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Abstract
The transport sector is a major contributor to the emission of greenhouse gases
and air pollution. As urbanization and population growth continue to increase,
the demand for transportation services grows, emphasizing the need for sustain-
able practices. Therefore, incorporating sustainability into the transport sector
can effectively reduce its negative impacts on the environment and optimize
the utilization of resources.

This thesis aims to address this issue by proposing a novel method that inte-
grates neural networks into the development of a green vehicle routing model.
By incorporating environmental considerations, particularly fuel consumption,
into the optimization process, the model seeks to generate more sustainable
route solutions. The integration of machine learning techniques, specifically an
attention-based neural network, demonstrates the potential of combining ma-
chine learning with operations research for effective route optimization.

While the effectiveness of the green vehicle routing problem (GVRP) has been
demonstrated in providing sustainable routes, its practical applications in real-
world scenarios are still limited. Therefore, this thesis proposes the implemen-
tation of the GVRP model in a real-world waste collection routing problem.
The study utilizes data obtained from Remiks, a waste management company
responsible for waste collection and handling in Tromsø and Karlsøy.

The findings of this study highlight the promising synergy between machine
learning and operations research for further advancements and real-world ap-
plications. Specifically, the application of the GVRP approach to waste manage-
ment issues has been shown to reduce emissions during the waste collection
process compared to routes optimized solely for distance minimization. The
attention-based neural network approach successfully generates routes that
minimize fuel consumption, outperforming distance-optimized routes. These
results underscore the importance of leveraging the GVRP to address envi-
ronmental challenges while enhancing decision-making efficiency and effec-
tiveness. Overall, this thesis provides insights for developing sustainable and
optimized routes for real-world problems.
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1
Introduction
1.1 Emissions From the Transport Sector

Globally, the transport sector is crucial, as it not only provides accessibility, mo-
bility, and social connectivity but also promotes economic growth by connecting
people, communities, and businesses, thereby facilitating communication and
commerce. Unfortunately, the industry is a significant contributor to the mas-
sive amounts of carbon emissions that occur in the world today.

Transportation accounts for about one-quarter of the world’s energy-related
carbon dioxide emissions, and this development is projected to increase in
the future [1]. Road transportation, mainly commercial and industrial vehicles
such as delivery trucks, is a significant source of greenhouse gas emissions
[2]. These vehicles are essential to our daily lives, but they rely heavily on
traditional combustion engines, which result in high fuel consumption and
pollution. To meet the Paris Agreement’s objective of limiting global warming
to 2◦C, exploring more sustainable transportation solutions is essential.

It is undeniable that we must transition to a more sustainable transport sector.
In recent years, the word "sustainability" has lost somemeaning and has become
overwhelming for many [3]. So, the problem is where to begin and what is
required to accomplish this objective. A solid starting point is to concentrate
on the repetitive daily transportation processes.

1
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The waste management industry is a repetitive, everyday emitter due to the
emissions caused by waste collection processes. Adopting electric or biofuel-
powered collection vehicles, promoting waste reduction and recycling to reduce
the quantity of waste requiring collection and disposal, and optimizing waste
collection routes to reduce fuel consumption can reduce these emissions. This
thesis will emphasize the latter approach, as it allows organizations to gain
a competitive advantage without incurring additional costs while reducing
pollution and fuel costs.

1.2 Operations Research

Operations Research (or) is a promising field for optimizing waste collection
routes and reducing fuel consumption. The field of or has become increasingly
important in recent years due to the rapid pace of technological change, global-
ization, and environmental challenges. Utilizing mathematical and quantitative
techniques, or analyzes complex problems, develops models, and identifies
solutions that enhance operational performance and decision-making across
various industries [4]. Therefore, this field has the potential to help solve some
of the challenges related to the transportation sector. Allocating resources opti-
mally is crucial for organizations to remain competitive and efficient, especially
in complex and rapidly changing environments. The power ofor is exemplified
by its transformative impact on industries such as airline scheduling [5] and
energy power planning [6], which have been transformed by the application
of or and mathematical optimization.

In sustainable transport, or can be applied to various areas such as transporta-
tion planning, logistics, and supply chain management. For instance, or tech-
niques can analyze traffic patterns and optimize public transportation routes
to reduce emissions, energy consumption, and travel time. It can also be used
to develop more sustainable freight transportation networks, for example, by
minimizing the number of empty truck journeys and increasing the use of
rail or water transport, which can result in significant carbon emission reduc-
tions.

The Vehicle Routing Problem (vrp) is a classic optimization challenge in or
that aims to find the most efficient set of routes for a fleet of vehicles to serve
a set of locations [7]. Applying or techniques to optimize routing decisions
offers cost savings and emission reductions, providing organizations with a
competitive edge. vrps have applications in diverse sectors such as transporta-
tion, logistics, healthcare, and waste management. In this thesis, we investigate
vrps potential for determining optimized waste collection routes.
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1.3 Machine Learning

In the current era of technology and digitalization, the amount of data being
produced is growing at an exponential rate, and it has become critical for busi-
nesses to make sense of this data to gain a competitive edge. And it is in this
context that the power of machine learning becomes particularly interesting.
Machine learning is a sub-field of artificial intelligence. It involves algorithms
and models that allow computers to learn from data and improve their per-
formance on specific tasks without being explicitly programmed to do so [8].
These algorithms can help organizations make sense of their data and extract
valuable insights, which can be used to improve business operations, develop
new products and services, and make better decisions.

One of the exciting developments in the field of operations research is the inte-
gration of machine learning techniques to solve complex optimization problems
[9] [10][11] [12]. Although this symbiosis has been explored since 1985 [13],
it has only recently gained significant attention and interest. Over the years, a
growing interest has been in incorporating machine learning techniques into
the field of or. Different approaches have been explored, including attention-
based machine learning techniques [14] [9], supervised learning models [15]
[10], and reinforcement learning approaches [16] [17].

This thesis specifically focuses on the application of reinforcement learning
as a promising approach for solving routing problems, offering the advantage
of not requiring a training dataset. Reinforcement learning techniques have
demonstrated great potential in optimizing complex optimization problems by
leveraging trial and error learning and adapting strategies based on environ-
mental feedback. By harnessing the power of reinforcement learning, we aim
to develop versatile routing solutions that can be applied to various problem
domains, as this approach does not limit the possibilities due to the lack of a
training dataset.

1.4 Key challenges

This thesis primarily focuses on the Green Vehicle Routing Problem (gvrp),
a variant of the vrp that aims to minimize emissions while optimizing trans-
portation operations. In the context of the growing emphasis on sustainability
in the transport sector, the gvrp has gained attention due to its potential to
reduce emissions and promote sustainable practices. Nonetheless, the gvrp
presents several challenges that require consideration to develop effective and
practical solutions.
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The definition of the gvrp is a subject of ongoing research, accompanied by
several challenges. An essential consideration is how to effectively incorporate
environmental concerns into the problem formulation. Researchers have ex-
plored various approaches, such as introducing penalties or constraints, treating
it as the primary objective, or employing a multi-objective optimization frame-
work that considers factors like cost or time. The choice of formulation depends
on the specific context, goals, and constraints of the problem. Striving to strike
a balance between environmental considerations and other factors remains an
active research area, aiming to develop robust models that accurately capture
and address environmental factors.

The applicability of the gvrp to real-world applications presents a challenge
due to the difference between theoretical models and practical considerations.
For instance, most studies in the literature simplify the problem by assuming
Euclidean distance instead of road distance, which does not fully capture the
complexities and constraints of real transportation networks. To overcome this
challenge, improving the applicability of gvrp models to real-world scenarios
and enhancing their effectiveness in supporting practical decision-making pro-
cesses is important. Addressing these challenges is crucial for successfully inte-
grating sustainable transportation practices into real-world applications.

1.5 Contribution

This thesis explores the symbiotic relationship between machine learning and
operations research, specifically in the context of the gvrp. The primary con-
tributions of this research can be summarized as follows:

Firstly, methodologically, we propose a novel method that tailors the attention
model introduced by Kool et al. [9] specifically for the gvrp. Our approach
involves adapting the model to address the requirements and constraints of the
gvrp, by incorporating fuel consumption as the environmental consideration.
By integrating fuel consumption into a multi-objective optimization framework
that simultaneously considers road gradient and distance, our objective is to
minimize emissions and promote sustainable transport practices.

Secondly, analytically, we validate the practical applicability of the proposed
attention-based method by applying it to a real-world scenario. Going beyond
theoretical concepts, we conduct a case study that addresses the real-world
gvrp faced by Remiks, a waste management company. By optimizing Remiks’
waste collection routes using our proposed method, we showcase the model’s
ability to deliver practical solutions that effectively address the specific needs
and operational constraints of the company.
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Moreover, this research encompasses extensive data gathering and manipula-
tion, ensuring the availability of reliable and accurate information for analysis.
Furthermore, close communication and collaboration with the relevant com-
pany were maintained throughout the research process, ensuring the alignment
of objectives and the study’s relevance.

1.6 Outline

This thesis consists of nine chapters. Chapter 1 provides an introduction to the
topics and the work in this thesis. The following chapters are divided into three
parts: background, method and data, and results and experiments.

Background:
Chapter 2 covers operations research and its relevance to optimization models.
Chapter 3 explores the green vehicle routing problem and sustainability in
transportation. Chapter 4 focuses on machine learning, specifically neural net-
works. The existing research on neural networks in the context of operations
research is reviewed, highlighting promising approaches that can be applied
to optimization models. Chapter 5 delves into attention mechanisms and their
recent application to routing problems.

Method & Data:
Chapter 6 presents the proposed methodology for solving waste management’s
green vehicle routing problem using an attention-based neural network. Chap-
ter 7 presents a real-world application of this method to a specific real-world
scenario involving the waste company Remiks, highlighting how the model
can generate more sustainable waste collection routes. The chapter, therefore,
consists of the required data to do this.

Results & Experiments:
Chapter 8 shows the results and analysis of the proposed method. Chapter 9
includes a discussion, future directions, and a conclusion.

An appendix with plots and results is also included.
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Background
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2
Operations Research
Operations Research (or) is a broad, interdisciplinary field that employs a
variety of mathematical and quantitative techniques to analyze and optimize
complex decision problems. It emerged during World War II, when the efficient
allocation of scarce resources became crucial [18]. In today’s rapidly changing
and resource-constrained business landscape, the importance of or has only
grown. Its focus on using analytical techniques to improve decision-making is
a powerful asset for addressing real-world issues in a world that is increasingly
reliant on data-driven solutions.

Whether in finance, business management, or any other industry, effectively
allocating resources remains a significant challenge. In such scenarios, human
intuition is often insufficient, and mathematical models are frequently required
to discover optimal solutions. Consequently, or provides a robust framework
for optimizing complex decision-making processes.

This section of the master’s thesis draws heavily on the project thesis [19],
which provided a comprehensive examination of the field of or. It offers an
overview of the fundamental theories and key concepts that are central to or.
This section also covers optimization tasks such as the Travelling Salesman
Problem and the Vehicle Routing Problem.

9
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2.1 An Introduction to Operations Research

Operations Research (or) is a discipline that aims to improve decision-making
by employing suitable analytic techniques [4]. It focuses on solving strategic
problems in real-world operations to achieve optimal results. Multiple disci-
plines, including business management, finance, decision support systems, in-
formation technology, and tourism management, are surrounded by or [20]. It
has revolutionized the way industries like airline scheduling and energy power
planning approach problem-solving by leveraging mathematical optimization
and or techniques [5] [6].

When solving a real-world problem as an operational researcher, it is essential
first to understand the problem in its entirety and analyze the available data
[4]. The next step is to create a suitable mathematical model that simplifies
the problem while still incorporating its key features. The solution derived
from the mathematical model must be interpreted and validated to ensure its
relevance to the real problem.

Model validation is critical, as it ensures a more practical and applicable solu-
tion by evaluating and verifying the result [21]. This is important because the
simplified version of the problem must retain its essential features. The process
of evaluating and validating the result is crucial, particularly when costly and
irreversible decisions must be made. Finally, the best possible course of action
is determined through mathematical optimization algorithms, which provide
an optimal solution to the decision-maker. Overall, operations research aims
to solve real-world problems in a way that benefits the entire organization
through the search for optimality.

Figure 2.1: This figure illustrates a simplified process ofmathematical modeling,which
involves problem formulation, model constructing, model solving, and interpreting
results. It also emphasizes model validation.
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2.2 Mathematical Optimization

Operations research uses mathematical models and techniques to optimize
business processes, improve efficiency, and reduce costs. Mathematical opti-
mization is a key concept in or, involving finding the best solution by de-
termining optimal values for variables within constraints [22]. It provides a
rigorous framework for solving problems, allowing or to identify optimal so-
lutions despite limited resources and competing goals. By using mathematical
optimization, or can provide insight into complex real-world problems and
inform decision-making.

Mathematical optimization involves constructing a mathematical model that
integrates relevant factors and constraints and then utilizing available data to
identify the optimal solution. This can involve minimizing or maximizing an
objective function. An objective function expresses the goals to be achieved
and what the mathematical model will optimize according to. For instance,
the objective function could be to minimize costs or risk or maximize profit or
performance. The time horizon for decision-making can vary from short-term,
intermediate-term, or long-term, depending on the problem and context.

In addition to the objective function, mathematical optimization models have
two other main components: decision variables and constraints [23]. Con-
straints refer to a set of conditions that restrict the set of feasible solutions to a
given problem. These conditions specify the limitations and requirements that
must be satisfied by the solution of the optimization problem. Constraints can
be of different types, including equality constraints, inequality constraints, and
bound constraints. Manpower, resources, and operation time are all examples
of constraints because they limit the capacity of a system or process.

A decision variable is a changeable quantity used to optimize a system or
process. It is crucial to find the optimal solution for tasks such as product pro-
duction, inventory management, or resource allocation. In energy optimization,
decision variables can represent the power output of generators, while in airline
scheduling, they can represent flight departure and arrival times. A general
minimization problem can be expressed as:

𝑚𝑖𝑛 𝑓 (𝑥), 𝑥 ∈ 𝑋, (2.1)

where 𝑓 (𝑥) represents the objective function, which is a mathematical function
that measures the quality of a particular solution to the optimization problem.
The objective function depends on the decision variable 𝑥 , which represents
the values that we want to optimize. 𝑋 is a set of feasible values for 𝑥 , as
following:
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𝑔𝑖 (𝑥) ≤ 𝑏𝑖, 𝑖 = 1, ...,𝑚. (2.2)

𝑔(𝑥) is a function that is dependent on the decision variable 𝑥 and, together
with the parameter 𝑏𝑖 , forms a constraint. A solution that satisfies the con-
straints is called a feasible solution. In other words, a feasible solution is a set
of values for the decision variables that meet all of the requirements and limita-
tions of the optimization problem. A solution that also optimizes the objective
function is called an optimal solution. The optimal solution satisfies 𝑥 ∈ 𝑋 that
minimizes 𝑓 (𝑥) and is typically denoted by 𝑥∗. Thus, the optimal objective
function value is given by 𝑓 (𝑥∗) = 𝑧∗.

2.3 Linear Programming

Linear Programming (lp) is a technique used to optimize a linear objective
function subject to linear constraints. It is a type of mathematical optimization
used widely in or for modeling and solving complex problems in a simplified
manner. Given that multiple solution algorithms are based on lp, it is advan-
tageous first to establish lp concepts to lay the groundwork for more complex
methods. Terminology and notation are used further in the context of more
complex solutions methods.

In lp problems, both the objective function and all the constraint functions are
linearly expressed. In addition, all the variables are continuous. The benefit of
using an lp approach is that a local optimum will also be the global optimum.
A local minimum is the point at which the value of a function is less than the
neighborhood values. A global minimum, on the other hand, is the lowest point
of a function across its entire domain.

The goal of lp is to attain the optimal solution to a given problem. The results
of lp can guide a decision-maker in deciding how to employ the available re-
sources in the most effective way. In this way, lp techniques are used to improve
the quality of decision-making and provide companies with big competitive ad-
vantages [4]. The general linear programming problem [4] can be formulated
with the following objective function:

𝑚𝑖𝑛 𝑧 =

𝑛∑︁
𝑗=1

𝑐 𝑗𝑥 𝑗 . (2.3)
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𝑧 is the objective function value,which is the quantity that we want to maximize
or minimize. 𝑐 𝑗 represents the coefficients of the decision variables. These
determine the weighting or the importance of each decision variable in the
objective function. The decision variables 𝑥 𝑗 are the unknown quantities that
we want to determine in order to optimize the objective function. And the
objective is here to minimize z.

The general linear programming problem can be formulated with the following
set of constraints:

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗𝑥 𝑗 ≤ 𝑏𝑖, 𝑖 = 1, ...,𝑚 𝑎𝑛𝑑 𝑥 𝑗 ≥ 0, 𝑗 = 1, ..., 𝑛. (2.4)

In optimization problems, the constraint coefficients 𝑎𝑖 𝑗 and the right-hand
side coefficients 𝑏𝑖 provide crucial information for identifying feasible solutions.
In particular, the former indicates the amount of resource 𝑖 required for each
unit of activity 𝑗 , while the latter represents the total quantity of resource 𝑖
available for all activities. A feasible solution can be obtained by ensuring that
the solution satisfies all of the constraints in a problem [4]. Conversely, an
unfeasible solution violates at least one constraint.

The feasible region contains all feasible solutions, and the optimal solution is
a feasible solution that produces the most favorable objective function value.
In a maximization problem, the optimal solution corresponds to the maximum
value of the objective function, such as maximum profit or maximum budget
impact, whereas in a minimization problem, it corresponds to the minimum
value, such as minimizing cost or emissions [4].

Typically, the influence of changing the parameters in the lp formulation is
analyzed. This technique for evaluating the robustness of a solution is known as
sensitivity analysis [24]. This can help to identify critical variables that should
be carefully monitored or controlled to ensure the optimality of the solution.
Sensitivity analysis is an important tool for decision-making, as it helps to
understand the implications of different scenarios and make more informed
decisions.

Overall, linear programming is a highly versatile optimization technique that
can be applied to a wide range of problems across various fields. For example, it
can be used to solve routing problems like the Travelling Salesman Problem and
the Vehicle Routing Problem, providing valuable insights and solutions to com-
plex real-world problems. By applying linear programming, decision-makers
can optimize their operations and resources, leading to improved efficiency,
cost savings, and enhanced competitiveness.
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2.4 Graph Theory

Graph theory is a powerful branch of mathematics that deals with the study of
graphs, which are structures made up of vertices or nodes connected by edges
or arcs. It has numerous real-world applications in fields such as operations
research, mathematical optimization, and lp. In or, graph theory is used to
model and analyze complex systems like transportation networks, communi-
cation networks, and supply chains. It can optimize the routing of vehicles,
scheduling of tasks, or the allocation of resources, among other things.

A graph is composed of nodes and edges that connect node pairings [25]. Nodes
and edges are typically represented as points or circles with lines or curves
connecting them. Figure 2.2 illustrates that each edge connecting two elements
represents a relationship or connection between them. A graph is represented
by a square matrix known as an adjacency matrix. The matrix’s dimensions
correspond to the number of vertices in the graph, and the entry in row i and
column j indicates whether there is an edge between nodes i and j. This matrix
is an indispensable instrument for graph analysis and manipulation.

Subgraphs are smaller graphs that exist within a larger graph. A subgraph is
created by selecting a subset of the vertices and edges from the original graph.
Subgraphs are useful for analyzing the structure of a graph and for identifying
patterns or substructures within the graph. Node degrees represent the number
of edges that are connected to a node in a graph. In undirected graphs, the
degree of a node is simply the number of edges connected to it. In directed
graphs, node degrees can be split into indegree and outdegree, representing
the number of incoming and outgoing edges, respectively.

Figure 2.2: This figure illustrates an undirected graph with nodes represented by
circles and edges represented by lines connecting the circles. Additionally, the corre-
sponding adjacency matrix, a square matrix that represents the connections between
nodes, is also depicted.
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2.5 Travelling Salesman Problem

The Travelling Salesman Problem (tsp) is a well-known optimization problem
in the field of or. The problem involves finding the shortest possible route that
visits a given list of cities exactly once and returns to the starting city, given
the distances between the cities [26]. While the problem is simple to state, it
is computationally difficult to solve, especially for large instances. Despite this
challenge, the tsp has numerous applications in areas such as logistics, trans-
portation, and network optimization. As a result, researchers have developed
a variety of solution methods to tackle the tsp, making it a popular area of
study in the field of optimization.

The original problem that the tsp aims to solve is to find the shortest possible
route for a salesman to visit a given set of cities and return to the starting city
while visiting each city once. One of the key constraints of the problem is that
it prohibits sub-tours, meaning that the route must not be broken into multiple
trips that go back to the starting point [26]. However, extensions can be made
to the problem to enable a wider application. Figure 2.3 provides an illustrative
example of a solution route for the tsp.

Figure 2.3: The solution illustrated in this figure for the Traveling Salesman Problem
visits each city once and then returns to the starting point. The optimization problem
determines the shortest route for a salesman to visit several cities and return to the
starting point (illustrated in grey).

