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“Someone is sitting in the shade today because someone planted a tree a long
time ago.”

–Warren Edward Buffett



Abstract
For Norway to reach the emission limits in the Paris Agreement, a substantial
amount of CO2 must be reduced. Road traffic alone accounts for a high percent-
age of the total emissions during 2021. This thesis will focus on electrifying the
transport sector and analyzing charging infrastructure for heavy-duty electric
vehicles. New charging infrastructure for heavy-duty Electric Vehicles (EVs)
provides issues regarding profitability due to the currently low adaption rates.
However, heavy-duty EVs use the same charging sockets as EVs. As a result,
EVs may finance the charging infrastructure needed to increase the adaption
of heavy-duty EVs. Projections from Norwegian grid operators suggest that the
total electricity surplus is diminishing during the next years and will be nega-
tive by 2027. This highlights the importance of modeling the power system in
combination with finding optimal locations for charging stations. This study
uses prescriptive analytics to suggest optimal locations for charging infrastruc-
ture to maximize returned profits to motivate station builders to implement
more charging stations. A soft-linking will be done with PyPSA-eur to model
the power system, where the new infrastructure is added as an additional load.
Analyzing the results, it is possible to see that charging infrastructure has the
potential to become profitable as the adaption rate for heavy-duty EVs rise.
The collaboration between the models offers an open-source tool for scholars,
researchers, and planners to study how new charging infrastructure affects key
components in the Norwegian power system and could be useful in modeling
state-of-the-art technologies.
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1
Introduction
Political and economic instruments have caused an enormous increase in sales
of new electrical vehicles (EV) in Norway, with a growth rate of 611% from
2016 to 2022, including all types of vehicles [1]. This has resulted in a substan-
tial increase of EVs in the total car fleet. As a result of this growth, massive
investments have been made to install chargers along the largest roadways in
Norway.

Transport is one of the sectors in Norway with the highest emission of CO2,
where road traffic alone accounts for 21% of the total emissions in Norway [2].
This shows the potential of reducing emissions by electrifying the transport
sector. Several state-owned enterprises are driven towards operating with zero
emissions due to governmental policies. One of the biggest contributors to this
shift is the Norwegian mail services, Posten and Bring. They represent critical
infrastructure and have the largest vehicle fleet in Norway. In 2025 they have
an ambition to only use sustainable energy in vehicles and buildings [3]. They
already utilize battery-electric vans and trucks. The latter brings interesting and
problematic issues regarding the established charging infrastructure.

According to projections by Statnett, the power surplus of 5-7 TWh in Northern
Norway is predicted to be negative by 2027 under a basic scenario [4]. Fur-
thermore, the high-growth scenario projects a regional power deficit as early
as 2026. This surge in electricity demand is primarily due to the electrification
of heavy industries, petroleum activities, transportation, and the establishment
of new green initiatives.
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LKAB, Europe’s largest iron ore producer, based in Kiruna and Malmberget,
plans to eliminate CO2 emissions from its processes and production by 2045,
requiring significant amounts of renewable energy. By 2030, LKAB will need
20 TWh of power, which will increase to 50 TWh by 2040 [5], equivalent to
around 30% of Norway’s typical annual electricity production.

Since the power grid in Northern Norway is more connected to Northern Swe-
den than Southern Norway, power deficits in both regions are expected to result
in substantially higher electricity prices. To stay ahead of the projected power
shortfall, exploring opportunities for new power production early on is crucial,
as developing new facilities is time-consuming. Initiation of such projects now
is necessary to ensure they can deliver electricity to the grid by 2030.

As Northern Norway approaches an energy deficit, the industry must expand
and upgrade the current grid to ensure energy security. The cost of investing in
grid expansion is very high. In the years up to 2030, Statnett plans to invest NOK
60-100 billion to reinforce the central grid [6]. To reach the emission objectives
in the Paris Agreement, further research into charging site placement and its
impact on the power grid is necessary.

1.1 Motivation

During an earlier project with Posten, they drove a battery electric truck (BET)
from Oslo to Tromsø to evaluate the charging infrastructure for BETs. The main
finding was that existing charging infrastructure was not facilitated for BETs,
as they suspected. The vehicle used was a full-battery electric Scania P25, with
a battery capacity of 300 kWh and a stated driving range of 250 km. Due to
the large battery pack, most chargers were unusable, as the BET requires a
voltage input of above 500V DC. Otherwise, the charging would fail even if the
charging power were high. This resulted in two charging options: public rapid
chargers (150-350 kW) with a sufficient output voltage above 500V DC. The
second option was charging at 400V AC grids using a private mobile converter
and transformer. For the latter, patience was required as the power output was
25 kW, resulting in a substantially longer charging time.

For further electrification of the vehicle sector: implementation, placement,
and dimensioning of charging infrastructure for heavy-duty EVs will be crucial.
Rapid chargers with sufficient voltage output are already implemented along
several main roads in South Norway. On the contrary, few exist in Northern
Norway. Therefore, establishing applicable infrastructure that can be utilized
by both EVs and heavy-duty EVs in Northern Norway is an interesting case to
study.
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1.2 Hypothesis

This study aims to identify key aspects of optimizing the allocation and loca-
tion of new rapid chargers intended for heavy-duty EVs. To achieve a better
understanding of this study, relevant literature is reviewed to select models
and methodologies that can be used to achieve the desired results. Background
theory will be presented to help understand and implement methodologies
and models. The objective function of the selected model is set to allocate the
new rapid charging stations to areas with the highest demand. The most suit-
able locations are selected based on the most profitable locations to motivate
station builders to implement more charging sites. The next part will analyze
the strain of new chargers on the Norwegian power system. Based on general
assumptions, it is predicted that the profitability of charging infrastructure for
heavy-duty EVs is low due to the low adaption rate of these vehicles. If the
adaption rate is instead projected for the currently existing EV fleet in Norway,
then the project could prove to be profitable, meaning that the already existing
EV fleet could finance charging sites later utilized by heavy-duty EVs. If the
current and new chargers are implemented in the Norwegian power system,
then the system cost is expected to rise substantially due to the capacity ex-
pansion of the power system. A GitHub repository is created for falsifiability,
containing data sets and scripts for creating and analyzing the results, found
at github.com/o2i/Masters-Thesis [7].
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1.3 Contribution

This thesis broadly contributes to the research field of prescriptive analytics,
with a focus on mathematical optimization applied to the field of EVs, opti-
mizing charging stations for Heavy-duty electric vehicles with impacts on the
Norwegian power system. The contribution is methodological and analytical.
On the methodological side new modeling features will be built on top of an
existing open-source model to tailor the tools to the specific problem at hand,
involving heavy-duty EV infrastructures. Another methodological contribution
is the soft-linking between two models that were built for different purposes.
Linking the model for allocating optimal locations to the model that optimizes
the grid results in a new purpose for the combined models, understanding the
impact of higher penetration of EVs in the northern Norway power grid. Where
the output of the allocation-location model becomes the input for analyzing the
grid. The third methodological contribution is data gathering for real-world
data. Consisting of dialog with industries, identifying industrial needs, data
needs, and data manipulation to run and connect the models. The analytical
contribution is double. The optimal location and sizing of the new charging
infrastructure will be investigated in Northern Norway using real-world data
and analyzing the impact of new loads in the power system.



2
Literature review
Since optimization and model building concerning EV charging stations and
power systems is complex and interdisciplinary, the first part of this literature
review aims to review literature related to EVs, charging infrastructure, and
EV battery technology. The second part concerns optimization methods related
to charging stations found in the literature, which can be divided into three
main groups: design, operation, and location-allocation. With the main focus on
the latter. The last part identifies literature on open-source power and energy
system models.

In [8], the first experiments with EV are reviewed in early 1800 to early 1900.
Due to discoveries made by Alessandro Volta (1745-1827) and Michael Faraday
(1791-1867), who invented the electrical battery and the concept of a motor
capable of rotating continuously. It led to a period known as the age of invention,
with the electric motor being one of its most notable applications, including
electric vehicles. While several theories, rumors, and viewpoints surround the
initial electric vehicle, this text aims to identify the experiment that rightly
deserves the title of the first-ever electric vehicle test. The discussion centers
around the world’s first electric vehicle. In [9], early applications of EV, early
charging methods, and arguably the first public charging station are reviewed.
It also highlights that EVs are not a new invention since they were utilized
before vehicles with internal combustion engines.

A state-of-the-art review of charging station technology is proposed in [10].
Charging power levels, connectors, types, infrastructure, impacts, and standards

5



6 chapter 2 literature review

are reviewed, along with an introduction to optimization methods for slow and
rapid EV charging stations.

This article [11] presents an overview of electric vehicles and the different design
aspects of charging stations. The charging stations are classified based on the
power used, and various optimization algorithms and methods are discussed to
achieve optimal design. The paper also highlights the combination of renewable
energy-based and grid-connected systems, including their off-gridmode. Finally,
the future directions and scope of this field are summarized.

The primary factors and obstacles that influence the widespread adoption of
EVs are presented in [12]. Examining crucial aspects of EV technology, including
the power levels of charging infrastructure, types of plugs, prevalent powertrain
designs, and existing energy storage options. Additionally, the controllability
of EV charging is briefly explored, highlighting its advantages for distribution
grid management and its role in promoting the growth of renewable energy
sources.

The energy demands necessary to meet the charging needs of EVs and evaluates
the effect of EV demand on daily and annual system load profiles, proposed in
[13]. Provides a detailed presentation of the deterministic and stochastic param-
eters that define the extra EV demand. The influence of this additional charging
demand on the system load curve is examined for five European countries, in-
cluding the United Kingdom, Germany, Spain, Portugal, and Greece.

EV battery technologies are introduced in [14]. Concerning the power and en-
ergy of electric propulsion systems. Introducing commonly used terminology for
describing battery performance and characterization, then analyzing various
battery charging techniques and EV charging strategies. The essentials of EV
battery technologies are addressed, focusing on the two most prevalent types:
Nickel Metal Hydride (NiMH) and Lithium-ion (Li-ion). Battery modeling and
characterization are presented, covering aspects such as model parameter es-
timation, State of Charge (SOC), and State of Health (SOH) estimation. The
integration of batteries for power grid applications is explored. The concept of
a Virtual Power Plant (VPP) for battery aggregation is introduced to facilitate
EV participation in power markets.

Numerous studies have focused on prevalent Li-ion technologies, which are
now approaching their theoretical boundaries. Consequently, contemporary re-
search is investigating potential successors, such as Lithium-Sulfur (Li-S) tech-
nologies. The authors of [15] evaluate and debate different battery modeling
methodologies, encompassing mathematical models, electrochemical models,
and electrical equivalent circuit models. Following a broad overview, the re-
search delves into the particular utilization of battery models within electric
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vehicle battery management systems. Models may possess lower fidelity to
ensure rapid execution in real-time applications.

A comprehensive examination of new technologies in the transportation in-
dustry, evaluating eco-friendly chemical processes as innovative green energy
sources for electric vehicles and portable power in the microelectronics domain,
is proposed in [16]. Moreover, this investigation explores and assesses the po-
tential advancements of biological systems in energy generation, considering
the perspective of bio-batteries.

An introduction to model building in mathematical programming can be found
in [17]. This book is intended to provide students with a solid foundation in
the principles of model building, including the mathematical and algorithmic
aspects of the subject.

A systematic reference for grid scheduling considering intelligent electric ve-
hicle integration can be found in [18]. The authors discuss state-of-the-art
scheduling techniques for incorporating plug-in EVs, a thorough analysis of
traditional analytical scheduling, and optimizing techniques like game theory,
meta-heuristic algorithms like the genetic algorithm, linear, non-linear mixed
integer programming, and dynamic programming.

An approach for the design of Heavy-Duty Electrical Vehicle (HDEV) charging
stations is proposed in [19]. In order to find Pareto optimal designs, this pa-
per introduces a bi-level multi-objective optimization framework, with realistic
power loss models and optimally sized power electronic converters as con-
straints. This bi-level approach simplifies the design process by dividing charg-
ing station optimization into a system-level problem and multiple converter-
level problems. The effectiveness of this approach is demonstrated for a 9-port
charging station, using industry-based HDEV arrival times and charging condi-
tions.

