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Abstract
In this paper, a strategy to deal with high-dimensional reliability systems with
multiple correlated components is proposed. The goal is to construct a state func-
tion that enables the classification of the states of components in one of two
categories, that is, failure and operative, in case of dealing with a large number
of units in the system. To this end, it is proposed a new algorithm that combines
a factor analysis algorithm (unsupervised learning) with local-logistic and iso-
tonic regression (supervised learning). The reliability function is estimated and
system failures are predicted in terms of the variables in the original state space.
The dimensions in the latent state space are defined by blocks of units with a cer-
tain dependence structure. The flexibility of themodel allows quantifying locally
the effect that a particular unit has on the system performance and a ranking
of components can be obtained under the philosophy of the Birnbaum impor-
tance measure. The good performance of the proposal is assessed by means of a
simulation study. Also a real data case is considered to illustrate the method.

KEYWORDS
Birnbaum importance measure, dependent components, factor analysis, isotonic smoothing,
logistic regression

1 INTRODUCTION

Dependability Analysis is the most important task for reducing risk of failures and upgrading availability of manufactur-
ing industries. Together with the increasing complexity of engineering systems, we have in recent years an explosion of
the available amount of information related to condition monitoring. In maintenance of industrial systems, for decision
making purposes, it is a key to master in techniques of classification of the state of performance of a machine based on
datasets with a large number of features. Recently, several techniques based on soft computing have been demonstrated
as a useful alternative for analyzing complex systems reliability. In1 the authors discuss and review challenges in big data
and traditional reliability analysis. The authors focus on how to use data with complicated structures to do reliability
analysis. As stated in Hong et al.,1 the increasing motivation to automate classification tasks leads to a reduced cost and
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2 GÁMIZ et al.

time-consuming in the whole process of system maintenance that could derive from misclassification. That is one of the
reasons of using artificial intelligence algorithms in reliability engineering. In Soltanali et al.,2 soft computing and sta-
tistical techniques are used to provide a comparative structure for predicting the operational reliability in automotive
manufacturing industry. In particular, the authors consider the adaptive neuro-fuzzy inference system (ANFIS) model for
predicting operational reliability and safety of automotive manufacturing. However, in spite of the great contribution that
soft computing techniques have added to the solution of this problem, there are still some drawbacks to overcome.
High-dimensional reliability analysis remains a grand challenge sincemost of the existingmethods suffer from the curse

of dimensionality. In this sense, Li and Wang3 introduce a novel high-dimensional data abstraction (HDDA) framework
for dimension reduction in reliability analysis. In their approach, the authors first formulate a strategy to reduce the
dimensionality of the input space so creating a low-dimensional latent space for obtaining limit state function for failure
prediction. Then they construct a feed-forward neural network to connect the high-dimensional input parameters with
the low-dimensional latent variables. The high-dimensional reliability is estimated by capturing the limit state function
in the latent space using Gaussian process regression. Focused on structural reliability in Yi and Du,4 it is presented a new
dimension reduction strategy based on the first-order reliability method (FORM) so that the contributions of unimportant
input variables are also accommodated after dimension reduction.
From a different point of view, Cai et al.5 and Si et al.6 state that the traditional reliability analysis methods for a binary

system are often oversimplified and insufficient for describing complex systems. In a multistate system, the components
and system have more than two states. There are numerous examples in practical engineering, such as nuclear reactor
systems, digital protection systems, oil transportation systems, and so forth. We will refer to continuous system when
the range of performance of components and systems is an interval, which we will assume to be [0,1], for simplicity.
Levitin and Lisnianski7 explore an approximation based on the technique of the universal generating function to analyze
multistate systems. Brunelle and Kapur8 proposed amultivariate interpolationmethod to construct the structure function
of a continuous system.
In addition to this, several proposals aimed to construct the structure function of amultistate system based on empirical

data have arisen in the recent literature. In this scenario, uncertainty in the model has to be considered. Thus, system
structure modeling has been generalized in the last years by introducing some sort of uncertainty in the model (see Ref. 9,
10 or 11 for different approaches). In Gámiz-Pérez and Martínez-Miranda,11 a new methodology based on nonparametric
statistics is presented to build the structure function of the system from empirical data. Uncertainty is modeled through
a noise term thus presenting the structure function as a stochastic model rather than a deterministic model, which is
the classical approach. Following these ideas, Gámiz et al.12 propose a supervised learning algorithm that, among other
things, allows to quantify the effect that each component has on the performance of the system. To do it, the concept of
the Birnbaum importance measure is generalized and a new version of this measure is defined and is used to rank the
components in the system in terms of the importance. It is worth to highlight that the newmeasure has a local character in
the sense that it gives information on the impact that a unit change in the components state has on the systemperformance
for different regions of the vector state domain.
Component importance measures are relevant to improve the system design and to develop optimal replacement poli-

cies, see, for example, Si et al.6 andMiziula andNavarro.13 One of themost popularmeasures is the Birnbaum’s importance
measure. In fact, as pointed out in Si et al.,6 traditional importance measures may not be effective to evaluate the contri-
bution of an individual component if its reliability value is measured such that it does not fall in the full range between
0 and 1. Moreover, if the components are (stochastically) independent, the Birnbaum measure can be defined using sev-
eral equivalent expressions. However it turns out that in the case of dependent components, different Birnbaummeasure
definitions lead to different concepts. In Miziula and Navarro,13 the authors extend this measure to the case of dependent
components based on the contribution of the component to the system reliability.
In this paper, we propose a new strategy to deal with complex systems in the context of structural reliability. Our main

purpose is to construct a limit state function in order to divide the space of states of components into the failure and
safe regions when dealing with a large number of units in the system. To this end, we propose the use of unsupervised
learning for dimensionality reduction. In concrete, we carry out a factor analysis to create a latent state space where
classification techniques based on isotonic regression and local-logistic regression (supervised learning) are applied to
obtain the reliability function.
When the number of units in the system is high certain correlation structure is expected to underlie the state space. The

purpose of the factor analysis is to uncover such structure. Each variable of the latent space is defined from a subset of
correlated components to which we will refer as blocks. Different blocks are independent. A back transformation allows
to predict system failures in terms of the variables in the original state space.
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GÁMIZ et al. 3

The main purpose is to predict the probability that the system provides an acceptable level of performance as well as to
evaluate the effect of every single component on the system behavior. To do it, Gámiz et a.12 propose a machine learning
procedure based on logistic regression, isotonic regression, and cross-validation.
Machine learning has recently demonstrated huge potential for industrial reliability analysis (see Alsina et al.14 and

Afshari et al.,15 and references therein). Logistic regression is a probabilisticmodel considered as one of themost successful
supervised algorithms ofmachine learning for classification problems (see among others Chen et al.16 and Phillips et al.17).
In Phillips et al.,17 it is brought out that typically “black box” approaches such as Artificial Neural Networks (ANN) and
Support VectorMachines (SVM) can be difficult to provide ease of interpretability. In contrast, the authors in Ref. 17 argue
that logistic regression offers easy interpretability to industry experts, providing insight to the classification process and
preventing potential misclassification. A comparative study is provided in Phillips et al.17 based on predictive performance
of logistic regression, ANN, and SVM through a real data set from engines on mining trucks, and it is shown that logistic
regression outperforms the ANN and SVM approaches at predicting the true state of the engines. Decision trees and their
generalization as Random Forest (RF) are also intuitive and easy to implement but do not provide a probability for the
outcome as a direct result. However, when further inferences about the model are needed, as is the case in this paper,
logistic regression is the recommended method.1,18
This paper supposes a natural extension of the paper12 for more complex systems with high dimension in the sense of

number of components, which are arranged in blocks of (possibly) correlated units. Our main goal is to build a statistical
model able to predict system reliability from data. The contribution of this paper can be summarized as follows.

