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Assessing ocean ensemble
drift predictions by comparison
with observed oil slicks

Victor de Aguiar1*, Johannes Röhrs2, Anna Malin Johansson1

and Torbjørn Eltoft1

1Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway,
2Norwegian Meteorological Institute, Research and Development Department, Oslo, Norway
Geophysical models are cornerstone pieces in marine forecasting of floating

objects and pollution, such as marine surface oil slicks. Trajectory forecasts of oil

spills inherit the uncertainties from the underlying geophysical forcing. In this

work we compare the forecast capabilities of an ocean ensemble prediction

system (EPS) to those from a higher resolution deterministic model on the

representation of oil slick drift. As reference, we use produced water (PW)

slicks detected and delineated from 41 C–band Sentinel-1A/B satellite

synthetic aperture radar images between April and December, 2021. We found

that the EPS provided at least equivalent member-wise results relative to

simulations forced with the deterministic model. Ensemble verification through

rank histograms and spread-error relationship showed that including the ocean

fields is necessary to address model uncertainties. Whether considering the

ocean field or not, the modeled slicks were counterclockwise rotated between

20° and 30° relative to the ones observed in the satellite images, and these were

deflected about 45° to the right of the observed wind direction.

KEYWORDS

ensemblemodeling, SAR, trajectory prediction, producedwater, remote sensingobservations
1 Introduction

Ocean, wave and atmospheric model products are routinely used by research institutes

and state agencies as backbones in oil drift models for real time prediction and contingency

plans (e.g. Sutherland et al., 2020). Despite their paramount importance in modeling oil

slick drift, geophysical circulation models exhibit uncertainty and hence the modeled

variables might not accurately reflect the environmental state (Jacobs et al., 2021; Röhrs

et al., 2023a).

Numerical prediction systems are naturally chaotic, meaning that they are highly

sensitive to initial conditions. By slightly perturbing the initial conditions of a deterministic

dynamical system, Lorenz (1963) showed that non-periodic solutions are unstable and

these can evolve into considerably distinct states. Uncertainties also arise from the model

physics, truncation errors and imposed boundary conditions. These intrinsic limitations
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present in the prediction process resulted in development of

ensemble forecasting, where equally probable ensemble members

are generated by perturbing the model configuration and

initialization to assess the uncertainty and address the most likely

leading scenarios of the system’s state (Buizza, 2019).

In trajectory forecasts, ocean currents, waves and the wind fields

are necessary to predict the future positions of a target of interest, and

as such, modeled trajectories inherit errors of the underlying forcings.

The basic oil drift model states that the oil particle velocity (Voil) at the

ocean surface is composed as a combination of ocean motions (Vo), in

which the tidal currents, geostrophic currents, Ekman transport etc. are

included, a fraction of the wind speed (aV w), where a represents the

wind drift factor, and the Stokes drift (Vs) as follows:

Voil = Vo|{z}
Ocean

+ (aVw)|fflfflffl{zfflfflffl}
Wind

+ V s|{z}
Stokes Drift

(1)

Based on Eq. 1, oil drift ensemble modeling can be performed as

Monte Carlo simulations to cover ranges of possible scenarios by

randomly varying the initial position, the releasing time within a

period of interest and the wind drag factor term (Nordam et al.,

2017; Röhrs et al., 2018; Villalonga et al., 2020; de Aguiar et al.,

2022). Despite its implementation simplicity, this approach is

widely used in environmental risk assessments as they might

indicate regions potentially impacted and possible oil pathways in

case of a real oil spill accident takes place (Olita et al., 2019; Sepp

Neves et al., 2020). Nonetheless, as pointed out by Barker et al.

(2020), the outputs result essentially in a greater diffusion of the

trajectories since the ocean dynamic system is fundamentally

the same.

To overcome this drawback, multi-model ensembles have

increasingly been used as multiple distinct models are freely

available in web-platforms, e.g., the Copernicus Marine

Environment Monitoring Service (CMEMS). By integrating

existing national models with products available at CMEMS,

Zodiatis et al. (2016) developed the Mediterranean Decision

Support System for Marine Safety (MEDESS-4MS) service, a

decision system designed to support the European and

Mediterranean emergency centers in oil spill response. Connected

to 14 ocean models, 7 atmospheric models and 7 wave models, De

Dominicis et al. (2016) used MEDESS-4MS on the reproduction of

an oil slick detected in the Western Mediterranean Sea and

trajectories of drifters subject to distinct wind and wave exposure.

The authors highlight superior forecast accuracy of higher

resolution ocean models. Conversely, Dagestad and Röhrs (2019)

reports that mesoscale ocean features resolved by a high-resolution

model (2.4 x 2.4 km) might actually be seen as degrading noise due

to its low predictive skill. As independent models are used, the

multi-model approach provides distinct leading states of the ocean

and atmosphere, but perturbed single model ensembles are required

to statistically access model uncertainty (Frogner et al., 2022).

Ocean models at submesoscale permitting range (1 -10 km)

have been implemented to improve the representation of the kinetic

energy cascade, thus theoretically enhancing ocean model results

towards more realistic dynamics. Large amounts of data are

necessary to constrain circulation at these scales, and as the pace

of observation systems’ implementation does not follow the rapid
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advances in computational capability, forecasts provided by such

models might actually degrade faster than predictions issued by the

coarser ones (Jacobs et al., 2021).

While constraining initial conditions in eddy-resolving ocean

models remains a challenge, ensemble models are considered a

valuable tool to provide estimates of uncertainty and equally

probable ocean leading states. Thoppil et al. (2021) showed that a

lower resolution (1/12.5°) ensemble forecast system extends the

predictability of ocean mesoscale features with wavelengths greater

than 150 km to between 20 and 40 days, outperforming its higher

resolution (1/25°), deterministic version. By modeling drifter

trajectories, Melsom et al. (2012) found that the ensemble average

trajectories are generally more accurate than the corresponding

results from a deterministic model. In a similar study, Khade et al.

