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A B S T R A C T   

In this paper, we develop semantic-based sentiment indices through relevant news and Twitter feeds for oil 
market using a state-of-the-art natural language processing technique. We investigate the predictability of crude 
oil price volatility using the novel sentiment indices through a hybrid structure consisting of generalized 
autoregressive conditional heteroskedasticity and bidirectional long short-term memory models. Findings show 
that media sentiment considerably enhances forecasting quality and the proposed framework outperforms 
existing benchmark models. More importantly, we compare the predictive power of news stories with Twitter 
feeds and document the superiority of the news sentiment index over the counterpart. This is an important 
contribution as this paper is the first study that compares the impact of regular press with that of social media, as 
an alternative informative medium, on oil market dynamics.   

1. Introduction 

Playing a significant role in global financial markets, oil is presently 
known as an alternative investment (Adams et al., 2020; Cui et al., 
2021). It is also considered a strategic commodity for economic devel
opment across nations (An et al., 2020) such that central banks in many 
countries regularly update their forecasting of oil prices to remain pre
pared for possible shocks in the future (Safari and Davallou, 2018). Until 
recently, the literature has focused on studying oil price volatility using 
economic fundamentals and statistical data (e. g. Ji et al., 2018; Zhang 
et al., 2019; Liu and Lee, 2021). Yet, the origin of a part of volatility 
witnessed in oil prices remains unidentified. The oil market is known as 
a financial market, and finance theories should be considered in 
exploring it. According to the finance literature, investors’ sensitivity to 
new information (sentiment) drives a wedge between prices and 
fundamental values and causes volatility (Ross, 1989). Sentiment can be 
influenced by various factors such as variations in public opinions, 
geopolitical conditions, economic news announcements, natural di
sasters, terroristic attacks, and other exogenous factors (Bomfim, 2003; 
Brenner et al., 2009; Möbert, 2009; Lucca and Moench, 2015; Birz and 
Dutta, 2016; Qadan and Nama, 2018). Although these factors are spread 
via both press and social media, sentiment is not directly measurable. 
However, recent advancements in natural language processing have 
provided a tool to quantify the sentiment of textual media. Therefore, 
investigating the impact of sentiment on forecasting accuracy is a new 

and growing line of research. Motivated by this issue, we conduct this 
study to answer the following questions: (i) To what extent does using 
media sentiment increase the accuracy of oil price volatility forecasting? 
And (ii) which sentiment proxy is more informative for oil price vola
tility predictability? Thus, the aim of this study is to shed light on the 
role of media in oil market predictability. 

To answer the questions above, we use weekly data for Brent crude 
oil prices from August 2014 to December 2020. One of the crucial factors 
in forecasting oil price volatility is interrelation between financial 
markets (Abdollahi and Ebrahimi, 2020). Hence, this study also uses 
historical data for Gold and The Standard and Poor’s 500 (S&P 500) 
index with which the oil market has a high connectedness (Hung, 2022). 
We also scrape news headlines regarding the oil market as well as tweets 
mentioning hashtags relevant to the oil market over the same period. 
The textual materials are then processed using advanced natural lan
guage processing to generate two distinct sentiment indices for news and 
Twitter. 

Forecasting oil market volatility is complex because of the various 
characteristics of oil price time series such as sensitivity to non- 
fundamental factors (sentiment), nonlinearity, lags, and time-varying 
volatility (Chen et al., 2016; Abdollahi and Ebrahimi, 2020). To effec
tively capture these impactful factors, we design a hybrid structure 
considering the particular ability of each constituent model to capture 
the aforementioned characteristics. We use the Bidirectional Encoder 
Representations from Transformers (BERT) to extract sentiment from 
news headlines and Twitter feeds.1 Then, we employ a Generalized 

E-mail address: hooman.abdollahi@uit.no.   
1 BERT is a state-of-the-art machine learning model that reportedly produces the best results in natural language processing and sentiment classification (González- 

Carvajal and Garrido-Merchán, 2020). 
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Autoregressive Conditional Heteroskedasticity (GARCH) model to 
obtain an initial estimation of volatility. Using GARCH efficiently cap
tures time-varying volatility and leverage effects (Crawford and Fra
tantoni, 2003), which are specific characteristics of the oil price time 
series. In the final step, we use all the parameters as input features for a 
Bidirectional Long-Short Term Memory (BiLSTM) model that generates 
the final forecast. Neural networks generally produce the best results for 
nonlinear settings like oil price volatility. Moreover, there is a time step 
dimension in the input array of the BiLSTM model. Therefore, a function 
of the model is to find patterns in the time step dimension that effec
tively responds to the need for lags inclusion. We also evaluate fore
casting quality using various measures; namely root mean square error 
(RMSE), mean absolute error (MAE), and Diebold-Mariano (DM) test. 

