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A B S T R A C T   

Background: Diseases such as periodontitis and osteoporosis are expected to rise tremendously by 2050. Bone 
formation and remodeling are complex processes that are disturbed in a variety of diseases influenced by various 
hormones. 
Objective: This study aimed to review and present the roles of various hormones that regulate bone remodeling of 
the craniofacial complex. 
Methods: A literature search was conducted on PubMed and Google Scholar for studies related to hormones and 
jawbone. Search strategies included the combinations (“name of hormone” + “dental term”) of the following 
terms: “hormones”, “oxytocin”, “estrogen”, “adiponectin”, “parathyroid hormone”, “testosterone”, “insulin”, 
“angiotensin”, “cortisol”, and “erythropoietin”, combined with a dental term “jaw bone”, “alveolar bone”, 
“dental implant”, “jaw + bone regeneration, healing or repair”, “dentistry”, “periodontitis”, “dry socket”, 
“osteoporosis” or “alveolitis”. The papers were screened according to the inclusion criteria from January 1, 2000 
to March 31, 2021 in English. Publications included reviews, book chapters, and original research papers; in vitro 
studies, in vivo animal, or human studies, including clinical studies, and meta-analyses. 
Results: Bone formation and remodeling is a complex continuous process involving many hormones. Bone volume 
reduction following tooth extractions and bone diseases, such as periodontitis and osteoporosis, cause serious 
problems and require a great understanding of the process. 
Conclusion: Hormones are with us all the time, shape our development and regulate homeostasis. Newly 
discovered effects of hormones influencing bone healing open the possibilities of using hormones as therapeutics 
to combat bone-related diseases.   

1. Introduction 

Craniofacial growth is a highly complex process. Aside from the 
calvarium and facial bones, the maxilla is characterized by independent 
vertical growth and contains dentition, despite being attached to the 
cranium. Most interestingly, the mandible exclusively articulates at the 
temporomandibular fossae and is characterized by hanging in a sling of 
muscles and containing the dentition. The latter property makes both 
the maxilla and the mandible the bones with the highest rate of 
remodeling to accommodate tooth eruption and mastication. Several 

hormones are implicated to play a role in bone physiology, with changes 
in these hormones’ levels, changes in the bone can also be observed.1,2 

Osteoporosis and periodontitis are global diseases affecting bone 
highly correlated with increasing age and global burden as shown in 
Fig. 1.3 Increased risk of cardiovascular disease4 aspiration pneumonia5 

and severe outcome of COVID-196 are associated with periodontitis. By 
2040, the prevalence of periodontitis is expected to have increased by 
50% among older adults 65 years and older.7 Severe bone loss and loss of 
teeth occur if left untreated, making implant placement challenging. The 
number of dental implants placed is rapidly growing,8 and their success 
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rate depends on the available bone to be inserted into.9 Osteoporosis’ 
impact on the survival of dental implants is debated, however, obser-
vations point toward these patients possibly having a slight disadvan-
tage for their implants’ survival.10,11 The gold-standard technique to 
rebuild adequate bone levels is the autologous bone graft.12 However, 
harvesting the graft is invasive and limited by available donor bone, 
increased morbidity, and post-operative pain.13,14 Researchers are 
continually developing new methods to prevent bone loss and to rebuild 
bone in the jaw. Hormones may be a direction to explore for such new 
methods as several hormones are implicated in osteoporosis, periodon-
titis, and bone remodeling. 

While hormones are used for a wide array of conditions in medicine, 
little is known about hormones in dentistry and their possible thera-
peutic applications. Hence, it is important to review the various hor-
mones that regulate bone formation and resorption implications on the 
jawbone and the diseases. This study aimed to review and present the 
roles of various hormones that regulate bone remodeling of the 
craniofacial complex. 

2. Method 

A literature search was conducted on PubMed and Google Scholar for 
studies related to hormones and jawbone as shown in Table 1. Search 
results were screened for relevance; publications describing or 

investigating hormone(s) effects on jawbone in relation to dentistry. The 
publications’ cited papers were screened for relevance, as well, and 
included if fitting inclusion criteria. Additional inclusion criteria 
included full-text availability (Table 1). 