In [20], a comprehensive review of the literature about charging station loca-
tion problems concentrates on problemmodeling and resolution. Reviewing the
literature from various angles, encompassing demand representation, demand
coverage strategies, objective functions, side constraints, decision variables,
model structure, and the influence of time dependency and uncertainty on
problem parameters.

A comparative analysis of charging station allocation-location in academic re-
search compared to the actual practice of charging station placement is de-
scribed in [21]. The author intends to emphasize the gap between academic
research and charging station placement strategies utilized in practice.
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In [22], an uncapacitated gradual maximal covering model approach is pro-
posed for determining the optimal locations of BEV charging stations in urban
environments. This method thoroughly examines BEV charging requirements,
coverage, and potential for adoption, in conjunction with a novel location-
allocation model. The applicability of this approach is showcased through a
series of hypothetical scenarios that emulate the elements of real-world charg-
ing station location challenges.

The return on investment for electric vehicle charging stations and presents a
Mixed Integer Linear Programming (MILP) model integrated with Geographic
Information System (GIS) for pinpointing optimal charging station locations
in urban areas, is proposed in [23]. The efficacy of the proposed methodol-
ogy is illustrated through a case study conducted in Västerås, a city in central
Sweden.

An optimization model for strategically placing charging stations to minimize
overall costs while ensuring charging reliability and maintaining the expected
quality of service for EV owners and drivers is proposed in [24].

The authors of [25] propose two distinct optimization models to identify the op-
timal locations for public charging stations, considering two different charging
modes, fast and slow charging. They use a framework for geographic segmenta-
tion (GS) compared to a complementary partial (CP) coverage approach.

A GIS-based Multiple-Criteria Decision Analysis (MCDA) approach to handle
the problem of EV charging site selection is proposed in [26]. They utilize the
fuzzy Analytical Hierarchy Process (AHP) and Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) to identify the best EV charging site
locations. This hybrid method is applied as a case study in Ankara, Turkey. The
findings indicate that the proposed alternative sites surpass the existing 12 EV
charging site locations in terms of the evaluated criteria.

Elementary features of Python for Power System Analysis (PyPSA) is presented
in [27]. It is based on the full power flow equations formulation and multi-
period optimization of operation and investment using linear power flow equa-
tions. Serving as a bridge between traditional steady-state power flow analysis
tools and comprehensive multi-period energy system models within free, open-
source software. Models for traditional power plants with unit commitment,
variable renewable energy generation, storage facilities, connections to other
energy sectors, and mixed AC and DC networks are all included. PyPSA is in-
tended to be easily extensible and scalable for large networks and extended
time series. The authors compare PyPSA with other free and paid software
regarding energy and power system modeling. A comparison is made between
PyPSA and other free software: MATPOWER [28], pandapower [29], PSAT[30],
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PYPOWER [31], calliope [32], minipower [33], MOST [34], oemof [35], OSe-
MOSYS [36], PowerGAMA [37], urbs [38].

PyPSA-Eur (Python for Power System Analysis - Europe) is presented in [39],
introducing the first open model dataset of the European power system at the
transmission level. The model can be used to plan operational, generational,
and transmission expansion studies. Due to its continental scope and highly re-
solved spatial scale, it is possible to accurately depict the long-range smoothing
effects of renewable energy generation and their fluctuating resource availabil-
ity.

In light of this review, optimizing EV charging stations is important in the
field to optimize location and allocation to optimize resources and maximize
the utility of charging infrastructure. Norway is interesting to study due to
the high adaption rate of EVs and its ambitious goals for reducing internal
combustion vehicles. Many self-contained models exist in literature focusing
on specific aspects of charging stations and power grids. Still, there is a gap
between more holistic models that link EV decision-making with power systems
decision-making aspects. This motivates the idea of exploring the development
of such links, as done in the thesis.





3
Background
Prescriptive analytics involves using decision models, including optimization
models, in managerial decision-making. It is the final and most advanced cat-
egory. Prescriptive analytics involves using decision models to prescribe what
should be done in the future [40]. It exceeds descriptive, diagnostic, and predic-
tive analytics when considering value against difficulty, as proposed by Gartner
[41]. This thesis will focus on the optimization part of prescriptive analytics.
The main objective of this section is to provide the reader with an introduc-
tion to key concepts of mathematical optimization and the models used in the
thesis.

3.1 Mathematical optimization

It is a method used to find optimal or near-optimal solutions to a given problem.
In optimization, the objective is to maximize or minimize a specific problem.
The object to be maximized or minimized is called an objective function. That
is subject to a set of constraints for determining the desired variables in the ob-
jective function. Together the objective function and the constraints represent
a mathematical model. That involves a number of mathematical connections,
including equations, inequalities, and logical dependencies. They frequently
correspond to practical relationships found in the real world, such as those
found in technology, physical laws, and marketing constraints. [17].

11
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A simple analogy formathematical optimization could be to visualize the model
as an arcade game, where the objective could be to get the highest score (max-
imize) or to complete the game in the shortest amount of time (minimize) by
following the rules of the game (constraints).

The term mathematical programming is often confused with computational
programming [17]. Mathematical programming differs from computational
programming as the programming term refers to "planning". Therefore, it does
not have to involve computers. The two interconnect when involving practical
problems with a large amount of data present, then it is only reasonable to
handle the problem using computing power.

Mathematical optimization is interdisciplinary and usually requires knowledge
in multiple fields, like mathematics, physics, economics, logistics, and more.
It is one of the most used tools in operational research and management sci-
ence. For instance, a problem could be to determine the maximum profit of
a mix of products at a factory with limitations on resources and production
capacity.

The most common programming models can be categorized into: Linear Pro-
gramming (LP), Integer Programming (IP), Non-linear models, and Quadratic
Programming (QP). Multiple sub-categories can present each category. This
thesis will mostly focus on LP and Mixed Linear Integer Programming (MILP)
problems.

3.1.1 The role of mathematical optimization in renewable
energy

Mathematical optimization is not a new phenomenon in renewable energy. It
plays a significant role in the planning, designing, and operating of renewable
energy systems. Mathematical optimization help to address different problems
and make data-driven, optimal decisions, like improving efficiency and relia-
bility or reducing costs, maximizing profits for renewable energy systems. For
instance, mathematical optimization could identify the optimal location for
new energy systems, like solar or wind installations. Considering aspects such
as wind speeds, land-use classification or availability, solar irradiance, etc. The
objective function could be to maximize energy production while minimiz-
ing costs and environmental impact. There are a ton of other applications of
mathematical programming in renewable energy systems. To summarize,math-
ematical optimization is invaluable in the planning, designing, and operating
of renewable energy systems.
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3.1.2 Linear Programming

For a model to be linear, it requires both the objective function and constraints
to be linear expressions. If it contains expressions like 3𝑥2, 𝑒𝑥 , 1

𝑥
, etc, then it

is not a linear expression. For a model to be linear, it must include expressions
like 7+2𝑥 , 5𝑥 +𝑥 , 1

3𝑥 +3𝑥 +5, etc. LP is given much attention due to being easy
to solve compared to non-linear models. Not everyone has access to expensive
computers with great computational power. However, it is important only to
implement LP where it represents a valid or approximately valid model.

3.1.3 Simplex algorithm

The simplex algorithm is the most widely used method for finding an opti-
mal solution to linear programming problems. It was originally developed by
the American mathematician George Dantzig in 1947 to solve linear programs
for planning and decision-making in large-scale enterprises [42]. Multiple en-
hancements and advancements have been made since then to improve the
algorithm. The approach is rooted in searching for the minimum value among
the vertices of a polyhedron defined by constraints. The process begins with se-
lecting one of the vertices and then directing the search toward the first vertex
where the objective function shows a decrease. If no such vertex exists, then
the current vertex represents the minimum. However, if there is a vertex where
the objective function decreases, the current vertex becomes the starting point
for a new search. [43]. Ultimately obtaining the optimal solution. Because
the simplex algorithm only looks at vertex solutions, rather than the typically
infinite set of impossible solutions, linear problems are simple to solve. Even
in a scenario where alternate solutions exist, there will always be an optimal
solution that lies at a vertex [17].

3.1.4 Integer Programming

An IP model consists of integer (whole numbers) variables. It involves making
decisions based on integers. It can be useful for certain goods and integral
quantities of resources. For instance, goods or resources that would not make
sense to have a decimal value, like employees, houses, lamps or planes. IP
models offer wide applicability often referred to as discrete programming [17]. A
model consisting of solely integer values is known as pure integer programming
(PIP) model. More frequently, there are models with integer and conventional
continuous variables. Such a model is a mixed integer programming (MIP)
model [17]. However, IP models involve many times as much calculation and
computational power compared to LP models. And most IP models can be
solved using LPmodels and then rounding off the optimal solution to the closest
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integer. Practical IP models commonly represent boolean values as integers
(0 and 1), meaning yes or no, to make decisions, also called Binary Integer
Programming (BIP) [40].

3.1.5 Mixed Integer Linear Programming

Mixed Integer Linear Programming, hereby denoted as MILP, involves finding
the optimal solution to a problem with a linear objective function, subject to
constraints consisting of linear expressions and a set of decision variables rep-
resented by integers. It is a subcategory of MIP models. The linear continuous
variables can take any value in a specified range, as it would if the problem were
fully linear. At the same time, integers must represent the decision variables.
The mix of linear and integer variables adds complexity to the solving process.
Implementing special algorithms to find a solution may be necessary, as the
integer constraints could make the problem non-convex. It is a powerful tool
due to its modeling capability, but for large models, it suffers computationally
and might be unsolvable.

3.1.6 Algorithms for solving IP problems

There is no single perfect algorithm for solving IP problems like there is for LP
with the simplex algorithm. Different algorithms work better for different types
of problems. It’s unlikely that a universal IP algorithm will ever be discovered.
If one were found, it could solve many complex problems. The branch and
bound method is the most successful algorithm for solving general IP problems,
according to [17]. Even though it seems simple, it works surprisingly well.
Almost all commercial software packages that handle MIP use this method.
The algorithm is very flexible and can be adapted to different problems. Using
the branch and bound method smartly can lead to significant improvements.
There are four main methods for solving IP problems, with some overlap. Some
successful approaches to large problems have taken advantage of features from
several methods.

Branch and Bound Since any bounded PIP problem has a finite number
of feasible solutions, an enumerative approach is sensible to find an optimal
solution. Unfortunately, the finite number is usually extremely large. Therefore,
the enumerative process must be cleverly structured only to examine a fraction
of the feasible solutions. The basic concept for the branch and bound method
is to divide and conquer by dividing the problem into smaller and smaller sub-
problems until these subproblems can be conquered [40]. This algorithm has
demonstrated the greatest success in tackling practical MIP problems. They are
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occasionally categorized as enumerative techniques. However, it is important
to separate from the enumerative methods mentioned in the other algorithms.
Like cutting plane methods, the IP problem is initially addressed as an LP prob-
lem by relaxing the integrality constraints. If the resulting solution is an integer,
the problem is considered solved. If not, a tree search is conducted to explore
feasible solutions and find the optimal integer solution. By integrating the tree
search with other techniques, such as cutting planes, these hybrid methods
can efficiently navigate the solution space and improve their effectiveness in
solving a wide range of MIP problems [17].

Cutting plane While cutting plane methods might seem mathematically
sophisticated, they have not successfully tackled large-scale problems. Never-
theless, they can become highly effective when combined with Branch and
Bound techniques. The first method of this kind was introduced in [44] by
Gomory in 1958. A cutting plane for any IP problem is a new constraint that
reduces the feasible region without eliminating feasible solutions [40]. The
algorithm can be utilized for general MIP problems. Typically, they begin by
addressing an IP problem as if it were a LP problem, disregarding the integral-
ity constraints (LP relaxation). The continuous LP solution that results will also
function as an integer optimum if it is an integer. If it is not an integer, the
problem is systematically further constrained by adding more restrictions or
cutting planes. It’s possible or unlikely that an integer will be the next solution
to the more restricted problem. The IP problem can be solved by repeatedly
performing this procedure until an integer solution is found or the problem
is determined to be infeasible. [17]. Adding cutting plane to the branch and
bound method can accelerate how quickly an optimal solution is found.

