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Abstract
Edge computing is an emerging paradigmwithin the field of distributed comput-
ing, aimed at bringing data processing capabilities closer to the data-generating
sources to enable real-time processing and reduce latency. However, the lack
of representative data in the literature poses a significant challenge for eval-
uating the effectiveness of new algorithms and techniques developed for this
paradigm.

A part of the process towards alleviating this problem includes creating realis-
tic and relevant workloads for the edge computing community. Research has
already been conducted towards this goal, but resulting workload characteri-
zations from these studies have been shown to not give an accurate represen-
tation of the workloads. This research gap highlights the need for developing
new methodologies that can accurately characterize edge computing work-
loads.

In this work we propose a novel methodology to characterize edge comput-
ing workloads, which leverages hardware performance counters to capture the
behavior and characteristics of edge workloads in high detail. We explore the
concept of representing workloads in a high-dimensional space, and develop a
"proof-of-concept" classification model, that classifies workloads on a continu-
ous "imprecise" data spectrum, to demonstrate the effectiveness and potential
of the proposed characterization methodology.

This research contributes to the field of edge computing by identifying and ad-
dressing the limitations of existing edge workload characterization techniques,
and also opens up further avenues of research with regards to edge computing
workload characterization.
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1
Introduction
Over the past few years the proliferation of mobile computing technologies and
applications have led to a push towards distributed computing, in contrast to
the centralizing trend seen in cloud computing over the last decade [3, 24]. One
such distributed computing framework is the novel edge computing paradigm
which lies at the edge of the Internet, close to mobile devices and sensors.
A main characteristic of the edge computing paradigm is that a significant
amount of computing and storage resources are moved off the cloud to be
situated closer to data-generating devices [14].

In recent advancements within the edge computing paradigm, there has been
a recognized need for developing realistic and relevant edge workloads for the
testing and evaluation of new algorithms and techniques [28]. A part of this
process includes the characterization of such workloads and while previous
work into this has been done [29, 30], results have shown to be overly gen-
eralized, thereby lacking the accuracy needed to classify realistic workloads
[28].

The objective for this thesis is to create, present and analyze a methodology
that generates fine-grained characterizations of edge workloads. This will be
accomplished by leveraging low-level hardware performance metrics, made
available via the Performance Application Programming Interface (PAPI) [20]
to produce highly-detailed characterizations of edge workloads. To understand
why we go in this direction, we will first present and evaluate existing workload
characterization techniques, and identify their potential shortcomings.

1



2 chapter 1 introduction

In addition, a "proof-of-concept" fuzzy classification model to classify edge
workloads will be developed, presented and analyzed given the obtained fine-
grained characterization.

1.1 Contributions

The contributions of this thesis mainly serve to advance the field of edge com-
puting by identifying and addressing the limitations of existing edge workload
characterization techniques. The contributions are as follows:

• This thesis will present and evaluate existing techniques used in the liter-
ature for workload characterization, with focus on the edge computing
paradigm. The purpose of which is to provide a comprehensive overview
of the existing workload characterization techniques and their effective-
ness at accurate workload characterization.

• Introducing hardware performance counters (HPCs) as a tool to char-
acterize edge computing workloads, with respect to application perfor-
mance behaviour.

• Developing, presenting and evaluating a novel methodology to produce
fine-grained characterizations of edge workloads, which goes beyond
existing characterization techniques used in previous work, to provide
a more detailed understanding of the behaviour and characteristics of
edge workloads.

• A "proof-of-concept" fuzzy classification model for the purpose of classi-
fying edge workloads with the obtained fine-grained characterization is
presented and analyzed. This will serve as a practical demonstration of
the effectiveness and potential of the proposed characterization method-
ology.

The proposed methodology for fine-grained characterization of edge workloads
involves several steps. First, we select a set of N hardware performance events
that we consider interesting for workload characterization. Using a hardware
event performance-monitoring API, we instrument the HPCs to monitor the
selected hardware events while our benchmark is being executed.

A statistically significant amount of profiling runs R will be performed to more
accurately capture the workload profile. Doing this will reduce the effect of
noise appearing as the result of potential variability in the performance be-
haviour of the workload being profiled.
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To eliminate potential noise from thread-migration, the workload is scheduled
to run on all available processor units concurrently. Therefore each individual
profiling run will output U profiling results, where U is the total number of
processors on the system.

Afterwards, we collect the results from each profiling run into a aggregated
data set consisting of 𝑀 = 𝑅 ∗ 𝑈 data points with N performance counter
values each. The resultant output data represents the profiled workload as as
a set of M data points in an N-dimensional performance counter event vector
space.

Finally, we perform a rudimentary dimensionality reduction to identify and
remove potential dimensions what have little to no informational value with
regards to workload characterization.

1.2 Outline

The remainder of this thesis will be structured as follows:

A overview of workload characterization and classification concepts and tech-
niques that currently exist in the literature is given in Chapter 2.

Chapter 3 Introduces hardware performance counters, their traditional usage
in the high power computing community, and explains their usefulness for the
purpose of workload characterization.

We explore the concept of representingworkloads as objects in amulti-dimensional
metric space in Chapter 4, and provide an intuitive example as to why hav-
ing more quantifiable parameters can prove useful for workload characteriza-
tion.

Chapter 5 directly builds upon the work presented in Chapter 4 to propose a
"proof-of-concept" model to classify edge workloads.

In Chapter 6 our methodology to produce high-detail workload characteriza-
tions is presented, along with a worked example where we go through the steps
required to characterize a workload using the proposed methodology.

Chapter 7 will give an overview of the various techniques and design choices
made when implementing the proposed characterization methodology in Chap-
ter 6, as well as for the proposed classification model in Chapter 5.
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An overview of benchmarks, parameters and the testbed used to perform the
experiments is given Chapter 8.

Chapter 9will present and analyze the results from experiments performed.

In Chapter 10 we discuss various advantages and disadvantages of the pro-
posed fine-grained characterization methodology.

Chapter 11 gives an overview of future avenues of research that build upon
the work presented in this thesis.

Finally, Chapter 12 will conclude the thesis.



2
Related Work
In this section the related work regarding the definition, characterization and
classification of workloads will first be presented. Then, similar work on work-
load characterization for paradigms that lie close to and within the edge com-
puting domain will be presented.

The workload characterization and classification techniques presented in this
section will be iterated upon further on in this thesis to eventually define a
methodology that can produce highly-detailed characterizations of workloads.
The focus will be on the characterization and classification of workloads be-
longing to the edge computing paradigm.

2.1 Surveys on workload characterization and
classification in the literature

Several surveys have been conducted to provide an overview of the state of the
art regarding workload characterization and classification. In [26], Shishira
et al. define workloads as "a computing task that requires access to a mix
of resources including processing power, storage, disk input/output(i/o) and
network bandwith". However, they also observe that there are no general defi-
nitions of workloads in the literature and that "the job/task granularity deter-
mines the definition of workloads".

5



6 chapter 2 related work

Calzarossa et al. [7] define "workload characteristics" as the demands placed by
a task/job on various system resources, described by a set of parameters which
can be used to quantify the workload based on their magnitudes. To capture
the behaviour of workloads in detail, the authors suggests that "it might be
necessary to insert into the system probes, such as event counters". Minimizing
the intrusiveness and overhead caused by the instrumentation system is also
of importance when performing such measurements.

Shishira et al. [26] provide an overview of workload taxonomies based on dif-
ferent criteria. Of particular interest is workload classification based on resource
requirement, where workloads can placed into one, or a combination, of the
following categories: "Memory workloads", "CPU workloads" "I/O workloads",
and finally "Database workloads".

2.2 Characterization of high-power
computing/supercomputer workloads

With regards to workload characterization on supercomputers, a static and
dynamic workload characterization study is performed by Pasquale et al. [22].
The authors use over a million trace records to create a static characterization
of jobs in terms of CPU time, channel I/O time and memory space-time product
using relatively extensive categories ("Pub-Low", "Pub-Medium", etc). The char-
acterization is performed by creating a representative job for each command,
with the resource consumption being the average of all jobs sharing the same
command name. A dynamic characterization is also presented that identifies
characteristic time periods, with regards to workload intensities, over an aver-
age weekday. The resulting static characterization is relatively coarse-grained,
with only three defining parameters, considering the high-detail characteriza-
tions we aim to produce in this thesis.

Li et al. [15] in their work perform workload characterization of a multi-cluster
supercomputer dedicated to parallel and distributed computing research. They
analyze twelve-month workload traces and include characteristics such as "sys-
tem utilization", "job arrival rate", job interarrival time" and "job cancellation
rate". They also look at characteristics specific to job execution, but only take
into account "actual runtime", "memory usage", "number of requested proces-
sors", and the correlations between them.
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2.3 Characterization of cloud and datacenter
workloads

Regarding the characterization of cloudworkloads,Calzarossa et al. [8] identify
"resource usage", "arrival process" and "workload patterns" as relevant research
questions, with the main targets being "jobs/tasks" and "Virtual Machines".
This statement is also corroborated upon in [26]. Focusing on characterization
of cloud applications, Calzarossa et al. [8] mention "resource usage" as a key
aspect, and that most studies utilize a so-called task shape, a multidimensional
representation of resource usage. With respect to this they cite Mishra et al. [19]
as an example, where qualitative coordinates are used to define the dimensions
of the task shape, which are later used for task classification.

A methodology for classifying datacenter workloads is presented in [25]. The
authors use two datasets, Google Cluster Trace and Big Brains Trace, and imple-
ment an algorithm that ranks the trace attributes (task duration, CPU usage,
memory usage, and disk usage) in terms of predictive power. They use k-means
clustering and the elbow criterion to find the per-attribute clusters (e.g. "low",
medium low, "medium", etc) for each of the traces. Finally, a variety of machine
learning algorithms are applied to classify the workloads given the obtained
classification model.