2.1. Hormones related to bone remodeling 

Hormones are substances produced in the endocrine glands of the 
body and released to the bloodstream and further carried to specific 
target cells, where their effects are exercised. Such endocrine glands 
include the pituitary gland, adrenals glands, parathyroid glands, and 
more.15 Hormones may act as messengers or something as complex as 
coordinators of various essential processes such as blood volume and 
blood pressure regulation, development, and reproduction.16,17 

Following nine hormones were found to be involved in the bone 
remodeling of the jaw bone (Fig. 2).18–27 

2.2. Adiponectin 

Adiponectin (AN), a hormone produced by adipose tissue, is typically 
implicated in the regulation of blood glucose and the oxidation of fatty 
acids. However, the hormone has many additional biological func-
tions.28 Recently, AN has been found to play a potential role as a positive 
bone mass regulator,29 an angiogenesis stimulator, and an osteoclast 
suppressor.30 AN interacts with the cementoblasts (OCCM-30) affecting 
the cell migration, proliferation and cementogenesis partly through the 
Mitogen-activated protein kinase (MAPK) signaling pathway.31 Activa-
tion of AN-mediated migration and proliferation was results after the 
inhibition of P38, ERK1/2 and JNK in various degrees, whereas miner-
alization was increased by MAPK inhibition in varying degrees. These all 
favorably increases the cell proliferation and cementogenesis. Hence, 
AN regulates bone formation and serves as a potential application in 
orthodontics. 

Administration of AN in rabbits has resulted in increased mineral 
content, increased mechanical strength, and a coarser bone morphology 
locally, suggesting new and accelerated bone formation.32 The rabbits in 
the study were undergoing a procedure known as distraction osteo-
genesis, a surgical method of elongating bone by cutting it and slowly 
pulling the pieces apart using a mechanical device over time. It was 
evaluated that the key steps of AN-induced bone regeneration in the 
surgically made gaps involved the recruitment and clonal expansion of 
bone-forming cells under mechanical stimulation.18,33,34 In addition, 
two AN-receptors have been identified to be expressed by osteoblasts, 
suggesting AN’s direct functions in bone metabolism,35 by promoting 
proliferation and stimulating bone formation.32 Bone tissue is dependent 
on adequate blood circulation; therefore, angiogenesis is an important 
component of bone regeneration and function, as well. The AN has 
proven to influence cellular responses in endothelial cells in an ischemic 
state to promote angiogenesis.36 Indeed, Ouchi and collaborators 

Fig. 1. Globally, the number of older adults may be expected to reach 1.5 
billion by 2050, and the prevalence of periodontitis and osteoporosis as well. 
That is a fivefold increase from 1990.3 Ways to manage and prevent these 
diseases from developing are warranted. 

Table 1 
Literature search strategy and study selection criteria.   

Literature Search Strategy and selection criteria 

A A literature search was conducted on PubMed and Google Scholar for studies 
related to hormones and jawbone. Search strategies included the combinations 
(“name of hormone” + “dental term”) of the terms: “hormones”, “oxytocin”, 
“estrogen”, “adiponectin”, “parathyroid hormone”, “testosterone”, “insulin”, 
“angiotensin”, “cortisol”, and “erythropoietin”, combined with a dental term 
“jaw bone”, “alveolar bone”, “dental implant”, “jaw + bone regeneration, 
healing or repair”, “dentistry”, “periodontitis”, “dry socket”, “osteoporosis” or 
“alveolitis”. The papers were screened according to the inclusion criteria from 
January 1, 2000 to March 31, 2021 in English. Publications included reviews, 
book chapters and original research papers; in vitro studies, in vivo animal, or 
human studies, including clinical studies, and meta-analyses. 

B English language, publication date from January 1, 2000 to March 31, 2021.  
1. Publications included reviews, book chapters and original research papers; in 

vitro studies, in vivo animal, or human studies including clinical studies, and 
meta-analyses.  

2. Where no studies could be found on jawbone specifically, we included studies 
to elucidate the basic mechanisms and relevant medical studies, by removing 
“jaw” from the search words.  

3. Case studies, letters, viewpoints, editorials, publications providing irrelevant 
or unusable data, lack of full text availability, and non-English language ar-
ticles were excluded.  Fig. 2. Hormones related to bone formation and resorption.  
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reported increased angiogenesis in mouse and rabbit models following 
the administration of AN.30 Repeated local administration of AN in rats 
showed the potential of AN as a potential therapeutic to prevent or-
thodontic treatment relapse, as reported by Haugen et al.37 

AN has been found to heal the periodontitis partly due to its action in 
inflammation and bone.38 APN can upregulate the enamel matrix 
derivative-induced expression of growth- and osteogenesis-associated 
factors, and it has the potential for bone regeneration.39 Hecne, APN 
and its agonists can be used in the treatment of periodontitis. Since it is 
not feasible to raise the circulating APN level in humans (normal 
physiological level of APN is 3–30 μg/ml), complicated 
post-transcriptional modification can be done.38 