1. The reliability model is built under the assumption of dependence of components. This is a very important issue. How-
ever, for simplicity, a very common assumption is that the units of the system are statistically independent, whichmight
not be realistic in many practical situations. In this paper, we assume that the units in the system can be correlated.

2. We propose a new algorithm where we introduce a dimension reduction step in order to create a convenient state
space (latent space) to model fitting. One of the difficulties that arise here has to do with model selection, that is,
our procedure requires selecting the adequate number of features of the latent space. We discuss this point in the
simulations.

3. Unlike the work in Gámiz et al.,12 the local logistic model is built on a latent space instead of taking the states of the
components of the system as input variables. One of the consequences is that the issue of the system coherence must
be addressed very differently.

4. The asymptotic properties of the new estimator are obtained, in particular an expression of the variance of the estimator
is presented.

5. The importance measure obtained in this paper takes into account the correlation structure between the components
of the system.

The structure of the paper is as follows. In Section 2, the different statistical tools that are required in our algorithm
are presented in a general context. In particular, the basics on factorial analysis and nonparametric regression are briefly
recalled. In Section 3, we specifically describe in details all the steps of the new algorithm aimed at building the reliability
function of complex system with a large number of components that are not assumed to be statistically independent. In
Section 4, an extensive simulation study is presented to evaluate the finite sample performance of the method. A real
dataset is analyzed in Section 5. Finally, Section 6 concludes this article.

2 METHODOLOGY

A mathematical representation of the logic of a system is one of the main objectives pursued in reliability analysis. Since
system performance assessment can be a complex problem in practice, even for simple structures, it seems reasonable that
a skillful procedure for modeling the relationship between the state of the system and its components can help efficiently
in complex systems classification problems. Thus the system structure function, that is, the link function between the
state of the system and all its components, has been a major topic in the field of system reliability.
In this paper, we follow the work of Gámiz et al.12 and extend the developments therein to analyze the case of complex

multicomponent systems, with a large number of units that are not assumed to be statistically independent, which is a
more realistic assumption specially when the number of components in the system is high.
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4 GÁMIZ et al.

2.1 Factor analysis (FA) by means of principal components analysis (PCA)

With the explosion of information, it is very common to have many features in a dataset at hand. In our reliability analysis
context, it means that we may deal with complex multi-component systems with a large number of units. It is not feasible
to run the algorithm to fit the structure function developed in [12] on all the features as it will reduce the performance
of the algorithm and it will not be easy to visualize many features in any kind of graph. So, one solution is to reduce the
number of features in the dataset using for instance a factor analysis (FA) algorithm that creates factors from the observed
variables to represent the common variance i.e. variance due to correlation among the observed variables.
The method that we will use for factor analysis is based on principal components analysis that was developed by H.

Hotelling and we summarize in the following.
Principal component analysis (PCA) is a linear projection method giving as an output a sequence of nested linear sub-

spaces, which are adapted to the data at hand. InMachine learning, PCA is one of themost used unsupervised algorithms.
It is a widely used preprocessing method with diverse applications, ranging from dimensionality reduction to denoising.19
The method performs an eigen-decomposition of the empirical covariance matrix and considers the space generated by
the eigenvectors corresponding to the leading eigenvalues.
Nowwe briefly recall one solution to PCA using linear algebra (see Refs. 20–22). Let𝐗 be an 𝑛 × 𝑝matrix of data, where

𝑝 is the number of features (covariates) and 𝑛 is the number of samples.
The data must be centered with 0 mean and standard deviation 1. The goal is to find some orthonormal matrix 𝚪, that

is 𝚪𝑡𝚪 = 𝐈, such that the following linear representation is achieved:

𝐙𝑛×𝑝0 = 𝐗𝑛×𝑝𝚪𝑝×𝑝0 + 𝛜,

where the matrix 𝐙𝑛×𝑝0 is called the score matrix and contains all the information of the sample. The matrix 𝚪 is called
loadings-matrix and gives a measure of the strength of the relation between each variable in 𝐗 and 𝐙. The columns of 𝚪
are the principal components of the data. Since a lower number of principal components (𝑝0) than number of variables
(𝑝) are kept in the model, that is 𝑝0 < 𝑝, there is an error term that is accumulated in the matrix 𝛜.
As already mentioned, PCA is based on the decomposition in eigenvectors and eigenvalues of the covariance matrix

of the data 𝚺 =
1

𝑛−1
𝐗𝑡𝐗. Then, we can write ΣΓ𝑗 = 𝜆𝑗Γ𝑗 ,

∑𝑝0
𝑗=1

𝜆𝑗 = 1, with 𝜆𝑗 denoting the eigenvalue related to the
eigenvector 𝚪𝑗 . Finally, 𝐙𝑗 = 𝐗𝚪𝑗 , for 𝑗 = 1,… , 𝑝0.
This equation is understood as follows: 𝐙𝑗 are the projections of 𝐗 in the space of eigenvectors {𝚪𝑗, 𝑗 = 1,… , 𝑝0}, with

the eigenvalues 𝜆𝑗 measuring the amount of variance explained, that is, the information kept by each of the principal
components, which are sorted in descendant order according to this amount of information captured. See Jackson20 for
details on principal components analysis.

2.2 The transformed model

The state of the 𝑗th component of the system is a random variable 𝑋𝑗 (𝑗 = 1, 2, … , 𝑝), which is directly observable and
that takes values in the interval [0,1]. Let then 𝐗 = (𝑋1, 𝑋2, … , 𝑋𝑝) denote the input vector of variables that describes the
internal development of the system. As in Gámiz et al.,12 the vector𝐗 gives the states of all components in the system and
the variable 𝑌 takes value 1 when the system is operative and 0 otherwise.
The main objective is to built a model able to predict the probability that the system works known the vector of levels

of performance of its components. When the number of inputs in the regression model is very big, certain problems may
arise, such as overfitting and an increase of the prediction error (see Ref. 23). So in this paper, we propose to reduce the
number of features before building the regression model.
After running the FA algorithm, we get a (reduced) set of variables 𝑍1, … , 𝑍𝑝0 , which are linearly related to the original

ones. Each variable 𝑍𝑗 could be identified with a (latent) block made of correlated variables of the original state space.
We can write the reliability of the system following the reasoning in Gámiz et al.12 as

𝑅(𝐱) = 𝑃(𝑌 = 1 ∣ 𝐗 = 𝐱),
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GÁMIZ et al. 5

which, using 𝐙 = 𝐗𝚪, can be written

𝑅(𝐳) = 𝑃(𝑌 = 1 ∣ 𝐙 = 𝐳),

where we denote 𝐳 = 𝐱𝚪.
In other words, given 𝐙 = 𝐳 the random variable 𝑌 follows a binomial distribution with parameter 𝑅(𝐳). Notice that

𝑅(⋅) is not the reliability function of the system, instead, the reliability function 𝑅 gives the probability that the system
is operative as a function of the states of its components, that is, given 𝐗 = 𝐱. Then, to estimate the reliability function,
we propose the following. First, fit the local-logistic model based on the latent features (𝑍1, … , 𝑍𝑝0), that is, obtain an
estimator of the function 𝑅(𝐳). Second, define 𝑅 = 𝑅◦𝜑, where 𝜑 ∶ ℝ𝑝 → ℝ𝑝0 , is a linear function that transforms the
original variables to the latent features space provided by the FA algorithm.

