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Abstract 

The angiosperm genus Cuscuta lives as an almost achlorophyllous root- and leafless holoparasite and has therefore 
occupied scientists for more than a century. The ‘evolution’ of Cuscuta research started with early studies that es-
tablished the phylogenetic framework for this unusual genus. It continued to produce groundbreaking cytological, 
morphological, and physiological insight throughout the second half of the 20th century and culminated in the last 
two decades in exciting discoveries regarding the molecular basis of Cuscuta parasitism that were facilitated by 
the modern ‘omics’ tools and traceable fluorescent marker technologies of the 21st century. This review will show 
how present activities are inspired by those past breakthroughs. It will describe significant milestones and recurring 
themes of Cuscuta research and connect these to the remaining as well as newly evolving questions and future direc-
tions in this research field that is expected to sustain its strong growth in the future.

Keywords:   Cuscuta, dodder, haustorium, interspecific cell–cell connections, parasitic plant, parasitic plant genome evolution, 
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Introduction

Plants that procure some or all their nutrients from other 
living plants are defined as parasitic (Kuijt, 1969; Heide-Jør-
gensen, 2008). The phenomenon of plants that have given up 
an autotrophic lifestyle to turn to an almost predatory-like 
lifestyle has bestowed a fair bit of mysticism upon them that is 
still reflected in some of the common names that people have 
given parasitic plants: witchweeds (genus Striga), devils thread 
or angel hair (genus Cuscuta), ghost plant (genus Monotropa), 
corpse flower (genus Rafflesia), or stemsuckers (genus Pilo-
styles). To some degree, these names reflect the aberrant hab-
itus or nutrition strategy of these parasites that no longer need 

to maintain their own photosynthetic machinery or an elab-
orate root system.

Parasitism has manifested itself in >4750 species from >12 
independent lineages within the angiosperms (Nickrent, 2020). 
Well-known parasites are the mistletoes and the dodders that at-
tach to the aerial parts of other plants such as branches or stems 
of herbs, shrubs, and trees (Fig. 1). These are classified as shoot 
parasites, as opposed to root parasites like Striga or Phelipanche 
that establish underground connections with their hosts (Fig. 
1). Other classifications are based on the extent of host depend-
ency or the extent of the ability to carry out photosynthesis,  
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leading to classifications of holo- versus hemiparasites and ob-
ligate versus facultative parasites, respectively (Fig. 1). Further-
more, some parasites are highly host specific while others can 
infect a broad range of angiosperms without inducing a resist-
ance reaction. 

Despite an obvious variability in the degree of specializa-
tion, all parasitic plants have one trait in common that can 
be denoted their ‘signature organ’: the haustorium (Yoshida 
et al., 2016) (Fig. 2). The term haustorium originates from the 
Latin word haurire and means to drink, to absorb, to engulf, 
or to penetrate, depending on the context. The term could 
not reflect this multicellular organ’s role better, as it enables 
the parasites to connect physically and physiologically to 
the host and to extract all essential nutrients. Originally, the 
term haustorium [sometimes also called ‘haustorium proper’ 
(Kuijt, 1969)] was often exclusively used to refer to the en-
dophytic tissue of the parasite developing within the host, 
but its usage was already broadened in the early 1990s by 

Heide-Jørgensen who in his definition of the haustorium 
of Cassytha pubescens referred to both the attachment struc-
tures and the endophytic tissue (Heide-Jørgensen, 1991). A 
wider definition has become more and more popular in re-
cent literature. However, it is important to stress that the 
term ‘haustorium’ should not be confused with the term  
‘infection site’, which by definition encompasses the adja-
cent tissue of the host. A reflected, uniform use of the term 
could also avoid confusion in anatomical and molecular 
studies, where more precise terms such as ‘upper hausto-
rium’, ‘pre-haustorium’, and ‘adhesive disk’ for exophytic 
parts and ‘haustorium proper’ for the mature endophytic part 
of the parasitic infection organ are preferable.