2.3. Angiotensin 

The human body controls blood pressure and fluid volume by an 
endogenous hormone system known as the renin-angiotensin system 
(RAS). Hypertension is a pathological consequence that may occur due 
to RAS dysfunction. Angiotensin is formed in the liver and released in an 
inactive state, which is then split by the enzyme renin and converted to 
angiotensin I, and further split into angiotensin II by the angiotensin- 
converting enzyme (ACE).40 Angiotensin is important in volume and 
blood pressure control.41 

Angiotensin can be generated by endothelial cells outside of the RAS. 
Researchers reported that in co-cultures of osteoclasts with osteoblast 
cells, angiotensin I activated bone resorption. This finding may show 
that RAS could play a role in bone resorption control.42 Saravi et al.43 

concluded that inhibition of RAS in an animal model could lead to a 
reduction in periodontal bone loss and reduction in inflammation in-
tensity. Whether or not various tissues and organs of rats can generate 
angiotensin independently of circulating RAS has been reported.19 

Interestingly, gingival tissue of rats express RAS locally, making it 
possible to produce angiotensin II in vitro.19 Angiotensin may influence 
contribute to bone degradation in periodontitis but increased renin 
production may increase the risk of periodontitis. Santos et al.19 dis-
cussed the mechanism behind the increased risk to involve bacteria 
stimulating the expression of the gingival RAS, resulting in a proin-
flammatory environment by increased angiotensin II-levels which could 
contribute to the bone loss experienced in periodontitis. Understanding 
the inflammatory effect of RAS can provide a unique perspective for 
clinical research and treatment of periodontitis. 

RAS has been used to treat inflammatory disorders.44 The ACE 
2/angiotensin-(1–7)/Mas Receptor (ACE2/Ang-(1–7)/MasR) axis is 
found to be associated with bone remodeling in osteoporosis. Treatment 
of bone cells with Ang-(1–7) or diminazene aceturate (DIZE) stimulated 
osteoblast ALP, matrix synthesis, upregulated osterix, osteocalcin and 
collagen type 1 transcription, reduced IL-6 expression, and decreased 
osteoclast differentiation, RANK and IL-1β mRNA transcripts, and IL-6 
and IL-1β levels, in a MasR-dependent manner.45 In vivo, Ang-(1–7) 
and DIZE decreased alveolar bone loss through improvement of osteo-
blast/osteoclast ratio. A-779 reversed such phenotype. 
ACE2/Ang-(1–7)/MasR axis activation reduced IL-6 expression, but not 
IL-1β. ACE2 and MasR were also detected in human gingival samples, 
with higher expression in the healthy than in the inflamed tissues. These 
findings show that the ACE2/Ang-(1–7)/MasR is an active player in 
alveolar bone remodeling. 

2.4. Cortisol 

Cortisol, a steroid hormone produced by the adrenal glands, is 
released into the bloodstream, passes through the cell membrane, and 
translocated to bind to the cell nucleus receptor proteins, triggering 
changes in gene expression. Stress triggers the release of cortisol. Typical 
examples of stress triggers include fear, anxiety, hemorrhage, pain, low 
blood glucose, illness, and starvation. To endure stress, muscle, liver, 
and adipose tissue empty their storage of nutrients as a response to 

cortisol. Chronically elevated cortisol levels cause muscle and bone 
damage, impaired endocrine and immune function.16 Stress is a factor 
leading to the onset of illness.46 

Tissue repair is reportedly impaired by chronic and acute stress in 
rats.47 Previous studies have reported that chronic stress worsens heal-
ing.48 and the formation of the bone matrix and collagen fibers, and a 
decreased number of osteoblasts.20 Experimental models involving the 
periodontium of rats have shown that stress increases susceptibility and 
worsens periodontitis, PD.49 Studies have indeed shown the potential of 
the association of stress markers, inflammation, and PD.50,51 Similarly, 
the progression of periodontitis is related to the stress as a factor in 
mind.52 Is it indicated that stress appears to be associated with microbial 
colonization between highly stressed patients and non-stressed patients. 
However, the salivary cortisol concentration is not associated with 
stress.53 Therefore, stress and subsequent cortisol increase may 
contribute to the progression of periodontitis. 

As cortisol disturbs healing, it has also been found that chronic stress 
has been proven to disturb the initial repair process in the rat mandible 
following implantation. If this is true also in human patients, if patients’ 
chronic stress levels affect the initial phases of osseointegration, it is left 
for future research.54 

Cortisol suppress the resorptive action of parathyroid hormone, 
which stimulates the proliferation of progenitor cells and favors their 
differentiation towards osteoclasts.55 Hence, cortisol inhibits bone 
resorption in vitro by limiting the ability of precursor cells to form 
osteoclasts. 