2.3 Local-logistic regression

We fit a local-logistic model in the space of the factors (𝑍1, … , 𝑍𝑝0) as we explain briefly in the following (see Gámiz et al.
12

for details). Let us define

𝑔(𝐳) = log
𝑅(𝐳)

1 − 𝑅(𝐳)
, (1)

where 𝐳𝑡 = (𝑧1, 𝑧2, … , 𝑧𝑝0) and 𝑔 is a smooth function in the sense of derivability.
Defining 𝑏0 = 𝑔(𝐳0), y 𝑏𝑗 =

𝜕𝑔(𝐳0)

𝜕𝑧𝑗
, 𝑗 = 1,… , 𝑝0, it can be written

𝑔(𝐳) ≈ 𝑏0 + 𝑏1(𝑧1 − 𝑧01) +⋯+ 𝑏𝑝0
(
𝑧𝑝0 − 𝑧0𝑝0

)
, (2)

for 𝐳 in a neighborhood of 𝐳0 conveniently chosen, that is for all 𝐳 such that ‖𝐳 − 𝐳0‖ < ℎ, with ‖ ⋅ ‖ the Euclidean norm
and ℎ > 0 sufficiently small.
Then, we can approximate the function 𝑅 by

𝑅0(𝐳) =
𝑒(1,(𝐳−𝐳0)

𝑡
)𝐛

1 + 𝑒(1,(𝐳−𝐳0)
𝑡
)𝐛
, (3)

for all 𝐳 such that ‖𝐳 − 𝐳0‖ < ℎ and ℎ > 0 small enough, and 𝐛 = (𝑏0, 𝑏1, … , 𝑏𝑝0)
𝑡.

The vector of parameters 𝐛 can be estimated locally by maximum-likelihood techniques. In other words, based on a
dataset {(𝐳1, 𝑌1), … , (𝐳𝑛, 𝑌𝑛)}, the value of 𝐛maximizes the local likelihood function given by

𝓁0(𝐛) =

𝑛∑
𝑖=1

𝑤ℎ,0(𝐳𝑖)
(
𝑌𝑖(𝐳𝑖 − 𝐳0)

𝑡
𝐛
)
− log

(
1 + exp((𝐳𝑖 − 𝐳0)

𝑡
𝐛)
)
,

where {𝑤ℎ,0(𝐳𝑖), 𝑖 = 1, … , 𝑛} determine the weights of the observations around the estimation point 𝐳0. This is to ensure
that the linear approximation of 𝑔 given in Equation (2) is considered only into the window where it is valid. We define

𝑤ℎ,0(𝐳𝑖) = 𝐾ℎ(‖𝐳𝑖 − 𝐳0‖),
with𝐾ℎ(⋅) = (1∕ℎ)𝐾(⋅∕ℎ), being ℎ the bandwidth parameter that controls the amount of smoothing, that is, it determines
the size of the window around the point 𝐳0 where the local linear approximation is valid. Usually, 𝐾 is a density function
with a compact support.
Solving the problem of nonlinear equations, we can obtain a local estimate of the function 𝑔, that is, the estimated value

of 𝑏0 provides an estimate of 𝑔(𝐱0) and we also obtain estimations of the corresponding partial derivatives.
Given the relationship between 𝐙 and 𝐗 provided by the FA, the model in Equation (3) involves a local-logistic model

in the space of the original variables. This point will be detailed in Section 3.1, where the algorithm is fully explained.
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6 GÁMIZ et al.

The asymptotic properties of the local estimator are studied in the Appendix of Gámiz et al.12

2.4 Isotonization

The local regression model is not built directly on the original data but using the scores-matrix provided by the FA algo-
rithm. Nonparametric regression produces estimators with good asymptotic properties such as consistency and normal
distribution that are reached at a reasonable convergence rate. However, these estimators are not necessarily monotone.
In this context of coherent system, the response variable of the regression model (the system state) has to be monotone
in each original variable (component state). In principle and in general, the features that we use to feed the local-logistic
model do not have a clear physical interpretation in our problem, thenwe can not assume that the response ismonotone as
a function of them. Therefore, we propose the isotonization step to be implemented once the back transformation process
is fulfilled and the model is expressed in terms of the original variables.
The isotonization procedure that we use in this paper is thehinge algorithmpresented inMeyer,24 which is simple, fast,

and intuitive (seeMeyer24). Asmentioned above, we will apply this algorithm once the local-logistic model has been fitted
to the data, that is, we run the isotonization algorithm with 𝑣𝑖 = 𝑅∗

𝑖
, where for 𝑖 = 1, 2, … , 𝑛, 𝑅∗

𝑖
is the estimated value of

𝑅(𝐱𝑖) = 𝑃(𝑌 = 1|𝐱𝑖) by the local-logisticmodel expressed in terms of the original variables after running the corresponding
back transformation from the space of factors as explained in Section 2.3. Notice that each factor is identified with a block
in the system design. Then, the value 𝑤𝑖 = 𝑅𝑖 , for 𝑖 = 1, 2, … , 𝑛, is an estimate reliability of the system at the profile of
components determined by 𝐱𝑖 that meets the coherent conditions of the system.

3 RELIABILITY ANALYSIS OF COMPLEX SYSTEMS

Let {𝐗, 𝑌} be the observed data where 𝐗 is a matrix of dimension 𝑛 × 𝑝. Each input of the matrix for 𝑖 = 1, … , 𝑛, is a
configuration of components states of a system of dimension 𝑝. The state of a system is given by a random variable that
is assumed to range in the interval [0,1]. The components of the system are not necessarily independent. 𝑌 is a vector of
dimension 𝑛. For 𝑖 = 1, 2, … , 𝑛, 𝑌𝑖 = 1 if the system is operative and 0 otherwise.

3.1 The FA–LR–IS algorithm

1. Center the columns of matrix 𝐗 that is, for each 𝑗 = 1, 2, … , 𝑝, define 𝑈𝑗 = (𝑋𝑗 − 𝜇𝑗)∕𝜎𝑗 , with 𝜇𝑗 =
1

𝑛

∑𝑛

𝑖=1
𝑋𝑖𝑗 and

𝜎𝑗 =
√

1

𝑛

∑𝑛

𝑖=1
(𝑋𝑖𝑗 − 𝜇𝑗)2, for 𝑗 = 1,… , 𝑝. Let 𝚺0 a diagonal matrix with 𝑗th element 𝜎𝑗 , and 𝐌 = 𝟏𝑝(𝜇1, 𝜇2, … , 𝜇𝑝),

with 𝟏𝑝 a unitary column-vector of size 𝑝. Let us denote𝐔 = (𝐗 −𝐌)𝚺−1
0 , then𝐔 is a matrix with dimension 𝑛 × 𝑝.

2. Apply an algorithm for FA to the scaled dataset 𝐔 and transform the data to a reduced set denoted {𝐙, 𝑌}𝑛×𝑝0 , with
𝑝0 < 𝑝, and 𝐙 = 𝐔𝚪, being 𝚪 the FA coefficient-matrix of dimension 𝑝 × 𝑝0 (see Section 2.1).

3. Fit a local-logistic model based on the reduced dataset {𝐙, 𝑌} (see Section 2.3) using the leave-one-out-cross-validation
(LOOCV) criterion for bandwidth selection.
LOOCV:

3.1. Let ℎ a bandwidth varying in a grid {ℎ1, ℎ2, … , ℎ𝑚}.
3.2. Build the local-logistic model based on {𝐙, 𝑌} and estimate 𝑅ℎ(𝐳𝑖) for all 𝑖 = 1, 2, … , 𝑛.
3.3. For 𝑖 = 1, 2, … , 𝑛, let the leave-one-out (𝑙𝑜𝑜) dataset {𝐙, 𝑌}(−𝑖), the dataset without the 𝑖th input. Let 𝑅(−𝑖)

ℎ
(𝐳) the

fitted model using the 𝑙𝑜𝑜 dataset and estimate 𝑅(−𝑖)
ℎ

(𝐳𝑖) for all 𝑖 = 1, 2, … , 𝑛.
3.4. Define the cross-validation score as

𝑄(ℎ) =

𝑛∑
𝑖=1

𝑅ℎ(𝐳𝑖)
2 − 2

𝑛∑
𝑖=1

𝑌𝑖𝑅
(−𝑖)
ℎ

(𝐳).