The main empirical finding of this paper indicates that news senti
ment generates the paramount results for oil price volatility forecasting 
relative to the obtained forecast using Twitter sentiment. We also 
compare the proposed framework with well-established benchmark 
models fed with both statistical and sentiment data. Adding the Twitter 
sentiment index to the forecasting setting reduces the error (MAE) by 
27%, while replacing that with the news sentiment index reduces the 
error by 23% further. This error reduction indicates that regular media 
provides more refined information for the oil market. This is somewhat 
inconsistent with the idea that the strength of evidence receives more 
attention than the weight of evidence (Griffin and Tversky, 1992). In this 
context, we consider the strength as the frequency or reportage of the 
information and the weight as the source of information. The reportage 
is higher on social media, but press is more credible. This finding shows 
that at a market level, and in aggregate, this is the weight that plays the 
more important role concerning the oil price volatility. Overall, using 
exclusive semantic sentiment indices enhances forecasting accuracy 
compared to the results using historical data alone. 

From these findings, we conclude that social media such as Twitter is 
becoming important as an alternative platform for information circula
tion about the oil market. However, the traditional press and news 
agencies are more important than social media with regards to spreading 
more impactful information. This finding suggests that market watchers 
should place more weight on regular news than Twitter feeds for in
formation updates. This finding also implies that since people can freely 
express their opinions and anticipations regarding oil market on social 
media; therefore, Twitter sentiment contains inauthentic interpretations 
as to news and events, which reduces the degree of sentiment reliability. 

This paper adds three important contributions to the existing liter
ature. Firstly, we document that investigating Twitter feeds significantly 
improves oil price volatility predictability, and this can be traced to 
incremental information that Twitter offers. To the best of our knowl
edge, this is the first study that develops a semantic Twitter sentiment 
index exclusively for the oil market. Previous studies use emotional 
sentiment proxy (Lehrer et al., 2021) or Twitter general economic un
certainty index (Lang et al., 2021), while those indices do not include 

non-economic factors or are just a general index. Secondly, we also 
develop a semantic sentiment index for news headlines relevant to the 
oil market and compare the predictive power of regular press with social 
media in forecasting oil price volatility for the first time in the literature. 
Using these new indices, we document the superiority of news sentiment 
over Twitter sentiment. Although both indices bring incremental infor
mation to the forecasting setting, our results indicate the quality of news 
information is higher. Thirdly, not only do we produce sentiment indices 
based on the meaning of the text which reveals the significance of in
formation more refinedly (Shiller, 2020), but also fine-tune the BERT on 
financial language using Financial PhraseBank proposed by Malo et al. 
(2014). This practice helps capture the impact of textual information on 
market prices. We also prove the superiority of the proposed framework 
over various benchmark models, including individual constituent 
models and the framework proposed by Verma (2021). A good under
standing of various factors impacting the prediction of oil price volatility 
is vital for policymakers, central banks, and investors across financial 
markets. 

The remainder of the paper is organized as follows. Section 2 pre
sents a review of the pertinent literature and hypothesis development. 
Section 3 describes the methodologies used for this study. In Section 4, 
we present the data. Section 5 reports empirical results, while Section 6 
concludes the paper. 

2. Literature review and hypothesis development 

Studying oil price forecasting begins with Amano (1987) by pro
posing a small-scale econometric model for global oil market. Later, 
Sharma (1998) compares the quality of GARCH class of models for oil 
price volatility prediction using data from 1986 to 1997. Tang and 
Hammoudeh (2002) predict OPEC oil prices using a regression model 
and find that the prices are also affected by the expectations of market 
participants. The early studies mainly employ statistical models which 
are generally able to capture linearity and time-varying volatility in a 
time series (Bhar and Hamori, 2005; Yu et al., 2008). Another strand of 
the oil price forecasting literature encompasses machine learning agents 
mainly due to their ability to capture nonlinear patterns embedded in 
the time series. Yu et al. (2008) use a neural network based on an 
empirical mode decomposition to forecast crude oil spot prices. He et al. 
(2012) propose a wavelet decomposed ensemble model to enhance the 
prediction accuracy of oil prices with a closer look at the market 
microstructure, where the proposed model follows the heterogeneous 
market hypothesis. They document the superiority of their proposed 
framework over benchmark models in the literature. Mostafa and El- 
Masry (2016) use an artificial neural network coupled with an evolu
tionary algorithm to forecast oil prices and recommend using compu
tational approaches like neural networks or fuzzy settings instead of 
traditional statistical models. On the one hand, statistical models are 
weak in capturing nonlinearity and non-stationarity, and this weakness 
decreases their forecasting quality. On the other, Makridakis et al. 
(2018) document that machine learning agents underperform statistical 
models in some cases. This fact elucidates the necessity of a third 
framework in the forecasting literature based on hybrid models con
sisting of both statistical and machine learning models (Fazelabdola
badi, 2019). The reason is that the structure of hybrid models makes it 
possible to capture different characteristics in the time series. 