2.4 Characterization and classification of edge
workloads

Several studies have focused on workload characterization for edge workloads
and similar paradigms, such as Toczé et al. [30] where broad categories (e.g.
"high"/"low") of more abstract characteristics, such as computation and com-
munication demand, are used as part of their work to create a methodology
for edge workload characterization. McChesney et al. [18] also employ sim-
ilarly broad characteristics in their work to develop DeFog, a benchmarking
suite for the fog computing paradigm, which is very closely related to the edge
computing paradigm.

Toczé et al. [28] iterates further on their work in [30], to define a set of 4
workload classes based on communication demand and computation demand in-
tensities ("high"/"low"). Traces of edge applications with similar characteristics
are then gathered and analyzed. The authors discover that the descriptions of
the selected applications in the literature does not align with how they actually
behave.
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In [16], Limaye and Adegbija perform a characterization of a selection of Inter-
net of Medial Things (IoMT) applications and algorithms from a edge comput-
ing perspective. They utilize hardware performance counters to analyze the
workload execution behaviour with respect to compute, memory and branch
characteristics. They find that the execution behaviour of the workloads dif-
fered significantly from the embedded system benchmark suite MiBench [13],
indicating the need for new benchmarks suites for IoMT microarchitecture
research.



3
Hardware performance
counters

Previous attempts at edge workload characterization have generally opted for
broader and low-dimensional characteristics to define the behaviour of edge
workloads [30, 18]. Preliminary results have shown that such characterizations
do not align with the actual behaviour of edge workloads.

In this thesis we wish to "attack" the problem from the bottom-up, so to speak,
and leverage low-level hardware performance counters for the purpose of work-
load characterization.

3.1 Traditional usage

Hardware performance counters (HPCs) are special registers built into micro-
processors that can be instrumented to monitor hardware-related metrics, or
events [5]. Almost all major processing platforms today have built-in HPCs
that can provide information about the behaviour of applications, and are ex-
tensively used by developers in the high-performance computing community
to conduct performance analysis [4]. Examples of such performance analysis
includes techniques such as application fine-tuning, optimization, monitoring,
benchmarking and performance modeling [5].

9
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3.2 Hardware events

Mucci et al. [6] define hardware events as "...occurrences of specific signals
and states related to a processor’s function". Examples of such events include
instruction counts, cache misses and branch mispredictions, etc. By instrumenting
the HPCs to monitor such events, the user can gain access to the underlying be-
haviour of an application terms of compute-intensity, cache- and table lookaside
buffer performance, branch performance, among other interesting aspects.

In terms of monitoring hardware events for the purpose of workload char-
acterization, the intuition is that having a highly detailed description of the
performance behaviour of workloads based on measurable properties might
expose similarities and/or differences between the workloads that exist in the
literature, thereby leading to more accurate workload characterizations in the
future.



4
Workload dimensions
In this chapter we present the concept of task shapes, and howmeasurable prop-
erties of workloads can be used to define a metric space, called the attribute
space. Further, an abstract example is given in which increasing the dimension-
ality of workloads can prove useful for the characterization of edge workloads.
Finally, we explore the problem of measuring distances in high-dimensional
spaces, and give descriptions of a few distance measurement methods.

4.1 Representing workloads in a
multi-dimensional space

Regarding work on characterization of cloud workloads, some authors [19, 9]
use the term task shape to refer to a multi-dimensional representation of the
resource usage of cloud applications. Mishra et al. [19] in their work define a
3-dimensional task shape in terms of runtime in seconds, CPU usage in cores and
memory usage in gigabytes, but note that the task shape can have even higher
dimensions if other resources are considered.

In this thesis we will define the dimensions of the task shape in terms of hard-
ware events, and thereby extend the task shape to a higher dimension. We will
also define the space that the task shapes live in as the attribute space, the co-
ordinates of which are defined by a set of attributes, which we will henceforth

11
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denote as 𝛼𝑛. Specifically, we define the attribute space as the N-dimensional
space 𝑅𝑁 , where N is the total number of hardware events used for characteri-
zation. We are only interested in the positive orthant of 𝑅𝑁 as the magnitude
of the hardware performance events, or attributes, can only be positive.

α1

α2

Figure 4.1: Two workloads represented by several data points in an attribute space
defined by two arbitrary attributes 𝛼1 and 𝛼2. The task shapes are repre-
sented by blue and yellow dashed lines respectively.

Our task shapes will also consist of many data points to get a distribution for
each workload (Fig. 4.1), which will allow us to capture statistical metrics such
as variance and mean along each dimension, and reduce the impact of outlier
data points.

Increasing the dimensions of the task shapes can provide a deeper understating
of the performance behaviour of workloads. To strengthen this argument, we
provide an abstract example in the next section where the the inclusion of an
additional attribute to define the task shapes reveals a stark difference between
previously similar workloads.
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4.2 Increasing dimensions: An example

The task shape of three distinct workloads (red, green and blue circles) are
shown on a 2-dimensional subspace of the attribute space 𝑅𝑁 (Fig. 4.2). The
three task shapes represent memory- cpu- and network-intensive workloads
respectively.

α1

α2

Network intensive

CPU intensive

Memory intensive Workload

Figure 4.2: Representation of different task shapes in a an attribute space defined by
two arbitrary attributes 𝛼1 and 𝛼2. The red, green and blue circles are the
task shapes ofmemory-, cpu- and network-intensive workloads respectively.
The task shape of the new workload, represented by a yellow circle, must
necessarily be be categorized as memory-intensive given the apparent sim-
ilarity with the memory intensive workload.

We introduce a newworkload, the task shape ofwhich is represented by a yellow
circle in the middle of Fig. 4.2. In this scenario, given the limited information
about the behavioural characteristics of the workload, it would be natural to
classify the red- and yellow coloured task shapes as belonging to the same
category. I.e. the workload represented by the yellow task shape would the
categorized as memory intensive.

We increase the dimensionality of the 2-dimensional subspace of 𝑅𝑁 given
above and introduce a third attribute 𝛼3 (Fig. 4.3). It is now revealed that the
task shapes of the new workload and the memory-intensive workload differ in
magnitude along the new axis, indicating that they might belong to different
workload categories. Increasing the dimensions even further might reveal other
similarities or dissimilarities between the task shapes.
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α2

α1

α3

Network intensive

CPU intensive

Memory  intensive

Workload

Figure 4.3: Adding a new arbitrary attribute 𝛼3. Increasing the dimensionality of
the attribute space might reveal differences and similarities between the
various task shapes.

4.3 Measuring similarities in high-dimensional
spaces

Workload classes are often defined by few, and sometimes theoretical, prop-
erties in the literature. This can lead to situations where the classes are too
rigidly, or arbitrarily, defined, thus leading to misclassification of workloads.
We propose instead to classify workloads in terms of their closeness to other
known task shapes in an 𝑁 -dimensional attribute space, as described in Section
4.1. There are many ways to measure distances in metric spaces, such as the
attribute space considered in this thesis, and we will consider a few of them
here.

4.3.1 Euclidean distance

The most commonly used metric to measure distances between two data points
is the Euclidean distance, which calculates the length of a line segment between
two points 𝑝 and 𝑞. The Euclidean distance function can easily be applied in
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our attribute space to measure the similarity between two task shapes. The
most straightforward way to do this is to define a "center point" for each task
shape, and then calculate the Euclidean distance between these points.

α2

α1

α3

Figure 4.4: Manhattan distance vs. Euclidean distance when measuring the distance
from the origin to a point represented by the yellow circle. Here, the
Manhattan distance is represented by the three blue lines at right angles
to each other, and the Euclidean distance is represented by a straight green
line.

4.3.2 Manhattan distance

Also known as taxicab geometry, the Manhattan distance metric is defined as
the sum of the absolute difference between two points along each dimension.
This means that the distance is measured along the axis dimensions at right
angles (Fig. 4.4), as opposed to Euclidean distance whichmeasures the distance
along a straight line. We consider the Manhattan distance as an alternative
to the Euclidean distance in this thesis, as some research [1] indicates that
the Manhattan distance may be better suited for distance measurements when
dealing with high-dimensional data.

4.3.3 Cosine similarity

The Cosine similarity calculates the cosine of the angles between two non-
zero vectors in an inner product space, and so gives a measurement of the
similarity or dissimilarity between them. The cosine similarity exists in the
interval [−1, 1], if the two vectors are proportional then the cosine similarity
would be 1, opposite ones would result in a value of -1. Again, we can define a
"center point" for each task shape and use that as a vector for calculating the
cosine similarity.
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θ

α2

α1

α3

A

B

Figure 4.5: Two task shapes (red and green circles) represented in an attribute space
defined by three arbitrary attributes 𝛼1, 𝛼2 and 𝛼3. The Cosine similarity
uses the angle 𝜃 between the two vectors to measure the similarity be-
tween the task shapes.

Note that the Cosine similarity does not take into account the magnitude of the
vectors, only the angle between them. However, this type of measurement can
be useful to find similarities between task shapes have similar ratios between
the various attributes, but different magnitudes as shown in Fig. 4.5.

4.4 Defining a center point

In the previous section we assumed that each class task shape had awell-defined
"center point" withwhich various distance measurements, such as the Euclidean
distance and Cosine similarity, could be calculated. However, defining such a
"center of mass" can also be done in several ways, and we will consider a few
of them here.

4.4.1 Geometric median

The Geometric median for a discrete set of points in an Euclidean space, such
as our attribute space, is defined as the point which minimizes the sum of
distances to each point in the set. The Geometric median is the generalization
of the median for one-dimensional spaces to higher dimensions. It has been
proved there is no explicit formula that can calculate the Geometric median
[10]. However, it can be approximated to a relatively good degree [31], but can
be somewhat time-consuming.



4.4 defining a center point 17

4.4.2 Greedy median

A faster approach to define the center point of the task shapes involves simply
finding the median along each attribute axis, one at a time. This method is
greedy in that it only takes into account the optimal choice per dimension,
and so the resulting center point will not be globally optimal. I.e. the resulting
center point will not minimize the sum of distances to each point in the set,
and will only be an approximation.