3.5. Define ℎCV = argminℎ𝑄(ℎ).
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GÁMIZ et al. 7

4. Let 𝐱0 a particular configuration of states of the components of the system. Let 𝐳0 = (𝐱0 − (𝜇1, 𝜇2, … , 𝜇𝑝))𝚺
−1
0 𝚪, and let

us build the local-logistic model as above. Then, for 𝐳 such that ‖𝐳 − 𝐳0‖ < ℎ𝐶𝑉 , the fitted model is given by

𝑅𝐶𝑉(𝐳) =
𝑒(1,(𝐳−𝐳0)

𝑡 )̂𝐛

1 + 𝑒(1,(𝐳−𝐳0)𝑡 )̂𝐛
,

with 𝐛̂ = (𝑏0, 𝑏1, … , 𝑏𝑝0)
𝑡 vector of coefficients obtained using ℎ𝐶𝑉 .

5. Let 𝐱 such that ‖(𝐱 − 𝐱0)𝚺
−1
0 𝚪‖ < ℎ𝐶𝑉 , then the local-logistic model in the state space of components is estimated by

𝑅∗
𝐶𝑉

(𝐱) =
𝑒(1,(𝐱−𝐱0)

𝑡)𝛃

1 + 𝑒(1,(𝐱−𝐱0)𝑡)𝛃
,

where the vector of estimated coefficients 𝛃 is

𝛽0 = 𝑏0,

𝛽𝑗 = 𝜎−1
𝑗

𝚪𝑗⋅𝐛̂−0, 𝑗 = 1, 2, …, 𝑝; (4)

where we denote 𝚪𝑗⋅ the 𝑗th row of matrix 𝚪, and 𝐛̂−0 = (𝑏1, … , 𝑏𝑝0)
𝑡.

6. Define𝑅∗
𝐶𝑉

(𝐱𝑖) =
𝑒𝑏0

1+𝑒𝑏0
, for 𝑖 = 1, 2, … , 𝑛. Use the algorithm described in Section 2.4 to isotonize these estimated values

and then obtain the estimated reliability for the 𝑖th configuration of states of components, that is 𝑅𝐶𝑉(𝐱𝑖), 𝑖 = 1, 2, … , 𝑛.

3.2 Importance measure of components

For 𝑗 = 1,… , 𝑝, we aim at measuring the effect that component 𝑗th has on the system performance from the point of view
of the Birnbaum measure as defined in Gámiz et al.,12 which we recall for clarity.
LetΦ(𝑋1, … , 𝑋𝑝) the structure function of a coherent systemof size𝑝. Let us assume that𝑌 = Φ(𝑋1, … , 𝑋𝑝) + 𝜖, the state

of the system, where 𝜖 represents noise. Let 𝑅(𝑥1, … , 𝑥𝑝) = 𝐸[𝑌 ∣ 𝑋1 = 𝑥1, … , 𝑋𝑝 = 𝑥𝑝), the probability that the system is
operative when 𝑋1 = 𝑥1, … , 𝑋𝑝 = 𝑥𝑝. For each 𝑗 = 1, 2, … , 𝑝, the importance of component 𝑗th in the sense of Birnbaum

is defined as 𝐼𝐵(𝑗) = 𝜕𝑅(𝑥1,…,𝑥𝑝)

𝜕𝑥𝑗
.

Following the conclusions in [12], the importance of a component with respect to the good performance of the system
can be established according to the magnitude of the corresponding partial derivative of the 𝑙𝑜𝑔𝑖𝑡 function, i.e. the value
of the corresponding 𝛽-coefficient. Given that in expression

𝜕𝑅𝐶𝑉(𝐱)

𝜕𝑥𝑗

|||||𝐱𝑖 = (𝑅𝐶𝑉(𝐱𝑖))(1 − 𝑅𝐶𝑉(𝐱𝑖))𝛽𝑗(𝐱𝑖). (5)

the factor 𝑉(𝑌𝑖) = 𝑅(𝐱𝑖)(1 − 𝑅(𝐱𝑖)) is a common factor, then 𝐼̂𝐵(𝑗) = 𝛽𝑗 , for 𝑗 = 1,… , 𝑝. The importance of a particular
component is estimated locally.

3.3 Inference about the model

In this section we address two important questions. On the one hand, we aim at quantifying the accuracy of the fitted
model. In this sense we propose to build point confidence intervals around the reliability function. To do it, we first obtain
asymptotic distribution of the local-maximumestimator thatwehave obtained in the previous sections.On the other hand,
we can evaluate and compare different units in the system in terms of the impact they have on the system performance.
To do it we propose to formulate the corresponding testing problem and solve it using Montecarlo techniques.
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8 GÁMIZ et al.

3.3.1 Asymptotic confidence interval for the reliability function

To build confidence intervals, we first obtain the asymptotic distribution of 𝛃.
Local-likelihood estimates are asymptotically normally distributed, see for example.25 Then, using the results in Gámiz

et al.,12 we have that 𝐛̂ → 𝑁(0, 𝚺𝐛), with variance

𝚺𝐛 =
(
𝐙𝑡𝐖𝐕𝐙

)−1
𝐙𝑡𝐖𝐕𝐖𝐙

(
𝐙𝑡𝐖𝐕𝐙

)−1
,

where 𝐖 is a diagonal matrix whose 𝑖th element is 𝑊(𝑖, 𝑖) = 𝐾ℎ(‖𝐳𝑖 − 𝐳0‖), for 𝑖 = 1, … , 𝑛; and, 𝐕 is a diagonal matrix
whose 𝑖th element is 𝑉(𝑖, 𝑖) = 𝑅0(𝐳𝑖)(1 − 𝑅0(𝐳𝑖)), for 𝑖 = 1, … , 𝑛.
Then we deduce that 𝛃 → 𝑁(0, 𝚺𝛃), with

𝚺𝛃 = 𝚺−1
0 𝚪𝚺𝐛𝚪

𝑡𝚺−1
0 , (6)

where 𝚺−1
0
and 𝚪 have been defined previously.

With this we can build confidence intervals around 𝑅(𝐱0). Let 𝐱0 ∈ ℝ𝑝 a particular and fixed configuration of states
of the components of the system. Using the theoretical properties of the local-likelihood estimator defined in Section 2.3
and given that 𝛽0 = 𝑏0 as deduced in Equation (4), a confidence level (1 − 𝛼)100% for the reliability of the function at the
profile of components 𝐱0 is obtained from the confidence interval obtained for 𝛽0, that is

𝛽0(𝐱0) ± 𝑞𝛼

2

𝜎𝛽0(𝐱0), (7)

with 𝜎𝛽0 the (1,1)-element of matrix 𝚺𝛽 , and 𝑞𝛼

2

denoting the quantile of order 1 − 𝛼

2
of the standard Normal law. Then,

the confidence interval for 𝑅(𝑥0) is obtained applying the inverse logit transformation 𝑓(𝑢) = 1∕(1 + 𝑒−𝑢) to the extremes
of the interval (7).

3.3.2 Hypothesis testing for components comparison

Let us test the null hypothesis:

𝐻0 ∶ 𝛽𝑗(𝐱0) = 𝛽𝑘(𝐱0)

𝐻1 ∶ 𝛽𝑗(𝐱0) ≠ 𝛽𝑘(𝐱0),

for a particular vector of components’ states, 𝐱0 = (𝑥01, 𝑥02, … , 𝑥0𝑝)
𝑡.