2.5. Erythropoietin 

Erythropoietin (EPO), N-linked glycoprotein consisting of 166 aa, 
well-known hormone released from the kidneys for its red blood cell- 
producing effects.56 EPO production is activated by hypoxia and is 
regulated via an oxygen-sensitive feedback loop.57 EPO can increase 
bone formation indirectly by increasing vascular endothelial growth 
factor (VEGF) expression.16,58 Through osteoblast-osteoclast communi-
cation pathways, EPO often indirectly activates osteoblast differentia-
tion. These experiential findings are important in the understanding of 
mediated bone remodeling and may contribute to the treatment of bone 
defect growth.59 EPO can contribute to bone formation both directly by 
communication pathways and indirectly by VEGF.58,60 

EPO can be used to combat periodontitis. Holstein et al.21 experi-
mented by delivering EPO to dental extraction sockets and observed that 
EPO significantly promoted new bone formation. Suggested by the 
mechanisms of inhibiting pro-inflammatory pathways and apoptosis, 
improved vascularization, and enhanced osteoblast formation. Aslroosta 
et al.61 evaluated the effect of EPO on the improvement after phase I 
periodontal treatment, and they found that there was a significant 
reduction in calculus and periodontitis in the test group. They suggest 
that EPO gel can improve clinical inflammation and calculus in peri-
odontitis. Hence, EPO can be used as an adjunct to non-surgical peri-
odontal therapy as it provides a promising results in moderate to severe 
chronic periodontitis. 

EPO can be used in regenerative medicine for the treatment of tissue 
de-regeneration disorders.62,63 EPO acts both as a peptide hormone and 
hematopoietic growth factor, stimulating bone marrow erythropoi-
esis.57 EPO acts via its homodimeric erythropoietin receptor that in-
creases cell survival and drives the terminal erythroid maturation of 
progenitors BFU-Es and CFU-Es to billions of mature RBCs. This pathway 
activates the multiple erythroid transcription factors, such as GATA1, 
FOG1, TAL-1, EKLF and BCL11A, and leads to the overexpression of 
genes encoding enzymes involved in heme biosynthesis and the pro-
duction of hemoglobin.57 Hence, these properties of EPO can be used to 
treat anemias associated with chronic kidney diseases and blood disor-
ders such as anemia.62,63 EPO affect osteoblast and osteoclast activity 
during EPO-stimulated erythropoietic response stimulate the debate on 
the relative efficacy and safety of EPO vs hypoxia inducible factor-prolyl 
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hydroxylase inhibitors (HIF-PHIs) for patients who require long-term 
treatment for anemia.62 

2.6. Sex hormones 

In both sexes, steroid hormones regulate skeletal preservation and 
maturation, and the impact of gonad insufficiency on skeletal integrity 
has been widely recognized.64 Ovariectomy and orchiectomy have been 
shown to cause condylar bone loss in mandibular condylar bone.65 Es-
trogen (ES) is a group of female sex hormones responsible for the 
development of female sexual characteristics and the reproductive sys-
tem. ES comprises a group of steroid hormones, typically estradiol, 
estrone, and estriol,66 and AD; testosterone, dihydrotestosterone, and 
androstenedione. ES is produced in a lesser amount in males, where 
androgens (AD), the male sex hormones, dominate. Steroid hormones 
are synthesized in several endocrine tissues, such as the ovaries in fe-
males and in the testicles of males. They can bind to the receptors in the 
plasma membrane of cells and cause rapid effects. 

Estrogen plays an important role in the growth of bone, maturation 
of bone and regulation of bone turnover in adult bone.67,68 During bone 
growth estrogen is needed for proper closure of epiphyseal growth plates 
both in females and in males. 

2.6.1. Estrogen 
ES regulates bone remodeling by modulating the expression of re-

ceptor activator of NF-κB ligand (RANKL), an essential cytokine for bone 
resorption by osteoclasts.69 The increase in bone resorption observed in 
states of estrogen deficiency in mice is mainly caused by lack of 
ERα-mediated suppression of RANKL expression in bone lining cells. ES 
exerts its action by binding to its multiple receptors in the cell membrane 
and cytoplasm. Until now at least three estrogen receptors (ER) have 
been reported: ER alpha (ERα), ER beta (ERβ), and G-protein coupled 
estrogen receptor 1 (GPER1) also known as GP30.67 ES deficiency leads 
to increased osteoclast formation and enhanced bone resorption also in 
young skeleton estrogen. 

In menopause, ES deficiency induces both cancellous and cortical 
bone loss.68 There can be increased bone resorption in cancellous bone 
leads to general bone loss and destruction of architecture because of 
penetrative resorption and microfractures.68 In cortical bone, at first 
estrogen causes endocortical resorption and then increases intracortical 
porosity. These lead to decreased bone mass, disturbed architecture and 
reduced bone strength. At cellular level, ES inhibits differentiation of 
osteoclasts thus decreasing their number and reducing the amount of 
active remodeling units. This is mediated through cytokines, IL-1 and 
IL-6. It is still not clear if the effects of ES on osteoblasts is direct or is due 
to coupling phenomenon between bone formation to resorption. 

