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ABSTRACT

Quantification of conservative forces in multifrequency atomic force microscopy requires solving the general equations of the theory
expressed in terms of the virials of interaction. Power law expressions are commonly utilized when dealing with electrostatic, ferroelectric,
magnetic, or long range (van der Waals) forces. Here, we discuss long range forces modeled in terms of power laws (n), where the exponent
n covers the range n ¼ 2–5, and employ the multifrequency theory to explore the relevant parameter space. Numerical integration of the
equations of motion suggest that only a narrow range of operational parameters are available when imaging where the approximations are
valid. Albeit these conditions exist, and the corresponding errors can be as low as 10% throughout for all exponents explored.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0141741

The virial of interaction1–4 and the energy dissipation expres-
sions5,6 form the basis of the theory of dynamic atomic force micros-
copy (AFM),7,8 and more generally, of multifrequency atomic force
microscopy9 (AFM). The virial of interaction, also known in the field
as virial, is known to control the frequency shift. The theory of fre-
quency modulation (FM) AFM uses the virial expression to establish
the relationship between the conservative tip sample force and the fre-
quency shift.4,10 In the absence of dissipative interactions, the relation-
ship between the amplitude decay and the force is also known to be
controlled by the virial1 in amplitude modulation (AM) AFM.
Expressions for the virial can be written in terms of experimental
observables in both FM and AM AFM, i.e., in terms of frequency shift
and amplitude in FM and in terms of amplitude and phase shift in
AM correspondingly. More importantly, analytical expressions can be
derived for the virial, as a time integral of the displacement weighted
tip sample force, when force models are proposed. Such models can
contain material properties, such as materials stiffness,11–13 adhesion,14

viscoelasticity,12,15 or the Hamaker,16,17 a parameter employed to
quantify the London dispersion force as a fundamental part of van der
Waals forces. Simultaneously solving these expressions, and provided
there are as many equations as unknowns, leads to a quantitative and
rapid method to extract material properties12–14,16–20 with nanometric
resolution in multifrequency AFM. In the long range, i.e., for the forces

acting before mechanical contact, it is typical to consider the ubiqui-
tous van der Waals (vdW) interaction where an inverse square law is
predicted to follow for the interaction between a sphere, i.e., an AFM
tip modeled as a sphere of radius R, and a surface. The inverse square
law is predicted for these systems when considering the original
Hamaker21 and Lifshitz22 theories. We showed, however, that experi-
mental force profiles might not align with inverse power laws in air.23

In addition, there are other phenomena of interest to the field involv-
ing power laws, such as electrostatic,24–27 ferroelectric,28,29 and mag-
netic30–33 phenomena.

Here, we focus on long range forces modeled in terms of power
laws and employ the multifrequency theory to discuss these forces and
the relevant parameter space to minimize errors while imaging. To
this end, we solve the governing integral equations analytically and via
numerical integration for powers 2–5.

The standard theory of multifrequency AFM is based on several
assumptions.9 First, the dynamics of the cantilever-tip system are
described in terms of the beam theory.34 Second, the system is reduced
to a set of M (m¼ 1…M, where m stands for eigenmode modes) sec-
ond order differential equations. The governing equations of motion
in multifrequency AFM are written in terms of these M equations.
Each equation is identical to the standard differential equations found
in the linear theory for the driven oscillator,35,36 albeit, a nonlinear
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term, i.e., the tip-sample force Fts, and multiple drives also contribute.
Here, we take M¼ 2 and describe the system by the first two
eigenmodes,

m€z1 ¼ �k1z1 �
mx01

Q1
_z1 þ F01cosx1t þ F02 cosx2t þ Fts z1 þ z2ð Þ;

(1)

m€z2 ¼ �k2z2 �
mx02

Q2
_z2 þ F01cosx1t þ F02 cosx2t þ Fts z1 þ z2ð Þ;

(2)

where the subscripts 1 and 2 stand for modes 1 and 2, respectively.
The subscripts 01 and 02 stand for natural frequency of modes 1 and
2, respectively. The drives are F01 and F02 for modes 1 and 2, respec-
tively. The terms z1(t) and z2(t) are the modal projections of the tip
trajectory, m is the effective mass, Qi are the Q factors, ki are the effec-
tive spring constants, x0i are the angular natural frequencies, and xi

are the angular drive frequencies. Typically x0i � xi. The solution to
the above-mentioned equations is9

z tð Þ ¼ z1 tð Þ þ z2 tð Þ þ O eð Þ;
� A1cos x1t � /1ð Þ þ A2cos x2t � /2ð Þ; (3)

where OðeÞ is the term carrying the contributions of higher harmonics
and higher modes, Ai are the amplitudes, and /i are the phase shifts.
The power laws under investigation here take the following
form:23,37,38