Numerous studies on hybrid models document the superiority of 
such models over single models (see Abdollahi, 2020; Prado et al., 
2020). Yet, scholars seek new features or data to increase the prediction 
quality. This practice gives rise to data construction in forecasting pro
cess. Shiller (2020) argues that narratives and news stories can affect 
prices. This idea suggests that media provide incremental information 
which are useful for forecasting models. In recent years, scholars have 
attempted to cover this aspect. Wu et al. (2021) develop a text classifi
cation of online news headlines during the COVID-19 pandemic, which 
produces a binary output for fluctuation of each month, and combine the 

Nomenclature 

ARCH Autoregressive conditional heteroscedasticity 
BERT Bidirectional encoder representations from 

transformers 
BiLSTM Bidirectional long-short term memory 
DM Diebold-Mariano 
GARCH Generalized autoregressive conditional 

heteroskedasticity 
LSTM Long short-term memory 
MAE Mean absolute error 
RMSE Root mean square error 
S&P 500 The Standard and Poor’s 500  
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news proxy with statistical and machine learning models to increase the 
accuracy of oil price prediction. Li et al. (2021) use news on the oil 
market and find that shocks in news sentiment result in volatility across 
the future prices of oil. Liu et al. (2022) combine the Google search 
volume index as a sentiment proxy with a high-frequency heterogeneous 
autoregressive model to elevate the forecasting quality in the volatility 
of oil futures prices. Zhe et al. (2022) scrape the comments posted on 
Eastmoney forum, an online financial forum, and document the pre
dictive power of sentiment as to the price of China’s crude oil. Herrera 
et al. (2022) employ a lexicon-based method for sentiment extraction 
from Twitter feeds and combine that with a deep learning model to 
forecast the returns and volatility of selected renewable energy stocks. 
Using sentiment as an informational proxy is not limited to volatility 
forecasting, Zhao et al. (2023) use Google trends (Google search volume 
index) to forecast crude oil inventory. However, a notable fact about 
previous studies is the use of less-sophisticated methods based on 
counting words or pre-weighted lexicons for textual analysis. Those 
methods fail to provide a sentiment analysis based on the meaning of 
text. However, using semantic sentiment is recommended for investi
gating narratives across financial markets as it can show the psycho
logical significance of sentiment (Shiller, 2017). This paper also 
attempts to bridge this gap in the literature by producing semantic 
sentiment for news and Twitter feeds. 

de Medeiros et al. (2022) argue that data construction and curation 
can play a crucial role in improving prediction accuracy for the oil 
market dynamics. On the other hand, the literature suggests various 
factors influencing oil price volatility such as geopolitical escalations 
(Tahmassebi, 1986), macroeconomic news (Meng and Liu, 2019), shifts 
in supply and demand (Hosseini et al., 2021), etc. de Oliveira et al. 
(2018) argue that press and social media are a source for sentiment 
circulation. Lehkonen et al. (2022) note that media can be a genuine risk 
factor in financial markets. Abdollahi et al. (2023) document a 
long-lasting connectedness between media sentiment and financial 
market volatility. Therefore, based on this literature, we expect that 
constructing sentiment data from news and social media improves the 
forecasting accuracy of oil prices. We formalize this as the first 
hypothesis. 

H1. Media sentiment increases the accuracy of oil price volatility 
forecasting. 

Junttila et al. (2005) use analysts’ perceptions published in a well- 
known magazine and show that such contents can be a value driver in 
the market. Birz and Lott Jr (2011) selects newspaper articles that 
provide an interpretation of statistical releases as a measure of news and 
notes that public interpretations of news affect stock returns. Kim et al. 
(2019) note that >60% of adults get news from social media by 2016 
and the proportion is still increasing; even though the problem of fake 
news is a case. Shiller (2020) proposes that viral news stories, whether 
fact-based or not, can potentially influence prices across financial mar
kets. Based on these studies, we expect that materials posted on Twitter, 
as an amalgamation of news and the concomitant public interpretations, 
can be a better proxy than regular news media for the oil price volatility 
forecasting. We formalize this in the second hypothesis. 

H2. Twitter sentiment outperforms news sentiment in oil price vola
tility forecasting. 

3. Methodology 

3.1. BERT 

BERT is a pre-trained natural language processing technique devel
oped by Google (Devlin et al., 2018). The model is trained on English 
Wikipedia and BookCorpus (Zhu et al., 2015), containing >3500 million 
words. The principal feature of the BERT is the ability to understand the 
meaning of sophisticated language. We employ the BERT-base version to 

analyze text data by predicting the likelihood of positivity, neutrality, or 
negativity for a given input. We obtain the sentiment score for a given 
text as the difference between positive and negative likelihoods or logits 
(Lin and Luo, 2020): 

Sentiment Score = logitpositive − logitnegative. (1) 

The sentiment score for a given text is between 1 (extreme positive) 
and − 1 (extreme negative). We fine-tune the BERT for finance domain 
to further improve the model’s ability to generate quality results. For 
this purpose, we use the Financial PhraseBank proposed by Malo et al. 
(2014). The Financial PhraseBank contains 4845 sentences from finan
cial news classified by finance professionals. The classes show how the 
professionals perceive the impact of information embedded in a sen
tence on prices in the market (positive impact, neutral impact, or 
negative impact). Table 1 presents the proportion of different classes in 
the dataset. The PhraseBank also categorizes the sentences based on 
agreement levels. We use the entire PhraseBank including all agreement 
levels for training the BERT.2 Fine-tuning the model is advantageous as 
it elevates the quality of sentiment extraction. 