Further more, ES can cause changes at the level of gene expression, 
through nuclear receptors in the cell nucleus, though these effects are 
slow.16 The ability of estrogen to signal not only through its nuclear 
receptors, ERα and ERβ, but also through membrane-bound receptors, e. 
g., GPER1/GP30, the possible crosstalk with other signaling pathways, 
e.g., BMP4 signaling pathway, epigenetic regulation of estrogen recep-
tor itself, and recruitment of coactivators that are able to modify DNA 
methylation and histone arrangement might shed a light on explaining 
the wide effects of estrogen in bone.67 In addition, Sundeep et al.70 re-
ported that estrogen inhibits bone resorption by direct action on oste-
oblasts, through estrogen modulation of osteoblasts and osteocyte and 
T-cells regulation of osteoclast differentiation and activity. 

Ayed et al.71 investigated the association of osteoporosis and the 
progression of PD in postmenopausal females and concluded that OP is a 
risk factor for PD. Indeed, among women with early menopause, 
increased bleeding and bone loss have been observed, as well as 
increased levels of CRP, indicating systemic inflammation. These find-
ings suggest increased severity or risk of periodontitis among post-
menopausal women.72 Previously, there has been debate among 
researchers on whether oral contraceptives may increase the risk of or 

worsen PD. According to Preshaw,22 it suggests that oral contraceptives 
on the market today no longer place users at any risk of PD. 

2.6.2. Testosterone 
Testosterone, the most well-known androgen, is mainly anabolic in 

effect.73 Testosterone can be reduced by a cytoplasmic enzyme called 
5-alpha-reductase, to dihydrotestosterone (DHT). DHT binds to the same 
androgen receptor 2.5 times stronger than testosterone and thus shows 
increased androgenic potency.74 Testosterone is responsible for the 
development of male reproductive organs and sexual characteristics, 
including increased bone and muscle mass.75 

Testosterone treatment has been found to improve the areal and 
volumetric bone mineral density at the spine and hip.76–80 Testosterone 
regulates the bone remodeling either directly or via aromatization to 
estradiol by activating sex steroid receptors in bone cells.81 Further-
more, testosterone increases muscle mass which may have indirect 
anabolic effects on bone mass.82 Recently, testosterone replacement 
therapy is an also useful tool for managing clinical symptoms caused by 
hypogonadism. Men with osteopenia and osteoporosis.80 

The administration of testosterone has shown to affect the human 
gingiva by increasing the growth rate of oral bacteria, which is causally 
considered to be related to periodontal inflammation. It has been re-
ported that human gingival tissues metabolize testosterone83 with con-
version to DHT.84 Interestingly, inflamed tissue, including inflamed 
gingival tissue, has a two to three-fold increase in DHT receptors.85 

Testosterone deficiency in older men is one of the risk factors for OP. 
Androgens can be converted to ES through a process known as aroma-
tization.86 It has been shown in previous in vitro studies that androgen 
can promote pre-osteoblast proliferation and converted ES can suppress 
osteoclast development. Human studies among elderly men, both 
androgen and ES, are necessary for the formation of bone. ES is required 
for the suppression of bone resorption. While androgens are essential for 
older men in the prevention of OP and its complications.23 According to 
Kellesarian et al.,87 four studies showed no correlation between serum 
testosterone and chronic periodontitis, and two studies with a positive 
correlation. However, their limits to the evidence and further longitu-
dinal studies are needed. 

2.7. Insulin 

Insulin is a peptide hormone developed and secreted by beta cells in 
the Langerhans islets of the pancreas. The hormone is essential in 
maintaining normal blood glucose levels by facilitating the absorption of 
glucose into cells. Insulin is, therefore, a vital component of 
anabolism.88 