Fts a; nð Þ ¼ �
a
dn

d > a0; (4)

where a dictates the magnitude of the phenomena, d is the instanta-
neous tip-sample distance, the power n dictates the profile of the force,
and a0 is an intermolecular distance that implies that matter interpene-
tration cannot occur.22,39 The higher the power n the faster the force
decays. In the limit where n is very large Fts is significant only where d
� a0. The Hamaker theory21 provides a way to write a in terms of
physically meaningful parameters for n¼ 2, i.e., the London dispersion
forces. Then,

a ¼ RH
6
; (5)

where R is the tip radius modeled as a sphere and H is the Hamaker
coefficient the units of which are Joules. Empirical values for H can be
found in the literature22 and are shown to depend on the size of the
atoms, the packing, and electronegativity. Furthermore, according to
the Lifshitz theory, H depends on the dielectric properties of the inter-
acting materials and the medium, implying that dielectric properties,
the size of the atoms, packing, and electronegativity are related. When
d¼ a0, the force in (4) must coincide with the adhesion force40 FAD,

FAD ¼ �
a
an0
� �4pRc; (6)

where c is the surface energy. Equation (6) allows us to set a value
for A0, R, and c and establish the value of a independently of n. The
virial of interaction Vi includes the conservative

1,2 (or even4,41) forces
which are the ones of interest here in terms of (4). The virial expres-
sions Vi can be found in multifrequency AFM by combining Eqs.
(1)–(3),

Vi ¼ Ftszih ii ¼
1
T

ðT
0
Ftszidt; (7)

where T is the fundamental period T¼ 2p/x1. The two alternative
ways to find the virials follow. First, the expression in (7) can be found
generically in terms of experimental observables by combining (1)–(3)
and (7). The solutions are (x0i� xi),

Vi ¼ �
1
2
F0iAi cos/i where F0i ¼

kiA0i

Qi
at xi ¼ x0i: (8)

The virials Vi can, thus, be extracted empirically in AM AFM by cali-
brating ki, Qi, and the “free” amplitudes A0i and inserting the observ-
ables Ai and /i into (8). In 2001, San Paulo and Garc�ıa showed that
(8) is a very good approximation to the virial.1 In FM AFM, the exper-
imental observable is the (relative) frequency shift Dx0i/x0i. The virial
can be rewritten as2,42,43

Vi � �kiA2
i
Dx0i

x0i
: (9)

Expressions (8) and (9) show that the expressions in AM and FM can
be combined to indirectly find observables.

Second, inserting (3) and (4) into (7) provides a means to express
Vi in terms of material properties. We note that Amo discussed similar
solutions37 in his PhD thesis in 2019. For the first virial, and provided
A1� A2, the approximation dm � zc � A1 holds (zc is the cantilever
separation). Then, the contributions of the second mode can be
neglected. For powers n¼ 2–5, we find

V1 n¼ 2ð Þ � a
A1

zc
A1

� �2

� 1

" #�3=2
;

V1 n¼ 3ð Þ � 3a
A2
1

zc
A1

� �
zc
A1

� �2

� 1

" #�5=2
;

V1 n¼ 4ð Þ � a
2A3

1
4

zc
A1

� �2

þ 1

" #
zc
A1

� �2

� 1

" #�7=2
;

V1 n¼ 5ð Þ � a
8A4

1
20

zc
A1

� �3

þ 15
zc
A1

� �" #
zc
A1

� �2

� 1

" #�9=2
:

(10)

Finding the virial for the second mode, and provided A1 � A2,
requires making several assumptions. In 2009, Kawai et al. proposed44

that the averaged frequency shift of the second mode over the funda-
mental period could be approximated to

Dx02

x02
� � 1

2k2

1
T

þ
@Fts
@d

dt: (11)

Combining (9) and (11)

Vi �
A2
i

2T

þ
@Fts
@d

dt: (12)