Cuscuta spp. (also known as dodders) represent the only par-
asitic genus in the family of Convolvulaceae (order Solana-
les). The genus is relatively large, with ~200 species (Nickrent, 
2020). Cuscuta consists of threadlike and leafless twining stems 
of 1–3 mm in diameter that can infect all aerial parts of soft 

Fig. 1.  Representative drawings of four different parasitic plants that reflect the different parasitic strategies. (A) For hemiparasitic shoot parasites, Viscum 
album infecting Pinus sylvestris is depicted. (B) For holoparasitic shoot parasites, Cuscuta europaea infecting Urtica dioica is shown. (C) For hemiparasitic 
root parasites, Striga hermonthica infecting Zea mays is displayed. (D) For holoparasitic root parasites, Phelipanche ramosa infecting Solanum 
lycopersicum is pictured.
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herbs but also woody shrubs and even trees (Dawson et al., 
1994). Together with the broomrapes and mistletoes, dodders 
are among the best-researched model organisms for parasitic 
plants, primarily because their unique appearance, world-
wide distribution, and negative impact on agricultural yields 
has created a substantial amount of interest in them. Cuscuta 
species have also been attributed antibacterial, antioxidant, an-
ti-inflammatory, or hepatoprotective effects, to name a few of 
the pharmacological applications that have been reported, and 
that are exploited in traditional Asian medicine (Noureen et al., 
2019).

Early research on Cuscuta

Mention of parasitic plants in the literature dates back as far 
as ancient Greece. Theophrastus, Aristotle’s student (373–287 
BC), mentioned Cuscuta and other parasitic plants as early 
as 300 BC in his scripture Enquiry into Plants, although the 
names he used do not correspond to the species names that are 
common today. Theophrastus described a plant he called Oro-
banche, whose characteristics can be clearly attributed to our 
present-day Cuscuta. A plant that by Theophrastus’ description 
closely resembles the root parasite we know today as Orobanche 
was referred to by him as Haimodoron (Costea and Tardif, 2004).

Fig. 2.  Schematic drawing of the haustorium of C. campestris (black outlines) infecting A. thaliana (gray outlines). The vascular tissue of both plants is 
highlighted in blue (P, phloem) and in red (X, xylem) (darker color for the parasite and lighter color for the host).
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Up until a hundred years ago, the literature largely addressed 
the occurrence of Cuscutas, their host specificity (or lack 
thereof), as well as the systematics of this genus. A dominating 
authority on that subject was Truman G. Yuncker (1891–1964) 
whose work succeeded that of the famous German–American 
botanist George Engelman (1809–1884). Engelmann proposed 
to arrange Cuscuta species into three subgenera (Engelmann, 
1859), Grammica, Monogyna, and Cuscuta, and Yuncker used 
these to group 158 Cuscuta species in his pivotal study from 
1932 (Yuncker, 1932) (Fig. 3). The phylogenetic classification 
was based mostly on visual taxonomic characteristics from the 
inflorescences and fruits. This classification has provided a val-
uable taxonomic framework for many decades and is still valid, 
although more recently it was suggested that a small number 
of African species be separated from the subgenus Cuscuta and 
placed in their own subgenus, Pachystigma, as confirmed in re-
cent refinements of the phylogenetic framework by Costea 
et al. (2015). Among the other revelations in the newer liter-
ature is the observation of extensive hybridization events and 
reticulate evolution within the large subgenus Grammica. The 
exact number of these events is not clear, and current estimates 
are probably too low (Stefanovic and Costea, 2008).

At around the same time as Yuncker performed his extensive 
studies, the first cytological studies were published by Fogel-
berg (1938) who observed unusually large variations of chro-
mosome sizes and numbers within this genus. These differences 
were later confirmed by modern flow cytometric and genomic 
methods and showed >100-fold variations of genome sizes be-
tween Cuscuta species (Neumann et al., 2021). It is currently 
assumed that these differences reflect inflations of repetitive 
regions on the chromosomes.

Morphological and physiological signatures of 
parasitism in Cuscuta

One of the most conspicuous consequences of the hetero-
trophic lifestyle of Cuscuta at the morphological level is the 
evolution of the multicellular parasitic organ termed the 
haustorium (Fig. 2). The structure and development of haus-
toria was, accordingly, a recurrent theme in Cuscuta research 
(Yoshida et al., 2016). Some of the first detailed microscopic 
observations of Cuscuta haustoria were documented by Peirce 
(1893) and Thoday (1911). Peirce’s work contained detailed 
descriptions of phloem and xylem bundles in haustoria of sev-
eral Cuscuta species and he compared haustorium formation 
with lateral root development. Thoday extended the ideas of 
Pierce and referred to the haustorium as an adventitious root. 
She contributed numerous detailed drawings of the hausto-
rial cells, especially the haustorial vascular tissue. Thoday’s and 
Peirce’s work was challenged by Thomson (1925) who dis-
agreed with the presence of phloem in Cuscuta haustoria, and 
it was not until Dörr, Kollmann, and co-workers published 
their series of excellent electron microscopy studies (Dörr, 
1968, 1969, 1972, 1990; Israel et al., 1980) that this question 