Enumerative These methods are typically employed for the distinct cate-
gory of binary PIP problems. Theoretically, this category has a finite number
of potential solutions for problems. Although analyzing all possibilities would
be impractical, a tree search can examine a subset of solutions while system-
atically eliminating numerous others as infeasible or non-optimal. These tech-
niques and their variations and expansions have proven highly successful for
certain problem types while demonstrating limited success for others. Com-
mercial software packages implementing these methods exist, but their usage
is not widespread [17]. Enumerative methods have an advantage over branch
and bound programming as they have the capability to preserve any unique
structure that may exist in the problem. However, a drawback of enumeration
methods is that they require resolving an integer program at each iteration,
which can be computationally demanding. A more appealing approach appears
to be integrating the concept of partitioning into an enumerative scheme, as it
offers computational advantages [45].
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Pseudo-Boolean Pseudo-boolean methods for solving optimization prob-
lems aim to find the optimal binary values that maximize or minimize a given
objective function, usually by pseudo-boolean expressions. It has been tried
to take advantage of the obvious similarity between binary PIP issues and
boolean algebra. Many different algorithms have been created. They perform
admirably on some problems but less so on others, similar to other algorithms.
This method of resolving IP issues is completely distinct from all others. Boolean
algebra is used to express constraints rather than equations or inequalities. In
some instances, this can provide a clear overview of the constraints, but in
others, it is large and impractical. [17].

3.1.7 Solvers

Open-source and commercial solvers are the two main tools for solving mathe-
matical optimization problems. In the open-source category, tools like COIN-OR
Linear Programming (CLP), GNU Linear Programming Kit (GLPK), and SCIP ex-
ist. CLP is a popular choice for solving linear and mixed-integer programming
problems, while GLPK is another powerful tool that works well with large-scale
problems. SCIP is a versatile solver that can handle various problems, including
mixed-integer linear, nonlinear, and constraint integer programming.

As for commercial solvers, some of the most popular options are IBM ILOG
CPLEX (CPLEX), Gurobi, and FICO Xpress. CPLEX is a top-performing solver
that works with linear, mixed-integer, and quadratic programming problems.
It’s known for being fast, scalable, and reliable in solving complex industry
problems. Gurobi is another widely-used solver with cutting-edge algorithms,
making it highly efficient in solving linear, mixed-integer, and quadratic pro-
gramming problems. Finally, FICO Xpress is an all-in-one optimization suite
that can handle various problems, from small-scale to large, real-world appli-
cations. It also includes tools for modeling and analytics.

3.2 Different types of optimization

Optimization can be classified into three different types of optimization: heuris-
tics, metaheuristics, and exact methods. This thesis utilizes exact methods for
choosing the optimal location for EVs and for analyzing the impact of the new
charging stations on the power system.
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3.2.1 Exact methods

In optimization, exact methods ensure finding an optimal solution, searched
using accurate, deterministic numerical algorithms. Typically, an exact opti-
mization approach is preferred when it can address an optimization issue with
an effort that increases polynomially with the problem size. However, for NP-
hard problems, the situation changes, as exact optimization methods require
exponential effort. As a result, even moderately-sized problem instances fre-
quently become unmanageable, making it impossible to solve them using exact
methods [46], resulting in having to use heuristics or a combination of exact
methods and heuristics. This provides challenges for both models used in this
thesis. For the optimal location model used in this thesis, the demand grid
implementation has a huge impact on computational time and tractability. The
computational time for the power system model can be reduced by aggrega-
tion techniques as explained in the PyPSA documentation [47] for instance
changing the granularity of the problem.

Recently, engineering optimization practitioners have increasingly combined
various optimization techniques to achieve more accurate solutions. The initial
stage involves using reduced-complexity algorithms to generate moderately ac-
curate solutions. In the second stage, these preliminary solutions are starting
points for higher-accuracy algorithms. Integrating exact and meta/heuristic
methods, often derived from evolutionary programming, is also feasible, par-
ticularly when the solution must meet additional constraints, such as having
integer values or residing in discrete subspaces of the search area [43]. If
the problem at hand is too big, complex, or computationally hard, heuristics or
metaheuristics can be utilized to find good solutions that are not optimal.

3.2.2 Heuristics and Metaheuristics

Loosely defined, the term "heuristic" refers to finding or discovering through
trial and error. These algorithms can find high-quality solutions to complex opti-
mization problems in a reasonable time [48]. Heuristic techniques, also known
as "search algorithms," are problem-solving approaches that involve exploring
possible solutions for a given problem, known as the "search space." Unlike
exhaustive search methods, heuristic techniques such as "evolutionary algo-
rithms," "local search methods," and "simulated annealing" offer an alternative
approach to solving challenging computational problems within a reasonable
timeframe [49]. There is no assurance of reaching the optimal solution. Heuris-
tic algorithms tend to work well most of the time, although not always. This
characteristic is advantageous when the goal is to obtain good solutions that
are easily attainable rather than necessarily the best [48].
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Metaheuristic algorithms represent a further development of heuristic algo-
rithms. The prefix "meta" denotes a higher level or going beyond. Generally,
metaheuristic algorithms outperform simple heuristics. They rely on random-
ization and local search, with tradeoffs involved. It’s important to note that
there is no consensus on the exact definitions of heuristics and metaheuristics
in the literature. Some researchers use these terms interchangeably, but the
current trend refers to stochastic algorithms involving randomization and lo-
cal search as metaheuristics [48]. Randomization allows for exploration on a
global scale, moving away from a purely local search. Consequently, almost all
metaheuristic algorithms are well-suited for global optimization.

3.2.3 Sensitivity Analysis

Sensitivity analysis can be utilized to explore uncertainty within deterministic
models through so-called what-if-analysis. This study will exclusively focus on
deterministic methodologies. This methodology can be further classified into
two groups: those that explore local sensitivities, achieved by investigating the
impact of minor modifications to the model parameters, and those that inves-
tigate global sensitivities, achieved by analyzing the model dynamics within
a substantial parameter space. Sensitivity analysis has expanded over recent
years, being utilized to analyze models across various scientific fields [50]. This
thesis aims to analyze local sensitivities to explore how certain parameters af-
fect the model’s objective value.

3.3 Optimal location of EV charging sites

A MILP approach for finding the optimal location of charging sites using GIS is
described in [23]. Based on this paper, Obed Sims contributed an open-source
implementation on GitHub [51], Where he implements a case study based
in Manchester, England. This model implementation is hereby referred to as
musk-model, which will be further developed in the methodology section. The
musk-model is selected because it handles the problem of interest (optimal
location of charging stations) with the methodology of interest (optimization).
The model is open-source, which accelerates the implementation of the mathe-
matical model in [23]. Due to its user-friendly modeling structure, it represents
a starting point for further development in terms of new functionalities and
linking with other tools for power systems analyses. The musk-model states
what type of data sets are used in the model, which makes it easier to identify
similar data needed for a case study in Norway.
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3.3.1 Mathematical model

The objective function (3.1) seeks to maximize the total profit of new charging
stations. The variables to be maximized are 𝑥 𝑗 , a binary variable whether car
park 𝑗 is selected for a charging station, 𝑛 𝑗 , the number of chargers in station
𝑗 , and 𝑞 𝑗 , the number of cars charged by station 𝑗 . The decision variables in
the model include 𝑥 𝑗 , 𝑛 𝑗 , and 𝑞 𝑗 , which will be decided when the model is
solved.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑃𝑟𝑜 𝑓 𝑖𝑡𝑠
(
𝑥 𝑗 , 𝑛 𝑗 , 𝑞 𝑗

)
=

J∑︁
j=1

[
𝑝 𝑗 · 𝑡 𝑗 · 𝑞 𝑗 − 𝑐 𝑗

]
, 𝑗 = 1, 2, . . . , 𝐽 (3.1)

Where 𝑝 𝑗 is the charging price per minute for station 𝑗 , the estimated charging
duration for an EV being fully charged is denoted by 𝑡 𝑗 , the charging demand
covered by each station 𝑗 is 𝑞 𝑗 , the total cost for each station is denoted by
𝑐 𝑗 .

Subject to,
𝑞 𝑗 ≤ 𝑛 𝑗 ·𝑚 𝑗 (3.2)

𝑞 𝑗 ≤
𝐼∑︁
𝑖=1

𝑟𝑖 𝑗 · 𝑑𝑟𝑖 (3.3)

𝐽∑︁
𝑗=1

𝑥 𝑗 · 𝑟𝑖 𝑗 ≤ 1 (3.4)

𝑛 𝑗 ≥ 𝑥 𝑗 (3.5)

𝑛 𝑗 ≤ 𝑙 𝑗 · 𝑥 𝑗 (3.6)

𝐽∑︁
𝑗=1

𝑥 𝑗 = 𝑁 (3.7)

𝑥 𝑗 , 𝑛 𝑗 ≥ 0, where 𝑥 𝑗 and 𝑛 𝑗 are integers, (3.8)

𝑗 = 1, 2, . . . , 𝐽 and 𝑖 = 1, 2, . . . , 𝐼 .
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These constraints are implemented to ensure maximum profit for each charging
station. Eq (3.2) is related to capacity, where 𝑛 𝑗 the number of cars charged by
the station must be less or equal to 𝑛 𝑗 , the number of chargers in the station,
multiplied by𝑚 𝑗 , the maximum serving time of each charger per day.

Equation (3.3) is a constraint related to demand. The number of charged cars
must be less or equal to the sum of 𝑟𝑖 𝑗 , the demand coverage level of station
𝑗 on demand node 𝑖, multiplied by 𝑑𝑟𝑖 , the remaining demands in cell 𝑖. Note
that 𝑑𝑟𝑖 cannot be a negative number. Therefore, the minimum demand must
be limited to zero.

Constraint (3.4) indicates that a single charging station can only serve the
remaining demand in grid 𝑖, guaranteeing that distinct demand nodes are
allocated to separate charging sites. Both 𝑥 𝑗 and 𝑟 𝑗 are binary values.

Equation (3.5) and (3.6) add a limitation for the number of charging points.
The two constraints ensure that each station has at least one charger and, at
most 𝑙 𝑗 charging points. If there is no charger, then the constraints imply that
there is no charging point either. Constraint (3.7) ensures that a specific number
𝑁 of new charging stations is installed. Finally, constraint (3.8) states that all
decision variables should be integers and not negative.

3.3.2 Calculations

Before the problem can be solved, a few calculations are necessary to de-
fine some of the parameters in the mathematical model, see equations (3.9) -
(3.10).

𝑐 𝑗 =

(
𝑐𝑟𝑗 + 𝑐𝑒𝑗 + 𝑐𝑖𝑗 +𝑂&MCost ·

(
𝑐𝑒𝑗 + 𝑐𝑖𝑗

))
· 𝑛 𝑗 + 𝑝𝑒 · 𝛼 · 𝑞 𝑗 , (3.9)

Equation (3.9) calculates the total cost of constructing a single charging sta-
tion. The expenses associated with a charging station include rent, equipment,
installation, maintenance and operation, and electricity costs, which fluctuate
depending on the quantity and kind of chargers. Rent costs for charger instal-
lation sites and parking spaces are determined by the opportunity cost of the
parking lot, equivalent to the parking fees the owner would earn if the space
were used for paid parking. Additionally, it is assumed that maintenance and op-
eration expenses amount to 10% of the equipment and installation costs.

As mentioned, 𝑐 𝑗 is the total cost of each station. The number of charging points
in each station is denoted by 𝑛 𝑗 . 𝑐𝑟𝑗 is the parking fee per day for each station.
𝑐𝑒𝑗 is the capital cost of acquiring each charging station, while 𝑐𝑖𝑗 is the cost
associated with installing each one. The price the station owner pays per kWh
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of electricity is denoted by 𝑝𝑒 . The average capacity of EV batteries, in kWh,
is assumed to be 𝛼 . The number of EVs charged by a specific station or each
station’s remaining demand is denoted by 𝑞 𝑗 .