(2017) also highlighted better agreement of the ensemble mean

trajectory to particle drifts in comparison to single deterministic

simulations, despite that no independent observations were used

for validation.

Less attention has been paid to the uncertainties in ocean

models compared to wind forecasts due to its perceived

secondary role in marine pollutant modelling (Li et al., 2019;

Kampouris et al., 2021), though Jones et al. (2016) showed that

the oil slick drift modeling was improved when ocean current data

retrieved from drogued buoys were included in the drift modelling.

Additionally, other studies have also shown that poorly resolved

mesoscale features (Jorda et al., 2007) and inertial oscillations

(Brekke et al., 2021) impact the modeled drift of slicks, thus

misrepresenting the predicted trajectory if not taken into account.

Three research questions are addressed in this work: (1) We

compare the forecast capabilities of an operational ocean ensemble

prediction system to a higher resolution deterministic model on the

simulation of produced water (PW) drift, (2) we assess the ability of

EPS to estimate model uncertainties and (3) we investigate the role

of the wind field on PW drift.

PW is a byproduct mixture consisting largely of saline water

and low concentrations of oil which when being released result in

thin mineral oil slicks. Here we utilize continuously released PW

from the operational oil extraction platform Norne, located in the

Norwegian Sea about 100 km offshore. The PW release occurs at 12

m depth and the oil plume rises through the water column within

minutes to the surface. PW releases represent the general case of a

coherent thin oil film, and thin oil films have been found to make up

approximately 90% of the area and volume of accidental oil spill

releases (Svejkovsky et al., 2016), which underscores the importance

of correctly modeling slicks for oil spill risk assessments. Such films

are difficult to model given their ephemeral nature on the sea

surface, and development of improved models is currently

hampered by limited experimental data under a wide range of

oceanic conditions. Skrunes et al. (2019) and Johansson et al. (2021)

showed that PW slicks may be satisfactorily detected and

characterized using Synthetic Aperture Radar (SAR) for wind

speeds ranging between 1 - 12 ms−1.

This work is structured as follows: Section 2 describes the PW

slicks observations, geophysical models, the Lagrangian particle

tracking model, simulation setups and the metrics used to assess

the simulations. Section 3 presents the results obtained in this work
frontiersin.org

https://doi.org/10.3389/fmars.2023.1122192
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


de Aguiar et al. 10.3389/fmars.2023.1122192
and these are discussed in Section 4. Finally, Section 5 summarizes

the key results.
2 Data and methods

2.1 SAR images and PW masks

SAR remote sensed data is a cornerstone in environmental

monitoring for surface oil detection due to its all-weather

capabilities, i.e., neither lack of daylight nor cloud coverage

inhibit its data acquisition. Due to its viscous and dielectric

properties, oil slicks might be identified in satellite SAR images,

as its presence at the ocean surface attenuates capillary waves and

consequently results in a decrease of the backscatter energy received

by the radar (normalized radar cross section, NRCS) within the slick

area relative to the surrounding water. Thus the oil slicks is

observed as a dark region in SAR images.

NRCS damping is typically observed in the range between 5 and

12 dB (Alpers et al., 2017), but varies depending on the radar

incident angle and its polarization (HH, VV, HV and VH), where

the letters indicate the transmitted and received signal orientation,

respectively. It should be highlighted that the reduction of NRCS
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does not necessarily indicate the presence of a mineral oil slick since

the observation of dark regions in SAR images might also be related

to look-alikes, i.e., biogenic films and areas of low wind speed. In

addition, oil slick detection by SAR is also hindered at high wind

speeds due to the increase of the ocean roughness, thus essentially

limiting its detection for wind speeds within the range between 1.5 -

2 ms −1 and 10 - 14 ms −1 (Fingas and Brown, 2018).

Covering the period between April and December 2021, 41

Sentinel-1 scenes obtained in Interferometric Wide (IW) Ground

Range Detected (GRD) mode (VV/VH) were used here. The

Sentinel-1 mission is composed by two polar-orbiting satellites,

Sentinel-1A (2014-ongoing) and Sentinel-1B (2016-2022), operating

in C-band (5.405 GHz), with pixel spacing of 10 m x 10 m in the

azimuth and range directions, and incidence angles between 32.9° -

43.1° in this acquisition mode. The scenes were calibrated, speckle-

noisefiltered andgeoreferenced in theEuropean SpaceAgency’s (ESA)

SNAP toolbox. The PW slicks were manually delineated using the

processed scenes in QGIS, see Figure 1. The width of the slicks varied

between 85 m and 200 m, while their length ranged from 1 km to 15

km. Slicks were detected in all of the considered months apart from

June, when the platform was not operational due to maintenance

procedures. August had the highest number of observed PW slicks

(12), and November and December the lowest, with 1 slick each.
B

CA

FIGURE 1

Overview of the area of study. (A) Location of the Norne platform (dot) offshore the Norwegian coast. The colormap in represents the N-HighRes

ocean current speed (ms −1) averaged between the 1st and 14th of April, 2021. The grey polygon around the platform is zoomed-in in (B), with the
delineated PW slicks for each month. Red and white lines depicts the grid domain of N-HighRes and B-EPS. Their full extent, including the WAM
domain (blue), can be seen in (C).
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2.2 Produced water and in situ wind data

According to the national regulations, PW discharge on the

Norwegian shelf is legal provided that the monthly average oil

concentration does not exceed 30 gm−3 (Miljørapport, 2019). When

the platform is operational PW is continuously released from a sub-

surface pipe from which the oil rises to the surface. The release

volume and concentration vary over time, though the variability is

on a bi-weekly to monthly time scale. Release data from the Norne

platform in 2021 was provided by the operator and the average daily

PW oil release was 253 kg, average water release was 19754 m3, with

an average oil concentration of ∼ 10.85 gm−3 and an average flux of

0.23 m3 s −1. The oil volume percentage of 0.013% means that it is

classified as an oil-in-water type of emulsion (Lu et al., 2020),

though such low concentrations put the releases close to the oil free

water surfaces. Damping ratio, relative thickness, estimates of

produced water slicks indicates low variability and hence confirm

the assessment of thin surface slicks (Skrunes et al., 2019; Johansson

et al., 2021).