3.2. GARCH (1,1) 

Engle (1982) proposes autoregressive conditional heteroscedasticity 
(ARCH) to model the conditional variance using error terms and to 
capture volatility clustering of a series as follows. 

ϵt = σtXt,∼ N
(
0, σ2

t

)
(2)  

σ2
t = α0 +α1ϵ2

t− 1 +…+ αqϵ2
t− q (3) 

Where ϵt denotes the error term which follows a normal distribution, 
and σt

2 is the conditional variance dependent on past squared residuals. 
Bollerslev (1986) extends the ARCH(q) model to build GARCH (p,q) 
model such that it contains both the past squared residuals and the 
values of conditional variances. The model is formulated as: 

σ2
t = ω+

∑p

i=1
αiγ2

k− i +
∑q

j=1
βjσ2

k− j. (4) 

GARCH estimates the conditional variance (σt
2) of series γt. The 

model parameters are conditioned on ω > 0, αi ≥ 0, βi ≥ 0, and αi + βi <

1, which are the essential conditions for stationarity in the series. We 
employ a GARCH (1,1) model to estimate the conditional variance of the 
oil prices and use it as an input for the next model in the proposed 
structure. 

3.3. BiLSTM 

Long short-term memory (LSTM) is an artificial neural network with 
the capability to learn sequential patterns. This model was developed to 
tackle the problem of long-range dependency in backpropagation 
(Hochreiter and Schmidhuber, 1997). The standard LSTM follows Eqs. 
(5) to (10). 

Table 1 
The proportion of different classes in Financial 
PhraseBank.  

Class Proportion 

Positive 28.2% 
Neutral 59.4% 
Negative 12.4%  

2 There are different agreement levels regarding the impact of sentences 
among professionals. 
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gt = σ
(
bg +Ugxt +Vght− 1

)
, (5)  

it = σ(bi +Uixt +Viht− 1), (6)  

ot = σ(bo +Uoxt +Voht− 1), (7)  

ft = tanh
(
bf +Uf xt +Vf ht− 1

)
, (8)  

ct = gt ⊙ ct− 1 + it ⊙ ft, (9)  

ht = ot ⊙ tanh(ct). (10) 

The LSTM structure is composed of blocks consisting of one memory 
cell (ct) and three gates, namely the input gate (it), forget gate (gt), and 
output gate (ot). In Eqs. (5)–(10), ht and xt denote the hidden state of the 
memory cell and input at time t, respectively. σ represents the activation 
function (sigmoid) and b is the bias term. Ui, Ug, and Uo denote the 
weight matrices of input, forget, and output gates, respectively. Vi, Vg, 
and Vo denote the recurrent weight matrices of input, forget, and output 
gates, respectively. ft is an input modulate gate, which is a value showing 
the amount of new information received in the memory cell. Symbol ⊙
represents element-wise multiplication. In the LSTM structure, forget 
gate gt, as shown in Eq. (5), generates a value between 0 and 1, where 
0 means that no input information passes through the gate and a value of 
1 implies all input information is passed. The input gate, as shown in Eq. 
(6), ascertains the amount of information stored in the memory cell (ct). 
Eq. (8) determines the new information at time t. Eq. (9) calculates past 
information and new information of the memory cell, which are 
controlled by input and forget gates, at time t. Finally, the hidden state 
information ht is determined using the output gate (ot). 

BiLSTM algorithm is an update on LSTM, incorporating the bidirec
tional recurrent network structure into LSTM cells. This structure adds 
the ability to take advantage of feedback layers to the BiLSTM model. 
The model structure includes hidden layers that run in opposite di
rections. Therefore, the model acquires both forward and backward 
sequential information through the past and future of a given dataset. 
Fig. 1 illustrates the structure of the BiLSTM model. 

3.4. Performance evaluation 

The forecasts of the model must be further assessed to verify the 
findings. Also, a formal test is needed to examine the hypotheses. Hence, 
we employ the following measures and test: 

I. RMSE: Shows the standard deviations of differences between 
actual and forecasted values. It is used as an accuracy indicator for 
comparing prediction errors of different models. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T
∑T

t=1
(Yt − Ŷ t)

2

√
√
√
√ (11) 

II. MAE: Shows the average of absolute errors when comparing the 
actual and forecasted values. 

MAE =
1
T

∑T

t=1
|Yt − Ŷ t| (12) 

In Eq. (11) and Eq. (12), Yt and Ŷ t are the actual and forecasted 
values at time t, respectively. T represents the sample size. The smaller 
values for RMSE and MAE indicate higher forecasting accuracy. 