Problem Statement
The problem can be formulated as a graph, where each node 𝑛 represents a
city, and the binary variable 𝑥𝑖 𝑗 takes on a value of 1 if the corresponding edge
is used and 0 otherwise. An edge is considered used if the salesman chooses to
travel along it. The cost of traveling from city 𝑖 to city 𝑗 is denoted as 𝑐𝑖 𝑗 and
represents the distances or costs of traveling from one city to another.
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The tsp can be modified to include additional constraints, such as limited ca-
pacity or time constraints. However, the objective is to find the shortest possible
route that the salesman can take. The objective function can then be defined
as the sum of the costs of all the edges in the route as follows:

𝑚𝑖𝑛

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗≠𝑖, 𝑗=1

𝑐𝑖 𝑗𝑥𝑖 𝑗 . (2.5)

The objective function is optimized subject to the following constraints:

𝑛∑︁
𝑖=1,𝑖≠𝑗

𝑥𝑖 𝑗 = 1, 𝑗 = 1, ..., 𝑛, (2.6)

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑥𝑖 𝑗 = 1, 𝑖 = 1, ..., 𝑛, (2.7)

𝑛∑︁
𝑖∈𝑆

𝑛∑︁
𝑗≠𝑖, 𝑗∈𝑆

𝑥𝑖 𝑗 ≤ |𝑆 | − 1, 𝑆 ⊂ {1, ..., 𝑛}, |𝑆 | ≥ 2. (2.8)

The first constraint requires that each city is visited exactly once. This constraint
ensures that the salesman must travel to every city in the problem exactly once
and cannot skip any cities or visit any city more than once.

The second constraint ensures that the salesman leaves and returns to the
starting city. This constraint requires the salesman to return to the starting city
at the end of the tour. This ensures that the solution is a complete cycle rather
than a path that ends somewhere in the middle of the route.

The third constraint prevents the use of sub-tours. This constraint prevents the
salesman from taking shortcuts or revisiting cities already visited in a way that
would break the overall cycle. In other words, the solution must be a single,
continuous tour through all the cities, with no backtracking or skipping of cities.
Additional constraints can be added to fit specific applications, such as limited
capacity or time constraints.
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The tsp received considerable attention due to its simple conceptual frame-
work, which contrasts significantly with the difficulty of actually solving these
problems. They are NP-hard problems, where NP means nondeterministic poly-
nomial time and describes the complexity of such problems [27]. This means
that as the size of the problem increases, so does the time required to solve it.
This makes the tsp a difficult one to solve, especially as the number of cities
to be visited grows.

Despite the difficulty of the problem, various solution methodologies exist that
provide approximate solutions with a trade-off between accuracy and compu-
tational time. The simplicity of the tsp makes it a more theoretical problem
than practical for real-world application. However, it is often used as a starting
point or a benchmark for many optimization methods.

2.6 Vehicle Routing Problem

The Vehicle Routing Problem (vrp) is an extension of the tsp. While the tsp
involves finding the optimal route for a single salesman to visit a set of cities,
vrp is a combinatorial optimization problem that focuses on determining the
optimal set of routes for a fleet of vehicles to visit a set of customers with varying
demands, starting and ending at a depot [28] [29]. The origins of this problem
date back to 1959 when Dantzig and Ramser published the first research paper
on the topic [30]. In 1976, Christofides established the term vrp [31]. The
main objective of the problem is to minimize the total distance traveled by all
vehicles while fulfilling all the constraints.

The vrp arises in various real-world applications such as logistics, transporta-
tion, distribution, and service operations. For example, in the logistics industry,
companies need to deliver goods to their customers while minimizing trans-
portation costs and ensuring timely delivery. In such cases, the vrp can help
in determining the optimal set of routes for delivery trucks.

The vrp is one of the most widely studied topics in the or field [32]. It is an
important and fundamental problem in the domain of transport and logistics.
Solving the VRP is challenging because it belongs to the class of NP-hard prob-
lems, which means that finding the exact solution for large instances is not
computationally feasible. As the number of customers increases, the number
of possible routes increases tremendously.
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In addition, complexity is increased when adapting the models to particular
problems by including constraints. For a logistics company with several vehi-
cles and many customers to visit, the number of routes to choose between
becomes overwhelming. In such cases, vrp can provide powerful decision-
making support to guide a manager to choose the route that provides, for
example, maximum profit.

2.6.1 Capacitated Vehicle Routing Problem

The vrp is available in numerous variants, each with its own constraints and
optimization objectives due to the wide range of operating principles and con-
straints encountered in real-world applications [33]. The Capacitated Vehicle
Routing Problem (cvrp), Time-Dependent VRP (TDVRP), Multi-Depot VRP
(MDVRP), and Stochastic VRP (SVRP) are among the most common variants
[7]. The cvrp is a highly studied and popular variant of the classic vrp for-
mulation, which incorporates capacity constraints. In this problem, goods or
services are transported to customers using vehicles with limited capacity. The
goal is to minimize the total distance traveled while satisfying multiple con-
straints, including vehicle capacity.

The practical applications of cvrp have attracted substantial interest from both
academics and industry specialists. For instance, package delivery companies
use cvrp to optimize their delivery routes, resulting in lower transportation
costs and increased productivity. Likewise, waste collection companies utilize
the cvrp to optimize their waste collection routes, leading to a more stream-
lined waste management process[34]. Thus, the cvrp can be used as an impor-
tant tool in enhancing operational efficiency and reducing costs for businesses
across industries.

Although the cvrp is commonly used as a benchmark problem in academic
research, it also has practical applications in various industries, such as trans-
portation, logistics, and manufacturing. Furthermore, it serves as an excellent
starting point and guide, providing insight into the current state of affairs in
the field of vehicle routing and transportation optimization. The cvrp prob-
lem statement is commonly used as a baseline when structuring a range of
vehicle routing problems. By customizing the problem through the addition
of constraints specific to the application, the cvrp can be adapted to vari-
ous real-world scenarios, making it a valuable tool for optimizing routing and
transportation solutions.
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Problem Statement
The cvrp is a mathematical optimization problem with the goal of minimizing
the total distance a fleet of vehicles travels. Specific mathematical formulations
have been developed for the cvrp. Nonetheless, these formulations can be
modified and expanded better to explain other vrp variants.

The problem statement below defines the customers 𝑁 = 1, 2, ..., 𝑛 who need
to be visited by a fleet of vehicles in the CVRP. Each customer has a demand,
denoted by 𝑞𝑖 ≥ 0. If the vehicles in the fleet are similar in terms of capacity,
we refer to them as homogeneous. Each vehicle has a capacity of 𝑄 > 0, and
they operate at identical costs in this case.

When a vehicle travels from one customer to another (from 𝑖 to 𝑗), it incurs
a travel cost of 𝑐𝑖 𝑗 . A binary variable 𝑥𝑖 𝑗 is used to indicate whether the edge
is used (𝑥𝑖 𝑗 = 1) or not (𝑥𝑖 𝑗 = 0). The objective function is formulated in a
similar way as in the tsp, as follows:

𝑚𝑖𝑛

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗≠𝑖, 𝑗=1

𝑐𝑖 𝑗𝑥𝑖 𝑗 . (2.9)

The objective function is optimized subject to the following constraints:

𝑛∑︁
𝑖=1,𝑖≠𝑗

𝑥𝑖 𝑗 = 1, 𝑗 = 1, ..., 𝑛, (2.10)

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑥𝑖 𝑗 = 1, 𝑖 = 1, ..., 𝑛, (2.11)

𝑛∑︁
𝑖∈𝑆

𝑛∑︁
𝑗≠𝑖, 𝑗∈𝑆

𝑥𝑖 𝑗 ≤ |𝑆 | − 1, 𝑆 ⊂ {1, ..., 𝑛}, |𝑆 | ≥ 2. (2.12)

The first set of equations in this problem statement closely resembles the equa-
tions used in the tsp. Equation 2.10 ensures that each node is visited exactly
once, while equation 2.11 requires the vehicle to leave and return to the depot.
To avoid sub-tours, equation 2.12 is used.

In addition to the equations described earlier, the cvrp can include a capac-
ity constraint that is related to the capacity of the vehicle. To enforce this
constraint, the following equation is utilized:
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𝑛∑︁
𝑗=1

𝑞 𝑗𝑥𝑖 𝑗 ≤ 𝑄𝑖, ∀𝑖 ∈ 𝑉 , 𝑖 ≠ 0. (2.13)

It states that the total demand 𝑞 𝑗 of node 𝑗 , visited by a vehicle starting from
node 𝑖 cannot exceed the capacity of the vehicle, 𝑄𝑖 . This equation ensures
that the vehicle does not exceed its maximum capacity when servicing the
customers.

The problem statement typically starts with the essential constraints derived
from the tsp, which can be further expanded to accommodate specific problem
requirements and constraints. For example, if there is a predetermined number
of vehicles, the following constraint can be incorporated using the provided
formulation:

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑥𝑜 𝑗 = |𝐾 |. (2.14)

However, the addition of multiple constraints may result in no feasible solutions
if there exists no solution that satisfies all of them.

In conclusion, the cvrp plays a crucial role in the field of transportation and
logistics, with practical applications in various industries. By implementing
suitable algorithms, businesses can optimize their routing strategies, leading
to reduced transportation costs, enhanced efficiency, and improved overall cus-
tomer satisfaction.

2.7 Solution Methodologies

As stated previously, the vrp is an NP-hard problem, which is computationally
difficult to solve for large instances. As the number of customers or locations
increases, the problem becomes increasingly complex and difficult to solve,
posing a challenge for efficient solution methods and industries that rely on ef-
ficient routing. This has driven extensive research in the field of or, developing
a wide range of solution methods and algorithms.

2.7.1 Exact algorithms

The method of exact algorithms aims to provide optimal solutions to opti-
mization problems through a systematic and exhaustive search of all possible
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solutions [29]. These algorithms use mathematical optimization techniques
to determine an optimal solution based on a set of constraints and an objec-
tive function. Given that the exact algorithms seek an optimal solution, these
solution methods are computationally intensive.

Integer Linear Programming
The vrp can be solved using a variety of exact algorithms, including variants
that employ Integer Linear Programming (ilp). ilp is an extension of lp that
adds the requirement that some or all of the decision variables must take on
integer values. This restriction is what sets ilp apart from lp, which allows
variables to take on any real value [35]. ilp problems are similar to lp prob-
lems in that they involve maximizing or minimizing a linear objective function
subject to a set of linear constraints.

ilp is a valuable tool for solving problems that involve selecting discrete num-
bers [4]. The Integer Linear Programming method is a good fit for the vrp
because such problems often involve selecting discrete or integer values for
decision variables. In the Vehicle Routing Problem, for example, the decision
variables might include the assignment of vehicles to specific routes or the order
in which customers are visited. These decisions can be intuitively expressed
as integer variables, making Integer Linear Programming a natural method for
optimizing the problem.

Branch and Cut
The branch-and-cut algorithm is one of the most widely used ilp techniques.
This method combines two techniques: branching and cutting. The branching
step involves dividing the problem into smaller sub-problems by assigning a
value to one of the integer variables. The cutting step includes adding new
linear constraints to exclude previously explored regions of the solution space
[36]. Combining these techniques helps to efficiently explore the solution space
and find the optimal integer solution. Various variants of this technique have
been proposed [37] [38] [39]. However, exploring the entire solution space
is still computationally intensive, and the approach’s success in solving larger
instances of problems is limited [29].

Branch and Bound
Branch and Bound is another exact algorithm commonly used in optimization.
It is similar to Branch-and-cut in that it systematically explores a problem’s
feasible region. Still, it does not require a linear programming relaxation or
cutting planes. This algorithm is an established approach for solving a variety
of optimization problems. Studies applying it to the vrp date back to 1969
[40], and it has been implemented in numerous contexts.
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The Branch andBound algorithm divides the problem into smaller sub-problems
known as branches, each representing a potential solution. Using lower bounds,
the algorithm can eliminate sub-optimal branches by subdividing the remain-
ing branches into even smaller sub-problems and thoroughly investigating all
feasible solutions. As the algorithm continues to examine the most promising
branches, these lower bounds are refined until an optimal solution is found
[41]. Thus, this method is a technique that, with enough time and resources,
can guarantee to find an optimal solution.

Overall, exact algorithms are not practical for large-scale problems, and their
use is limited in realistic-sized instances due to their high computational re-
quirements. For example, the most sophisticated exact algorithm for the vrp
can only solve instances of up to about 100 nodes [29]. However, they provide
the optimal solution that satisfies all the constraints and valuable information
and is a good guide for solving optimization problems.

2.7.2 Heuristics

Heuristics are methods used to find good solutions to problems without guar-
anteeing their optimality [42]. Unlike exact algorithms, heuristics are generally
faster and less computationally expensive. They are based on rules of thumb,
intuition, or experience rather than mathematical guarantees. Because of this,
heuristics are often used to solve problems that are too large or complex to
be solved by exact methods. While heuristics do not provide optimal solutions,
they can often find high-quality solutions quickly and efficiently, making them
valuable tools in many real-world applications [4].

One of the primary advantages of heuristics is their speed and efficiency in
finding solutions, especially for large-scale problems. In addition, heuristics
can be used as an initial step to identify potential solutions before applying
more sophisticated algorithms to find optimal solutions.

Nevertheless, heuristics are typically problem-specific and significantly depen-
dent on problem structure and problem-solving experience[43]. This means
that they are intended to address a specific problem and may not be effec-
tive for other problems. Consequently, devising effective heuristics that can
be applied to a wide variety of problems is a challenging task that requires
problem-specific knowledge and expertise.

Moreover, they are frequently satisfied with discovering a locally optimal so-
lution when exploring the solution space. Therefore, these methods do not
always ensure the optimal solution, as the sub-optimal solutions they generate
may not be the global optimal [4]. Therefore, the heuristics are inappropriate
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for problems requiring high accuracy, such as financial forecasting or medical
diagnosis.

Different heuristics are suited to different types of problems, and some prob-
lems may require a combination of different heuristics to find the best possible
solution. Additionally, new heuristics are constantly being developed and re-
fined, making it an interesting field of research.

The Clarke and Wright algorithm
The Clarke and Wright algorithm is the best-known instance of a constructive
heuristic and is used in vehicle routing problems to determine efficient routes
for a fleet of vehicles to service a set of customers [44]. The algorithm generates
initial routes starting and ending at the depot and one additional customer to
optimize routes. The algorithm then calculates potential distance savings by
merging two routes and sorts the results in descending order. Routes with the
highest savings are merged, and the process continues until no feasible and
profitable merges are possible [45].

Beam Search
Beam search is a widely used heuristic algorithm that efficiently searches for
the best solution by generating and evaluating a set of possible successor so-
lutions based on a given evaluation function. At each iteration, the algorithm
prunes the candidate set, retaining only a limited number of the most promis-
ing solutions, called the beam width, to balance search space exploration with
exploitation and discover the best solution [46].

To overcome the time-consuming nature of branch-and-bound, beam search
was developed as an adapted technique that efficiently explores the search
space by evaluating and selecting the most promising nodes at each search level
based on an evaluation function [47]. Beam search is commonly used in various
applications, such as optimization problems and machine learning methods,
such as natural language processing. It is also useful in artificial intelligence
because it efficiently investigates a large search space while consumingminimal
computational and memory resources.

Heuristics can be effective for a wide range of optimization problems. Still,
they require careful selection and tuning to ensure they are well-suited to
the specific problem. They are also subject to the risk of getting stuck in local
optima or sub-optimal solutions. Heuristics are a powerful tool for tackling
complex optimization problems and providing approximate solutions with a
trade-off between accuracy and computational time.
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2.7.3 Metaheuristics

Metaheuristics are higher-level problem-solving methods used to guide the
search for solutions to complex optimization problems. Unlike exact algorithms,
which guarantee optimal solutions, metaheuristics are approximate methods
that aim to find good enough solutions within reasonable time [43].

Metaheuristics can be thought of as a type of heuristic that works at a higher
level of abstraction, combining multiple heuristics and strategies to improve
the search process. They are used when exact algorithms are not practical or
feasible, such as in large-scale or complex problems where finding an exact so-
lution is computationally infeasible. While classic heuristics are more problems
specific, metaheuristics can be used to solve a wider range of problems. They
provide a general framework or policies for finding good solutions, and they
are considered general optimization algorithms that can be applied to a wide
range of problems.

Metaheuristics differ from heuristics in that they often incorporate randomness
to effectively explore the search space and avoid getting stuck in local optima.
They are able to tolerate temporary solutions that are worse than or similar to
the currently obtained solutions, allowing them to search beyond the first local
minimum [29].

Tabu Search
Tabu Search is a widely recognized metaheuristic that utilizes a common-sense
approach to assist the search process in avoiding local optima [4]. Employing
memory-basedmechanisms, this type of local search is inspired by the workings
of human memory and begins with a set of initial candidate solutions. Each
solution is evaluated using an objective function. The algorithm then modifies
the solution slightly to explore its neighborhood. Certain moves are prohibited
or tabu for a fixed number of iterations to avoid revisiting solutions or becoming
trapped in local optima.

Genetic Algorithms
Genetic algorithms are a metaheuristic that involves searching for a population
of potential solutions [29]. Unlike Tabu Search, which is based on the local
search approach, Genetic Algorithms use an evolutionary approach inspired
by the biological process of natural selection. The genetic algorithm involves
creating a population of potential solutions and applying genetic operators such
as selection, crossover, and mutation to evolve the population toward better
solutions. The algorithm continues to iterate until a stopping criterion is met
or a satisfactory solution is found [4].
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Ant Colony Optimization
Ant Colony Optimization (aco) is a metaheuristic algorithm that takes inspi-
ration from the behavior of ants. It mimics the way ants leave scent trails to
indicate favorable paths and use them to navigate their search. The algorithm
utilizes a probabilistic decision rule to determine the next step and iteratively
updates the trials based on the quality of the solutions found [48]. aco is a
popular method for solving optimization problems, such as tsp and vrp.

2.7.4 Striving towards the best solution method

Metaheuristics are preferred for solving real-world problems because they effi-
ciently search through solution spaces and find high-quality solutions for larger
instances. Metaheuristics are highly adaptable and practical because they can
escape local optima, explore search spaces effectively, and accept suboptimal
solutions. Although they may not always find the optimal solution, they of-
ten come very close while remaining computationally efficient. As a result,
they offer a promising approach to solving complex problems with practical
applications across various fields.

Searching for the best solution method for the vrp is ongoing. The ideal so-
lution methods should be computationally efficient, generalize well to various
real-world applications, and provide solutions close to optimal. Unfortunately,
no single solution method currently meets all these criteria perfectly. How-
ever, ongoing research is continuously striving towards achieving these objec-
tives.

Exact algorithms can provide optimal solutions for the vrp. However, due to
their high computational complexity, they are not practical for solving real-
world problems. Although research has been conducted to improve these algo-
rithms, their applicability is still limited. For instance, Laporte reported that
the best exact algorithm showed inconsistent performance and could only solve
problems with up to 100 nodes. Despite these limitations, exact algorithms play
a crucial role as baselines or starting points for other solution methods.

Utilizing heuristics can help in addressing the challenge of computational time.
Generating solutions that closely approximate the optimal solution effectively
balances solution quality with computational time. However, heuristics also
have their limitations. For instance, heuristics require significant effort for cus-
tomization to specific problems. Therefore, developing more generalized solu-
tion methods that can provide near-optimal solutions is desirable while remain-
ing adaptable to various problems. In recent years, different heuristic solution
methods have emerged, and promising research directions have been explored
using machine learning to build improved solution methods.
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2.8 The Potential of Machine Learning for
Solving the Vehicle Routing Problem

As previously mentioned, the vrp poses a significant challenge for diverse
solution methodologies due to its classification as an NP-hard problem. Conse-
quently, obtaining near-optimal solutions in a reasonable period is a difficult
task. Potential synergies between machine learning, known for its efficient
computation and innovative research, and optimization problems have been
explored in this context. The idea is to leverage the strengths of both fields to
create more generalized solution methods that produce near-optimal results
while minimizing computational time. As the field of machine learning contin-
ues to advance, it holds great potential for building effective solution methods
to solve optimization problems, including the vrp.

()ield of artificial intelligence that enables computer systems to improve their
performance on tasks through experience with data, allowing for the automa-
tion of complex tasks and accurate predictions. It offers frameworks and tech-
niques for automating data-driven learning processes without explicit program-
ming. ml algorithms analyze input data to make predictions or decisions and
help identify patterns and relationships within large datasets. The paradigm
is widely used in various fields, including autonomous vehicles [49], cancer
detection [50], and stock market forecasting [51].

The synergy ofml and or can lead to good solution methods to solve optimiza-
tion problems, such as the vrp. Traditional optimization techniques rely on
assumptions about the problem to define the objective function and constraints
and often struggle with computational time and solution quality. However, ml
techniques can analyze vast amounts of data and identify patterns that may
not be apparent through traditional optimization methods.