The electric vehicle charging infrastructure in the city must be factored into
the model, as it addresses a portion of the demand. Assume that there are
𝑍 charging stations installed within the district, and the remaining charging
needs for cell 𝑖 are:

𝑑𝑟𝑖 = 𝑑𝑖 −
𝑍∑︁
𝑧=1

𝑑𝑖𝑧, 𝑧 = N (3.10)

In this scenario, 𝑑𝑟𝑖 represents the unmet charging needs in cell 𝑖, while 𝑑𝑖𝑧
denotes the demand in cell 𝑖 satisfied by the existing station 𝑧.

Maximizing profits relies heavily on charging demand, which is a crucial vari-
able. The entire study area is divided into uniform small grids, with their cen-
troids serving as demand nodes. Further details regarding grid partitioning
can be found in [24]. It is also assumed that the anticipated EV adoption rate
in traffic flow is represented by 𝑣0, while 𝑣𝑖 refers to the charging possibility in
grid cell 𝑖. A charging possibility,𝑢, is defined to illustrate the varying charging
opportunities for electric vehicles across different grids. In (3.11), 𝑑𝑖 signifies
EV charging demand in grid 𝑖 and refers to the average traffic flow within grid
𝑖.

𝑑𝑖 = 𝑢 · 𝑣𝑖 · 𝑓𝑖 (3.11)

In (3.12), 𝑥 𝑗 represents a binary decision variable for whether car park 𝑗 is
selected for a charging station.

𝑥 𝑗 =

{
1, if there already is a station in parking lot j.
0, otherwise. (3.12)

In (3.13), 𝑟 𝑖𝑗 is the demand coverage level of station 𝑗 on demand node 𝑖, while
𝑠𝑖 𝑗 is the distance between station and demand node. The idea of a service
area is based on the assumption that a charging station can only cater to the
traffic flow within a specific region. The service radius of a station is set to L
meters, which is comparable to the length of the grid 𝑖. A binary variable, 𝑟 𝑖𝑗 ,
represents the coverage level of station 𝑗 on demand node 𝑖. If demand node 𝑖
is covered by station 𝑗 , 𝑟 𝑖𝑗 is 1. Otherwise, it is 0.

𝑟 𝑖𝑗 =

{
1, 𝑠𝑖 𝑗 ≤ 𝐿.

0, 𝑠𝑖 𝑗 > 𝐿.
(3.13)

Maximizing overall profits greatly depends on the optimal locations of charging
stations, which are significantly influenced by the distribution and quantity of
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charging demands. This model determines charging demands based on daily
traffic flow at various measurement points. However, these measurement points
may not be uniformly distributed or absent in some areas. To effectively utilize
the traffic flow data, a grid network is established. The target district is divided
into 𝑖 uniform small grids, each with a side length of L meters. The centroids
of these grids serve as demand nodes, where the average traffic flow 𝑓 𝑖 in grid
𝑖 can be calculated using (3.14). Where 𝐾𝑖 is the total number of traffic flow
measurement points. 𝑓𝑘𝑖 represents the daily traffic flow at measurement point
𝐾𝑖 . For grids without any measurement points, the traffic flow is determined
by averaging the values from surrounding grids.

𝑓𝑖 = 1/𝐾𝑖
𝐾𝑖∑︁
𝑘𝑖=1

𝑓𝑘𝑖 (3.14)

The charging possibility of an EV 𝑣𝑖 is explained in equation (3.15). Here, var-
ious land-use classifications, such as residential with villas, residential with
apartments, working, commercial, mixed land-use, and other areas, are identi-
fied using GIS to diversify charger types and charging possibilities for EVs in
different locations. Fast chargers are assumed to be installed in commercial or
mixed-use areas, while slow chargers are allocated to working or apartment
areas. Moreover, in districts where people are more likely to stop and stay, such
as commercial, working, and residential areas (excluding residential areas with
villas since residents typically have home chargers), the charging possibility for
an EV is set at 𝑣0. Conversely, in areas where people seldom linger, like forests
or farmlands, the charging possibility is 0. As multiple land-use types can be
found within a single grid, the overall charging possibility in each cell must be
calculated based on the area of each land-use type.

𝑣𝑖 = 𝐴𝑖/𝐴 · 𝑣0 (3.15)

Where 𝐴𝑖 is the sum of the different land-use classifications in grid 𝑖 where it
is satisfactory to install new charging stations, and 𝐴 is the total area of grid
cell 𝑖.

3.4 Power systemmodeling

Detailed physical modeling must be secondary to algorithmic feasibility in the
context of large-scale optimization. This implies sacrificing numerous impor-
tant details for power systems to achieve models compatible with previously
discussed algorithms for solving optimization models [52]. An important ques-
tion to ask is, why focus on power? When voltage and current have a much
simpler relationship through Ohm and Kirchhoff’s laws compared to power’s
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quadratic dependence on voltage. The reason is that voltage or current alone
is not practical. Loads require power for tasks like lighting, temperature con-
trol, and manufacturing. As a result, specifying a load in terms of voltage
necessitates making assumptions about current and vice versa, determining
their power need. Similarly, power plants consume fuel or harness energy from
sources like water, wind, and sunlight, and their primary compensation is based
on the power they generate. Consequently, modeling power systems in terms
of power is an unavoidable aspect of power system engineering [52].

3.4.1 Linearized power flow

Linearized power flow refers to approximating and simplifying power flow
equations. It can be obtained from the following four approximations: All volt-
age magnitudes are close to one per unit |𝑣𝑖 | = 1. Conductances are negligible
compared to susceptances 𝑔𝑖 𝑗 ≪ 𝑏𝑖 𝑗 =⇒ 𝑔𝑖 𝑗 = 0. The nearly linear regions
are occupied by voltage angle differences that are small enough be occupy this
region, which means that 𝑠𝑖𝑛(𝜃𝑖 − 𝜃 𝑗 ) is replaced by 𝜃𝑖 − 𝜃 𝑗 . Relative to real
power flows, reactive power flows are negligible, meaning all reactive power
variables and constraints are removed [52]. Ultimately, obtaining the following
linear feasible set of power flow:

𝑝𝑖 𝑗 = 𝑏𝑖 𝑗 (𝜃𝑖 − 𝜃 𝑗 ) (3.16)∑︁
𝑗

𝑝𝑖 𝑗 = 𝑝𝑖 (3.17)

¯
𝑝𝑖 ≤ 𝑝𝑖 ≤ 𝑝𝑖 (3.18)
|𝑝𝑖 𝑗 | ≤

¯
𝑝𝑖 𝑗 (3.19)

Ohm’s law arises when voltage angles are considered real voltages, suscep-
tance is interpreted as the reciprocal of resistance, and real power is associated
with current. Consequently, the simplified power flow model is often known as
"DC power flow" [52]. A linear approximation of power flow equations makes
optimization models more easily solvable, which is crucial in power system
modeling.

3.5 PyPSA

PyPSA stands for Python for Power System Analysis. It is a free software toolbox
for simulating and optimizing modern electrical power systems. Due to the
increasing electrification of all energy demand, and fluctuating energy sources
from renewables, the importance of software modeling has risen [27]. This
introduces new challenges to the generation side, where variable renewable
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generation causes loads in parts of the grid that were never expected. This
introduces new stochastic influences on flow patterns.

PyPSA represents the power system by the following components: network, sub-
network, buses, generators, lines, line types, transformers, transformer types,
carriers, links, loads, storage units, stores, shunt impedance, and global con-
straints (for adding a limit to CO2 emissions) [27], [53]. The network com-
ponent is the overall placeholder for all the other components. Sub-network
contains a sub-set of buses and passive branches. Buses act as an electrically
fundamental node that connects components. They have a mathematical role
in enforcing energy conservation by Kirchoff’s current law. Generators connect
to a single bus and feed power into the system. Lines represent transmission
and distribution lines, that connect between two buses. Line types represent the
standard line type per length values for impedances. Transformers represent
2-winding transformers used to change the voltage layer of AC power. Trans-
former types are a table with different standards for transformers. Carriers
represent energy carriers, for instance, solar or onshore wind. Loads consume
reactive and active power from the energy system and connect to a single bus.
A single bus connects storage units, which are used for intertemporal power
shifting. Independently of the storage power capacity, the storage energy capac-
ity can be optimized using the store components. Shunt impedances connect
to a single bus and have a voltage-dependent admittance. Global constraints
are applied to many components at once.

PyPSA uses linear power flow equations to calculate the optimal power flow
to minimize the total annualized system costs. A power system for a 24-hour
resolution network can be modeled by the following set of objective function
and constraints [27], [54]:

3.5.1 Objective function

min
𝑔𝑖,𝑠,𝑡 ;𝑓ℓ,𝑡 ;𝑔𝑖,𝑟 ,𝑡,charge;𝑔𝑖,𝑟 ,𝑡,discharge;𝑒𝑖,𝑟 ,𝑡

∑︁
𝑠

𝑜𝑠 · 𝑔𝑖,𝑠,𝑡 (3.20)

3.5.2 Constraints

0 ≤ 𝑔𝑖,𝑠,𝑡 ≤ 𝑔𝑖,𝑠,𝑡 ·𝐺𝑖,𝑠 (3.21)
−𝐹ℓ ≤ 𝑓ℓ,𝑡 ≤ 𝐹ℓ (3.22)

𝑑𝑖,𝑡 =
∑︁
𝑠

𝑔𝑖,𝑠,𝑡 +
∑︁
𝑟

𝑔𝑖,𝑟,𝑡,discharge −
∑︁
𝑟

𝑔𝑖,𝑟 ,𝑡,charge −
∑︁
ℓ

𝐾𝑖ℓ · 𝑓ℓ,𝑡 (3.23)

0 =
∑︁
ℓ

𝐶ℓ𝑐 · 𝑥ℓ 𝑓ℓ,𝑡 (3.24)
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0 ≤ 𝑔𝑖,𝑟,𝑡,discharge ≤ 𝐺𝑖,𝑟,discharge (3.25)

0 ≤ 𝑔𝑖,𝑟 ,𝑡,charge ≤ 𝐺𝑖,𝑟,charge (3.26)

0 ≤ 𝑒𝑖,𝑟,𝑡 ≤ 𝐸𝑖,𝑟 (3.27)

𝑒𝑖,𝑟,𝑡 = 𝜂
0
𝑖,𝑟 ,𝑡 · 𝑒𝑖,𝑟,𝑡−1 + 𝜂1𝑖,𝑟 ,𝑡 · 𝑔𝑖,𝑟,𝑡,charge −

1
𝜂2
𝑖,𝑟 ,𝑡

· 𝑔𝑖,𝑟,𝑡,discharge (3.28)

𝑒𝑖,𝑟 ,0 = 𝑒𝑖,𝑟 , |𝑇 |−1 (3.29)

With the following parameters: 𝑜𝑖,𝑠 is the marginal generation cost of technol-
ogy 𝑟 at bus 𝑖, 𝑥ℓ is the reactance of transmission line 𝑙 , 𝐾𝑖ℓ is the incidence
matrix, 𝐶ℓ𝑐 is the cycle matrix, 𝐺𝑖,𝑠 is the nominal capacity of the generator
of technology 𝑠 at bus 𝑖, 𝐹ℓ is the rating of the transmission line 𝑙 , 𝐸𝑖,𝑟 is the
energy capacity of storage 𝑟 at bus 𝑖, 𝜂0/1/2

𝑖,𝑟 ,𝑡
denote the standing (0), charging

(1), and discharging (2) efficiencies.

The model has the following decision variables: 𝑔𝑖,𝑠,𝑡 is the generator dispatch
at bus 𝑖, technology 𝑠, time step 𝑡 , 𝑓ℓ,𝑡 is the power flow in line 𝑙 , 𝑔𝑖,𝑟 ,𝑡,dis-/charge
denotes the charge and discharge of storage unit 𝑟 , at bus 𝑖 and time step 𝑡 ,
𝑒𝑖,𝑟,𝑡 is the state of charge of storage 𝑟 at bus 𝑖 and time step 𝑡 .