5
Classification of highly
detailed workloads

In this chapter a "proof-of-concept" workload classification model is presented.
Building upon some of the concepts and techniques outlined in Section 4 to
obtain high-dimensional workload characterizations, the first objective of the
model is to construct a set of workload classes consisting of workloads that
have similar task shapes. These datasets will then serve as representatives for
the workload classes. Second, the constructed class representatives can then
be used to classify other workloads through the use of a nearest neighbour
fuzzy classification scheme.

5.1 Constructing representative workloads

In the context of the attribute space, as outlined in Section 4.1, it would be useful
to have existing task shapes with known performance behaviours, which can
then be used as a "ground truth" for classifying other workloads later on. We
argue that the best way to construct these "ground truths" would be to combine
several workloads with a similar performance behaviour, or task shape, into a
unified class representative, as this will allow us to capture the variance, mean
and median along each attribute dimension for each workload class.
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If a set of class representative datasets can be constructed, then any future
workload can be classified in terms of their closeness to each class representa-
tive. In other words, the closer a workload lies to a class representative, the
more likely it is to be part of that class.

There are several ways to go about constructing the class representatives, and
two such approaches will be presented and evaluated below.

5.1.1 Method 1

Via careful analysis of the descriptions of workloads that exist in the literature,
groupings can be made based on edge application use case and/or attribute
magnitude. An example of edge workload classification based in part on appli-
cation use case can be seen in [30]. We also refer to [3] for a comprehensive
list of various edge computing use cases.

For our study we make the assumption that applications with the same edge
use case will also have similar task shapes. After creating the groups, each
individual workload is profiled to create fine-grained characterizations, which
are then used to create the class representatives. Depending on the desired
class granularity and attribute variance, the classes can be further subdivided,
as shown in Fig. 5.1.

The immediate drawback of the this approach is that the definition of the class
representatives rests in large part on a descriptive behaviour of the workloads,
whichmight not be fully indicative of their actual performance behaviour.

However, this approach has its merits as well, as the attribute magnitudes of the
class representatives will be application use-case specific. I.e. workloads will
be classified based on use case, then subdivided based on attribute magnitudes.
The advantage of this is that the magnitudes are evaluated (e.g. High, Medium,
Low, etc.) relative to the specific application use case.
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α2
L/H

H/M

L/H

L/L

H/H

H/L

H/M use case A
use case B
use case C

M/M M/M

Figure 5.1: Class representatives characterized by two arbitrary attributes 𝛼1 and 𝛼2.
The classes are grouped first by use case (A, B or C), then by attribute
magnitudes (Low, Medium, High). The magnitudes are evaluated relative
to the specific use case when using this approach.

5.1.2 Method 2

Perform the profiling step first, then create the workload groupings based on
analysis of the high-detail workload profiles (Fig. 5.2).

This approach creates groupings based on attribute magnitudes only. The ad-
vantage of this approach is that the resultant class representatives are defined
solely by measurable metrics, and so the configuration can easily be reproduced.
However, since applications will exhibit different behaviours depending on their
edge use case, the class representatives will possibly end up with having large
variances for some attributes,meaning that theymight not be able to sufficiently
represent outliers that they will inevitably encompass. This can potentially be
alleviated by increasing the granularity of workload classes.

Centroid-based clustering models, such as k-means clustering, are typically used
to achieve such groupings. Using a clustering method has the additional benefit
of having a well-defined center point for the class representative, a concept
which we introduced in Section 4.4.
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M/M

M/L

L/M

Figure 5.2: Class representatives characterized by two arbitrary attributes 𝛼1 and 𝛼2.
The attribute magnitudes (Low, Medium, High) are evaluated irrespective
of application use case, potentially leading to "broader" classes.

5.2 Fuzzy workload classification

Applications on the edge generally utilize all components of the system architec-
ture in various ways depending on the use case. An application that is heavily
network-intensive, for example, might also exhibit behaviours that are indica-
tive of other workload classes, such as compute-intensive applications.

A classification model that retains information about a workloads similarity
to each of the classes can be particularly useful in situations where a task
exhibits behaviour that is indicative of two or more class representatives to a
relatively equal degree, as shown in Fig. 5.3. In the depicted example we argue
that a "one-of" classification model would not be able to accurately classify
the given workload due to its nuanced behaviour. Instead what we want to
have is a classification model that can correctly classify workloads, but also
retain information about a workloads degree of similarity to other classes as
well.

In the example classification scenario in Fig. 5.3 our proposed classification
model would report that the workload is most similar to the "L/H" class, but also
shares many similarities with both the "L/M" and "M/M" classes and thereby in-
dicate that the workload in question exists in a space between the classes. Such
information could lead to the creation of new workload classes or a redefinition
of existing ones, depending on the desired granularity of classes.

The problem then becomes how to classify edge workloads in a way that not
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M/L

L/MWorkload

Figure 5.3: Class representatives characterized by two arbitrary attributes 𝛼1 and 𝛼2.
"One-of" classification models would classify the workload represented by
the yellow task shape as part of the class "L/H".

only identifies the most likely class, but also manages to describe a workloads
similarity to other classes. We can borrow the mathematical concept of fuzzy
membership functions [35], and classify workloads by grading how much they
belong to each class on a continuous "truth" scale from 0 to 1. What we mean by
this is that we wish to classify workloads in an open, "imprecise" data spectrum,
which makes it possible to make several conclusions about the data.

α1

Class A Class B Class C

Class score

1

0

Workload

Figure 5.4: Applying the concept of fuzzy membership to classify a workload based on
a single attribute 𝛼1. A score of 1 indicates that the workload completely
belongs to a class, and a score of 0 indicates the opposite. In this example
the workload would have a score of 0.6 towards class C and a score of 0.4
towards class B, while class A would get a score of zero.

We can imagine the classes as existing within a range with a given upper and
lower bound along each attribute dimension. In Fig. 5.4, we show a very basic
example of this along some arbitrary attribute dimension 𝛼1. Here we see that
class A has a high truth value for the lower attribute magnitude spectrum of the
dimension 𝛼1. Class C, on the other hand, has a high truth for the upper end of
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the spectrum. Finally, class B has a high truth value for attribute magnitudes
in between. As we increase the value of 𝛼1 the "degree of truth", or class score,
for each class changes, but the total sum of scores is always 1.

Based on the attribute magnitude ranges in which the classes "exist", and the
measured attribute value 𝛼1 for the workload,we can calculate "degree of truth"
scores based on how close our workload lies to each class.

In reality we won’t encounter simple scenarios such as the one depicted in Fig.
5.4. Instead what we might have are more complicated configurations (Fig. 5.5)
in which the "degree of truth" of several classes "overlap", in addition to having
to deal with many more dimensions.

α1

Class score

1

0

Figure 5.5: A scenario where the attribute magnitude ranges for a set of 4 classes
along a single attribute dimension 𝛼1 might be harder to define.



6
Methodology
The main objective of our proposed characterization methodology, presented in
this chapter, is to produce high-dimensional task shapes based on measurable
properties, which exposes the performance behaviour of any given workload in
finer detail. We provide a step-by-step example where, given an arbitrary work-
load, we characterize it with the proposed characterization methodology.

We extend the worked example to a classification problem later on, where we
attempt to group and classify the task shapes of several workloads.

6.1 Fine-grained workload characterization: A
worked example

Assuming we have an edge computing task, and we wish to obtain a character-
ization of it so that we can understand its behaviour and its system hardware
requirements. The first step will be to select a set of attributes to define the
attribute space in which the task shapes that represent the workloads are de-
fined. Hardware performance counters (HPCs), which are available on most
modern systems, serve this purpose well, as they can be instrumented to moni-
tor various metrics (hardware events) related to the performance behaviour of
the workloads. There are various ways to access and instrument the HPCs, but
it is usually done through the use of an API such as PAPI or perf_events.
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6.1.1 Attribute selection

We select a set of N hardware events that cover a wide variety of system compo-
nents, such branch- and cache performance, instruction counts, etc. and profile
the workload in question. The assumption is that if more and varied events are
monitored, the resulting characterization from profiling will more accurately
capture the actual performance behaviour of the workload. Typical hardware
events to monitor include last level cache (LLC) miss/hit rates, branch instruction
hit/miss rates and derived events such as instructions per cycle.

6.1.2 Profiling

We desire to construct a highly detailed characterization of our supposed work-
load, and therefore opt for a relatively large selection of performance events
to monitor. However, monitoring more performance events than the number
of available HPCs forces the system to use event counter multiplexing, which
introduces a certain loss in precision. Other factors will also inevitably cause
noise in the data for various reasons. We therefore choose to profile our work-
load a statistically significant number of times R, to reduce the impact of noise
on the resulting characterization.

It is also desirable to minimize the overhead from thread migration, and we
therefore wish to utilize all available processors in order to eliminate this oc-
currence. Assuming the system on which we profile our supposed workload has
a number of CPU cores U, we configure a job schedule such that our task will
be running concurrently on each core. We can now choose to take the average,
or median, profiling result of each core and consider it as a single data point.
Or, we can consider the resulting data from each core as individual data points,
resulting in U data points per profiling run. We want capture the behaviour of
our workload as accurately as possible, and having more data points M greatly
contributes towards this goal. Therefore we choose to consider the profiling
results from each core as individual data points.

6.1.3 Aggregation

We now have enough information about our assumed edge computing workload
to define a task shape, which is a multi-dimensional data set that represents our
workload in an attribute space. In our worked example the attribute space will
have N dimensions, i.e. the number of chosen hardware events that describe
the behaviour of the workload. Naturally, the task shape will also have N di-
mensions and will consist of 𝑀 = 𝑅 ∗𝑈 data points, where R is the number of
profiling runs and U is the number of CPU cores. This task shape is essentially
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the fine-grained workload characterization that we are after. We can now, for
example, extract useful statistical metrics, such as the mean and variance along
each attribute axis, or start comparing our workload to other edge computing
workloads.

