequence that folds independently of the rest to form a distinct structural unit. 
CATH is a hierarchical classification of protein domain structures (Figure 2), which clusters pro-
teins at four major levels, abbreviated by the letters CATH (Sillitoe et al., 2021). In this hierarchy, 
the domains are classified at the Class (C) level (1 = all alpha, 2 = all beta, 3 = mixture of alpha and 
beta, 4 = few secondary structures), Architecture (A) level (information on the gross secondary  
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structure arrangement in three-dimensional space), Topology/fold (T) level (information on how 
the secondary structure elements is connected and numbers of secondary structures), and 
Homologous superfamily (H) level that clusters domains with highly similar sequences and func-
tions. By combining protein structure and sequence, the CATH resource provides comprehensive 
structure-based domain family assignments to millions of protein sequences. Table 5 shows the 
functional information of five selected alignments with different architectures from each CATH 
class, except Class 4, which contains only one architecture. More specifically, Table 5 shows 
the functional information and mutual information for the selected protein domains determined 
by the methods described in the present article (equations (2) and (5), respectively). 

The same table also presents four randomly generated alignments analysed by the methods de-
scribed in the present article (equations (2) and (5)). For a randomly generated protein family with 
M amino acid sequences, it follows from the Central Limit Theorem that the information content 
density I(p)(Xf )/L̅ obtained from (2) is always positive and of the order 1/

���
M
√

(see Appendix A 
for more details), whereas the corresponding information content density obtained from (5) ap-
proximately equals 0. 

Four of the CATH domains in Table 5 have a functional information density below 2 bits/site. 
The main reason is that these alignments contain gaps in 30% or more of their sites, and the gaped 
sites are estimated with zero information. If we skip the gap sites, the density of the remaining sites 
is in line with that of the other domains. 

Pfam is the largest database of functional families and domains, and it is represented by se-
quence alignments (Mistry et al., 2021; Wang et al., 2021). It was trained on a representative 
set of aligned sequences that are known to belong to the unit (the ‘seed’ alignment). From this data-
base, it is possible to retrieve a FASTA file of all known sequences of a domain and align them. We 
generated alignments of 30 selected functional domains from Pfam and studied them using the 
framework developed in this study. Table 6 presents the results calculated from the sequence 
data, jointly with the defined functionality variable (cf. Durston et al., 2007). 

The scatter plot in Figure 3 compares the information density estimated by Models A and B in  
Table 5 (CATH data) and Table 6 (Pfam data). The CATH data show higher correlations than the 
Pfam data. 

To demonstrate further how this approach can be visualised, a sample plot of functional infor-
mation along the aligned sequence of the first domain of Table 5 is shown in Figure 4, making use 
of equation (2) (Model A). From the plot, one can observe which sites have higher measured func-
tional information and possibly play a critical role in either the structure or the binding site of that 
protein domain. If the structure of the protein domain is known, one may also generate similar 3D 
plots. 

A few protein groups have also been studied experimentally in labs to estimate the prevalence of 
biological functions (Axe, 2004; Ferrada & Wagner, 2010; Kozulic & Leisola, 2015 ). By studying 
one of the subdomains of a typical Class A β-lactamase of L = 153 amino acids, Axe found a preva-
lence of performing this function via any fold in the range between 10−53 and 10−77. Hence, it fol-
lows from (3) that the functional information satisfies 

176 bits = −log2(10−53) ≤ Iβ-lactam(Xβ-lactam) ≤ −log2(10−77) = 256 bits, 

which corresponds to bits of information per site between 1.151 and 1.672. This is an estimate of 
the overall prevalence of adopting functional folds by supporting a working active site, not re-
stricted to specific domains and families as the examples in Tables 5 and 6. Hence, the number 
of bits per site is lower than in the tables. 

Only a tiny fraction of the total sequence space conforms to the specific structural and functional 
characteristics of a particular protein or protein family. This sparseness of functional protein se-
quences in the sequence space, and the ruggedness of the protein energy landscape with minor 
amounts of Gibbs free energy of unfolding, are emphasised by observations from studies of pro-
karyotic genomes (Povolotskaya & Kondrashov, 2010). 