Wind speed and direction are recorded every 3 hours at Norne.

Observations between April and December 2021 were used to assess

the modeled winds of Barents 2.5-EPS and NorKyst-800 through

the Root Mean Square Error (RMSE), bias and Willmott skill score

(Willmott, 1981, WS). The alignment between observed wind

direction and the PW bearing angle was also verified in order to

evaluate the role of winds on the transport of the PW slicks. The

findings are presented in Section 3.1.2.
2.3 Geophysical forcing

Norne is located in the Norwegian continental shelf, bordered

by the Norwegian Coastal Current (NCC) flowing northward

alongshore and by the Norwegian Atlantic Slope Current

(NwASC) along the continental slope. The region is generally

considered mesoscale eddy rich, with stable dynamic boundaries

on the continental slope preventing cross-shelf transport (Dong

et al., 2021). The abundance of eddies can also be observed in

Figure 1A. The existence of density fronts in the region is known

(Dong et al., 2021), and turbulent baroclinic instabilities might

affect the PW drift.

2.3.1 Ocean model ensemble
Ocean currents are provided by two regional setups of the

Regional Ocean Modeling System (ROMS, (Shchepetkin and

McWilliams, 2005)): The Barents 2.5-EPS (B-EPS) ocean model

provides a 6-member ensemble with 2.5 km horizontal resolution

(B-EPS), and the NorKyst-800 (N-HighRes) ocean model provides

deterministic forecasts at higher resolution of 800 m (Figure 1). B-

EPS is a coupled ocean-ice system for the Barents Sea and Northern

Norway and N-HighRes is a regional model for the entire coast of

Norway. The model domains overlap at the experiment site and

provide daily forecasts with 66 hrs lead time.

B-EPS is initialized each day from the forecast of the previous

day, with update increments provided by an Ensemble Kalman filter
Frontiers in Marine Science 04
data assimilation scheme (Sakov and Oke, 2008). While sea surface

temperature and in-situ hydrography are assimilated to constrain

the density fields, no data that directly constrains the velocity fields

is being assimilated. Details on the configuration for B-EPS model

are given in (Röhrs et al., 2023b). In principle, ensemble spread in

B-EPS is maintained by forcing of the ocean model with an

atmospheric ensemble. The first is forced by a high-resolution

weather forecast model AromeArctic (Müller et al., 2017a) (2.5

km x 2.5 km), while the subsequent members are forced by random

members of the ECMWF-ENS forecast (ECMWF, 2012). In

addition, each ensemble member retains their identity from the

previous forecast cycle. Consequently, as the current field develops

independently in each member the B-EPS ensemble permits various

realizations of mesoscale circulation across the members. While

ensemble spread of SST is validated in Röhrs et al. (2023b), spread

in surface circulation and the ability of the ensemble to represent

uncertainties in currents are the subject of ongoing investigations.

N-HighRes is a regional ocean model covering the whole

Norwegian coast at an eddy-resolving resolution. The model is

forced by the atmospheric forecast model Arome-MEPS (Müller et

al., 2017a). Details of N-HighRes are provided in Asplin et al. (2020)

and references therein.

While B-EPS assimilates sea surface temperature and sparse in-

situ data, neither of the two ocean models exhibits constraint of

mesoscale ocean circulation that directly provides forecast skill in

surface currents. A degree of predictive skill in ocean surface

currents may however arise by the relatively high degree of

predictability in the used wind forcing.

Both model setups include the major tidal constituents provided

by TPXO 7.2, and receive lateral boundary conditions from the

TOPAZ4 hydrodynamic model (Xie et al., 2017). TOPAZ4 has a

horizontal resolution of about 10 km, it is based on the Hybrid

Coordinate Ocean model and is part of the Copernicus Marine

Environment Monitoring Service for the Arctic domain.

2.3.2 Atmospheric forcing ensemble
While each of the used ocean model representations receives

different atmospheric forcing, the wind from the respective model is

also a direct input for the oil drift simulations, as surface slicks

become direct subject to atmospheric drag.

AROME-Arctic and Arome-MEPS (hereinafter AROME) are

the regional high-resolution weather prediction models for the

Barents Sea and Norway, respectively. Both systems issue weather

forecasts 66 hrs ahead with multiple update cycles each day.

AROME is based on the HARMONIE-AROME model

configuration of the ALADIN-HIRLAM system (Bengtsson et al.,

2017), with boundary conditions obtained from ECMWF’s IFS.

2.3.3 Wave prediction model
A prognostic model for the evolution of the wave energy

spectrum, WAM (Komen et al., 1994), is used to calculate Stokes

drift and wave entrainment rate of surface oil. The used

implementation of WAM at MET Norway has a horizontal

resolution of 4 km, resolving the wave energy spectrum in 36

directions and 36 frequencies (Gusdal and Carrasco, 2012). The
frontiersin.org
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Stokes drift is calculated from significant wave height, peak period

and the wave direction according to Breivik et al. (2014), hence

taking into account both wind sea and swell contributions to the

depth-dependent Stokes drift profile. While surface oil slick is

advected by the surface Stokes drift, submerged oil particles are

moved by the Stokes drift at the respective particle depth.
2.4 Oil drift model - OpenOil

The open-source oil transport and weathering Lagrangian

framework, OpenOil, is used to perform the drift simulations

(Röhrs et al., 2018). Embedding tabulated oil information provided

by the Norwegian Clean Seas Association for Operating Companies

(NOFO) and linked to the ADIOS oil library (https://github.com/

NOAA-ORR-ERD/PyGnome), OpenOil is part of the OpenDrift

Lagrangian particle tracking model (Dagestad et al., 2018).