Recent research has demonstrated that integratingml with ormethods shows
great potential for solving solve optimization problems, such as the vrp [9]
[10] [14]. Traditional optimization techniques rely on assumptions about the
problem to define the objective function and constraints and often struggle
with computational time and solution quality. The synergy between or and
ml is an emerging area of investigation, and researchers have already achieved
promising results in this field. While incorporating ml will not overcome the
fact that these problems are NP-hard, it can help build solution methods that
approach established heuristics and metaheuristics. As such, this approach
represents a promising direction for addressing routing problems in practical
applications.
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Green Vehicle Routing
The Green Vehicle Routing Problem (gvrp) is gaining increasing recognition
as a crucial problem in the transport and logistics sectors. Global warming is
causing more frequent extreme weather events, heatwaves, and the annual
vanishing of Arctic sea ice, all of which indicate that climate change is already
beginning to affect us [52]. As a result, businesses and governments are now
forced to prioritize sustainability and reduce their carbon footprints. The gvrp
is a variant of the traditional vrp and is designed to minimize the environmen-
tal impact of transportation activities. Its focus is on reducing harmful pollutant
emissions and greenhouse gases [7]. Consequently, the gvrp has become an
essential tool for promoting sustainable transportation and logistics, offering
significant potential to mitigate negative environmental effects.

This thesis aims to shed light on the significance of sustainable transportation
and its potential to reduce negative environmental impacts through the imple-
mentation of green vehicle routing strategies. In the upcoming chapter, we will
introduce the concept of gvrp and elaborate on the significance of sustainabil-
ity in the transport sector. We will discuss how frameworks such as the Triple
Bottom Line can be employed to integrate sustainability in transportation and
logistics. Moreover, we will delve into different approaches to integrate envi-
ronmental considerations into routing problems and provide examples of their
applications in real-world scenarios. The content of this chapter is influenced
by the research conducted in the preceding project thesis [19].
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3.1 Sustainability in the Transport Sector

Transportation is essential to society as it facilitates the movement of people
and goods, driving economic growth and development. For example, in 2019,
the volume of goods transported globally by sea surpassed 11.1 billion tons,
emphasizing the critical role of transportation in enabling international trade
and commerce [53]. With ongoing globalization, the transportation sector is
expected to become even more significant in the coming years. Consequently,
the importance of the transportation industry in sustaining and promoting
economic growth and social welfare cannot be overstated.

However, the transportation sector faces several challenges that must be ad-
dressed to reduce its impact on the environment and promote sustainable de-
velopment. One of the most significant challenges is the heavy dependence on
fossil fuels, particularly in road transportation. This reliance has resulted in
the sector being responsible for 37% of global carbon dioxide emissions from
end-use sectors in 2021, making it one of the largest sources of greenhouse gas
emissions worldwide [1].

The latest IPCC report highlighted fossil fuel combustion in land transportation
as one of the top three largest contributors to global greenhouse gas emissions
on a 100-year time scale [54]. This dependency on fossil fuels not only con-
tributes significantly to greenhouse gas emissions but also makes the sector
vulnerable to price volatility and supply disruptions.

The transportation sector must prioritize sustainability and reduce its environ-
mental impact. Urgent action is necessary to limit global warming to 1.5°C
above pre-industrial levels, mitigating severe climate change impacts [55]. It is
imperative that policymakers and stakeholders work together to address these
challenges and promote sustainable transportation solutions to protect the
environment and human health. With the urgency to address climate change,
businesses and governments are searching for ways to reduce their environmen-
tal impact, and the gvrp provides a practical solution to this challenge.

In gvrp, the objective is to optimize a route in terms of cost minimization by
selecting the cheaper route according to various cost functions coupled with en-
vironmental impact minimization, such as carbon emissions and fuel consump-
tion. This is achieved by incorporating additional constraints into the classic
vrp or through a broader objective function. The goal is to find a set of routes
that minimize the total environmental impact of the fleet while satisfying all of
the constraints. This problem is particularly relevant in modern transportation
systems, where there is increasing pressure to reduce greenhouse gas emissions
and other environmental impacts associated with transportation.
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3.2 The Triple Bottom Line

The pursuit of sustainability has become an increasingly significant objective
for many businesses. However, the ambiguity surrounding the terminology of
"green" and "sustainability" often leads to a lack of clarity in goals and purpose.
Therefore, it is crucial for companies to utilize a proper framework to achieve
meaningful sustainability objectives [56].

Triple Bottom Line (tbl) is a framework that provides a comprehensive ap-
proach to sustainability by taking into account three dimensions: social, envi-
ronmental, and economic [3]. This approach recognizes that achieving sustain-
able development requires a balance of environmental, social, and economic
considerations, as illustrated by Figure 3.1. By incorporating these dimensions
into their decision-making processes, companies can identify ways to align
their operations with sustainability goals and objectives.

The tbl framework serves as a guide for companies to pinpoint their objectives
and establish clear goals towards sustainability. By balancing the three dimen-
sions, companies can achieve a sustainable business model that addresses the
environmental impact, social equity, and economic viability of their operations.
This model leads to the creation of sustainable value, which contributes to a
company’s long-term success rather than short-term gain.

Figure 3.1: This figure illustrate the triple bottom line framework which represents
the interplay between three essential dimensions of sustainability: economic, social,
and environmental. These dimensions are depicted as overlapping circles, highlighting
the crucial importance of achieving a harmonious balance among them.
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The environmental dimension of sustainability involves minimizing the neg-
ative impact of human activities on the natural environment. This includes
reducing carbon emissions, protecting biodiversity, and conserving natural re-
sources. The social dimension of sustainability focuses on ensuring that human
well-being is protected and enhanced.

This includes promoting social equity, ensuring access to basic needs such as
clean water and healthcare, and protecting human rights. The economic di-
mension of sustainability involves ensuring that economic growth is compatible
with sustainability goals. This includes promoting sustainable business prac-
tices, investing in renewable energy, and ensuring fair and equitable distribution
of resources.

This framework is also applicable to the gvrp. Figure 3.1 contains examples of
the three tbl factors relevant to thegvrp. Economic factors can include driver-
or vehicle-related travel expenses as well as gasoline and diesel prices. Social
aspects can include customer satisfaction, such as on-time package delivery. It
can also include risk or responsibility concerns [57]. The environmental aspect
is often associated with emissions or fuel consumption, but it can also take into
account other environmental impacts. All of these concerns can be incorporated
into the gvrp in a variety of methods.

This framework has become increasingly important in the field of transportation
and logistics as businesses and governments seek to balance the economic
benefits of transportation with the social and environmental impacts. Thegvrp
is an example of how the TBL framework can be applied in practice.

3.3 Solution Methods

The development of algorithms to solve the gvrp is an ongoing field, with
new directions and proposals emerging frequently. To incorporate environmen-
tal considerations, there are several common approaches, four of which are
described below.

1) Including environmental considerations as the primary objective

𝑚𝑖𝑛
∑︁
𝑖, 𝑗∈𝐴

𝐸𝑖 𝑗𝑥𝑖 𝑗 (3.1)
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The first possible method for incorporating environmental concerns into the
optimization model is to make environmental pollution the primary objective
rather than the conventional cost of distance [58]. The goal is to minimize total
emissions in kilograms per hour, where total emissions are a function of the
emissions associated with the route of each vehicle.

Optimizing for emissions alone may not always be the optimal strategy, as it
may necessitate sacrificing other essential goals such as cost, safety, or reliabil-
ity. Therefore, it is often necessary to consider multiple objectives to address
these trade-offs. For instance, optimizing for emissions minimization can result
in less cost-effective or less reliable routes. In this case, considering multiple
objectives can lead to more realistic and logical routes that account for various
trade-offs between emissions reduction, cost, and reliability, making it a more
comprehensive approach.

2) The multi-objective problem approach

𝑚𝑖𝑛
∑︁
𝑖, 𝑗∈𝐴

𝐸𝑖 𝑗𝑥𝑖 𝑗 (3.2)

𝑚𝑖𝑛
∑︁
𝑖, 𝑗∈𝐴

𝑐𝑖 𝑗𝑥𝑖 𝑗 (3.3)

A multi-objective problem is an optimization problem in which multiple, often
conflicting, objective functions must be optimized simultaneously [59]. The
problem depicted in Equations 3.2 and 3.3 is an example of a multi-objective
problem, which involves finding a solution that balances the cost of distance
𝑐𝑖 𝑗 and the cost of emissions 𝐸𝑖 𝑗 . This approach requires finding a compromise
solution that balances both objective functions, considering that minimizing
one objective function may come at the expense of the other. Therefore, the
goal of multi-objective optimization is to identify the set of optimal solutions
which represent the best trade-offs between the competing objectives without
compromising the quality of any individual objective.

This method has pros and cons. It produces more authentic routes that consider
various factors, but it may not be the most cost-effective or emission-efficient
[60]. For businesses, consideringmultiple factors is crucial, and this method can
help balance them. However, a multi-objective strategy can increase complexity
and make interpreting results more challenging.
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3) Adding environmental pollution as a penalty to the objective function

𝑚𝑖𝑛
∑︁
𝑖, 𝑗∈𝐴

𝑐𝑖 𝑗𝑥𝑖 𝑗 +𝐶𝑒 ×
∑︁
𝑖, 𝑗∈𝐴

𝐸𝑖 𝑗𝑥𝑖 𝑗 (3.4)

Incorporating environmental concerns by adding environmental pollution as
a penalty to the distance objective function is an alternative approach. This
involves representing emissions as a cost that can be added to the cost of the
routes, where𝐶𝑒 represents the penalty cost in dollars per kilogram of environ-
mental pollution. While this approach can be effective, accurately estimating
the cost of emissions can be difficult, and it only considers the cost of emis-
sions. This method can be employed to avoid purchasing a portion of the CO2
emission quota [61].

4) Adding environmental pollution as a constraint∑︁
𝑖, 𝑗∈𝐴

𝐸𝑖 𝑗𝑥𝑖 𝑗 ≤ 𝐸𝑙𝑖𝑚𝑖𝑡 (3.5)

One way to optimize with regard to environmental concerns is to add an en-
vironmental pollution constraint to the original cost of distance problem, as
shown in Equation 3.5. This constraint limits total emissions to a predetermined
level, allowing for the inclusion of specific goals that a business or government
may have. For instance, the EU2020 target of 147 g/km can be utilized as an
upper bound while optimizing [62].

Sustainable Solution Routes for Routing Problems
The real world is intricate, and it is always possible to add more constraints
to modify the model. However, there will always be a balance between not
over-constraining the model to the point of no feasible solutions and avoiding
excessive computational time. For instance, when utilizing the simplex method
to solve vrps, the number of functional constraints has a much greater impact
on computational time than the number of decision variables. However, it is
worth noting that solving the dual problem can provide a way to reduce the
number of constraints in the primal problem while still finding a feasible solu-
tion. This is an important consideration to ensure that the model is not overly
constrained or too computationally intensive.

In addition to cost and environmental factors, the optimization model can also
include social considerations. For example, route consistency may be incorpo-
rated. It has been demonstrated that this results in safer routes, as the driver
becomes highly familiar with the route [57]. Other social factors, including
consumer satisfaction, can also be taken into account.
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Creating more comprehensive models that take into account a larger number
of real-world factors can lead to more sustainable solutions. Sustainable so-
lutions refer to the balance of the tbl framework, which aims to achieve an
optimal balance between social, environmental, and financial considerations.
This comprehensive approach strives to provide improved long-term solutions
for the future.

3.4 The Pollution Routing Problem

The environmental factor 𝐸 in the mentioned solution methods for the gvrp
can represent different environmental concerns, but fuel consumption is a par-
ticularly promising and intriguing consideration. The Pollution Routing Prob-
lem (prp) is a variant of the gvrp that addresses this topic. The prp focuses
on reducing the pollution emissions produced by vehicles during transporta-
tion by optimizing the route and minimizing the total quantity of pollutants
emitted [63]. This is achieved by incorporating environmental constraints or
penalties into the objective function of the optimization model.

Addressing the prp is particularly important because transportation activities
are a significant source of pollution and greenhouse gas emissions. By develop-
ing efficient and effective solutions to the prp, we can help reduce the negative
impact of transportation on the environment and move towards more sustain-
able and responsible transportation practices. This can have a significant effect
on public health, as air pollution is linked to various respiratory and cardiovas-
cular diseases. Additionally, addressing the prp can help companies comply
with environmental regulations and reduce their carbon footprint.

Fuel Consumption
When fuel is burned in an engine, it produces emissions such as CO2 and
NOx, which are GHGs that contribute to global warming and air pollution. The
amount of emissions produced is directly related to the fuel burned, as stated
by Equation 3.6 [63].

𝐸 = 𝛿1𝐹 + 𝛿2 (3.6)

The emission rate of the engine-out is represented by 𝐸,while 𝐹 denotes the rate
of fuel use, and 𝛿1 and 𝛿2 are the GHG-specific emission index parameters. By
reducing the amount of fuel used, we can also reduce the amount of emissions
produced. Therefore, minimizing fuel consumption is an important strategy
for reducing GHG emissions and addressing climate change.
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Some might wonder why minimizing distance is insufficient, contending that
doing so reduces fuel consumption. In reality, however, we can achieve superior
results in minimizing fuel consumption and emissions by incorporating a more
comprehensive objective into the optimization problem. Therefore, we must
evaluate factors other than the distance in the gvrp.

Several studies have examined these factors and their impact on fuel consump-
tion. They have investigated how road gradient, speed, and load affect fuel
usage. Additionally, they have looked into the effects of factors such as travel
time when the engine is cold and traffic congestion [64]. Including traffic con-
gestion as a concern in the gvrp is an example of how the solution route can
drive a long distance to avoid congestion and reduce emissions.

In real-world applications, environmental concerns are often included as con-
straints or penalties but are not typically the primary objective function. This
is because prioritizing environmental factors results in the least fuel consump-
tion, but the routes must also be practical and realistic. For instance, if the opti-
mization algorithm solely focuses on road gradients and zigzags over multiple
altitude meters while traversing many different streets, the resulting routes
may become impractical.

3.5 Smart Waste Collection Routing Problem

Waste management is a challenging field with significant environmental, eco-
nomic, and public health implications. In 2020, the European Union generated
approximately 2.15 million tonnes of waste, averaging 4.8 kg per person [65].
Inadequate recycling practices lead to environmental degradation and resource
depletion. Landfills and incineration facilities, commonly used for waste dis-
posal, occupy valuable land and emit greenhouse gases, contributing to climate
change. Moreover, conventional waste collection methods involving diesel ve-
hicles result in high emissions.

Waste collection processes are a consistent contributor to emissions of green-
house gases. Conventional waste collection methods typically involve diesel
combustion engines, which emit high levels of pollutants. Of this, a substantial
portion can be attributed to waste collection processes. Adopting electric or
biofuel-powered collection vehicles, promoting waste reduction and recycling
to reduce the quantity of waste requiring collection and disposal, and opti-
mizing waste collection routes to reduce fuel consumption can reduce these
emissions. By optimizing waste collection routes, it is possible to reduce these
emissions and mitigate the impact of waste on the environment.
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The gvrp problem is a compelling topic with immense potential for companies
to reduce emissions, gain a competitive edge, and work towards sustainable
goals. Although the field is growing, research on effective solving methods for
the gvrp is still limited, especially for real-world applications. Many industries
can benefit from usinggvrp as a decision-making tool, and an interdisciplinary
approach involving energy use and environmental impact, public policy, engi-
neering, and transportation system management is crucial to develop the field
further.

While some research has examined the practical applications of vrps [66] [67]
[68], there is a clear need to prioritize real experimental data and real-world
case studies from diverse backgrounds, especially regarding gvrps, which
still lack sufficient exploration. Incorporating real-world cases is essential for
obtaining valuable insights and developing a comprehensive understanding
to pursue optimal methods. Ensuring that the solution methods accurately
represent real-world scenarios is crucial; accounting for variations in coordinate
positions, scaling, and other relevant factors to enhance their accuracy and
practicality is vital.

With this in mind, machine learning is an exciting area of research to investi-
gate further how the power of machine learning can be utilized to build good
solution methods for the gvrp. Overall, the gvrp has significant potential,
and prioritizing it in the future could yield many positive outcomes.

Considering this, exploring the application of machine learning in developing
effective solution methods for the gvrp is an exciting research direction. Em-
phasizing the importance of the gvrp in future studies can lead to numerous
beneficial outcomes, given its substantial potential for addressing environmen-
tal and logistical challenges in transportation.





4
Neural Networks
Machine learning is a subfield of artificial intelligence that uses algorithms to
enable computers to learn from data, improving their performance over time.
Neural networks are an effective algorithm for machine learning that mimics
the structure and function of the human brain. They consist of interconnected
nodes, known as neurons, that process and transmit information in a way that
can be trained to perform a specific task.

Neural networks have emerged as a powerful tool with a broad range of appli-
cations. In recent years, there has been an increased focus on investigating the
potential of neural networks for solving optimization problems, including the
Vehicle Routing Problem (vrp). The remarkable success that neural networks
have shown in solving such problems indicates that they may have the power to
revolutionize the field of operations research. Neural networks are particularly
useful when dealing with large datasets and complex problem structures, as
they can learn patterns and relationships in the data that are difficult to detect
with traditional optimization approaches.

In this section, we will examine neural networks, a powerful tool in machine
learning. Before discussing the foundations of neural networks, we will explore
key concepts in machine learning, such as supervised, unsupervised, and re-
inforcement learning. We will then cover the foundational elements of neural
networks, including gradient descent, backpropagation, loss functions, and ac-
tivation functions. Finally, we will examine how neural networks can be applied
to solve optimization problems, such as the vrp.
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4.1 Machine Learning

Neural networks are a type of machine learning algorithm that has gained
increasing popularity in recent years due to their ability to learn from complex
and large datasets. Before diving into the foundations of neural networks, it
is important to understand the concept of machine learning and its different
subfields. Machine learning is a type of artificial intelligence that enables com-
puters to learn from data and make predictions or decisions. Three subfields
of machine learning are supervised, unsupervised, and reinforcement learning.
Although each of these subfields is different, they all share the goal of training
machines to perform specific tasks.

4.1.1 Supervised Learning

Supervised learning is the most common and maps input data to output data
based on labeled examples provided during training [69]. The training data
consists of a set of input and output pairs, which are split into training and test
sets. During training, the algorithm iteratively adjusts its weights to minimize
the difference between predicted and actual outputs in the training set. Once
the training is complete, the algorithm can make predictions on new, unseen
data by generalizing the patterns learned during training. Test data is used to
evaluate the performance of the trained model on new data, ensuring that it
can generalize well beyond the training set.

Supervised learning can be used for various tasks, such as classification, regres-
sion, and prediction. This approach has found successful applications in diverse
fields such as computer vision and natural language processing [70] [NLP]. Its
flexibility and generalization ability have made it popular, and it provides a
clear and direct feedback mechanism to the learning algorithm. However, to
achieve optimal performance, supervised learning requires high-quality train-
ing data that is accurately labeled.

4.1.2 Unsupervised Learning

Unsupervised learning is when algorithms learn patterns and relationships in
input data without being explicitly given output data to learn from [69]. Unlike
supervised learning, there are no labeled examples in unsupervised learning.
The goal of unsupervised learning is to find structure in the input data, such as
clustering similar data points together or identifying underlying patterns in the
data. This is typically done using techniques such as clustering [71], anomaly
detection [72], and dimensionality reduction [73].
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In clustering, the algorithm groups similar data points together based on some
similarity metric. Anomaly detection involves identifying data points that are
significantly different from the rest of the data. Dimensionality reduction in-
volves reducing the number of features in the data while preserving the most
important information.

One challenge with unsupervised learning is the difficulty of measuring the
performance of the model because there is no objective metric to evaluate
the output. Unlike supervised learning, where the correct output is provided
for each input. Instead, unsupervised learning relies on assumptions about the
structure of the data to guide the learning process. However, one of the benefits
of unsupervised learning is that it enables learning without the need for labeled
training data, which can be time-consuming and expensive to obtain.

4.1.3 Reinforcement Learning

Reinforcement learning is another type of machine learning that involves an
agent interacting with an environment to learn how to take actions that maxi-
mize a cumulative reward [74]. Unlike supervised learning, where the correct
output is provided for each input, and unsupervised learning, where the model
learns from unlabeled data, reinforcement learning involves learning from feed-
back in the form of rewards or punishments.

In reinforcement learning, the agent takes actions based on its current state
and the rewards it has received in the past. The environment responds to the
agent’s actions by transitioning to a new state and providing a reward or penalty
based on the action taken. The goal is to learn a policy that maximizes the total
reward obtained over time [75].

One of the key challenges in reinforcement learning is the trade-off between
exploration and exploitation. The agent must balance the desire to explore new
actions and learn about the environment with the need to exploit its current
knowledge to maximize reward. Reinforcement learning has many applica-
tions, including game playing [76], robotics [77], and self-driving cars [78]. In
addition, it has been shown to be effective in solving optimization problems
[9], a topic on which the following chapters of this thesis will elaborate.
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4.2 Introduction to Neural Networks

Now that we have explored the key concepts in machine learning, we will exam-
ine the foundations of neural networks. Neural networks are models composed
of interconnected processing nodes, called neurons, arranged in multiple layers
[79]. They are inspired by the structure of the brain, where biological neurons
are connected in a network. Neurons are the fundamental building blocks of
neural networks and operate as data processing and transmission units. They
receive input signals from other neurons or input layers, perform a function
on those inputs, and then transmit an output signal to other neurons.