III. DM test: Determines if the difference between two forecasting 
models is statistically significant (Diebold and Inoue, 2001). The null 
hypothesis implies no significant difference between errors. The DM 
statistic is defined as follows: 

DM =
d

( 2π̂ f d
T

) 1 /

2

∼ N(0, 1), (13)  

where T is the size of sample. d denotes the mean of loss differential 
between two forecasts, and f̂ d represents spectral density of the loss 
differential. 

3.5. Benchmark forecasting models 

Benchmark models are needed to check the effectiveness of the 
proposed forecasting model. For this aim, we use the constituent fore
casting models, namely the GARCH and the BiLSTM, along with their 
hybridization in which the outcome of the GARCH model is used as one 
of the features to feed the BiLSTM model. The hybridization of GARCH- 
and LSTM-based models in forecasting oil price volatility has been 
reliably documented in the literature (Verma, 2021). Therefore, these 
models can be employed as reliable benchmarks. Another interesting 
hybridization is to use the outcome of the BiLSTM together with senti
ment series as regressors in the GARCH model. This practice makes it 
possible to compare the suitability of statistical and machine learning 
models for oil price volatility predictability in the presence of sentiment. 
Therefore, we use the GARCH model, BiLSTM model, GARCH-BiLSTM 
model, and BERT-BiLSTM-GARCH model as benchmarks for our pro
posed model. 

4. Data 

4.1. Historical data 

Weekly data of Brent oil were sourced from Refinitiv Eikon from 4 
August 2014, to 20 December 2020. Brent oil historically plays a crucial 
role in the global oil pricing mechanism as it is considered a benchmark 
for around 55% of the international oil trade (Cheng et al., 2019). 
Therefore, Brent is an appropriate proxy for the global oil market. We 
also use weekly data for Gold and S&P 500 over the same period as 
financial indicators which have a high volatility connectedness with the 
oil market. 

Fig. 2 shows oil price time series over the period under consideration. 
As can be observed, high production levels together with low demand 
pushed the oil prices to a nadir in early 2016, when it hit a 13-year low of 

Fig. 1. The structure of BiLSTM. 
Graphical representation of the BiLSTM model consisting of two LSTMs in 
which one takes inputs in a forward direction and the other in a backward 
direction leading to an increased amount of information absorbed by the model. 
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Fig. 2. Brent weekly price and volatility from August 2014 to December 2020. 
Weekly closing prices and range-based volatility of Brent crude oil from August 2014 to December 2020. Panel A shows the historical trajectories in closing prices and 
Panel B shows the volatility for Brent crude oil, respectively. 

Table 2 
Descriptive statistics.   

Mean Minimum Maximum SD Skewness ADF 

Panel A. Financial series 
Brent 0.000422 0.000024 0.008468 0.000753 7.8625 − 4.1483 (0.0008) 
Gold 0.000054 0 0.0007 0.000077 4.5268 − 7.3323 (0) 
S&P 500 0.000066 0.000003 0.001784 0.00015 7.8192 − 7.7669 (0)  

Panel B. Sentiment series 
News sentiment index 0.179640 − 0.997356 0.984978 0.463667 − 0.3259 − 10.0038 (0) 
Twitter sentiment index 0.325211 − 0.107918 0.749671 0.14302 0.2199 − 14.5428 (0) 

This table presents descriptive statistics for Brent crude oil prices, gold prices, and S&P 500 index together with news sentiment index and Twitter sentiment index for 
oil market over the period from August 2014 to December 2020 in panel A and B, respectively. Values in the first column shows weekly mean for each series followed 
by the minimum and maximum values in the next two columns. SD stands for standard deviations. Number in parenthesis in the last columns show the p-value at 5% 
significance level. 
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$27.10. Later, the trend reversed with a simultaneous increase in global 
demand and a drop in output levels. Also, a series of geopolitical issues 
took place over 2017–18, like the imposition of the U.S. sanctions on 
Iran, or Russia and Saudi Arabia’s decisions to curb production levels. 
All these events sent oil prices to a four-year high of more than $80 in 
late 2018. Throughout 2019, rise in the U.S. oil production put down
ward pressure on prices. Moreover, geopolitical issues such as the attack 
on Saudi Arabia’s petroleum installations and production cut an
nouncements by OPEC contributed to a lower average of oil prices. 
Finally, the fall in 2020 was related to a remarkable drop in demand 
coupled with weakened economic prospects during the Covid-19 
pandemic even though it reversed later. The oil price is both volatile 
and trending at some points over this period in which media shocks play 
a role; therefore, using this period is beneficial to investigating the 
reliability of the proposed model. 

Panel A in Table 2 presents descriptive statistics for the financial 

series. For all markets, the standard deviation values are greater than the 
average. This shows that Brent (0.000753) has the highest volatility 
level, while gold (0.000077) is of the lowest volatility. The skewness 
values indicate that all financial series are highly skewed. We check the 
stationarity of the series using the augmented Dickey-Fuller (ADF) test, 
where the null hypothesis implies the existence of a unit root in series. 
The last column of Table 2 presents the results of the ADF test, con
firming the stationarity of all series at the 5% significance level. 