Oil surface transport in OpenOil is formulated as presented in

Eq. 1. The wind drift factor (a) was fixed at 3%. The releasing point

is located at 12 m depth and it takes around four minutes for the

PW to reach the ocean surface. We initialise the drift simulations at

the ocean surface.

OpenOil distinguishes between submerged droplets and

elements that are part of a surface slick. Redistribution between

these reservoirs is controlled by buoyancy, wave entrainment and

vertical mixing (Nordam et al., 2019). Buoyancy depends on oil

droplet density and the particle size. The droplet radius distribution

depends on the viscosity, interfacial tension and wave dissipation as

parameterized according to Li et al. (2017). Entrainment of surface

particles is parameterized as function of wave energy dissipation

from the wave model, using empirical relationships provided by Li

et al. (2017). Further details on the implementation of surface

interaction of particles and their behavior in the turbulent water

column are given in Röhrs et al. (2018).
2.5 Simulation setup and evaluation

For each PW delineated from the SAR scenes, simulations were

started 6 hrs before the acquisition time and ran for this same time

interval. The ensemble simulations were performed using the ocean

and atmospheric fields provided by the B-EPS, while N-HighRes

forcing was used for the deterministic runs. In both cases, Stokes

drift was imported from WAM, where the e-folding depth decay is

calculated according to (Breivik et al., 2016). Two setups were defined

in this work: (Setup 1) Simulations including ocean forcing, Stokes drift

and the wind fields, and (Setup 2) Simulations forced solely by the wind

fields. Weathering processes were not considered in the simulations.

The evaluation is divided into three different approaches,

namely Member-wise Assessment, Model Comparison and

Ensemble Verification. These are described below.

2.5.1 Member-wise assessment
The 656 model results (41 scenes, 8 simulations per scene and 2

setups) were evaluated against their respective PW observations
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(member-wise assessment). As these are simple snapshots and not

time series of PW displacement, commonly used skill scores (e.g.

the normalized cumulative Lagrangian separation (SS), Liu and

Weisberg (2011)) are not applicable. We therefore considered two

recently proposed metrics by Dearden et al. (2022) for

instantaneous observations, the Centroid Skill Score (CSS) and

Area Skill Score (ASS):

CI =
Dx
LOBS

(2)

where Dx is the distance between predicted and observed centroids

at a given time instance and LOBS is the length of the observed oil

spill. The CSS is defined as:

CSS =
1 − CI

Cthr
, for CI < Cthr

0, for CI > Cthr

(
(3)

where C thr is a tolerance threshold defined by the user. The ASS is

defined similarly as:

AI =
APR − AOBSj j

AOBS
(4)

which is simply the absolute difference between the predicted and

observed oil spill areas, normalized by the observed area. The area

skill score is then defined as:

ASS =
1 − AI

Athr
, for AI < Cthr

0, for AI > Cthr

(
(5)

A C thr value of 1, adopted in Eqs. 3 and 5, means that the model

to present any skill, the predicted parameter must not exceed the

magnitude of its observed counterpart. One would obtain a perfect

skill score if both CSS and ASS = 1.

Setting the tolerance threshold is not trivial and it was

previously shown to being sensible to the forecast horizon

(Révelard et al., 2021) and region under investigation (de Aguiar

et al., 2022). For this reason, two other metrics were applied, namely

the centroid distance error (Dx in Eq. 2) and offset angle (OA). The

latter is the angle between modeled and observed centroids, ranging

from 0∘ to ± 180∘.

Figure 2 illustrates the verification approach. Each color

represents trajectories forced by one of the eight different forcing

fields, and the highlighted points are their respective centroids.

Considering N-HighRes output as an example, the distance error

between observed (red dot) and modeled (white) centroids is

depicted as the solid black line (Dx, centroid distance error)

whereas the angle between the two orange lines represents the

offset angle.

2.5.2 Model comparison and ensemble
verification

The member-wise metrics (CSS, ASS, centroid distance error and

offset angle) do not provide information of the quality of the

ensemble system. Confidence ellipses (CE) are often used in

ensemble modeling as a proxy of spread. We therefore consider

CEs as follows: the cloud of particles follow a two-dimensional
frontiersin.org
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Gaussian distribution. Two-standard deviation ellipses were fitted

for each of the model outputs, and the area of these were used in ASS

(Eqs. 4 and 5). An additional CE was fitted considering all ensemble

members (mean EPS). This is illustrated in Figure 2 as ellipses

enclosing each forcing with their respective colors, and a pale-green

ellipse representing the mean EPS.

As the mean ensemble CE can be inflated to the point that it will

likely cover the observed PW slick, we also evaluated the

performance of the EPS by counting the number of observed

centroids that fall within the mean EPS CE domain (hit). The

relation between the area of the latter and the separation distance

between modeled and observed centroids was also inspected.

For a model with statistical skill, the forecast results and the

observed true state – the verification – ought to be independent draws

from the same probability distribution, which may be evaluated in

terms of a model and observation value histogram. In addition, the
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spread in forecast results among a N-member EPS is supposed to

reflect the actual uncertainty in forecasts. Rank histograms and the

spread-error relation are used to determine the ensemble spread. By

definition, a rank histogram is built onN + 1 bins (Hamill, 2001). For

each observed centroid position, its longitude and latitude is verified

against the ranked ensemble members coordinates. A well-calibrated

ensemble system evaluated at many independent cases ought to

provide a uniform rank histogram, while overdispersive

(underdispersive) systems will present a concave (convex)

distribution. For 2D rank histograms, these distributions are seen

as homogeneous, centered and clustered in the corners, respectively.