Neural networks consist of multiple interconnected neurons, and each connec-
tion between neurons is associated with a weight that determines the strength
of the connection. These weighted connections play a crucial role in transmit-
ting the output signal from one neuron to another throughout the network [69].
During the training process, the weights associated with these connections are
learned and adjusted to optimize the performance of the network.

In addition to weight and learning, bias and activation functions are two other
key concepts that are critical to understanding neural networks. Bias is a con-
stant value that is added to the input of each neuron. The bias allows the neural
network to adjust the output of the neuron independently of its inputs. Acti-
vation functions are applied to the output of individual neurons to introduce
non-linearity into the model. This enables models to perform more complex
tasks. Neural networks use weights and biases to process input data and make
predictions or decisions, and through the process of training, they learn to
adjust the weights to improve their performance in various tasks.

Figure 4.1: This figure illustrates a neuron for a neural network, which consists of an
activation function 𝑓 and the sum of the weights𝑊 and input 𝑋 . The output 𝑌 of the
neuron is determined by these elements.
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4.3 Feedforward Neural Networks

Feedforward neural networks are a type of neural network that processes in-
formation in a single direction, from input to output, through a series of inter-
connected neurons without any feedback loops. Each neuron in a feedforward
neural network receives inputs, applies weights and bias, and produces an out-
put that becomes the input to the next layer of neurons until the final output
is generated.

While various specialized and complex neural network architectures have been
developed in recent years, feedforward neural networks remain a fundamental
and widely used type of neural network. At the core of all neural networks is
the basic structure, where the input layer receives data from the outside world,
and the output layer produces the final result. Between the input and output
layers, hidden layers can perform complex computations on the input data,
allowing the network to learn and extract features from the data.

𝑦 = 𝑓 (
𝑛∑︁
𝑖=1

𝑊𝑖𝑋𝑖) (4.1)

Equation 4.1 represents the computation of a single neuron in a feedforward
neural network. This equation combines the key components of the forward
pass, which is the flow of information through the network in the forward
direction. A forward pass refers to the process of computing the output of the
network given an input. During the forward pass, the input is passed through
the network one layer at a time,with each layer applying a linear transformation
to the input followed by a non-linear activation function. The output of the final
layer of the network is the prediction of the network for the given input.

In Equation 4.1,𝑋𝑖 represents the input to the neuron,𝑊𝑖 represents the weight
assigned to each input, and the function 𝑓 is a non-linear activation function
that is applied to the sum of the weighted inputs and a bias term to produce
the output 𝑦. The equation is also referred to as the transfer function and is a
fundamental unit of a neural network. The transfer function is essential for the
network to perform complex computations by allowing the neurons to model
complex non-linear relationships between inputs and outputs [80].

A single-layer neural network is the simplest type of feed-forward neural net-
work, consisting of a single layer of output neurons connected directly to the
input neurons. This type of network is typically used for simple classification
tasks, where the input data is linearly separable.
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A multi-layer neural network, on the other hand, consists of multiple layers of
neurons, including one or more hidden layers between the input and output
layers. These hidden layers allow the network to perform nonlinear computa-
tions on the input data, enabling it to solve more complex problems that cannot
be solved by a single-layer neural network.

Figure 4.2: This figure illustrates a fully connected neural network with the input
layer, three hidden layers with four neurons each, and an output layer with one neuron.
The input layer is fully connected to the first hidden layer, which is fully connected to
the second hidden layer, and so on, until the output layer.

A fully connected neural network is a type of multi-layer neural network where
every neuron in one layer is connected to every neuron in the next layer, shown
in Figure 4.2 [75]. This type of network can learn very complex and nonlinear
relationships between the input and output data, but it requires a large number
of parameters and can be prone to overfitting, becoming too specialized.

While the key foundations of neural networks include neurons, activation func-
tions, weights, and biases, these alone are not enough to train a neural network
to perform a specific task. To train a neural network, we also need to define a
loss function, which quantifies the difference between the predicted output of
the network and the actual output. This is a crucial component of the training
process, which we will discuss in the following section.
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4.4 Loss function

Loss functions play a critical role in training neural networks. The loss function
serves as a measure of how well the learning model is performing a specific
task and is used to guide the optimization process during training by updating
the model’s parameters in the direction that minimizes the loss.

For supervised learning, the loss function takes the neural network’s predicted
outputs and compares them to the true outputs or labels of the training data.
The function then calculates a value that represents the difference between
the predicted outputs and the true outputs. The goal of training the neural
network is to minimize this error. Different types of loss functions can be used
depending on the type of problem being solved. For example, in classification
problems, the cross-entropy loss function is commonly used [81]. In regression
problems, the mean squared error loss function is often used [8]. Equation 4.2
represents the mean squared error (MSE) between the predicted values 𝑦𝑖 and
the actual values 𝑦𝑖 of a dataset with 𝑛 examples.

𝜖 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (4.2)

In unsupervised learning, the selection of an appropriate loss function is essen-
tial to learn the underlying structure of the data without explicit supervision.
The choice of the loss function is task-specific and can be based on several
factors. For instance, in clustering, the loss function is usually based on the
distance between points, while in dimensionality reduction, the loss function
may aim at preserving pairwise distances between points.

In reinforcement learning, the reward function is the most common loss func-
tion, which assesses the performance of the agent in the environment. The pri-
mary objective of the agent is to maximize the reward function over a sequence
of actions. The selection of the reward function is crucial and requires careful
consideration since it directly influences the behavior of the agent.

It is imperative to choose an appropriate loss function for effective neural net-
work learning. An inappropriate loss function may lead to slow convergence or
poor performance, while a well-designed loss function can enhance the accu-
racy and generalization of the neural network on new data. Therefore, careful
consideration of the loss function is crucial in determining the effectiveness of
the neural network.
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4.5 Optimization

Optimization is a key aspect in enhancing the performance of neural networks.
Gradient descent is a fundamental optimization method widely employed in
neural networks for training and enhancing performance. It iteratively adjusts
parameters based on the negative gradient of the loss function. Stochastic
gradient descent (SGD) is a variation that randomly selects subsets or individual
training examples for parameter updates.

To further improve performance, optimization methods like Adam and batch
normalization are often used in conjunction with gradient descent. Adam
adapts the learning rate for each parameter based on gradient moments, accel-
erating convergence. Batch normalization normalizes layer inputs, stabilizing
training and preventing overfitting.

4.5.1 Gradient Descent

In neural networks, the iterative process of finding optimal weights and biases
that minimize the loss function is crucial for learning. Gradient descent is an
optimization algorithm frequently used for this purpose [69]. It adjusts model
parameters by following the negative gradient of the loss function, which is
essentially the rate of change of the loss function with respect to the model
parameters.

This derivative provides information on howmuch the loss changes with a small
modification of the model parameters. By gradually adjusting the model param-
eters in the direction of the negative gradient, the loss can be reduced.

The process of changing model parameters iteratively to minimize the loss
function is repeated until a minimum is achieved or a predetermined number
of iterations is reached. Gradient descent computes the gradient of the objective
function with respect to the model parameters at each iteration. The gradient
is a vector that points in the direction of the maximum increase of the function.
The algorithm updates the model parameters by subtracting a fraction of the
gradient from the current values of the parameters to optimize the function.
The fraction used for this purpose is called the learning rate, and it controls
the step size of the parameter update.
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Figure 4.3: This figure illustrates how the gradient decent algorithm uses the concept
of derivatives to the optimal value and improves results.

The direction of the gradient indicates the direction of the steepest ascent. To
minimize the function, we must therefore move in the opposite direction of
the gradient. This procedure is illustrated in Figure 4.3, in which the weight
value iteratively approaches the minimum. By repeatedly modifying the param-
eters in the opposite direction of the gradient, we can approach the function’s
minimum in an iterative manner.

The weight update rule for a single weight 𝑤𝑟 is given by:

𝑤𝑟𝑗 (𝑛𝑒𝑤) = 𝑤𝑟𝑗 (𝑜𝑙𝑑) + Δ𝑤𝑟𝑗 . (4.3)

Gradient descent is an effective optimization algorithm that iteratively opti-
mizes the parameters of a neural network by utilizing derivatives, slopes, and
small changes. By fine-tuning the learning rate, we can control the parameter
update’s step size and accomplish a more rapid convergence to the optimal
solution.

Stochastic Gradient Descent
There are various variants of gradient descent, including batch gradient de-
scent, stochastic gradient descent, and mini-batch gradient descent. Stochastic
gradient descent introduces the concept of updating the parameters using a
small subset of samples at a time rather than the entire dataset [81]. This ap-
proach allows for more frequent updates and faster computation, making it
especially beneficial for large-scale datasets.
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Adam
Adam is a highly effective optimization algorithm utilized for weight updates in
neural networks during training [82]. It dynamically adjusts the learning rate
for each parameter based on estimations of gradient moments. Additionally,
Adam incorporates bias correction to compensate for momentum effects in
the initial training stages. Known for its computational efficiency and faster
convergence compared to other optimization algorithms, Adam is a popular
and recommended choice for neural networks. It is widely used, robust, and
has proven to deliver excellent results.

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√
𝑣𝑡 + 𝜖

𝑚𝑡 (4.4)

Equation 4.4 represents the weight update rule in the Adam optimization algo-
rithm, where 𝜃𝑡+1 denotes the updated weight at time step 𝑡 + 1, 𝜃𝑡 represents
the current weight at time step 𝑡 , 𝜂 is the learning rate, 𝑣𝑡 and𝑚𝑡 are estimates
of the first and second moments of the gradients, and 𝜖 is a small value, added
for numerical stability.

Batch normalization
In the context of optimizers, batch normalization can be used to increase the
effectiveness of optimization. Batch normalization is a method for normalizing
the input of each layer of a neural network to have a zero mean and one
variance. This is done by normalizing the outputs of each layer using the mean
and variance of the activations in the current mini-batch. The normalization is
applied before the activation function, which helps prevent the output of the
activation function from becoming too large or too small. Batch normalization
has been shown to give more stable training and improve the gradient flow
through the network. It also helps to regularize the network and can reduce
overfitting.

4.6 Backpropagation

Neural networks learn to predict outcomes from input data through a process
known as forward propagation, where input data is passed through neurons
with specific weights and activation functions. To optimize the network’s perfor-
mance, gradient descent is employed to minimize the loss function by updating
the network parameters. This process necessitates the computation of gradi-
ents, which is where backpropagation comes into play.
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Backpropagation is an algorithm that computes the gradients of the loss func-
tion with respect to the network parameters. This is achieved by propagating
the error back through the network and computing the gradients layer by layer.
The algorithm begins at the output layer and moves backward through the
network to the input layer.

The backpropagation process starts from the last layer of the neural network,
denoted as 𝑟 = 𝐿, and progresses backward through the layers until it reaches
the input layer. The algorithm is named after this backward propagation pro-
cess. To calculate the weight gradients, we first simplify the expression for the
gradient of the output in the last layer ℎ𝐿𝑗 , which we denote as 𝛿 for simplicity,
as follows:

𝜕𝜖

𝜕ℎ𝐿
𝑗

= 𝛿𝐿𝑗 . (4.5)

This gradient expression is then used to calculate the derivative of the loss
with respect to the weights [69]. Here, ℎ𝐿𝑗 denotes the preactivation in the jth
neuron in layer 𝐿, which is the last layer, and 𝜖 is the loss function.

To compute the gradient of the loss with respect to the preactivation in the
hidden layers, backpropagation propagates backward from the last layer to the
earlier layers, where 𝑟 < 𝐿, and employs the chain rule twice to rewrite the
expressions. The resulting gradient calculation is given by:

𝜕𝜖

𝜕ℎ𝑟−1
𝑗

=
𝜕𝜖

𝜕ℎ𝑟
𝑗

𝜕ℎ𝑟𝑗

𝜕ℎ𝑟−1
𝑗

= 𝛿𝑟𝑗𝑤
𝑟
𝑗 𝑓
′(ℎ𝑟−1𝑗 ). (4.6)

The goal is to compute the gradient of the loss function with respect to the
weights. This is achieved by applying the chain rule, which allows for the de-
composition of the gradient calculation. Specifically, the chain rule is utilized
as follows:

𝜕𝜖

𝜕𝑤𝑟
𝑗

=
𝜕𝜖

𝜕ℎ𝑟
𝑗

𝜕ℎ𝑟𝑗

𝜕𝑤𝑟
𝑗

. (4.7)

To simplify the equation, we make two substitutions. First, we replace
𝜕ℎ𝑟

𝑗

𝜕𝑤𝑟
𝑗

with 𝑦𝑟−1. This substitution allows us to express the derivative in terms of
the previous layer’s output. Second, we use the previously introduced 𝛿 to
substitute 𝜕𝜖

𝜕𝑤𝑟
𝑗
. The resulting equation is as follows:

𝜕𝜖

𝜕𝑤𝑟
𝑗

=
𝜕𝜖

𝜕ℎ𝑟
𝑗

𝜕ℎ𝑟𝑗

𝜕𝑤𝑟
𝑗

= 𝛿𝑟𝑗

𝜕ℎ𝑟𝑗

𝜕𝑤𝑟
𝑗

= 𝛿𝑟𝑗𝑦
𝑟−1. (4.8)
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By applying the previously derived equation to all inputs, we can express the
gradient of the weights as:

Δ𝑤𝑟𝑗 = −𝜇
𝑁∑︁
𝑖=1

𝛿𝑟𝑗𝑦
𝑟−1. (4.9)

The resulting expression serves as the gradient for weight updates during the
iterative learning process of the neural network [69], following the principles
of gradient descent. The learning rate 𝜇 is a hyperparameter incorporated into
the update equation, determining the step size for weight adjustments during
training. By controlling the magnitude of these adjustments, it influences the
convergence and speed of the learning algorithm.

To update the weights and biases, these equations are iteratively applied to
each layer of the network, starting from the output layer and progressing back-
ward to the input layer. Once the gradients for all weights are computed, they
are utilized in an optimization algorithm such as gradient descent, as discussed
previously, to update the parameters of the network and improve its perfor-
mance.

4.7 Activation Functions

Activations are the output values of neurons in each layer of a neural network,
which are obtained by applying an activation function to the weighted sum
of the inputs. The activation function is a non-linear function that introduces
non-linearity to the network, allowing it to capture complex patterns and rela-
tionships in the data. As a result, activations play a crucial role in determining
the output of each neuron and the overall output of the network.

Figure 4.4 illustrates some of the most frequently used activation functions,
including the Sigmoid function, the ReLU and leaky ReLU functions, and the
tanh function. The choice of activation function depends on the specific task and
the characteristics of the dataset. In addition, the derivative of the activation
function is a crucial factor in the learning process of a neural network, which
will be discussed in more detail in the upcoming chapters.
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Figure 4.4: The figure illustrates the four commonly used activation functions in neural
networks: sigmoid, ReLU, Leaky ReLU, and tanh. The x-axis represents the input values,
while the y-axis represents the output values.

ReLU
The Rectified Linear Unit (ReLU) is a popular activation function due to its
simplicity, computational efficiency, and good performance [81]. The ReLU
function is defined by Equation 4.10, where the output is equal to zero for
negative values and linear for positive values. This means that the function has
a bounded lower end but not on the upper part.

𝑓 (𝑥) =𝑚𝑎𝑥 (0, 𝑥) (4.10)

The ReLU activation function offers several advantages over other activation
functions, such as reducing the common problem of vanishing gradients. This
problem will be discussed in more detail in the subsequent sections. This is
due to the fact that the ReLU function has a derivative of 1 for positive input
values, which helps in gradient stabilization during backpropagation. In addi-
tion, the ReLU function is simple and quick to compute, making it the most
used activation function.



50 chapter 4 neural networks

Softmax
Softmax is another activation function that is widely used in multiclass classifi-
cation tasks in neural networks. It transforms an input vector into a probability
distribution, where each output element represents the probability of the corre-
sponding class. The softmax function applies the exponential function to each
element of the input vector and then normalizes the resulting vector so that
the sum of the elements is equal to 1, as shown in Equation 4.11 [81].

softmax(𝑥𝑖) =
𝑒𝑥𝑖∑𝑛
𝑗=1 𝑒

𝑥 𝑗
(4.11)

The Vanishing Gradient Problem
The vanishing gradient problem occurs in neural networks when gradients
become too small as they propagate backward through the network during
training. This makes it difficult to update the weights of early layers, which can
cause those layers to not learn meaningful representations. To mitigate the
vanishing gradient problem, various techniques have been developed. One such
technique involves using activation functions, like the ReLU function, that have
larger gradients. As shown in Figure 4.4, ReLU has a constant derivative of 1 for
all positive values, allowing gradients to flow more easily through the network.
In addition, initializing the weights of the network and using skip connections
can also help gradients flow more easily through the network.
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Skip Connections
In neural networks, skip connections, also known as residual connections, are a
technique that enables information to bypass one or more network layers [83].
In typical neural networks, each layer processes the output of previous layers
using weights and activation functions to generate a new output. Skipping
connections enables output to pass directly from one layer to the next without
intermediate processing. This can help prevent the vanishing gradient problem,
which occurs when gradients become too small, and weight updates occur
slowly or not at all.

Figure 4.5: The blue arrow in the figure denotes the skip connection, which allows the
input to bypass the layer without any changes. The output of the weight layers and
the input from the skip connection are combined using residual addition at the plus
sign. This process promotes faster convergence and improved network performance.

Figure 4.5 illustrates a skip connection, which is added to the output of two
weight layers, producing the network’s final output. By modifying the current
representation as opposed to learning an entirely new one, the model can con-
verge more quickly and yield more accurate results. In the ResNet architecture
for image classification, it has been demonstrated that skip connections en-
hance deep neural networks with over 100 layers [83]. Additionally, various
neural network architectures have utilized skip connections.



52 chapter 4 neural networks

4.8 Neural Networks for Solving Routing
Problems

Techniques from the field of Machine Learning (ml) can be used for various
approaches, and one particularly exciting area is in Operations Research (or).
As discussed in Chapter 2, combiningml with or has the potential to enhance
solution methods for problems like the Vehicle Routing Problem (vrp). ml
algorithms offer several advantages over traditional optimization techniques,
including the ability to handle large amounts of data and flexibility. ml algo-
rithms can adapt to different optimization problems and create more general
solution methods, such as learned heuristics. These heuristics can improve the
efficiency and effectiveness of optimization algorithms, leading to improved
solution methods in the field of or.

In the domain of ml, researchers have specifically focused on using neural
networks for tackling the vrp. As this problem is known to be NP-hard, find-
ing an optimal solution is extremely difficult. Balancing computational power
with close-to-optimal solutions has been identified as the primary challenge.
This has led to the use of heuristics, as discussed in Chapter 2. Innovative ap-
proaches have been explored by leveraging the intersection of different fields
to improve these solution methods. Therefore, the primary objective of using
neural networks to solve optimization problems like the vrp is to address this
computational power and optimal solution balancing issue.

In previous studies, researchers have shown uncertainty about using neural
networks to solve the vrp due to unsuccessful earlier attempts [84] [85]. How-
ever, as both fields have made significant progress in recent years, there is
renewed interest in exploring this synergy [9] [10] [14]. Currently, researchers
are focused on identifying the most effective ways to incorporate neural net-
works into the problem-solving process. It is important to note that neural
networks are not the ultimate solution for the vrp but rather a tool to be used
strategically for improved results.

The idea behind using neural networks for solving optimization problems is to
quickly find the best solution to a problem based on input information. The goal
is to provide a good enough solution within a reasonable time rather than find-
ing the optimal solution, which can be time-consuming. Much like the heuristic,
but now also utilizing the power of machine learning [13]. Neural networks
can provide a powerful and fast computational solution to such optimization
problems by taking advantage of the extensive connectivity among neurons
and their ability to handle non-linear relationships and complex interactions
between variables, which can be particularly useful for problems with many
variables or constraints.
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4.8.1 The Hopfield Network

The Hopfield Network, introduced in 1985 [13], was an early attempt to utilize
neural networks for solving routing problems, specifically small instances of the
Travelling Salesman Problem (tsp). Trained with city coordinates, this recur-
rent neural network settles into a stable state representing a good tsp solution.
Although not necessarily optimal, the resulting solution is often highly effective
for small problem instances. This pioneering work inspired further exploration
of neural networks for tackling challenging optimization problems.

4.8.2 The Pointer Network

Although the Hopfield network was among the early adopters of exploring the
combination of neural networks and routing problems, little progress was made
in this field for a considerable amount of time. However, in 2015, the Pointer
Network achieved promising results [86]. The Pointer Network is a neural
networkmodel that uses an attentionmechanism to output a permutation of the
input. This approach is supervised learning because it uses training examples to
learn the conditional probability of an output sequence. The model is designed
to address the challenge of finding a sequence of elements that satisfy certain
constraints, which is difficult to solve using traditional sequence-to-sequence
models.