Even a library of 100-residue proteins with the mass of the Earth itself (5.98 × 1024 kg) would 
comprise at most 3.3 × 1047 different sequences (Taylor et al., 2001). Therefore, only a combina-
torial approach that couples modular design with mutagenesis and selection is appropriate to  
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successfully introduce known or new catalytic activity. Current biotechnological approaches for 
developing functional de novo proteins include rational design, computational optimisation, 
and selection from combinatorial libraries (Smith & Hecht, 2011). 

4 Discussion and concluding remarks 
In the study above, we have shown how variants of the Shannon information measure can be ap-
plied to a variety of molecular sequence data sets. We put forward a series of very specific analyses 
constrained by a priori assumptions about the underlying probability distributions of sequences 
from which sample data have been obtained, before all nonfunctional sequences are censored. 
In the study, we also assumed that aligned sequences from the CATH and Pfam databases could 
be assigned the same functionality, and a measure of functional information in bits for each site, 
based on rejection sampling, was computed from their aligned sequences. The results for the an-
alysed protein domains and families, as well as some arrays of randomly generated sequences, are 
shown in Tables 5 and 6, and in Figures 3 and 4. 

The functional information, estimated by rejection sampling (Model A), reveals similar results 
as the conditional mutual information results (Model B) for the CATH data. However, results 
from the Pfam data are more diverse. Both the CATH and Pfam databases are populated by se-
quences taken from the genome database UniprotKB/Swiss-Prot, who store several identical cop-
ies of a sequence if they are detected in different species. Multiple copies of sequences imply that 
the corresponding amino acids will look more conserved. This may explain some of the observed 
variation between Methods A and B for the Pfam alignments, suggesting that the multiple copies 
have a larger effect on Model B. Indeed, it follows from the third column of Table 4 that whereas 
Model B always gives the same values at conserved sites, the values of Model A at such sites will 
depend on the rareness of the conserved amino acids, with common conserved variants leading to a 
smaller functional information. Consequently, if a majority of the multiple copies of the Pfam 
alignments correspond to common amino acid variants, if follows that the conditional mutual in-
formation should be larger than the functional information. To elaborate further on this, one 
might screen the alignments downloaded from the databases for multiple copies of identical se-
quences to represent each unique sequence only once, regardless of whether they are from different 
species or not. 

There is a complex relation between protein sequence, structure, and function. Protein function 
is directly related to the resulting 3D structure of the sequence. This structure–function correlation 
is high, implying that 3D conservation is more important than the primary amino acid sequence 
(Hvidsten et al., 2009; Sousounis et al., 2012). Function and structure may be conserved in the 
context of large sequence differences. Hence, the CATH data based on structure will be more rele-
vant than the Pfam data when estimating information related to function. However, the CATH 
homologous superfamily (H) also introduces sequence similarity into the data and therefore ob-
scures the pure structure–function signal. 

There are some limitations to the approach of the present study. Genes and proteins may have 
similar biochemical functions, without any noticeable sequence similarity, as mentioned in the 

Table 4. Various models for measuring bits of information I(X f ) at a single site j = 1 (L = 1) in an alignment X f of M 
amino acids with distribution q = qj 

Model Range of values [min, max]  
when qj varies 

Value for conserved amino  
acid x (qxj = 1) 

Value for distribution  
qj = p  

(2) [0, 5.931] −log2px 0 

(4) [0, 4.322] log2(20) = 4.322 0.183 = 4.322–4.139 

(5) [−0.183, 4.139] 4.139 0 

(6) [0, 5.931] −log2px 0 

Note. The first column refers to equations numbered in the article, whereas Columns 2–4 display properties of I(Xf ) when 
qj varies, with null distribution p as in Table 3. The max information of 5.931 bits in Models (2) and (6) occurs if either an 
amino acid M or W is conserved. Models (2) and (5) are elaborated further in Tables 5 and 6 as Models A and B.   
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introduction. These isoenzymes vary in sequence but catalyse the same reaction (Guzzi et al., 
2012). Methods used in the present study only work for aligned orthologues and must handle iso-
enzymes as separate groups. The information content of these groups may be compared. 