Spread (s) and error (ϵ) are hereby defined as the square root of

the average ensemble variance and the root mean square error of the

ensemble mean (�X) (Eckel and Mass, 2005), respectively. The latter

is simply the ensemble mean position and it is defined as:

�X = (
1

Nx,y
)o
N

n=1
Xx,y (6)

where N is the number of ensemble members and x,y represents all

the longitude and latitude positions of the virtual particles (X). The

spread s is given by:

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M o

M

m=1

1
N − 1o

N

n=1
(�XNx,y

− �X)2
� �s

(7)

where �XNx,y
is the mean position of a given ensemble member and

M is the number of observations. The error (ϵ) is then defined as:

ϵ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N + 1

� �
1
M o

M

m=1
(�X − PWx,y)

2

s
(8)

where PWx,y is the observed PW centroid. Similarly to the rank

histogram, the spread-error relationship also indicates if the EPS

addresses uncertainties correctly (ϵ  ≈ s), if it overestimates (ϵ  < <

ts) or underestimates them (ϵ  > > s). To examine the role of the

wind field on the modeled PW slick drift, we conducted the same

analysis on simulations solely wind-forced (Setup 2). The work

design is illustrated in Figure 3.
3 Results

3.1 PW drift simulations

3.1.1 Observed and modeled overall distributions
Heatmaps of the observed slicks, and contours representing

simulations for Setup 1 (magenta) and Setup 2 (black), for B-EPS

(a) and N-HighRes (b), respectively, are shown in Figure 4. Their

latitudinal (right sub-panel) and longitudinal (top sub-panel)

probability densities are also displayed. One can notice that the

B-EPS for Setup 1 presents the highest spread and its distributions

fit well to the observed. The results also indicate that differences

between the two set of simulations for N-HighRes are not as

pronounced as for the ensemble system.

The mean latitude and longitude positions were centered

around the releasing point, as expected. The ratio between
FIGURE 2

Example of PW slick simulation. The solid yellow area represents the
SAR derived PW slick. Outputs forced by the different ocean-
atmospheric models are shown with different colors (see legend).
The white ellipse represents the 2 std confidence ellipse (CE) for N-
HighRes, and modeled centroids are shown as highlighted dots. The
mean B-EPS CE is shown as the pale green ellipse. The solid black
line represents the distance error between the PW centroid (solid
red dot) and the N-HighRes centroid (white dot), and the offset
angle between them is represented by the solid black sector.
Simulations are initialized at the Norne location (white-cross purple
dot). Note that the N-HighRes covers only a segment of the
delineated PW slick (solid red shape).
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observed (Obs.) and modeled (Mod., B-EPS and N-HighRes)

standard deviations of the probability distributions (P) for Setup

1 and Setup 2 are shown in Table 1. The results indicate that

virtually no difference exists between B-EPS and N-HighRes in

Setup 2. Including the ocean fields, increased the standard deviation

in both models, with B-EPS presenting slightly better

overall performance.

3.1.2 Member-wise assessment of modeled PW
drift

The member-wise assessment for Setup 1 are shown in Table 2

and for Setup 2 in Table 3. N-HighRes presented slightly better

performance than the EPS members in every metric but ASS. One

can further notice that all models have negative OA values, meaning

that the modeled centroid is located to the left of the observed ones.

Setup 2 provided better results for all metrics considered relative to

Setup 1, with lower variability in the outputs. As for Setup 1, the

modeled slicks presented a counterclockwise rotation relative to

the observations.
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3.2 PW slick drift and wind direction

The modeled slicks, whether including ocean forcing or not, are

predominantly rotated anticlockwise relative to the observations.

This finding indicates that the atmospheric models exhibit a

consistent bias. We show in Figure 5 the polar histograms of

speed and direction errors between modeled (B-EPS member 1

(a); N-HighRes (b)) and observed winds. Both models slightly

overestimate the wind speed, presenting a mean error (mDiffspd ) of

0.92 ms −1 and 1.23 ms −1, respectively. Modeled winds are rotated

clockwise relative to the observations, having N-HighRes a lower

mean wind direction error (9.8∘) compared to B-EPS member 1

(21.3∘). About 44% and 50% of the observations fall within the

bounding boxes, respectively. A summary of the evaluation can be

seen in Table 4.

The mismatch between observed wind direction and PW

bearing angle is shown in Figure 6A. Due to gaps in the wind

time series between April and June, 28 scenes were assessed instead

of 41. Twenty-three of these presented deflection greater than 0°
FIGURE 3

Flow chart representing the work design. Blue blocks: the three model products considered in this study as inputs. Dashed arrows represent
simulations wind forced (V w , Setup 2) while the solid lines symbolize a combination of ocean currents (V o), Stokes drift (V s) and the wind field
(Setup 1). Red block: OpenOil, the Lagrangian modeling framework. Green block: Observed PW slicks, their centroids and drift direction obtained
from Sentinel-1A/1Bscenes. Yellow blocks: Evaluation (Member-wise Assessment, Model Comparison and Ensemble Verification).
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relative to the observed wind direction, with the majority being

concentrated between 30° and 45°. An illustrative representation of

the results is show in Figure 6B.

3.2.1 Model comparison
The area covered by the mean EPS CE gives an indication of the

members spread. Tables 5, 6 show the average (m), standard deviation
(s ) of the CE areas, and the number of hits (Hits) of each model

product for Setup 1 and Setup 2, respectively. The results clearly show
Frontiers in Marine Science 08
an increase in the average extent of all CEs with the inclusion of ocean

currents and the Stokes drift in the simulations (Setup 1). One can

further notice that the Setup 2 mean B-EPS CE shows virtually no

difference of m and s values relative to the B-EPS members, in

contrast to Setup 1 (about four-times higher).