4.8.3 Advancements in Neural Network-based
Routing Optimization

In recent years, significant progress has beenmade in the neural network-driven
routing optimization field. The introduction of the Pointer Network, which
employs an attention mechanism to produce a permutation of the input, was
a breakthrough. Furthermore, recent models have demonstrated the potential
for attention mechanisms to enhance the performance of routing optimization
models, indicating a promising research direction.

Researchers have also investigated the possibility of training networks without
labeled data using unsupervised or reinforcement learning techniques. This
approach can substantially reduce the time and cost required for model train-
ing in routing optimization problems, leading to more efficient and accurate
models.
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Reinforcement Learning
Supervised learning is the most commonly used, but applying it to routing
problems is challenging due to the difficulty in obtaining optimal labels for
new routes. As a result, alternative approaches, such as reinforcement learning,
have been explored for optimization problems [17, 87]. In this context, rein-
forcement learning evaluates solution quality and provides reward feedback
to the learning algorithm [88].

Recent work has shown the effectiveness of reinforcement learning in solving
route optimization problems. This approach offers improved solution quality
compared to current deep learning approaches, faster computation time, scala-
bility to different-sized problem instances, and generalization to different route
optimization problems [89].

Attention Mechanism
Another promising technique for constructing an effective neural network to
solve routing problems is through utilizing attention mechanisms. The atten-
tion mechanism is a technique that allows neural networks to focus on specific
parts of the model selectively. The solution space for routing problems can be-
come enormous, as discussed in Chapter 2. It is essential to employ a method
that does not exhaustively examine the entire solution space. Utilizing the
attention mechanism was already a part of the Pointer Network [13], and it
has since become a common component of neural networks designed to solve
routing problems [9] [11] [90]. Attention mechanisms allow the model to focus
on specific parts of the problem, and further details on this will be provided in
subsequent sections of the thesis.

Neural networks have made remarkable strides in solving optimization prob-
lems, from producing unsatisfactory results and requiring substantial computa-
tional resources to rivaling meta-heuristics like simulated annealing regarding
solution quality. However, promising research areas still demand further ex-
ploration, specifically enhancing solution quality and optimizing computation
time.

The untapped potential of neural networks in solving real-world optimiza-
tion problems remains a promising research avenue. Furthermore, the under-
researched application of neural networks in solving the Green Vehicle Routing
Problem (gvrp) presents opportunities for advancements. This thesis intro-
duces methods that leverage neural networks’ potential and contribute to ad-
dressing these gaps.
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Attention Mechanism
The attention mechanism is a technique used in neural networks to selectively
focus important parts of the input data while reducing the influence of less
relevant parts. By focusing on important parts, the model can capture underly-
ing patterns and dependencies in the data, resulting in improved performance
across various tasks. Consequently, the attention mechanism enables networks
to handle complex and diverse data effectively.

The attention mechanism is a promising technique for solving routing problems,
such as the Vehicle Routing Problem (vrp), due to its ability to handle complex
and sequential decision-making tasks. By selectively focusing on important re-
gions of the input data, this technique can efficiently manage large-scale and
high-dimensional data encountered in the vrp. Studies have shown promising
results when incorporating the attention mechanism into neural network mod-
els for solving routing problems [9] [91]. This offers a promising direction for
solution methods to tackle optimization problems like the vrp.

This chapter introduces the concept of attention mechanism, discussing soft and
hard attention. The Transformer architecture is then presented as an example of
an architecture that utilizes the attentionmechanism to its fullest potential. The
chapter then delves into the application of attention in the context of graphs,
discussing the concept of graph attention networks and how the attention
mechanism is utilized for solving optimization problems.

55
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5.1 Introduction to the Attention Mechanism

To effectively utilize attention mechanisms in solving optimization problems
such as the vrp, it is important to grasp the fundamental concepts involved.
Traditional neural networks process each input feature independently, with
uniform weights applied across all features. Attention mechanisms improve on
this by enabling the network to learn which parts of the input data to focus on.
The attention mechanism selectively highlights important parts of the input
data while minimizing the impact of less important parts, thereby allowing the
network to focus on smaller but critical regions of the input data. There are
various methods of implementing attention mechanisms in neural networks,
and the upcoming sections will introduce some of these methods.

5.1.1 Soft Attention

Soft attention is the most common type of attention mechanism in neural
networks that assigns weights to each input feature based on its relevance to
the output. To achieve this, a score is assigned to each element in the input
data based on the relevance to the current state of the model. The scores are
then used to compute weights for each input element using a softmax function.
Softmax is utilized to get a probability distribution that determines the degree
of attention to be paid to each element [92].

A benefit of soft attention is that it computes a continuous distribution of atten-
tion over the input sequence, making it differentiable and allowing the entire
system to be trained using standard back-propagation methods [87]. This
makes it easier to optimize the model and can lead to better performance on
complex deep-learning tasks.

Figure 5.1: The figure illustrates soft attention, a mechanism that allows models to
focus on specific parts of input data selectively. The strength of the weighting is repre-
sented by the color of the arrows connecting the nodes, with darker colors indicating
higher weights.
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5.1.2 Hard Attention

Hard attention is another type of attention mechanism in which the model
selects a single item from the input sequence to focus on at each time step [93].
This means that the model explicitly decides which part of the input sequence
to pay attention to and ignores the rest. This can be useful when the model
needs to make discrete decisions, such as selecting the most relevant piece of
information from a set of inputs.

However, hard attention can also be problematic because it requires the model
to make a hard decision, which can be difficult to optimize using traditional
gradient-based methods. Soft attention, on the other hand, allows the model
to attend to multiple parts of the input sequence simultaneously by assigning
a weight to each item in the sequence, which can be interpreted as the degree
of the model of attention to that item.

Figure 5.2: The figure illustrates hard attention, a mechanism that forces the model
to choose a limited number of inputs to focus on while ignoring the others. The blue
arrows represent the inputs that the model considers important, while the gray arrows
represent the inputs that the model disregards.

5.1.3 Attention in Sequence-to-Sequence Problems

Sequence-to-sequence problems are a type of machine learning task where the
input and output are both sequences of variable length. The goal is to learn
a mapping from one sequence domain to another, and these problems are
commonly addressed using neural network models. In sequence-to-sequence
problems, an attention mechanism can be used to improve the ability of the
model to generate a target sequence by selectively attending to relevant parts
of the input sequence at each time step.
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The use of attention has revolutionized the common bottleneck problem in
sequence-to-sequence problems. Traditionally, the encoder is responsible for
condensing the entire input sequence into a fixed-length vector, which results
in a loss of information and limited capacity. This bottleneck problem can
cause issues such as gradient starvation and the decoder ignoring relevant
parts of the input sequence. However, by utilizing an attention mechanism, the
model can selectively focus on different parts of the input sequence at different
time steps, providing a flexible and targeted approach to utilizing all available
information.

The attentionmechanism computes a set ofweights at each time step, indicating
the relative importance of different positions in the input sequence. These
weights can be visualized as a probability distribution over the input positions.
By examining the attention weights, insights into the behavior of the model can
be gained, including which parts of the input sequence it focuses on and how
that attention changes over time. Attention mechanisms have become popular
tools to improve the performance of sequence-to-sequence models and provide
a means to interpret and understand their behavior.

5.2 The Transformers Architecture

The Transformer Architecture is a deep learning model primarily used for lan-
guage tasks. It has proven to be highly effective due to its ability to utilize atten-
tion mechanisms to their fullest potential [94]. This has motivated researchers
to explore its applicability beyond language tasks, including optimization prob-
lems such as the Green Vehicle Routing Problem (gvrp).

The gvrp aims to find the most efficient routes for a fleet of vehicles while
minimizing their environmental impact, making it a crucial problem for sus-
tainable transportation. The Transformer Architecture has shown promising
results in solving routing problems and other optimization problems, making
it a versatile tool for various fields beyond language tasks. Hence, it offers a
promising but unexplored solution method for the gvrp.
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5.2.1 Encoder - Decoder

In the context of the Transformers architecture, the encoder and decoder are
two fundamental components of the model. The encoder is responsible for
processing the input sequence and generating a set of hidden state vectors
that capture the important information in the input. The input sequence is
typically first embedded into a set of dense vectors, which are then processed
by a series of stacked encoder layers. Each encoder layer employs an attention
mechanism that enables the model to focus on different parts of the input
sequence selectively. Finally, the encoder is equipped with a feedforward neural
network that applies nonlinearity to the model.

The decoder, on the other hand, is responsible for generating the output se-
quence based on the information captured in the hidden state vectors generated
by the encoder. Like the encoder, the decoder consists of a series of stacked
layers. Each layer in the decoder is composed of three sub-layers that also uti-
lize attention mechanisms so that the model can focus on different parts of the
output sequence generated so far. Also, the decoder is a feedforward neural
network that applies nonlinearity.

Figure 5.3: The figure illustrates the architecture of the Transformer model, which
incorporates attention mechanisms in both the encoder and the decoder. These mech-
anisms allow the model to focus on relevant parts of the input sequence while dimin-
ishing the influence of irrelevant parts. Figure from [94].
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5.2.2 Self-Attention

The self-attention mechanism is the key innovation of the Transformer archi-
tecture. Unlike other attention mechanisms, self-attention allows the model
to capture dependencies between different parts of the input sequence, even
when they are far apart. Enabling the model to learn long-range dependencies
effectively. Additionally, self-attention enables the Transformer to process all
input elements in parallel, making it more efficient for longer sequences. This is
achieved by mapping the input sequence to itself and using three key elements:
queries, keys, and values.

Queries, Keys, and Values
In the Transformer architecture, the self-attention mechanism relies on three
key elements: queries 𝑄 , keys 𝐾 , and values 𝑉 . These elements work together
to determine the relevance of each input element with respect to every other
element in the sequence.

Queries play a role in capturing information from the input sequence. They
serve as the basis for asking questions about the input sequence. In the self-
attention mechanism, each query is used to calculate a score, indicating the
significance of each element in the sequence relative to that particular query.
Keys represent the different elements in the input sequence that the queries are
trying to learn from. The keys are used to determine how well each element
in the sequence matches the query. Values are the final input vector in the self-
attention calculation. They represent the information that the self-attention
mechanism should use to construct the output sequence.

Scaled dot-product Attention
Scaled dot-product attention is a fundamental component of the Transformer
architecture, specifically used for self-attention. It calculates the similarity be-
tween queries and keys, providing a measure of relevance. This similarity score
determines the weight assigned to each value, indicating its importance in the
context of the queries. To calculate the similarity between queries and keys,
scaled dot-product Attention uses a dot product between the query vector and
the key vector. In scaled dot-product attention, the dot product between the
query vector and key vector is computed, and the result is scaled down by the
square root of the dimension of the key vector. This scaling is done to prevent
the dot product from growing too large or too small, which can make the soft-
max function unstable. The scaled dot-product attention mechanism, denoted
as 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ), is computed as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑𝑘
)𝑉 , (5.1)

where𝑄 ,𝐾 , and𝑉 represent the query, key, and valuematrices, respectively.
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Figure 5.4: Left: Illustration shows the scaled dot-product attention mechanism,which
computes the attention scores between the input sequence and the query vector. The
attention scores are used to weigh the value vectors and produce the output.
Right: Illustration shows the multi-head attention mechanism, which splits the input
sequence into multiple heads and applies a scaled dot-product attention mechanism
to each head.

5.2.3 Multi-head Attention

Multi-head Attention is an extension of the attention mechanism that allows for
capturing different relationships between different parts of the input sequence.
It allows the model to focus on different aspects of the input sequence simul-
taneously. It consists of multiple attention heads that operate in parallel, each
focusing on a different part of the input sequence. Each attention head takes in
the same query, key, and value inputs but learns a different set of parameters
through training. This schematic is illustrated in Figure 5.4.

The output of each attention head is then concatenated and passed through
a linear layer to produce the final output. This allows the model to capture
multiple aspects of the input sequence and learn different representations that
can be combined to improve performance. Overall, Multi-head Attention ability
to capture multiple aspects of the input sequence through parallel attention
heads and potential to improve model performance.
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5.3 The Attention Mechanism on Graph
Structured Data

The attention mechanism is well-suited for graph-structured data due to the
variable number of nodes and the need to consider permutation and variance.
This is especially relevant in routing problems, which are often represented
as graphs, where the attention mechanism can be used to improve accuracy
and performance. Graph-structured problems involve data represented as a
graph,with nodes representing entities and edges representing relationships be-
tween entities. Examples of graph-structured problems include social network
analysis, molecular graph generation, and when working with geographical
maps.

To process graph-structured data, a Graph Attention Network (gat) can be
used. gats are a type of neural network that applies the attention mechanism
to graph data, and they have been shown to be effective in a variety of graph-
structured problems. To fully understand gats, it is important to have a basic
understanding of graph theory and Graph Neural Network (gnn). Graph the-
ory is the study of graphs and their properties, while graph neural networks are
a class of neural networks that can process graph-structured data. By combin-
ing the principles of graph theory and neural networks, gats offer a powerful
tool for processing graph-structured data.

5.3.1 Graphs Theory

Graph networks are built on the theory of graphs, which is a mathematical
discipline that studies structures composed of nodes and edges, as mentioned
in Chapter 2. Graphs are used to represent relationships between objects or
entities. Graph theory provides the essential concepts and tools to understand
and apply gnns, which is a rapidly growing application of graph theory.

In gnns, nodes in the graph represent entities, such as individuals, genes, or
cities, and edges represent the relationships between these entities, such as
distance or cost. A node feature vector is a vector that represents information
about a node in a graph. It is a set of features associated with each node in the
graph, as illustrated in Figure 5.5.
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Figure 5.5: The figure illustrates a graph, its adjacency matrix, and a node feature
vector. The graph is represented by nodes and edges connecting them. The adjacency
matrix indicates the connections between nodes in the graph. The node feature vector
is a vector containing information about each node in the graph.

An adjacency matrix is a fundamental tool in gnns, as it provides a matrix
representation of the connections between nodes in a graph, indicating which
nodes are connected and helping to understand the relationships between
entities. Understanding fundamental graph theory concepts, such as nodes,
edges, and adjacency matrices, is essential to comprehend the workings of
gnns.

5.3.2 Graph Neural Networks

Before going into the use of attention mechanisms in gats, it is important first
to explore the foundations of gnns. gats are a specific type of gnn, which
are neural networks designed to process graph-structured data. Hence, gnns
operate on data that can be represented as a graph, with nodes representing
entities and edges representing relationships between them.

The main process of gnns is to update the embeddings of individual nodes.
Node embeddings are a type of representation learning method that is com-
monly used in graph neural networks. They are a way of transforming high-
dimensional node feature vectors into a lower-dimensional space while pre-
serving the essential information about the nodes and their relationships in the
graph.
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Node embeddings are learned during the training process of a graph neural
network. In this process, each node feature vector is passed through a single-
layer neural network that is applied only to the node’s neighbors, and the
resulting embeddings are summed up to form a single-node embedding.

ℎ‘𝑖 = 𝜎 (
∑︁
𝑗∈𝑁 (𝑖 )

𝑤ℎ 𝑗 ) (5.2)

Equation 5.2 represents the process of updating the embedding of a single
node 𝑖, where 𝑗 ∈ 𝑁 (𝑖) represents the set of neighboring nodes of 𝑖. The new
embedding ℎ‘𝑖 is computed by taking a weighted sum of the embeddings of the
neighboring nodes ℎ 𝑗 using learnable weights𝑤 and passing the result through
a non-linear activation function 𝜎 .

5.3.3 Graph Attention Networks

Now that we have established the basics of graph theory and gnns, we can
extend our understanding to Graph Attention Network (gat)s. gats are a type
ofgnn that implements an attention mechanism to assign different importance
weights to neighboring nodes when updating a node’s embedding [95].

In gats, the attention mechanism is used to learn the importance of each neigh-
bor node 𝑗 to node 𝑖. The goal is to determine which nodes to prioritize when
updating the node embeddings during training. The importance of each node
is expressed through an attention coefficient, which assigns different weights
to each neighboring node based on its relevance to the target node.

Attention Coefficient

The attention coefficient is a key concept in gats and refers to the weight
assigned to each neighboring node based on its relevance to the target node. It
measures how much attention should be paid to each neighboring node when
updating the embedding of a target node during the training process. The
attention coefficient is calculated as:

𝑒𝑖 𝑗 = 𝑎(𝑤ℎ𝑖,𝑤ℎ 𝑗 ), (5.3)
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where ℎ𝑖 and ℎ 𝑗 are the feature vectors of nodes 𝑖 and 𝑗 , and𝑤 is the weight
matrix. 𝑤 is a learnable transformation of the node features. 𝑎 is the attention
mechanism used to compute the attention coefficient. There are multiple ways
to calculate or learn the attention coefficient 𝑎, and one common approach is
using a shared single-layer neural network. It takes as input the transformed
feature vector of node 𝑖 and 𝑗 and returns a value for the importance of the
features of node 𝑗 , for node 𝑖.

Figure 5.6: This figure illustrates attention coefficients in a Graph Attention Network.
The purple lines correspond to the attention coefficients 𝛼12 and 𝛼13, indicating the
importance of the connections between node 1 and its neighboring nodes 2 and 3,
respectively. These coefficients play an important role in capturing relevant information
and guiding the information flow in the network. The figure is inspired by [95].

When calculating attention coefficients, the resulting values can vary signifi-
cantly across nodes. To ensure comparability, it is essential to normalize these
values. This is commonly achieved through the use of the softmax, as illustrated
by the following equation:

𝛼𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑒𝑖 𝑗 ) =
𝑒𝑥𝑝 (𝑎(𝑤ℎ𝑖,𝑤ℎ 𝑗 ))∑

𝑘∈𝑁 (𝑖 ) 𝑒𝑥𝑝 (𝑎(𝑤ℎ𝑖,𝑤ℎ 𝑗 ))
. (5.4)

Thus, the node update process for a graph attention network can be expressed
as [95]:

ℎ
′
𝑖 = 𝜎 (

∑︁
𝑗∈𝑁 (𝑖 )

𝛼𝑖 𝑗𝑤ℎ 𝑗 ), (5.5)
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where the attention coefficients 𝛼𝑖 𝑗 are used to assign different weights to each
neighbor node 𝑗 of the target node 𝑖. The weights are learned through the
attention mechanism and used to update the node embedding based on the
features of its neighboring nodes. The learnable weight matrix 𝑤 is used to
transform the neighboring node features, and the activation function 𝜎 applies
non-linearity to the output.

In recent years, gats have emerged as a prominent approach in addressing
diverse challenges in graph-based learning [96] [95]. They have demonstrated
their effectiveness in various domains, such as social networks [97], biology
[98], and transportation [99]. By leveraging the inherent structure of graphs,
gats provide a powerful neural network architecture that is specifically de-
signed for processing graph-structured data.

5.4 Attention Mechanism for Solving Routing
Problems

Neural networks with attention mechanisms, such as gats, are suitable for
solving routing problems, such as vrps, due to their ability to effectively model
relationships between nodes in a graph. In vrps, where nodes represent loca-
tions and edges represent distances between them, gats are good at capturing
the intricate dependencies among nodes.

By learning to assign varying weights or attention coefficients to neighboring
nodes,gats can identify critical nodes that play a significant role in optimizing
the routing process. This enables efficient and accurate route planning, con-
sidering factors such as distance, traffic conditions, and delivery constraints.
The unique combination of graph-based modeling and attention mechanisms
makes neural networks with attention particularly well-suited for addressing
routing problems and holds promising potential for operational research appli-
cations.

This thesis explores the application of attention-based neural networks in the
field of operational research, with a specific focus on solving the vrp, which is
characterized by its graphical nature. The proposed network shares similarities
with the gat but incorporates an attention mechanism and a model structure
inspired by the Transformers architecture. In the upcoming methodology sec-
tion, we will go into these ideas and provide a detailed explanation of the
attention-based neural network’s utilization for addressing the gvrp within
waste management.
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6
Attention-based Neural
Network for Sustainable
Routing in Waste
Management

Expanding on the theoretical foundation, this chapter presents a method for
achieving more sustainable waste collection routes using an attention-based
neural network. Although neural networks have shown promising results in
solving routing problems for simulated data, their application in real-world
scenarios with environmental concerns is still limited. Therefore, this thesis
contributes to the current research on the Green Vehicle Routing Problem
(gvrp) by addressing a real-world scenario within waste management.

This chapter first provides an overview of the method employed to generate
sustainable waste routing. It then goes into the gvrp model and how it is
tailored to address waste management challenges. The subsequent section
introduces the attention-based neural network, offering insights into the model
structure and learning process. To illustrate the practical application of the
model, a real-world scenario involving the waste management company Remiks
is presented. This example demonstrates how the proposed method is valuable
for the company to generate sustainable collection routes.

69



70
chapter 6 attention-based neural network for sustainable

routing in waste management

6.1 Waste Collection Route Optimizing
using Attention-based Neural Network

While neural networks have shown promising results in solving routing prob-
lems [9] [10] [14], their application in real-world scenarios, particularly those
involving environmental considerations, has been limited. Consequently, there
is a need to explore their potential in addressing real-world problems. One field
that provides an interesting avenue for exploring the practical applications of
this method is the transport sector, particularly in waste management.