4.2. Textual data 

Using the archival news of investing.com3 Website, a total of 14,833 

Fig. 3. Number of news and tweets relevant to the oil market from August 2014 to December 2020. 
Panel A shows the frequency of online news about Brent crude oil across all news services on Investing.com from August 2014 to December 2020. Panel B sows the 
frequency of Twitter feeds using one of the hashtags: #oilmarket, #brentoil, #oilprice, #wtioilprice from August 2014 to December 2020. 

3 Investing.com is a financial markets platform providing exclusive and 
eclectic news and other facilities regarding multifarious exchanges and com
modities around the world. 
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news headlines about the oil market was collected from 4 August 2014, 
to 22 December 2020. We use news headlines as headlines efficiently 
convey the gist of the whole article (Li et al., 2019). Panel A in Fig. 3 
shows the number of news articles per month. There is a sharp increase 
in the quantity of news in December 2020 which can relate to the OPEC 
meeting, OPEC and non-OPEC ministerial meeting, and announcement 
of Covid-19 vaccine production. 

We also collected 116,463 tweets for different hashtags related to the 
oil market over the same period.4 Panel B in Fig. 3 illustrates the number 
of tweets per month. As can be seen, there is a dramatic increase in 
March and April 2020 when the oil price unprecedently plunged and, 
simultaneously, there was a serious conflict between OPEC+ members 
where the U.S. president mediated between them and repeatedly 
updated the public via his Twitter account. 

5. Empirical analysis 

To check Hypothesis 1, which predicts media sentiment elevates the 
accuracy of oil price volatility forecasting, we commence the analysis by 
sentiment extraction using the BERT model trained on the Financial 
PhraseBank. We use 80% of the dataset for training and validation and 
20% for test. This practice boosts the model accuracy to 0.83%. The 
weighted average of model’s precision and recall equals 0.82, and 
model’s loss is 0.38. We then process the textual contents through the 
fine-tuned model. Fig. 4 represents the heatmaps for sentiment indices. 
As can be seen, the sentiment indices are very dynamic and varying as 
they mostly depend on exogenous news like real-time events. Twitter 
sentiment also includes public interpretations, which seemingly add a 
tinge of pessimism to the sentiment as most of the index values fall 
within the positive area. Also, From Panel B in Table 2, we see that 
Twitter sentiment index is positively skewed, while the news sentiment 
index is negatively skewed. Standard deviations also indicate that the 
news sentiment index (0.463667) is more volatile than the Twitter 
sentiment index (0.14302). 

We use the sentiment indices to feed the BiLSTM model in the last 
step of the proposed model. Before that, we estimate the GARCH model, 
whose parameters are presented in Table 3, to obtain an initial forecast 
of oil prices volatility. Not only do we assess this forecast against the 
actual volatility, but we also use it as an input feature for the final 
forecast. 

Finally, we feed the BiLSTM model with the sentiment indices, 
GARCH estimation, and financial data as input features. As for the 
sentiment data, we use the Twitter index and news index each at a time. 
The structure of the BiLSTM model consists of two layers, having 12 and 
1 neurons, and the dense layer. We also use Adam optimizer (Kingma 
and Ba, 2014) to optimize the training process. The learning rate is set at 
0.001. All BiLSTM settings in this study are trained for 60 epochs. The 
prediction horizon is 22 weeks, and we use 12-week window of 
explanatory variables as input. 

Fig. 5 illustrates the final prediction for Brent oil volatility by the 
proposed hybrid model using the news sentiment index (News-GARCH- 
BiLSTM) in Panel A and using the Twitter sentiment index (Twitter- 
GARCH-BiLSTM) in Panel B. Fig. 5 also shows forecasting results ob
tained by benchmark models including News-BiLSTM-GARCH (Panel C), 
Twitter-BiLSTM-GARCH (Panel D), GARCH-BiLSTM using financial data 
(Panel E), BiLSTM using financial data (Panel F), and GARCH using oil 
historical data (Panel G). 

Table 4 presents forecast errors for all the models employed in this 
study. We can see significant drops in forecast errors when the hybrid 
model is fed with sentiment indices. The interpretation is that refined 
information concerning the oil market in media increases the forecasting 
quality if properly converted into numerical values. The news sentiment 
index produces the paramount forecast as it reduces the RMSE measure 
derived by the Twitter sentiment index by 21%. The interpretation is 
that regular news is of more genuine information for the oil market. 

Having the sentiment indices involved in the forecasting models, we 
can also see that using BiLSTM as the ultimate forecasting model im
proves the prediction errors by 15% in comparison to having the GARCH 
as the final predictive model. Another interesting fact goes back to the 
propriety of predictive models and data in prediction improvement. For 
the Twitter sentiment index, we can see that using the GARCH as the 

Fig. 4. Heatmaps of sentiment indices. 
Heatmaps of the semantic indices through news and Twitter feeds exclusively for the oil market from August 2014 to December 2020. The indices rely on real-time 
events causing the sentiment to be varying. Time-varying characteristic is more pronounced in the case of news sentiment, while Twitter sentiment is a bit 
more positive. 