To solve the above testing problem, we consider the statistic 𝑇𝑗𝑘 = 𝐄𝑗𝑘𝛃, with 𝐄𝑗𝑘 vector of 0s, except for positions 𝑗
and 𝑘, which are, respectively, 1 and −1. From Equation (6), we obtain that the variance of this statistics is 𝑉𝑎𝑟(𝑇𝑗𝑘) =

𝐄𝑗𝑘𝑉𝑎𝑟(𝛃)𝐄𝑡
𝑗𝑘
.

4 SIMULATIONS

To illustrate our methodology, we use in this section simulated systems that, among other things, allow us to evaluate the
goodness of fit of the estimators proposed in the previous sections.

4.1 Reliability block diagrams

To generate data from reliability systems, we assume that the logic of the system structure can be represented by means
of a block diagram. Static or dynamical systems consisting of multiple components that can be partitioned into distinct
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GÁMIZ et al. 9

and interacting blocks arise in many scientific areas,26,27 for example. Recently, in Catelani et al.,28 the authors introduce
a new approach to assess system reliability prediction in presence of redundant and stand-by architecture, to do it they
develop a software tool based on block-diagrams, RBDesigner, a project for engineers to be able to achieve a reliability
prediction of very complex systems in the early stages of product development.
A reliability block diagram (RBD) is a hierarchical model aimed at modeling the failure relationships of complex sys-

tems and their subcomponents (or blocks) and is extensively used for system reliability, availability, and maintainability
analysis.26
An RBD is not a physical design diagram but a logical diagram illustrating what is required for the system to work. The

RBD has a single starting point and a single ending point, and is made up of functional blocks connected by lines.
The constructions of an RBD can follow any of the basic patterns of component connections series or parallel. For binary

systems, that is, when only two levels of performance are considered for describing the system state and the component’s
states, perfect functioning (1) and failure (0), in the series connection, all components have to be operative for the system
to remain functional. Whereas, in a parallel structure at least one of the components must be functioning for the system
to perform well. In this paper, we consider that the state of each component is a random variable ranging in the interval
[0,1], where, for simplicity, we assume that 0 represents the failure state and 1 gives the full operational mode.
Using this approach, we extend the binary conception of RBDs as follows. For a structure with components connected

in series, the structure function Φ returns the minimum value of the states of its components, and for a parallel structure,
it returns the maximum value of the states of the components. Then, the state of the system is a binary random variable

𝑌 =

{
1, Φ(𝑥1, …, 𝑥𝑝) ≥ 𝜙0

0, Φ(𝑥1, …, 𝑥𝑝) < 𝜙0

with 𝜙0 a prespecified threshold. The region of the components state-space, that is,  = [0, 1]𝑝, where 𝑌 = 1 is called the
safe region. As explained before in this paper we assume that 𝑌 also depends on a random term 𝜖.
In many cases, real-world systems involve subsystems or blocks, which themselves form a nested RBD configuration.

Such systems can bemodeled by nestedRBDconfigurations. For instance, if a systemand its components both aremodeled
by the series–parallel RBDs, then the complete system can be modeled by using a nested series–parallel RBD configura-
tions. This makes RBDs a powerful tool that allows to easily construct the reliability models of many real-world systems
and in particular highly complex engineering structures.26,27

4.2 Numerical examples

4.2.1 Finite sample properties of the estimator

As already mentioned, to evaluate our procedure, we run a simulation study where the systems considered are based
on different RBD configurations. Figure 1 gives a graphical representation of the RBDs corresponding to the three cases
analyzed in this section.
The data for each case have been generated as follows. We have simulated samples of 𝑛 = 50, 100, 500. Let 𝑝 denote the

size of the system, then 𝑝 = 9, 10, 15, respectively, in our examples. The data consist of a matrix with 𝑝 + 1 columns. The
first 𝑝 columns report the state of the components 𝑋1, 𝑋2, … , 𝑋𝑝, while the 𝑝 + 1 column refers to the state of the system
𝑌, which takes value 1 if the system is working and 0 otherwise. Any two components in the same block have a correlation
of 0.9, while components in different blocks are independent. This point is considered in Figure 1, where the blocks of
dependent components have been highlighted using dashed lines.
The state of the system has been simulated considering a latent variable that is not directly observed and is assumed

to be 𝑌 → 𝑁(Φ(𝐗), 𝜎), with 𝐗 = (𝑋1, 𝑋2, … , 𝑋𝑝) being a particular configuration of the state vector. We fix 𝜎 = 0.2 and
finally, the information about the state of the system 𝑌 is simulated from a Binomial distribution with event probability
given by 𝑅(𝐱) = 𝑃(𝑌 > 𝑦0), with 𝑦0 = 0.5.
For each model and sample size, we have simulated𝑀 = 500 repetitions of the experiment. Tables 1–4 show the results

of model fitting. A discussion about the appropriate number of factors (principal components or blocks) to be extracted is
also presented in Table 5.
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10 GÁMIZ et al.

TABLE 1 Area under the ROC curve (AUC).

FA–LR–IS algorithm Parametric logistic model
Sample size, 𝒏 Sample size, 𝒏

System 50 100 500 50 100 500
1 0.909 0.903 0.896 0.838 0.831 0.822
2 0.912 0.903 0.901 0.813 0.799 0.785
3 0.895 0.906 NA 0.788 0.817 NA

TABLE 2 Average mean squared error (AMSE) of the local-logistic model without
isotonization, for the three systems, sample size 𝑛, and different number of blocks, 𝑝0.

𝑺 = 𝟏 𝒏 50 100 500
𝑝0 2 0.0302 0.0304 0.0298

3 0.0183 0.0134 0.0076
4 0.0208 0.0148 0.0081

𝑺 = 𝟐 𝒏 50 100 500
𝑝0 3 0.0289 0.0272 0.0241

4 0.0243 0.0189 0.0118
5 0.0246 0.0191 0.0121

𝑺 = 𝟑 𝒏 50 100 500
𝑝0 4 0.0418 0.0372 NA

5 0.0378 0.0293 NA

TABLE 3 Average mean squared error (AMSE) of the local-logistic estimator with
isotonization, for the three systems, sample size 𝑛, and different number of blocks, 𝑝0.

𝑺 = 𝟏 𝒏 50 100 500
𝑝0 2 0.0291 0.0290 0.0283

3 0.0182 0.0133 0.0074
4 0.0204 0.0146 0.0079

𝑺 = 𝟐 𝒏 50 100 500
𝑝0 3 0.0284 0.0266 0.0234

4 0.0240 0.0188 0.0117
5 0.0243 0.0190 0.0120

𝑺 = 𝟑 𝒏 50 100 500
𝑝0 4 0.0417 0.0371 NA

5 0.0377 0.0292 NA

TABLE 4 Average mean squared error (AMSE) of the parametric logistic model, for the three
systems, sample size 𝑛, and different number of blocks, 𝑝0.

𝑺 = 𝟏 𝒏 50 100 500
𝑝0 2 0.0961 0.0967 0.0952

3 0.0476 0.0469 0.0467
4 0.0250 0.0203 0.0166

𝑺 = 𝟐 𝒏 50 100 500
𝑝0 3 0.0625 0.0605 0.0592

4 0.0384 0.0357 0.0346
5 0.0317 0.0266 0.0229

𝑺 = 𝟑 𝒏 50 100 500
𝑝0 4 0.0681 0.0656 NA

5 0.0631 0.0584 NA
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GÁMIZ et al. 11

F IGURE 1 Reliability block diagrams for the simulated systems.

TABLE 5 PVAL (𝑝0) is the 𝑝-value reported by the significance testing of the number of
factors equal to 𝑝0.