The derivative in the integral in (12) can be obtained by deriving (4) in
terms of d. Inserting that derivative into (12) and combining with (3)
while also using the approximation dm� zc� A1,
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V2 n¼ 2ð Þ � a
A2

A1

� �2 1
A1

zc
A1

� �2

þ 1
2

" #
zc
A1

� �2

� 1

" #�5=2
;

V2 n¼ 3ð Þ � a
2

A2

A1

� �2 1
A2
1

2
zc
A1

� �3

þ 3
zc
A1

� �" #

� zc
A1

� �2

� 1

" #�7=2
;

V2 n¼ 4ð Þ � a
8

A2

A1

� �2 1
A3
1

8
zc
A1

� �4

þ 24
zc
A1

� �2

þ 3

" #

� zc
A1

� �2

� 1

" #�9=2
;

V2 n¼ 5ð Þ � a
8

A2

A1

� �2 1
A4
1

8
zc
A1

� �5

þ 40
zc
A1

� �3

þ 15
zc
A1

� �" #

� zc
A1

� �2

� 1

" #�11=2
:

(13)

Constraints: Aksoy and Atalar42 later showed that the derivation of
(11) comes with upper and lower bound constraints for A2 as follows:

p2A1
x2

01

x02
Tc � A2 � 2

���� F00ts z1 tð Þð Þ
F000ts z1 tð Þð Þ

����: (14)

The term on the left is based on the small angle approximation for the
sine function and is parameterized physically by TC, i.e., the time dur-
ing an oscillation cycle for which the interaction is significant. TC is
small when Fts is large enough to significantly affect the dynamics only
for a small fraction of the fundamental period T. Furthermore, TC

must be small to allow for larger values of A2 to be valid. In principle,
TC can be forced to be small by making A1 large, but there is a prob-
lem when making A1 large. From the left of (14), we see that A1 cannot
be made arbitrarily large for a given A2. The upper bound on the right
comes from a power series expansion where higher order derivatives
can be neglected. The upper bound on the right of (14) further forces
the values of A2 to be small in relation to the interaction parameterized
by the second and third derivatives. Finally, the approximation dm
� zc � A1 employed to derive both virials 1 and 2 implies that dm
must be controlled by A1 and this happens only when A1� A2. This
further constraints the lower bound of (14). With all these consider-
ation, we start by checking the approximations of V1 and V2 in (10)
and (13) for n¼ 2 as a function of A01 and A02 by numerical integra-
tion of the equations of motion in (1) and (2). In Figs. 1(a)–1(c), A01

¼ 2 and A02 ¼ 0.2 nm and in Figs. 1(a)–1(c), A01 ¼ 5 and A02

¼ 0.1 nm. The parameters used in the simulation are shown in the fig-
ure caption. The values for Vi computed directly from the numerical
integration are shown in blue squares and the analytic predictions are
shown in orange circles. The values are normalized as indicated with
the asterisk. The bottom panels also show the approximation for V1

where1

V1 � VZ0 � �A1hFtsi ¼ �A1k1z0: (15)

The approximation in (15), first derived by San Paulo and Garc�ıa in
2001, assumes that TC/T� 1 where T is the fundamental period. The

expression in (15) allows checking whether the condition on the left of
(14) is satisfied in terms of TC. The analysis of (14) in Figs. 2–4
requires discussing a further detail. A2 and A1 will be assumed to be
directly controlled by A01 and A02. Thus, the figures will be discussed
by referring to these “free” values rather than to A1 and A2 in (14), but
the results are otherwise relevant in multifrequency AFM. We use the
free amplitudes as the variables because these can be easily set by users
in amplitude modulation AFM. The next figures and discussion aim
to show that users should use values where the ratio A01/A02 is approx-
imately 10. The set point of amplitude 1, A1, is also controlled by the
user. In this respect, we will also show that experiments should be con-
ducted for A1/A01> 0.8.

Several results are worth mentioning for Fig. 1. First, the errors in
V1 are relatively small, i.e., �10%, since A01� A02 for both examples.
The error in the second virial, V2, also stays “small” when A01¼ 2nm
and A02 ¼ 0.2 nm [Fig. 1(b)]. Yet, increasing the ratio A01/A02 by a
factor of 5 results in larger errors, i.e., �20%–40%, for V2 [Fig. 1(e)].
The approximation in (15) is better for V2 when the ratio A01 increases
as seen by comparing Figs. 1(c) and 1(f). Figures 2 and 3 illustrate
what happens when varying A02 and A01, respectively, for n¼ 2 only
as before. The normalized errors are plotted directly in these figures by
subtracting the values of the normalized numerical results (num) from
the analytic results (analytic) as given in Eqs. (10) and (13) for V1 and
V2, respectively, for the different powers n. We note that V1 peaks at
A1/A01 � 0.5–0.8 since in the extremes either Fts or zi are close to zero
implying that the integral in (7) is close to zero.