was settled and Thomson was proved wrong. The notion that 
cells with sieve tube characteristics are formed in the Cuscuta 
haustoria after successful infection on a susceptible host is no 
longer disputed. These vascular cells are connected to the host’s 
sieve tube system through specialized phloic hyphae (Fig. 2). 
Sieve element–companion cell (SE/CC) complexes in hausto-
ria showed no significant structural differences compared with 
usual angiosperm phloem cells, but their origin is different; 
instead of emerging from cambial tissue which is the case in 
non-parasitic plants, haustorial SE/CC complexes originate 
from ordinary parenchyma cells (Dörr, 1990; Vaughn, 2006).

Thomson (1925) also noticed that Cuscuta spp. have no 
leaves, lack stomata, and contain only small amounts of chlo-
rophyll. He concluded correctly that Cuscuta is most probably 
unable to photosynthesize sufficiently to cover its demand 
for carbohydrates. This fact was controversially discussed for 
the following two decades, as presented by Yuncker (1943). 
Yuncker summarized how various authors have disagreed on 
the amount of chlorophyll, the presence or absence of stomata, 
and the ability to photosynthesize. In his own studies, he pre-
sented that at least 11 Cuscuta species possess stomata, though 
in reduced numbers (Yuncker, 1943). Finally, though much 
later, the work done by Clayson and colleagues provided an 
explanation for the general disagreement about the presence 
or absence of stomata in different Cuscuta species. Using SEM, 
they demonstrated that the number and occurrence of stomata 
vary between species but also between different types of stems 
within a species (Clayson et al., 2014).

Measurements of photosynthesis and CO2 fixation have 
contributed significantly to the understanding of the hetero- 
trophic lifestyle of Cuscuta. Pattee’s dissertation included pho-
tosynthesis studies and 14C fixation experiments of Cuscuta 
spp. shoots. The results indicated that the photosynthesis rates 
of Cuscuta spp. only added to an insignificant degree to the 
nutrient uptake from the host plant (Pattee, 1960). Photosyn-
thetic activity of dodders was also under investigation a few 
decades later when the work performed by Machado and 
Zetsche (1990) and van der Kooij et al. (2000) confirmed that 
none of the Cuscuta species investigated was able to reach the 
CO2 compensation point, not even species such as C. reflexa 
that appear green. Thus, it can be stated that Cuscuta is not 
able to support any net growth based on its own CO2 fixa-
tion. This is consistent with the fine structure of the parasite’s 
chloroplasts. Instead of displaying the typical organization of 
thylakoids into grana stacks and stroma thylakoids that is symp-
tomatic for autotrophic plants, Cuscuta plastids are often less 
complex with significantly fewer thylakoids and no or neg-
ligible amounts of grana stacks. Some variation was observed 
between different Cuscuta species (van der Kooij et al., 2000), 
with C. reflexa exhibiting more and better organized thylakoids 
than C. campestris, while C. odorata did not have any thylakoids 
at all. The lack of structure, therefore, follows roughly the same 
gradient that was observed for the chlorophyll content of these 
species. It was hypothesized that Cuscuta plastids may have a 
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Fig. 3.  (A) Timeline showing milestones in Cuscuta research over the last century. The central time axis is represented by a stylistic host-entwining shoot, 
while side shoots represent a selection of milestones for the topics detailed in the sections of this review. (B) Main areas of Cuscuta research and their 
major periods of activity, as reported in this review. Arrowheads indicate that activity still continues in multiple fields.
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predominant function in synthesizing and storing starch and 
lipids, rather than acting as compartments for photosynthesis 
(Machado and Zetsche, 1990).

Plastome and genome evolution

The unarguably most characteristic feature of parasitic plants 
is their transition from autotrophy to a heterotrophic lifestyle. 
As a result of a reduced evolutionary pressure on maintaining 
the photosynthetic apparatus, this coincided with changes in 
the genomes that encode the subunits of the photosynthetic 
machinery, most evidently in the plastid genomes. Hence the 
plastid genomes of parasitic plants have attracted a lot of at-
tention since the turn of the century when commercial se-
quence analyzers based on non-radioactive technology, the 
predecessors of high-throughput sequencers, became widely 
popular.