𝑺 = 𝟏 𝒏 50 100 500
𝑝0 2 8.135𝑒−7 3.878𝑒−17 7.045𝑒−138

3 0.4660 0.4603 0.4559
4 0.6372 0.6567 0.6829

𝑺 = 𝟐 𝒏 50 100 500
𝑝0 3 1.26𝑒−6 1.225𝑒−17 3.815𝑒−133

4 0.4525 0.4463 0.4580
5 0.5430 0.5815 0.5944

𝑺 = 𝟑 𝒏 50 100 500
𝑝0 4 4.31𝑒 − 09 5.76e-30 NA

5 0.499 0.490 NA

The structure function for each model is given in the following:

∙ System 1. We consider a series–parallel system with 𝑝 = 9 components, as shown in Figure 1 (top plot). The system
is composed of three blocks connected in series. The first two blocks are arranged in parallel and have three and four
components, respectively. The third block consists of two components in series. In this context, the structure function
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12 GÁMIZ et al.

of the system is given by the following expression:

𝜙(𝐱) = min(max(𝑥1,min(𝑥2, 𝑥3)),max(min(𝑥4, 𝑥5),min(𝑥6, 𝑥7)),min(𝑥8, 𝑥9)),

where 𝑥𝑗 denotes the state of the 𝑗th component, 𝑗 = 1, 2, … , 9.
∙ System 2. We consider a series–parallel combination system with 𝑝 = 10 components, as displayed in Figure 1 (second
plot). The system is composed of four parallel blocks connected in series. The first two blocks have two components
each and the next two blocks have three components each. In this case, the structure function of the system is given by
the following expression:

𝜙(𝐱) = min(max(𝑥1, 𝑥2),max(𝑥3, 𝑥4),max(𝑥5, 𝑥6, 𝑥7),max(𝑥8, 𝑥9, 𝑥10)),

where 𝑥𝑗 denotes the state of the 𝑗th component, 𝑗 = 1, 2, … , 10.
∙ System 3. We consider a bridge system with 𝑝 = 15 components as displayed in the bottom plot of Figure 1. A simple
bridge structure has been modified introducing redundancy.29 That is, each component has been replaced by a block
consisting of three units connected in parallel.

𝜙(𝐱) = max(min(𝐱1, 𝐱4),min(𝐱1, 𝐱3, 𝐱5),min(𝐱2, 𝐱3, 𝐱4),min(𝐱2, 𝐱5)) (8)

where 𝐱𝑘 = max(𝑥3𝑘−2, 𝑥3𝑘−1, 𝑥3𝑘) , for 𝑘 = 1,… , 5, and 𝑥𝑗 denoting the state of the 𝑗th component, 𝑗 = 1, 2, … , 8.

A graphical description of the algorithm we have implemented to run the simulations is presented in Figure 2.
Table 1 presents the results of goodness of fit of the model obtained running the FA–LR–IS algorithm. The bandwidth

parameter has been selected using cross-validation techniques as explained in Section 3.1. To assess the properties of
the method, we have compared the nonparametric model with the results obtained using a parametric logistic model to
estimate the reliability function with the same data. We do not provide here the details of the parametric model that are
detailed in Gámiz et al.12 To check the goodness of fit of the estimator, we have calculated the area under the ROC curve
(𝐴𝑈𝐶) following the guidelines in Gámiz et al.12 Then the results displayed in Table 1 have been calculated using the
estimated reliabilities for each system model (𝑆 = 1, 2, 3), sample size (𝑛 = 50, 100, 500), and number of latent factors,
which takes values 𝑝0 = 3 for System 1, 𝑝0 = 4 for System 2 and 𝑝0 = 5 for System 3, depending on the particular model
being analyzed.
In our context, the AUC is calculated as the probability that the reliability predicted by the estimated model for an

operative system is higher than the reliability predicted for a failed system.
As can be seen from the results in Table 1, the nonparametric models outperform the parametric model for all systems

and all samples sizes.
Tables 2–4 give the results of accuracy of the estimator provided by the FA–LR–IS algorithm. For comparison purposes,

we provide three tables with the results obtained using different methods. The results in the table show the estimation
error calculated as follows. For each system (𝑆) and sample size (𝑛), we fix the number of factors we want to extract (𝑝0)
and build the local-logistic model in the space of factors that represent blocks of components in the system design. We
obtain the estimated values {𝑅𝑖, 𝑖 = 1, … , 𝑛}. Then we transform the model to the space of original variables, so we obtain
the unrestricted estimation of the reliability for each data point as explained in Step 5 of the algorithm in Section 3.1,
that is {𝑅∗

𝑖
, 𝑖 = 1, … , 𝑛} (Table 2). Finally, we obtain the isotonized responses {𝑅∗

𝑖
, 𝑖 = 1, … , 𝑛} as in Step 6 of the algorithm

(Section 3.1), which are the final estimation of the reliability at each item of the dataset (Table 3). Additionally, we also
obtain an estimation of the reliability for each data point using the parametric logistic model following.12 We repeat this
procedure for𝑀 samples as displayed Figure 2.
For each system, given a particular sample {𝐱𝑚

𝑖
, 𝑦𝑖; 𝑖 = 1, … , 𝑛}, with 𝑚 = 1,… ,𝑀, the mean squared error𝑀𝑆𝐸𝑚 can

be calculated as

𝑀𝑆𝐸∙
𝑆,𝑚

=
1

𝑛

𝑛∑
𝑖=1

(
𝑅∙,𝑚
𝑆,𝑖

− 𝑅𝑆(𝐱
𝑚
𝑖
)
)2

,
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GÁMIZ et al. 13

F IGURE 2 FA–LR–IS algorithm.

where𝑅𝑆(𝐱
𝑚
𝑖
) denotes the true reliability function obtained for the structure 𝑆; and𝑅∙,𝑚

𝑆,𝑖
can denote the corresponding reli-

ability estimation using the unrestricted nonparametric estimator, 𝑅∙,𝑚
𝑆,𝑖

= 𝑅∗,𝑚
𝑆,𝑖

; the isotonized nonparametric reliability
estimator 𝑅∙,𝑚

𝑆,𝑖
= 𝑅𝑚

𝑆,𝑖
or the parametric reliability estimation, 𝑅∙,𝑚

𝑆,𝑖
= 𝑅𝑃,𝑚

𝑖
.

Tables 2–4 give the averaged values of 𝑀𝑆𝐸∙
𝑆,𝑚

along the 𝑀 repetitions of the experiment, that is 𝐴𝑀𝑆𝐸∙ =
1

𝑀

∑𝑀

𝑚=1
𝑀𝑆𝐸∙

𝑆,𝑚
.

Finally, in Table 5, we provide relevant information about the model building process. In particular, at the stage of
running FA, we need to decide the optimal number of factors (blocks) that we need to extract in order to get a model that
conveniently reduces the dimension of the problem without a significant loose of information. We have considered the
testing procedure implemented by the function factanal of the software 𝑅. For each value of 𝑝0 indicated in the Table 5,
the null hypothesis assesses that the number of blocks equal to 𝑝0 is adequate to explain the variability of the data. As
expected the 𝑝-value (PVAL) increases with the value of 𝑝0. For system 1, the procedure suggests that a model with two
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14 GÁMIZ et al.

F IGURE 3 Inference about 𝑅(𝐱𝟎).

blocks is adequate, which agrees with the system design as can be seen in Figure 1, where the units are arranged in two
independent blocks of correlated units. For system 2, it is deduced that two blocks are not enough to explain the variability
of the data. We need at least 𝑝0 = 3 or 𝑝0 = 4. Following the principle of parsimony of the model, we keep 𝑝0 = 3, which
again agrees with the system design. Moreover, although the results are not shown here, we have checked that the FA
analysis correctly associate the components to blocks accordingly to the design given in Figure 1. Same conclusions have
been obtained for system 3.