The average (std) ratio between the mean EPS and the members

CE’s areas for Setup 2 was estimated to 0.99 (0.05), and 0.26 (0.17)

for Setup 1. Additionally, the ensemble members had an average

area about 30% (0.01%) higher (smaller) than N-HighRes for Setup

1 (Setup 2).

The mean EPS CE for Setup 1 also presented the highest

number of hits (36), 46% higher than N-HighRes. This could

indicate that the CEs are simply inflated to the point that their

area are more likely to encompass the observations, but the average

distance error between the confidence ellipse center and the

observed PW centroid was 2 km. For Setup 2, only 2 (4) hits

were registered for N-HighRes (mean B-EPS).

3.2.2 Ensemble verification
Figure 7 shows the rank histograms of Setup 1 (A) and Setup 2

simulations (B), respectively. Panels (C–E) are examples of
B

A

FIGURE 4

Distribution of observed (heatmap) and modeled (contours) slicks. Magenta (black) represents Setup 1 (Setup 2) simulations. Outputs in panel (A)
were obtained with B-EPS and (B) with N-HighRes. The top and right sub-panels show the longitudinal and latitudinal distributions following the
color legend.
TABLE 1 Standard deviation (s ) ratio between observed (Obs.) and
modeled (Mod.) for longitudinal and latitudinal probability distributions
(P) in Figure 4.

Model sLon(PObs :)
sLon(PMod :)

sLat(PObs :)
sLat(PMod :)

B-EPS Setup 1 0.9 1

B-EPS Setup 2 1.6 1.9

N-HighRes Setup 1 1 1.3

N-HighRes Setup 2 1.6 1.9
frontiersin.org

https://doi.org/10.3389/fmars.2023.1122192
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


de Aguiar et al. 10.3389/fmars.2023.1122192
overdispersive, consistent and underdispersive rank histograms

created from synthetic data randomly sampled from Normal

distributions with the same mean (0) and decreasing standard

deviation (10, 1, 0.1). Comparing these to the obtained results, it

is possible to notice the resemblance between Setup 2 rank

histograms (B), and the underdispersive case (E), and Setup 1 (A)

with panel (D).

The ratio between error (ϵ) and spread (s) (Eqs. 7 and 8) for an

ideal ensemble system should be approximately 1. The previous

findings are supported by ϵ
s   ≈ 1.3 for Setup 1 and ϵ

s   ≈ 69 for

Setup 2.
4 Discussion

4.1 Representation of PW slick drift using
ocean forecast models

The results presented in the previous section indicate that the

EPS reproduced the overall variability of PW slick drift (Figure 4)

and performs similarly to N-HighRes in a member-wise level

(Tables 2, 3). The skill scores obtained for the latter are on

average slightly higher than for B-EPS, though the difference is
Frontiers in Marine Science 09
small, especially when considering the ensemble mean. It is also

worth noticing that the Centroid Skill Score and Area Skill Score did

not present sensitivity relative to ‘bad’ simulations (e.g., Figures 8C,

F), whereas the unskilled predictions were addressed as skillful (not

shown). We stress that our work did not attempt to model the shape

of the slicks as they are too narrow (between 85 m to 200 m) to be

resolved by the operational models.

For their short spatial and temporal scales, PW slicks are highly

influenced by higher frequency, evanescent small scale features with

life spans from less than 5 hrs (Kirincich, 2016) to shorter than he

inertial period (Callies et al., 2020). These phenomena are

unconstrained by current observation systems, resulting in lower

predictive skill of higher resolution models (Sandery and Sakov,

2017; Jacobs et al., 2021).

Eddy-resolving ocean models may directly improve the

statistics of Lagrangian currents due to their better representation

of the kinetic energy spectrum at small scales. However, the use of

high-resolution ocean models may not translate into improved

predictive skill due to misrepresentation of the circulation

features in space or time (Révelard et al., 2021). Neither B-EPS

nor N-HighRes are expected to exhibit predictive skill for surface

currents beyond wind-driven and bathymetry-constrained flow, but

rather represent uncertainties in such unconstrained scales.
TABLE 2 Mean (m) and standard deviation (s ) of the Centroid Skill Score (C SS ), Centroid Distance Error (CDE, km), Area Skill Score (A SS ) and Offset
Angle (OA, ∘) for Setup 1.

Model m, s C SS m, s CDE [km] m, s A SS m, s OA [∘]

B-EPS #1 0.19, 0.26 3.4, 1.9 0.07, 0.23 -33.7, 69.0

B-EPS #2 0.22, 0.26 3.0, 1.4 0.08, 0.25 -11.0, 75.0

B-EPS #3 0.25, 0.27 3.1, 1.9 0.07, 0.23 -23.5, 68.2

B-EPS #4 0.25, 0.28 3.0, 1.9 0.04, 0.14 -15.3, 67.2

B-EPS #5 0.28, 0.31 2.6, 1.3 0.11, 0.28 -19.8, 74.0

B-EPS #6 0.24, 0.27 2.8, 1.3 0.09, 0.24 -35.5, 46.6

B-EPS mean 0.33, 0.31 2.2, 1.3 0.10, 0.26 -20.7, 49.8

N-HighRes 0.35, 0.33 2.1, 1.1 0.05, 0.17 -28.2, 38.9
TABLE 3 Same as Table 2, but for only wind forced simulations (Setup 2).