The existence of isoenzymes may explain why studies of functional information via any 3D fold 
(Section 2.4) provides estimates of 1.15–1.67 bits per site, while our results based on orthologue 
sequences are higher (mainly between 2.37 and 4.40 bits per site, see Method A of Tables 5 and 6). 

The calculation of functional information for proteins employs all recognised sequences of a do-
main family out of the sequence space that displays any degree of that family’s biofunction. It does 
not deal with the degree of functionality (e.g. the reaction rate) of any one protein in that family. 
However, to the best of our knowledge our self-information approach (2) comes closer to an in-
formation measure of biofunction than any other measures in the literature, and we conjecture 
that degree of functionality can be incorporated into the noncensoring probabilities (1). 

Another premise of our computational models of Sections 2.3 and 2.5 is that functionally 
equivalent amino acids at each site are independent of those at any other site. This is not valid 
if there is a linkage between sites that are close to each other in 3D, such as a salt-bridge config-
uration. Consequently, the computed amount of information, under the assumption of independ-
ence, could be lower than the real amount, and the protein families contain more bits of 
information and represent a much smaller subset among random sequences. In order to account 
for such dependencies between sites, we developed a more general estimate of functional informa-
tion in Appendix C. However, the effect of these site-dependencies is to some extent balanced by 

Figure 2. Structure and sequence alignment of the nonspecific serine/threonine protein kinase. From CATH 
superfamily 1.10.510.10 at http://www.cathdb.info/browse/.   
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Figure 3. A scatter plot comparison of information density (information per site) estimated by the functional 
information model (a) (= I(p)(Xf )/L̅) and the conditional mutual information model (b) (= I(Xf )/L̅) for a number of 
protein families Xf of average sequence length L̅. The big yellow dots are the protein domains/families from the 
CATH database (Table 5), and the smaller blue dots are the protein families from Pfam (Table 6).  

Figure 4. The information profile shows how information values vary between sites for the domain elongation 
factor ts (entry 4r71C01 of CATH superfamily 1.10.8.10). There are M = 2295 sequences in the full sequence 
alignment, and only two sites are fully conserved (amino acid L at site 13 and amino acid R at site 14). Despite of the 
fact that these two sites are conserved, information is not largest there, because these amino acids are more likely a 
priori (probability 6/61). The peak at sites 21 and 22 is dominated by amino acid M (probability 1/61), in spite of the 
fact that M is not fully conserved at these two sites. Sites containing gaps are unfilled.   
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the fact that not all organisms that ever lived are represented in the dataset, indicating the measures 
of information of Sections 2.3 and 2.5 could still be used as approximations of the actual function-
al information. 

Another quantity that affects all measures of information studied in this article is the prior de-
duced from the genetic code. We assumed that amino acids are independent a priori over sites and 
sequences, with a distribution p obtained from Table 3 under the assumption that all nonstop co-
dons are equally likely a priori. This assumption was relaxed in Appendices A and C by allowing 
for a site-dependent a priori distribution pj, still assuming a priori independence between sites. 
Such an extended model will typically lower the functional and conditional mutual information, 
at least if pj is closer than p to qj for most sites j. A further extension is to allow for a priori depend-
encies between sites, and this might further lower the functional and conditional mutual informa-
tion. Regardless of which type of prior that is used, it is of interest to estimate it from the data, and 
thereby adapt it to the coding region of the studied protein family Xf . For instance, for the simplest 
model with a priori independence over sites and sequences, the prior distribution might be esti-
mated empirically from Xf as p̂ =

􏽐 L
j=1qj/L. This will typically lower the functional and condi-

tional mutual information, compared to using an a priori fixed prior p. 
Although the same functionality may not be applicable to individual sites, both site significance 

and independence between sites are assumed in Sections 2.3 and 2.5 when estimating the site in-
formation and summing it up for the entire alignment, whereas short-range Markov process de-
pendencies are treated in Appendix C. More general scenarios may be considered for observed 
long-range dependencies between segmented regions in the alignment based on conserved as 
well as interdependent patterns (Durston et al., 2012). 