When examining the waste management system in Norway today, it is evident
that there are several impressive operations in place. For instance, innovative
waste sorting technologies, such as optical sorting equipment, are utilized to
handle the collected waste efficiently. Additionally, many waste management
companies use waste-to-energy technologies, which can convert waste into
energy, such as electricity or heat. These technologies play a crucial role in
reducing emissions by diverting waste from landfills and decreasing reliance
on fossil fuel-based energy sources.

However, the daily waste collection procedure still remains a significant source
of emissions due to inefficient operations and the use of diesel-powered vehi-
cles. These inefficiencies result in high transportation costs and poor resource
utilization. Therefore, it is critical for the waste management industry to ad-
dress emissions from waste collection operations to promote more sustainable
practices and reduce their carbon footprint.

To address emissions associated with waste collection and promote more sus-
tainable waste management practices, various strategies can be employed. This
thesis focuses on one such strategy: route optimization. By optimizing waste
collection routes, we can effectively reduce emissions during the collection pro-
cess. Route optimization offers a cost-effective alternative to other approaches,
such as investing in electric vehicles, which often require substantial initial cap-
ital investments. In this thesis, we propose utilizing an attention-based neural
network [9] to achieve route optimization, leveraging the synergies between
machine learning and operations research.

The attention-based neural network utilized in this approach builds upon the
transformer architecture and comprises an encoder and a decoder. This network
takes a set of coordinates as input and generates an optimized solution route as
output. By leveraging the capabilities of the attention mechanism, the neural
network can effectively learn to allocate attention to relevant locations and
make informed routing decisions.
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To learn and improve these solution routes, the proposed method in this thesis
employs reinforcement learning, specifically utilizing a variant called REIN-
FORCE with baseline. This approach is well-suited for route optimization since
it eliminates the need for a preexisting training dataset since the solution routes
can be generated on the fly. In addition, it enables iterative improvements to the
routes by leveraging feedback received during the reinforcement learning pro-
cess. This iterative nature allows the model to continuously improve its routing
decisions, ultimately leading to more optimized and efficient routes.

Furthermore, to address environmental concerns within the routing model, we
employ [100] to incorporate fuel consumption as the objective in the optimiza-
tion process. The primary goal of the optimization model is to minimize fuel
consumption. In the case of Tromsø, we found that road gradient plays a sig-
nificant role in fuel consumption due to the substantial elevation differences
in the area. Figure 6.1 provides an overview of the proposed model. Subse-
quent sections will provide more detailed information on these elements of the
method.

Figure 6.1: This figure presents an overview of the proposed model for route optimiza-
tion. The core component of the model is an attention-based neural network, which
serves as the solution method for optimizing routes. The network utilizes reinforce-
ment learning to iteratively improve the solution routes over time. Notably, the model
incorporates environmental considerations by integrating green vehicle routing princi-
ples, with a focus on minimizing fuel consumption as a cost metric for the routes. This
approach ensures that the optimization process takes into account the environmental
impact, aligning with sustainable practices in waste management.
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6.2 The Green Vehicle Routing Problem
for Optimizing Waste Collection Routes

This thesis aims to optimize waste collection routes by specifically targeting
environmental concerns through the incorporation of the gvrp. The gvrp
is a variant of the traditional Vehicle Routing Problem (vrp) that focuses on
minimizing the environmental impact of transportation. It involves finding the
most efficient routes for a fleet of vehicles to serve a set of customers while
considering various environmental factors. Despite the growing importance
of sustainable transportation, research on the gvrp, especially in real-world
applications, remains limited.

Utilizing the gvrp for optimizing waste collection routes to reduce emissions
provides a practical solution for waste management companies to achieve their
environmental goals. However, one of the challenges related to the gvrp is
how to incorporate environmental aspects into the problem, as discussed in
Chapter 3. Therefore, exploring various modeling techniques for solving the
gvrp remains an active area of research.

Applying the gvrp to optimize waste collection routes and minimize emissions
offers a practical solution for waste management companies aiming to meet
their environmental objectives. However, a significant challenge in the context
of the gvrp lies in effectively integrating environmental considerations into
the problem formulation, as discussed in Chapter 3.

We address this challenge by investigating the integration of fuel consumption
as an environmental consideration in optimizing waste collection routes. Rec-
ognizing the relationship between fuel consumption and vehicle emissions, our
approach focuses on reducing fuel usage to minimize emissions from the fleet
of vehicles. To incorporate fuel consumption into the gvrp, a representation
of fuel consumption for the waste collection vehicles needs to be established.
This section will go into further detail regarding the methodology employed to
incorporate and address fuel consumption within the gvrp framework.

6.2.1 Modeling Fuel Consumption

Fuel consumption is closely related to emissions, as the burning of fossil fuels is
a significant source of vehicle emissions. Hence, minimizing fuel consumption
is an effective way to reduce emissions from a fleet of vehicles running on fossil
fuels. Many studies have investigated this approach [63] [101] [100]. However,
accurately defining fuel consumption is still challenging in this area.



6.2 the green vehicle routing problem
for optimiz ing waste collection routes 73

This thesis employs the power delivered by the vehicle engine to calculate fuel
consumption [100], as fuel consumption is directly related to engine power.
The engine power needs to overcome various resistive forces, including air re-
sistance, rolling resistance, and incline resistance. The intensity of these forces
is influenced by factors such as vehicle speed [101], mass [102], and character-
istics of the terrain [100]. These factors collectively determine the magnitude
of force required to counter the resistive forces and ultimately impact fuel
use.

Equation 6.1 calculates the engine power 𝑃𝑒 , taking into account several factors
that impede a vehicle’s movement [100]. This equation adds up the power asso-
ciated with each force and divides the result by the mechanical efficiency of the
powertrain, 𝜂𝑡 . The total energy required to overcome these forces represents
the energy consumed by the vehicle.

The equation considers rolling resistance 𝐹𝑟 , drag force 𝐹𝑑 , gravity 𝐹𝑔, and iner-
tial forces as the main factors that impede the vehicle’s motion. By considering
these factors, we can accurately estimate the amount of energy required to
move the vehicle and thus calculate its fuel consumption.

Engine Power:

𝑃𝑒 =
(𝐹𝑑 + 𝐹𝑟 + 𝐹𝑔 +𝑀𝑀𝑓 𝑖𝑎)𝑉

𝜂𝑚
(6.1)

Drag Force: 𝐹𝑑 =
1
2
𝑐𝑑𝜌𝑎𝐴𝑓𝑉

2 (6.2)

Rolling Force: 𝐹𝑟 = 𝐶𝑟𝑀𝑔𝑐𝑜𝑠𝜃 (6.3)
Gravity: 𝐹𝑔 = 𝑀𝑔𝑠𝑖𝑛𝜃 (6.4)
Inertial Force: 𝑀𝑓 𝑖 = 1 + 0.04𝑁𝑇𝐷𝑖 + 0.0025𝑁𝑇𝐷𝑖2 (6.5)

Figure 6.2: This figure is a visual representation of the physical forces that come into
play when vehicles are traveling on the road with an incline. These forces highlight the
factors that must be taken into consideration when estimating the fuel consumption
of a vehicle. The figure is inspired by [100].
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To estimate vehicle fuel consumption based on engine power, the method used
in this thesis employs Equation 6.6. This equation utilizes the engine power
𝑃𝑒 calculated from Equation 6.1, which sums the power from each force that
opposes the vehicle’s movement. Other variables in the fuel consumption equa-
tion include the fuel density 𝜌 𝑓 , lower heating value (LHV) of the fuel, and the
engine thermal efficiency 𝜂𝑡ℎ.

By dividing the power delivered by the engine by the product of the fuel density,
lower heating value, and the engine thermal efficiency, Equation 6.6 provides
an estimate of the rate at which the engine consumes fuel. By utilizing this esti-
mated fuel consumption, the waste collection routes in this thesis are optimized
accordingly.

Fuel Consumption = 𝐹𝑢𝑠𝑒 = 𝑃𝑒/(𝜌 𝑓 𝐿𝐻𝑉 ∗ 𝜂𝑡ℎ) (6.6)

When fuel consumption is chosen as the environmental criterion in the gvrp
and an equation is derived for it, it becomes possible to construct a suitable
gvrp model to optimize waste collection routes and minimize fuel consump-
tion. This approach enables waste collection companies to reduce their emis-
sions in their day-to-day operations.

The objective of the gvrp used in this method can then be expressed by Equa-
tion 6.7, where 𝐸𝑖 𝑗 represents the fuel consumption between nodes 𝑖 and 𝑗 , 𝑥𝑖 𝑗
represents a binary decision variable indicating whether or not a vehicle travels
from node 𝑖 to node 𝑗 . 𝐹𝑖 𝑗 represents the fuel used for travel between nodes 𝑖
and 𝑗 , estimated using Equation 6.6. The objective is to minimize the total fuel
consumption, which is equivalent to the sum of 𝐸𝑖 𝑗𝑥𝑖 𝑗 over all nodes.

𝑚𝑖𝑛
∑︁
𝑖, 𝑗∈𝐴

𝐸𝑖 𝑗𝑥𝑖 𝑗 = 𝐹𝑖 𝑗𝑥𝑖 𝑗 = (𝑃𝑒/(𝜌𝐿𝐻𝑉 ∗ 𝜂𝑡ℎ))𝑥𝑖 𝑗 (6.7)

The proposed objective function optimizes the environmental concerns as the
primary objective. However, a multi-objective approach can be beneficial com-
pared to the proposed objective function, as it provides a more comprehensive
approach. Introducing distance as a second objective can bring benefits beyond
reducing fuel consumption, such as reducing wear and tear on roads, emissions
from vehicles, and noise pollution.
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Additionally, including multiple objectives can offer a more balanced and flex-
ible optimization approach producing more realistic routes. By considering
both fuel efficiency and route feasibility, a multi-objective approach can lead to
more efficient and environmentally friendly waste collection routes. The two
objectives used in this thesis are expressed as

𝑚𝑖𝑛 𝛼
∑︁
𝑖, 𝑗∈𝐴

𝐸𝑖 𝑗𝑥𝑖 𝑗 + 𝛽
∑︁
𝑖, 𝑗∈𝐴

𝑐𝑖 𝑗𝑥𝑖 𝑗 , (6.8)

where the first sum minimizes emissions and the second sum minimizes dis-
tance.

In multi-objective optimization, it is necessary to determine the relative im-
portance of each objective being optimized. The influence of each objective is
scaled by the weighting factors 𝛼 and 𝛽. These factors allow the decision-maker
to determine the trade-off between the objectives and to adjust the relative
importance of each objective according to the problem at hand.

The values of 𝛼 and 𝛽 should be chosen based on the specific needs and re-
quirements of the problem being solved. This may involve some trial and error
to ensure that the chosen values are appropriate and lead to a satisfactory
solution. By adjusting the weighting factors, the decision-maker can find the
optimal balance between fuel consumption and distance and ultimately arrive
at a more balanced and realistic solution for the problem.
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6.3 Attention-Based Neural Network

In this thesis, we present a novel method for solving the gvrp problem by
using an attention-based neural network [9]. While this approach has been
successfully applied to address the vrp using artificially generated data, its
adaptability, and effectiveness in real-world scenarios, particularly in the con-
text of the gvrp, remain unexplored.

The approach adopted in this thesis utilizes an attention-based model that
follows the transformer architecture [94]. The model consists of an encoder
and a decoder, as illustrated in Figure 6.3. To optimize the loss function and
enhance the model’s performance, reinforcement learning is employed. This
reinforcement learning technique enables the neural network to learn from its
own actions and progressively improve over time. In this section, we introduce
the encoder-decoder architecture and elaborate on the reinforcement learning
approach.

Figure 6.3: This figure provides a simplified illustration of the attention-based neural
network. The input consists of coordinates, which are processed through the encoder
and decoder. The decoder generates a solution route as the output, depicting the
optimized route for the given input coordinates.

6.3.1 Encoder

The encoder is responsible for processing the input data and generating em-
beddings for all input nodes. These node embeddings serve as inputs for the
decoder, which subsequently generates the output of the model. Figure 6.4
provides a visual representation of the entire encoding process [9].

The encoder takes the input features 𝑥𝑖 , which usually represent the two coor-
dinates of a node, and computes the initial node embeddings:

ℎ
(0)
𝑖

=𝑊 𝑋𝑥𝑖 + 𝑏𝑋 . (6.9)
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The encoder then updates these initial embeddings through 𝑁 attention layers.
At each layer ℓ ∈ 1, ..., 𝑁 , a new node embeddingℎℓ𝑖 is generated by the encoder.
After computing the node embeddings at the final attention layer, the encoder
generates an aggregated embedding ℎ̄ (𝑁 ) that captures essential information
from all node embeddings. This is achieved by computing the mean of the final
node embeddings:

ℎ̄ (𝑁 ) =
1
𝑛

𝑛∑︁
𝑖=1

ℎ
(𝑁 )
𝑖

. (6.10)

Consequently, the encoder outputs the node embeddings ℎ (𝑁 )
𝑖

and the graph
embedding ℎ̄ (𝑁 ) , which together represent the essential information about the
input graph for further processing by the decoder.

The Attention Layer in The Encoder
The attention layer in the encoder consists of two sublayers: a multi-head
attention layer and a node-wise fully connected feed-forward layer. Both sub-
layers have skip connections and batch normalization for improved training
stability.

Sub-Layer 1: Multi-Head Attention
The first sub-layer of the attention layer in the encoder is the multi-head atten-
tion layer. This layer takes the input node embeddings ℎ (ℓ−1)

𝑖
from the previous

layer and applies the multi-head attention mechanism to obtain an updated
embedding:

ℎ̂𝑖 = 𝐵𝑁
ℓ (ℎ (ℓ−1)

𝑖
+𝑀𝐻𝐴ℓ𝑖 (ℎ

(ℓ−1)
1 , ..., ℎ

(ℓ−1)
𝑛 )) . (6.11)

The multi-head attention mechanism aggregates information from all nodes to
enhance the representation of each node.

Sub-Layer 2: Fully Connected Feed-Forward Layer
The second sub-layer of the attention layer in the encoder is a fully connected
feed-forward layer. This layer takes the aggregated node embedding from the
first sub-layer as input, applies a fully connected feed-forward layer, and adds
the result to the input. Finally, skip connections and batch normalization is
applied to the output:

ℎ
(ℓ )
𝑖

= 𝐵𝑁 ℓ (ℎ̂𝑖 + 𝐹𝐹 (ℓ ) (ℎ̂𝑖)). (6.12)
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Figure 6.4: This figure illustrates the encoder process for three nodes, starting with the
input node features, which are processed to generate initial embeddings, followed by
the multi-head attention layer and the fully connected feed-forward layer. The output
of the encoder consists of the node embeddings for all nodes and the graph embedding,
which both serve as the input to the decoder. The figure is inspired by [9].

6.3.2 Decoder

The main function of the decoder is to generate the optimal route for a given
routing problem by producing a sequence 𝜋 of the input nodes. To accomplish
this, the decoder takes the node embeddings ℎ (𝑁 )

𝑖
and graph embedding ℎ̄ (𝑁 )

generated by the encoder as input.

To generate the solution route, the decoder computes context nodes. These
context nodes represent the decoding context, which can contain information
about the previously generated output nodes. To compute the context node,
three elements are used as input: the graph embedding ¯ℎ (𝑁 ) , the node embed-
ding for the first node ℎ (𝑁 )𝜋1 , and the previous node embedding ℎ (𝑁 )𝜋𝑡−1 .

When computing the context node for the first node, where there is no previous
node, learned parameters 𝑣 and 𝑣 𝑓 are used as input placeholders. The first
context node embedding is then computed using a horizontal concatenation
operation of these three elements:

ℎ
(𝑁 )
(𝑐 ) =

{
[ℎ̄ (𝑁 ) , 𝑣1, 𝑣 𝑓 ] 𝑡 = 1
[ℎ̄ (𝑁 ) , ℎ (𝑁 )𝜋𝑡−1, ℎ

(𝑁 )
𝜋1 ] 𝑡 > 1.

(6.13)
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Attention Mechanism in The Decoder
The decoder uses the attention mechanism to update the context node em-
beddings. This is accomplished through multi-head attention. To compute the
queries, keys, and values for the attention mechanism, the node embeddings ℎ𝑖
and the context node embeddingℎ (𝑐 ) are multiplied by learnedweight matrices
𝑊𝑄 ,𝑊 𝐾 , and𝑊𝑉 , respectively:

𝑞 (𝑐 ) =𝑊
𝑄ℎ (𝑐 ) , 𝑘𝑖 =𝑊

𝐾ℎ𝑖, 𝑣𝑖 =𝑊
𝑉ℎ𝑖 . (6.14)

When queries, keys, and values are obtained, the next step is to compute the
compatibility of the query with all nodes:

𝑢 (𝑐 ) 𝑗 =

{ 𝑞𝑘√
𝑑𝑘

if 𝑗 ≠ 𝜋𝑡 ‘ ∀𝑡 ‘ < 𝑡

−∞ otherwise.
(6.15)

This compatibility is used to compute attention weights, which determine the
importance of each node for the current decoding step. The compatibility is
computed using the scaled-dot product. During this process, nodes that have
already been visited are masked out.

Probabilities
Finally, the probability of choosing the next node at each time step is obtained
by adding a final decoder layer with a single attention head. This layer takes the
computed compatibility and applies a tanh function to clip the results within
a specific range:

𝑢 (𝑐 ) 𝑗 =

{
𝐶 · tanh( 𝑞𝑘√

𝑑𝑘
) if 𝑗 ≠ 𝜋𝑡 ‘ ∀𝑡 ‘ < 𝑡

−∞ otherwise.
(6.16)

In this thesis, the resulting scores are clipped to a range between -10 and
10 to stabilize the gradients during backpropagation and improve the overall
training performance. If the scores are too large or too small, it can result in
unstable gradients and hinder learning. Therefore, clipping helps to ensure
that the gradients are within a reasonable range for efficient and effective
training.

After clipping, the masked compatibilities are normalized using the softmax
function to obtain probabilities for choosing the next node. These probabilities
are used in the loss function to update the model parameters. The whole
process of the decoder is shown in Figure 6.5, which illustrates this process for
a tsp with three nodes.
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Figure 6.5: This figure demonstrates the computation process in the decoder for
a Travelling Salesman Problem with three nodes. The decoder takes as input the
graph embedding and the node embedding for the first node, both computed in the
encoder. Additionally, the node embedding from the previous node is used as input for
computing each context node. For the first context node, input placeholders are used
instead, illustrated in purple. The decoder constructs a solution route 𝝅 = (3, 1, 2),
which can be seen in the output of each time step. The figure is inspired by [9].

6.3.3 Reinforcement learning

Our method utilizes reinforcement learning to train and improve the generated
solution routes iteratively. Specifically, we employ the REINFORCE algorithm
with a baseline, training the model through gradient descent. This approach
enables the model to optimize its performance over time.

Reinforcement learning was chosen as the approach due to its demonstrated
potential in addressing routing problems [9] [17] [89]. Its ability to learn from
experience and adapt to changing conditions makes it well-suited for such
problems. One advantage of reinforcement learning is that it eliminates the
need for a training dataset, which can be challenging to obtain in traditional
supervised learning methods. Unlike conventional approaches, the reinforce-
ment learning methodology iteratively improves the solution through feedback.
This iterative learning process allows our model to improve its solution route
iteratively.

When applied to vrps, the reinforcement learning technique learns through
the process of making decisions regarding route selection and receiving re-
wards based on the performance of the chosen solution route. By leveraging
this feedback, the model dynamically adjusts its behavior to optimize its per-
formance over time. The efficacy of this approach has been demonstrated in
various recent studies focused on solving vrps [89] [9] [17].
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Loss Function
A reinforcement learning approach is employed to train the attention-based
neural network in this thesis, specifically utilizing a variant known as REIN-
FORCE with a baseline. The loss function employed in this approach is defined
as follows:

∇𝐿(𝜃 |𝑠) = E𝑝𝜃 (𝝅 |𝑠) [(𝐿(𝝅) − 𝑏 (𝑠))∇𝜃 log𝑝𝜃 (𝝅 |𝑠)] . (6.17)

This loss function calculates the gradient of the loss concerning the model pa-
rameters 𝜃 , given a specific problem 𝑠. The expectation is taken over the policy
distribution 𝑝𝜃 (𝝅 |𝑠), and the term (𝐿(𝝅) −𝑏 (𝑠)) gives the difference between
the cost of the generated solution route 𝝅 and a baseline value 𝑏 (𝑠).

REINFORCE with Baseline
In this thesis, we employ the REINFORCE with a baseline algorithm. Using
a baseline has been demonstrated to reduce gradient variance and enhance
training speed in reinforcement learning scenarios [74]. We explore two differ-
ent baselines: the greedy rollout baseline and the exponential moving average
baseline. An analysis of their performance in the waste collection routing ap-
plication is presented in Chapter 8.