The first constraint Eq (3.21), is to ensure that the generators in the power
system are not exceeding its capacity limits. Eq (3.22) ensures that the power
system’s transmission lines are within capacity limits. Eq (3.23) guarantees that
the inelastic electricity demand 𝑑𝑖,𝑡 at every bus n should be satisfied at each
time t through a combination of local generators, storage, or the incoming flows
𝑓𝑡 from the branches. Eq (3.24) ensures the physical integrity of the network
flows, the application of Kirchhoff’s Voltage Law is necessary in addition to
Kirchhoff’s Current Law. Kirchoff’s Voltage law asserts that the sum of voltage
differences around any closed cycle in the network must be zero. Expressing
each independent cycle c as a directed combination of passive branches using
a matrix 𝐶𝑙𝑐 . The constraint for ensuring discharge limits in storage units is
implemented in Eq (3.25), while Eq (3.26) constrains the charging limits of
storage units. Eq (3.27) puts a constraint on the energy capacity limits of
storage units by having to be consistent between all hours, where Eq (3.28)
relate the consistency of the storage units, and Eq (3.29) relate to the cyclicity of
the storage units. Additional constraints can be added to the model to account
for CO2 emission limits, sector-coupling, unit commitment, and more.
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3.6 PyPSA-eur

It is the first open model dataset of the European power system to cover the full
ENTSO-E area. The dataset consists of 6001 lines, including all high voltage
direct current lines and alternating current lines with a voltage level of 220
kV or higher. Additionally, it has 3657 substations, a recently released open
database of conventional power plants, time series data on electrical demand
and the availability of variable renewable generators, as well as geographic
analyses of the potential for expanding wind and solar power [39]. It consists
of multiple scripts that add data to the network components in PyPSA. It uti-
lizes snakemake to manage the workflows and run multiple scripts in parallel.
It is possible to conduct an electricity-only or sector-coupled study that was re-
cently added to PyPSA-eur, depreciating the model PyPSA-eur-sec. It contains
a configuration file config.yaml where different parameters can be adjusted.
For instance, which carriers to include in the model or building a model for a
single country or multiple countries. Increasing the number of countries in to
model also increases the problem at hand, making it more computer heavy to
solve. According to Tom Brown (one of the authors of PyPSA), using Gurobi
with PyPSA-eur-sec with the original settings in default.config.yaml a model
with 181 nodes and 3-hour resolution can be solved in 6-8 hours with 100 GB
of RAM [55]. The computer used in this thesis is installed with 16 GB of RAM.
Therefore an electricity-only study was selected.

PyPSA-eur can be installed from the GitHub repository in [56]. A comprehen-
sive introduction to using PyPSA-eur is found at [47]. When PyPSA is pulled
from GitHub, the environment is installed and activated, and the configuration
file is correctly set up, PyPSA-eur is ready to use. When PyPSA-eur is running,
it first creates a base network containing high-voltage AC and DC lines before
creating the electricity network, the network is then simplified and clustered
into a selected number of nodes. The network can then be solved using the
PyPSA package. This process can also be run step by step and will be key to
implementing custom components to the power system model.

3.6.1 Nearest neighbour algorithm

An algorithm for finding the nearest neighbor is described in[57], which is the
foundation for the python method scipy.spatial.KDTree found in the SciPy user
manual [58]. It describes the k dimensional-tree as a binary tree, with each
node representing an axis-aligned hyperrectangle. Every node identifies an axis
and partitions the set of points according to whether their coordinate along
that axis is greater or smaller than a specific value. The "sliding midpoint" rule
is employed during construction to select the axis and splitting point, which
prevents the cells from becoming overly elongated and narrow. The tree allows
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queries for the r nearest neighbors of any given point, with the option to return
only those within a certain maximum distance. Furthermore, the r approximate
nearest neighbors can be queried with a significant increase in efficiency.

It can be used to calculate the shortest distance between nodes in a grid network
by examining two sets of decimal degrees. However, for large dimensions like
20 or more, do not anticipate this algorithm to perform much faster than a
brute-force approach. High-dimensional nearest-neighbor queries remain a
considerable open challenge in the field of computer science. It is utilized in
this thesis to calculate the shortest distance between buses and new charging
stations in the power grid to install new infrastructure to the bus that is within
the shortest distance.





4
Methodology
Themethodology section concerns solving themusk-model for a real-world data
set of Northern Norway, adapting certain terms in the mathematical model, and
implementing new constraints and expressions in the model’s objective func-
tion. When solved, the optimal locations to install new charging stations are
input for the PyPSA model. They act as a load in the power system, drawing
active and reactive power from it. This model installs the charging stations for
BETs to the grid and then optimizes the grid. Resulting in an interesting frame-
work for analyzing the impacts of new charging stations on the Norwegian
power system.

4.1 Musk-model for a case study in Norway

4.1.1 Data gathering

This section will explain how the data is gathered. Primarily the data sets come
from secondary sources. To solve the musk-model for a case study in Norway,
data is gathered from Geodata AS. They act as the Norwegian distributor for
ESRI software. They have a deal with several academic institutions in Norway.
As a result, students from the university in Tromsø (UiT) can apply to use the
data set for free. Geodata offers many interesting data sets for GIS software,
including maps with land-use classification, properties, demography, traffic,
avalanches, and more. For this thesis, access was granted to use the traffic map
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containing parking, airports, resting lots along roads, toll booths, charging
stations, charging points, traffic flow, and more. The data in this map belongs
to several different firms. Some from the company itself, Geodata AS, other
contributors are the Norwegian mapping authority, the Norwegian Public Roads
Administration, Entur AS, andwebcams.travel. The features from the traffic data
set are mainly based on the Norwegian Public Roads Administration and Entur
AS, making the sources primary. Other parameters for the case study are based
on secondary sources and assumptions.

The software used for managing maps and data sets is ArcGIS Pro, distributed
by ESRI. It is available for free under an academic license for certain institutions.
Another option is to use QGIS, which is free and open-source. The traffic data
set is added to ArcGIS PRO as an ArcGIS database for which the features are
implemented to the map. The features of interest can be visualized in figure
4.1 to 4.2. Some computational issues are encountered when including the full
data set for the whole country for the musk-model (MILP). Therefore, a cutout
is selected in the region North of Steinkjer. This issue will be explained further
in the next section.

Figure 4.1: Road Network. Figure 4.2: Traffic Measurement.
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Figure 4.3: Parking Locations. Figure 4.4: Charging Stations.

The figures represent critical data for the Musk-model, as it relies heavily on
geographical information. The road network in figure 4.1 includes traffic mea-
surement points extracted to a new map in figure 4.2. This data is needed to
calculate each grid cell’s average daily traffic flow. Parking locations in figure
4.3 are considered suitable locations for establishing new chargers, and charg-
ing stations in figure 4.4, are needed to know where the demand is already met.
The Grid Index Feature tool in ArcGIS Pro is used to make a grid where each
grid cell 𝑖 is a square with a length of 5km along the existing infrastructure,
such as charging stations, parking lots, and roads.

Figure 4.5 shows a full grid network covering the whole region. For the musk-
model, this creates issues concerning the data set being too large, as discussed
in the theory section concerning problematic features of MILP models. Instead,
the grid network is implemented only along locations of interest (roads, park-
ing lots, and charging stations), as seen in figure 4.6. There will be no charging
demand in certain locations, such as mountains, forests, etc. This causes the
model to iterate through significantly fewer instances when solving. The re-
sulting model is, therefore, computationally tractable. A more computationally
tractable implementation of the grid cells can be seen in figure 4.7.
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Figure 4.5: Full Grid Network. Figure 4.6: Aggregated Grid.

Figure 4.7: Grid Cells.

4.1.2 Traffic flow in grid

First, the centroid coordinates (in decimal degrees) for x and y are calculated
and assigned to each cell using the Calculate Geometry Attributes data manage-
ment tool [59]. This cannot be done after the next step. The traffic flow for
each grid cell can be calculated in Argis Pro using the analysis tool Spartial Join
[60] on the grid and the traffic points. The traffic points in each cell are then
averaged for every cell in the grid. For grids with information missing, the tool
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Fill Missing Values (Space Time Pattern Mining) is utilized to insert averaged
values of surrounding grid cells [61], see figure 4.8.

(a) Averaged TF from measurement
points.

(b) Estimation of missing values.

Figure 4.8: Averaged daily Trafic Flow (TF) in 2022.

4.1.3 Land-use classification

The only data set missing for the case study is the land-use classification, mul-
tiple land-cover classifications are available, but the land-cover only describes
whether the land is classified as woods, mountains, etc. Places of interest are
residential and commercial areas where people stop to rest. Online searches
were unsuccessful, except for a data set from Geonorge (driven by the Nor-
wegian Mapping Authority). No further attempts were made to achieve this
after not getting access to the national land-use map from Geonorge. It could
be created with machine learning models, but that is out of the scope of this
thesis. Instead, each area is regarded as equally suitable for installing charging
stations. Then it follows that 𝐴𝑖 = 𝐴, where 𝐴 is the total area of a cell in
meters. Since the length of each grid cell is 5km, the total area is 25km per
grid cell. This reduces Eq ((3.15)) to 𝑣0 = 𝑣𝑖 .

4.1.4 Capacity, battery capacity and charging time

The upper bound or total number of chargers per station 𝑛 𝑗 is selected to be
four as the governmental policy recommends fewer chargers per station to
spread the total number of charging stations over a bigger area to enhance the
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availability of charging [62].

Scania and Volvo have developed functional BETs and probably represent the
biggest market share of BETs in Norway. A reference vehicle is selected to
represent the average battery capacity 𝛼 . Little exists in literature or official
reports. Figure 4.9 shows a snapshot from Scania’s website where 𝛼 is set to
the usable battery capacity of 468 kWh. The installed capacity is 624 kWh, but
because of the State of Health (SoH), only 468 kWh are usable (75% of full
battery).

Figure 4.9: Scania, rigid truck specifications. Retrieved from [63].

Since the usable battery capacity is 468 kWhwith a charging time of 90minutes,
the maximum power for which the battery can charge is at least 312 kW since it
is the average charging power. The charging time 𝑡 can be calculated based on
usable battery capacity and the charger’s power. From Table 1 in [64], the power
limit for the planned chargers is 250 kW which is below 312 kW, resulting in a
slower charging time for this type of charger. Therefore, 𝑡 can be calculated by
dividing the usable battery capacity by the power limit of the charger. Resulting
in a charging time 𝑡 of 1.872 hours or 112 minutes. It is important to note that
if two vehicles charge at the same charger (parallel circuit), the voltage will
be constant, but the current and power will be split between the two vehicles
by Kirchoff’s current and voltage law. And thereby, the charging time will
increase.
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4.1.5 Adaption rate and charging possibility

The adaption rate 𝑢 can be derived from [65] assuming that private cars, vans,
trucks, and buses are the main contributors to the traffic measurement points.
Then 𝑣0 is the number of BETs (455) divided by the total of the main contrib-
utors (3 497 790). Resulting in 𝑣0 = 0,013%. However, this adaption rate is
too low for the model to be profitable. Instead, the new chargers will be avail-
able for every EV to finance the stations until a substantial amount of BETs
are utilized. This is possible since EVs and BEVs use the same connector for
charging, usually CCS2. In this instance, the adaption rate 𝑣0 is 17.8%. But still,
the charging time and battery capacity will be dimensioned for BETs to ensure
that the capacity at the station is maintained if the number of BETs increases.
The charging possibility can be viewed as the time spent charging during 24
hours. Public chargers are assumed to be used once daily to charge the battery
fully. Each charger can be used a maximum of seven times daily (𝑚 ≈ 7), based
on charging time 𝑡 from 08:00 to 20:00 (12 hours). During the night, the BETs
charge at a private charger owned by the company of the BET or is stationary
and not charging. The charging possibility is then 𝑢 = 𝑡/24 = 7.8%.

4.1.6 Costs

Reviewing relevant literature is necessary to determine the costs used in the
case study. Since most costs in literature are in USD or EUR, a fixed value is
determined throughout the thesis for converting the currencies to NOK since
currencies fluctuate. See Eq (4.1) and Eq (4.1.6).