The ability to measure information in bits at each site of a protein domain may be applied to 
locate key functional components of a gene. Durston et al. (2007, 2012) observed in their analysis 
of ubiquitin, that six of the seven sites with the largest number of bits per site were clustered 
around the binding site. Surprisingly, the binding site itself was poorly conserved, although it 
had a relatively high bits/site information. 

We may also perform simulation studies of our models using the notion of expected self- 
information (or cross-entropy) E(p)

v , as introduced in Section 2.2, based on the prior distribution 
p of Table 3 and another given distribution v. The random sequence X of maximal length L is then 
sampled from v, whereas its self-information is computed from p. We recall from Section 2.2 that 
the Kullback–Leibler divergence between v and p tells how much E(p)

v exceeds the entropy H(v) = 
E(v)

v of v. On the other hand, in Appendix A, we showed that our estimate of functional informa-
tion corresponds to replacing the Kullback–Leibler divergence by another distance that satisfies 
the triangle inequality. The relation between these two measures of information, and the other 
models of Table 4, may be further elaborated by simulation studies and analysing more alignments 
to find out more on how accurate the methods are regarding sequence similarity, and provide some 
similarity threshold above which the methods can be expected to no longer work. 

Genes contain instructions, which are a type of effective procedural information, such as algo-
rithms. In this sense, genes represent special types of respectable informational entities, which are 
in themselves instructions or algorithms. This interpretation of genetic information is compatible 
with Shannon’s probabilistic theory of information but is less demanding than a full semantic in-
terpretation. However, the basic dichotomy between syntactic and semantic information requires 
better coupling and coherent understanding to develop an integrated and more global theory of 
information for genetic systems. The explicit consideration of functional information in the pre-
sent study bridges the syntactic and semantic information concepts and leads to operational state-
ments and empirical testable hypotheses about the role of information in genetic systems. This can 
help in the challenging task of discovering environmental adaptation or genetic innovation by 
quantifying changes in information. Functional information profiling of the proteins is a signifi-
cant step in understanding the role of gene sequences in the context of the full genetic repertoire 
of an organism. 

Given its restricted nature, probability-based self-information (or expected active information), 
functional information, and conditional mutual information are important for measuring infor-
mation also in other contexts than presented here. Their ability to quantify genetic information 
has the same utility as any other quantitative method. It allows us to analyse and compare systems 
from the perspective of their informativeness. Mutational drift, emerging pathogenic viral, and  
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microbial strains, can be evaluated quantitatively as well as in a qualitative way. In principle, it 
may be possible to estimate the values of functional information in bits for all proteins and protein 
sites in a virus or cell if all the translated genes are known. 

There exist other formalisms than information theory to study the information content in gen-
etic sequences. Formally, the Kolmogorov algorithmic information, or complexity, of a string X of 
bits is the length of the shortest computer program that generates string X and stops. Kolmogorov 
complexity is related to the compression of data. A nontrivial string may be algorithmically incom-
pressible and requires an algorithm or instruction set of complexity, such as the system it describes. 
Numerous programs will generate X, but the Kolmogorov measure of complexity discredits from 
the fact that it is algorithmically unknowable, as there is no general method to compute it (Cover 
& Thomas, 2006). Nevertheless, it is possible to derive upper bounds for the Kolmogorov com-
plexity, and accordingly, it is bounded without being computed exactly. Viruses and archaea 
have a higher relative DNA complexity than bacteria and eukaryotes (Pratas & Pinho, 2017). 
Several protein compression methods have been proposed in the literature. For a review, we refer 
to Hosseini et al. (2016). Interestingly, the Kolmogorov complexity may be estimated from its out-
put frequency distribution (Soler-Toscano et al., 2014), just as the measures of information pre-
sented in this article. It is an interesting topic of further research to compare (upper bounds of) 
Kolmogorov complexity with other measures of information such as functional information. 