Plastid genomes from autotrophic plants are typically highly 
conserved in gene content and gene order, and are transcribed 
and translated in a bacteria-like style from polycistronic oper-
ons, necessitating post-transcriptional processing to yield 
functional monocistronic mRNAs, rRNAs, or tRNAs. Since 
plastid genomes are dependent on two types of polymerases 
for their expression, one for housekeeping genes and the other 
for the components of the photosynthetic machinery, the 
focus during the first decade of this century was two-fold: on 
the plastid coding capacity and on the machinery involved in 
plastid gene expression (Berg et al., 2003, 2004; Krause et al., 
2003; Revill et al., 2005; Stefanovic and Olmstead, 2005; Funk 
et al., 2007; McNeal et al., 2007) (Fig. 3). These investigations 
revealed progressive plastid genome reductions that are most 
pronounced in species where plastid functions are severely 
reduced (Krause, 2011). In addition to the losses of all genes 
for some multisubunit complexes such as the NADH dehy-
drogenase complex, a ‘ripple’ or ‘domino’ effect was observed 
on gene regulatory pathways. Examples are the loss of the 
plastid-encoded polymerase that is accompanied by a loss of 
the promoter sequences recognized by it, or the loss of an in-
tron maturase and a concomitant loss of plastid introns, and last 
but not least the loss of some ribosomal proteins and tRNAs 
(Krause, 2011). Interestingly, several of the lost genes cannot be 
deleted in autotrophic plants without losing viability (Krause 
and Scharff, 2014).

Following the reduction in costs for whole-genome 
sequencing, the nuclear genomes of two Cuscuta species were 
published recently (Sun et al., 2018; Vogel et al., 2018) (Fig. 3). 
Their thorough scrutiny revealed that the majority of the lost 
plastid genes were not transferred to the nucleus but lost en-
tirely. What is more, a significant number of nuclear-encoded 
genes involved in the same processes were also lost (Sun et al., 
2018; Vogel et al., 2018). An impressive example is the loss of 
nuclear-encoded sigma factors and other RNA-binding pro-
teins from the nuclear genome that interact with the plastid-
encoded RNA polymerase or with plastid introns (Schwacke 

et al., 2019). Unsurprisingly, this indicates close feedback loops 
between the genomes of this plant.

A separate topic that promises more discoveries once the 
number of completely sequenced plant genomes rises further 
is the observation of horizontal gene transfers (HGTs). Vogel 
et al. (2018) reported a high confidence set of 64 genes that 
were acquired by C. campestris from other plants by HGT, while 
Yang et al. (2019) identified 108 probably functional HGTs in 
the same species (some of those shared with root parasitic Oro-
banchaceae) in addition to 42 host transposon-derived trans-
fers. A horizontally transferred miRNA in the nuclear genome 
of C. campestris (Zangishei et al., 2022) as well as a functional 
HGT into the mitochondrial genome were recently described 
(Lin et al., 2022). Once both quality and quantity of the ge-
nomic resources in Cuscuta is improved, our understanding of 
the mechanisms as well as the functional significance of HGT 
will be increased and should reveal the fundamental evolu-
tionary processes underlying the transition to parasitism.