Model m , s C SS m, s CDE [km] m, s A SS m, s OA [∘]

B-EPS #1 0.40, 0.30 1.7, 0.96 0.12, 0.25 -22.8, 45.5

B-EPS #2 0.41, 0.29 1.7, 0.96 0.12, 0.24 -22.7, 45.4

B-EPS #3 0.40, 0.30 1.7, 0.96 0.13, 0.26 -22.7, 45.3

B-EPS #4 0.41, 0.29 1.7, 0.96 0.12, 0.24 -22.8, 45.5

B-EPS #5 0.41, 0.29 1.7, 0.96 0.12, 0.25 -23.7, 45.5

B-EPS #6 0.41, 0.29 1.7, 0.97 0.12, 0.23 -23.8, 46.7

B-EPS mean 0.40, 0.30 1.7, 0.96 0.13, 0.25 -22.7, 45.4

N-HighRes 0.40, 0.31 1.7, 0.91 0.13, 0.26 -24.3, 47.5
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4.2 Modeling oil drift using ensemble
forecasting

Confidence ellipses have been used as an indirect tool by the

atmospheric community for the assessment of ensemble spread for

more than a decade. In our analysis, we found a 36/41 (≈87.8%) hit

ratio for the ensemble simulations in Setup 1. This is fairly close to

the theoretical value of 86.5% associated to the considered two

standard deviations confidence interval (Wang et al., 2015). The

discrepancy of m between B-EPS members and the mean B-EPS CE

areas for Setup 1 (see Tables 5) entails from diverging trajectories,

otherwise, the average mean B-EPS CE area should be roughly

similar to those of the ensemble members. We therefore stress that

the mean EPS CE areas are not arbitrarily inflated, but their growth

rather reflects the B-EPS spread induced by the uncertainties in the

ocean field. Converging to Melsom et al. (2012) and Sandu et al.

(2020) findings, we also observed slightly better accuracy of the

mean EPS CE (2 km) relative to N-HighRes (2.1 km).

Despite showing better performances in all member-wise

metrics, Setup 2 results are indistinguishable among the distinct
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model products (see Tables 1, 3 and 6). Such lack of variability

stems from higher homogeneity of atmospheric horizontal flows in

comparison to the ocean (Figure 2), i.e., the simulated trajectories

experience essentially alike wind conditions. Additionally, due to

horizontal (500 km) and temporal (6 hrs) decorrelation scales

adopted on ECMWF-ENS’s perturbation schemes, the ensemble

spread of winds is generally low at the spatial (1-15 km) and

temporal (1-6 hrs) ranges investigated here. We acknowledge that

uncertainties in the wind field are the main sources of variability in

large and persistent oil slick scenarios (e.g. Li et al., 2019;

Kampouris et al., 2021), but we have evidences that it is

overridden by the ocean currents on short scales.

These findings corroborate with the rank histograms (Figure 7).

The uniform- and cornered-like patterns obtained for Setup 1 and

Setup 2, respectively, fits the artificial examples of consistent and

underdispersive cases. A uniform histogram is a necessary, but not

sufficient condition for determining the reliability of an ensemble

system due to conditional biases, nonrandom sampling or low

number of samples (Hamill, 2001). For finite size ensemble

systems, the ideal error-spread ratio is altered by an adjusting
BA

FIGURE 5

Polar heatmaps of wind speed (radius, m s −1) and direction (angle) errors between model (V wm) and observation (V wo), Apr - Dec 2021. (A) for
B-EPS member 1 and (B) for N-HighRes. Positive angles represent modeled winds rotated clockwise relative to the observed wind direction and
positive values in radius indicate V wm  > V wo. The red dashed line indicates where V wm  = V wo , the white dot indicates the mean speed and mean
direction errors for each model and the black polygon the region of highest concentration.
TABLE 4 Willmott Skill (WS), Bias and Root Mean Square Error (RMSE) for wind speed (spd) and direction (dir). Each atmospheric product was
assessed relative to wind observations at Norne between April and December, 2021.

Model WS spd WS dir Bias spd Bias dir RMSE spd RMSE dir

B-EPS # 1 0.90 0.81 0.92 21.2 2.2 89.6

B-EPS # 2 0.90 0.81 0.77 21.1 2.1 88.7

B-EPS # 3 0.91 0.81 0.73 20.7 2.1 88.6

B-EPS # 4 0.90 0.80 0.77 19.6 2.1 90.0

B-EPS # 5 0.90 0.80 0.70 21.1 2.2 91.6

B-EPS # 6 0.91 0.81 0.70 18.9 2.0 89.7

N-HighRes 0.90 0.84 1.23 9.85 2.3 83.4
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factor ϵ
s   = 1 +

ffiffiffiffiffiffiffi
2

N−1

q
, ≈ 1.2 for N = 6 (Eckel and Mass, 2005). The

error-spread ratio analysis confirmed that Setup 2 simulations

presented a value ( ϵs   ≈ 69) overly above the desired ( ϵs   ≈ 1.2).

Taking into account the ocean currents and the Stokes drift greatly

improved the spread among the EPS members, resulting in ϵ
s   ≈ 1.3.

Despite the proximity of the releasing location to the boundary

domain ( ≈ 30 km), these results show that the ensemble spread in

surface currents is readily developed at the study region.

Due to the number of possible future states that EPS provide,

often exceeding 20 members, ensemble modeling has been used by

weather prediction centers to forecast the strength, probability of

occurrence and regions impacted by hazardous events. Figure 8

shows examples of PW drift simulations with different degrees of

ensemble spreading. Panels (B, C) and (E, F) illustrate cases where
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particles follow a well-defined path and responders can have higher

confidence to base their decision plan. Note that low spread does

not necessarily imply accurate predictions as all the members can

converge to a wrong predictions (Figures 8C, F). Decision making is

hindered in the case that simulations diverge or present

bifurcations, as shown in Figures 8A, D. In this case, the drift

uncertainty is higher and this leads to a more problematic recovery/

rescue planning.
4.3 The misalignment between observed
slicks and the wind direction