6.1.4 Analysis

The task shape can also be further refined by identifying and discarding re-
dundant dimensions. That is, attribute, or hardware events, with little to no
informational value. If, for example, two of our chosen hardware events are
perfectly positively or negatively correlated, then that means that one attribute
can be perfectly inferred from the other. We can therefore safely discard one of
these attributes without losing any informational value regarding the behaviour
of our workload.

6.1.5 An iterative process

At this point the characterization can be considered to be concluded. However,
if it is so desired, the steps outlined in Sections 6.1.1 — 6.1.4 can be performed
iteratively several times. With each iteration, a new combination of hardware
events can be chosen to profile the workload, thereby extending the dimen-
sions of the task shape from the preceding iteration. After concatenating the
new and the previous task shape, we can again perform attribute reduction to
remove redundant dimensions. And so with each iteration a new combination
of hardware events are monitored and analyzed until the desired task shape
dimension, or characterization granularity, is achieved.

6.2 Workload classification: Working our
example further

We will now assume that the characterization methodology described in the
previous section has been performed on a variety of edge computing workloads.
The resulting task shapes are defined by the same hardware events, and have
roughly the same amount of data points.

Based on the apparent similarities or dissimilarities between these task shapes,
we wish to construct well-defined classes of workloads which can be later
used to classify future workloads. Depending on the overall objective and
desired class granularity, the task shapes can be grouped using a variety of
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methods.

6.2.1 Class definition

In this example the various tasks have one of three distinct edge computing
use-cases, such as video data analytics or augmented reality, and so we elect to
group them as such. To further increase our class granularity, we might opt
to subdivide the classes based on attribute magnitudes via clustering methods
such k-means clustering, or some other heuristic method.

We now have our well-defined class representatives and can use them to clas-
sify future workloads based on similarity measurements. We assume that, for
our worked example, the Euclidean distance metric can provide meaningful
measurements. If our task shapes consisted of data points with a lot of variance,
i.e. the data points are spread out over a large range, or the dimensionality of
our task shapes is considerably large, then it might be more beneficial to use
other distance metrics.

6.2.2 Classification

We introduce a new workload, also represented by a task shape with the same
dimensionality as our class representatives. To classify this new workload, we
compute the distance from the center point of the new task shape to each of
the class representatives and identify the class representative for which the
distance to the new workload is the shortest.

The choice of task shape center point and distance metric used will invariably
have an effect on the resulting classification. If computation speed is desired
over accuracy, an approximation to the geometric median of the task shapes
can be used. For distance measurements, the Euclidean distance can be consid-
ered due to being easy to implement and interpret. However, for more larger
and more complex data sets, other distance functions should be considered
instead.

6.2.3 Fuzzy classification

At this point we could decide that since the new workload lies closest to some
class representative, then it belongs to only that class. However, our new work-
load might also, to a lesser degree, exhibit properties that are more in line with
other class representatives. When using a "one-of" classification approach we
are unable to capture this property of our data.
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Instead what we want to do is to look at these distances relative to each other,
and classify our new workload in terms of its degree of closeness to each of the
class representatives. We can leverage the inverse of the computed distances to
compute a set of weighted scores, one per class, that sum up to one. What we
end up with are a set of classification, or "degree of truth", scores for the task
shape in question that indicate the degree of similarity to each class.





7
Implementation
We begin this chapter by presenting the various techniques used to implement
the characterization methodology in Chapter 6. Further, design choices made
during implementation of the classification model is also given here.

7.1 Instrumenting the code

To instrument the HPCs, we made use of the PAPI performance-monitoring
library [5, 20]. Specifically, the PapiEx command-line interface extension for
PAPI [21].

The exploratory nature of the work presented in this thesis necessitates a naive
approach towards the selection of hardware events that will define the attribute
space, given the amount of PAPI preset events and architecture-specific native
events the library can make available for monitoring. The PapiEx command-line
interface provides a starting point by automatically selecting a set of interesting
hardware metrics (Table 7.1 and Table 7.2), which will be used to characterize
workloads in Section 9.

The hardware events are grouped into preset and native events. The latter are
events for which the event codes are platform dependent, while the former are
events for which the codes function as symbolic mappings in PAPI to native
countable events. We also further subdivide the events according to which com-
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ponent of the system architecture they give insight to, such as branch instruction
events, level 1 and 2 cache events, etc.

7.2 Multiplexing

The full set of performance events that PAPI can make available is dependent
upon the hardware of the system on which the profiling is done. For our testbed
PAPI reports a total of 59 available events. Considering that the aim of this thesis
is to produce highly detailed workload characterizations, one might conclude
that the optimal choice is to measure all available events when profiling the
workload.

However, only a certain amount of events can be monitored simultaneously,
dependent on the amount of HPCs offered by the system architecture. By us-
ing a technique known as hardware event multiplexing, which is automatically
supported by PapiEx, the number of monitored events can be increased beyond
the number of HPCs. The idea is to allocate the events across the HPCs in a
round-robin time sharing scheme. This, however, comes with a precision cost
in that of only a few events can be monitored per short-time interval.

7.3 Noise reduction

The objective of the proposed characterization methodology is to produce a
quantitative workload performance profile, which exposes the behaviour of the
given workload in finer detail. However, the performance of an application can
depend on a variety of known, and unknown factors. These factors can, and
probably will, produce noise in the data, it is therefore important to profile
the workload a statistically significant amount of times to reduce its impact.
Doing several profiling runs will also help to remedy the precision loss due to
hardware event multiplexing, as mentioned in Section 7.2.

Naturally, if the origin of the noise can be identified and eliminated, or is in-
consequential, then the number of profiling runs can be lowered. In any case,
performing profiling runs several times will allow us to more accurately capture
the median, or average, performance behaviour of the given workload, in addi-
tion to allowing for the extraction of other statistical metrics on the resulting
dataset.
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Preset Events Description
General performance events

PAPI_FUL_ICY Cycles with maximum instruction issue
PAPI_TOT_CYC Total cycles
PAPI_TOT_INS Instructions completed
PAPI_LD_INS Load instructions
PAPI_LST_INS Load/store instructions completed
PAPI_RES_STL Cycles stalled on any resource
PAPI_SR_INS Store instructions
PAPI_STL_ICY Cycles with no instruction issue

Branch instruction events
PAPI_BR_CN Conditional branch instructions
PAPI_BR_INS Branch instructions
PAPI_BR_MSP Conditional branch instructions mispredicted

Level 1 cache events
PAPI_L1_DCM Level 1 data cache misses
PAPI_L1_ICM Level 1 instruction cache misses

Level 2 cache events
PAPI_L2_DCA Level 2 data cache accesses
PAPI_L2_DCM Level 2 data cache misses
PAPI_L2_ICA Level 2 instruction cache accesses
PAPI_L2_ICM Level 2 instruction cache misses

TLB events
PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside buffer misses

Table 7.1: Overview of PAPI preset events used for workload characterization.
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Native events Description
Runtime-related events

Real cycles Wall-clock elapsed time (in cycles)
Real usecs Elapsed high-resolution real time (in microsec-

onds)
Virtual cycles Process virtual cycles
Virtual usecs Process virtual time (in microseconds)
Wallclock usecs Unhalted wallclock time (in microseconds)

Dynamic memory usage events
Memory heap (at exit) Memory heap size at process exit
Memory library (at exit) Memory allocated to libraries at process exit
Memory locked (at exit) Memory locked at process exit
Memory resident max (at exit) Peak resident set size
Memory shared (at exit) Memory shared at process exit
Memory stack (at exit) Memory stack size at process exit
Memory text (at exit) Memory allocated to code at process exit

Table 7.2: Overview of native events used for workload characterization.

7.4 Availability of workloads

There is a distinct lack of publicly available workloads/benchmarks pertaining
to the edge computing paradigm [33], some reasons for which include that
the research field of edge benchmarking is still in a nascent stage [32], privacy
restrictions [23], or that existing benchmarks focus on specific platforms of
application domains [30]. Varghese et al. [32] state that most edge benchmarks
today rely directly on simulators or the data obtained from them, which runs
contrary to the classic definition of benchmarking.

7.5 Generating synthetic workloads

Owing in due part to the current circumstances outlined in Section 7.4 re-
garding the availability of edge benchmarks, we have opted to use synthesised
workloads for the purpose of experimentation. Additionally, synthetic work-
loads are easier to parameterize, and thereby allow us to study the proposed
characterization methodology for a wider variety of workloads. For this pur-
pose, we use the stress workload generator tool stress-ng [27], available for
POSIX systems, which allows us to synthesize applications that stress a variety
of system resources.

It is worth noting that the stress-ng documentation states that the tool is mainly
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intended to make the machine work hard and trip hardware issues, and that it
was never intended to be used as a precise benchmarking test suite. Neverthe-
less, the various stress tests that are available through stress-ng provides a good
"jumping off" point for evaluating the characterization methodology presented
in this thesis.

We will be using stress tests that predominantly stress either cpu, file system
I/O, memory (VM) or network resources. Workloads that stress a combination
of the mentioned resources are also generated.

7.6 Defining the class representatives

We follow the approach described in Section 5.1.1 to create the task shape of the
class representatives. Specifically, we group the workloads based on the system
resource they are designed to stress. Workloads generated using a combination
of two or more stressors are excluded from these groupings. After creating the
groupings, the individual workloads are profiled and then aggregated to create
the data sets that represent the classes.

α1

α2
Class A

Class B

Figure 7.1: Workloads characterized by two arbitrary attributes 𝛼1 and 𝛼2. The work-
loads are grouped into class A or B depending on what resource they are
designed to stress. The intuition is that applications with the same use
case will have similar task shapes, and it should therefore make sense to
group them together.