The Exponential Moving Average Baseline
One of the baselines tested in this thesis is an exponential moving average. In
this approach, the baseline value,𝑀 , is initially set to 𝐿(𝝅) in the first iteration.
In subsequent iterations, it is updated using the formula:

𝑀 ← 𝛽𝑀 + (1 − 𝛽)𝐿(𝝅), (6.18)

where 𝛽 represents the decay rate [9]. The decay rate 𝛽 controls the influence
of previous iterations on the updated baseline value. A higher decay rate puts
more weight on recent iterations, allowing the baseline to adapt more quickly
to changes in the solution quality. On the other hand, a lower decay rate gives
more importance to previous iterations, allowing the baseline to capture longer-
term trends.

The Greedy Rollout Baseline
The other baseline explored in this thesis is the greedy rollout baseline. It
involves performing simulated rollouts from the current state and selecting
actions greedily to maximize immediate rewards by choosing the node with
the maximum probability at each decoding step without considering long-term
consequences or exploring alternative paths [103]. While this approach offers
computational efficiency, it can overlook better long-term solutions.





7
Data
In the application of the proposed methodology to Remiks’ waste collection
operations, relevant data was gathered from various sources. This involved
retrieving fuel consumption, and distance traveled data from Remiks’ website,
joining waste collection vehicles to gather real-time information on speed, load,
and road gradient, and acquiring specific vehicle data and other relevant factors
for precise fuel consumption calculations. The comprehensive analysis of this
data will enable a more accurate analysis of the potential benefits associated
with the proposed approach for Remiks.

This section begins by introducing the waste management company Remiks
and examining their current operations. It then delves into the factors that
influence fuel consumption, such as speed, load, and road gradient. Next, we
provide more detailed information on vehicle-specific data and other relevant
data. Finally, we narrow down the scope by selecting a specific focus area for
conducting experiments.
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7.1 Real-World Application:
The Waste Management Company Remiks

The approach presented in this thesis introduces a novel combination of the
gvrpmodel and the proposed attention-based neural network solutionmethod.
This integrated approach is applied to optimize waste collection operations
for Remiks, a waste management company in Tromsø. This practical applica-
tion serves to determine the applicability and effectiveness of the proposed
method and contribute to the limited research on gvrp for real-world applica-
tions.

Remiks offers waste collection services in Tromsø and Karlsøy, focusing on
household waste collection while ensuring efficient and sustainable waste man-
agement practices. Their main goals are to facilitate a well-functioning waste
system and to be a driving force in reducing emissions through their values of
environmental awareness and innovation [104].

Figure 7.1: This figure shows a map of the Tromsø and Karlsøy area, highlighting the
households that require waste collection services from Remiks. The waste collection
trucks need to cover a significant area to collect waste from all households in the
region. The current daily collection procedure generates significant emissions and
poses challenges in terms of transportation costs.
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While Remiks has integrated innovation and sustainability into their daily prac-
tices, including the implementation of waste-to-energy technology for district
heating and the utilization of innovative waste sorting technologies such as
optical sorting, the routine waste collection process contributes to significant
emissions due to the reliance on diesel-powered vehicles. This poses a challenge
for Remiks in their pursuit of emission reduction while striving to maintain effi-
cient and cost-effective waste collection services. As shown in Figure 7.1, there
are many households in Tromsø and Karlsøy that require waste collection ser-
vices from Remiks, making it crucial for the company to address their emissions
and achieve their goals of sustainable waste management practices.

Figure 7.2: The left image illustrates Remiks’ vehicle fleet consisting of diesel-powered
waste collection trucks. The right image showcases their innovative optical sorting
technology, which plays a crucial role in their waste processing operations.

The proposed gvrpmodel, combined with the attention-based neural network
solution method, provides Remiks with a promising approach to optimize their
waste collection routes and work towards their emission reduction goals. The
solution derived from the model has the potential to reduce emissions and
transportation costs for their operations, providing Remiks with a competitive
advantage.

Furthermore, implementing this approach gives Remiks the opportunity to
have a deliberate approach to how they operate their waste collection routes.
It gives a more proactive decision-making process that aligns with their goals
rather than relying on the individual driver’s subjective choices. Additionally,
this approach enables the training of future generations of drivers without
being solely dependent on the expertise of senior drivers who may no longer
be available in the future.

To apply this method to the waste collection routes of Remiks, the next chapter
presents data and insights on Remiks operations, along with other relevant
information, to explore how the fuel-minimizing model can be utilized for
route generation in this particular context.
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7.2 Current Operations

Remiks has access to data on households requiring waste collection services,
which can be geocoded and analyzed using QGIS. Figure 7.1 provides a geo-
graphic visualization of this data, presenting a full overview of the households
that the company is obligated to collect waste from. Additional details about
households on each collection day can be found in the Appendix Figures 9.1,
9.2, 9.3, 9.4, and 9.5.

Remiks operates five side loaders to service a designated area during weekdays.
Side loaders are waste collection vehicles equipped with a mechanical arm,
enabling efficient bin emptying by a single operator. The project thesis [19]
investigated the different routes, uncovering variations in fuel consumption.
Figure 7.3 emphasizes that Vehicle 4 consumed less fuel, predominantly ser-
vicing routes within the district area. In contrast, vehicles primarily operating
in the city area, notably Vehicle 5, showed higher fuel consumption.

The existing route system was originally established several years ago and
has undergone ad-hoc expansions to accommodate the city’s growing develop-
ments. This presents an opportunity to identify more efficient routes that can
better optimize waste collection operations. Furthermore, the current routes
were not designed with a focus on minimizing emissions, making it worthwhile
to explore the potential benefits of incorporating environmental considerations
into the route planning process.
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Figure 7.3: This figure illustrates the fuel consumption patterns of Remiks’ waste
collection operations carried out by five vehicles from Monday to Friday. The chart
depicts the differences in fuel consumption across various routes within the current
waste collection system. Vehicle 5 exhibits the highest overall fuel consumption, while
Vehicle 4 demonstrates the lowest. The vehicle with the highest fuel consumption
(purple) predominantly covers routes in the city area, whereas the vehicle with the
lowest fuel consumption (red) primarily operates within the district area.
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7.3 Speed, Load, and Road Gradient

Whenminimizing fuel consumption in waste collection routes, it is important to
consider factors such as speed, load, and road gradient. These variables directly
influence fuel consumption. For instance, the load carried by vehicles, which
increases with the amount of waste collected, significantly impacts energy ex-
penditure and fuel consumption. Furthermore, maintaining a consistent speed
reduces the need for frequent acceleration and deceleration, optimizing fuel
consumption. Additionally, road gradient plays a critical role in fuel consump-
tion. Uphill slopes require more power and fuel, while downhill slopes offer
opportunities for fuel savings. By analyzing and optimizing these variables,
fuel savings can be achieved, resulting in cost reduction and reduced emissions
from the waste collection operations.

Speed
To gather accurate speed data during waste collection operations, there are
certain challenges that need to be addressed. The frequent stops and starts
during the collection process make it difficult to obtain reliable speed data.
However, by manually tracking one of the routes, it was possible to gather
valuable insights into the average andmaximum speeds during waste collection.
Figure 7.4 demonstrates that the average speed during a route was 13.8 km/h,
with the maximum speed recorded on this route being 54 km/h. While the
traffic regulations may have some influence on the speed of the waste trucks,
the frequent stops and starts significantly impact their overall speed.

Figure 7.4: This figure illustrates the speed variations of waste collection operations
along a selected route. The average recorded speed is 13.8 km/h, with the highest
speed recorded at 54 km/h. The figure shows the impact of frequent stops and starts
in waste collection, resulting in noticeable speed fluctuations.

Load
The side loaders have a curb weight of 13.5 tons, which is the weight of the
truck without any waste collected or additional load. However, the weight
measurement system used in each vehicle to monitor waste bin collection lacks
the precision required to obtain accurate data for individual households. The
weight information, expressed in tons, is displayed on the monitoring screen,
with changes reflected for every 100 kilograms collected. However, the fully-
loaded vehicle can reach a maximum weight of 19 tons, with 5 tons specifically
allocated for waste collection.
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Road Gradient
One of the notable characteristics of the city area in Tromsø is its significant
variation in height or elevation. Steeper road gradients in this region result in
increased fuel consumption for vehicles. For instance, the waste depot at the
Remiks main office is situated at an altitude of 12 meters above sea level, while
specific households are located as high as 100 meters above sea level. Figure
7.5 illustrates the altitude through an arbitrary waste collection route in the
city area.

Figure 7.5: This figure illustrates the altitude variation observed along one of the ex-
isting waste collection routes. It shows the elevation changes encountered throughout
the route, allowing for a better understanding of the topographical characteristics and
potential challenges faced during waste collection operations.

An average road gradient matrix can be generated and utilized as a distance
matrix to establish a connection between road gradient and route optimization
for a specific problem. Equation 7.1 determines the road gradient by dividing
the elevation difference between nodes by their distance, then multiplying the
result by 100 [62]. This calculation gives the average road gradient percentage
for each edge. Elevation data is obtained from the Google Maps API to acquire
the necessary elevation information.

Road Gradient =
difference in elevation (masl)
distance between nodes (m)

(7.1)
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7.4 Vehicle Specific Data

Specific vehicle data is necessary to calculate the forces and estimate fuel
consumption as described in the methodology. The required data is obtained
from Remiks, emphasizing the Volvo FMX 420 2021 model. This model is a side
loader commonly used in waste collection operations.

Drag Coefficient, 𝐶𝑑
The drag coefficient is a numerical measure representing how much an ob-
ject generates drag force. For Volvo Trucks, an approximate drag coefficient
of around 0.6 has been reported [105] [106] [107]. This coefficient provides
insight into the vehicle’s aerodynamic efficiency. This coefficient serves as an
indicator of the vehicle’s aerodynamic efficiency.

Frontal Area of Vehicle, 𝐴𝑓
𝐴𝑓 represents the frontal area of an object, which corresponds to the projected
area perpendicular to the direction ofmotion. Based onmeasurements provided
by Remiks [108] for the Volvo FMX 420 2021 model side loader, the width is
2.5 meters, the length is 2 meters, and the height is 4.1 meters. Calculating
the frontal area as the product of width and height gives a frontal area of
10.25𝑚2.

Mechanical Efficiency, 𝜂𝑚
Mechanical efficiency quantifies the effectiveness of power transmission from
the engine to thewheels in a powertrain, considering the losses that arise during
power transfer and conversion. The mechanical efficiency of heavy-duty trucks
is typically estimated to be around 80% [109]. This means that the mechanical
components of the truck, such as the drivetrain, gears, and bearings, can convert
80% of the input mechanical energy into helpful output mechanical energy.
At the same time, the remainder is lost due to friction and other mechanical
losses.

Low Heating Value, 𝐿𝐻𝑉
The low heating value (LHV) is a measure of the energy released when a
fuel undergoes complete combustion, taking into account the latent heat of
vaporization of the water vapor formed during the process. It signifies the
maximum amount of heat energy obtainable from a fuel when completely
burned, and the resulting water vapor is condensed and cooled. In the case of
diesel engines, the approximate LHV ranges from 42 to 46 MJ/kg [110] [111].
A value of 44 MJ/kg will be used for the experiments.

Fuel Density, 𝜌 𝑓
Remiks’ waste collection vehicles are powered by diesel fuel,which has a density
of 0.85 kilograms per liter [112].
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Engine Thermal Efficiency, 𝜂𝑡ℎ
Thermal efficiency is a measure of how effectively a system converts thermal
or heat energy into useful work. The thermal efficiency of modern heavy-duty
trucks, including Volvo trucks, can vary between 40% and 45% [113] [114].
This means that approximately 40-45% of the input energy from the fuel is
converted into useful work, while the rest is lost as waste heat.

7.4.1 Other Relevant Data

Density of air, 𝜌𝑎
The density of the fluidmedium throughwhich the vehicles move is represented
by 𝜌, with air (𝑎) being the specific medium in this case. The approximate air
density is 1.23, kg/m3 [115].

Coefficient of Rolling Resistance, 𝐶𝑟
The coefficient of rolling resistance, denoted as𝐶𝑟 , is a dimensionless constant
that quantifies the resistance to rolling experienced by an object on a surface.
In the case of a waste truck traveling on the roads in Tromsø, this coefficient
can vary depending on several factors, including tire type, truckload, and road
surface condition. As a general estimation, for a loaded waste truck on a typ-
ical paved road with dry conditions, the coefficient of rolling resistance can
range from 0.008 to 0.014 [116] [117] [107]. However, it is essential to note
that this range is subject to change if the road surface is wet or the tires are
improperly inflated or worn out, as these conditions can significantly increase
the coefficient of rolling resistance.
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Focus Area for Experiments
A particular focus area within Remiks’ data is selected to conduct the experi-
ments. This focus area includes the city area of Tromsø. The area was chosen
due to the high fuel consumption observed in this area, as indicated by the
findings of the project thesis [19] and this thesis (Appendix). Additionally, this
area provides a good representation of the overall situation due to its varying
road gradients, which have been identified as contributing factors to increased
fuel consumption.

Figure 7.6: This figure shows a map of the focus area on Tromsøya, highlighting
households needing waste collection services provided by Remiks.

Figure 7.6 visually represents the selected focus area. Minimizing fuel consump-
tion is the primary objective, and road gradient is a crucial factor considered.
The district areas, with a flat road gradient along the ocean, have limited po-
tential for fuel reduction compared to the more varied gradients on Tromsøya.
A prior study in Colombia successfully employed a similar approach, highlight-
ing the significance of road gradient in reducing fuel consumption [100]. This
serves as a promising foundation for the methodology employed in this the-
sis.
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8
Results and Analysis
This chapter presents the results obtained from implementing the attention-
based neural network, as described in the methodology section, to solve the
Green Vehicle Routing Problem (gvrp) for waste collection operations in
Tromsø for Remiks. The solution routes derived from our model are compared
with the current waste collection practices observed in Tromsø. Additionally,
an analysis is provided to explain the choices for obtaining the optimized route,
including multi-objective optimization, the training process for the attention-
based neural network, the choice of the distance matrix, and the scalability of
the proposed approach to accommodate more nodes.
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8.1 Sustainable Waste Collection Routes

This thesis presents a novel approach for the generation of sustainable waste-
collection routes, utilizing an attention-based neural network. The proposed
method is implemented and evaluated using real-world scenarios within the
waste management operations of the Tromsø company. The obtained results
reveal the potential to generate waste collection routes that significantly re-
duce fuel consumption compared to distance-minimized routes traditionally
generated.

(a) Sustainable Waste Route (b) Distance Minimized Waste Route

Figure 8.1: This figure illustrates the solution routes generated from the proposed
method utilizing an attention-based neural network. In (a), the route is generated
with the objective of balancing road gradient and distance, tuned accordingly. (b)
shows the route generated with the sole objective of distance minimization. The results
highlight the capability of the method to generate fuel consumption minimizing routes,
contributing to the reduction of emissions in the waste collection process.

Figure 8.1 provides a visual representation of the distance-minimized route and
the fuel-minimized route. The fuel-minimized route is obtained using a multi-
objective optimization approach, with 70%weighting assigned to road gradient
and 30% weighting assigned to distance. This approach seeks to achieve a
harmonious balance between minimizing overall distance and optimizing fuel
efficiency while considering road gradient as a crucial factor influencing the
fuel consumption of waste collection vehicles.
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By integrating these two key parameters into the optimization process, the fuel-
minimized route presents a more sustainable and environmentally conscious
solution compared to the conventional distance-minimized route. The utiliza-
tion of multi-objective optimization techniques enables the generation of waste
collection routes with lower fuel consumption, thereby promoting sustainable
waste management practices.

8.2 Analysis of Methodology and Results

This section presents an in-depth analysis of the choices for obtaining the op-
timized route using the proposed approach. The analysis includes a detailed
analysis of the multi-objective optimization employed, the training process for
the attention-based neural network, the selection of the distance matrix used,
and the scalability of the proposed approach to handle more nodes. This com-
prehensive analysis will provide a better understanding of the methodology
used to derive the optimized waste collection routes.

8.2.1 Distance Metrics

This section compares the results obtained using both Euclidean, road distance,
and road gradient in waste collection route optimization. The strengths and
weaknesses of each distance metric in the context of the optimization process
are analyzed to gain a better understanding of their impact on the efficiency
of waste collection operations.

Euclidean Distance
The Euclidean distance matrix is commonly used in various routing problems to
measure distances between points in a two-dimensional space. It calculates dis-
tances based on straight-line paths using the Euclidean distance formula:

𝑑 (𝑝, 𝑞) =
√︁
(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2, (8.1)

This formula enables easy computation of distances without the need for an
API. However, it is important to recognize that relying solely on the Euclidean
distance has limitations when applied to real-world scenarios.

Although the Euclidean distance provides a straightforward approach for vali-
dating route optimization techniques, it may not capture the complexities of
road networks or generate realistic routes. Figure 8.2 illustrates how the result-
ing solution routes may include infeasible paths crossing oceans andmountains
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instead of adhering to road networks. Therefore, moving beyond the Euclidean
distance is a significant advancement toward applying this method to real-
world applications, as it allows for capturing the specifics of the road network
and producing more realistic solution routes.

(a) Cost during Training (b) Solution Route

Figure 8.2: Plots of the cost during training (a) and the resulting solution route (b)
when using the Euclidean distance as the distance matrix in the model. The cost
during training shows the optimization progress over 500 epochs, and the solution
route illustrates the generated route that includes unrealistic edges crossing oceans
and mountains rather than strictly following roads.

Road Distance
In real-world scenarios, optimizing routes require accurate distance calcula-
tions. Our approach utilizes actual road distances as the distance matrix, en-
abling us to capture the intricacies of the road network. By doing so, we of-
fer more precise and realistic solutions that align with real-world constraints,
as illustrated in Figure 8.3. This method requires API integration to access
up-to-date road network data, ensuring the accuracy and relevance of our re-
sults. Incorporating the complexities of road networks, our approach can help
decision-makers with accurate and realistic solution routes.

(a) Training Cost (b) Solution Route

Figure 8.3: Plots illustrating the training cost (a) and the resulting solution route (b)
when using the road distance as the distance matrix in the model. The training cost
shows the optimization progress over 500 epochs, while the solution route depicts the
generated route that strictly follows feasible paths along the actual road network.
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Road Gradient
In order to further enhance the sustainability of the waste collection solution
routes, we have integrated the concept of fuel consumption minimization into
our approach. Recognizing the significant impact of road gradient on fuel use,
particularly in areas with varying elevations like Tromsø, we have incorporated
road gradient as a key factor in our distance matrix.

Road gradient refers to the slope or incline of a road segment and plays a cru-
cial role in influencing energy consumption, vehicle performance, and travel
time across different routes. By considering road gradient as the distance ma-
trix, we can effectively optimize routing decisions to reduce fuel consumption.
By optimizing the road gradient in our solution routes, we can generate so-
lutions routes that give Remiks the chance to actively contribute to emission
reduction and align with their goals of promoting sustainable transportation.
This optimization allows us to generate solution routes that align with Remiks’
goals of promoting sustainable transportation and contributing to emission
reduction.

To demonstrate the variations in generated routes resulting from road distance
and road gradient, we consider an area on Tromsøya that exhibit noticeable
road gradient characteristics, depicted in Figure 8.5.

Figure 8.4: This figure depicts a terrain with diverse topography, specifically highlight-
ing significant variations in road gradient. The purpose is to showcase the impact of
road gradients on the distance matrix within the area. The terrain exhibits noticeable
inclines, contributing to varying levels of elevation throughout the depicted region.
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(a) Solution route for road distance. (b) Solution route for road gradient.

Figure 8.5: The figure illustrates the solution routes for an area characterized by
noticeable road inclines using two different distance metrics: (a) road distance and
(b) road gradient.

The same area was utilized to generate two solution routes: one optimized
using road distance as the distance matrix and the other optimized using road
gradient as the distance matrix. The resulting routes are illustrated in Figure
8.5. This example offers insights into the learning and optimization process of
the model and its alignment with our objectives.

The route derived from using the road distance as the distance matrix, shown
on the left, initially chooses the outline node and incorporates node 2 while
ascending towards the peak of the hill. It then encounters nodes 3, 4, and 5
before descending downhill.

In contrast, the route generated based on the road gradient, displayed on the
right, starts at the summit of the hill and covers nodes 1 to 5 while descending
towards node 6. Interestingly, node 7, situated at a distance from themain route,
is selected before the model backtracks to the hill for node 8. This behavior is
influenced by the road gradient formula, which divides the elevation difference
by the road distance. Despite the significant difference in road distance between
nodes 7 and 8, the elevation remains relatively unchanged. Consequently, the
model chooses the outlying node located between these two locations, which
is suboptimal.
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This observation highlights the importance of considering additional factors,
such as fuel consumption or a balancing objective with distance, to achieve a
better balance in route optimization. In this thesis, we explore a multi-objective
approach to address this challenge.

8.2.2 Multi-Objective Optimization

In this section, we describe the process of setting up the multi-objective op-
timization problem to solve the gvrp for the waste collection operations of
Remiks in Tromsø. We discuss how we weighed the two objectives of minimiz-
ing distance and minimizing fuel consumption against each other to arrive at
the proposed solution. Additionally, we analyze the trade-offs between these
objectives to understand better the solutions obtained.