A grand unified theory of biological information may be intangible, perhaps even fundamentally 
inconceivable, given the uncontained use of the term. There may be no direct quantifiable frame-
work for mathematical biology in the same manner as well-established mathematical physics 
(Chaitin 1979). There is much more information present in a biological system than can be 
counted by plain and straightforward observation; therefore, its quantification by counting of al-
leles within genes (or of amino acids within proteins) amounts to gross bias by discarding. There is 
a global biological complexity within a set of hierarchical levels from DNA to ecology (Farnsworth 
et al., 2012; Griffiths, 2017). The flow and accumulation of information in ecological systems is 
information processing, which integrates information in multiple forms (O’Connor et al., 
2019). Extracting knowledge from different information levels can be fruitful for sequence data 
analysis. Meta-information like temperature, salinity, pH, pressure, etc. may be implemented. 
The present formalism may be extended to study time-series of biological sequences, as ‘sequences 
of sequences’. Developing methods for observing, quantifying, and tracing information remains 
the target of research efforts across disciplines. We hope that the present contribution can help 
to serve as the first steps to obtain the common ground needed to build a general, more satisfactory 
theory of biological information. 

In biology, information has both a probabilistic and qualitative dimension over an observable data-
set. Through the representation and use of information and its pragmatic assessment, there is substan-
tial justification for considering biology within such an informational platform. In this article, we have 
presented some advances in terms of quantifying genetic information as a joint variable of function and 
sequence data, and to estimate the corresponding functional information through rejection sampling. 
Both structure-based and sequence-based domains, which are available in CATH and Pfam databases 
respectively, are promising representatives of functional regions within proteins with quantifiable in-
formation content. Information is a conceptual key to a proper understanding of reality that reveals 
itself as we do science. Despite the large amount of evidence that information plays a vital role in gen-
etic systems, quantitative information processing does not yet feature much in the genetic principles at 
the centre of mainstream theories and textbooks. This absence is problematic and disconnects genetics 
from other scientific disciplines. Scientific and philosophical thinking and work should rather, with 
increasing confidence, place information ‘as one of three elemental components of existence (along 
with space/time and energy/matter)’ (Atmar 2001). 

The present models are implemented in MATLAB, and the routines can be downloaded from 
the next version of the DeltaProt toolbox (Thorvaldsen et al., 2010). 
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Appendix A 
Suppose Xf = (Xmj) is a protein family, whose amino acids are assumed a priori to be independent with 
locus-dependent distributions Xmj ∼ pj = ( p1j, . . . , p20,j) having all its elements > 0. This is slightly 
more general than the framework of Section 2, where p1 = . . . = pL = p was assumed. Let also 
qj = (q1j, . . . , q20,j) contain the observed amino acid frequencies of Xf at site j. Define matrices 
p = (pT

1 , . . . , pT
L) = ( pxj) and q = (qT

1 , . . . , qT
L) = (qxj) of dimension 20 × L that contain the prior 

and observed amino acid distributions of Xf at all loci, respectively. For simplicity, consider only non-
gapped sites j and assume that q is obtained from a pool of amino acids with distribution p through a 
censoring mechanism. We generalise the definition of (1) of the noncensoring probabilities to 

rxj =
qxj/pxj

max (q1j/p1j, . . . , q20,j/p20,j)
, 

so that the prior probabilities pxj are locus-dependent. The self-information (2) of Xf similarly general-
ises to 

I(p)(Xf ) = −
􏽘L

j=1

log2(pj · rj) = D(q, p) =
􏽘L

j=1

D(qj, pj), (7) 

where 

D(qj, pj) = −log2(pj · rj) = log2 max
q1j

p1j
, . . . ,

q20,j

p20,j

􏼒 􏼓

− log2

􏽘20

x=1

qxj

= max log2
q1j

p1j
, . . . ,

q20,j

p20,j

􏼒 􏼓

.

Note that D(qj, pj) differs from the Kullback–Leibler divergence DKL(qj||pj) in that a weighted sum-
mation of all log2(qxj/pxj) for x = 1, . . . , 20, with weights qxj, is replaced by a maximum operation. 
Moreover, the information measure (7) differs from (6) in that the distance D replaces the Kullback– 
Leibler divergence DKL. 

Now assume that the output of the first sampling mechanism, that generated Xf , is the input of a 
second sampling mechanism that generates a new protein family Yf = (Ymj) of dimension M × L. 
That is, the observed amino acid distribution s = (sxj) of Yf is obtained from a pool of amino acids 
with distribution q, corresponding to a self-information 

I(q)(Yf ) = D(s, q) =
􏽘L

j=1

D(sj, qj).