Table 3 
The estimated parameters of GARCH model.   

Estimate SE t-statistic P-value 

ω 13 ×10− 9 0 304.875 (0) 
α 0.2 0.0922 2.169 (0.03006) 
β 0.78 0.0331 23.568 (0) 

Table presents the estimation of GARCH (1,1) parameters where ω is the con
stant coefficient of the variance equation, α represents the value of the autore
gressive coefficient, and β denotes the value of variance coefficient. SE: standard 
error. 

4 The hashtags are: #brentoil, #oilprice, #wtioilprice, #oilmarket. 
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final forecasting model results in smaller prediction errors than the 
BiLSTM. The opposite is true with regard to the news sentiment index. 

We can also see that the GARCH provides a slightly better forecast 
than that of the BiLSTM when we scrutinize the performance of single 
models. The interpretation is that the statistical models provide superior 
results than machine learning agents when we focus on using single 
models for forecasting oil price volatility under this setting. We also 
observe that the hybrid GARCH-BiLSTM model (using financial data) 
produces smaller forecast errors than single models. The interpretation 
is that the hybridization of statistical and machine learning models 
improves the forecasting accuracy, as the errors subsided. The reason is 
that this process enables the model to capture different characteristics 
existing in the time series more effectively. 

Fig. 5. Forecasting results of Brent oil volatility for 22 weeks ahead. 
Forecasting 22-week ahead for Brent crude oil volatility. Panel A shows the predictions for News-GARCH-BiLSTM, Panel B illustrates the forecasting by Twitter- 
GARCH-BiLSTM, Panel C represents the predictions using News-BiLSTM-GARCH, panel D shows the forecasting using Twitter-BiLSTM-GARCH, panel E illustrate 
the prediction using GARCH-BiLSTM, panel F shows the forecasting using BiLSTM, and panel G illustrates the prediction using GARCH model. 

Table 4 
Results of oil price volatility forecasts with error functions.  

Model MAE (×10− 4) RMSE (×10− 4) 

GARCH 0.2819 0.3329 
BiLSTM 0.2871 0.3365 
GARCH-BiLSTM 0.2286 0.2948 
Twitter-BiLSTM-GARCH 0.1393 0.1818 
News-BiLSTM-GARCH 0.1331 0.1818 
Twitter-GARCH-BiLSTM 0.1661 0.1951 
News-GARCH-BiLSTM 0.1269 0.1531 

Table shows the values of error measures for all the forecasting models using 
root mean square error (RMSE) and mean absolute error (MAE). 

Table 5 
The results of DM test.  

Pair of models DM statistic P-value 

GARCH vs. BiLSTM 8.679 (0.0000) 
GARCH-BiLSTM vs. GARCH 3.1692 (0.0046) 
GARCH-BiLSTM vs. BiLSTM − 7.3704 (0.0000) 
Twitter-BiLSTM-GARCH vs. GARCH 6.68 (0.0000) 
News-BiLSTM-GARCH vs. GARCH 6.6767 (0.0000) 
Twitter-BiLSTM-GARCH vs. BiLSTM 7.2509 (0.0000) 
News-BiLSTM-GARCH vs. BiLSTM 7.2925 (0.0000) 
Twitter-BiLSTM-GARCH vs. GARCH-BiLSTM 6.7 (0.0000) 
News-BiLSTM-GARCH vs. GARCH-BiLSTM 6.6768 (0.0000) 
Twitter-GARCH-BiLSTM vs. GARCH 5.5788 (0.0001) 
News-GARCH-BiLSTM vs. GARCH 4.2697 (0.0003) 
Twitter-GARCH-BiLSTM vs. BiLSTM − 3.8205 (0.0009) 
News-GARCH-BiLSTM vs. BiLSTM − 5.1502 (0.0000) 
Twitter-GARCH-BiLSTM vs. GARCH-BiLSTM 3.5132 (0.002) 
News-GARCH-BiLSTM vs. GARCH-BiLSTM 10.1343 (0.0000) 
Twitter-GARCH-BiLSTM vs. Twitter-BiLSTM-GARCH 3.9351 (0.0007) 
News-GARCH-BiLSTM vs. Twitter-BiLSTM-GARCH 10.1344 (0.0000) 
Twitter-GARCH-BiLSTM vs. News -BiLSTM-GARCH 2.132 (0.04497) 
News-GARCH-BiLSTM vs. News -BiLSTM-GARCH 4.0629 (0.0005) 
News-BiLSTM-GARCH vs. Twitter-BiLSTM-GARCH 2.6968 (0.0135) 
News-GARCH-BiLSTM vs. Twitter-GARCH-BiLSTM 10.1337 (0.00) 