7.7 Attribute correlation metric

We use Spearman’s rank correlation coefficient to measure the statistical depen-
dence between attributes. The Pearson correlation coefficient is also commonly
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used in the literature to check for correlations between attributes [8]. However,
Pearson’s assumes finite variance and finite covariance, assumptions that we
cannot make on our attributes. Spearman’s instead provides a measure of the
monotic relationship between variables, and therefore makes no assumptions
on the distribution of our attributes.

7.8 Similarity metrics

For the purpose of classification, We choose Euclidean distance (Eq. 7.1) to
measure the similarity between task shapes. Specifically the distance between
the task shapes of our class representatives and the task shapes of individual
workloads in the attribute space. The advantage of using the Euclidean distance
is that its simple to implement and fairly easy to interpret as opposed to the
Manhattan distance.

𝑑 (𝑝, 𝑞) = | |𝑝 − 𝑞 | | =

√√
𝑛∑︁
𝑖=1

(𝑞𝑖 − 𝑝𝑖)2 (7.1)

In Eq. 7.1, p and q are two points in an n-dimensional Euclidean space.

In addition, we measure the Cosine similarity when performing classification
but do not use it to compute the final classification scores. Rather, it will serve
as a complimentary to the final classification whereby it either corroborates or
refutes the result.

𝑆𝐶 (𝑃,𝑄) = 𝑐𝑜𝑠 (𝜃 ) = P · Q
| |P| | | |Q| | (7.2)

In Eq. 7.2, 𝜃 is the angle between the vectors P and Q.

To compute the measurements in Eq. 7.1 and Eq. 7.2 we elect to use the greedy
median, defined in Section 4.4.2, as the center point of our task shapes, as
this center point is much faster to compute compared to the geometric me-
dian.
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7.9 Classification scores

Owing to the fact that our data exists in a high-dimensional space, the distance
measurements can become quite large in magnitude and can therefore be
difficult to analyze. For this purpose we want the classification, or "degree of
truth", score for each class to be relative to each other but also be weighted by
their closeness to a point of reference. In this case the point of reference would
be the center point of the task shape to be classified.

α1

α2

d2

d5

d1

d4

d3

Figure 7.2: Measuring distances to the center point of each class representative from a
point of reference. In this case, the point of reference is the center point of
a workload represented by the yellow task shape. The class representatives
are represented by white circles.

We can calculate such a score 𝑤𝑖 using the following formulation:

𝑤𝑖 =
1

𝑑𝑖 ∗
∑𝐷

𝑗=1
1
𝑑 𝑗

, 𝑖, 𝑗 = 1, 2, 3, ..., 𝐷 (7.3)

Where 𝑑𝑖 is the Euclidean distance (Eq. 7.1) from the reference point to a point
i, and D is the total number of distances considered. the score 𝑤𝑖 is calculated
by taking the inverse of the distance 𝑑𝑖 and multiplying it with the inverse of
the sum of all inverse distances considered. We normalize the scores so that∑𝐷

𝑖 𝑤𝑖 = 1. the final results can then be displayed as percentages, which is
easier to interpret.

For the example given in Fig. 7.2, the total number of considered distances D
is 5. If we compute the scores𝑤𝑖 in the example, we will find that the highest
score is given to the class with distance 𝑑3 from the point of origin, while the
lowest score is given to the class which is a distance 𝑑5 from that same point
of origin.





8
Experimental setup
8.1 Testbed

The following equipment is used to conduct experiments:

OS Linux 5.19.0-42-generic
CPU Intel Core i5-8500T @ 2.10GHz

No. Cores 6
No. HPCs 10

Table 8.1: Hardware specifications

We perform all hardware event measurements with the PapiEx command-line
interface extension for PAPI.

8.2 Parameterization of stress-ng

We construct a set of "jobfiles", which are sets of unique parameter configura-
tions, that causes stress-ng to stress the system in various ways depending on
which stress method, or stressor, is chosen. The majority of the constructed
jobfiles are configured to only use one type of stressor.
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Each jobfile is scheduled to time out after 10 seconds, with the exception of
jobfiles pertaining to the VM stressors (Table 8.2). Instead, these jobfiles are
scheduled to stop after a given amount of bogo operations (bogus operations
per second) equating to roughly 10 seconds per VM stressor. This is done due
to a quirk most likely caused by the interaction between PapiEx and stress-ng
where the sub-processes that were spawned by the stress-ng VM stressors fail
to time out when using the normal timeout parameter, causing them to run
indefinitely.

We also configure the jobfiles such that stress-ng runs the configured stressor on
all available processors on the system concurrently to eliminate the possibility
of thread migration, which can potentially cause noise in the data.

8.3 Benchmarks

We generate 29 workloads in total, 23 of which are generated using only one
type of stressor (Table 8.2). We refer to the stress-ng manpage and group them
based on what part of the system the stressors are designed to stress.

Grouping Stress method(s)

CPU afalg, branch, fft, jmp, mergesort, muladd64, sieve,
matrixprod

I/O direct, dsync, iovec, seek
Network dccp, pingsock, udp, udp-flood

VM bigheap, cachestripe, mlock, pageswap, read64,
swap, write64

Table 8.2: Overview of stress tests used to create single-stressor benchmarks. The
stressors are grouped after which component of the system they are pre-
dominantly designed to stress.

One of the CPU-stressor workloads was generated using the "matrixprod" CPU
stress method. According to the stress-ngmanpage, this method is exceptionally
good at stressing the CPU, and we therefore expect its performance behaviour
to stand out among the CPU stressors.

The remaining five workloads (Table 8.3) are unique in that they were gener-
ated using a combination of stressors. Workloads that are generated using a
combination of two stressors are scheduled so that there is an equal amount
of cores allocated to each of them. I.e. the jobfiles are configured so that an
equal amount of processors are tasked to run each stress test.
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Further, forworkloads generated using a combination of three ormore stressors,
we configure the jobfile to allocate cores unevenly among the stressors, such
that one type of stressor is favoured over the others.

We also configure some of the multi-stressor workloads (e.g. "CPU and I/O #1",
and "CPU and Network #2") to, in part, consist of "new" stressors that are not
part any of the groupings in Table 8.2. To be more specific, both the "judy" and
"correlate" stressors are designed to stress the CPU, but we keep them separate
from the CPU grouping to see how our fuzzy classification model responds to
new data.

Name Stressors used & Core allocation
CPU and I/O #1 correlate (3), iovec(3)
CPU and I/O #2 fft (3), seek (3)

CPU and Network #1 fft (3), udp(3)
CPU and Network #2 judy (3), dccp (3)
I/O and Network seek (3), udp (3)

CPU and Network and I/O matrixprod (3), dccp (2), seek (1)

Table 8.3: Overview of benchmarks that combine two or more stressors. The numbers
in parenthesis in the second column show the amount of cores allocated to
each stressor.

The idea behind the multi-stressor workloads is to try to capture the perfor-
mance behaviour of more complex real workloads that might exhibit charac-
teristics that are indicative of two or more workload classes.





9
Evaluation
In this chapter we present and evaluate the result of experiments performed.
First we present the results of characterizing the single-stressor and multi-
stressor workloads using the hardware events listed in Tables 7.1 and 7.2, and
perform a preliminary attribute reduction to remove attributes that have zero
informational value. The reduced characterization is then presented and eval-
uated. Based on the result of characterization, we then construct our class
representatives and classify the multi-stressor workloads using the proposed
fuzzy classification model. The results of classification is then presented and
evaluated.

9.1 Experiments performed

• We apply the methodology outlined in Chapter 6 to produce fine-grained
characterizations of the workloads given in Tables 8.2 and 8.3. Each
workload is profiled with PapiEx an number of times 𝑅 = 20 to reduce
the effect of noise (outliers, inaccuracy due to multiplexing, etc.) on the
data. We instrument the HPCs to monitor the hardware events given in
Tables 7.1 and 7.2. As stated in Section 8.2, all available cores 𝑈 = 6 are
scheduled to work concurrently for each profiling run, which adds up to
𝑀 = 𝑅 ∗𝑈 = 120 data points per workload.

• We perform a preliminary attribute reduction and remove attributes with

43



44 chapter 9 evaluation

zero informational value before evaluating the results on a per group
basis.

• After characterization, we collect the performance data of single-stressor
workloads with similar performance behaviours into unified data sets to
construct a set of class representatives, and evaluate the resulting classes.

• We test the classification accuracy of our fuzzy classification model by
classifying the single-stressor workloads, with the expectation that the
single-stressor workloads will be have the highest class score towards the
class representative in which they are a constituent of.

• Further, we attempt to classify the multi-stressor workloads (Table 8.3)
using the same model, here with the expectation that that the highest
classification scores will be given to the classes of which the component
stressors are a part of.

9.2 Preliminary characterization results

The full results of performing the characterization methodology on the single-
stressor workloads (Table 8.2) is shown in Figures 1, 2, 3 and 4 in the appendix.
The full characterization of the multi-stressor workloads (Table 8.3) are shown
in Fig. 5 in the appendix. Owing to the high dimensionality of the workloads,we
elect to show the results of characterization graphically as box plots along each
attribute dimension. We exclude plots for the attribute Memory locked (at exit)
from the full characterization, as its value across the entire set of workloads is
zero.

9.3 Attribute reduction

We analyse the full characterization on the workloads and identify a set of
attributes that, for our workloads, are not useful for characterization for various
reasons.

9.3.1 Attributes with zero variance

Attributes with zero variance across the entire dataset are not useful for charac-
terization as they have zero informational value with regards to differentiating
the workloads. The memory related attributes Memory text (at exit), Memory



9.3 attribute reduction 45

locked (at exit) and Memory library (at exit) have zero variance for the entire
set of data and can therefore be immediately excluded from the characteriza-
tion.

The attribute Memory stack (at exit) KB varies discreetly between the values
460, 464 and 468 for each of the workloads, seemingly at random. The median
value for each of the groupings is 464, except of the Network grouping where
the group median is 468. However, three of the four workloads in the Network
grouping independently report a median value of 464. We interpret these find-
ings as equivalent to the attribute having zero variance, and conclude therefore
that the attribute in question is not inductive to workload characterization in
our case.