On the other hand, the self-information of Y f for a combined sampling procedure, with a pool of 
amino acids with frequencies p, and observed frequencies s, is 

I(p)(Y f ) = D(s, p) ≤ I(p)(Xf ) + I(q)(Yf ) = D(q, p) + D(s, q).

In order to prove this triangle inequality, since D is additive over loci it suffices to prove the cor-
responding locus-wise triangle inequality 

D(sj, pj) ≤ D(qj, pj) + D(sj, qj) 

for j = 1, . . . , L. But, this follows from the fact that 

max
s1j

p1j
, . . . ,

s20,j

p20,j

􏼒 􏼓

≤ max
q1j

p1j
, . . . ,

q20,j

p20,j

􏼒 􏼓

× max
s1j

q1j
, . . . ,

s20,j

q20,j

􏼒 􏼓
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Appendix B 
In this appendix, we will analyse the per site information I(p)(Xf ) = I(p)(Xf )/L of a family Xf = 
(Xmj) of M amino acid sequences of length L, where I(p)(Xf ) is given by equation (2). We will as-
sume that the actual amino acid distributions and sampling probabilities at site j are qj = 
(q1j, . . . , q20,j) and rj = (r1j, . . . , r20,j), respectively, with rxj obtained from p = ( p1, . . . , p20) and 
qj in the same way as rxj was obtained from p and qj in (1). In more detail, we assume that all amino 
acids X1j, . . . , XMj at site j are drawn randomly and independently from qj so that the observed 
amino acid frequencies at site j have a standardised multinomial distribution 

qj = (q1j, . . . , q20,j) ∼ Mult(M, q̅j)/M.

This implies in particular that the limit of the per site information, as M→∞, is 

I(p)(Xf ) = −
1
L

􏽘L

j=1

log2(p · r̅j), (8) 

whereas for finite M the observed per-site information will differ from (8) by a random amount of 
order 1/

���
M
√

. 
In the remaining part of Appendix B, we will make this argument more precise when the protein 

family is randomly generated from the prior distribution, i.e. when ̅qj = p and ̅rj = 1 at all sites j, so 
that the M→∞ limit of the per site information in (7) is I(p)(Xf ) = 0. Consequently, all Xmj are 
independent and identically distributed, with a multinomial Mult(1, p) distribution, whereas p = 
( p1, . . . , p20) is the vector of amino acid frequencies of Table 3. To this end, we will first consider a 
protein family of length L = 1. For simplicity of notation, we omit locus index j, so that qx1 = qx 

refers to the fraction of all amino acids X11, . . . , XM1 that equal x. From, this it follows that the 
empirical amino acid frequencies 

q = (q1, . . . , q20) ∼ Mult(M, p)/M 

have a standardised multinomial distribution. For large M, the empirical frequencies in q will ap-
proximate those in p. It is convenient to introduce the random variables δx =

���
M
√

(qx − px)/px, 
which quantify how much the empirical frequencies qx differ from the sampling probabilities px 

on a standardised scale. When M is large, it follows from the multivariate Central Limit 
Theorem that approximately 

δ = (δ1, . . . , δ20) ∼ N(0, Σ), 

where the covariance matrix of the multivariate normal distribution has diagonal elements Σxx = 
(1 − px)/px and off-diagonal elements Σxy = −1. This implies that 

δx ≈
Zx
����
px
√ −

􏽘20

y=1

����
py

􏽰
Zy, 

where Z1, . . . , Z20 are independent standard normal random variables and ≈ refers to approxi-
mate equivalence in distribution. Assume that the site of interest is un-gapped. The noncensoring 
probabilities of (1) can be expressed as 

rx =
1 + δx/

���
M
√

1 + max δ1/
���
M
√

, . . . , δ20/
���
M
√( 􏼁 ≈ 1 −

1
���
M
√ (max(δ1, . . . , δ20) − δx), 

where the last approximation is valid for large M. From this, it follows that  
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I(p)(Xf ) = −log2

􏽘20

x=1

pxrx

􏼠 􏼡

≈
max(δ1, . . . , δ20) −

􏽐20
x=1 pxδx

log (2)
���
M
√ =

max(δ1, . . . , δ20)

log (2)
���
M
√ .