Diabetes mellitus (DM), a disease of reduced production or sensi-
tivity to insulin, reports delayed bone formation and impaired fracture 
healing. DM increases and prolongs inflammation-promoting osteoclast 
differentiation. Subsequently, the balance of bone remodeling shifts 
towards a resorbing tendency. Indeed, it has been reported that insulin 
activates osteoblast differentiation, reduces apoptosis of osteoblasts, and 
reduces osteoclast activity.24 Kido et al.89 performed an experiment on 
diabetic rats and reported that an association between periodontitis and 
diabetes is evident. They also reported that diabetes can induce 
abnormal proliferation of gingival fibroblasts. Insulin resistance plays a 
role in the progression of periodontitis in diabetic patients. They 
concluded that delayed gingival wound healing in diabetic rats was 
caused by impaired proliferation and migration of fibroblasts. 
Dysfunction of fibroblasts may be caused by high glucose-induced in-
sulin resistance via oxidative stress.89 It is evidence of DM type II and 
stimulation of impaired cellular function and hemostasis that lead to 
periodontitis. Kinane and the group found that advanced glycation 
end-products (AGEs) are produced by the interaction between sugar, 
aldoses, and lipid. The DM type II patients do have both hyperglycemia 
and hyperlipidemia which is perfect for producing AGEs. On the surface 
of macrophages, there is a receptor called receptor advanced glycation 
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end-products (RAGEs) which will interact with AGEs and promotes 
transcription factor (NK-FB). This interaction induces transcription and 
causes macrophages to produce proinflammatory cytokines, for 
example, interleukin 1, interleukin 6, and tumor necrosis factor-alpha, 
and leads to periodontal ligament destruction. There are also been 
found that macrophages will delay wound healing.90 

A growth factor so similar to insulin in the structure that it has been 
named insulin-like growth factor-1 (IGF-1) can be secreted from the liver 
by the stimuli of human growth hormone, but also by bone cells.91 IGF-1 
is critically involved in bone growth during puberty and throughout 
life.92 IGF-1 has also proved to, in combination with other growth fac-
tors, accelerate bone formation around dental implants in rabbits.93,94 

Perhaps due to their structural similarity, insulin itself has 
bone-promoting properties with osteoblasts expressing insulin-receptors 
– possibly promoting osteoblast differentiation.91 The synthesis of IGF-1 
is controlled by GH in chondrocytes, whereas it is regulated by para-
thyroid hormone (PTH) in osteoblasts. IGFs are expressed by human 
osteoblasts. The IGF-1 induce differentiated osteoblastic activity 
without influencing stromal cell differentiation directly into mature 
osteoblast. Therefore a low decline in the expression of IGF-1 is 
considered essential for the occurrence of cellular apoptosis and to 
facilitate the differentiation of osteoblast.95 

An animal study96 explored the role of insulin in the integration of 
titanium implants in rat tibias in which 3 groups of rats were involved: 
diabetes-induced rats, insulin-injected rats, and healthy controls. Up to 
three weeks after implant insertion, it was found that delayed healing 
was evident in the diabetes rats, which showed improvement after in-
sulin injection. While the controls and insulin-treated rats had similar 
amounts of bone healing. It would be of interest to conduct a similar 
study on the jawbone. Insulin is involved in bone healing, although the 
mechanisms are not entirely elucidated. Understanding the mechanisms 
more thoroughly may contribute to a better understanding and possibly 
a future local insulin treatment of periodontitis worsened by DM. 

2.8. Parathyroid hormone 

Parathyroid hormone (PTH) regulates the calcium homeostasis of the 
body.97 PTH is secreted from four glands located behind the thyroid 
gland, where they monitor and regulated serum levels of calcium. When 
levels are low, PTH is released into the bloodstream to release calcium 
from the body’s largest reservoir, the skeleton, by bone resorption.98 

Recent clinical and pre-clinical studies indicate that PTH increases 
the bony density of the jaw and enhances soft tissue healing and bone 
filling after tooth extraction.99 In rat models with PD, PTH was reported 
to have an anti-inflammatory effect.100 Inflammation in the gingiva was 
significantly reduced, and bone loss was suppressed by PTH. 

Animal and human studies have shown that PTH administration 
leads to increased bone formation through an increase in osteoblast 
number and surface, as well as an increase in mineralized matrix 
deposition through effects on proliferation of precursors, suppression of 
apoptosis, and activation of lining cells.101,102 In addition, in vitro and in 
vivo studies showed that PTH directly activates survival signaling in 
osteoblasts; and that delay of osteoblast apoptosis is a major contributor 
to the increased osteoblast number, at least in mice.102 

Ji-Hye Kim intermittently administered PTH DM-rats with peri-
odontitis and found that such an administration regimen of PTH reduced 
alveolar bone loss and increased bone formation.103 This finding sug-
gests that PTH administration counteracted bone loss, as promoted by 
DM, by inducing bone formation. A combination of the protein 
SDF-1alpha and PHT showed enhanced bone formation, SDF-1alpha also 
plays a promoting role in the regeneration of PDL.103 Several studies 
have examined the impact of PTH on dental implant stability and inte-
gration in bone. Bellido et al.104 induced artificial osteoporosis in rabbits 
and measured general bone loss and reduced mineral content in their 
jaws. However, administration of PTH almost completely reversed these 
negative findings, and restored the jawbone to almost normal levels. A 

study on mongrels found increased levels of bone remodeling around 
dental implants inserted in the mandible, in the group administered 
PTH.25 An application perhaps close to clinical utilization is presented in 
a paper investigating PTH-coated titanium dental implants in rats.105 