9.3.2 Attributes with perfect correlations

We inspect the box plots for each of the workload groupings to find attributes
that have a perfect correlation between them. If two attributes are perfectly
correlated, it is possible to infer one from the other and we therefore only
require one of them.

A visual inspection of the PAPI_L1_ICM and PAPI_L2_ICA box plots indicates
that there is a strong correlation between the two datasets for each of the single-
stressor workloads. Indeed, the Spearman rank correlation coefficient between
the two attributes for the entire dataset, including multi-stressor workloads, is
𝜌 = 1.0, confirming that they are monotonically related. This can be explained
by the fact that a level 1 instruction cache miss, leads directly to a level 2 instruc-
tion cache access. We therefore remove the attribute PAPI_L2_ICA as it can be
inferred from the attribute PAPI_L1_ICM.

The the two attributes Real cyces and Real usecs are also identical for each of
the groupings, with only a difference in magnitude. The reason for this is that
Real cyces is calculated by taking the elapsed high-resolution real time (Real
usecs) and multiplying it with the maximum operating frequency the processor
can run at. The same pattern can be seen for the attributes Virtual cycles and
Virtual usecs, and for the same reason as stated above. The Spearman rank
correlation coefficient between the two attribute pairs are 𝜌𝑟𝑒𝑎𝑙 = 1.00 and
𝜌𝑣𝑖𝑟𝑡 = 1.00 respectively. We therefore remove the two attributes Real usecs
and Virtual usecs.
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9.3.3 Real-time reliant attributes

Attributes that rely on real-world time, or wall clock time, such as Real usecs,
Real cycles andWallclock usecs, are limited by the scheduled timeout configured
in the jobfiles. This means that the values reported for these attributes will be
the same (around 10 seconds) for all of the workloads, and therefore provide
no real informational value regarding workload characterization. The only
exception to this is for the workloads in the VM grouping, where we see some
minor magnitudal variation along the the mentioned attributes. This is because
the VM workloads are configured to time out after a certain amount of bogo
operations, instead of a set amount of time.

9.4 Reduced characterization results

The results of characterization using the reduced set of attributes is shown in
Fig. 9.1 for the single-stressor workloads, and in Fig. 9.2 for the multi-stressor
workloads. The attribute values are plotted on logarithmic scale to account
for the large magnitudal differences between some of the workloads. We add
solid vertical lines to the plots for the single-stressor workloads to more easily
differentiate between the different workload groups.
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9.4.1 Characterization of single-stressor workloads

In Fig. 9.1, we expected to see that the matrixprod workload had a higher
magnitude for the majority of the attributes relative the other workloads in the
CPU grouping, due its description in the stress-ng documentation. However, we
see that this is only the case for attributes that relate to the level 1 and 2 data
cache, i.e. PAPI_L1_DCM, PAPI_L2_DCA and PAPI_L2_DCM.

The attribute magnitude of the "afalg" workload is consistently small for a
majority of the attributes, making it stand out from the rest of the workloads
in the CPU grouping (Fig. 9.1). This discrepancy between "afalg" and the other
workloads in the grouping is most clearly seen for the attributes PAPI_TOT_CYC,
PAPI_FUL_ICY and Virtual cycles. The most likely reason for this has to do
with the nature of the component the underlying "afalg" stressor is exercising,
the AF_ALG socket. The purpose of the AF_ALG socket in Linux systems is to
provide an access point to cryptographic services which can only be accessed
from the kernel mode [17]. Since the workloads have been profiled in user
mode, PapiEx is unable to measure the performance behaviour of operations
that are being done in kernelmode and is therefore unable to accurately capture
the performance behaviour of the workload.

For many of the attribute dimensions we see patterns indicating that workloads
which belong to the same grouping have similar magnitudes (Fig. 9.1). An
example of such patterns can be seen for the attribute PAPI_FUL_ICY where,
disregarding a few outliers, The the workloads form "tight" upper and lower
bounds on the region in which they exist along the given dimension.

Along other dimensions these regions are not as clearly defined, with relatively
large inter-group variances between the workloads. Along the attribute dimen-
sion PAPI_L1_ICM, for example, the magnitudes of the various workloads vary
a lot for the CPU, IO and VM groupings (Fig. 9.1). The CPU grouping exhibits
a lot of variance along the PAPI_L2_DCA attribute dimension as well. In cases
such as these, it could be beneficial to sort the workloads into more than one
region so as to reduce the variance.

Focusing now on the differences and similarities of the workload groupings, we
see that some groups are clearly distinguishable from the other groups formany
of the attribute dimensions. Along the attribute dimension PAPI_TLB_DM, the
VM group forms a distinct high-magnitude region, while the other groups form
regions with similar upper and lower bounds (Fig. 9.1). An identical pattern
can also be seen along the Memory heap (at exit) attribute dimension, when
the VM grouping forms a clearly distinct region relative to the other workload
groups.
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Figure 9.1: Characteristics of the single-stressor workloads after dimensionality re-
duction. Blue lines have been added in post to more easily distinguish
between the workload groups. The dashed blue lines have been added
to better visualize the upper and lower bounds of the groups along each
attribute axis.
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Similarly, along the PAPI_TOT_CYC and PAPI_TOT_INS attribute dimensions,
the CPU grouping forms a highly distinct upper region compared to the other
groups (Fig. 9.1).

9.4.2 Characterization of multi-stressor workloads

As the task shapes of the multi-stressor workloads are essentially combinations
of stressors with different performance behaviours, the variances along each at-
tribute dimension is quite large for each of the multi-stressor workloads. There
are some exceptions to this, as can be seen for the attributes PAPI_TLB_DM and
PAPI_TLB_IM in Fig. 9.2.

The multi-stressor workload "I/O and Network" has the least variance in general,
indicating that its constituent stressors are similar in terms of performance be-
haviour. We also notice that the median values of the workloads, with the excep-
tion of "I/O and Network", are quite similar for many of the attribute dimensions.
However, for the attributes PAPI_L1_ICM, PAPI_L2_ICM and PAPI_STL_ICY we
see that the median values vary a bit (Fig. 9.2).
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Figure 9.2: Characteristics of the multi-stressor workloads after dimensionality reduc-
tion.
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9.5 Evaluation of class representatives

Motivated by the findings in Section 9.4, we begin collecting workloads into
unified task shapes to define the class representatives. Since the data is multi-
dimensional and fairly complex, we elect to use the same groupings as outlined
in Table 8.2 to construct the unified task shapes. That is, we forego the step
of further subdividing the classes based on attribute magnitudes, as outlined
in Section 5.1.1, as this would require the usage of more intricate clustering
methods that fall beyond the scope of this thesis.

The resulting unified task shapes are shown in Fig. 9.3, as logarithmic box plots
along each attribute dimension. We see that the variances for each of the classes
are relatively large for some of the attributes, while in others the variances are
somewhat smaller.

The Network class has overall the smallest variances along each of the attribute
dimensions, with the exception of the two attribute dimensions PAPI_BR_MSP
and PAPI_L2_ICM (Fig. 9.3). This indicates that its constituent workloads are
well suited to being grouped together. The same can be said for the IO class to
a somewhat lesser degree.

The CPU class exhibits a large variance along the PAPI_L2_DCM, PAPI_L2_DCA
and PAPI_L1_DCM attribute dimensions (Fig. 9.3). This is likely due to the in-
clusion of the "matrixprod" workload which reported higher magnitudes along
these dimensions, as stated earlier.

The VM class reports the largest variances for each attribute overall, in Fig. 9.3,
indicating that it is probably a badly defined class. I.e. The upper and lower
bounds of the task shape along each attribute dimension are very far away from
each other.

Focusing on the median value of the classes along each attribute dimension
in Fig. 9.3, we see that for many of the attributes the reported median values
are quite dissimilar across the classes. Examples of this includes the attribute
dimensions PAPI_BR_MSP, PAPI_TOT_INS and PAPI_RES_STL where we can
see that the classes are clearly discernible with respect to the median.

We can also see that the CPU class has the highest median value for 11 of the 22
attribute dimensions used for characterization, while the Network class reports
the lowestmedian value for 8 of the attribute dimensions (Fig. 9.3). Incidentally,
7 of these attributes (PAPI_BR_CN, PAPI_BR_INS, PAPI_FUL_ICY, PAPI_LST_INS,
PAPI_RES_INS, PAPI_TOT_CYC and PAPI_TOT_INS) are also ones where the
CPU class has the highest median value.
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Figure 9.3: Characteristics of the class representatives after dimensionality reduction.



9.6 single-stressor workload classification performance 53

We also see in Fig. 9.3 that he median values for the IO class consistently falls
in the middle relative to the other classes, never reporting median values that
are significantly higher or lower than the others. The same pattern is seen for
the VM class.

9.6 Single-stressor workload classification
performance

We use the class representatives shown in Fig. 9.3 to apply our fuzzy clas-
sification model to the single-stressor workloads to get an indication of the
classification accuracy. We expect that the classification score 𝑤𝑖 (Eq. 7.3) will
be the highest for the class representative in which each workload is a con-
stituent of. We also calculate the Cosine similarity 𝑆𝑖 (Eq. 7.2) for each pair of
single-stressor workload and class representative, but do not consider it as part
of the classification. That is, we only use it to potentially gain further insight
into the resulting classification scores.

The classification results for the single-stressor workloads are shown in Tables
9.1, 9.3, 9.5 and 9.7, for the I/O, CPU, Network and VM stressor workloads
respectively. In each table we highlight the column header for which we ex-
pected to see the highest classification, or truth, score 𝑤𝑖 in green. We also
highlight the highest classification score per row; green if the result aligns with
the expectation, and yellow otherwise.

The corresponding Cosine similarity scores are shown in Tables 9.2, 9.4, 9.6 and
9.8 for the I/O, CPU,Network and VM stressor workloads respectively. Again we
highlight the column header in which we expected the highest Cosine similarity
value in green, and the highest Cosine similarity value per row in either green
if correct, or yellow if wrong.