Remark. In the analysis of the system 𝑆3, the case 𝑛 = 500 has not been considered due to the high computational cost
associated with this simulation. Although after examining a few replications of the experiment, we have observed that,
as expected, the results obtained using the nonparametric model overcome the parametric model, as shown in Table 1 for
systems 𝑆1 and 𝑆2. Also the trend of the accuracy of the estimation is observed to decrease with sample size. Since we are
interested in high dimensionality with respect to system size more than to sample size, we do not find it so illustrative for
our purposes to consider this last example with so big sample sizes.

4.2.2 Some inference issues

In this section, we focus on system 1 but similarly systems 2 and 3 could be used for discussion.

∙ Confidence interval for the reliability at a given state vector.
For a fixed level of components states, first we are interested in building confidence intervals for the reliability index.

In particular, we take 𝐱0 a vector with elements 𝑥𝑖 = 0.5, for 𝑖 = 1, 2, … , 9. Using the results of Section 3.3.1, we can
deduce the asymptotic distribution of the estimator 𝛽0(𝐱0). In this case, we have simulated samples of size 𝑛 = 200

and for each we have constructed a confidence interval at the level of confidence of 95%, that is, 𝛽0(𝐱0) ± 𝑞0.025𝜎𝛽0(𝐱0).
From here, a confidence interval for the reliability of the system at 𝐱0 can be easily calculated applying the inverse
logit transformation.
We have run𝑀 = 100 repetitions of this experiment, so we have 100 confidence intervals for the reliability at 𝐱0. The

results are displayed in Figure 3 where we have represented the 100 confidence intervals for the reliability at 𝐱0. We
have obtained that the mean size of the intervals is 0.2628, which is reasonable given that the range of 𝑅 is (0,1). For this
configuration of components and under the conditions specified in Section 4.2 for the model from which we simulate
the data, the true reliability is 𝑅(𝐱0) = 0.5. In Figure 3, a dashed line is added at the true reliability value. Finally, we
have that with this data, the empirical coverage has been calculated as 88%.

∙ Testing the importance of components.
Using the FA–LR–IS, we have considered the following testing problem. We focus on units 7 and 8. As for the system

design, it is expected that a change of a certain magnitude in the state of unit 8 has a higher impact in the system
performance than a change of the same magnitude in the state of unit 7. In other words, we consider the following
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GÁMIZ et al. 15

TABLE 6 Recorded execution time of the algorithm in terms of the complexity of the system
𝑝, sample size 𝑛, and number of blocks 𝑝0.

𝑺 = 𝟏 𝒏 50 100 500
𝑝0 2 4.1751 s 10.9941 s 3.2526 min

3 7.0606 s 18.6147 s 5.1491 min
4 12.9206 s 34.0204 s 8.9630 min

𝑺 = 𝟐 𝒏 50 100 500
𝑝0 3 6.8160 s 18.4671 s 4.9339 min

4 11.2588 s 29.5362 s 7.8049 min
5 13.5407 s 37.5550 s 9.6279 min

𝑺 = 𝟑 𝒏 50 100 500
𝑝0 4 11.2356 s 29.7303 s 7.4008 min

5 13.4553 s 37.1375 s 9.4367 min

testing problem:

𝐻0 ∶ 𝐼7(𝐱0) = 𝐼8(𝐱0)

𝐻1 ∶ 𝐼7(𝐱0) < 𝐼8(𝐱0),

for 𝐱0, as defined above.
To solve this problem, we have constructed a confidence interval based onMontecarlo methods. Specifically, we have

simulated𝑀 = 1000 samples of size 𝑛 = 200 from system 2. For each sample, we have used the FA–LR–IS algorithm to
fit the nonparametric model and obtain an estimation of the vector of parameters 𝛃𝑚, for 𝑚 = 1,… ,𝑀. Then for each
sample, we can obtain an estimation of the difference 𝛽7 − 𝛽8. As a result, we obtain a sequence of 1000 estimations of
𝛽7 − 𝛽8. Finally, we use the empirical quantiles of order 0.025 and 0.975, respectively, based on the estimated sequence
to construct a confidence interval for the parameter 𝛽7 − 𝛽8. We reject the null hypothesis if the resulting interval is
negative. We have obtained that the 95% confidence interval is smaller than −0.1234.
The conclusion is that component 7 has a lower impact on the system performance than component 8 at the

significance level of 𝛼 = 0.05 when the system is running at a profile of components given by 𝐱0.
Let us consider a different situation. In concrete, we focus on units 1 and 4

𝐻0 ∶ 𝐼1(𝐱0) = 𝐼4(𝐱0)

𝐻1 ∶ 𝐼1(𝐱0) ≠ 𝐼4(𝐱0),

for 𝐱0 as above. We have carried out the same procedure as explained in the previous case and the corresponding Mon-
tecarlo confidence interval for the parameter 𝛽1 − 𝛽4 has been obtained (−0.6871423, 0.8941527). The conclusion is that
we cannot reject that component 1 is as important as 4 for the system performance at the significance level of 𝛼 = 0.05.

4.2.3 Scalability analysis

In order to analyze how the complexity of the systems affects the performance of our method, we have measured the
execution time as the number of units in the system increases.We have considered the three cases depicted in Figure 1. For
each system, we have simulated samples of size 50, 100 and 500, respectively. The execution time of one single simulation
for each case has been recorded and is presented in Table 6, for all systems and sample sizes. The simulations have been
performed using a 3.60 -GHz Intel Core i5-8600 K processor.
Figure 4 shows the execution time for each case as a function of the sample size 𝑛 and only for the case of optimal

number of blocks. In the graph, we can see that the execution time grows up exponentially as the sample size increases.
Also, it can be seen from the plot that the higher the complexity in the system, the longer execution time is recorded.

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3311 by A

rctic U
niversity of N

orw
ay - U

IT
 T

rom
so, W

iley O
nline L

ibrary on [14/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 GÁMIZ et al.

F IGURE 4 Recorded execution time for the
three systems, for samples of size 𝑛, and optimal
number of blocks 𝑝0.

5 A REAL CASE STUDY: WATER PUMP SENSOR DATA

We analyze a dataset related to the functioning of a water pump of a small area. The data have been taken from the data
platform www.kaggle.com/ and a further analysis is presented in Alagarsamy.30
Very few technical details about the system are available from the website. The information provided consists of times-

tampmeasurements recorded by 51 sensors andmachine status everyminute fromApril 1, 2018 to August 31, 2018. In total,
there are 220,320 datapoints and 54 variables. In this example, we do not observe directly the status of each part of the
system. Instead, we have some measurement recorded by the corresponding sensor that gives certain information about
the state of the corresponding part that this sensor is controlling. Then sensors are used to record temperature, pressure,
vibration, load capacity, volume, flow density, and so forth. Although we are aware that in this case we do not observe
directly the state of components of the system, we are going to assume in this example that each sensor identifies a partic-
ular component in the system and that the value recorded at each time is an observation of the state of that component. In
our setting, we assume that we observe a sample of independent systems. In this case, we rather have a longitudinal follow
up with one single system with observations taken with a time span of just 1 min between two consecutive datapoints. In
order to avoid this inconvenience, we do not take all the records in the sample but consider more distance in time between
the data analyzed. We have a sample of size 𝑛 = 153 that consists of all records taken at 00:00 every day, and with this,
we feed our model with the aim of determining which are the sensors that give information more relevant to the system
behavior in the sense considered in this paper.

1. Normalize the data. The values measured by each sensor are related to different magnitudes and thus given in dif-
ferent scales, so it is necessary to normalize the data in order to have values in the same scale that make it possible the
comparison.