Transport processes between host and Cuscuta

The use of Cuscuta as a ‘living bridge’ to infect recalcitrant 
plants with viruses for research purposes is widely practised 
today and is based on the practical knowledge that the par-
asite acts as a vector for a variety of plant diseases (Bhat and 
Rao, 2020). Modern investigations considered interspecific 
plasmodesmata as a unique trait in this interaction as sum-
marized by Fischer et al. (2021). However, the question of 
how transport between host and parasite is accomplished has 
been discussed for a long time. Based on histological studies, 
several researchers had concluded early on that water and nu-
trient transfer must occur through the close contact between 
parasitic hyphae and host xylem and phloem, respectively 
(Peirce, 1893; Thoday, 1911). However, the exact mechanism 
of this exchange was not yet clear. From the 1930s onwards, it 
was intensely debated whether the contact between host and 
parasite is established via plasmodesmata, as first proposed by 
Schuhmacher and Halbsguth (1938). Bennet pursued the same 
idea and investigated whether the transmission of plant viruses 
from an infected to a healthy host plant via dodder is suc-
cessful. He demonstrated that dodder can transmit viruses and 
recognized the possibility of using Cuscuta spp. to study plant 
viruses (Bennett, 1940). Since virus transmission from cell to 
cell via plasmodesmata was an acknowledged pathway, Bennet 
concluded that the virus transmission provided circumstan-
tial evidence for the existence of interspecific plasmodesmata 
at the interface, a claim that he thought he had substantiated 
by identifying structures resembling plasmodesmata between 
haustorium cells and host parenchyma cells in free-hand sec-
tions of the infection sites. In contrast, plasmodesmata be-
tween haustorial cells and the phloem cells of the host were 
not identified with certainty (Bennett, 1944). Pattee (1960) 
attempted to further interpret Bennet’s results by adding his 
own findings. He demonstrated that 14C-labeled compounds 
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fixed by alfalfa infected with dodder accumulated in the at-
tached dodder. He compared the movement of 14C-labeled 
compounds from host to parasite with Bennet’s findings re-
garding virus transmission. The underlying mechanism of 
movement from host phloem into haustorial cells was not ev-
ident in either case (Bennett, 1944; Pattee, 1960). A few years 
later, Dörr published detailed electron microscopic pictures of 
the close contact between Cuscuta hyphae and host cells. Just 
like Bennett (1944), she identified numerous plasmodesmata 
between hyphae and host parenchyma, but none between 
hyphae and phloem tissue. Hyphae that establish a close con-
nection with sieve tubes were named contact hyphae because 
they develop a special absorbing structure. Contact hyphae 
enlarge their surface by 6–20 times with membrane protuber-
ances facing the host sieve tube. Dörr therefore assumed that 
the host phloem nutrients are first released into the cell wall 
and then taken up from the apoplast by the contact hyphae. 
The surface enlargement of the contact hyphae promotes the 
uptake (Dörr, 1969, 1972) (Fig. 3).

Contrary to these data, Haupt and colleagues reported 
results implying the presence of plasmodesmata between con-
tact hyphae and host phloem (Haupt et al., 2001) (Fig. 3). 
Phloem-mobile green fluorescent protein (GFP) expressed in 
transgenic tobacco as well as other fluorophores moved from 
infected transgenic hosts into Cuscuta, indicating a symplasmic 
pathway for macromolecules between host and parasite (Haupt 
et al., 2001). Transmission rates of different radioactively labeled 
compounds, including sucrose, amino acids, phytohormones, 
and xenobiotics, were also measured and corroborated the as-
sumption of a non-selective ‘highway’ for metabolites between 
the two plants (Birschwilks et al., 2006). All these results pro-
vide strong evidence for an open symplasmic connection be-
tween Cuscuta spp. and the host phloem (Birschwilks et al., 
2006). However, so far only Lee (2009) was able to identify 
plasmodesmata between Cuscuta japonica hyphae and the sieve 
elements of the host plant Impatiens balsamina in electron mi-
croscopic pictures. The lack of further direct evidence was dis-
cussed recently (Fischer et al., 2021).

Along with the emerging subject of long-distance trans-
port of RNAs and the evidence for interspecific plasmodes-
mata, another focus in Cuscuta research was on the possible 
exchange of RNAs between host and parasite. Several research 
articles and reviews were published that demonstrate the trans-
mission of host RNAs and their processing in Cuscuta spp. 
(Roney et al., 2007;  Leblanc et al., 2012, 2013; Kim et al., 2014; 
Kim and Westwood, 2015; Park et al., 2021). Besides mRNAs,  
si RNAs and miRNAs were also shown to cross the host–para-
site border in both directions. Although it was initially debated 
whether RNAs were functional after their transport, it was 
recently shown that parasite miRNAs can target host mRNAs, 
and host RNAs can be translated in the parasite into proteins, 
suggesting that they serve a purpose in the respective interac-
tion partner (Shahid et al., 2018; Park et al., 2021). Interspe-
cific RNA transfer offers many future possibilities (Johnson 

and Axtell, 2019) and will probably remain a topic of intense 
research in the foreseeable future.