9.6.1 I/O workload classification performance

In Table 9.1 the results of applying our workload classification model on the
I/O stressor workloads is shown. We see that for three of the four workloads
the 𝑤𝐼/𝑂 score is the highest, indicating that they are most similar to the I/O
class representative. We can also see that all four of the workloads have the
least similarity to the CPU class representative, reporting𝑤𝐶𝑃𝑈 scores between
3.8-9.3%.

The "seek" workload, even though it is a constituent of the I/O class represen-
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Name 𝑤𝐶𝑃𝑈 𝑤𝐼/𝑂 𝑤𝑁𝐸𝑇 𝑤𝑉𝑀

direct 9.1% 47.7% 24.8% 18.2%
dsync 9.3% 44.1% 27.2% 29.4%
iovec 6.6% 41.6% 29.6% 22.1%
seek 3.8% 12.7% 28.4% 55.1%

Table 9.1: Classification of the filesystem I/O stressor workloads.

Name 𝑆𝐶𝑃𝑈 𝑆𝐼/𝑂 𝑆𝑁𝐸𝑇 𝑆𝑉𝑀

direct 0.956 0.682 0.423 0.500
dsync 0.863 0.964 0.835 0.877
iovec 0.822 0.984 0.882 0.916
seek 0.499 0.953 0.999 0.992

Table 9.2: Cosine similarity between each class representative and I/O stressor work-
load.

tative, has particularly low classification score towards the I/O class (Table
9.1). Looking at its characteristics in Fig. 9.1, we can see that for some of the
attributes it reports a lower magnitude relative to its counterparts in the I/O
grouping, which is what we are probably seeing being reflected in the classifi-
cation scores.

Apart from the "direct" workload, all of the workloads in the I/O group report a
high Cosine similarity value towards the I/O class (Table 9.2), indicating that
the ratios between the attributes for each of the workloads are similar.

9.6.2 CPU workload classification performance

The classification accuracy for the CPU stressor workloads is very good, as can
be seen in Table 9.3. Only two of the 8 workloads reports a higher score towards
class representatives other than the CPU class representative, one of which
("afalg") we flagged earlier in Section 9.4.1 as having particularly small attribute
magnitude values compared to the other CPU stressor workloads.

We can also see that the Cosine similarity corroborates the scores calculated
by our fuzzy classification model (Table 9.4). The CPU stressor workloads gen-
erally report much higher magnitudes for many of the attributes relative to the
workloads in the other groupings (Fig. 9.1), which might be the reason they
are easy to correctly classify.
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Name 𝑤𝐶𝑃𝑈 𝑤𝐼/𝑂 𝑤𝑁𝐸𝑇 𝑤𝑉𝑀

afalg 7.4% 49.2% 26% 17.3%
branch 18.9% 24.4% 25.9% 30.5%
fft 43.8% 18.8% 18.2% 18.9%
jmp 35.2% 21.8% 21.2% 21.7%

mergesort 71.3% 9.5% 9.2% 9.8%
muladd64 63.7% 12.1% 11.6% 12.5%

sieve 42.8% 19.2% 18.6% 19.3%
matrixprod 49.9% 16.5% 16% 17.5%

Table 9.3: Classification of the CPU stressor workloads.

Name 𝑆𝐶𝑃𝑈 𝑆𝐼/𝑂 𝑆𝑁𝐸𝑇 𝑆𝑉𝑀

afalg 0.651 0.992 0.978 0.988
branch 0.744 0.785 719 0.792
fft 0.966 0.600 0.335 0.422
jmp 0.913 0.515 0.237 0.320

mergesort 0.993 0.700 0.468 0.561
muladd64 0.989 0.742 0.507 0.591

sieve 0.964 0.598 0.325 0.411
matrixprod 0.966 0.734 0.528 0.621

Table 9.4: Cosine similarity between each class representative and CPU stressor work-
load.

9.6.3 Network workload classification performance

It seems the classification model struggles to classify workloads belonging to
the Network stressor group (Table 9.5). That is, it does not give the highest
classification score towards the Network class. However, we can see that all the
workloads give a low score towards the CPU class, and that they interchangeably
give high and low scores towards the I/O and VM class.

Name 𝑤𝐶𝑃𝑈 𝑤𝐼/𝑂 𝑤𝑁𝐸𝑇 𝑤𝑉𝑀

dccp 4.1% 50.7% 30.9% 14.2%
pingsock 4.2% 12.8% 26% 56.8%

udp 4.1% 50.9% 30.7% 14.2%
udpflood 4.1% 12.7% 26.88% 56.2%

Table 9.5: Classification of the network stressor workloads.

Looking at the Cosine similarity scores in Table 9.6, we see that the similarity
values for each of the workloads are more or less the same, with all of them
reporting the highest Cosine similarity with the Network class. This indicates
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Name 𝑆𝐶𝑃𝑈 𝑆𝐼/𝑂 𝑆𝑁𝐸𝑇 𝑆𝑉𝑀

dccp 0.486 0.950 0.999 0.990
pingsock 0.490 0.951 0.999 0.991

udp 0.488 0.950 0.999 0.991
udpflood 0.492 0.952 0.999 0.991

Table 9.6: Cosine similarity between each class representative and network stressor
workload.

that the workloads do belong to the same class, but that perhaps the Network
class is ill-defined. I.e. The greedy median is not a good representative for the
class.

9.6.4 VM workload classification performance

As seen in Fig. 9.3, the VM class reports a high variance formany of the attribute
dimensions, which, as earlier stated in Section 9.5, indicates that perhaps the
class could benefit from being further subdivided into two or more separate
sub-classes. In Table 9.7, this is made even more apparent when looking at the
classification scores.

Name 𝑤𝐶𝑃𝑈 𝑤𝐼/𝑂 𝑤𝑁𝐸𝑇 𝑤𝑉𝑀

mlock 4.5% 13% 25.1% 57.3%
cachestripe 39.9% 19.7% 19.2% 21.1%
write64 4% 10.3% 17.5% 68%
bigheap 9.6% 42.9% 27.5% 19.8%
pageswap 3.8% 12.1% 25.4% 58.5%
read64 9.4% 22.1% 28.2% 40.3%
swap 10.9% 34.4% 28.1% 26.5%

Table 9.7: Classification of the VM stressor workloads.

Name 𝑆𝐶𝑃𝑈 𝑆𝐼/𝑂 𝑆𝑁𝐸𝑇 𝑆𝑉𝑀

mlock 0.490 0.951 0.999 0.991
cachestripe 0.951 0.786 0.690 0.668
write64 0.575 0.970 0.991 0.999
bigheap 0.486 0.950 0.999 0.990
pageswap 0.496 0.952 0.999 0.993
read64 0.746 0.962 0.916 0.947
swap 0.872 0.862 0.735 0.812

Table 9.8: Cosine similarity between each class representative and VM stressor work-
load.
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in Table 9.7, four of the seven workloads are classified as expected, with the
highest score going towards the VM class, the other three instead report a higher
similarity towards other classes. However, these three workloads ("cachestripe",
"bigheap" and "swap") do give very similar classification scores towards the VM
class, between 21.1% and 26.5%.

Only one of the workloads report the highest Cosine similarity score towards
the VM class (Table 9.8). We can also see that the workloads consistently report
a high Cosine similarity with the I/O class, but also with the VM class. This
give a slight indication that the workloads in the VM grouping have similar
ratios between the attributes, but not with the VM class.

9.7 Multi-stressor workload classification
performance

We give our classification model the more complex objective of classifying the
multi-stressor workloads (Fig. 9.2), with the expectation that the highest clas-
sification scores will be given to the classes of which the component stressors
are a part of.

Again we calculate the Cosine similarity 𝑆𝑖 (Eq. 7.2) for each pair of multi-
stressor workload and class representative, but do not consider it as part of the
classification.

The results of classifying the multi-stressor workloads is displayed in Table 9.9,
and the Cosine similarities are shown in Table 9.10. The highest classification
score or Cosine similarity value per row is highlighted in green if it matches
either one of the two to three expected classes, and yellow otherwise.

Name 𝑤𝐶𝑃𝑈 𝑤𝐼/𝑂 𝑤𝑁𝐸𝑇 𝑤𝑉𝑀

CPU and I/O #1 31.9% 23.2% 21.5% 23.3%
CPU and I/O #2 33.8% 21.5% 21.0% 23.6%

CPU and Network #1 33.2% 23.5% 21.2% 22.0%
CPU and Network #2 23.6% 27.7% 24.1% 24.6%
I/O and Network 2.0% 13.5% 73.8% 10.6%

CPU and I/O and Network 12.2% 28.0% 27.8% 31.9%

Table 9.9: Classification of the multi-stressor workloads.

Apart from the workload "I/O and Network", the classification scores do not
favour one class over others to a relatively high degree (Table 9.9). We expected
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Name 𝑆𝐶𝑃𝑈 𝑆𝐼/𝑂 𝑆𝑁𝐸𝑇 𝑆𝑉𝑀

CPU and I/O #1 0.979 0.792 0.577 0.660
CPU and I/O #2 0.964 0.856 0.664 0.731

CPU and Network #1 0.983 0.726 0.489 0.568
CPU and Network #2 0.981 0.767 0.546 0.626
I/O and Network 0.487 0.950 0.999 0.990

CPU and I/O and Network 0.880 0.935 0.818 0.877

Table 9.10: Cosine similarity between each class representative and multi-stressor
workload.

to see that classification scores for the multi-stressor workloads favoured, to a
high degree, the two or three classes of which the constituent stressors were
a part of. What we see instead is that the scores are more or less "evenly dis-
tributed" with only a small difference of about 3-10% between the highest and
next highest scores per row, and a slightly larger difference of about 4-19%
between the highest and lowest scores per row.