1 USD = 10, 5𝑁𝑂𝐾 (4.1)

1 EUR = 11, 5𝑁𝑂𝐾 (4.2)

Another value that is hard to determine a fixed value for is 𝑝𝑒 , the average
price of electricity in (NOK/kWh). This value is derived from Statistics Norway
(SSB), taking the average of the mean value for every quarter during 2020,
2021, and 2022, resulting in 𝑝𝑒 = 1.11 NOK per kWh [66]. The prices are for
households and include grid rent and taxes. It can be visualized in figure 4.10.
An average value is calculated based on the record low prices during 2020 and
record high prices during 2021 and 2022. The price might be somewhat lower
in the Northern part of Norway, but it is projected that the price will rise in this
region due to Northern Norway mowing towards a deficit of electricity.

A new parameter 𝑐𝑖𝑛𝑣𝑗 is introduced to represent the total investment cost re-
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(a) 2013-2022 (b) 2020-2022

Figure 4.10: Electricity price in Norway. Retrieved from [66].

lated to installing a charger, including operational expenses, material costs,
grid reinforcement costs, transformer costs, capital expenditure, and mainte-
nance and repair costs. The value of 𝑐𝑖𝑛𝑣𝑗 is based on Table 1 in [64], which
describes the cost of installing a "Super-fast DC public charger" hereby denoted
as a rapid charger. The total investment cost for one rapid charger is 125 000€
= 1 437 500 NOK, with a ten-year station lifetime. The investment cost must
be aggregated into daily costs, resulting in 𝑐𝑖𝑛𝑣𝑗 = 3938 NOK. As a result, the
cost per station 𝑗 can be written:

𝑐 𝑗 = (·𝑐𝑖𝑛𝑣𝑗 + 𝑐𝑟𝑗 ) · 𝑛 𝑗 + 𝑝𝑒 · 𝛼 · 𝑞 𝑗 , (4.3)

Two new parameters are introduced to represent governmental incentives in
the model. They are based on the total amount of incentives 𝐼𝑛𝑡 delegated to
building new rapid chargers in areas with insufficient amounts and the amount
delegated for investing in a new charger at a site 𝐼𝑛 𝑗 , giving a reduction to the
investment cost 𝑐𝑖𝑛𝑣𝑗 . The total cost for each charging station is then:

𝑐 𝑗 = (·𝑐𝑖𝑛𝑣𝑗 − 𝐼𝑛 𝑗 + 𝑐𝑟𝑗 ) · 𝑛 𝑗 + 𝑝𝑒 · 𝛼 · 𝑞 𝑗 , (4.4)

In 2022, the Norwegian government delegated 100 million NOK to ENOVA [67].
They are responsible for investing the incentives to charging station builders,
with an upper bound of a given percentage of the investment cost. For this thesis,
an upper bound of 80% is selected. This means ENOVA can maximally delegate
80% of the investment cost for installing a new charger. Additionally, 𝐼𝑛𝑡 must
be transformed into daily costs by dividing 100 million NOK by 365.

The parking fee 𝑐𝑟𝑗 is determined by the number of parking slots occupied by
the installed chargers. It is assumed that each charger has two outlets. Thereby,
one charger occupies two parking slots. It is assumed that the parking lot own-
ers have agreed on a fixed amount of 200 NOK/day for each slot occupied. This
results in 𝑐𝑟𝑗 = 400 NOK/day for each charger installed at a site. Further devel-
opment of new constraints regarding the parameters is explained later.
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4.1.7 Profit

Determining 𝑝, the cost of charging per minute, is tricky. These prices fluctuate,
and there is little literature regarding this topic as the station owners decide
the price. There is also a different price related to regions (mainly North and
South Norway) in Norway. Since the electricity price was determined for both
South and North, the same will be utilized for 𝑝. A snapshot of 2023 for the
price for both regions will be averaged. The price for fast charging will be
based on prices from Mer Norway AS, which Statkraft (State driven power
company) operates. Respectively the prices for South and North are 6,99 and
8,39 NOK/kWh, assuming the user is a registered customer. Therefore the value
of 𝑝 is 7.69 NOK/kWh.

4.1.8 Model improvements and new features

A few adaptions are made to implement a case study in Norway based on
the previously described musk-model. The original model forces a number
of new charging stations 𝑁 (eq. (3.7)) to be built by selecting an integer as a
parameter. This causes the model to build new stations even when the objective
function is negative, meaning negative profits. To develop the model further,
the main objective is to get the model to decide an optimal number of new
charging stations 𝑁 to be built while ensuring that the objective function is
not negative. The optimal number of 𝑁 can be achieved, simply by making it
a decision variable, instead of a parameter, as seen in Eq (4.6). However, given
the current constraints and the parameters used in this case study, the profit
would be negative if any number of new charging stations were installed since
the cost of building one station is much higher than the profit per station. This
results in zero new stations and an objective function of zero.

Therefore it is necessary to implement a new constraint to the mathematical
model. Based on the total amount of incentive that ENOVA receives from the
government to use on charging infrastructure found in ENOVA’s annual report
for 2022 [67]. The amount of NOK 100 million is selected for the total incentive
for building new fast charging stations, 𝐼𝑛𝑡 . While 𝐼𝑛 𝑗 is, 80% of the investment
cost 𝑐𝑖𝑛𝑣𝑗 . A new constraint is implemented to ensure that the sum of incentive
per charger 𝑛 𝑗 does not exceed the limit of 100 million NOK, as seen in Eq
(4.14).

𝐽∑︁
𝑗=1

𝐼𝑛 𝑗 · 𝑛 𝑗 = 𝐼𝑛𝑡 (4.5)

Based on the thoughts outlined above, the full mathematical model introduced
in the section [add section] has been modified and, as a result, can be expressed
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in eight equations, Eq (4.6)-(4.14):

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑃𝑟𝑜 𝑓 𝑖𝑡𝑠
(
𝑥 𝑗 , 𝑛 𝑗 , 𝑞 𝑗 , 𝑁

)
=

J∑︁
j=1

[
𝑝 𝑗 · 𝑡 𝑗 · 𝑞 𝑗 − 𝑐 𝑗

]
, 𝑗 = 1, 2, . . . , 𝐽

(4.6)

Subject to,
𝑐 𝑗 = (𝑐𝑖𝑛𝑣𝑗 − 𝐼𝑛 𝑗 + 𝑐𝑟𝑗 ) · 𝑛 𝑗 + 𝑝𝑒 · 𝛼 · 𝑞 𝑗 , (4.7)

𝑞 𝑗 ≤ 𝑛 𝑗 ·𝑚 𝑗 (4.8)

𝑞 𝑗 ≤
𝐼∑︁
𝑖=1

𝑟𝑖 𝑗 · 𝑑𝑟𝑖 (4.9)

𝐽∑︁
𝑗=1

𝑥 𝑗 · 𝑟𝑖 𝑗 ≤ 1 (4.10)

𝑛 𝑗 ≥ 𝑥 𝑗 (4.11)

𝑛 𝑗 ≤ 𝑙 𝑗 · 𝑥 𝑗 (4.12)

𝐽∑︁
𝑗=1

𝑥 𝑗 = 𝑁 (4.13)

𝐽∑︁
𝑗=1

𝐼𝑛 𝑗 · 𝑛 𝑗 ≤ 𝐼𝑛𝑡 (4.14)

𝑥 𝑗 , 𝑛 𝑗 ≤ 0, where 𝑥 𝑗 and 𝑛 𝑗 are integers,

where 𝑗 = 1, 2, . . . , 𝐽 and 𝑖 = 1, 2, . . . , 𝐼 .
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This model will select optimal locations for areas to install new charging sta-
tions based on where it is most profitable. Existing chargers are considered by
diminishing demand from cells where they are present. Finally, optimal loca-
tions and the yearly profit/costs of installing these new chargers are revealed.
If there are profits, it can be used to determine whether the project is profitable
during the station’s lifetime by discounting cash flows and determining the net
present value. The locations can be extracted as shapefiles for GIS or as a data
frame for further analysis.
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4.2 Model of the Norwegian grid

The output from the musk-model will be soft-linked with PyPSA-eur for further
analysis. First, a base network for Norway is established using PyPSA-eur, figure
4.11. The reference year 2013 is selected due to computational difficulties creat-
ing new cutouts from ERA5 and Sarah. 2013 is also the standard year included
with PyPSA-eur since it is regarded as a normal year for the climate (rain, wind,
solar irradiance, etc.). This is important when calculating the potential for re-
newables. The base network consists of 380 kV voltage lines. After the base

Figure 4.11: Base network of Norway.

network is established, PyPSA-eur is instructed to add underlying electricity
to the grid network. The network is manually configured in Python to imple-
ment new buses, lines, links, and loads representing the new charging stations
connected to the grid. The charging station locations for the whole of Norway,
including existing and new stations from the musk-model, are saved into a
csv file and read into PyPSA as a pandas DataFrame, which includes charger
capacity, latitude, and longitude position. The general idea is to use network
components from PyPSA to implement the existing 26 541 chargers and the 35
new ones to analyze impacts of new loads with 250 kW drawing active power
from the power system. The electrical network already includes generators and
buses. A function is implemented to calculate the shortest distance between
chargers and network nodes to connect links to the corresponding buses, for
which a binary k-d tree algorithm is used. Every charging station node iterates
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Figure 4.12: Architecture for implementing chargers.

through all the buses in the network to find the closest connection point. Then
the charger is linked to a battery (468 kW) with a load and a store component.
The architecture can be seen in figure 4.12. An artificial time series for 2013
represents EV usage to simulate load in the battery. See figure 4.13.
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Figure 4.13: Weekly EV usage.

Figure 4.14: Charging stations connected to the grid.

The new electric network is then saved manually, replacing the original. Figure
4.14 shows the full electrical network with chargers.

A network with this amount of nodes requires solid computational power. The
network is clustered into 66 nodes using a k-means based clustering technique
to make the power system model more computationally tractable. Finally, the
network is solved by optimizing the linear power flow, and the time resolution is
averaged over daily (24-hour) snapshots, as seen in figure 4.15. A network with-
out containing any chargers is solved for comparison using the same amount
of clusters and configuration.
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Figure 4.15: Aggregated nodes.





5
Results
This section shows the results of the optimal rapid charger locations followed by
a sensitivity analysis on daily charging𝑚, average battery capacity 𝛼 , incentive
per charger 𝐼𝑛 𝑗 , the price for charging at rapid charger 𝑃 , and charging time 𝑡 .
The allocation of the new and existing rapid chargers will then be analyzed in
the Norwegian grid network. Analyzing load distribution, prices, line loading,
line expansion, and optimal power capacity. To reproduce the same results,
visit the GitHub repository github.com/o2i/Masters-Thesis, [7].

5.1 Optimal location

The result of the optimal allocation of 15 new charging stations is displayed
in figure 5.1. In total, 35 new rapid chargers are installed at these stations.
The ones with the highest capacity are located in Harstad, along the highway
(E6) in between Narvik and Bardu, Finnsnes, Tromsø, and two stations in Alta.
The only station with a capacity of 3 chargers is located outside Karasjok, at
Riksvei 92. This road is a link between Karasjok and Finland. No stations have a
capacity of two chargers. There are eight stations with a capacity of one charger.
Five are located in Nordland County, while the remaining three stations are
located north in Finmark County. The ones in Nordland are located in Forvik,
two at Austbø, Riksvei 812 between Rognan and Grønli, and outside Bodø
at Nordvik. The remaining stations in Finmark are located outside Lakselv,
Honningsvåg, and at Riksvei 98 between Lebesby and Børselv.
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Figure 5.1: Optimal location of 15 new charging stations, with a total of 35 rapid
chargers.

Overall, the stations are widely scattered over the area of interest, except for
Alta and Austbø, where two sets of stations are close. Since the model selects
two charging stations for Alta and Austbø, it indicates that the current demand
for EV charging is not yet met, which means that the charging demand is much
higher than what the currently existing chargers can supply, and therefore a
profitable location for installing a new charger.

In general, the selected locations seem valid concerning where it would be
logical to install a station. All are located at parking lots near cities, villages,
and roads or highways with high traffic flow. The new stations can reduce
driving range anxiety for both EVs and BETs, while the builder can operate
with a profit during the station’s lifetime.