As discussed in Chapter 6, we employ the following objective function for the
multi-objective optimization:

𝑚𝑖𝑛 𝛼
∑︁
𝑖, 𝑗∈𝐴

𝐸𝑖 𝑗𝑥𝑖 𝑗 + 𝛽
∑︁
𝑖, 𝑗∈𝐴

𝑐𝑖 𝑗𝑥𝑖 𝑗 , (8.2)

This equation incorporates two scaling parameters, namely 𝛼 and 𝛽, to effec-
tively balance the influence of road gradient and distance within our model.
The parameter 𝛼 controls the weight assigned to the distance, while 𝛽 deter-
mines the weight assigned to the road gradient. Importantly, these parameters
are subject to the constraint that their summust equal 1. To examine the impact
of different parameter values, we conducted a series of tests, as illustrated in
Figure 8.6.

Figure 8.6: This figure illustrates the relationship between the scaling parameters
𝛼 (distance) and 𝛽 (road gradient) and their impact on fuel consumption. The figure
shows different combinations of 𝛼 and 𝛽 values ranging from 0 to 1, representing
various weightings of distance and road gradient in the optimization process.
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This analysis reveals several key insights. Firstly, when the distance has zero
contribution and the optimization is solely based on road gradient, the model
achieves the lowest fuel consumption for a given route. On the other hand,
a balanced weighting of 50-50 between distance and road gradient leads to
suboptimal results, where neither factor dominates, resulting in longer routes
and limited environmental benefits.

Optimizing solely based on distance yields lower fuel consumption. However,
by incorporating a balanced contribution of both distance and road gradient,
we can achieve a favorable compromise. Notably, when 𝛼 is weighted at 0.7
and 𝛽 at 0.3, we get a good balance, resulting in a route with reduced fuel
consumption.

(a) Solution route: 𝜶 = 0, 𝜷 = 1. (b) Solution route: 𝜶 = 0.3, 𝜷 = 0.7.

Figure 8.7: The figure showcases two solution routes with varying 𝛼-𝛽 tuning. The
plots demonstrate that by effectively balancing the impact of distance and gradient,
we can generate a route that exhibits enhanced visual attractiveness and simplicity for
the driver. Notably, the balanced route excludes the outlying node 7, while the route
generated solely based on gradient minimization includes it.

Figure 8.7 presents a visual representation of the solution routes, comparing
those generated with and without the consideration of balanced road gradient
and distance. The results demonstrate that the tuning process contributes to
the generation of more realistic routes, incorporating aspects of simplicity. The
inclusion of simplicity is crucial for ensuring the practicality and realism of the
routes. Notably, this approach involves a slight compromise in fuel consumption,
but it enables the generation of more holistic and sustainable routes.
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8.2.3 Training the Attention-based Neural Network

This section delves into the specifics of the training process for the neural
network employed in this study. It will cover the selection of hyperparameters
and any adjustments made during training. By providing a detailed overview
of the training process, this section aims to give insight into the factors that
contribute to the proposed approach.

Learning Rate

In order to determine an appropriate learning rate, several values were tested
and evaluated. Through a process of trial and error, it was observed that a learn-
ing rate of 10−4 gave the best performance in terms of training convergence
speed and stability. This choice is supported by the results obtained, as illus-
trated in Figure 8.8. The plot showcases the training progress with different
learning rates, demonstrating that a learning rate of 10−4 achieves the desired
balance between rapid convergence and stable training.

(a) Euclidean (b) Road distance (c) Road gradient

Figure 8.8: This figure presents the training progress with three different distance
matrices: Euclidean distance (a), road distance (b), and road gradient distance (c).
It can be observed that the learning rate of 10−4 consistently outperforms the other
learning rates across all three distance matrices.

Baseline

In this thesis, we conducted experiments using REINFORCE with two different
baselines: exponential moving average and greedy rollout. Our results consis-
tently showed that the exponential moving average baseline outperformed the
greedy rollout baseline, as illustrated in Figure 8.9. These findings indicate
that the exponential moving average baseline offers more reliable and stable
estimates of expected rewards, thereby enhancing route optimization for the
specific application under investigation.
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(a) Euclidean (b) Road distance (c) Road gradient

Figure 8.9: This figure illustrates the training progress using three different distance
matrices: Euclidean distance (a), road distance (b), and road gradient distance (c). It
can be observed that the exponential baseline performs better than the rollout baseline
in our application.

Exponential Baseline Decay Rate 𝛽
After identifying the exponential moving average baseline as the most effective
for this application, we fine-tuned its performance by testing different 𝛽 values.
The parameter 𝛽 represents the decay rate in the exponential moving average
baseline. It determines the weight assigned to previous baseline values when
updating the baseline in each iteration. A higher 𝛽 value emphasizes the influ-
ence of historical baseline values, while a lower 𝛽 value gives more weight to
the current iteration’s performance.

In the testing section, we conducted evaluations using different 𝛽 values to
assess their impact on the performance of the exponential moving average
baseline. The results, illustrated in Figure 8.10, reveal how varying 𝛽 influences
the optimization outcomes. Notably, a 𝛽 value of 0.3 yielded the most favorable
results for Euclidean distance, whereas higher 𝛽 values proved more effective
for road distance and road gradient. It was observed that Euclidean distance
remained relatively stable across all 𝛽 values, while road distance and road
gradient exhibited greater sensitivity to changes in the value.

(a) Euclidean (b) Road distance (c) Road gradient

Figure 8.10: This figure demonstrates the impact of varying 𝛽 values on the opti-
mization outcomes for different distance metrics. Each subfigure represents a specific
distance metric: (a) Euclidean distance, (b) road distance, and (c) road gradient.
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8.2.4 Scaling

In this section, we explore the scalability of our method by increasing the
number of nodes in the route optimization process. Specifically, we focus on
one selected area with the highest fuel consumption (Appendix). This area
is illustrated in Figure 8.11. By scaling up the chosen route from 20 nodes to
200 nodes, we aim to investigate the potential of this particular area and gain
insights into the performance and effectiveness of our approach.

Figure 8.11: This figure illustrates the selected area for the scaling analysis. This par-
ticular area was found to have the highest fuel consumption in current waste collection
operations. In the small image, the purple area represents the actual nodes present in
the area. In contrast, the red nodes depict the 200 selected nodes that are strategically
distributed to capture the node distribution in this area.

The scaling experiments shed light on the feasibility and performance of our
approach when applied to larger route optimization problems. By investigating
the potential of the area with the highest fuel consumption, we gain valuable
insights into the adaptability and scalability of our method. These findings
contribute to the broader understanding of our approach’s applicability in real-
world scenarios.
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(a) Euclidean (b) Road distance (c) Road gradient

Figure 8.12: This figure shows the results of the scaling experiments conducted. The
experiments involved scaling up to 100 nodes for Euclidean distance and limited scal-
ing to 20, 30, and 40 nodes for road distance and road gradient due to API restrictions.
Further investigation into scaling for larger datasets is recommended for future re-
search.

In Figure 8.12, we present the results of the scaling experiments. The scaling
was conducted up to 100 nodes for the Euclidean distance metric, while for the
road gradient and road distance, it was limited to 20, 30, and 40 nodes. The
restricted API we used for retrieving road gradients and real road distances
imposed these limitations on scaling. Therefore, we were unable to scale the
road gradient and real road distance experiments beyond these node counts. It
is worth emphasizing the importance of further exploration of scaling in future
research.

The scaling results indicate that the method demonstrates promising perfor-
mance evenwith larger problem sizes, as the scaling is not exponentially increas-
ing and provides routes that appear visually appealing. However, to compre-
hensively assess the scalability of the proposed method, it should be compared
to other approaches and subjected to more detailed testing.

Moving forward, it is crucial to consider scaling up the methodology for larger
datasets and incorporating more complex constraints. This analysis will enable
a thorough evaluation of the impact of scaling on the methodology’s perfor-
mance and the efficiency of the optimization process.



9
Concluding Remarks
The conducted experiments examined the effectiveness of the proposedmethod
in addressing a real-world waste collection problem, and the results have high-
lighted its potential for sustainable route optimization. In the subsequent sec-
tion, we delve into a discussion of the proposed method, exploring its advan-
tages and limitations. Furthermore, this chapter presents the findings regarding
the application of reinforcement learning and highlights the limitations con-
cerning fuel consumption. Additionally, we explore the value that this method
can offer to Remiks. Furthermore, we outline potential avenues for future re-
search and development. Finally, a conclusion summarizes the key findings
and contributions of this study.
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9.1 Discussion

This thesis explores the application of an attention-based neural networkmethod-
ology for optimizingwaste collection routes in a real-world scenario. The results
demonstrate the model’s effectiveness in training and problem-solving for this
purpose, indicating promising results.

The utilization of the attention model in waste collection operations for Remiks
has shown its capability to minimize fuel consumption. One of the values this
can give Remiks is consistency and a more targeted approach compared to
their current operations, where they can use the method to work to achieve
their goals of emission reduction. By utilizing the multi-objective optimization
framework, where the parameters 𝛼 and 𝛽 control the weighting of distance
and road gradient respectively, we can fine-tune these parameters to strike
a balance between environmental considerations and distance minimization.
This balance contributes to the realism of the generated routes, simplifying
the task for the drivers. Studies have consistently highlighted the importance
of simplicity in real-world systems, as it plays a vital role in gaining driver
acceptance and ensuring the successful implementation of the routes [57] [118].
For example, nodes outlying from the main route would be counter-intuitive for
the drivers and undermine the effectiveness of the generated routes. By taking
into account a broader objective than only fuel consumption, this balance was
achieved.

While the primary goal is to minimize environmental impact, it is essential to
consider the associated costs. Taking the extra computational effort to strike a
balance between environmental considerations, specifically fuel consumption
in this case, can lead to significant benefits. The generated routes for Remiks
are designed to be long-lasting, considering the pace of urban development and
other changes. This ensures that the routes remain relevant for several years,
making the investment of computational resources worthwhile. Thus, achieving
sustainable waste collection routes is possible through a balanced approach
that aligns with the principles of the Triple Bottom Line (tbl). tbl emphasizes
a holistic, long-term perspective by considering economic, environmental, and
social factors in decision-making processes.
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Reinforcement Learning

Through the work of this thesis, reinforcement learning have shown promise
in solving routing problems. While it may not yet be competitive with the es-
tablished methods, it has demonstrated its capability to solve routing problems
effectively.

One notable advantage of reinforcement learning is its ability to solve problems
in real-time optimization without the need for a pre-existing training dataset.
With a supervised approach pre-existing dataset is required to train a model.
This dataset may consist of historical data or manually crafted rules based on
domain expertise. However, creating andmaintaining such datasets can be time-
consuming, expensive, and impractical, especially in dynamic environments
where conditions change frequently.

Reinforcement learning provides a data-driven approach to problem-solving,
distinguishing it from methods that rely on pre-existing datasets. In the case of
waste collection generation for Remiks, the utilization of reinforcement learn-
ing showed promising applicability, as it allows the learning agent to interact
directly with the environment and learn from the feedback it receives. This
characteristic of reinforcement learning holds great promise for real-world ap-
plications, as it enables the model to adapt and optimize waste collection routes
based on real-time information and changing conditions.

However, it is important to acknowledge that reinforcement learning still faces
challenges, particularly in achieving optimality. Routing problems, by their na-
ture, are known to be NP-hard, making the search for an optimal solution com-
putationally infeasible. Nevertheless, by continually pushing the boundaries
and making incremental improvements in solution quality and computational
time, reinforcement learning can make significant strides in addressing these
challenges.
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Fuel Consumption

While the attention-based method demonstrates promising results, it is im-
portant to acknowledge certain limitations and areas for improvement. One
potential avenue for refinement lies in enhancing the estimation of fuel con-
sumption. In this thesis, the focus was primarily on road gradients as a factor
influencing fuel consumption. However, exploring the influence of load and
speed in greater detail would be highly valuable. By incorporating these ad-
ditional variables, a more comprehensive understanding of fuel consumption
patterns and their impact on route optimization can be achieved. This would
also enable a direct comparison between the actual fuel estimates obtained
from Remiks’ data and the generated estimates from the method used in this
thesis.

A disparity was observed between the fuel estimates in this study and the actual
fuel consumption gathered from Remiks. This disparity arises from the use of
a simplified model that does not consider cumulative load, variating speed, or
the effects of starts and stops. Despite these simplifications, the method still
provides valuable insights, and the results generated are internally consistent
and comparable.

Future research should consider incorporating the cumulative effect of load,
accounting for varying speeds, and addressing the impact of starts and stops
to improve the accuracy and comparability of the fuel consumption estimates.
When considering speed, it is worth noting that many existing studies on route
optimization assume an average speed of over 40 km/h [101] [63]. This as-
sumption does not hold true for waste collection applications, as the average
speed in this context was found to estimate to be 14 km/h.

Therefore, further exploration of speed is necessary to develop a more accurate
fuel consumption model. Although this area of research is relatively under-
developed for transportation scenarios involving lower speeds, it presents an
interesting avenue that could yield valuable insights and results. By refining
the model to better align with real-world scenarios, the generated estimates
can be directly compared with actual fuel consumption, enhancing the overall
applicability and validity of the research findings.
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Value for Remiks

Training Purpose
Another benefit of the proposed method for waste collection routes proves to be
highly advantageous for training purposes. The conventional training process
often requires a significant amount of human time and has the potential for
improvement in several aspects. By utilizing this method, drivers can immedi-
ately benefit from optimized routes, starting from day one, instead of having to
manually optimize the routes themselves over many years of driving the waste
collection route. This streamlined approach saves time and ensures optimal
efficiency from the outset. It removes the dependency on senior drivers’ knowl-
edge and eliminates the requirement for new drivers to spend years driving
routes before achieving an optimized waste collection route.

Goal-Oriented Strategies
The implementation of the proposed methodology for waste collection routes
offers an additional advantage by enabling Remiks to enhance their focus on
achieving their goals, specifically in terms of emission reduction. This approach
mitigates the inherent randomness associated with route selection, as it elimi-
nates the sole reliance on individual driver preferences. By employing this route
optimization approach, Remiks can proactively implement a more targeted
and goal-oriented operational strategy. Consequently, this positions Remiks
as a competitive and sustainable player in the waste management industry,
providing them with a competitive advantage.

Flexibility
Furthermore, the model can be extended to incorporate additional constraints
or objectives based on specific requirements. For instance, the same model can
be used to optimize vehicle range for electric vehicles by considering factors
affecting fuel consumption and range. By including constraints such as battery
capacity, charging station availability, and energy efficiency, the model can be
adapted to find routes that maximize vehicle range while minimizing energy
consumption. This flexibility allows for the application of the model to vari-
ous optimization scenarios, making it a versatile tool for addressing different
objectives for the company.

Sustainable Waste-Collection Routes
In real-world waste collection, the optimization of routes involves challenges
that extend beyond efficiency and cost. Factors such as route simplicity and
driver satisfaction also play a role but are challenging to objectively quantify
[119]. It is crucial to acknowledge that what may appear optimal in theory does
not always translate into practical effectiveness. Striking a balance between
various factors, including driver satisfaction, environmental considerations, and
distance, becomes essential for delivering successful solutions.
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The proposed method aims to achieve this balance by considering both fuel
consumption and distance through the 𝛼 − 𝛽 tuning process, leading to the
generation ofmore sustainable and long-term routes. Taking a holistic approach
that considers theoretical considerations alongside practical constraints is vital
to ensure the viability and effectiveness of the proposed methods in real-world
applications. This approach aligns with the principles of the Triple Bottom
Line (tbl) framework, emphasizing the need to consider social, economic, and
environmental aspects in addition to minimizing fuel consumption alone.

By adopting this holistic perspective, sustainable waste-collection routes can
be achieved, taking into account the diverse range of factors that contribute to
sustainability in waste management operations.

9.2 Future Directions

This section delves into several potential avenues for future research and de-
velopment to enhance the effectiveness of the proposed model. In addition to
improving fuel consumption estimations, as discussed earlier, there are other
intriguing directions worth exploring. The following areas are highlighted as
promising avenues: integrating real-time transportation information, incorpo-
rating a heterogeneous vehicle fleet, and considering waste bin clustering as
an alternative approach for emission reduction.

Real-Time Transportation Information
Integrating real-time transportation information into the optimization model
is a promising direction for future development. By leveraging dynamic real-
world data, the model can effectively consider traffic conditions, construction
work, and road closures, leading to more precise and adaptive route plan-
ning [120]. Furthermore, real-time information can offer valuable feedback
to drivers, enhancing the training process and overall performance. It is worth
noting that incorporating real-time data may impose computational-time chal-
lenges due to increased requirements. This research direction holds immense
potential and can substantially benefit businesses leveraging the model.

Heterogeneous Vehicle Fleet
Another potential direction for further development of this model is to extend
it to include a heterogeneous fleet of vehicles [103], encompassing both side
loaders and back loaders and bins with underground tunnels used by Remiks
for waste transportation. By incorporating the entire fleet, the optimization
model can allocate vehicles across different types, leading to more efficient
operations. This extension holds the potential to provide valuable insights and
contributing to the ongoing research efforts in this domain.
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Furthermore, it is worth noting that optimization naturally thrives in scenarios
characterized by limited options and a constrained timeframe. Therefore, the
inclusion of a wider range of choices and variations in the optimization models
can lead to significant cost savings.

Clustering Waste Bins
While working on optimizing waste collection routes, an alternative approach
emerged: exploring the best clustering of waste bins to optimize the overall
objective. This method offers an additional avenue to reduce emissions in the
waste collection by grouping waste bins together strategically. The process in-
volves consolidating multiple bins into a single collection point, minimizing
the number of starts and stops during collection, and consequently reducing
fuel consumption. This approach not only saves time and effort in the collec-
tion process but also allows the optimization model to consider fewer nodes,
resulting in faster computations.

Clustering can be optimized by identifying areas with high fuel consumption,
detecting edges with significant energy usage, or employing waste sensors in
the bins to determine which bins actually require collection [121]. Addition-
ally, clustering can be achieved by identifying households that can be grouped
together based on their waste generation patterns. By incorporating this strat-
egy alongside the proposed model, waste management efficiency and emission
reduction efforts can be further enhanced.

When discussing this topic with drivers, a key obstacle emerged: the social
aspect. Clustering waste bins presents implications for the municipal tax sys-
tem, as residents may resist sharing waste management costs with neighbors.
Logistical and social dynamics both play a role in grouping bins together. A chal-
lenge lies in determining responsibility for bin grouping. Elderly individuals or
those in hilly areas may lack the physical capability for this task. Implementing
the clustering approach should consider these factors, potentially requiring
additional support and resources.

Remiks is actively exploring future possibilities to address challenges, including
the potential implementation of sensors in waste bins. This innovative idea in-
volves utilizing real-time fill-level data to optimize the collection process based
on actual waste volume. By integrating sensor data into the model, Remiks
aims to enhance its effectiveness and leverage the potential of IoT technologies.
Therefore, dynamic route planning based on sensor data could minimize un-
necessary trips, optimize resource allocation, and presents an exciting avenue
for the future development of the proposed method in this thesis.
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9.3 Conclusion

In this thesis, an attention-based neural network is proposed for solving the
Green Vehicle Routing Problem (gvrp) and optimizing waste collection routes.
The primary objective of the proposed gvrp is to minimize fuel consumption,
thereby reducing emissions in waste collection operations. This research aims
to address the existing research gap in the field of gvrp and its real-world
applications.

To validate the effectiveness of the proposed method, it is applied to a practical
scenario involving the waste collection company Remiks in Tromsø. The re-
sults obtained from applying the proposed method demonstrate its success in
generating waste collection routes that minimize fuel consumption and reduce
emissions during the waste collection process. While the current approach pri-
marily focused on accounting for road gradient as a factor influencing fuel con-
sumption, further enhancements can be made by considering additional factors,
such as variating speed and load. Nevertheless, the findings of this study high-
light the potential of the proposed method to contribute to sustainable waste
management practices and provide insights for real-world applications.

By combining the power of an attention-based neural network with the spe-
cific context of the gvrp in waste management, this research contributes to
knowledge and practical solutions in route optimization and emission reduc-
tion in the waste collection domain. These findings pave the way for further
exploration in this area.
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Appendix
Current Waste Collection Zones

Figure 9.1: Monday waste collection routes. Geographical representation of the col-
lection routes with their fuel consumption. Vehicle 5 has the highest fuel consumption
and collects in the city area.
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Figure 9.2: Tuesday waste collection routes. Geographical representation of the col-
lection routes with their fuel consumption. Vehicle 4 has the lowest fuel consumption
and collects in the district area.

Figure 9.3: Wednesday waste collection routes. Geographical representation of the
collection routes with their fuel consumption. Vehicle 5 has the highest fuel consump-
tion and collects in the city area.
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Figure 9.4: Thursday waste collection routes. Geographical representation of the
collection routes with their fuel consumption. Vehicle 4 has the lowest fuel consumption
and collects from the fewest households in the district areas.

Figure 9.5: Friday waste collection routes. Geographical representation of the collec-
tion routes with their fuel consumption. All vehicles collect in the city area, and the
overall fuel consumption is greater than on other days.
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