Cues that give away the host location

Because Cuscuta displays a high resistance towards most com-
mercially available pesticides [with the exception of the highly 
toxic dinitroaniline herbicides (Dawson, 1990)], the parasite 
is regarded widely as a difficult-to-control pest (Nadler-Has-
sar and Rubin, 2003; Goldwasser et al., 2012). Therefore, the 
search for effective pest control measures has focused, among 
other things, on how Cuscuta finds its potential hosts. For the 
parasite, host detection is crucial, particularly at the seedling 
stage because the seed offers only limited resources. However, 
the triggering of host penetration and invasive growth by the 
haustorium also rely on external cues. Those signals help time 
the haustorial induction and are important for the success of 
the parasite. In the late 19th century, it was already speculated 
that dodders may be able to sense and differentiate between 
different hosts (Peirce, 1893). The notion of Cuscuta displaying 
chemotropism was reiterated a number of times throughout the 
last century (Bünning and Kautt, 1956; Kelly, 1992). However, 
the actual attractants that cause the chemotropism were not 
discovered until Runyon et al. (2006) identified several volatile 
organic compounds that could attract Cuscuta pentagona. The 
authors used a smart experimental setup to show that the par-
asite reacts to volatiles and identified a range of monoterpenes 
as the active components in the attraction process (Runyon 
et al., 2006). Although the sensing of chemicals has not been 
shown for other species and has since not led to any practical 
approaches to disorient the parasite in the field, this discovery 
can be considered a milestone in Cuscuta research (Fig. 3).

Another cue that Cuscuta appears to use avidly is light. Un-
like most normal plants that display shade avoidance, Cuscuta 
is attracted by the canopy shade of their hosts. Canopy shade 
is characterized by a spectral composition depleted in red (R) 
and blue wavelengths due to absorption by photosynthetic 
pigments in the host foliage, but with a higher relative amount 
of far-red (FR) light. Therefore, the observation that light 
with a low R:FR ratio (indicating shade, and therefore host 
presence) attracts seedlings and shoots of Cuscuta and induces 
photomorphogenic changes (Lane and Kasperbauer, 1965; Orr 
et al., 1996) was a significant advance in the understanding 
how parasites locate their hosts using a known molecular aide: 
phytochrome. While the tropism towards a host is governed by 
the R:FR ratio, the coiling around a host stem may be also in-
duced by blue light. With modern LED technology that allows 
a much better resolution of light doses and light quality, Smith 
et al. (2021) showed recently that the parasite is even able to 
differentiate between minute differences in the wavelength sig-
natures and can thereby derive information not only on host 
proximity but also on host architecture from the R:FR ratios 
within the white light. Whether Cuscuta employs the same 
changes in hormone concentrations (especially auxin) as found 
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during the shade avoidance of autotrophic plants has, to our 
knowledge, not been investigated. Similarly, it is not yet known 
if the signaling cascades downstream of phytochrome percep-
tion are the same as in non-parasites.

Interestingly, haustorium development was also shown to be 
regulated by the light quality (Tada et al., 1996) (Fig. 3). It was 
demonstrated that FR induction of haustorium formation is a 
result of the action of phytochrome because the FR effect can 
be reversed by subsequently given red light (Furuhashi et al., 
1997). This has been exploited in several studies to induce and 
analyze haustorium development (Olsen et al., 2016; Bawin 
et al., 2022) and to develop transformation protocols (Lachner 
et al., 2020). A recent paper reported the differential regula-
tion of genes from the auxin signaling pathway upon treatment 
with light of a low R:FR ratio (Pan et al., 2022). This supports 
the notion that at least some of the downstream cascades that 
phytochrome signaling normally induces are also visible in the 
light-controlled infection process. However, in contrast to the 
light-mediated directional growth of Cuscuta, light-mediated 
haustoriogenesis requires an additional touch or tactile stim-
ulus (Tada et al., 1996). The induction of haustoria after a FR 
treatment was only observed on the side of the stem facing 
the host or by the part of the stem touching an inert surface 
such as a glass or acrylic dish (Tada et al., 1996; Furuhashi et al., 
1997). Cytokinin has been reported to activate haustoriogene-
sis without FR light and is therefore anticipated to be involved 
in the signal transduction downstream of the initial light and 
contact signals (Ramasubramanian et al., 1988; Haidar et al., 
1998; Furuhashi et al., 2011). It remains unknown how these 
factors are integrated in the decision of whether to commit to 
haustoriogenesis or not.