5.1.1 Sensitivity

To understand how different parameters affect the objective function of the
model, sensitivity analysis is utilized on charging times per day for charger
(𝑚 𝑗), battery capacity (𝛼), the upper bound of chargers in each station (𝑙 𝑗),
EV adaption rate 𝑣0, price of charging at rapid charger (𝑝), charging time (𝑡),
the incentive per charger (𝐼𝑛 𝑗), and adaption rate 𝑣0. The analysis is based
on the parameters used to find the optimal location of 15 new rapid charging
sites, visualized in figure 5.2. The interval from zero to seven is selected since
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𝑚 can have a maximum of seven vehicles charging from 0-100 % during a day.
The only sensible values for m are in the domain of [0,7]. To display multiple
functions in the same graph, it is easiest to accomplish using the same domain
in the x-axis. So, for instance, 𝑙 𝑗 , is tested for values in the range [0,14] chargers.
To adjust the function within the same domain as 𝑚, it is multiplied with a
factor for each time step in the graph. The optimization is iterated using a for
loop, changing values for 𝑙 𝑗 = 𝑖/7 · 𝑘, where 𝑖 = [0, 7] and 𝑘 = 2. Resulting in
the actual domain of 𝐷𝑙 𝑗 = [0,2,4...,14]. The same is done for the remaining
parameters but with a different 𝑘 to reflect sensible values for each parameter.
Such that, battery capacity 𝛼 ranges from 56-450 kWh, 𝑙 𝑗 ranges from 0-14
chargers, EV adaption rate 𝑣0 ranges from 0-100%, 𝑝 ranges from 1.1-15.1 NOK,
𝑡 ranges from 30-114 minutes, incentive per charger 𝐼𝑛 𝑗 ranges from 0-100
%.

Figure 5.2: Sensitivity analysis on𝑚, 𝛼 , 𝑙 𝑗 , 𝑝, 𝑡 , 𝐼𝑛 𝑗 , 𝑣0.

During the time steps, 𝑝, 𝑙 𝑗 , and 𝑣0 are the biggest contributors to maximizing
profit (objective value). The charging price at a rapid charger 𝑝 is linearly
related to the objective value, while 𝑙 𝑗 and 𝑣0 have a damped exponential
growth. They both have an impact on the demand (where the maximum value
of the demand is the full traffic flow). 𝑙 𝑗 and 𝑣0 have a direct impact on the
final demand as they are limiting traffic flow but stagnate when the maximum
amount of traffic flow is represented as the demand. The objective value quickly
rises before the upper bound of demand is met. When the demand is met, the
growth stagnates. The charging time 𝑡 does not impact the objective function
since it cancels out when multiplied by both 𝑝 and 𝑝𝑒 . The battery capacity 𝛼
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and incentive per charger 𝐼𝑛 𝑗 are linear. The number of daily charging times per
day𝑚 is approximately linear concerning maximizing profits and contributes
slightly less than 𝛼 and 𝐼𝑛 𝑗 .

The mathematical model for the musk-model is set to maximize the daily profits
for implementing the new stations. In the optimal case from 5.1, the daily profits
from installing the new charging sites is 608 092 NOK. Resulting in a yearly
profit of 222 million NOK, which is not a realistic case and will be discussed
further in the next chapter.
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5.2 Impacts of new loads on the grid

These results are obtained from soft-linking the optimal locations from the
musk-model with PyPSA-eur by adding the total amounts of chargers in Norway
to the system as loads that draw 250 kW of active power from the system. Com-
paring a case without and with the new installation. These networks contain
the overlying topology of the Norwegian grid, including generators, clustered
buses, storage units, links, stores, carriers, transformer types, loads, lines, and
line types. This is an electricity-only study, meaning demand from all other
sectors is excluded.

The distribution of loads is compared in figure 5.3. The installed amount of
chargers is 26 599, which especially affects the grid in buses near highly pop-
ulated areas because population and installed chargers correlate. The total
capacity for all the chargers is 1.39 GW. All the chargers are utilized to charge
from the same repeating time series, representing an artificial usage pattern
for EVs. The distribution of loads is largest in the region around Oslo. The bus
furthest north represents the total load that Northern Norway has on the grid.
The load distribution without chargers represents loads created by consumers
and establishments, which during the year added a load of 5.3 TW to the grid.
The total change in active power consumption between the two cases is 14 541
GW. The grid, in total, had an increased load of 14.5 TW during the year due
to the new chargers.

(a) With chargers. (b) Without chargers.

Figure 5.3: Comparison of load distribution.

A line expansion is necessary to address the new demand from increased loads.
The comparison of line expansion can be seen in the horizontal bar plot in
figure 5.4. To meet the new demand, the new lines are expanded to handle an
additional apparent power flow of 471 GW.
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Figure 5.4: Comparison of line expansions.

The load distribution during the year is displayed in figure 5.5. Where the high-
est loads are during the winter months. The load distribution pattern during
the year is the same for both cases since additional load from the chargers is
aggregated into 24-hour snapshots and is represented by a cyclic time series,
only increasing the magnitude of load distribution. For further analysis of line
loading and electricity prices, the 21st of January and July 30th are selected to
represent a case with high and low demand.

Figure 5.5: Load distribution during 2013.

Figure 5.6 displays how the chargers are loading the lines during the 21st of
January. This is a date when the load from consumers is high. The load is
probably high since it is during the coldest months in Norway, and the heating
of homes is causing a higher load on the grid. The highest loaded lines are
in Trønderlag. In comparison, figure 5.6b displays how lines are loaded only
considering loads from consumers and establishments. It is important to note
that the lines are expanded to handle larger loads in figure 5.6a.

Figure 5.7 displays how the chargers load the lines on the 30th of July. This
is a date when the load from consumers is low. The load is lower due to the
warmer weather, and less heat is required to warm up households. The highest
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(a) With chargers. (b) Without chargers.

Figure 5.6: Line loading 21st of January.

(a) With chargers. (b) Without chargers.

Figure 5.7: Line loading 30th of July.

loaded line is located between Orkanger and Rindal. It is a 380 kV line with a
newly installed maximum capacity of 6314 MVA. Without chargers, the max-
imum capacity is 0,2 MVA. The cost for installing this line can be calculated
by multiplying the capital cost (for increasing the limit of apparent power flow
by 1 MW) by the maximum capacity of the case with and without chargers.
Resulting in a capital cost of 138.4 million NOK for expanding the line.

Figure 5.8-5.9 displays the marginal price for which electricity production is
profitable during the 21st of January and the 30th of July. The average price in
Norway for installing all the chargers is 1.05 NOK/kWh, while without chargers,
it is 0.38 NOK/kWh. After installing the chargers, the marginal price must be
raised by 279 percent to ensure profitability at the given date. The average
marginal price with chargers on July 30th is 0.57 NOK/kWh, while without
chargers, it is 0.38 NOK/kWh, meaning an increase in the marginal price of 150
percent on July 30th. The cheapest locational prices are in Northern Norway,
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(a) With chargers. (b) Without chargers.

Figure 5.8: Prices for 21th of January.

(a) With chargers. (b) Without chargers.

Figure 5.9: Prices for 30th of July.

Agder, and Rogaland after installing chargers, while the cheapest locational
prices are in Northern Norway, Trøderlag, Vestlandet, and Stavanger, without
installing chargers.

The optimal expansion of increasing nominal power and capacity for generators
and storage units can be seen in figure 5.10. The largest capacity is onshore
wind and solar generation, with 142 GW and 90 GW in nominal power. The
third largest expansion is in hydro, with a nominal power of 29 GW. Pumped
hydro storage, offshore wind, run of river, and CCGT have a combined nominal
power capacity of 6 GW. Solar and onshore wind nominal power capacity is
expanded with 90 and 138 GW. Meaning that a huge expansion of new wind
and solar parks is necessary.
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(a) Max capacity. (b) Expansion.

Figure 5.10: Capacity and expansion of generators and storage units.

Figure 5.11: Generators above 1.7 GW with chargers.

The time series of onshore wind, solar, and offshore AC wind is displayed in
figure 5.11. It displays electricity production above 1.7 GW from generators
in the case with installed chargers. Energy production from these carriers is
highly fluctuating based on the weather. Solar generation is highest in the
summer since solar irradiation is highest in these months. It fluctuates between
a maximum of 24 GW and a minimum of 0 GW. Wind generation fluctuates
between a maximum of 69.4 GW and a minimum of 1.29 GW.

In the case of excluding the installation of chargers, the time series for electricity
production from generators bigger than 1.7 GW are displayed in figure 5.12 with
a maximum onshore wind production of 4.4 GW and a minimum production
of 0.05 GW. Compared with figure 5.11, installing chargers needs an electricity
production that is 65 GW higher from onshore wind.

However, the largest contribution to producing electricity in Norway is from
hydropower. The total state of charge from hydropower and PHS is displayed
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Figure 5.12: Generators above 1,7 GW without chargers.

Figure 5.13: State of charge, hydro, and PHS.

in figure 5.13 with chargers installed and shows how the total capacity varied
during the year. In the beginning, the magazines have a capacity of over 60 TW.
While being slowly depleted until mid-May, before filling up once again during
the rest of the year. Figure 5.14 displays the distribution of electricity production
from hydro, onshore wind, solar, CCGT, offshore wind AC, offshore windDC and
PHS. Hydro accounts for 99.19 percent of the electricity production, while the
remaining accounts for 0.81 percent of the total electricity production.
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Figure 5.14: Distribution of electricity production by carriers.

The PyPSA-eur mathematical model is designed to minimize the total system
cost. The analyzed networks are considering the cheapest expansion and build-
ing of lines, generators, and storage units, which satisfies the new electricity
demand. The annualized total system cost for implementing the chargers to
the Norwegian grid is 280 billion NOK, while the case excluding chargers has
an annualized total system cost of 2.34 billion NOK. The suggested implemen-
tation of chargers to the grid will increase the annualized total system cost by
approximately 1200 percent.





6
Discussion
The high daily profits from the musk-model demonstrate how profitable charg-
ing stations can be in the future, and the optimal allocation of charging stations
provides the planner with a solid base for selecting the most suitable locations
for implementing new chargers based on where demand from other charging
sites is not yet met. The sensitivity of charging times per day for charger (𝑚 𝑗 ),
battery capacity (𝛼), the upper bound of chargers in each station (𝑙 𝑗 ), EV adap-
tion rate 𝑣0, price of charging at rapid charger (𝑝), charging time (𝑡) and the
incentive per charger (𝐼𝑛 𝑗 ) gives insight on how the different parameters affect
the objective value of the musk-model.

The soft-linking with PyPSA-eur gives the planner a solid open-source frame-
work for investigating how the installations affect the national power grid. It is
possible to investigate how the new loads will affect components in the power
grid, allowing the planner to analyze lines, generators, storage units, buses,
links, and loads. This is important for the planner since new installations in
the grid can raise marginal prices, as demonstrated. The grid operators raise
electricity prices to compensate for higher marginal prices, leading to higher
costs for station owners, which again must compensate by raising the price
for charging, which can reduce the EV penetration rate, affecting the objec-
tive value in the location-allocation model, resulting in having to reassess the
model.

The soft-linking between the models provides an open-source framework for
students, researchers, and planners to investigate the potential capacity of
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upgraded or newly installed generators and the total electricity produced from
renewable sources. This shows where new generators can be placed to satisfy
increasing demand from charging sites and building costs.

6.1 Significance of results

The result shows an extreme scenario regarding the impact of large EV batteries
on the decision-making of installing new charging stations and their impact on
the electrical grid system. Increasing battery capacity, EV adaption rate, and the
number of daily charging at a station shows how profitable charging stations
can be in the future as society adjusts to climate change by phasing out internal-
combustion engines. However, the case has two sides, rising battery capacity,
EV adaption rate, and charging times create high loads in the grid system.
Leading to an expansion of lines, transformers, generators, and storage units.
Resulting in a high annual system cost for electricity producers. This shows the
importance of modeling both cases since they are interconnected.