In Fig. 2, A01 ¼ 2 and A02 ¼ 0.05–2nm. For V1 [Fig. 2(a)], the
analytic expressions do well only where the ratio A01/A02 is large, i.e.,
see crosses and circles, where A02 ¼ 0.2nm and 50pm, respectively.
This is consistent with (14) and dm � zc � A1. For V2 [Fig. 2(b)], the
best results are obtained where A02 is neither too small nor too larger
relative to A01, i.e., see crosses where A02 ¼ 0.2nm, also in agreement
with (14). In particular, the best results occur where A01/A02 � 0.1.
The errors in approximation (15) are very large throughout [Fig. 2(c)]
implying that TC is “large.” This means that, according to (14), the
errors in V2 are controlled by the ratio A01/A02 alone and TC con-
straints A02 to be “large,” compromising the range of A02 that make
the analytic solutions valid.

In Fig. 3, A02 ¼ 0. 1 and A01 ¼ 0.2 –5 nm. For V1 [Fig. 3(a)], the
analytic expressions do better where the ratio A01/A02 is large as
before, i.e., see black circles where A01 ¼ 0.2 nm for very larger errors.
Again, this is consistent with what has been said regarding (14) and
dm � zc � A1. For V2 [Fig. 3(b)], the best results are obtained where
A01 is small enough relative to A02. The combination of these two
results, and in order to optimize results, the smaller [circles in Fig.
3(a)] and larger [squares in Fig. 3(b)] ratios must be disregarded.
Again optima are found for ratios A01/A02� 0.1–0.2, i.e., triangles and
crosses in Figs. 3(a) and 3(b). The errors in the approximation (15) are
largest for the smaller values of A01 [Fig. 3(c)]. For larger A01 values,
i.e., 2 (triangles) and 5nm (squares), TC is “small.” Thus, according to
(14), the errors in V2 are controlled by the ratio A01/A02 and the upper
bound of (14), i.e., the higher derivatives.

For the last figure, Fig. 4, we select “an optimum” and a “non-
optimum” set of parameters as found from the analysis in Figs. 1–3
and in agreement with (14). In particular, A01 ¼ 2 and A02 ¼ 0.2 nm
for the figures on the left panel and A01 ¼ 5 and A02 ¼ 0.2 nm for the
figures on the right panel. Again, the errors are shown for normalized

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 122, 071603 (2023); doi: 10.1063/5.0141741 122, 071603-3

VC Author(s) 2023

 18 July 2023 06:16:32

https://scitation.org/journal/apl


values of V1 [Figs. 4(a) and 4(d)], V2 [Figs. 4(b) and 4(e)], and VZ0

[Figs. 4(c) and 4(f)]. The results here are shown for powers n¼ 2
(squares), 3 (circles), and 4 (crosses). The results for n ¼ 5 are not
shown because the errors increase exponentially. In terms of the opti-
mum conditions, i.e., left panels, the errors are reasonable, i.e.,
�10%–20%, for both V1 and V2 for all powers n (except n¼ 4) pro-
vided A1/A01 > 0.7–0.8. In AM AFM, this translates into “soft
tapping” in the attractive regime and is consistent with standard imag-
ing conditions. For smaller A1/A01 ratios, the errors are very large, and
assumptions break down, and more so, as the power n increases. See
as an example the crosses in Figs. 4(a)–4(e). One explanation is that
increasing n implies increasing the relative weight of higher order deri-
vates [see the upper bound limit in (14)], i.e., the force is too steep.
The situation is worse when the ratio A01/A02 increases (see panels on
the right in Fig. 4). Finally, the approximation in (15) improves with
increasing n. Compare crosses and circles in Figs. 4(c) and 4(f) with

squares. This is consistent with increasing steepness and, thus, with
decreasing values of TC. The shaded areas (gray) show the “high” set-
points of operation where the ratio A01/A02� 10 and set point A1/A01

� 0.8 lead to smallest errors. Finally, we also note that when A01/A02

� 10 [Figs. 4(d)–4(f)] and the ratio A1/A01 leads to conditions where
A1/A02< 10, the errors in both V1 and V2 are optimum.