The results were promising, with increased bone formation around the 
PTH-coated implants. Therefore, these results together suggest that PTH 
might represent a future therapy for improving the integration of dental 
implants in humans. However, the frequency of PTH administration 
varies among studies, therefore a priority should be to find the optimal 
frequency and dosage to improve bone growth.97 

2.9. Oxytocin 

Oxytocin (OT) is produced in the hypothalamus and excreted via the 
pituitary gland.106 The hormone acts on the mammary gland and uterine 
muscles. The hormone can induce uterine contractions during preg-
nancy, contributing to childbirth. During lactation, OT causes milk 
release.16 Bone cells express OT receptors and OT is involved in the 
process of bone remodeling,107 as it has been reported to reduce the 
resorption of bone and cause a relative increase in the formation of 
bone.108 In addition, OT promotes osteoblasts differentiation and func-
tion which leads to an increased bone formation and an improvement of 
bone microarchitecture.109 Low oxytocin serum levels is associated with 
postmenopausal osteoporosis.110,111 and have been found to play a role 
in skeletal homeostasis.108 Furthermore, intramuscular injection of OT 
has been shown to promote bone growth in rats, with consequent al-
terations in serum levels of calcium, RANKL, and OPG.112 OT-treated 
rats have shown increased levels of osteocalcin and a significant in-
crease in alveolar bone formation.113 Osteocalcin is synthesized by os-
teoblasts and can be used as an indicator of bone remodeling and 
mineralization of the bone matrix.114,115 

Treatment with OT is shown to result in an increase in levels of 
intracellular calcium and to regulate stimulation of osteoblast formation 
and thus bone formation in rats. Additionally, deletion of the OT- 
receptor in mice resulted in the development of OP.108 Systemic OT 
has been investigated regarding the OP with positive results, such as 
improved peri-implant bone healing in the distal femoral metaphysis.116 

In OP, the favored osteoclast activity has been suggested to be an 
implication of a lack of OT.115 A study done by Jee et al.,26 showed that 
OT stimulates a reduction of bone resorption and yields a positive bone 
balance during the process of alveolar bone healing in female rats. 

3. Discussion 

There is plenty of available research about hormones in the medical 
literature, however, the literature is scarce in the field of dentistry. This 
review aimed to shed light on available research on the topic of hor-
mones and dentistry regarding their effects on the jawbone and related 
oral disease. This is the first article that reviewed various hormones that 
regulate bone formation and resorption implication on the jawbone and 
the diseases, and presented the role of hormones on bone remodeling 
and metabolism. Additionally, the authors have selected three diseases 
to discuss how they are influenced by hormones: osteoporosis, peri-
odontitis, and dry socket. Table 2 shows the summary of the hormones’ 
impact bone healing, by a variety of mechanisms. 

In addition, abnormalities in both local and endocrine regulation of 

Table 2 
Summary of the hormones that beneficially impact bone healing, by a variety of 
mechanisms.  

Hormones Effects on bones 

Oxytocin, estrogen, testosterone, adiponectin, 
parathyroid hormone, insulin, and 
erythropoietin. 

Increase influences the bone 
balance positively. 

Cortisol and angiotensin Increase results in bone loss.  
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growth plate physiology cause various problems in human skeletal 
growth. Hence, knowledge of these pathways has therapeutic potential 
for sustaining or even augmenting linear growth.117 

In general, all of them may have therapeutic potential. Not all of the 
hormones had available research on jaw bone specifically. However, the 
basic hormonal mechanisms may be transferable to involve jaw bone. 
Some major differences need to be considered, such as a high degree of 
remodeling rate and growth118 of the jaw bone. 

Development of therapeutic hormone-based treatment to combat 
bone loss in the jaw are supported by promising animal studies for both 
PTH-coated implants105,119 and adiponectin for orthodontic treat-
ment.37 The authors’ next step could be human clinical trials. PTH is 
interesting as it is safely used in the treatment of osteoporosis already 
and therefore has an established safety profile for that indication.120,121 

Adiponectin is promising as it may be able to prevent post-treatment 
movement of orthodontically treated teeth, although human clinical 
trials with long follow-up times are necessary to evaluate this potential 
usage. 