Expressing δx in terms of the standard normal variables Zx, we find that 

I(p)(Xf ) ≈
max Z1/

����
p1
√

, . . . , Z20/
�����
p20
√( 􏼁

−
􏽐20

x=1
����
px
√

Zx

log (2)
���
M
√ . (9) 

Now consider a randomly generated family Xf of M amino acid sequences of length L. Then, 

I(p)(Xf ) =
1
L

􏽘L

j=1

Ij, 

where I1, . . . , IL are independent random variables that represent information at loci j = 1, . . . , L, 
all having the same distribution as in (9). When L is large, it follows from the Law of Large 
Numbers that 

I(p)(Xf ) ≈
C
���
M
√ , (10) 

with 

C =
E max Z1/

����
p1
√

, . . . , Z20/
�����
p20
√( 􏼁􏼂 􏼃

log (2)
. (11) 

The cumulative distribution function of the random variable within the expectation of (11) is 

F(t) =
􏽙20

x=1

Φ
����
px
√

t
( 􏼁

, 

where Φ is the standard normal distribution function. Consequently, 

C =
− ∫0−∞ F(t)dt + ∫∞0 [1 − F(t)]dt

log (2)
. (12) 

The integral of (12) can be evaluated numerically. For the amino acid distribution of Table 3, we 
find that C = 14.34. Inserting this value into (10), the number of bits per site is obtained for protein 
families of various size (cf. Table 7). It can be seen that the agreement between the analytical ap-
proximations of Table 7 and the corresponding simulation results of Table 5 improves the larger 
M is. 

Appendix C 
In this appendix, we will generalise (2) and define a notion I(p)(Xf ) of self-information of a protein 
family Xf = (Xmj) of M aligned amino acid sequences that accounts for dependencies between sites. 
That is, for each protein m = 1, . . . , M, we will allow for dependencies between the amino acids of 
the sequence Xm = (Xm1, . . . , XmL). For amino acid x = 1, . . . , 20 and locus j = 1, . . . , L, we let 
dxj refer to the number of {Xmj}

M
m=1 that equal x, whereas for any pair of amino acids x, y = 

1, . . . , 20 and locus j = 2, . . . , L we let dxyj be the number of {(Xm,j−1,Xmj)}
M
m=1 that equal 

(x, y). Let also qyj = dyj/M and qxyj = dxyj/dx,j−1 refer to the amino acid frequencies, and condition-
al amino acid frequencies at site j (if dx,j−1 = 0, we put qxyj = 1). 

As in Section 2, we will assume that the amino acids of Xf are drawn with censoring from a large 
reservoir XR. Random sampling from this reservoir (without censoring) corresponds to drawing  
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amino acids independently between proteins and sites, with amino acid distribution pj = 
( p1j, . . . , p20,j) at site j. Randomly drawn amino acid sequences of length L (proteins), are cen-
sored independently between sequences, but not between the sites of each sequence. For simplicity 
of exposition, we only consider un-gapped sites j. The censoring mechanism of each amino se-
quence of length L is defined as a Markov process, such that the probability rx1 of not censoring 
amino acid Xm1 = x at locus j = 1 is given by the lower part of (1), whereas the probability of not 
censoring Xmj = y at locus j ∈ {2, . . . , L}, given that Xm,j−1 = x, is 

rxyj =
qxyj/pyj

max (qx1j/p1j, . . . , qx,20,j/p20,j)
.