Table presents the result of pairwise comparisons between forecasting errors 
using Diebold-Mariano test. The null hypothesis of the test implies no significant 
difference between the predictions. Significance level is 5%. 
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We perform the DM test as a formal test to check the hypotheses. This 
test provides pairwise comparisons between the forecasts generated by 
different models. The DM tests the assumption of no significant differ
ence between two forecasts. Table 5 presents the results of the DM test. 
From rows 4–15 in Table 5, we see that there are statistically significant 
differences between the forecasts of hybrid models fed with sentiment 
indices and those of models without sentiment inclusion. The interpre
tation is that media sentiment provides novel and recent information 
regarding the oil market that boosts the quality of forecasting. A notable 
feature of sentiment is that it frequently varies with respect to the dy
namic atmosphere of the real world. Given the rapidity of information 
incorporation within financial markets, take the effects of the Covid-19 
pandemic, the US-China Tariff clash, and Brexit for instance, building an 
index that covers the behavioral aspects relevant to the oil market adds a 
contribution to the predictive power of models. Therefore, the results 
are consistent with hypothesis 1 that media sentiment elevates the ac
curacy of oil price volatility predictability. We conclude that media 
sentiment enhances the forecasting quality of oil price volatility because 
it includes new information which is absent in historical data. 

Hypothesis 2 states that Twitter sentiment outperforms news senti
ment in oil price volatility forecasting. From Table 4, we find that the 
opposite is true as forecasts using the news sentiment index generate 
smaller prediction errors than those of the Twitter sentiment index. To 
check if this finding is statistically significant, we perform the DM test 
for these forecasts. The last six rows in Table 5 show statistically sig
nificant differences between forecasts using the news sentiment index 
and the Twitter sentiment index under both forecasting models. 
Therefore, hypothesis 2 is rejected as news stories provide more quality 
prediction for oil price volatility than Twitter feeds. The interpretation is 
that although quantified information about the exogenous factors of the 
oil market increases the forecasting quality, the results are still sensitive 
to the quality and reliability of the information. In this analysis, news 
sentiment is built upon globally prestigious press, where those news 
agencies apply a high level of ethical and professional observations. 
Therefore, we are ensured that their contents usually are fact-checked 
and reliable. On the contrary, Twitter feeds are fraught with heteroge
neous users causing the index contains dual information as one part of 
the index includes reliable information, while the other part is based on 
non-fact contents in the form of public interpretations or even false 
news. We conclude that news sentiment outperforms Twitter sentiment 
in forecasting oil price volatility, as the results indicate that oil market 
fluctuations are more sensitive to genuine news. 

We further examine the robustness of our results using two different 
forecasting horizons of 16 and 28 weeks ahead. Table 6 presents the 
corresponding forecasting errors. From the second column in Table 6, 
we see that sentiment-based models produce smaller errors than those of 
other models over a shorter forecasting horizon. We also observe that 

the news sentiment index generates a better forecast than the Twitter 
sentiment index. From the third column in Table 6, we see that the 
findings remain unchanged over a longer forecasting horizon as well. 
These facts signify that changes in the forecasting horizon lead to no 
significant variations in the results. Therefore, we conclude that the 
obtained results are robust and contributory to the empirical literature. 

6. Conclusion 

In this paper, we investigate the contribution of news stories and 
Twitter feeds to the quality of predictive models for oil price volatility. 
Oil market fluctuations have always been influenced by exogenous 
factors such as geopolitical conflicts, natural disasters, viral narratives, 
etc. These factors are spread in media. Research is at an early stage as to 
incorporating media sentiment into forecasting settings. This is the first 
study that builds semantic sentiment indices for both news and Twitter 
feeds and compares their effectiveness. 

We collect a total of 14,833 news headlines and 116,463 tweets 
regarding various aspects of the oil market from August 2014 to 
December 2020. We then process the textual contents using a financially 
fine-tuned BERT model to extract weekly sentiment indices for both 
news and Twitter feeds. We add the sentiment indices into a GARCH- 
BiLSTM model to check the impact of media sentiment. Findings indi
cate that media sentiment enhances forecasting accuracy relative to 
using only historical data. More importantly, we also find that news 
sentiment generates superior results for oil price volatility forecasting 
compared with Twitter-based forecasting. This improvement results 
from the inclusion of various features to cover certain aspects of oil price 
characteristics, specifically the sentiment. 

Empirical implications suggest that policymakers, central banks, 
hedgers, and others who deal with the oil market should consider the 
crucial role of media sentiment in their anticipations. More weight 
should be put on regular press than social media as the sentiment 
derived from news agencies further reduces forecasting errors. 

Results also present theoretical insights. We document that news and 
Twitter sentiments contribute to forecasting quality. One way to extend 
this line of research is to add a weighting function, which assigns opti
mized weight to each forecasting feature, to the current setting and use 
both indices simultaneously. As the paramount result was obtained by 
news sentiment, future models can also divide the news index into 
different categories, like economic news, political news, war news, etc., 
and compare the predictive power of each category. 
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