2. Examine possible correlations. In Figure 5, the correlation matrix of all the variables (i.e., sensors measurements)
is represented. As can be seen, some groups of variables can be detected with high correlation between the variables
in the group. As we have mentioned before, a physical description of the system is not provided in the website that
provides the data. However, some experts in the field have contributed through the usual discussion forums available
at the platform trying to find up the relationship between each sensor and the corresponding part of the water pump
that this sensor is monitoring. According to one of the experts’ opinion, the first 14 sensors are monitoring certain
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GÁMIZ et al. 17

F IGURE 5 Correlation matrix.

aspects all related to the motor. The middle group of sensors are monitoring the performance of two impellers. This
can explain in part the correlation structure displayed in Figure 5.

3. We have used the package psych of R, to carry out the factorial analysis with these data. First of all, we determine the
appropriate number of factors to be extracted by means of a scree plot that is shown in Figure 6.

4. Factor analysis. We use the function 𝑓𝑎 included in the package 𝐩𝐬𝐲𝐜𝐡 to carry out latent variable exploratory factor
analysis based on maximum likelihood. Then the correlation matrix is decomposed based on eigen values and eigen
vector. The communalities for each variable are estimated by the first five factors. The loadings and the interfactor
correlations are obtained. Bellow we give the loading matrix that have been estimated by this procedure.
As can be seen from the results presented in Table 7, the structure is very clear for almost all the sensors. Only three

cases, that is, 40, 43, and 45, seem not to present a clear contribution to just one factor.
5. Local-logistic estimation. The next step is to fit a local-logistic model in the space of 𝑝0 = 5 factors and then we

back-transform the results to write the model in the space of original features of dimension 𝑝 = 51. The bandwidth
parameter has been estimated by cross-validation.
With these data, we do not consider the isotonization step. In this case, the regressors considered do not directly

correspond to the states of units inside a system. Rather, the observations we have, give partial information about the
components states. Then, the coherence property cannot be considered here and then isotonization of the estimated
responses makes no sense in this real data study and will not be done. Then, we have a model that predicts the prob-
ability that the machine is working (reliability function) as a function of the values reported by each of the 51 sensors
installed.

6. Importance measures. With the fitted local-logistic model, we can obtain estimations of the first derivatives of the
reliability function with respect to all its arguments. We have evaluated these derivatives at all estimation points that
are the observation time points (at 00:00 every day). We can thus evaluate what the change in reliability is caused by a
unit change at a particular sensor-location. Thenwe can build a rank of components (sensors) in terms of the effect that
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18 GÁMIZ et al.

TABLE 7 Loadings matrix.

Sensor Factor 1 Factor 2 Factor 4 Factor 3 Factor 5
𝑋1 0.786 0.214 0.388
𝑋2 0.730 0.120
𝑋3 −0.111 0.859 0.254
𝑋4 −0.106 0.708 0.228 0.287
𝑋5 0.940 0.113
𝑋6 0.457 −0.111 −0.211 −0.349
𝑋7 0.861 0.285
𝑋8 0.927 0.150 0.108 −0.308
𝑋9 0.911 0.149 0.126 −0.356
𝑋10 0.828 0.101 −0.198
𝑋11 0.880 0.208
𝑋12 0.856 0.313 0.129
𝑋13 0.804 0.231 0.141
𝑋14 0.213 0.257 0.580
𝑋15 0.969 0.115
𝑋16 0.977 0.100
𝑋17 0.917
𝑋18 0.921
𝑋19 0.992 0.106
𝑋20 0.991
𝑋21 0.991
𝑋22 0.973 0.201
𝑋23 0.960 0.261
𝑋24 0.977
𝑋25 0.972 0.109
𝑋26 0.941 0.163
𝑋27 0.485 0.101
𝑋28 0.857 −0.107 −0.203
𝑋29 0.746 −0.360 0.168
𝑋30 0.860 0.145
𝑋31 0.825
𝑋32 0.836
𝑋33 0.871
𝑋34 0.499 0.389 −0.102
𝑋35 0.604 −0.130 0.507 −0.169
𝑋36 0.534 0.483 −0.153
𝑋37 −0.833 0.128 0.179
𝑋38 0.274 0.809
𝑋39 0.968
𝑋40 0.432 0.480
𝑋41 0.983
𝑋42 0.987
𝑋43 0.227 0.317 0.253
𝑋44 0.261 0.423
𝑋45 0.101 0.318 0.344 0.174
𝑋46 0.262 0.552 0.124

(Continues)
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GÁMIZ et al. 19

TABLE 7 (Continued)

Sensor Factor 1 Factor 2 Factor 4 Factor 3 Factor 5
𝑋47 0.244 0.348 0.131
𝑋48 0.149 0.373 0.630 0.181
𝑋49 0.285 0.403 0.208
𝑋50 0.818 0.252 0.163
𝑋51 −0.177 −0.121 −0.429

a unit increment in the corresponding sensor-measure has on the system reliability. For each data point 𝑖 = 1, … , 153,
we have calculated the vector whose entries are the corresponding partial derivatives for all components, 𝑗 = 1,… , 51,
that are given by

d𝑅𝑖𝑗 = 𝛽𝑖𝑗𝑅𝑖(1 − 𝑅𝑖)

where 𝛽𝑖𝑗 is the 𝑗 + 1th element of the vector of coefficients 𝛽 estimated at the 𝑖th estimation point, and 𝑅𝑖 is the
estimation of the reliability at the 𝑖th estimation point. As a summary measure, we consider the average along all the
estimation points. That is, we define

d𝑅𝑗 =
1

153

153∑
𝑖=1

d𝑅𝑖𝑗. (9)

The results are presented in Figure 7. From the plot, we can appreciate the different effect that each component
has on the system behavior. Considering the absolute value reported by d𝑅𝑗 defined in equation d𝑅𝑗 , it is possible
to establish a rank of components detect those with higher impact on the system performance, in the sense of the
Birnbaum importance measure defined in Gámiz et al.12 In this case, units monitored by sensors with numbers 04, 03,
12, 50, and 13 are identified as the most important, then, for instance, for maintenance purposes, these elements are
recommended to be inspected more carefully.

F IGURE 6 Scree plot. Parallel analysis suggests that
number of factors is 5.
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20 GÁMIZ et al.

F IGURE 7 Averaged estimated partial derivatives of the reliability function, d𝑅𝑗 , for 𝑗 = 1,… , 51.

6 CONCLUSIONS

In this paper, we propose a strategy to deal with high-dimensional reliability systems. Unless expertise reveals the rational
of the system design that allows some strategies for model-fit, the estimation problem has too many features to deal with
making the dimensions of the space to grow exponentially while the available data become sparse. We have suggested to
carry out a procedure for dimension reduction. We have implemented an algorithm able to transform a large set of inputs
into an ideal set of inputs as discussed. Another aspect to have into account when the number of features is very large is
that certain correlations between the system units can arise in the latent structure underlying the data and then factor
analysis developed using a principal component methodology suggested here is an appropriate tool.
To illustrate themethod, we have carried out an extensive simulation study. We have considered three practical systems

with different complexity, in terms of the size of the systems (number of units) and the configuration represented by
different RBDs. In all cases, the FA–LR–IS provides good results, regarding the blocks recognition and accuracy of the
model. Also, to test about the importance of components, we have constructed confidence intervals based on Montecarlo
methods, which allows to detect weaknesses in the system configuration. A real dataset has also been considered for
illustration purposes.
Future works include to investigate other machine learning techniques (e.g., artificial neural network) in combina-

tion with classic statistical models (e.g., nonparametric regression) to obtain a more efficient method both statistically
and computationally.
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