As with any treatment, hormone treatment is not free of risk. Future 
research needs to focus on finding the optimal therapeutic dosage for 
bone healing with as few side effects as possible. For example, the use of 
estrogen carries risks of, breast cancer,122 and thromboembolism.123 As 
estrogen illustrates, hormones are agents with systemic effects, able to 
affect several different tissues in a variety of ways. Local treatment with 
hormones may therefore be more advantageous than systemic admin-
istration. The ideal scenario would be the possibility of “naturally” 
enhancing the hormone levels to achieve a clinical outcome. For 
example, oxytocin levels rise by prolonged hugging or intimate con-
tact.124 The hormone levels needed to achieve desired clinical outcomes 
may be much higher than physiologically produced amounts. Another 
disadvantage to keep in mind is that hormones are relatively slow-acting 
agents, meaning that the patient may not experience immediate clinical 
improvement. Additionally, the patient may require frequent adminis-
trations to achieve desired clinical effects. Thus, with long treatment 
times and frequent administrations, hormone treatment may not be cost 
efficient, although there are still insufficient data to consider this aspect 
as of now. Some possible benefits include convenient monitoring of 
hormone levels in the blood.87 Thus, the dosage can be individually 
regulated for optimal effect. Hormone treatment may be especially 
suited for individuals with conditions resulting in or from hormonal 
imbalance, such as osteoporosis. Therefore, finding the optimal dosage 
and frequency of hormone administration for bone repair is would be 
beneficial to achieve a therapeutic window in a clinical setting. 

The role of estrogen in osteoporosis is well-known, however, more 
surprising was the influence of hormones on periodontitis and dry 
socket. A suggested correlation of estrogen and dry socket125 has been 
reported with a plausible mechanism of estrogen degrading the healing 
blood clot in the postoperative alveolus. This is debated as somewhat 
conflicting reports exist.22,126 Oral contraceptives and possibly 
menstruation where higher levels of female sex hormones, predomi-
nantly estrogen may increase the risk for dry socket. The risk of AO may 
not be apparent with today’s contraceptives.22 However, with the 
increasing number, or rather the awareness of them, of gender, transi-
tioned men-to-females, a group we know little about may indeed require 
attention. This group of transgenders requires regular injections of es-
trogen, at much higher levels than that found in commercial contra-
ceptives.127 One may speculate that a much higher risk of postoperative 
complications such as dry socket exists if estrogen is injected around the 
same time as dental extraction. Little research exists on this group of 
patients in dentistry and warrants further research. Dentists may 
consider asking this group of patients about their injection schedule as to 
not risk possible post-operative complications. 

Some evidence suggests a link between low testosterone levels and 
risk of osteoporosis.23 Some authors also suggests a correlation between 
testosterone and periodontitis, however, conflicting results exist in the 
literature.87 An increased risk of bone fractures in men with testosterone 

deficiency, usually older adults, is apparent,128 however, no studies 
report fracture incidence on specific bone sites, such as the mandible. A 
study128 showed that testosterone supplementation can prevent this 
could not be concluded however, sexual function and quality of life 
could improve. The authors did explore another aspect of male sexual 
function and dentistry. Low-grade inflammation by periodontitis has 
been reported to be associated with erectile dysfunction. Interestingly, 
patients with erectile dysfunction also experienced improvement after 
periodontal treatment.129 The mechanism is unknown; however, the 
field of periodontitis and the male sex seems to contain more mysteries 
than expected. 

The field of hormones and dentistry remains scarcely researched. 
Most assumptions and hypotheses are extrapolated from the medical 
literature where hormone research is more abundant. Some diseases of 
the oral cavity commonly encountered are possibly influenced by hor-
mones. Certain populations requiring hormone replacement therapy, 
such as transgenders, and the dental consequence of such therapy is 
largely unknown. Transitioned men-to-females, require regular in-
jections of estrogen, at much higher levels than found in commercial 
contraceptives.127 Little research exists on this group of patients in 
dentistry and warrants further research. . Hormone treatment in 
dentistry is far from common practice, however, some hormones are 
well researched, and some are regularly used in other medical settings. 
Hormone treatment in dentistry may be beneficial for some oral dis-
eases, in relation to orthodontic retention, improved bone healing and 
dental implant osseointegration. More research is needed before thera-
peutic usage in dentistry can be implemented safely and effectively. 

4. Conclusion 

Bone formation and remodeling is a complex continuous process 
involving many hormones. Bone volume reduction following tooth ex-
tractions and bone diseases such as periodontitis and osteoporosis cause 
serious problems and require a great understanding of the process. 
Hormones shape our development and regulate our homeostasis. Newly 
discovered effects of hormones influencing bone healing open the pos-
sibilities of using hormones as therapeutics to combat bone-related 
diseases. As the hormones may have a multitude of different effects, 
the safety and regimens of administration regarding dosing, location, 
and frequency need to be assessed and more studies and clinical trials 
are needed. 
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