6.2 Comparison with prior work

Not all parameters are stated in the original musk-model in [23],making it hard
to validate the results. The paper’s main objective was to focus on the return
on investment regarding the optimal location of EVs. The objective value is not
stated throughout the paper, making it hard to validate whether the scenario
modeled is profitable. The mathematical model can force installations of new
charging stations since 𝑁 is set to a fixed number, even when the profits are
negative. Also, there is an inconsistency in the profit and cost variables in the
objective function. The charging price at s station 𝑝 is denoted in Sek/min,
while the electricity cost for the charging at a station 𝑝𝑒 is denoted in Sek/kWh.
Ultimately, this cancels out in the objective function but results in only the
charging price at a station being dependent on the charging time 𝑡 of an EV.
The electricity cost of charging an EV ultimately acts as a marginal price for
which the price of charging should be higher. In reality, both would depend
on the charging time 𝑡 since the difference between the marginal price and
the charging price at the station should determine the objective value. This
is changed during the new implementation of the musk-model, making the
charging time 𝑡 not impact the objective function. Instead, the charging time is
reflected in the number of servings a charger can have during a day𝑚.

To solve the issue where the musk-model selects locations for charging stations
with negative profits, the amount of charging stations to install is changed from
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a fixed variable to a decision variable. Making the model select the optimal
number of new charging stations to maximize profits. The existing traffic flow
determines the number of new charging stations and selects locations where
existing charging stations do not already meet the demand.

A new constraint is introduced to more accurately tailor the model to the Nor-
wegian market by implementing a governmental incentive, which is created to
encourage station builders to install more rapid chargers for heavy-duty EVs.
The incentive is modeled to cover 80 percent of the investment cost, reducing
costs and raising profits from building new rapid charging stations. The upper
bound of the total incentive is set not to exceed the limit of the total incentive
distributed by the Norwegian government.

Sensitivity analysis was suggested as future research in the original paper upon
which the musk-model was built. The sensitivity of several parameters in the
modified musk-model shows how each parameter contributes to the model’s
profitability.

6.3 Model limitations

The musk-model is a user-friendly mathematical model. One of the biggest
flaws is how the profits are modeled. It measures the daily profits for one
year by subtracting the daily costs from the daily profits. This excludes profits
during a charging station’s lifetime and free cash flow generated by the in-
vestment. Instead, the profitability of the investment should be determined by
the project’s Net Present Value (NPV). It includes a more accurate framework
for determining if a project is profitable. By setting the investment cost to be
the costs for investing in long-term assets in year zero, it can be depreciated
during the project’s lifetime, reducing taxes. A discount rate can be selected
to determine the investment’s required minimum return. Inflation and opera-
tional costs (maintenance, salaries, etc) can be included annually, reducing the
profits before taxes. The tax reduces the profits and results in the investment’s
free cash flow, which can be used to find the investment’s net present value
by a given discount rate, like the Weighted Average Cost of Capital (WACC).
The model will select the projects with the highest NPV as the most profitable,
while projects below zero are nonprofitable.

The original musk-model considered land-use classification in the decision-
making for selecting optimal locations by giving each grid cell a value from
0-100 percent based on how much of the area in a cell contained the desired
land-use class. Then the value is multiplied by the initial traffic flow 𝑣0, di-
minishing demand 𝑣𝑖 . During the data gathering for the musk-model, land-use
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classification data were not achieved due to the data not being intended for the
public. It exists in Norway and can be found at [68]. However, other suggestions
proposed using machine learning to classify different land-use classifications
but were out of the scope of this thesis. In the end, land-use classification data
was discarded. As a result, the model regards every grid cell as equally suitable
(𝐴𝑖/𝐴 = 1) for installing new charging stations. A positive consequence is
that the demand more accurately satisfies the actual traffic flow in each grid
cell. Conversely, the most suitable locations for EV users are discarded since
the selection of charging station locations near malls, gas stations, or shops is
not included in the model. The utilization of land-use classification is impor-
tant in urban planning and zoning decisions to help planners find a balanced
mix between residential, commercial, and public locations to help avoid traffic
congestion.

The measurement of traffic flow has several flaws. Including arrival times of
EVs, the measurement points count traffic in both directions, making it hard
to evaluate which direction a vehicle is headed and the current SoC of an EV.
The measurement point is not present on all roads, making it necessary to
implement average values for grids where traffic flow data is missing. Leading
to values that might be inaccurate for many grid cells.

PyPSA-eur is based on open-source data sets. And it can be hard to validate
what some data sets represent. For instance, data sets containing loads are
based on ENTSO-E power statistics, according to a report [69], which include
the quantity of electrical power the utility company delivers to the end users
within the analyzed network. This total net electricity is generated domestically
or imported directly from foreign sources by industrial or commercial firms
within the network, used for their own requirements or to serve end-users
directly. Making it hard to know how many and which chargers are already
included as loads. Some data are even based on Wikipedia articles, like line
types. This creates an issue since the information can be changed in real-time,
ultimately affecting the model results.

The model for analyzing the impacts of charging infrastructure in the grid
system is currently limited to the full year of 2013, with snapshots of data such
as loads and generation aggregated to 24 hours. In attempts to implement a
cutout from ERA5 and Sarah-2 for 2018 to 2022, complications with other data
sets occurred, causing several data in the model to be missing, but according
to the authors of PyPSA-eur it should be fully possible to create models based
on data from ERA5 and Sarah-2 from 1940 to present.

Currently, the model is automatically simplified and clustered into a selected
number of nodes in Southern Norway. The analytical part is limited to Southern
Norway since Northern Norway is represented as one single node in the model.
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This makes it hard to analyze components in the grid at the region of interest.
Instead, the existing charging infrastructure was added along with new ones
to create enough load in the system to see an impact on the national grid.
PyPSA-eur is a highly modifiable framework for which new features can be
built, so it is not impossible to modify the simplification and clustering scripta
cluster_network.py and simplify_network to the region of interest.

The model only consists of the overlying topology of the grid system, meaning
lines with a voltage above 220 kV. In the simplification part of the model, the
transmission network is mapped to a 380 kV voltage layer. Limiting the power
system analysis to high voltage lines. Excluding the possibility of analyzing
local lines below 220 kV. This would be highly valuable when analyzing the
grid impacts of a selection of new chargers to the system.

6.4 Assumptions and reality

The objective function from the musk-model returned an immense daily profit
of 608 092 NOK or 222 million NOK and a total revenue of 232 million per year,
which means that they have net costs of 10 million (with incentives). The profit
does not compare to what other companies are earning in today’s market. Mer
Norway AS has a total revenue of 252 million NOK and a negative 81 million
NOK profit in 2022 [70]. The immense daily profits from the musk-model are
not rooted in the model itself but in the assumptions made for the parameters
𝑚, 𝑣0, and 𝛼 . The serving times for each charger 𝑚 are set to charge seven
vehicles each day, which is the maximum serving times a charger can have with
the given battery capacity 𝛼 and the charger’s output power. In addition, the
battery capacity is modeled for heavy-duty EVs, which are further enhanced
by the EV adaption rate 𝑣0 being the same as today’s adaption rate. In reality,
the adaption rate is higher than possible for trucks to obtain. There are 68
407 registered trucks in Norway, meaning that the adaption rate of trucks can
maximum represent under 6 percent of the total car fleet, never obtaining
an adaption rate of 17.8 percent. Instead, the model represents the profits
from giving the present EV fleet a battery capacity of 468 kWh, with every
charger fully booked for the day. However, battery capacity and EV adaption
are projected to rise based on growth over the last few years. This can be seen
in the financial statement of Mer Norway AS, with an increase of roughly 600
percent in total revenue from 2018 to 2022.

Further, the costs are not accurately implemented in the musk-model. The
balance sheet of Mer Norway AS [70] shows that the cost of goods is about
180 million, salaries 37 million, amortization 60 million, and other operational
costs 56 million. However, the balance sheet looks better, with assets and equity
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increasing 250% and 670% in the last five years while the debt is decreasing.
This could mean some costs are related to investing in new charging infrastruc-
ture.

The objective value from the model is instead showing how much potential EV
charging can have as a business in the future. Despite having an unrealistically
high objective value, the model still selects the most suitable locations based
on where there is the most charging demand based on traffic flow, whether
having high or low profits.

When the optimal locations of charging stations were selected, they were im-
plemented in the power system as a load. The artificial time series represent an
EV that drives 14 times weekly. It drives 200 km during a week and has a con-
sumption of 0.18 kWh/km. This adds a weekly demand of 36 kWh to the power
system. The same time series is implemented for every charger (26 599 charg-
ers), resulting in an instantaneous need for the power system to deliver a total
of 957 564 kWh to the vehicles weekly. This is not how EVs usually behave, but
it is a valid scenario since there is a possibility that the EV fleet in Norway can
occupy each charger and charge at the same time. The impact of the selected
battery capacity of 468 kWh is not fully utilized. Still, it shows how sensitive
the power system is to instantaneous charging demand and how expensive it
is to enhance the grid based on the total annualized system cost.

The current model built in PyPSA-eur only includes the power grid of Norway.
This is a simplification of how the power grid works in reality. The power grid
connects across borders, and electricity is imported and exported based on
whether demand within a country is high or low. This simplification causes the
model to have a higher annualized total system cost since the country must
produce all the electricity by itself.



7
Conclusion
7.1 Further research

To further enhance the musk-model future research should investigate how
the traffic flow of heavy-duty EVs is distributed, by investigating the start and
end of the route, to see where the traffic is coming from and better understand
if heavy-duty EVs are traveling in limited areas where the model has built
new charging stations. Further, investigate refined traffic flow data to get more
useful insight into traffic patterns, adding the raw vehicle count and additional
information about speed, vehicle type, and what times vehicles pass through
the measurement point. Queuing theory could be implemented in the model to
reduce congestion at stations since both heavy-duty EVs and EVs can charge at
the same station. A better implementation of EV adaption rate, average battery
capacity, and number of servings a day per charger should be implemented to
more accurately model a real-world case, a suggestion could be to start with the
EV adaption rate which heavy-duty EVs have today and then slowly upscale
parameters by projecting the growth, to see which year charging of heavy-
duty EVs could become profitable. A more accurate method for calculating
profitability should be implemented to reflect better the time value of money
and account for more costs, including salaries, taxes, yearly maintenance, and
operations cost.

The power system model could be further enhanced by creating cutouts for
several years to account for variations in weather by varying solar irradiation,
wind speed, and temperature measurements to better project the generation
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from renewables like solar power and wind farms. During the thesis, PyPSA-eur
was updated to include sector-coupling studies. Further investigation into this
can be interesting since it can better project loads from different sectors,making
it easier to analyze a more realistic scenario. A different implementation of the
network components concerning battery and EVs can enhance the model to
account for studies related to state-of-the-art technologies, like vehicle-to-grid.
By implementing time series for which the vehicle is stationary and connected
to the grid, renewable energy sources like wind and solar power can "get rid of"
excess power by charging the batteries, which can be used as storage for when
the demand is high and then discharged back into the power system when the
loads are high, reducing the total system cost and prohibiting overloading in
the power system.

7.2 Concluding remarks

The high daily profit evident in the musk-model highlights the future charging
station’s potential profitability. By optimally locating these stations, planners
can establish a strong foundation for identifying the best sites for new chargers,
especially where existing charging demand is unmet. Analyzing the sensitivity
of various parameters can shed light on their impact on the musk-model’s ob-
jective value. New additional constraints tailored for the Norwegian case study
are implemented to model governmental incentives, leading to more charging
sites for heavy-duty EVs. The integration with PyPSA-eur offers a robust open-
source platform for assessing the impact of installations on the national power
grid. It allows for examining how new loads might affect grid components,
allowing planners to analyze lines, generators, storage units, buses, links, and
loads. This insight is crucial for planners as new grid installations could change
initial parameters in the musk-model and could result in having to reassess the
model. The collaboration between the models offers an open-source tool for
scholars, researchers, and planners to study the potential capacity of renovated
or newly installed generators and the overall electricity generated from renew-
able sources. This analysis can reveal where new generators might be optimally
placed to meet the rising demand from charging sites and construction costs
and could be useful in models concerning state-of-the-art technologies.
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