In conclusion, we have derived analytic expressions for the virials
of interaction in multifrequency AFM for powers ranging from 2 to 5.
Such models are employed when modeling phenomena involving
attractive surface forces. When the power is 2, the expressions agree
with the Hamaker and Lifshitz theories, i.e., the force is inversely pro-
portional to the square of the tip-sample distance. Comparisons with
the numerical integration of the equations of motion suggest that a
narrow range of operational parameters are available when imaging
where the approximations are valid. Albeit these conditions exist, and
the corresponding errors can be as small as 10% throughout for all

FIG. 1. Numerical results showing the
behavior of (a) and (d) virial 1 (V1), (b)
and (e) virial 2 (V2), and (c) and (f) the
approximation VZ0 in (15). The values are
normalized as indicated by the asterisks.
The results are shown where (a)–(c) A01
¼ 2 and A02 ¼ 0.2 nm and (d)–(f) A01¼ 5
and A02 ¼ 0.1 nm. The results obtained
numerically from the definition of (7) are
shown in blue squares and the analytic
predictions from (10), (13), and (15) are
shown in orange circles. The results have
been obtained by assuming n¼ 2 in (4).
The numerical integration was carried out
by setting k1 ¼ 2 N/m, k2 ¼ 80 N/m, f01
¼ 70 kHz, f02 ¼ 420 kHz, Q1 ¼ 100, and
Q2 ¼ 600 for the cantilever parameters.
For the physical parameters, the values
are R ¼ 20 nm, a0 ¼ 0.165 nm, and c
¼ 20 mJ m�2. The values used for nor-
malization are V1 (max)¼ 20 and V2
(max)¼ 1.3 zeptojoules.
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FIG. 2. Numerical results showing the behavior of (a) virial 1 (V1), (b) virial 2 (V2),
and (c) the approximation VZ0 in (15). The values are normalized as indicated by
the asterisks and only errors are shown. The results are shown for A01¼ 2 nm and
A02 ¼ 50 pm (black circles), 0.2 nm (crosses), 0.8 nm (red triangles), and 2 nm
(blue squares). The results have been obtained by assuming n¼ 2 in (4). The val-
ues used for normalization are A02 ¼ 50 pm—V1 (max)¼ 20 and V2 (max)¼ 0.1
zeptojoules; A02 ¼ 0.2 nm—V1 (max)¼ 20 and V2 (max)¼ 1.3 zeptojoules; A02
¼ 0.8 nm—V1 (max)¼ 20 and V2 (max)¼ 21 zeptojoules; and A02 ¼ 2 nm—V1
(max)¼ 20 and V2 (max)¼ 133 zeptojoules. Other parameters as in Fig. 1.

FIG. 3. Numerical results showing the behavior of (a) virial 1 (V1), (b) virial 2
(V2), and (c) the approximation VZ0 in (15). The values are normalized as indi-
cated by the asterisks and only errors are shown. The results are shown for A02
¼ 100 and A01 ¼ 200 pm (black circles), 1 nm (crosses), 2 nm (red triangles),
and 5 nm (blue squares). The results have been obtained by assuming n¼ 2 in
(4). The values used for normalization are A01 ¼ 200 pm—V1 (max)¼ 1 and V2
(max)¼ 0.2 zeptojoules; A01 ¼ 1 nm—V1 (max)¼ 5.3 and V2 (max)¼ 0.2 zepto-
joules; A01 ¼ 2 nm—V1 (max)¼ 20 and V2 (max)¼ 0.3 zeptojoules; and A01
¼ 5 nm—V1 (max)¼ 123 and V2 (max)¼ 0.6 zeptojoules. Other parameters as
in Fig. 2.
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powers explored, i.e., normalized error being 0.1 or less in Figs. 2–4
except for V1 and n¼ 4 [Fig. 4(a)], where errors are slightly larger for
high set-points. Roughly, optima is obtained when the free amplitude
of the first mode �1 nm and the free amplitude of the second mode is
about 10% the value of the first amplitude for sufficiently high but
standard set points, i.e., A1/A01> 0.8.
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