In search for a cure against Cuscuta attacks

As described before, Cuscuta spp. infect a broad spectrum of 
host plants, with a preference for dicot host species. Although 
the parasite modifies and even degrades the host’s cell walls 
(Nagar et al., 1984; Olsen et al., 2016), attacks go seemingly un-
recognized by the attacked plants. However, a few noteworthy 
exceptions were found in the genus Solanum according to a 
report published in the late 1980s (Ihl et al., 1988) (Fig. 3). 
During the following two decades, a number of studies com-
paring the interaction of different tomato cultivars with dif-
ferent Cuscuta species were published (e.g. Löffler et al., 1996; 
Goldwasser et al., 2001; Miranda-Sazo, 2003). These revealed 
a considerable variation in the outcome of a parasitic attack 
depending on which Cuscuta species was involved. Generally, 
C. reflexa was found to be most strongly deterred by the phys-
ical and physiological barriers implemented by tomato hosts, 
while members of the subgenus Grammica were found to be 
less affected (summarized by Lanini and Kogan, 2005). Sev-
eral publications have taken advantage of this tolerance of to-
mato lines to some Cuscuta species to investgate aspects of the 

host–parasite relationship (Jiang et al., 2013; Ranjan et al., 2014;  
Hegenauer et al., 2016, 2020; Krause et al., 2018) (Fig. 3).

Phenotypically, the defense reaction by tomato plants against 
C. reflexa is clearly visible as a hypersensitive response on the 
tomato stems at the sites of attempted haustorium penetra-
tion (Ihl et al., 1988; Sahm et al., 1995; Runyon et al., 2010). 
In the late attachment phase, ~3–5 d after the parasitic pre-
haustorium has formed, epidermal host cells at the contact sites 
elongate and rupture (Werner et al., 2001; Albert et al., 2004). 
Living cells of the tissue below secrete phenylpropanoids and 
show an increased activity of peroxidases, which are impor-
tant for linking phenylpropanoids with other cell wall com-
ponents such as cellulose fibers, pectin, or proteins. Together 
with synthesized lignins and long-chained di-fatty acids, these 
enzymes facilitate the cross-linking of cell wall compounds to 
the formation of a suberin-like structure. This barrier fends off 
the C. reflexa haustorium before it can establish any feeding 
connections (Kaiser et al., 2015). The observed resistance phe-
nomenon of selected tomato species against a subset of Cuscuta 
species hints at a mechanism comparable with ‘race-specific 
resistance’ as described for gene for gene interactions.

The molecular resistance mechanism of Solanum lycopersi-
cum against C. reflexa is not yet completely understood. The 
wild tomato relative S. pennellii is fully susceptible and this 
allowed for exploration of the genetic resources to under-
stand the underlying mechanisms. To this end, the collection 
of S. lycopersicum×S. pennellii introgression lines (Eshed and 
Zamir, 1995; Chitwood et al., 2013) has been very useful in 
the attempt to identify resistance gene candidates. Regions 
conferring susceptibility to C. reflexa were discovered on chro-
mosomes 1, 2, 6, and 8 (Hegenauer et al., 2016; Krause et al., 
2018). One tomato gene identified by this approach encodes a 
leucine-rich repeat receptor protein (LRR-RP)—Cuscuta re-
ceptor 1 (CuRe1)—which plays an important role in the rec-
ognition of C. reflexa and in the induction of defense-related 
responses (Hegenauer et al., 2016) (Fig. 3A). CuRe1 is a plasma 
membrane-bound receptor lacking an intracellular kinase do-
main. With its extracellular LRR domain, CuRe1 recognizes a 
116 amino acid long, glycine-rich protein of the C. reflexa cell 
wall (CrGRP) as a molecular pattern that identifies Cuscuta 
as an attacking pathogen (Hegenauer et al., 2020). As a min-
imal epitope, the 21 amino acid long peptide Crip21 binds 
and activates tomato CuRe1 and specifically induces classical 
PAMP (pathogen-associated molecular pattern)-triggered im-
mune responses such as the elevation of reactive oxygen species 
(ROS burst) or the production of the stress-related phytohor-
mone ethylene (Fürst et al., 2016; Hegenauer et al., 2016). 
CuRe1 also contributes to host plant resistance and supports a 
restriction of C. reflexa growth when transformed into usually 
susceptible hosts. However, CuRe1 seems not to be sufficient 
for resistance alone, but may be supplemented by additional 
molecular factors, probably additional receptors, that appear to 
be critical for a complete tomato resistance against C. reflexa 
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(Krause et al., 2018; Jhu et al., 2022). While CuRe1 is a plasma 
membrane-bound receptor and represents an essential compo-
nent of pattern-triggered immunity (PTI), a CC–NBS–LRR 
protein that seems to be part of the effector-triggered immu-
nity (ETI) and is involved in lignin-based resistance of tomato 
against C. campestris has been identified (Jhu et al., 2022). This 
intracellular receptor, named CuRLR1 (Cuscuta Receptor for 
Lignin-based Resistance 1), whose ligand is as yet unknown, 
probably acts as an important key component together with 
at least two transcription factors and contributes to host re-
sistance against C. campestris. Since deciphering the molecular 
mechanisms of host plant resistance against parasitic Cuscuta 
could be the key to create resistant crops against parasitic plant 
attacks, this line of research is assumed to continue well into 
the future.