The classification scores for the "I/O and Network" workload is heavily favoured
towards the Network class at 73.8%, with a score of only 13.5% towards the I/O
class (Table 9.9) despite both constituent stressors having the same amount of
allocated cores (Table 8.3). We saw in Table 9.1 that the classification model
struggled to correctly classify the "seek" workload, owing in due part to the
fact that it reported a relatively low attribute magnitude compared to its I/O
stressor counterparts. Indeed, we can also see in Fig. 9.1 that this workload has
a performance behaviour that is actually more similar to the Network stressors,
which might be the reason we see that the classification score 𝑤𝑁𝐸𝑇 in Table
9.9 is considerably higher than the other classification scores for the "Network
and I/O" workload.

Two of the workloads, "CPU and Network #2" and "CPU and I/O and Network",
reports the highest classification scores towards classes in which neither of their
constituent stressors are a part of (Table 9.9). The "CPU and I/O and Network"
workload assigns the lowest score towards the CPU class, even though more
cores were allocated to the CPU stressor component (Table 8.3). The might
be an indication that the greedy median is not a good representative for the
workloads.

In Table 9.10, each of the multi-stressors reports a high Cosine similarity value
towards at least one of the classes in which their constituent stressors are a
part of. Interestingly, all of the workloads that consisted of a CPU stressor, apart
from "CPU and I/O and Network", reports the highest Cosine similarity value
towards the CPU class. A similar pattern is seen in Fig. 9.9 for the mentioned
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workloads.





10
Discussion
10.1 Workload characterization using HPCs:

Feeding two (or more) birds with one scone

We find that, when applying our proposed characterization methodology to
synthetic workloads, we are able to produce high-dimensional workload char-
acterizations that are able describe the performance behaviour of the given
benchmarks in fine detail. The resulting workload characterizations are also
relatively straightforward to interpret, given intermediary knowledge about
hardware events.

The proposed methodology can easily be applied to other untested workloads.
The only requirement is having access to HPCs, and being able to monitor
them. Most modern microprocessors have built-in HPCs, and they can be easily
instrumented using widely available event-monitoring tools such as PAPI and
perf_events.

One of the benefits of leveraging hardware performance events to characterize
workloads is that not only are we getting the fine-grained workload character-
izations we are after, but we also get to profile the performance behavior of
the application in question. Even though we are mainly using the HPCs for the
purpose of characterization, we can still use them for one of their intended pur-
poses; conducting performance-analysis. Given an arbitrary edge computing
application or task, we might, from the resulting characterization, see that it
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places abnormal strain on a given system resource. We now get the opportu-
nity to, for example, fine-tune this application to run more efficiently on our
system.

Consider also the case where we have two or more applications designed for
the same edge computing use-case, such as Mixed Reality. By characterizing
these applications/tasks using the methodology proposed in this thesis, we can
now make a comparison between the performance behaviour of the resulting
characterizations and select the application that has the best performance on
our hardware setup.

10.2 Comparing results gathered from different
systems

The downside of using microarchitecture dependent attributes, such as hard-
ware events, is that the resulting workload characterization will invariably be
different from system to system, due to different underlying hardware. That is,
the resulting characterization of our proposed characterization methodology
is in large part dependent on specific properties of the system resources. The
compute power of the CPU, the network throughput, the storage capacity of
the TLB-, CPU-, and Data-cache, etc. These are all component properties that
will affect the performance behaviour of the application being profiled.

The consequence of this is that workload characteristics measured on one sys-
tem might not be relevant for other systems, if the properties of the system
resources are very different. A solution to this could be to profile the workloads
on a "generalized" edge computing system that uses hardware components
that commonly see usage in the edge computing paradigm. Workload charac-
terizations produced on such a system could then be used as a starting point
for related research that uses slightly different hardware configurations.

10.3 A prototype classification model

In Section 9.6 we evaluated the classification accuracy of our "proof-of-concept"
fuzzy classification model, and found that, for some of the classes (Tables 9.1
and 9.3), the results were relatively good. However, for other classes (Tables 9.5
and 9.7) we found that ourmodel struggled somewhat to classify the workloads
correctly. The same can be said for the multi-stressor workloads where we saw
discrepancies between the expected and actual results (Table 9.9).
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We still believe that our proposed classification model has some merits, such
as classifying workloads using a fuzzy membership scheme, but parts of the
model will require further work in order to improve its performance.

The immediate downside of measuring distances using only the Euclidean
distance between each center point is that the variance along each attribute
dimension is not taken into account. For example, if the center point of a task
shape is, by definition of the Euclidean distance, far away from the center point
of some class representative but well within the region that the class represen-
tative encompasses, then that task shape will have a low classification score
towards that particular class. An alternative approach is therefore required in
order to take such situations into account when calculating the classification
scores.

Another issue is that the current model weighs, in effect, each attribute dimen-
sion equally when calculating the classification scores. Attributes with a lower
variance should be weighted more heavily than attributes with a large vari-
ance, as the region in which the class representative exists along such attribute
dimensions is much tighter.

The model is also heavily dependent on the choice of how to define the class
representatives, as these are the "ground truths" on which the model bases its
classification decisions. In Section 11.5 we mention some alternative methods
that can be used to define the class representatives.





11
Future Work
11.1 Adding microarchitecture independent

attributes

Currently, our task shapes consists solely of microarchitecture dependent at-
tributes. However, the work of some authors suggest that such characterizations
can lead to misleading or erroneous conclusions [34]. Indeed, there are certain
properties of edge computing workloads that cannot be captured by hardware
performance events alone. There are already several works in the literature
where microarchitecture-independent attributes are used for characterization.
Combining these two approaches when selecting the task shape dimensions
might prove advantageous for future characterization of edge workloads.

11.2 Applying the methodology to real
workloads/benchmarks

The characterization methodology presented in this thesis was evaluated us-
ing synthetic workloads. As has been stated my many authors before [28, 32],
synthetic workloads often do not accurately reflect the characteristics of real
workloads. Future work could involve applying the proposed fine-grained char-
acterizationmethodology to the few existing real edge computing workloads, to
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evaluate if the proposed characterization methodology is viable in a real-world
scenario.

11.3 Curating performance event counters using
high-power computing domain knowledge

The work presented in this thesis made use of a set of hardware events auto-
matically curated by PapiEx for workload characterization. Our results showed
that several of these attributes were not useful for characterization for various
reasons. Additionally, some attributes might not necessarily be of interest when
characterizing edge workloads. A deeper understanding of hardware events
is therefore needed to select the optimal configuration of hardware events for
edge workload characterization. We suspect that such knowledge could be
leveraged from the high-power computing domain domain, where HPCs are
often used to solve a variety of problems relating to low-level performance
analysis [11, 2, 12].

11.4 Workload characterization based on
sequential sampling

The values of the hardware events used for characterization in this thesis were
collected at the end of application runtime. It could be beneficial to instead
characterize workloads by sampling its performance behaviour at given time
intervals during runtime.

For example, instead of scheduling the constituent stressors of ourmulti-stressor
workloads (Table 8.3) to run simultaneously, we can instead schedule them
sequentially, either one at a time or intermittently. If we then profile the work-
load by taking samples of the hardware event values at given time intervals,
the resulting workload characterization might then show that the workload
displays characteristics indicative of different workload classes depending on
the given time interval.
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11.5 Applicability of machine learning
techniques

We explicitly state that our proposed classification model is only intended as a
"proof-of-concept" model to classify the high-dimensional task shapes, and we
suspect that other clustering and classification methods might be better suited
of this purpose. Specifically, we believe that methods and techniques from the
field of machine learning can be leveraged to classify workloads. Indeed, the
attributes of our attribute space can easily been seen as features in a feature space,
commonly used for pattern recognition, regression and classification problems
in the machine learning domain.

Various clustering and machine learning techniques are already being used
in the literature to group and classify workloads [22, 25, 34]. Most common
is the vector quantization method k-means clustering, which would be well
suited to create the class representatives needed for our "proof-of-concept"
fuzzy classification model. This technique also has the added benefit of allowing
the user to specify the desired number of clusters, to achieve the desired class
granularity. The k-means clustering algorithm could essentially replace method
2, outlined in Section 5.1.2, or be used in conjunction with method 1 (Section
5.1.1), to construct the class representatives.

11.6 Feature reduction methods

Many methods exist in the literature across various domains to reduce the
dimensionality of data. Considering that our objective is to produce fine-grained
workload characterizations, some dimensions of the task shape will inevitably
be found to be redundant. Which was made apparent in Section 9.3 when
we evaluated the attributes. More robust methods to reduce the task shape
dimensionality could therefore be implemented to find the optimal selection
of attributes.





12
Conclusion
In this thesis we proposed and developed a novel methodology to produce
fine-grained edge workload characterizations, with the purpose of address-
ing the limitations of existing edge workload characterization techniques. We
leveraged hardware performance counters (HPCs), used to monitor hardware
microarchitecture events, to extend the task shapes of workloads to higher
dimensions, thereby obtaining the desired fine-grained workload character-
izations. Further, we performed a rudimentary dimensionality reduction to
identify redundant hardware events, and did an extensive analysis on the ef-
fectiveness of such fine-grained workload characterizations.

We also developed and presented a "proof-of-concept" classification model to
classify workloads using the obtained fine-grained workload characterizations.
The proposed model moves away from classifying workloads as "one-of" and
instead assigns them classification scores based on their similarity to "ground
truth" class representatives. From results we found that further work is required
to improve the performance of the model in terms classification accuracy.

We conclude by mentioning that the proposed fine-grained workload char-
acterization methodology presented in this thesis opens up a lot of interest-
ing avenues of research with regards to characterizing edge computing work-
loads.
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Figure 1: Full characterization of the CPU-stressor workload group.
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Figure 2: Full characterization of the filesystem I/O-stressor workload group.
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Figure 3: Full characterization of the Network-stressor workload group.
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Figure 4: Full characterization of the VM-stressor workload group.
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Figure 5: Full characterization of the multi-stressor workloads.
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