An offset in the drift direction between modeled and observed

slicks was found for both Setup 1 and 2. Such mismatch can result

from circulation features not resolved by the ocean model, but also

from errors in the description of Ekman transport in the boundary

layer schemes for both the ocean and the atmosphere models

(Sandu et al., 2020) The latter is evidenced in Figure 5 and

Table 4 as bias in wind speed and direction, leading to the

observed systematic offset in drift directions for the oil

slick simulations

Stokes drift (Röhrs et al., 2012), Langmuir circulation (Yang

et al., 2014) and wave-current interactions (Staneva et al., 2021)

were shown to impact drift trajectories and improve predictive skill

when included. While the Stokes drift is explicitly included in the

trajectory simulations, the used ocean and wave model setups are

not coupled, meaning that wave-current interactions are not

represented in the ocean model (Geernaert, 1993; Chen et al.,

2020). The influence of these phenomena are small when

considered independently, but introduce further errors on short-

term predictions not accounted for in operational models. The

Stokes drift has been shown to have an important contribution to
BA

FIGURE 6

(A) Offset angle between observed PW centroid and observed wind directions. Radius values indicate the observed wind speed (ms −1). (B) Schematic
illustration of the slick deviation, where modeled slicks (Mod. PW Slick) veered counterclockwise ( ≈22∘) relative to the observed slicks (Obs. PW
Slick). The latter were deflected about 45∘ to the right of the observed wind (Obs. Wind). Modeled winds (Mod. Wind) were veered clockwise around
15∘ relative to Obs. Wind.
TABLE 5 Average (m, km 2) and standard deviation (s , km 2) of the
confidence ellipse area (CE) of each model product and the mean B-EPS
for Setup 1.

Model m CE Area [km 2] s CE Area [km 2] Hits

B-EPS # 1 11.9 7.0 15

B-EPS # 2 9.8 5.3 10

B-EPS # 3 10.6 6.1 15

B-EPS # 4 10.1 5.7 12

B-EPS # 5 7.8 4.2 11

B-EPS # 6 10.0 5.3 17

B-EPS mean 7.2 3.0 12

N-HighRes 8.7 4.3 19

mean B-EPS 44.7 21.9 36
The number of hits represents howmany times the observed centroid fell within the respective
CE domain (Hits).
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surface slick motion, as discussed in Röhrs et al. (2012); Jones et al.

(2016); van den Bremer and Breivik (2018).

Trajectory models are at the endpoint of a complex chain of

observation systems and forecast models. Beyond the impact of

internal and external sources of uncertainties (Barker et al., 2020),

drift modeling is also sensible to releasing time (Li et al., 2019).

Although released constantly, the residence time of PW slick at the

ocean surface is unknown, hence the considered forecast time (6

hrs) is arbitrary. Another drawback of this study is related to the

delineation process as this depends on the operator experience and

it is subjective. We recommend that further investigations on drift
Frontiers in Marine Science 12
ensemble modeling should link remotely-sensed observations and

in-situ data, preferably oil droplet diameter and drifter trajectories.

It would also be useful to test the influence of perturbations in the

model physics, boundary conditions and wave-ocean interactions

on the drift modeling.
5 Concluding remarks

Here we assessed the capability of an ocean ensemble model (B-

EPS) to represent oil slick drift and its uncertainty, compared to a

higher resolution deterministic ocean model (N-HighRes). The

simulated trajectories were conducted with the open-source

Lagrangian framework OpenDrift, and forced by these two ocean

models in addition to wind forcing and Stokes drift (Setup 1). The

predictions were evaluated against Produced Water slicks

delineated from 41 Sentinel-1A/1B scenes over the Norne

platform between April and December, 2021. Three approaches

were considered for the verification: Member-wise Assessment,

Model Comparison and Ensemble Verification. The importance

of the wind field on the modeled trajectories was also investigated

by forcing the virtual particles only with atmospheric models

(Setup 2).

Produced water slicks are thin films with low oil concentrations,

generally observed as narrow stripes and lasting for a short period.

For short range predictions as considered here (6 hrs), we showed

that simulations forced solely by the wind fields are underdispersive.
TABLE 6 Same as Table 5, but for Setup 2.

Model m CE Area [km 2] s CE Area [km 2] Hits

B-EPS # 1 1.5 0.81 2

B-EPS # 2 1.6 0.82 3

B-EPS # 3 1.6 0.84 3

B-EPS # 4 1.6 0.89 3

B-EPS # 5 1.6 0.81 2

B-EPS # 6 1.6 0.86 3

B-EPS mean 1.6 0.83 2

N-HighRes 1.7 0.91 4

mean B-EPS 1.6 0.83 2
B

C D E

A

FIGURE 7

Two-dimensional rank histograms of B-EPS for Setup 1 (A) and Setup 2 (B) in absolute frequency. Panels (C–E) represent overdispersive, consistent
and underdispersive rank histograms created from synthetic data randomly sampled from Normal distributions with the same average (0) and
decreasing std (10, 1, 0.1), respectively. Top and right sub-panels show the longitudinal and latitudinal rank histograms.
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For larger and more persistent slicks, the wind forcing may still be

considered the main source of variability.

Despite its coarser horizontal resolution, the ensemble

prediction system, and especially its mean field, presented similar

member-wise results relative to the deterministic ocean model. We

have also shown that the observed PW drift presented a consistent

clockwise deviation from modeled and observed wind directions,

possibly resultant from systematic errors in the description of

boundary layer schemes and wave-current interactions not

resolved in the used models. The analysis of confidence ellipses

and distributions of drift patterns show that realistic drift modeling

requires to include both the ocean and wind forcing, and analysis of

ensemble spread indicates that including the currents is necessary to

properly address uncertainties in drift modeling.
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FIGURE 8

Example of high spread, partially accurate (A, D); low spread, accurate (B, E) and low spread, inaccurate (C, F) simulations. The white-crossed,

magenta dot represents Norne. Wind barbs (red) and ocean current vectors with superimposed speed (colormap, ms −1) were obtained from N-

HighRes. The modeled mean wind speed (ms −1) is also shown on the top left box. Respective Figures for all 41 PW slick drift cases are provided as
electronic supplement to this document.
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