The missing link for becoming a parasitic plant model 
organism: genetic modification

The idea of genetically modifying Cuscuta and creating trans-
genic parasites has already been evaluated ~20–25 years ago. A 
central step in genetic modification of plants is via tissue cul-
ture, allowing successfully transformed cells to be propagated 
and regenerated into a whole plant. The first reports of suc-
cessful formation of callus and regeneration via embryogen-
esis, as well as subsequent maintenance of the formed shoots 
without the need for a host was reported for Cuscuta trifolii 
(Bakos et al.,1995, 2000). However, callus-based regeneration 
failed after Agrobacterium tumefaciens-mediated transformation of 
the tissue (Borsics et al., 2002), limiting the applicability of this 
approach. Similar attempts were reported for C. reflexa (Srivas-
tava and Dwivedi, 2001) and C. europaea (Svubova and Blehova, 
2013) (Fig. 3A), but were also unsuccessful. That transformed 
cells are recalcitrant to regeneration was also shown by Lachner 
et al. (2020) who could observe expression of transgenically 
introduced fluorophores over many weeks, but without being 
able to induce propagation of the transformed cells or forma-
tion of a callus.

Host-induced gene silencing (HIGS) as a method of 
RNAi using transgenic host plants that express siRNAs has 
been tried successfully on C. pentagona (Alakonya et al., 2012) 
and C. campestris (Jhu et al., 2021). However, this method is 
very labor-intensive because a new transgenic host has to be 
created for every gene of interest individually. Virus-induced 
gene silencing (VIGS) also utilizes the RNAi pathway for 
silencing but is a slightly less elaborate approach. VIGS-based 
transformation has been recently reported for C. campestris 
(Dyer et al., 2021, Preprint), but at present this method still 
needs to be optimized to enable the expression of the trans-
gene also in newly developed shoots further away from the 
infection site on the virus-carrying host. In terms of inher-
itable transgenes, there is still no reportable breakthrough, 
making this one of the biggest bottlenecks in Cuscuta re-
search.

Conclusion

Despite many differences from their autotrophic hosts, it has 
not been possible to find a trait that would qualify as a prom-
ising starting point for developing an efficient remedy against 
Cuscuta. Given some of the reported spreads of the parasite into 
new habitats (Masanga et al., 2021), the search for an effective 
remedy against Cuscuta infection is therefore still highly rele-
vant and timely. At present, the inability to genetically modify 
the parasite is still a major bottleneck for making breakthrough 
advances in this respect. Protocols for stable transformation of 
Cuscuta are presently being sought intensively, and it is very 
likely that it will only be a matter of time until this will be 
achieved. On the other hand, we are seeing an increase in 
approaches where Cuscuta is used as a model to illuminate basic 
biological processes in plant cells from a different angle. Exam-
ples are interspecific connectivity and plasmodesmata develop-
ment, virus transfer and transport processes in general, self- and 
non-self-distinction, or evolutionary processes in the genomes, 
to name a few. It has been recently shown that Cuscuta can 
be propagated entirely without a living host using an artificial 
system for support (Bernal-Galeano et al., 2022). This system 
will allow a tighter control over the exposure of the feeding in-
terface to external factors and will add to the list of topics that 
Cuscuta research can be useful for. These current developments 
benefit from the comprehensive knowledge that has been col-
lected on Cuscuta over the last 100 years and more.
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