Let r1 = (r11, . . . , r20,1) contain the noncensoring probabilities at site j = 1 and define the vector 
p1 ⊙ r1 = ( p11r11, . . . , p20,1r20,1) of elementwise products of prior probabilities and noncensoring 
probabilities at this site. For each site j = 2, . . . , L, we let Pj = ( pxyj = pyj)

20
x,y=1 and Rj = (rxyj)

20
x,y=1 

be square matrices of order 20 that contain the a priori transition probabilities and noncensoring 
probabilities, respectively, between j − 1 and j. Let also Pj ⊙ Rj = ( pyjrxyj)

20
x,y=1 be a matrix of the 

same size that contains the elementwise products of these two matrices. The self-information of 
Xf is then minus the base 2 logarithm of the noncensoring probability of a randomly chosen amino 
acid sequence of length L, that is, 

I(p)(Xf ) = −log2 p1 ⊙ r1

􏽙L

j=2

Pj ⊙ Rj

􏼠 􏼡

1

􏼢 􏼣

= D(q, p) , (13) 

where 1 is a column vector of 20 ones, p = (pT
1 , P1, . . . , PL), q = (qT

1 , Q1, . . . , QL), and Qj = 
(qxyj)

20
x,y=1 is the matrix of transition probabilities between pairs of amino acids of sites j − 1 and 

j. It can be seen that (13) reduces to (7) when the noncensoring probabilities are independent be-
tween sites (rxyj = ryj for j = 2, . . . , L). As in Appendix A, it is possible to prove that the distance 
measure D between the a priori Markov process p and the observed Markov process q, satisfies the 
triangle inequality. 

The above Markov process characterisation is only exact in the limit of many amino acid se-
quences (M→∞). More generally, we may assume that the M amino acid sequences of Xf of 
length L are drawn independently from a Markov process with initial distribution q̅1 = 
(q̅11, . . . , q̅20,1) at locus j = 1 and transition matrices Q̅j = (q̅xyj)

20
x,y=1 between loci j − 1 and j for 

j = 2, . . . , L. Let q̅ = (q̅T
1 , Q̅1, . . . , Q̅L). When M→∞, the self-information of (13) converges 

to D(q̅, p). In fact, (13) can be interpreted as an estimate of the limiting (M = ∞) self-information 
D(q̅, p). 

Appendix D 
In this appendix, we will extend formula (1) and define a rejection sampling algorithm that gen-
erates a family Xf of M amino acid sequences of length L for more general gap scenarios than 
in Section 2.3. Recall from Section 2.3 that the ML elements of Xf are sampled independently 
from a large reservoir of amino acids with distribution p = ( p1, . . . , p20), with rxj the probability 
of retaining a sampled amino acid x at site j. Let 0 ≤ gj ≤ 1 represent the proportion of sequences 
in Xf with a gap at j, so that Mgj sequences have gap at this position, whereas the other M(1 − gj) 
sequences do not. Whereas formula (1) treats the two special cases of a site with gaps only (gj = 1) 
or no gaps (gj = 0), we will now consider the general case 0 ≤ gj ≤ 1. When gj < 1, let qj = 
(q1j, . . . , q20,j) represent the amino acid distribution at site j among the M(1 − gj) sequences 
with no gap at this position, whereas rng

j = (rng
1j , . . . , rng

20,j) refers to the vector of noncensoring 
probabilities 

rng
xj =

qxj/px

max (q1j/p1, . . . , q20,j/p20)
, (14)  
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so that the corresponding rejection sampling algorithm generates qj, with ng an acronym of no 
gap. The probability of retaining a randomly sampled amino acid, with noncensoring probabilities 
(14), is p · rng

j . The sought for probability of retaining a sampled amino acid x at a site j with a 
fraction gj of gaps, and amino acid distribution qj among the nongapped amino acids, is 

rxj = gj +
(1 − gj)r

ng
xj

p · rng
j

􏼠 􏼡
􏼮

gj +
1 − gj

p · rng
j

􏼠 􏼡

. (15) 

Formula (15) implies that a sampled amino acid from the reservoir represents a gap with probabil-
ity 

g′j =
gj

gj +
1 − gj

p · rng
j 

and a nongap with probability 1 − g′j. If a sampled amino acid x represents a gap, it is retained with 
probability 1 but not visible as x (it is seen as a gap), whereas if it does not represent a gap it is 
retained with probability rng

xj and visible as x. Since nongapped amino acids are retained more sel-
domly, when M is large the fraction of gapped and nongapped amino acids at j are close to gj and 
1 − gj rather than g′j and 1 − g′j. Moreover, when M is large the amino acid distribution among the 
M noncensored amino acids at j is close to qj. 
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